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1. INTRODUCTION 

Depending on the nature of certain problems, geometers found it expedient to 

look beyond the strict Cartesian systems of coordinates. 

Lamd's investigations mark a brilliant achievement in the history of curvi- 

linear systems. In addition t o  his contributions to  different!al geometry, his now 

classical reference [Lame', 18371 introduced for the first time the idea of curvilinear 
elliptic coordinates (today the name "ellipsoidal" is generally accepted). The same 

basic theory has been used by geodesists up to  recent times [Molodenskii et al., 19601. 

After Lame', scores of mathematicians became interested in the subject, 

improving and generalizing the methods. Among them, [IXuboux, 18981 some sixty 

years later, wrote several papers originating the concept of moving frames, which 

later was universalized by [Cartan, 19351. 

In modern times, mathematics has progressed toward the maximum degree 

of generalization. With the advent of Absolute Differential Geometry, the study of 

such abstract topics as m-dimensional manifolds in n-space and the concepts of ten- 

sor  and differential forms have drastically revolutionized the field. 

Even in geodesy some pioneering steps in the;e areas have been taken [Marussi, 

19491, [Hotine, 19691, [Grafarend, 19751, culminating in the periodic celebration of 

the  Hotine Symposiums on Mathematical Geodesy. 

The present report benefits from some of the above methods in order to develop 

differential transformations between Cartesian and curvilinear orthogonal coordinates. 

However, only matrix algebra is used for the presentation of the basic concepts. The 

fact that second order Cartesian tensors reduce to 3 x 3 matrices frequently is over- 

looked. 

After defining in Chapter 2 the reference systems used in this work, Chapter 3 

introduces the rotation (R), l'metriclt (H) and Jacobian (J) matrices of the traneforma- 

tions between Cartesian and curvilinear coordinate systems. A value of 11 as a funotion 

of H and J is presented. Likewise an analytical expression for J'as a function of H" 
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and R is obtained. Subsequently, in Chapter 4, emphasis is placed on showing that 

the differential equations published in the English translation of [Molodenskii et al., 

19601 are equivalent to conventional similarity transformations. This dissipates the 

confusion created recently by some authors [ Badekas, 19691, Wakiwsky and Thompson, 

19741 who credited [Molodenskii et al., 19621 with a model they never wrote. A 

discussion of scaling methods follows. 

Chapter 5 introduces ellipsoidal coordinates, to which the general theory 

developed in Chapter 3 is applied. Finally, differential transformations between 

ellipsoidal and geodetic coordinates arc established. 
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2. REFERENCE COOliDINATE SYSTEMS 

The principal problem of geodesy may be stated as follows (Hiwonan, 196Ul: 

"Find the space coordinates of any point P at the physical surface S of the earth 

when a sufficient number of geodetic operations have been carried out along S. " 

Therefore, in order to know the position of P, the definition of an appro- 

priate system of coordinates is of primary importance. 

Due to the nature of the rotational motions of the earth and to other geodynamic 

problems, a rigorously defined system of the accuracy of our current observational 

capabilities, is not presently available. A recent colloquium organized by the IAU 

(International Astronomical Union) in Tor&, Poland, was the first attempt to coor- 

dinate the work of different groups in the international scientific community for the 

future definition and selection of reliable reference frames [Kdaczek and Weiffen- 

bach, 19741. 

In the present report, only those earth fixed coordfnate systems (Terrestrial 

Systems) which are commonly used in geodesy will be described. The reader i s  

assumed to be familiar with other celestial systems used frequently in astronomy 

and conveniently defined, for example, in [Mueller, 1969). With regard to the 

dynamically defined coordinate systems , generally best suited for geophyaical prob- 

lems, see the description in [Munk and MacDonald, 19601. 

In the fir& place, a broad division between Cartesian and curvilinear systems 

may be made. Due to  the nature of the basic reference surface in geodetic problems, 

sometimes it is convecient to w e  curvilinear coordinates instead of spatial rmtangular 

coordinates. This is especially true when the ellipsoid is used as the basic reference. 

In the following sections the coordinate systems used in this report and their 

notation will be presented in order to avoid any possible confusion. 



2.1 Quasi-Geocentric Cartesian Systems 

(x, y, z) = "Geographic" or Mean Terrestrial  System 

Origin: 

z axis: 

x axis: 

y axis: 

Close to  the geoceder (center of mass of the earth, including 

the atmosphere) 

Directed toward the CIO (Conventional International Origin) as 

defined by the IPMS (bternational Polar Motion Service) and 

the BIH (Bureau International de 1'Heure). 

Passes through the point of zero longitude as defined by the 1968 

BIII system [Guinot et al., 19'711. 

Forms a right-handed coordinate system with the x and z axes. 

A redefinition of this system is plausible in the future [see Kokaczrtk and 

Weiffenbach, 1974, pp. 34-37]. 

World Syetems. These are systems defined by particular satellite solu- 

tions accomplished by different organizations. Two wide catebwries can 

be mentioned: 

Dynamic Solutions (Geocentric) 

(x, y, z) sr Goddard Space Flight Center 

(x, y, z) A Sknithsonian Astrophysical Observatory 

(x, y ,  Z) w L  Naval Weapons bhrhcc Centcr 

Geometric Solutions (Non-G eoc edr  ic) 

(x, y,  z lNOs -: National C c a n  Survey 

(x, y, z ) o s v  = Ohio &ate University 

For a complete description of the different published solutions and their 

corresponding references, consult. [Mueller, 19751. 

Some as yet unexplained differenceB bhween the orientation of the world 

systems with respect to t h e  goographic system are reported in [hluoller 

et al., 19731. 
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(u, v, w) 5 Geodetic Systems (one for each particular local datum) 

Origin: The center of the reference ellipsoid used for defining the 

datum in question. 

Coincides with the semiminor axis b of the reference ellipsoid. 

Passes through the point (A = 0, cp = 0) 

Forms a right-handed frame with u and w axes. 

w axis: 

u axis: 

v axis: 

Errors  in the deflections of the vertical adopted at the datum origin, in 

the cbserved astronomic latitude and longitude, and the adoption of 

improper parameters of the referenced ellipsoid shift the origin of this 

system from the geocenter by amounts 6u,  6v, 6w. 

The improper application of the Laplace condition m d  errors in the 

astronomic a: imuth introduce non-parallelism between the geodetic 

and geographic systems. The relationship is established through the 

rotations 6 c, S$, 60. See Fig. 2.1. Examples of t h i s  type of system 

defined through the datum coordinates are: 

(u, v, w ) ~ ~ ~  1 North American Datum 

(u, v, w)Eu 1 European Datum 

2.2 Curvilinear &stems of Coordinates 

( A ,  cp, h) 7 Curvilinear Geodetic Coordinates 

A :  Geodetic longitude. Angle between the plane u w and the 

geodetic meridian plme of the point P inensured positive 

toward the east (see Fis. 2. I and 2.2). 

O r . A 5 2 n  

a: Geodetic latitude. Angle between the normal to the ellipsoid 

at P and the plane u v. 

n n -- S a S -  
2 2 

h: Geodetic height. Distance along the normal to the reference 

ullipsoid between 1' and the   SI.^ ?ace of this ellipsoid. 



Curvilinear Ellipsoidal (Rotational) Coordinates (as defined in 

[Heiskanen and Moritz, 19671 ) 

A: The same as above (Le. geodetic longitude =- ellipsoidal 

longitude ). 

Ellipsoidal or reduced latitude (see Fig. 5.1). 

Semiminor axis of the confocal ellipsoid through P. 
8 :  
U :  

Natural or Astronomical Coordinates 

This curvilinear coordinate system refers to the instantaneous terres- 

trial system. In this report only the reduced astronomic coordinates 

will be used. Consult [Mueller, 19691 for the corresponding definitions. 

A *  : Reduced astronomic longitude 

<p* : Reduced astronomic latittide 

N 

2.3 Local Frames of Reference 

(q, 6 c )  p Local Geodetic Frame 

Origin: 

< axis: 

q axis: 

5 axis: 

The point P( X,  cp, h). In the case when P is on the 

earth surface, the local coordinate system will be called 

topocentric. 

Normal through P to the reference ellipsoid. The positive 

sign in the outward direction. 

Normal to It and the geodetic meridian plme (&en h = 0, 

tangent to the geodetic parallel of P.) Positive in the direc- 

tion of increasing A.  

Perpendicular to r) m d  

(when h = 0, tangent to the geodetic! meridian of P.) Positive 

in the direction of increasing cp. See Figures 2.1 and 2.2. 

forming a right-handei system 

(6. r,  r) = Local Ellipsoidal Frame 

origin: At the point P ( X 4 ,  K). The abovo definition for the topo- 

centric frame bpplies here also. 
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Taxis: Normal to the confocal ellipsoid of semirninor axis c, which 

passes through P. Positive in the outward direction. 

Normal to rand the  ellipsoidal mdridian plane of P (i. e., 

tangent to t h e  ellipsoidal parallel of P.) Positive in the 

directfon of increasing A. 
Normal to ;and the confocal hyperbo1o.d passing through P 

(i. e.,tangent to the confocal ellipsoid at ?.) Positive in the 

direction of increasing 8. 

- 
q axis: 

Faxis: 

(q*, e*, t*) z Local Astronomic Frame 

Origin: At point P. 

c* axis: Normal through P to the  geop of P ( L e .  tangent at P t o  the 

plumb line passing through P.) Positive outwards. 

Normal to <* and to the mean nstr7nomical meridipn vf P 

(positive in  the direction of increasing astronomic 'ol.,rtude. ) 

Normal :o [* i1nd I)* forming a right-handed system. 

in the direction of increashg astronomic longitude. 

r)* axis: 

{* axis: I'ooeitive 

In the ideal case of pmalleliem between the (x, y, z) and (u, v, w) 

systems, the transformation b 'wen the astronomic and geodetic 

coordinates - done through t h e  deflection of the vertical components 

r)' and 6 ' .  
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3. CURVILINEAR GEODETIC COORDINATES 

3.1 General Comments 

Consider three families of surfaces represented by the paramdric equations: 

x =  xcu, v, w) cp=cp(u, v, w) h = h(u, v, w) (3.1-1) 

where (u, v, w) are Cartesian coordinates. This is really a transformation betweon 

points in the (u, v, w) Euclidean Z3 space lying in a certain domain and points in a 

certain domain in the ( A,  Q, hj space, generally a "non-flat" space. These domains 

naturally will exclude all singular points of the transformation. 

Assuming now that X, c p ,  h are variable parameters, for each constant value 

of the paraineters the family of surfaces wi l l  define three "coordinate surfaces" inter- 

secting in '%oordinate lines or curves". In general, one surface of each family pasees 

through a chosen point and a neighboring point will be determined by neighboring values 

of the paramaers ,  thus dividing the space into elementary cells which in general are 

not rectangular pwallelepipedons. If to each value of (u, v, w) corresponds a unique 

value of ( A ,  (0, h), then any point P is uniquely determined by the three surfaces 

through the point. 

The quantities A ,  cp ,  h are called the ttcurvilinear coordinates" of the point P. 

The most convenient. system of curvilinear coordinates for geodetic applica- 

tions are determined by families cf surfaces which intersect each otber everywhere 

at right angles. In such a case we have a "triply-orthogonal" family of surfaces or 
an "orthogonal curvilinear system". 

Assuming that (3.1-1) represents liny set of orthogonal curviiinear ooordi- 

nates, in that which follcws, the general theoly is going to be particularized, first 

to the very well-known set of geodetic coordinates and later to  some other aurvilin- 

ear orthogonal systems c3ed frequently in geodesy and geophysics. All  the matrix 

relationships derived, even though deduced for a particular curvilinear goodetic 

system, may be applied to :my set of orthogonal curvilinear coordinates. 
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+ + +  
3.2 The Local Base (4 ,  e,, ea) 

The coordinate transformation between the curvilinear geodetic coordinates 

and the Cartesian coordinates may be expressed symbolically by 

( A ,  cp, h) (u, V I  w) 
h*f 1 

and is  defined by the well-known matrix relation 

(N + h) coscpcos X [I] = [(N +h)coscpsinX ] 
L : N ( ~  - e") +h]sincp [a,f) 

(3.2-1) 

where N, the principal radius of curvature in the primu vertical plane irs given by 

(3.2-2) 

and 
e' = 2 f - f  exactly. 

Relation (3.2-1) can also be expressed in general by the usual parametric form: 

u = u ( X ,  cp ,  h) v =v(X,  a, h) w = w ( X ,  cp, h) (3.2-3) 

In order to have a coordinate system of practical value, the following condftions will 

be satisfied everywhere except at isolated singular points (e.g., t h e  polos): 

a) Each point (u, v, w) h a s  :I unique set of curvilinear coordinates; 

that is,  there is a one-to-one correspondence between the ( A ,  Q , h) 

and (u, v, w) coordinates. Therefore, the Jacobian determinant of 

triLdoormation (3.2- 3) i s  not zero. 

Equation ( 3.2-3) can be solved for A ,  cp , h giving the inverse transfor- 

mation: 

b) 

X=X(u ,  v,  w) cp =(P(u, V, W) h = h(u, v, w) (3.2-4) 

This cannot be obtained by an explicit simple closed expression, but can 
be implemented through iteration [Heiskanen and Moritz, 19671, [iiLtpp, 

19751, [Bartelme and hleissl, 19751 or  directly [Paul, 19731 and [Benning, 

19741. 
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d) In addition t o  these conditions, the tangents at a point P to the A, cp, h 

"coordinate lines" through this point are perpendicular, so that the 

curvilinear system is orthogonal. 

Equation (3.2-3) in vector notation may be written as: 

where 
-b + + +  
r = u i  + v j  +wk 

7 - + +  

and i, j, k are the unit vectors along the u, v, w axes. 

(3.2-5) 

(3.2-6) 

The tangent vectors to the (curvilinear) coordinate lines at P are defined by: 

(3.2-7a) 

(3.2-7b) 

(3.2-7c) 

From (3.2-1) one can obtain 

a u  au  -(M f h)sin@cosX a u  coscpcosx - = -(N + h)coscpsinX - 
a x  acp 

(N +h)coscgcosX a V  a(0 -(M + h)sincpsinX ah cosqsin X (3.2-8) ax' 
- =  * o  a x  

aw 
acp 

(M + h)cos@ - 

where M, the principal radius of curvature i n the meridian plane i s  

a(! - $) ~ 

(1 - e"sin cp) 
M (3.2-9) 

-9 

Using (3.2-7) and (3.2-8) it can be shown that the ci (i = 1, 2, 3) vectors a rc  

orthogonal, that is, 
b .  

( ' 1  - ( a J  0 vi / j (3.2-10) 

Computations involving curvilincnr coordinates a r c  greatly simplifiud if the 
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+ 
coordinate curves and the vectors c1 are orthogonal, as in this case; otherwise the  

introduction of tensors will be required. 
+ 

From (3.2-7) and (3.24)  it can be seen that the cl  (i =- 1, 2, 3) vectors are not 
+ + 

unit vectors; thus it will be practical to replace the c, by unit vectors el  (i = 1, 2, 3) 

having the same directions. 

Defining, 

-b 
where hi represents the corresponding modulus of the  vectors c ! ,  or: 

Thus using expressions (3.2-7), (3.2-8) :ml (3.2-12) in (3.2-11) 
-b -9 -. 
el - s i n h i  couxj 

e2 - sincpcosXi - s i n o s i n k j  1 cosok 

e3 - coscpcosXi + coscpsinXj + s i n o k  

-P -+ + > 

-+ -3 -B -+ 

(3.2-113) 

(3.2-llb) 

(3.2-Ilc) 

(3.2-124 

(3.2-12b) 

(3.2-12c) 

(3.2-13u) 

(3.  2-131)) 

(3.2-1SC) 
-b 

It can be observed that the vectors c !  (i - -  1, 2, 3) arc' of unit length and 1nutunlly 

orthogonal, i . e. , 

(3.2-1.1) 

where 61j in the abovc forniuln i s  referrcd to  as the "Ki*onwker delta''. 
-+ 

Thus the  vectors el Ibrm an orthonorinn1 bnsc in thc Kucliduan s p a x  l?'just its 

do thc v e d o r s  i ,  j ,  k. There is, however, onc functaniental difference bc$wc.en tho two 
-) - + +  
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+ +  + 3 
bases: whereas the i, j ,  k are fixed directions, the directions of ei(i = 1,2,3) in 

general will vary from point to point because the coordinate lines are curved. This 

can be seen fmii (3.2-13) where the e, vectors are functions of X and cp. A frame 
+ 

+ + +  
like (4, e,?, which is parameter-dependent is called a "moving frame." The theory 

of the "n1.3vin frames of reference" was greatly extended and generalized by [Cartan, 

19351 who referred to it in French as "repbre mobil. I' For an introductory study of 

the matter aud some bibliography, see [ Grafarend, 19751. 

The ret tangular Cartesian reference frame (q, 6, 3) whose axes have the same 
+ 

direction as tc ! unit vectors el is said to be the "1 o c Lz 1 

frame' which : 5 attached to the point P. The coordinates (or components) of my vector 

v in this local moving frame (71, 6, 3) are termed the 

coordinate reference 

+ -P 
10 C a1  coordinates of V .  Thus, 

(3.8-15) 

+ 
E is important to note that because the vectors e, are functions of A andcp, in general 

+ 
the compot?ds  of b v  are not a,5 i3J but - a x  aX '  a i '  a x  

+ av 9 

Clearly the same logic wi' apply to - . This dependence of the vectors e ,  on the geo- 
acp 

+ + 
detic coordinates will be implied always when a vector v is written in the form v@,  5 ,  c). 

?.3 The Rotat.on Matrix R 

Denoting by [u 1' w] ' the 3 x 1 matrix whose elements are the coordinates 

c]'the column matrix 

in the local system, the transformation of 

+ 
of a free vector v in t.-+ fixed Cartesian frame and by [q 5 
whose elements : -e the coordinates of 

components nl Lhe frec vector v from a reference frame to the other is given by: 
3 

U 

V 

W 

(3.3-1) 

13 



o r  symbolically may be represented by the mappang 

where the rotatior! matrix R of the transformation can be deduced from Fip i re  2.2 by 

simple geometric considerations as follows: 

(3.3-2) 

coscp s in  X sin O 1  cp 

- sinX cos x 
R = Rl(90 - (0) &(A + 90) -: - sinqcos X - sincpsinX cos@ 

coscp cos x 
E must be pointed out here that in the following the interpretation of R will always be 

that of an orthogonal transformation from the geocentric to the local system. Neverthe- 

less, knowing that It is an orthogonal matrix (IC IC' 

formation can d s o  bc written as 

I 
I > It' ItT), the inverse trans- 

li' 
(TI, 6 ,  c, - > (u, v ,  w) 

It should be noted that the rows of I< are the components of the orthondrmal 
-+ 

vectors e, (i 1, 2, 3) given in (3.2-13). Therefore it follows immediately that 

(3.3-3) 

which gives the tramformation between thc two orthonormal bases. It is known that 

the rows of It represent as well the direction cosines of the vectors e, (i 

that is ,  the dircdion cosines of the normals with respect to khu three ~ O r d i n i ~ L e  lines 

or surfaces at 1'. 

+ 
1, 2, 3). 

3 . 4  Element of Arc and Orthogonality 

+ 
It was provcd already that the vectors e ,  (i - 1, 2, :I) tangent to the coordinate 

lines arc 0rthob~n:d. 

A dtfferent way to BCP that tho c-urvilincnr gwrictic. c*oortlinatc*x itt't? oi-thogonnl 



is computing the element of arc (element of distance) in these coordinates. From 

(3.2-3) 

[:I J 

dw 

The total differentials of the functions u, v, w are 

d h  - 

or in matrix notation 

where J is the Jacobian or functional matrix and may be expressed by: 

(3.4-la) 

(3.4-lb) 

(3.4-lc) 

(3.4-2) 

(3.4-3) 

Thus the Jacobian matrix of a coordinate transformation can be interpreted as the 

matrix of a certain linear change of coordinates, namely: 

(dX, d@, dh)  (du, d v ,  dw) 
J 

A s  menkioned previously, the Jaoobim tlc+torminant is not zero. Therefore 

The square of the line element in tho (u, v,  w) sy&tcm ie 
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Substituting above the values from (3.4-1) me cmobtain the following equation 

dsa = h ~ d ~ + h ~ d ~ ’ + h j . ’ d ~ ’ + 2 ~ ~ d X d ~  +2h$2dqdh + 2b:’dhdX (3.4-5) 

where the values hl, ha, h3 are given by (3.2-12) and 

(3.4-6a) 

(3.4-6b) 

(3.4-6~) 

Replacing the values presented in (3.2-8) in equation (3.4-6), it is easy to find that the 

necessary and sufficient condition for orthogonality is 

h, = h6 = hG = 0 (3.4-7) 

Therefore the absence of the te rms  dAd@, tiQdh, and dhdh in (3.4-5) is the 

evidence that the curvilintxzr coordinates (A, (0, h) ,are orthogoml. T h e  transforma- 

tion is called conformal when elements of arc in the neighborhood of n point in tho 

(u, v, w) system are proportional to the elements of a r c  in the  neighborhood of the 

corresponding point in the (A, cp, h) curvilinear system. That is when 

ds2  = du2 + d#  + d d  = f (dX’+d$ +dh2) (3.4-8) 

Thus .formality requires 

hi = ha = (3.4-9) 

The above is in agreement with the fact t h a t  conformality implies orthogonality but not 

viceversa. 

It can be observed that equation (3.4-5) gives the linear element d s in three- 

d l rncns iod  space. Clearly when limited to surface tramforniations the  so-called 

Gaussian fundamental quantities will be prcscrd. For example, in the case of an 

eliilaoid the following idoditics are established: 

(3.4-10) 

1 G  



When F = 0 the  condition for orthogonality exists, and if simultaneously E = G 

the transformation is conformal. 

Equation (3.4-5) can easily be wriren in matrix notation as follows: 

But recalling equation (3.4-2) 

ds2  = ( d X  d v  dh]J ' J  

(3.4-11) 

(3.4-12) 

Thus the transformation between two sets of coordinates i? E" will be orthogonal if 

the matrix pi'oduct of the Jacobian transpose by the Jacobian is a diagonal r n a t r i x .  

3.5 The "Metric Matrix" N 

The differentials du, dv,  dw may also be represented as a free vector. They 

behave under transformation of coordinates as do free vector components; thus from 

equation (3.3 -1) 

(3.5-1) 

Using (3.4-2) it is possible to express the relationship between the differential 

arc-length of the curvilinear coordinates along the "coordinate lines" and their pro- 

jection on the ( q ,  6 ,  c )  system as 
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r 

= HJ dQ (3.5-2) dil d h J  

where the value of the matrix product I t J  according to (3.3-2), (3.2-8) and (3.-1-:$) is 

(N + ~ ) C O S Q  0 0 0 

R J = [  0 (M +h)  (3.5-3) 

0 0 1 

where the matrix of the transformation H will be called the "metric matrix" by W o g y  

with tensor terminology. 

From (3.5-3) the following basic relation can be written: 

1tJ = H 

and using the orthogonality property of It, 

J = It 'H 

(3.6-4) 

(3.6-6) 

Then 

J'J = H ~ R ' H  

and H being diagonal the following results: 

J ~ J  = If '  (3.5-6) 

as can easily be proved by simple multiplication of matrices. 

Comparing (3.5-6) with (3.4-12) it may be deducod that the dingonality of the 

metric matrix H is a consequence oi l h ~ k  orthogomlity of the curvilinear coordinate 

sy stelll. 

1H 



3.6 Jacobian Determinant and Its ArJdications 

Equation (3.5-6) provides a simple way t o  obtain the value of the Jacobian 

determinant. Taking determinants in (3.5-6) 

1 JTJI  = I R “ I  =3 1 Jf 1 1  J 1 = H 1” but 1 J’I = I J I 

(3.6-1) 

where h, (i = 1, 2, 3) are given by equation (3.2-12). 

E is important to mention here that while the determinants of J and H are alwaye 

equal, the  matrix J is equal to the matrix H only when R = I, as can be seen from (3.5-4). 

This will be equivalent to  making the frame (u, v, w) parallel to t.he local (q, 6 ,  <) 

frame through the pertinent rotations. 

The functional (or Jacobian) determinant in the case of geodotic coordinates ie 

I J I = (M + h )  (N +h)coscp (3.6-2) 

n Thus, aside from points where c o s 0  = 0 .j cp = f - .$ 1 J 1 = 0, the transforma- 
2 

tion is locally one-to-one, implying that aqy point on the w (polar) axis is a singular 

point in this specific transformation. 

Equation (3.6-1) is also very convenient for the computation of elements of area 

along the different coordinate surfaces and the element of volume between them. 

(3.6-3f.l) 

(3.6-3b) 

(3.6 -3c) 

(3.6-3d) 

For the particular case of geodetic coordinates on the reference ellipsoid 

d A  =- MNcosQdXdQ (3.6-4a) 

dV = ( h l  + h ) ( N  +h)coscocidXdipdh (3. (i-ilb) 
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It should be noted that the Jacobian may be either positive or negative, the 

difference of sign being of the same nature as the consideration of an area o r  volume 

and their reflection. Due to the fact that the elements of area o r  volume are con- 

sidered positive when the incremema of the variables are positive, the absolute value 

of the Jacobian will always be taken. 

3.7 Analytic Wxpressions for the Inverse of the Jacobian Matrix 

From (3.5-5) it is evident that 

J '  = H ' l i  (3.7-1) 

which provides an md.ytical way of obtaining the inverse of the Jacobian matrix. Using 

(3.5-3) and (3.3-2) oncb o h i n s  

r sin A - I (N +h)cosco (N + h) COSO 

sin@ sin A 
M + h  

sincgcos A - 
= I - M + h  

cos cpcos x cosq sin X 1 
coscp 
K h  

sincp 

(3.7-2) 

The classical way to obtain the elements of J 1 s to solve tho following nine 
equations : 

(3.7-3n) 

(3.7-3b) 
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= o  - - + -  + - -  a v  a x  a v  a v  a h  
a x  au  a q  a~ a h  a u  

aw d~ aw a 2  aw a h  
a i  a~ acp a~ a h  a u  + - -  = o  - - + -  

(3.7-32) 

(3.7-3d) 

(3.7-3e) 

(3.7-30 

(3.7-3g 

(3.7-3h) 

(3.7-3) 

which reduce in matrix notation to  

or  

but from (3.7-1) 

can be written: 

and 

JJ- '  = I (3.7-4) 

(JJ*)' =: I * ( J ~ ) '  J' = I (3.7-6) 

J-' = H-lR , thus substituting this above, the following two equalities 

R'H'J' = I (3.7-6) 

J11'H = I (3.7-7) 

hremultiplying both sides of (3.7-6) by J ', which is equal to H"R, 

(H'R) ( I V H ~ )  J' = J" or 

J '  = (H")"J' ( 3 . 7 4 )  

where clearly (HI)" = (H") .' due to the diagonality of H. Thie is anuther way of 

computing J '  independent of R a8 a function of J and 11. Subatitutlng (3.7-8) in 

(3.7-4) the following qual i ty  is ud~bllehud: 
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J ( H ~ )  l ~ T  = I 

(3.7-9; 

3.8 The Matrix R as a function of H and J 

Finally it is possible to  write the expressions for the rotation matrix H as a 

function of the metric and Jacobian matrices. 

From (3.5-4) 

1t = I I J '  (3.8-1) 

Substituting (3.7-8) above, the following is derived: 

R = H'JT 

and thersfore the following matrix equelity holds: 

HJ- '  = H'J' 

(3.9-2) 

(3.8-3) 

Knowing, as was mentioned &c,~e  (section 3.3) th.at the elements of the rows of It 

represent the direction cosines of the normals to the family of surfaces A, cp, h 

that pass through a point P, equations (3. -1) and (3.3-2) will provide genera' %rm- 

ulas for computing the nine direction cosines of these normals in two different ways. 

For example, the direction cosinco of the normal to the reference ellipeoid 

d a p i n t  ;A, cp, h) may be given by 



4. DIFFERENTIAL CHANGES BETWEEN CARTESIAN AND 

CUHVILINEAIi GEODETIC COORDINATES 

4.1 Basic Eauations 

From (3.5-2) the following basic relation can be written: 

(4.14) 

which substituted in (3.5-1) gives the fundamental differential relations between the 

Cartesian (u, v, w) and curvilinear (A, cp, h) coordinates. 

[,,I = 

This is usually written for the case of geodetic coordinates as 

o r  

(4.1-2) 

(4.1-3) 

(4.1-4) 

(N + h) cosqd  X [ (M ;;do ](+;) 11 [ 3 
vhere a particuh ellipsoid is implied in the computation of N aoxl M. 

The above formula expresses the basic matrix equation relating the differen- 

tial changes in the geodetic coordinates (d A, dv, d h) of a point P referenced to a given 

ellipsoid (a, f ) ,  &:e to differential changes in the geodetic Cartesian coordinates of 

the point. 



Considering the orthogonality of R, 

d u  

(N +h)cosqdX [ f ]  = R T ;  tM+dhb)dcp j 

N coscpd X 
= I t r [  M:cp 1 

(N +h)cosqdX [ f ]  = R T ;  tM+dhb)dcp j 

d u  

It is possible to show that this equation is equivalent to (3.4-2), namely, 

N coscpd X 
= I t r [  M:cp 1 Clearly, if the point P(A, 0, h) is on the surface of the ellipsoid 

(4.1 -5) 

(4.1-6) 

4.2 Differential Changes in (A, ip. h) Due to Shifts, lidations and Scaling of the 

lu. v, w) Cartesian System 

As an illustration of the above theory, one can assume, for example, that it is 

desired tu  ottain the differential changes in the geodetic curvilinear coordinates 

(A, cp, h) due to differential s h a  , rotattian and scale changes of the Cartesian 

system. Then from (4.1-4) the total contribution may be expressed as: 

Each individual differentia! contribution will be studied separately in the following 

pnragraphs. 
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4.2.1 Changes Due to Differential sift of the Origin 

If the geodetic system (u, v, w) is shifted by the amounts 6 u, 6 v, 6w, then 

obviously one obtains 

d u  

d v  

dw 

6 u  

= [ h  

r h i t  6U' 

(4.2-2) 

Assuming the systems (u, v, w) and (x, y, z) to be parallel, the signs of the shift 
components may be given by one of the following conventions (see also Fig. 4.1): 

(Geographic System) - (GeodeCic System) 

(Final 'l ) - (Initid " 1 
(New " ) - (Old 'I 1 
(Fixed " ) - ( M O V ~ I I ~  'l 1 

du  

Thus for example the transformation of coordinates 

Geodetic - > Geographic will be 

(u, v, w) (x, Y, 2) 

Geographic = Geodetic + (Geographic - Geodetic) 

and consequently [!I=[ :I+ 

(4.2-3) 

6 U  

(4.2-4) 

:lV bW 1 
In general the above sign rules will be observed on the following pages, if nat specified 

otherwise. 

4.2.2 Changes Due to Ibtation 

As i s  known, it is possible t o  relate the coordinates of the two Cartesian 

systems having the same origin by the quation 
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T p  
Z W I 

Fig. 4. Z shiffs Between the Geographic and Geodetic Systems 

w 

Fig. 4.2 Rotations Between the Geographic and Geod&ic Systems 
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(4.2-5) 

where the rotation matrix 8 can be written as follows 

- R = H ~ ( $ J )  R ~ ( F !  fl&) = 

cosaosdr - ainosiu.csin# sinoeosd, + coswsincsindr - coscsilrg 1 
(4.2-6) J - sincxos t- coswcos F SiR 

cos osin 4 .t 6 inwsin F cos d, sinwsind, - cos wsin F cos d, cos c COB #I 

An introductory section on rotational matrix algebra may be consulted in [Goldstein, 1'3501. 

In order to keep the sign convention established in the previous section, the dif- 

ferential changes in the coordinates (u, v, w) due to t he  rotations a, c, $J are given by 

(4.2-7) 

W 

Assuming now differentially small rotations bw,  6 F, 6$ (see Fig. 4.2). it 

follows 

s inc  6~ 

COSW = COS€ = cos$ 3 1 

and neglecting second-order terms, t h e  rotation matrix becomes 

(4.2-8) 

(4. 2-9) 
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and by means of (4.2-7) 

It can be observed that the matrix 6g  is a skew-symmetric (or antisymmetric) matrix 

6R+(6RJT = 0 (4.2-11) 

That is, if 6rIJ (i, j = 1, 2, 3) are the elemeuts of 6& 

firiJ = 0 V i  = j 

6rJ,  = - 6 r I j  v i # j 
(4.2-12) 

This represents an important property for all differential rotation matrices. 

Notice that the & matrix given by (4.2-9) i6 orthogonal only up to first-order terms. 

From (4.2-9) and (4.2-10) 

Ra = I +6& 

The condition for R 6 to be orthogonal is I t ~ l l ~ T  = I , but 

&,I%' = ( I +  6 3  ( I +  6 N T  := (1+6IiJ ( I -  6RJ = I -  (6H):' # I 

(4.2-13) 

4.2.3 Changes Due to Differential Scale Changes 

lhe changes in u, v, w tiuc to ;I difft.rcdi:d scnle change 6 1, ;irv 

where 6L according to the sign convention mentioned in (-1.2.1) is, 

6 1, (tiwgraphic scnlc) - ((;c.otlc*tic* scale) 

I'qualion (4.2-14) can ills0 IIC writton i tH 

(4.2- 14) 

(4.2-15) 
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(4.2-16) 

From (4.2-16) it is obvious that 

(4.2-17) 

which implies that the 6 L change in scale may be computed directly from the coordi- 

nates, but 6L can also be obtained from the chord distances 4 and d, in the respective 

systems. 

= f l + , 3 L ) 2 [ ~ - ~ 1  V-V' W - w ' ]  = (1+6L)"dZ (4.2-18) 

Thus 

(4.2-19) 

Precautions should be taken, however, when in a least square adjustment, scale deter- 

mination 

should be used [Leick and van Gelder, 19751. 

through chord distances i s  intended. Only an independent set of chords 

4.2.4 Final Equation 

Thus finally substituting in (4.2-1) the computed effects in the coordinatos 

u, v, w due to shift , rotation and scale changes, thc following equation is  obtained: 
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1 r(N + h)coscpdX 6 0  0 -6J, b c  ][:I+.. [ i] 
(4.2-20) 

[Ej + - 6 c  0 

which gives in matrix notation the changes in geodetie coordinates (A, 0, h) due to shifts 

(6u, 6v, 6w), rotations 6 4  6c ,  6@ and scale 6 L  

Clearly to express dX, do,  d h  only in function of geodetic coordinates, equation 

(3.2-1) will be substituted in (4.2-20). 

4.3 Similaritv Transformations 

It is proper lo point out here that if one considers only changes in the Cartesian 

coordinates due to  translations, rotations and scale change, after substituting (4.1-4) in 

the left side of (4.2-20) the following results: 

But according to the notation used in this report, 

(4.3-2) 

Thus, finally after substitution of the above in (4.3-1) and omitting the rotation matrix It 

+ 6L 
U 

V 

W 

(4.3-3) 

But one can nleo write 



b u  = Ax 
Shifts of the geodetic system with 

6 v = A y 1 s {  I espect to the geographic system 
6w = Az I (4.3-4a) 

6L = A 7 Geographicscale -Geodetic scale (4.3-4b) 

Then one obtains the usual seven-parameter transformation between the coordinates 

of two Cartesian frames. 

[ :] = [E j + [ AZ :; 
or  

or finally, 

- 60 0 6a 0 -":I[' 
3 $  - 6 6  0 W 

+ ( l + A )  [ 

Some authors use the notation 1 + A = A .  Thus, recalling (4.3-7) 

which is a form of the more general similarity transformation: 

X = T + h 3 U  

(4.3-5) 

(4.3-6) 

(4.3-7) 

(4.3-8) 

(4.3-9) 

Conrporing (4.3-8) with (4.3-9) it is obvious that besides the assumptlon of emall rota- 

tions = lis the products of A by the rotations were neglected in the  differential 

transformations of the forniula (4.3-8). For a complete development of the similarity 
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transformations as used in m d e s y ,  consult the discussion in [Leick and van Gelder, 

19751. 

Any one of the above type transformation models i s  generally referred to in 

geodetic literature as the "Bursa model" after [Bursa, 19661. They have been p p u -  

larized as mathematical models of t h e  type F(X, L) = 0 in the least square solution 

for computing the seven parameters of t h e  similarity transformation between world 

systems. 

Nevertheless, it is unclear why several authors, among them [Badekas, 19691 

and [Krakiwsky and Thompson, 19741 credited [Molodenskii et al., 19621 with a dif- 

ferent model where the rotidions and scale e:-pansion are about some particular point 

(uo, v,, w,,) other than the origin of the Cartesian geodetic system. 

In the following sections the equations given by [Molodenskii & al., 19623 wil l  

be presented adopting the general criterion of this work. B will be shown that they 

are not different from a similaritv transforniation of the form (4.3-5) except in 

the w a y  the scxle is applied. In th connection the similarities of eliminating the 

variations of scale through changes in t h e  setiiimajor axis of tho reference ellipsoid 

will be explained. 

4.4 Differential Transformations Accordiw to [Molodenskii d al. 1S62L 

Before fully developing the formulas given by [Molodenskii et al., 19621, 

thc effect of differential changes in the Cartesian geodetic coordinates due 

to  changes in the size (;I) and llattening ( f )  of the ellipsoid will be 

treated. 

4.4.1 Changes Due to Variations &T and 6f 

If thc original reference clltpwid parametors itrc changed, their uffed on the 

(u, v, w) coordinates cdn Iw expressed in matrix aotation as follows: 



d v  

where 

6a = a n r w - a o M  

6 f = f f 

and from (3.2-1) it is possible to compute [Ikpp, 197531: 

a u  - coscpcosx 
a :I W 

a v  coscpsinX 
a a  W 

- _  

- =  

(1 - e2) s i n 0  - =  
a 3  W 

where 

(4.4-1) 

(4.4-2aj 

( I .  4-Xb) 

(4.4-4) 

(4 . 4  -4) 

4 . 4 . 2  General Equations 

Literally following Molodcnskii et al., [lt)62], their oquation (I. 3.2) WiQ4 

the ilifftsential matrix approach and the notation of this paper may he written as 

d U  

d v 

Id" 

r a  

i 

- uol 
,v w -  - w, vo 1 

[::I (4.4-5) 
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Y 

Fig. 4.3 Datum Origin Coordinates in the Geographic 

and Geodetic Systems 
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Clearly in the above equation differential changes (d A ,  dq,  dh) in the geodetic ::oordi- 

nates at any particular point are considered, in addition to the  changes 6a and 6f. 

8 ~ 0  6wJ' is. Before going further, it is important to understand vhat [ 6 ~ 0  
This is not very clear in the original text and probably originated the confusion when 

equation (4.4-5) was used as a model. (At this moment it is proper to mention that 

in the often quoted work by Molodenskii et al., [1962] a local system different from 

the one used in this paper is assumed. Appendix A contains the relationship between 

the matrix notation used here and the equations in the original English translation from 

the Russian). 

Followin, [Molodenskii et al., 19621 the shifts between the origins of the geo- 

graphic and geodetic systems 1 lecorne (see Fig. 4.3) 

where for clarity, small subindices a r e  used to represent the Cartesian syatem to 

which the components of the column vectors are referred. Consequently, it is possible 

to write the following relation equivalent to equation (1.3.4) in [Molodenskii et al., 19621 

and therefore from (4.4-6) and (4.4-7) one may conclude 

(4.4-8) 



Probably the main reason why in [Molodenskii et ,d., 19621 the value of (4.4-8) id not 

given explicitly is that what they called "progressive translations of the ellipsoid" are 

the difference between the two sets of coordinates of a particular poim (In t h i s  case 

the origin of the datum) which are in different Cartesian systems (x, y, z and u ,  v, w). 

This difference, although rigorously correct, is somewhat difficult to visualize. 

Nevertheless it is perfectly clear that equation (4.4-8) does not represent the shifts 

between the origins of the (x, y, z) and (u, v, w) systems, as interpreted by some 

authors when the MolodensEii equations were used as a model. It is obvious that the 

second term on the right hand side of (4.4-7), equivalent LO a rotation about (uo, vo, wo) 

of a system parallel to (u, v, w), is neglected when the vector [ 6u0 6v0 6wJ' is 

thought to be the shifts between the geographic and geodetic Cartesian systems. fhb- 

stitttting the value of [6u0 6v, bw,]' from (4.4-7) in (4.4-5) it m2y be shown that 

+ 

1 

and finally with the  assumption (d X = d@ = d h = 0), it follown that 

+ 

a u  7 

J 

(4.4-9) 

(4.4-10) 



which is e-uctly the similarity transformation given by (4.3-5) with the notatioa 

shi&s between the origins of the two coordinate systems 
with the sign convention of (4.3-43) 

and the replacement of the eEed of a scale change A by the change in the semi- 

major axis of the ellipsoid. In the above equation it may :.e assumed 6f = 0. 

Equation (4.4-10) is not given in the above form in [Molodenskii et ala, 19621 and was  

derived here only with the intention of showing that the model obtained is strictly 

:- similarity transformation of the I' Bursa type I t  without anything special 

introduced besides the scaling variation mentioned above. Later the differonce 

be2ween these two scaling approaches will be fully explained. 

What Molodenskii presented as expression (1.9.3) is nothing else but q u t i o n  

(4.4-9) premdtiplied on both sides by the rotation iiidrix It, nainelv 

t 
(N + i:! cos@ d X 

(M + h)d@ 

d h  

+ 

L 

+ R 
6a 1 

(4.4-11) 

4.5 Comparison of Scaling Methods by Meane of 6 L o r  6 D 

Before giving the individual formulation for each method, ft must be understood 

that a change 6 L  is always applied to the unit length of the  Cnrtesim coordinate system 

involved. Therefore it may be considered as scaling the space or  n change in 

its metric. E can be applied either to the gooddic o r  to the geographic eyBtem, 

d2pending on the adopted sign convention. 
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Nevertheless, a change 6 a is always applied to the geodetic system and prac- 

tically represents a "network scale. " 

4.5.1 Changes dX, d o ,  d h  Dueto a Change 6L inthe Scale 

These changes may be obtained very easily by making use of the relations 

(4.1-4) and (4.2-14), namely 

(N + h) coscpcos X6L 

(N + h)coscpsinX6L 

[ N(l - 6") + h] sin06 L 

Finally, it can be proved that (see Appendix B) 

- Ne' sincpcoscr, 
M + h  6 L  da6L - - 

(4.5-1) 

(4.5-2a) 

(1.5-2b) 

(4.5-2~) 

Consequently, as expected, for a reference rotational ellipsoid, there i s  not 

any influence in the geodetic longitude due to a change of scdc in the lm@h unit of 

the Cartesian geodetic system. 

4.5.2 Changes dX, d@,  d h  Due to a Change 6a in the  Semimajor Axis 

of the Ellipsoid 

The changes (du, dv ,  dw) in thc Cartesian coordinates in fuliction of changes 

of the geodetic coordinates (d A, dcp, d h) ,and differential changes in ellipsoidal 

p,?r:unt!ers 6a,  6 f may be expressed by 



du 

[I.] = 
dw 

Thus, assuming that the point (u, v, w) remains fixed in space, the effect of 

differential changes ba,  6 f  on ( A ,  0, h) is: 

- - 
a u  - au - 

a a  a r  (M +h)coscpdX [::I + R' [ ( N + h ) d q  1 (4.5-3) 

dh aw 
aa a f  - 

- 

Therefore, recalling (4.4-1) and (4.4-3) 

6 a  1 coscp cos x 
W 

6 a  I cos cp sin X 
W 

-I 

(4.5-5) 

The above matrix operations yield (see Appendix B) 

6 a  N e" sin@ cos Q 
(M + h ) a  d q a b  = (4.5-Cib) 

dha. = - W 6 a  (4.5-Gc) 

A s  in the previous case, changing the semimajor axis of the reference ellipsoid 

does not riffed the goodcbtic longitutlo. Ncvurthclom, thoro are aomtq clifferuncus 
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between the two methods of scaling, as will be explained in the next section. 

4.5.3 Comparison of Scaling Methods 

Assume that it is desired to absorb the metric scale change in the coordinate 

system by 3 change 6a in the semimajor axis of the ellipsoid. A positive change 

6 L will not alter the ellipsoid; nevertheless, the new value of the semimajor axis 

(using the new yardstick due to a positive 6 L) will fulfill the inequality, 

therefore, 6 L  > 0 =-> 6aL < 0, 

and finally, 6 3 l  = - 3 6 L  

Therefore, substituting the above forrr.ula in (4.5-4b) and (4.5--IC), 

(4.5-7) 

(4.5-S) 

and 

Thus when the semimajor axis of the ellipsoid changes by the amount 6a, 
due only to  scale variation, namely ('1.5-7), the differential changes in the latitude 

we equal to the differential changes produccd by a scaling of the coordinate system. 

However, the differential changes in the heights are different, as cu 1 be seen from 

(4.5-9). This is in accordance with the remarks made by Hotine [1969, p. 2641: 

"Most of the systematic error in scale of a network could be 
eliminated by altering the size of the base spheroid in the geo- 
detic coordinate system.. . However, this procedure would 
vitiate the height dimension arid would result in some inaccuracy 
even in a two-dimensional adjustment which ignores geoddic 
heights, especially if the network covers a considerable area. " 

Tho difference between the two methods of scaling i s  

(4.5-10) 



which means that for points on the ellipsoid (h = 0) the two scaling methods are 

identical. 

L can be observed that in any case the value of A h may be neglected, as can 
be shown by a simple example. Taking the values of 6L and h excessively, e.g. 

6L = 6 ~ 1 0 - ~  and h = 5 k m  

A h  = 30 x l O % n .  = 30 mnl. 

Thus for all practical cases, the method of scaling followed by Molodenskii 

is not different from scaling the system through changes in the unit length of thc 

Cartesian axes. 

However, rigorously speaking, in general it is possible to  assume changes 

in the semimajor axis of the ellipsoid 6a and at the same time, scale changes 8L. 

This, in fact, signifies that one can change the metric scale 6 L  of the Cartesian 

system without changing the size of the ellipsoid, although every length 

measured with the new scale unit will be different. This is thus equivalent to chang- 

ing the metric of the space, that is, its unit of length. 

On the other hand, it is also completely valid to assume a change 6a in the 

size of the ellipsoid independent of any scale change. This may be considered as a 

"network scale change" but clearly the units along the axis of the Cartesian coordinate 

system will not undergo any varia.&ion. That is, the unit of length (i.e. the scale of 

the three-dimensional space) remains the same, 

4.6 Effects of Other Differential Changes on the Geodetic Curvilinear 

Coordinates 

The theory given in the previous hedions is general and may be used in any 

case desired. The basic equatio- is (4.1-4), in which the individual changes 

[du d v  dwIT should be replaced by vnlues corresponding to  the particular problem 

at hand. Since the number of possibilittes is unlimited (note that this general iippronch 
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may also be applied to "spat ial or three-dimensional Wdesy"),  in this section only 

two examples will be shown. 

4.6.1 Differential Changes in (A, 0, h) Due to a Change 

(d k,, dq0, d hJ at the M u m  Origin (&,, co,, hJ 

Recalling (4. I-4), this may be expressed as 

but from (4.5-5) 

where 

Thus: 

(N + h)coscDdX 

(M + h) d ~ a  

d h  

= I1 

(N + h)c 

(4.6-1) 

I (hl + h) d q  

r(N + h) coscpd A 1 r(N + h) c o s c ~  d A 1  

! (M + h)d@ = lu&T 
d h  

L 

cos(X - A J  
- sincDsin(x - b) RR,'  = 

coscpsin(X - X J  

I 

siacp,sin(X - A,,) 

cos(b, cos0  
+ sino,sinocos(X - A,) 

cosa,  siw 
- sino,cos@cos(X - L) 

(4.6-2) 

(4.6-3) 

(4 5-4) 

- cosco,sin(h - A,) 

- cosa,sinocos(X - k,) 

+ c0sq0c0sq9c0s(A - &) 

sincp,coscD 

sino,sin@ 

(4.6-5) 

This transformation really consists first in making the local system at the clntum origin 

parallel to the geodetic system through It ,' . A new rotation ii will finally make 
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the rotated curvilinear frame parallel to the particular local system at any point P. 

The complete operation may be expressed symbolically by the following 

commutative diagram: 

4.6.2 Effect of Rotations on the Curvilinear Geodetic Coordinates 

From (4.1-4) and (4.2-10) 

(N + h)cos<odX 6~ -6$ (N + h) cos cp cos A [ (M+hd):rp ]I = R [-:; -OF y ]  [ ( N + h b x w s i n A  (N(1 - e”) + h] sin0 ] 
(4.6-6) 

After the above matrix multiplications are performed and after simplification (see 

Appendix C), the following three equations are obtained: 

a W  + h  aW + h  
M + h  M + h  - 6 J l C O S X  - d V 6 ~  = - 6 FsinX (4.6-7b) 

d h 6 R  = - 6 F N e“ sincpcosasin X -t Ne2 sinacoscpcos X (4. G 7 c )  

The above equations in similar form a r e  also given in  [Hdine, 1969, p. 2631. In 

Appendix A the reader may find in equations (A.1-13 the effect of rotations as given 

in [Molodenskii et al., 19621. Note that equations (4.6-7) are not completely rigorous 

expressions because the assumption of small rotations is implicit in the matr ix  6s. 
See equation (4.2-10). 

The complete rigorous expressions in matrix notation may be obtained if in 

place of 6 4  in (4. G-5) ,  the  matrix [ is given by (4.2-6). 

The utility of equations of the type (4.6-6) in the application of minimal constraints to 

curvilinear coordinates is discussed in Appendix D. 

- is substituted, where 
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5. APPLICATIONS TO OTHER CURVILINEAR SYSTEMS 

5.1 Ellipsoidal Coordinates 

The theory developed in Chapters 3 and 4 was applied exclusively to a case of 

orthogonal curvilinear coordinates, the geodetic coordinates (A, (0, h). It will be 

shown at this t ime that the above theory may also be used in other orthogonal cur- 

vilinear systems of common application in w d e s y  and geophysics, such as ellip- 

soidal and spherical coordinates. 

Although in both instances, the family of surfaces is triplv orthogonal, one 

basic difference, however, should not be overlooked. It i s  simply that while the 

coordinate lines and surfaces generated by geodetic coordinates are orthogonal, they 

are nevctheless not confocal. In this chapter only confocal families of surfaces will 

be treated. The following implications hold: 

confocal ==> orthogonal 

orthogonal #> confocal 

Appendix E reviews the properties of some common families of ellipsoids. 

For the sake of generality, it will be  convenient to give first the transforma- 

tion equations between the Cartesian and general ellipsoidal coordinates (reference 

ellipsoid of three parameters) from which, as is  known, two degenerated case8 can 

be obtained: rotational ellipsoidd (reference ellipsoid of two parameters), also called 

spheroidal by some authors, and spherical coordinates. 

On the following pages, it will be assumed that the reference ellipsoid for the 

ellipsoidal as well as the curvilinear geodetic coordinates is geocentric. Therefore 

the notation (x, y, z) will be used for the C:irteuian system. 

The transformation equations betwtvn the different curvilinear and Cartostan 

coordinates are given below. It is assuined that the render is kimiliar with the  hasic 

dcfinitionu. Otherwise [ Hobson, 1931 1 or [ licisk,mc*n ;mnd hloritx, l!Mi7] c-nn bc* c:onsulted. 
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a) Ellipsoidal (Rotational) Coordinates 

b) Local Ellipsoidal and Geodetic Frames 

Fig. 5.1 Ellipsoidal Coordi-ee (after [Heiskaneu and Moritz, 1967.1) 
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6, if, 5 
General ellipsoidal 

- n - q j s  7r 
2 

rv 

( A ,  8, u) ; E =E1 

Rotational ellipsoidal 
Spheroidal 

(5.1-1) 

(5.1-3) 

The elements of the Jacobian matrix for the transformation between general 

ellipsoidal and Cartesian coordixlates may be computed easi ly  : 

ax  - 
a x  6 3  a u  ( U  +E") 

'u 

coBpcCf3x 
-. I A ax - U (2 + E2)~cos&3inX a x  - - - - (u- + E: 2)"sinPcosX T.- .-J 

- - -  

a X  
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and then considering equations (3.2-12) and the above results, the elements of the 

metric matrix when the reference ellipsoid has the parameters (G, E, E l )  are 

obtained as follows: 

(5.1-5a) h l  = cosp(G2 + E"sin"'j; + E:cos.-X] 9- 3 

h a  = [? + s i n " ~ ( E Z c o s 2 ~ + E p s i n ' , x ) ]  -,- 4 (5.1-5b) 

(5.1-5c) 

Assuming now E = E 1, the elements of the Jacobian and metric matriccs for 

the transformation between ellipsoidal (rotational) and Cartesian coordinates are immed- 

iately obtained 

and 

2 =';;cos p aB e = sin B 
h. 

a U  

(5.1-6) 

(5.1-7a) 

Finally, for the simple case of Yphericikl coordinates (E = 0), the following 

known relations are obtained: 
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and 

a - cos cos A a x -  - - -  rsin$cosX - -  
311 d r  a x -  r cos l l s inx  a-- 

9 = rcosr lcosh a x  

a z _ ,  - -  
a x  - rcosG q- 

(6.1-8) 

(5.1-9a) 

(6. I-9b) 

(6.1-9~) 

5.2 Transformations Between the Normal Gravity Vector Components 

Because of the nature of the reference body, tho normal Wavity field is gen- 

erally represented in function of ellipsoidal coordinates. l h e  function u(;, p )  is 
given fur example by equation (2-62) in [Heiskanen and Moritz, 19671 for a partioular 

rotational ellipsoid with seminiajor axis a, ' *4ar excentricity F, gravitational 

constant k M  and rotational velocity 0. 

Assume now that the following translormation i s  desired: 

(6.2-1) 

where 

-$ 

y =grad  U z ( y x ,  y y ,  y r ) =  

3 

That is, given the components oE the vector Y (treated as a free vector) i n  t h e 

gcmcentric system (x, y , z), 

i n  

obtain thc components of the normal gravity vcctor 
N N  ry 

a local cllipsoidal frame (r), 6, r) at tho point P( A, j3, u). 

'I'hc above transformation will bc porformod through an orthogonal rotation 

iiintrix. Thercforc the inverse trmefornilltlon (which is really tho onu practically 
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used) is immediately available. 

To obtain the rotational matrix in the transformation (6.2-1) is not 

as simple by geometrical deductions as in the case of geodetic coordinates. 

The main reason being that it ie very difficult to visualize the connection between the 

angle @ and the local ellipsoidal frame (see Fig. 5.1). 

In cases like this, as mentioned in Section 3.8, equations (3.8-1) and (3.8-2) 

may be applied. For this particular curvilinear system, the following relation holds: 

(5.2-2) T H, = H,”J, 

where the elements in the matrices J ,  and He are given by equations (5.1-6) and 

(5.1-7) respectively. Thus 

3 (2 + E”) cospcosx  3 r - (7 + E a )  cospsinhi 

(5.2-3) 

Y *  

YY 
‘y 

sin@ Y *  

(5.2-4) 

The above is alsi, given in equation (6-11) of [ H e i s h e n  and Moritz, 19671, although 

the final result is obtained by a different approach. Observe that the notation of tho 

equations presented here is in accordance with the general criteria of thie roport. 



After the maWv i i  ultiplication in (5. ?-4) is performed, the rotational matrix 

of the transformation (5.2-1) is as follows: r - s i n h  cos x 0 

1 - - sinPsinX 
u1 

cy N 

sin@ - U U 
- 7 1  cos @cos x cos 4 sin X 
u(u:! + E:!)z u(';;" +1.::',6 lu 

J 
(5.2-5) 

5.3 Differential Transformations Between Cartesian and Ellipsoidal Coordinates 

The transformation between differential changes in Cartesian and ellipsoidal 

coordtnates can immediately be obtained trea+.t?;iig ?ne basic eo-iations of Scction 4 . 1  in 

a more general way. 

Applying (4.1-3) to this specific case, 

but recalling (3.8-1) and (3.8-2) 

1 .1 l ie  = H,~'J,, = H n J ,  

(5.3-1) 

(5. :J-*:) 

one obtains 
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r 

(5.3-3) 

(5.3-4) 

Observe that equation (5.3-4) was expected, if the total differential approach is redled. 

From (5.3-3) the analytical form of the inverse of the Jacobian may be computed, 

giving 

- ura sin X/COS B ura cos x /cos B 0 

- sinBsinX 
N 

u cos B 

5.4 

IC. 

ucospcosx  u cos @ sin A 

(5.3-5) 
1 -  

General Commutative Diagram for the Transformation of Free Vector Components 

Figure 5.2 represents all possible transformations or mappings baween free 

ve 

placcd on the coordinatz systems discussed in this report (mainly geodetic and rota- 

tional ellipsoidal) but the same logic may be applied to any other orthogonal curvilinear 

coordinate system. 

- commnents in spatial rectangular coordinate systems. Et.iphasis has been 

For an easy recall, some of the basic matrices repreeentec' in the diagram are 

given according to equation number in the following table; 
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Table 5.1 Equation Numbers of Commutative Diagram Matrices 

Matrix Type 

Jacobian 

Jacobian Inverse 

Metric (Diagonal) 

Rotation (Orthogonal) 

As a simple application from the  diagram, let's assume that the coni- 

imnents (y ,  , y -  y-)are  desired. The diagram gives immediately 
rl 5 '  c 

l a  F / a P ]  

where F is any scalar function. 

(5.4 -1) 

Assuming F to be the spheropotentid function U ,  one cnn obtain the 
+ 

components of the normal gravity y along the local ellipsoidal system at the point 

(5.4-2) 
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'Iz 1 

X 

" 
c= 

h 

d 

L 

53 



Thus the 1 lues of (Y -, 
the transformation between ellipsoidal and Cartesian coordinates and the partials of 

the known function U (E, 8)  respect to the ellipsoidal coordinates. Clearly, for a 

rotational ellipsoid aU / b X = 0. 

, y -) is computed, it is immediate to obtain ( y x  , yy , yt ) as 

, y ) can be computed readily from the metric matrix of 
r) yt f 

* 
Once y (yr , 

r) yii I: 
explained in Section 3.2, through the transformation 

(Y Y C ,  Y f '  ' ( Y x ,  Y y ,  Y t )  6' 

N -., 1 

- (? + E;-!) 'sinocoscp 
+ ii cos /3 sin@ 

u (u.' + Ed)- 'cuepsinu, 
+ s inps inv  

which is also implied in Fig. 5.2. 

Observe that the diagram of Fig. 5 . 2  i s  commutative. This means that there 

are several ways to  obtain the transformation between two sets of free vector cornpon- 

ents. The selection of the approach will depend on the type of data readily available. 

For example, the differential transformation between ellipsoidal and geodetic coordi- 

nates may be performed according to  the following possibilities. 

> (dX,  d q ,  d h )  H.'R It €I  ~ 

(dX, d B ,  d G  

(dX, d B ,  d:) J~''{aT''n i (dX,  d ~ ,  d h )  

(dX,  d a ,  t lh) 

> (dX,  d q ,  d h )  

11 'It  J ~ (dX, dp,  d;) 

(dX,  d o ,  d G  
J 'J,  

where the matrix of the transformation i s  given by: r l  0 0 
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5.5  The Rotation Matrix ?i Between the Geodetic and Ellipsoidal Local &stems 

At this point it will be interesting to stua the *nsformation between the local 

geodetic and ellipsoidal systems. That is, we are interested in obtaining the rotation 

matrix bR of the transformation 

From the diagram ol Fig. 5.2, 

(5.5-1) 

Thus, after matrix multiplication, 

(5.5-21) 

where 

n = - 1 [ - - u (u“ -.> + E “ )  - 3  cos @sin0  + sin@coscp~ 
u ( 5 . 5 - 2 ~ )  

+ 
The matrix “Iz will transform components of the normal bvavity vector y from the 

local ellipsoidal to the local geodetic systeni, or viceversa. The orthogonality of ql 

inay be proved easily. 
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Notice that 92 represents a counterclockwise rotation 01 along the 

where 

axis (Fig. 5.11)) 

cos01 = m 

and 

s inQ = n 

This can also be shown by an independent approach considering the orthonormal bases 
+ + +  z + +  
(4, e2,  egl  and (e1, e2, G3) along the respective local frames. 

Clearly, 

+ 
The components of the vectors of the base e l  (i = 1, 2, 3) may be found in 

equations (3.2-13). They are also given by the row elements of the matrix 12 in 

equation (3.3-2); the components of the vectors in the base e I (i = 1, 2, 3) are the 

elements of the rows of li ~ given by (5.2-5). 

2 

Considering that these bases are orthonormal, that is, all the vcdors are  

unit vectors, it follows tha t  

Therefore , after algebraic m.mipulation nnd simplification, 

Thus, finally 



5.6 Transformation between Local Geodetic and Local Astronomic Systems 

The same criterhn of the above sedion may also be applied to obtaining 

the transformation of vector components between the local geodetic (r) , 6 , 3 ) 
and local astronomic (q *, 6 *, 5 *) systems. 

Clearly in this case, the mapping 

will be obtained as follows: 

(5.6-1) 

where 

R* = Ri(90 - C p * )  R3(90 + X*)  

cp * = reduced astronomic latitude 

X * = reduced astronomic longitude 

(5.6-2) 

m d  

cos(X * - A )  sincpsin( X * - A) - COB(bein( x * - x ) 

- sincp%in(X* - A )  cosp coscp * sincpcoecp * 
+ sincp sin@ * cos( X * - A )  

- sincpcoscp*cos(A* - A )  +coscpco~(p*co~(X* 

- cow eincp * ooa( X * - 
coscp^sin( X * - X )  cos cpsincp * sin@ s in9  * 

~ (5.6-3) 

R*R' = 

Assuming now small differences between the geodetic and astronomic coordinates: 

(p* = (o + 6cp 

A *  = A + b X  

(5.6-3a) 

(5.6-3b) 

and with the simplifications 
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sin(A* - A )  a 6A 

cos(X*-X) z 1 

sincP* sin0 
it follows 

RR*' e - ska6A 

sinco6X - cos466A 
- 1 -646 ] - 

6 9  1 

This is r ed ly  the case when one want- to transform between the loc 

R 6 *  

1 geodc 

(5.6-4) 

(5.6-5) 

ic 

(I) , 5 , p )  and local astronomic (t)*, ( *, 5 * ) systems at s~iiie Iurticuiar sttation 

P where the deflection8 of the vertical r) ' and 5 ' are known. 

Then, 

Therefore, substituting in (5.6-5) 

1 r) ' tan0 -I)' 

rl' 5 '  1 

- Q'tancp 1 -6' 1 = I t a t  (5.6-7) [ R R t T  

Finally, if differential changes in (r) , e  , 
system by amounts ( 6 X ,  60) at the point ( A ,  a)  are sought, 

) due to  small rotations of the local geodetic 

where Ra * is given by (5.6-5), thus 

[:; 0 sin@ 6 A - cos96 X 
0 - 6cp 

0 
J 

c o s 0 6  x bcP 

(5.6-8) 



6 .  SUMMARY 

The present work uses a general matrix approach in reviewing some basic 

differential transformations between Cartesian and curvilinear coordinate systema. 

The methods discussed here are applicable to  any type of orthogonal curvi- 

linear coordinates. Nevertheless in this report only geodetic and ellipsoidal (rota- 

tional) coordinates are examined. 

As an application of the theory, differential changes in geodetic coordinates 

due to shift, rotation and scale of the geodetic system are found. The S ~ I C  results 

may be obtained employing other methods, such as the total differential approach o r  

tensor calculus. 

This study also tries to clarify the confusion in recent geodetic literature re- 

garding the so-called “Molodenskii model,” which is used in the least squares solution 

of the seven transformation parameters between world and geodetic (datum) syaems.  

Careful consideration of the differential equations given in [Molodenskii et al., 19621 

shows that the model attributed to  them is not impli, I ir, r .eir work. 

After defining three basic transformation matrices (rotation R, metric H ond 

Jacobian J), mappings between differential changes in the Car tes ian  ;md orthogonal cur- 

vilinear coordinates are established. This is illustrated by a general commutative dia- 

gram (Fig. 5.2). A s  an example, the follawing differential transformaticn it3 presented: 

- -. 
(dX,  d p ,  d u )  <-‘(dX, d o ,  d h )  

(To the best cmow!r?dt-L :!I :>e author, the transformation matrix of this mapping is 

given here for the Ti. & t f r d j  

the geodetic coorc‘io%+s L!. a point P(A, 0, h) 

coordinates change differentially o r  viceversa. 

Thus, it is possible to obtain tiiffcrential changes in 

I,( A, B ,  r), when the ellipsoidal 

A s  an immediate result of the above-mentioned diagram, it is possible to  obtain 

the components of the nor-nal gravity vector in the local geodetic system; thus the com- 

ponent of attraction along the gmdetic normal can be found. 

Finally, the rotation matrix ’% between thc local gcodctic and lucd  ellipsoidal 

frames is examined. 
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APPENDIX A (Referenced in Section 4.4.2) 

A.1 _Matrix Form of the Equations Given in [Molodenskii et al., 19621 

Those acquainted with the English translation of the work [Molodenskii 

et ai. 1960 J 

differentiation of curvilinear coordinates on pzactically the same line as was intro- 

duced in the classical work by Lam6 [1837]. Therefore, no mention of local or mov- 

ing frames is evident in the Russian translation. Thus, in order to change over to 

the matrix notation of this report, a correspondence between fr;mes and their rota- 

tion matrix must be established. This is shown in Fig. A.l. 

know that the approach followed there uses the & r i d  procedure of 



Thus the rotation matrix R may be written: 

cosqsin X sin@ 

(A. 1-1) 

cos O I  cp 

cos 0 1'08 X 

- s i n k  cos A 

- sincpcosh - sincpsink 
IR = R4-V) &(A) = 

In the equations given in [Molodenskii et al. , 19621 the differential changes (da,  db)  

in. the semi-major and semi-minor axes of the reference ellipsoid are introduced. 

However, in Section 4.4.2 of this report the flattening was used inetead of b, thus 

the following substitutions must be taken into consideration 

a - b  
a 

f = -  => b = a - ? f  (A.1-2) 

and differentiating above 

d b  = d a - a d f  - f d a  j d b  = d2(1 f)-adf (A. 1-3) 

There for e 

and finally 

The exact correspondence between equdion (1.3.2) in [Molodenskii et aL, 19621 and the 

matrix notation used in this report i s  as follows (see also Eq. 4.4.5): 

1 

c z  o - 1 [:I::] + HiT [(N + h ) c o s ~ ~ l A ]  d h  1.y d x  1 1 = 

+ [- d 2  d 20 - f x  2 - zo  (M + h ) W  
- 

(A.1-5) 
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where now from (4.4-3), making use of (4.4-4), (A.1-2) and 

.. possible to write 

- -  ax - 5 Msin2cpcoscpsinX 
a f 1. 

(A. 1-63) 

- -  b y  - a Msin2cpcoscpsinX 
b f  b 

(A. 1-6b) 

= b (M - a N  - Mcosacp)sincP (A. 1-6c) 
3 f  a 

In accordance with the notation in (Molodenskii et a l . ,  19621, the following 

equalities are established. 

P = aW (A. 1-7) 

(A .  1-Ha) 

Premultiplying both sides equation (t?. 1-5) bv the rotation matrix Ut and 

recalling (4.4-a), equation (I. 3.3) in [ Molodenskii d al. , 19621 follows im mediatcdy , 

+ IH 

&!. 
? :- 

ax  
3 f  
- 

dv  
a r  
-L 

7 
i 

I 

(A. 1-9) 1 
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It can be 1 u 

Fc L 

in (. 

-1 that Equation (A.l-9) corresponds to  (1.3.3) given in [Molodenskfi et &,1962] 

mple, it is immediate to show that the te rms  corr3sponding to  the rotationa 

9) are equal to  the  ones presented by Molodenskii et al. , [1962]. 

(A. 1-10) 

cos cpcos X cosq sin X sincp 

- sinX cos X 
- s inas in  X cos (0 

- coscp sin X c, + s i n o  cy cosqcosXc, - sinqc', - coscpcosXc, + 

- cos - sinXc, sinXt, +COSXF,  - - 

sinqsinXr, + cosoc,  - sinocos Xcz - co;zioc, sinocos kc, - s i n c p s i n ~ r - j l z ]  1 
but 

(N + h) coscpcos X (N + h) coscpcos X [: = [(N +h)cososinX 1 = [ (N;>)cos(PsinX 

[N(1 - e") + h] sin3 (N 7 + h) s i n 0  

thus 

(1) = -(N + h) co8cpsinXcos Xc, + (N + h) s inocosocos  Xc + (N + h) cosacdsfnXcosXr, 

-(N + tl) sinrpcoaosinA F, - sincgcosocos X F, 

+( 5 + Ij)sinocosqsinXc, 

= A sinocos@ (cy  cos A - F, sin A) 
where 

b2 a" - b2 a' - ba 
A = ( N + h )  -($ N + h )  = N ( l - 7 ) =  N - o - 

a' G 

therefore 
a'' - b d  

(1) = - sinQcoscg (cy cos X - c,sinX ) 
I' (A. 1-11 a) 
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Now 

(2) = - (N + h)coscpcos'Xc, - (N + h) Cososin'Xc, +(s N + h) sin@psivXcy 

+( N +h)  s inocoskc ,  

= - (N + h)coscpc,+ 7 N + h sino(c,cosA + c,sinX) (: 1 
and 

(2) = - (3 + h ) c o s v c z  +zic,cosA +€,s ink)  (A. 1-llb) 

Finally, 

(3) = (N + h ) s i n c j ~ , , ~ , s i n X c o s X c ~  + (N + h ) c o s 2 0 c o s X ~ ,  

- (N + h)sinocosqsinXcosAcF, - (S +h)co~ 'os inXc ,  

+ rN(1 - e") + hJ sin2vcos A c y  - [K(1 - e2) + h] sin'osinkc, 

= B(c,cos X - c,sink) 

where 

B = ( N + h ) c o s ' ~ + [ N ( l - e ' ' ) + h ] s i n ' o  = N + h - N e 2 s i n a 0  = N @ + h = p + l .  

Thus , 
(3) = (p + h)(c,cosX - c,sinX) (A. 1 - l l ~ )  

To conclude, one niav write the effect of differential rotations c x ,  c y ,  cz on the 

geodetic aoordinates as given bv Molodtnskii et al., [1962] 

(N + h) c o s o d  )I = - ( N  + h) cosoc ,  f Z(C,COS X + <"sin A) 

( A I  + h ) d o  = ( p  + h) (c.,.cos X - c , s i n h )  

These equations :we equivdent to (4.6-7) with 

(A. 1-12a) 

(A.1-12b) 

(A. 1 - 12c) 

md taking into :wcount (:I. 1-7) an11 ( A .  1-S)  
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APPENDIX B (Referenced in Section 4.5) 

B.l Differential Changes in (A, cp, h) Due to a Charwe 6L in Scale 

From (4.5-1) 

1 (N + h) coscgd A - sinA cos A (N + h) COSCDCOS A6 L 

(N + h) cosos in  A6 L (M + h)da 1 = 1- sinocosA - sinqsinA 1 d h  ] b L  [ coscpcosA coscPsinX [N(1 - e") + h] sin06 I, 

After matrix multiplication 

(N -.-h)coscpdAb, = - (N +h)cos@sinAcosXdL + ( N  +h)coscpsinAcosA6L = 0 

Thus, 

dAbL = 0 (4.5-221) 

(&I + h) dOaL = - (N + h) sincpcosocos" A6 L - (N + h) sincDcostpsina M L 

= - (N + h) sincpcosc~d L + (N + h) sincpcosq6L - Ne'sincpcoscp6L 

= - Ne2 sincocosc~ob L 

+ [N(l - e') + h] sinqcoscpd L 

Therefore, 

(4.5-2b) 

Finally, 

d h = (N + h)co$ocos' A6 L + (N + h) cos2cpsin2A8 L + [N(1 - e") t . 

= (N +h)cos2tp6L + (N +h)sir?(p6L - Ne'sin"cp6L 

= (N + h) 6L - Ne.' sindo&, 

= [N(1 - e" si.? 0) + h] 6 L 

in'cp6 L 

but making use of equations (4.4-4) it follows that 

dhbL = (ab' + h ) 6 L  (4 .5-2~)  



B. 2 Differential Changes in (A, (0, h) Due to a Chantre 6 3  in the Semimajor Axis 

of the Ellipsoid 

From (4.5-3) 

coscpcos x - sink cos x 

cos QCOS A cos UY sin A 

coscbsin Xcos A coscpeinhcos A 6 3  - 6 a  = 0 W W (N +h)coscPdxb. = 

Thus 

dXa. = 0 (4.5-6a) 

sincp coscpcos2 X sinuxososiri' x (1 - e") sincgcoscp 6 :I 
W 6a - W ba  + 

W 
(M+h)dOa. = 

6 3  sincp coscp 

e" sincp  cos^ Ne" sincpcoso 
w 3 

(1 - ea) sincpcosv 
W 

6a = 6a 

& a  - - - 
W 

- - 

Therefore, 

Ne" sincpcoscp 6 a  - 
(M + h)3  d(0e. - 

Finally, 

(1 - e') siri'co 63 cos=cpcos2 x cos" rpsin2 x 
w 6 3  - w 63 - w dha. = 

1 - e" sinacp 63 - - -  
W 

Thus, 
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APPENDIX C (Referenced in Section 4.61 

C.l Differential Changes in (A, cp, h) Due to Small Rotations 6 c, 6lk 60 

From (4.6-5) : 

6 0  - 6 +  (N + h) cos(ocos X 
(h + h)coscDsinX 

[N(1 - e') + h] sin@ 

- cosX60 - sin A 6 0  sin A S #  + cos X6c 
(N  + h) cosocos X 

+ cosc06@ - coscpbc - s i n c ~ s i n X 6 ~  (N + hb cosqsinA 

- cos(osinX6w COSCDCOS X6w - C O S ( O C O S X ~ +  [N(1 - e.') + h] s i n 0  
+ sincp 6 J, - s ino6c  L c o s ~ s i n A 6  c 

- s in0  sin X 6w - sii.acos X6w sin@ cos A 6 $ - 

(N +h)cosadXbR 2 - (N +h)coscpcos"A6w- ( N  -+h)cosasin2X6w 
+ sinXsinu,6& [N(1 - e") + h] + sinocos X6c [N(1 - e2) + 111 

= - (N +h)coso6w 1 [ ( N  + h )  - N c " ] s i n o ( s i n A 6 ~  ~ c o s X 6 c )  

Then 

(N + h) s i n q  - Ne" sin@(sinAb + cosX6c) 
(N  + h)cosa  d X 6 ~  = - 6 ~ +  

= - 6 w + t a n o / l  -N&)(sinX6# +cosX6c)  

Thus, finally: 
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(M +h)dqeR = (N + h ) c o s 2 ~ c o s X 6 $  + ( N  +h)sinacpcosA6$ - Ne2sin2@cosX6@ 
- (N +h)cos2cpsinX6c - (N + h ) s i n a ~ s i n X 6 ~  +Ne2sin2qt3inX6r 

= 6$cosX[(N + h )  - Ne2sin-q]  - 6csinX[!N + h )  - Ne2sinacp] 

But, 

(N+h)-Ne'sin '@ = N(1-e2sin2cp)+h = N + + h  = ~ w ' + h  = a W + b  3 

Therefore, 

(M + h ) d o  = 6$cosX(aW + h )  - 6csinA(aW + h )  

and finally, 

d h a ~  = - (N +h)cos"cpcosXsinX6~+ (N +h)coscpcosXsinq6$ 
+ (N +h)cos"cpsinXcosX6w- (N +h)cososinXsincp6c 
- [N(1 - e") + h] sincpcosqcos X6$ + [N(1 - e2) + h] sincpcoscpsinX6~ 

= - 6$ sincpcoscpcas h[(N + h) - N e" - (N + h)] 
+6csin@cos@sinX[(N + h )  - Ne2 - (N +h)] 

Thus: 

(4.6-7b) 

d h a R  = - 6€Neasin@coscp8inX + 6 $ N e 2 s i n ~ c o s @ c o e X  (4.6-7c) 
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APPENDIX D (Referenced in Section 4. ti. 2) 

D. 1 Inner (Minimal) Constraints in LAwvilinear Coordinates 

D. 1.1 Introduction 

Papers on minimal constraints and their application to geodesy are abundant 

in the literature. The basic principles introduced here follow [Pope, 1971) where the 

interested reader can consult the fundamental references on this topic. 

It is well known that in most geodetic problems the set of normal equations 

N X  + U  = 0 (D. 1-1) 

is a singular system when the original observation equations F(X, L) = 0 do not con- 

tain sc#me peculiar constraints. 

In the specific case of a spatial network the following relations hold 

,N, => iiank(N) = r (D. 1-2) 

where r < n  and e = n - r ' 7  

The value e is generally called the rank deficiency of N o r  the degrees of 

freedom of the network (not to be confused with the concept of d e p e e s  of freedor1 

a ieast squares adjustment [see Uotila, 19671). 

A s  a consequcnce of (n.1-2) 

1 N I = o ==; N is singular 

One way to solve equation (D.1-1) in this case is by bordering the normal matrix 

N and solving the system: 

(I). 1-3) 

where ,,Ee i s  the basis for the solution space (null space of N)  of the homogcneous 

equation. Therefore 

N I.: = 0 (1). 1-4) 

Obviously property (D. 1-4) also implies 

A E  0 (U. 1-5) 
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The complete solution of the normal equation (D.1-1) in the case of singularity is: 

X = X , + E p  (D. 1-6) 

where 

X, 5 any particular solution of NX, = - U 
and 8, E @ E complete solution of the corresponding homogeneous equation 

N X = O .  

Minimal constraints are the smallest number of constraints e that produce a 

nonsingular matrix M, and minimizes X T  X, 

(D. 1-7) 

Of all the minimal constraints possiL't, some have simple geometric interpretations; 

this subset of minimal constraints is called "inner constraints " (Blaha, 19111. 

A s  an illustration, assume that in If only angles are measured in order to  

establish 3 network of points. Clearly, the degrees of freedom of this network will 

be seven, if one considers that translations, rotations and scale variations will change 

the coordinates of the points, although without affecting the values of the measured 

angles. In other words, one may sa- that coordinates me not estimable quantities. 

Thus, in this example 

e = T  +!? t S = 7  

where 

T : number of con,straints requircd for origin = 3 

S - -  number of constraints required for scale 2 1  

It - numbcar of constraints required for or ic~~tat ion - -  :I 

'1' here for e, 

,E, = ( E T  E >  kls )  n x 7  ( I ) .  1-8) 
D X S  n x 3  n x l  

D. 1.2 Inner Conszraints i n  lbct ankvlnr Coortlinates 

Still following [Pope, 19711 the sct  of inner constrxinh when rectankwlar coortli- 

nates are used, may be ol>tainetl throivgh the diftcbrenti;ii c+nngo~t i n  the (liirtc-elan 

7:1 



coordinates due to translations (shifts), rotations and scale, that i s ,  

Thus, one can write: 

which is in the form of (D.1-6) and gives, 

-'5 0 [I] 

Y X j*=[j+ I 

3 x 3  

z 1 

(D. 1-9a) 

(D. 1-9b) 

(D. 1-Bc) 

(D. 1-10) 

(D. 1-11) 

In the same way, the inner orientation constraints can be found, 

(D. 1-12) 
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Therefore, 

(D. 1-13) 

For the inner scale constraint one has 

Thus, 

Finally the matrix (D.l-8) is given by 

I 

I 
I '  0 - x  

' :I 1 

' 0 - 2  
I 

I 

1 0 0  

0 1  O l z  

0 0  1 - v  X 0 I x I '  

E, = 
3 x 7  

I 

(U.1-14) 

(D. 1-15) 

( I ) .  1-16) 

D. 1.3 Inner Constraints in Curvilinear Ldordinates (Spherical Case) 

Curvilinear coordinates are always referred to  some basic surface which 

introduces restrictions in the number of debvees of freedom needed for  solving the 

network singularity. 

For example, in the case of a flat surface (plane), the. degrees of freedom of 

.an angular network are only four, 

e, = ' 1 ' t I t t S  = 2 + 1 + 1  4 
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This i s  also t rue  for spherical networks, 

e ,  = 4 

Assuming that the scale of the spherical network is fixed through the radius r 

of the sphere, only three constraints are needed to resolve the singularity. 

Clearly the d e m e s  dfreedom in this instance are three rotations along the x, y, z 

axis. Thus ,  applying (D.l-9b) to the case of spherical coordinates, one can write 

the following from (4.6-6) with 

h = 0 ,  M = N = r ,  u =x, v = y  and w = z  : 

r cosod  X 

r d X  

dh  

or  

r cos (01 

r d o  I. d h  

x 

Therefore, 

r 
0 

z 

- Y  
ER 13 

- z  

0 

O _I X 

Knowing that 

-: j 
0 

=i [""l 4 

(D. 1-17) 

(D. 1-18) 

(D. 1-19) 

(D. 1-20) 
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Thus finally, 

( I ) .  1-21) 

r cos Asinco r sinAsinco - r cos cp 

E R  = [ - r sin X r cos X 0 

0 0 0 

Assuming that the parameters in t b s  normal equations are given by the vector mztriu 

The set of ~ubmatr ices  ER! required in order to  avoid singularity arc given in the 
following form: 

E R I  = [ coshtanq~ sinhtanQ 
(u.l-23j 

? x 3  - s inh  C 0 9  A 

The use of the submatrices E R in the bordering of the normal matrix N for the 

solution of the singular system can be interpreted geometrically ;is in the rectangular 

case. It will give the "best" orientation to the spherical triangulation with points (A, q), . 
When only local networks on a sphere are involved, it will be more appropriate 

to rotate about a geocentric Cartesian system parallei +o the local f rame ( r ) ,  6, I: ) o  at 

the center of the network. In this case the following transformation applies, 

a x 3  

(I). 1-24) 

6 0  

and after substitution of the above in (D.1-18) one has the matrix equation, 

= It 

0 - %  

z 

(' 1 - Y  X 

( I ) .  1- 25) 
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That is, 

r sincosin( X - A,) - r(sinc3sinco ,cos( X - X a )  

+ coscpcouo,) 

r sincq, s i n  ( X - A , )  

1 (’ 

0 

(D. 1-26) 

r(sincDcosoocos(X - A,,) 
- sin0.coscp) 

- rc.osco,sin( X - A o )  
0 

I 

(11.1-27) 

and finally, when the parameters are given in the form of (D.1-22) the rndrix 

-: E ~ (e = 3) is composed of the following submatriccs: 

s in(  X - X,)tana - tancDsincp,cos(X - 1,) 
+ coscoo - sincp, 

tanocosq,cos(X - A,)  

cos( X - A,) sincoosin( X - X,) - coscD,sin(X - A,) 
(D. 1-28 

a ~3 



APPENDIX E (Referenced in Section 5.1) 

E. 1 Families of Rotational Ellipsoids 

E. 1.1 Confocal, Similar and Quasi-Parallel Ellipsoids 

The following relations *, e immediately obtainable: 

E e -  => d e =  bcu d a - a d b )  
l-- 

a% a - b- 3 

(E. 1-1) 

(E. 1-2) 

(E.l-3) 

From the above bwic relations, it i.- -ossible to define the following types of ellipsoids: 

Confocal Ellipsoids. A family of ellipsoids is callea confocal if 

E ==c!3nsta& ==> d E  = 0 (E.l-4) 

From (E. 1-1) the condition for copfocality is  found immediately, 

da d b  a d a  = b d b  => - = - 
b a 

or 
3 d b  = - d a  b 

Substituting pr9perty (E.l-5) in (E.1-2) and (E.l-3) one has, 

(E. 1-5) 

(E.l-6) 

(F.l-7) 
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de, = - z2 d a  (E.l-8) 

E 
a which is also obvious from the differentiation of e = - for E = constant. 

Similar Ellipsoids. The m e  "similar" is applied to a family of ellipsoide 

when 

f 

e d e  

From (E. 1-2) o r  (E. 1-3) the similarity condition follows inimediately: 

and therefore, 

b 
a d b  - d d  

(E. 1-9) 

(E.1-IO) 

(E. 1-11) 

(E. 1-12) 

Substitutilg the above equation in (E.l-2) and (E.l-3) one hns 

dE, = e d a  = J2f---f"da (E. 1-13) 

Obviously, the same result is obtait..ed by differentiation E = e a  with e = const. 

$uasi-Parallel Elh, A d s .  A family of ellipsoids is called "quasi-parallel" 

(the author was unable to find anywhere in mathematical literature a name for this 

family) if the foilowing property holds: 

This implies: 

da  = db 

f p a ,  = a - b  = constant 

(E. 1-14) 

(E.  1-15) 

That is, tor any famiiy qwsi-parallel el::psoids, the produ~! of its flattening by 
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its semimajor axis i s  constant. The value of the constant is the difference between 

the semimajor and semiminor axes of any ellipsoid i3  rhe family. 

From (E.1-l), (E.l-2j and (E.l-3) it is possible to obtain 

i a - b  dE, = - d a  = - 7 d a  e t; 

dep = -7  a- J"" a + b  da 

(E. 1-:6) 

(E. 1-17) 

(E. 1. -18) 

E.1.2 The Variation d h  of the beodetic Height 

After matrix multiplication equation (4.5-4) Hves: 

Therefore, the variation d h of the geodetic height, according to t:w different 

cases mentioned in the previous section, may be obtained. 

ai Confocal case : d E = 0 

Substiluting tne value of d f  given by equation (E.1-7) in ( l a : .  1-20), after 

simplicxtion one has: 

t l  R 
ti nf = - - 

W 



b) Similar case : df = 0 

Obviously, from (E. 1-2 0): 

dh, = - Wda 

C) Quasi-parallel case : da = db 

This case, although more involved, is also easy to obtain: 

or 

a-(a - b) side 
Ya2-(a2 - b2)sin20 

d h p = -  , d a  

(E.1-22) 

(E. 1-23) 

A s  a consequence of (E.l-23) one concludes that the variation of h in the cme 

d a  = db is not constant. This is the primary reason for the name "quasi-parallel" 

for this family of ellipsoids. 

From (E.l-23) the maximum vdue of dh, is obtained at 

where 

da d a b  
a + b  dhpH - 

(E.l - 24) 

(E.l-25) 


