Orthometric Heights from GPS and the GEOID99 high resolution geoid model for the United States

by

Dru A. Smith, Ph.D.
Daniel R. Roman, Ph.D.
National Geodetic Survey

Presented at the 1999 Meeting of the Institute of Navigation
Nashville, Tennessee
September 16, 1999
- Review of Height Systems
- Creation of GEOID99 model
- Comparison with GEOID96
- Future Directions
h = H + N
In the USA: N < 0
Real Situation

Earth's Surface

\[h_{83} = H_{88} + N_{99} \]

In the USA: \[N_{99} < 0 \]
GEOID99 basic information

Input data
- 2.0 Million gravity observations (1.6 from the NIMA evaluated gravity database)
- 0.6 Million altimetric gravity anomalies
- EGM96 (NASA/NIMA)
- 1 km DEM supplemented by 30 m DEM in Northwest USA
- 6169 GPS heights on leveled benchmarks

Theory
- Faye anomalies ≈ Helmert anomalies
- Remove/Compute/Restore using EGM96 and 1-D FFT
- Collocation to model h-H-N long wavelength systematic differences

Output Grids
- 1 arc-minute grids
- CONUS: up to 58 degrees North
- Alaska, Hawaii, Puerto Rico/Virgin Islands
GPS on Benchmarks

- 48 CONUS HARNs completed, including 6169 GPS measurements on leveled benchmarks.

- G99SSS gravimetric geoid vs. GPS/BMs
 Bias: 52 cm
 Tilt: 0.15 ppm, 327 degrees azimuth
 RMS after bias/tilt removal: 18.2 cm

- Collocation used to model the residuals yields GEOID99

- GEOID99 vs. GPS/BMs
 Bias: 0 cm
 Tilt: 0.0 ppm
 RMS: 4.6 cm
GPS/BMs for GEOID99 (6169 points)
30 meter DEM in Northwest USA

- USGS makes 30 meter DEMs available in 7.5 minute quadrangular areas on UTM grid

- NGS acquired, cleaned, and regridded the data onto 1 arcsecond grid in the region 39/49 North and 231/256 East (NGSDEM99)

- Decimated 3 arcsecond DEM used for terrain corrections

- Geoid impact of new DEM in Northwest USA:
 - \(~14 \text{ cm} \text{ (1 } \sigma \text{) locally (max } +/- 40 \text{ cm)}\)
 - \(~7 \text{ ppm tilts (1 } \sigma \text{) (max } +/- 200 \text{ ppm)}\)
GEOID96 vs GEOID99

<table>
<thead>
<tr>
<th></th>
<th>GEOID96</th>
<th>GEOID99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td>2'x2'</td>
<td>1'x1'</td>
</tr>
<tr>
<td>North edge</td>
<td>54</td>
<td>58</td>
</tr>
<tr>
<td>DEM</td>
<td>TOPO30 (30")</td>
<td>corrected TOPO30 and 1" NGSDEM99</td>
</tr>
<tr>
<td>TCs</td>
<td>30"</td>
<td>3" and 30"</td>
</tr>
<tr>
<td>GPS/BMs</td>
<td>2951</td>
<td>6169</td>
</tr>
<tr>
<td>NAVD 88 bias</td>
<td>-31 cm</td>
<td>-52 cm</td>
</tr>
<tr>
<td>RMS wrt GPS/BMs</td>
<td>5.5 cm</td>
<td>4.6 cm</td>
</tr>
</tbody>
</table>
FUTURE GEOID ITEMS

- Rigorous Helmert anomaly computations

- 1" DEM for entire USA

- Incorporation of rock density models

- Future geoid model areas may include any of: Canada, Greenland, Caribbean, Mexico, South America

- Annual models (?) to keep geoid current with latest GPS measured heights
GEOID99 Availability

WWW (Sept. 30):
http://www.ngs.noaa.gov/GEOID/geoid99.html

CD-ROM (Mid-October):
Information Services Branch
NOAA/National Geodetic Survey, N/NGS12
1315 East-West Highway, Station 9202
Silver Spring, MD 20910-3282
voice: 301-713-3242
fax: 301-713-4172