NAVD 88 Helmert Orthometric Heights from NAD 83
GPS heights and the GEOID99 high resolution
geoid height model

Dru A. Smith, Ph.D.
Daniel R. Roman, Ph.D.
National Geodetic Survey

Presented at the 2000 Meeting of the
American Congress on Surveying and Mapping
Little Rock, Arkansas
March 21, 2000
- Review of Height Systems

- Status of HARN

- Creation of GEOID99 model

- Comparison with GEOID96

- Accuracy analysis of "GPS leveling"
The diagram illustrates the relationship between the Earth's surface, ellipsoid, and geoid. The equation $h = H + N$ describes the elevation at a point h where H is the height of the point above the ellipsoid and N is the normal component. In the USA, $N < 0$.
Real Situation

Earth’s Surface

\[h_{83} = H_{88} + N_{99} \]

In the USA: \(N_{99} < 0 \)

NAVD 88

H = 0

NAD 83 ELLIPSOID

\(H_{88} \)
STATUS of the HARNs

- 1998 : Last of original 48 CONUS HARNs

 NGS begins FBNVC (FBN Vertical Component)

- 1999 : Wisconsin FBNVC observed, processed, loaded into NGSIDB

 Washington and Oregon FBNVC observed and preliminarily processed. Not loaded into NGSIDB.

 GEOID99 released, reflecting 45 original HARNs and 3 FBNVC states (WI, WA, OR)
Differences in Ellipsoid Heights from the GPSBM(99) and GPSBM(96) Data Sets
GEOID99 basic information

Input data
- 2.0 Million gravity observations (1.6 from the NIMA evaluated gravity database)
- 0.6 Million altimetric gravity anomalies
- EGM96 (NASA/NIMA)
- 1 km DEM supplemented by
 30 m DEM in Northwest USA
- 6169 GPS heights on leveled benchmarks

Theory
- Faye anomalies \cong Helmert anomalies
- Remove/Compute/Restore using EGM96 and 1-D FFT
- Collocation to model $h-H-N$ long wavelength systematic differences

Output Grids
- 1 arc-minute grids
- CONUS: up to 58 degrees North
- Alaska, Hawaii, Puerto Rico/Virgin Islands
30 meter DEM in Northwest USA

- USGS makes 30 meter DEMs available in 7.5 minute quadrangular areas on UTM grid

- NGS acquired, cleaned, and regridded the data onto 1 arcsecond grid in the region 39/49 North and 231/256 East (NGSDEM99)

- Decimated 3 arcsecond DEM used for terrain corrections

- Geoid impact of new DEM in Northwest USA:
 - ~14 cm (1 σ) locally (max +/- 40 cm)
 - ~7 ppm tilts (1 σ) (max +/- 200 ppm)
Differences between GEOID99 and GEOID96
GEOID96 vs GEOID99

<table>
<thead>
<tr>
<th></th>
<th>GEOID96</th>
<th>GEOID99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td>2'x2'</td>
<td>1'x1'</td>
</tr>
<tr>
<td>North edge</td>
<td>54</td>
<td>58</td>
</tr>
<tr>
<td>DEM</td>
<td>TOPO30 (30")</td>
<td>corrected TOPO30 and 1" NGSDEM99</td>
</tr>
<tr>
<td>TCs</td>
<td>30"</td>
<td>3" and 30"</td>
</tr>
<tr>
<td>GPS/BMs</td>
<td>2951</td>
<td>6169</td>
</tr>
<tr>
<td>NAVD 88 bias</td>
<td>-31 cm</td>
<td>-52 cm</td>
</tr>
<tr>
<td>RMS wrt GPS/BMs</td>
<td>5.5 cm</td>
<td>4.6 cm</td>
</tr>
</tbody>
</table>
Empirical Standard Deviation for ee_1km
Standard Deviation of differential (h-N)
Differential (Single Tie) GPS-Derived Orthometric Height Accuracy

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
<th>5 km lines σ (ppm)</th>
<th>10 km lines σ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GEOID96</td>
<td>6.7 cm (13 ppm)</td>
<td>6.9 cm (6.9 ppm)</td>
</tr>
<tr>
<td>B</td>
<td>GEOID99</td>
<td>5.2 cm (10 ppm)</td>
<td>5.5 cm (5.5 ppm)</td>
</tr>
<tr>
<td>C</td>
<td>GEOID99* (WA, OR, WI)</td>
<td>4.7 cm (9.4 ppm)</td>
<td>4.1 cm (4.1 ppm)</td>
</tr>
<tr>
<td>D</td>
<td>GEOID Error only?</td>
<td>0.8 cm (1.6 ppm)</td>
<td>1.6 cm (1.6 ppm)</td>
</tr>
<tr>
<td>E</td>
<td>2nd order, class II</td>
<td>0.3 cm (0.6 ppm)</td>
<td>0.4 cm (0.4 ppm)</td>
</tr>
</tbody>
</table>

* = Experimental solution tailored to the 1 cm (1 \(\sigma \)) GPS in these states
DIFFERENTIAL GPS-DERIVED ORTHOMETRIC HEIGHT ACCURACY

σ can be reduced through:

- Multiple ties (4 ties = half the σ of a single tie)

- Better knowledge of the geoid (i.e. Baltimore county)

Local (<5 km) σ is hard to know due to lack of special studies
Standard Deviation of differential (h-N)
CONCLUSIONS

- GEOID99 has 4.6 cm RMS absolute agreement with GPS/BM (GEOID96 was 5.5 cm)

- Short lines (< 5 km) are hard to evaluate due to lack of data

- Medium lines (5-40 km) are 4-10 ppm with single-ties

- Longer lines (40+ km) may be influenced by leveling error

- Establishing NAVD 88 heights from GEOID99 and GPS can be improved if multiple ties are used and the geoid is better known
GEOID99 Availability

WWW (Sept. 30):
http://www.ngs.noaa.gov/GEOID/geoid99.html

CD-ROM (Mid-October):
Information Services Branch
NOAA/National Geodetic Survey, N/NGS12
1315 East-West Highway, Station 9202
Silver Spring, MD 20910-3282
voice: 301-713-3242
fax: 301-713-4172