Corrigendum

Soler, T. \& van Gelder, B. H. W., 1991. On covariances of eigenvalues and eigenvectors of second-rank symmetric tensors (Geophys. J. Int., 105, 537-546)

A recent paper by Bressan et al. (2003) has identified a discrepancy in the theory in Soler \& van Gelder (1991). This identification has led us to reanalyse carefully our previous work. This time we counted on the opportune independent collaboration of Mr Jen-Yu Han, a Doctoral student of the second author. Mr Han discovered some further typos and potential errors of interpretation in the equations previously published by Soler \& van Gelder (1991) that for rigorousness should be clarified. The revisions are as follows.

Owing to the symmetry of the second-rank stress tensor $[\varepsilon]$, there are multiple choices for the elements of the matrix $[D]$ in eq. (8). Although the published values of matrix $[D]$ are correct, they do not validate eq. (12). One way to amend this problem is to modify the values for the matrix $[D]$ in eq. (8) as:
$\underset{6 \times 9}{[D]}=\left[\begin{array}{ccccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0.5 & 0 & 0.5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0.5 & 0\end{array}\right]$.

Given the above modified elements of $[D]$, the transpose symbol ' t ' in eqs (12) and (14) should be substituted by the pseudo inverse symbol ' + '. Therefore these two equations become, respectively:
$v_{d}\left[\varepsilon^{\prime}\right]=[D] \operatorname{vec}\left[\varepsilon^{\prime}\right]=[D][T] \operatorname{vec}[\varepsilon]=[D][T][D]^{+} v_{d}[\varepsilon]$
and
$[V]=[D][T][D]^{+}$.
Since eq. (38) is defined to be associated with the vector of rotations of the eigenvalues $\left\{\Omega^{p}\right\}$, eq. (39) should be:
$\underset{6 \times 6}{[F]}=\underset{6 \times 9}{[D]}\left[S^{t} \underset{9 \times 9}{\otimes} S^{t}\right] \underset{9 \times 6}{[G]}$
and consequently, eq. (43) should also be revised as:
$\{\beta\}=[F]^{-1}\{d \varepsilon\}=\llbracket[G]^{+}[S \otimes S][D]^{+} \rrbracket\{d \varepsilon\}$.

REFERENCES

Bressan, G., Bragato, P.L. \& Venturini, C., 2003. Stress and strain tensors based on focal mechanisms in the seismotectonic framework of the FriuliVenezia Giulia region (Northeastern Italy), Bull. seism. Soc. Am., 93(3), 1280-1297.
Soler, T. \& van Gelder, B.H.W., 1991. On covariances of eigenvalues and eigenvectors of second-rank symmetric tensors, Geophys. J. Int., 105, 537-546.

