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1. Background
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4. Catalog of Time-Variable Gravity (ġ) Signals

Technology for gravimetry and positioning are evolving, with major changes projected within the decade. These new 
technologies are anticipated to improve measurement accuracies such that: dynamic relative gravimeters would be 
accurate to < 1 milliGal; static relative gravimeters would be accurate to < 1 microGal; and static absolute gravimeters 
would be accurate to < 10 nanoGal. With instruments that are sensitive to signals several magnitudes smaller than 
currently possible, the question arises about which dynamic effects of the natural and man-made environments will 
affect these more sensitive instruments.

This study focuses on sources of gravity change that would be important to consider with a 1 nGal precision static in-
strument. Such precision would be available from a cold atom gravimeter, technology that is currently under develop-
ment by others. 

Source: InstrumentationSource: Instrumentation

Source: Earth Mass MovementSource: Earth Mass Movement

Source: PlanetarySource: Planetary

2. Summary of Findings
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Global Pressure Loading 

- Max value: 1 μGal

- >1000 km from station
- Complex correction, needs model.
- Error: Best modeling yields errors of 
several-hundred nGal near coasts and 
~100 nGal inland. Extreme weather 
adds several-hundred extra nGal of error 
to this correction.
Refs: [1, 2, 3]

Local Pressure Loading 

- Max value: ~27 μGal

- Within 50 km of station
- Rate: ~0.2 μGal/min
- Nominal: ~ 0.3 to 0.4 μGal / mbar
- Best accuracy when modeled at station
- Error: If hourly pressure measurements, 
accounting for topography, and reason-
able weather, < 200 nGal. ~ 400 nGal in 
extreme weather.  Refs: [1, 2, 3, 4, 29]

Regional Pressure Loading 

- Max value: 1-2 μGal

- 50 - 1000 km from station
- Linear. ~ 0.078 μGal / mbar
- Error: If 1 barometer at station, 500 n 
Gal. If sparse network around station, 
<100 nGal. Topography errors are 400 
nGal / km. Non-nominal air temperature 
structure yields up to 30 nGal. 
Refs: [1, 2, 3, 4]

Ambient Temperature 

- Max value: Nearly 1 μGal

- Often ignored
- Linear: 13 nGal / ˚C 
- Error: Not well understood

Refs: [1, 3]

Water Vapor

- Max value:  Varies from 100 nGal 

(theoretically) to  up to 1 μGal 

(measurements)

- Often Ignored
- Local Effect
- Increases during rain events
- Error: Not well understood

Refs: [1, 2, 3]

Bodies of Surface Water 

- Max value: 1 to Tens of μGal

- Within a few 100 km of station for 
small bodies (rivers, small lakes)
- Changes due to water mass and bed-
load of sediments/rocks during storms.
- Error: Needs to be modeled, especially 
for rivers with a winding path. Very diffi-
cult to separate the water mass and 
bed-load effects. Refs: [9]

Rain Events

- Max value: Tens of μGal

- Rate: ~0.02 μGal/min
- Frequency: 1-8 cycles per day
- Error: Requires close collocation of rain 
gauges with gravity stations and model-
ing. Runoff causing widespread surface 
flooding is an effect not accounted for 
with rain gauges.
-   Refs: [1, 2, 9]

Continental Water Storage 

- Max value: 3-10 μGal

- Regional signal, well-resolved by satel-
lite gravity time series (GRACE)
- Strong seasonal periods
- Example: Gravity varies by ± 3 μGal in 
the Mississippi River Basin as measured 
by GRACE

Refs: [2, 25]

Groundwater

- Max value: 100-200 μGal

- Rate: ~0.02 μGal/min
- Frequency: 1-8 cycles per day
- Highly variable both between ground-
water systems and within a given 
system. Example: One system varied 
from -60 to 130 μGal, while another ex-
perienced ± 12-13 μGal cycles.
Refs: [1, 22, 26]

Soil Moisture / Snow

- Max value:  Several μGal

- Rate: ~0.02 μGal/min
- Frequency: 1-8 cycles per day for soil 
moisture, Seasonal for snow
- Calculated globally (E.g. GLDAS/Noah 
Land Surface Model) or Regionally (E.g. 
North America NLDAS and  The  Euro-
pean Center for Medium‐range Weather 
Forecasts (ECMWF) )  Refs: [1, 25-27]

Coastal Erosion 

- Max value:  Gravity value uncertain

- Coastal erosion rates go as high as 80 
m / yr in places in the U.S.
- Average erosion rates are 1-2 m / yr 
with extreme variability spatially and 
temporally.
Refs: [16, 17]

Landslides / Avalanches

- Max value: Several Tens of μGal

- Masses of rock, earth, snow, or debris 
moving downslope
- Local effect
- Occurs within minutes
- Two landslides in Taiwan, after a ty-
phoon, yielded -41 ± 11 μGal and -32 ±  
19 μGal gravity changes at two stations 
within a few 100 meters. Refs: [9, 14]

Debris or Mud Flows

- Max value: Several Hundred μGal

- Rivers of rock, earth, or debris satu-
rated with water
- Local effect, within minutes/hours
- Four instances in Taiwan, after a ty-
phoon, yielded gravity changes be-
tween 27 ± 2 and 285 ± 3 μGal, depend-
ing on flow thickness and station prox-
imity to the flow. Refs: [9, 14]

Large Eruptions

- Max value: 400 μGal

- Many events are of this size and can 
occur within a few hours
- Gravity may be recovered. One erup-
tion example is that Mt. Etna recovered 
100 μGal / hour to near-starting values. 
- Error: Need gravimeters with 10 μGal to 
100 nGal accuracies to measure erup-
tion precursor activity. Refs: [2]

Inflation/Deflation

- Max value: A Few Hundred μGal

- One rate: 0.57 μGal / hour
- Can be regional, as with the Yellow-
stone volcanic area, or local
- Error: Need gravimeters with low, 
stable drift rates at the μGal or better 
level to measure this slow effect. Refs: 
[2]

Present Day Ice Melting

- Max value: A few μGal

- Up to ± 3 μGal / yr, mountain glaciers. 
- 80% of PDIM gravity created < 10 km 
from station. Remaining from < 50 km. 
- Estimated with GPS+absolute gravity, 
or by modeling ice loss of nearby gla-
ciers. Difficult to separate from GIA 
when both affect station, though pos-
sible. Refs: [13, 32, 33]

Glacial Isostatic Adjustment

- Max value:  A few μGal 

- GIA Nominally: -6.5 mm = 1 μGal.
- GRACE measures -1.33 μGal / year max 
of Fennoscandian and N. American GIA.
- Largest 10 mm / year uplift in Hudson 
Bay from GPS. Absolute gravity to the 
west agrees at 1.53 ± 0.38 μGal / yr. 
- Best models agree with ground data to 
1-2 mm / yr.  Refs: [34-37]

El Niño Southern Oscillation

- Max value:  2-3 μGal at coastal equa-

torial stations 

- Multi-year period
Refs: [2]

Storm Surge, Wind Forcing, and 

Thermohaline Circulation

- Max value: Ones to tens of μGal

- E.g.:  2 m storm surge in southern 
North Sea = 6-8 μGal signals in coastal 
Europe and UK. 1  μGal., 600 km inland
- E.g.: In Finland,  wind and current forc-
ing cause 2-3 m of loading (as fast as 1 
m / 12 hr. 1000 km inland, SG measures 
3.1 μGal / m of loading. Refs: [2, 27, 29]

Sea Level Rise 

- Max value:  a few hundred nGal

- SLR rate from 1993-2010: 3.2 mm/yr; 
Rate range projected for 2100: 5.1 to 8.6 
mm/yr
- These roughly translate to gravity 
changes at coasts : from 1993-2010 of 
133 nGal/yr, and 212 to 358 nGal/yr by 
2100
Refs: [19]
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Oil and Gas Extraction / Mining

- Max value: > 70 μGal 

- Varies by extraction technique, depth, 
mass removed, and location in area. 
- One example: Secondary recovery of 
oil through water injection in Prudhoe 
Bay, AK changed gravity by 70 μGal in 4 
years over a several hundred km2 area. 
Similar rates reported in Norway of -3.75 
to +15 μGal / year Refs: [2, 19]

Construction

- Max value: No upper Limit 

- Depends on the mass moved and dis-
tance from the instrument
- One example: 3 μGal total effect of a 
new parking lot and new nearby build-
ing. Effect modeled by modifying a local 
DEM.
Refs: [13]

Nearby Small Mass Movement

- Max value: Depends on mass and 

proximity to instrument 

- E.g. People or other machinery
- A 50 kg (110 lb.) person 0.5 m away is a 
2 μGal signal.
Refs: [31]

Miscellaneous Processes

- 70 nGal for subduction zone pro-

cesses  Refs: [18]
- Vegetation biomass (modeled in 
Land Use Models like GLDAS) changes 
by ± 5 kg/m2 yearly and gravity effect is 
detectable in GRACE harmonic models’ 
degrees 4-14. Ref: [23]

*Note: Maximum values listed are yearly or per event unless otherwise stated

Earth Tides 

- Max value: 300 μGal

- Periodic, Rate Max: 1 μGal / min 
- Magnitude and rate vary with latitude 
and phase of lunisolar cycle
- Error: Varies with model type and 
number of tides used.  Largest 3 tides: 
Diurnal, Semidiurnal, Annual. Two esti-
mates of best accuracy: 0.1 nGal (2009) 
and 0.39 nGal (2013). Refs: [1, 2]

Ocean Tidal Loading- Global

- Max value: < 33 μGal

- Global effect often less, e.g. 5-10 μGal 
in Canada
- Periodic signal. Usually use 9 waves: 4 
diurnal, 4 semidiurnal, and 1 monthly
- Can use TOPEX/POSEIDON data
- Error: One estimate is 5 μGal. Another 
study says biggest errors are in regional 
tidal loading. Refs: [1, 2, 5]

Ocean Tidal Loading- Regional

- Max value: 50-100% of global (16.5 - 

33 μGal)

- Periodic; complex near the coastline 
and with coastal bathymetry
- Regional modeling is necessary
- Error: One estimate says with careful 
modeling, 0.05-0.1 μGal. Another says a 
regional model coupled to a global, 0.1 
μGal (as of 1998). Refs: [1, 3, 5]

Earth’s Motions

- Polar motion max value:  15 μGal

- Polar motion: Annual (365 days) and 
Chandler (435 days) periods
- Length of day max value: < 500 nGal

- LOD corrections frequently neglected
- Nearly diurnal free wobble max 

value: Uncertain.

- Period: ~430 days; -(1 + 1/434.1 ± 0.9) 
cycles per sidereal day. Refs: [2, 24]

Earth “Noise”: Microseisms

- Max value: < 1 μGal

- Complex; seasonal and latitudinal
-  Most are Rayleigh waves 0.04 - 1 Hz. 
Primary microseisms (0.05-0.08 Hz) cre-
ated by breaking waves near shore. Sec-
ondary (larger magnitude than primary, 
0.1-0.16 Hz) created by downward pres-
sure waves. Deep ocean creates P-waves 
and core phases 0.1-1.4 Hz. Refs: [11]

Earth “Noise”: Hum

- Max value: < 1 μGal.

- Just above the detectable limit for 
stacked SG signals from quiet sites.
- Periodic, seasonal influences
- 5- 20 mHz. E.g. Waves traveling south 
along Pacific coast of N. America excite a 
hum in the 2.5 -8 mHz range.

Refs: [12, 30]

Large Earthquakes: Coseismic

- Max value: ± 20 μGal (GRACE esti-

mates within a 200 km2 area of Suma-

tra 2004 earthquake.)

- SGs can’t detect offsets from earth-
quakes of < 0.1 μGal. 
- Gravimeters < 700 km from a medium 
to large earthquake may see offset.
- Gravimeter frequencies measured: 10 
minutes to 24 hours. Refs: [2, 28]

Large Earthquakes: Postseismic

- Relaxation max value: +12 to -4 μGal

- Permanent change: -13 to 12 μGal

(Estimates from GRACE, Sumatra 

2004 earthquake)

- After earthquakes, deformation relax-
ation recovers some gravity. E.g. Suma-
tra rate: 1.5 μGal / month.
- Always after 26 months, gravity 
change is permanent. Refs: [1, 3]

Instrument Noise

- Tares max value: Varies by instru-

ment. 5 μGal common for AG/SG 

- Tares caused by instrument malfunc-
tion, mechanical shock, electrical distur-
bance, etc.
- Drift: Tens to hundreds of μGal/day. 

Varies by instrument.

- Setup error: < 1 μGal (tilt, etc.) 
Refs: [1, 20, 29]

Instrument Self-Attraction

- Max value: -1.7 to 0.5 μGal (AGs)

- Attraction between instrument pieces 
and test mass in instrument for precise 
gravimeters.
- Error: 0.1 - 0.2 μGal.
- Largest errors in calculation are setup 
error and simplifications to the instru-
ment modeling.
Refs: [6, 7, 8]

Key:
AG = Absolute Gravimeter
SG= Superconducting Gravimeter

Largest Magnitude Decreasing Magnitude

Largest Measured Gravity Source 

(Thousands of μGal /year): 

- Instrument Drift

Smallest Measured Gravity Sources 

(Sub- μGal, alphabetical): 

- Ambient Temperature
- Earth "Noise": Hum
- Earth "Noise": Microseisms
- Instrument Noise: Setup Error
- Sea Level Rise
- Subduction Zone Lithospheric Processes 
- Variation in Length of Day

Largest Error Gravity Source 

(10,000s nGal /year, alphabetical): 

- Instrument Drift (large variation by instrument)
- Landslides / Avalanches (natural variation, diffi-
culty measuring), 
- Coastal Erosion (not well-determined)

Smallest Error Gravity Source 

(Sub- nGal): 

- Earth Tides. These are so well-known that their 
timeseries are often used to calibrate supercon-
ducting gravimeters.

Two known gravity sources have uncertain magnitudes, including:

- Coastal Erosion, which should be large based on the amount of mass moved but is not well-studied gravimetrically.
- Inner and Outer Core Free Wobbles, which are of agreed-upon small magnitude but are most well-studied for their frequencies.

Errors are not well-understood for the following gravity sources:
Near-Station Construction
Continental Water Storage
Near Sensor Mass Movement
Polar Motion
Rain Events
Storm Surge, Wind Forcing, 
              and Thermohaline Circulation

El Niño Southern Oscillation
Present Day Ice Melting
Soil Moisture / Snow
Water Vapor
Ambient Temperature

CONCLUSION: The gravity community has much work to do to fully-exploit a 1 nGal precision instrument. 

Only one known source of gravity is well-constrained to the sub-nGal level (Earth Tides) and most sources have 
errors > 1 μGal.  Error budgets on these gravity signals need to be reduced for use by a more precise instrument. The 
multi-disciplinary nature of the gravity sources will require diverse instrumentation; precise modeling; engineering; 
and continued collaborative work in monitoring the atmosphere, oceans, cryosphere, and earth surface change. 

Earth "Noise": Hum
Earth "Noise": Microseisms
Subduction Zone lithospheric processes
Variation in Length of Day
Free Wobbles

These gravity signals are
best studied with a nGal
precision instrument
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