Geoid Computation Difficulties in the Pacific Northwest

by

Dru A. Smith
National Geodetic Survey

Presented at the 1st Official Meeting of the United States Geoid Committee
Silver Spring, Maryland
August 18, 1998
Issues arising in Pacific Northwest geoid computations:

- Terrain Corrections at NGS disagree with those at GSD(GC)

- Terrain may not properly be represented by 30" data

- DEMs are not properly referenced to a consistent vertical datum

- G96SSS agrees to decimeters with GPS/Benchmarks in PNW, but EGM96 (Bouguer corrected) disagrees to 1 meter with GPS/Benchmarks
Problem #1

TC differences, NGS vs GSD(GC)

1996 Study of Southern British Columbia
CANADIAN TERRAIN CORRECTIONS (Jan 93)
Attempts to reproduce

- 2 DTEDs:
 - TOPO30
 - New Canadian DTED 1995

- 5 Independent TC programs:
 - ftc.f (FFT, Milbert)
 - tc01.f (Flat top Prism, Milbert)
 - tc.f (Flat top Prism, Forsberg)
 - tcpts01.f (Flat top Prism, Veronneau)
 - triter4.f (Inclined top Prism, Rupert/Beach) ***

- 202 points in 50° - 51° N, 235.5° - 237.5°

*** = Not fully tested yet
TC DIFFERENCES
Jan93 (Can Database) MINUS Other TCs

<table>
<thead>
<tr>
<th></th>
<th>TOPO30</th>
<th>1995 Canadian DTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave</td>
<td>12 mgals</td>
<td>14 mgals</td>
</tr>
<tr>
<td>RMS</td>
<td>17 mgals</td>
<td>19 mgals</td>
</tr>
<tr>
<td>Min</td>
<td>-17 mgals</td>
<td>-12 mgals</td>
</tr>
<tr>
<td>Max</td>
<td>+45 mgals</td>
<td>+54 mgals</td>
</tr>
</tbody>
</table>

- 122 non-zero points
- Overall stats for all 4 fully-tested programs
- **Conclusion:** The Jan93 TCs (currently still in the Canadian database) are systematically higher than all 8 (4 programs, 2 DTEDs) TC sets at NGS, by a factor of 1.5 to 1.8
CANADIAN TERRAIN CORRECTIONS (Jan 93)
Preliminary Results

- Unable to reproduce the January 1993 TC's

- Attempts using the old (TOPO30) DTED gave results closer to Jan 1993 than the new DTED

- FFT method agrees to within +/- 1 mgal with prism methods, except for large (>30 mgal) spikes, where the FFT is systematically too low by an average of 8 mgals

- Level 1 DTED (3"x6") unable to get Jan93 TCs!
Problem #2

30" DEM fails to capture full terrain signal

1996 Study of Southern British Columbia
Create Canadian TC’s from 30" and 3" data

Example point:

<table>
<thead>
<tr>
<th>TC(Canada DB, 95)</th>
<th>TC(Topo30)</th>
<th>TC(3"x6")</th>
</tr>
</thead>
<tbody>
<tr>
<td>(50.66067, 236.88400)</td>
<td>54.6 mgals</td>
<td>14.4</td>
</tr>
</tbody>
</table>

[This study will be re-investigated in August/September 1998]

- Certainly 30" Not good enough
- Even 3" seems inadequate
- Know sloped tops have 2-5 mgal effect near station
Problem #3

No vertical datum consistency in available DEMs

1997/98 DEM/DTED Study
Sources of 3" (or better) DEMs:

A) Most go back to 1960s/70s DMA 3" data
 - Old DMA data comes from 1:250,000 maps
 - 1:250,000 maps from old satellite sources
 - NIMA was updating cell by cell with new photo sources, but has nearly stopped recently
 ***NO vertical datum documentation or consistency

B) SRTM (expect new DTED in 2003)
 ***Vertical datum could be consistent!

C) USGS is digitizing 1:24,000 maps onto 10 and 30 meter UTM grids (90% of west US done, 30% of East US done)
 ***Vertical datum well defined as NGVD29
DEM Differences
DMA 1998 DTED minus USGS 3"
(44° to 49° N, 237° to 243° E)

RED = +25 m or greater differences
MAGENTA = -25 m or lower differences
Geoid Undulation changes due to random ±200 meter error in one 1°x1° DEM (of 2’x2’ elevations)

Red = +1 cm or greater change
Magenta = -1 cm or lower change
Geoid Undulation changes due to systematic +20 meter error in one $1^\circ \times 1^\circ$ DEM (of 2’x2’ elevations)

Red = +1 cm or greater change
Magenta = -1 cm or lower change
Problem #4

EGM96 bust in Pacific Northwest

1996/97 GEOID96 computation and validation
G96SSS minus EGM96 (Bouguer Corrected)

Red = +1.5 meters and greater differences
Magenta = -1.5 meters and lesser differences
EGM96 and G96SSS vs. GPS on Benchmarks

- Compared both models to ITRF94/NAVD88 data

- National average residuals of:
 - EGM96/GPS/BM: +41 cm
 - G96SSS/GPS/BM: +43 cm

In PNW (44°-49°, 237°-243°), with average removed:
 - EGM96/GPS/BM: +94 cm ± 28 cm
 - G96SSS/GPS/BM: -12 cm ± 19 cm
GPS/BM/G96SSS residuals (about 43 cm ave)
CONCLUSIONS

- Most geoid research effort is concentrating on the Pacific Northwest

- Many problems stem directly from unreliable high resolution DEMs

- GPS on Benchmarks provide a useful independent check on geoid models

- Additional research being done on downward continuation and long wavelength terrain effects