

Dynamic Effects				
An Assessment of the Cur	rent State of Knowledge		Largest Magnitude Decreasir	ng Magnitude
Theresa M. Damiani NOAA-National Geodetic Survey, 1315 East-West Hwy, SSMC3, Silver Spring, MD 20910; theresa.damiani@noaa.gov G51B-0362			Local Pressure Loading - Max value: ~27 μGal - Within 50 km of station - Rate: ~0.2 μGal/min	<100 nGal. Topography errors are nGal / km. Non-nominal air temp structure yields up to 30 nGal.
1. Background			Groundwater	Rain Events
Technology for gravimetry and positioning are evolving, with major changes projected within the decade. These new technologies are anticipated to improve measurement accuracies such that: dynamic relative gravimeters would be accurate to < 1 milliGal; static relative gravimeters would be accurate to < 1 microGal; and static absolute gravimeters would be accurate to < 10 nanoGal. With instruments that are sensitive to signals several magnitudes smaller than currently possible, the question arises about which dynamic effects of the natural and man-made environments will affect these more sensitive instruments.			 Max value: 100-200 μGal Rate: ~0.02 μGal/min Frequency: 1-8 cycles per day Highly variable both between ground-water systems and within a given system. Example: One system varied from -60 to 130 μGal, while another experienced ± 12-13 μGal cycles. Refs: [1, 22, 26] 	 Max value: Tens of μGal Rate: ~0.02 μGal/min Frequency: 1-8 cycles per day Error: Requires close collocation gauges with gravity stations and ing. Runoff causing widespread station flooding is an effect not account with rain gauges. Refs: [1, 2, 9]
strument. Such precision would be available from a cold aton ment by others.	•		Debris or Mud Flows	Landslides / Avalanches
2. Summary C Largest Measured Gravity Source (Thousands of μGal /year): - Instrument Drift Smallest Measured Gravity Sources (Sub- μGal, alphabetical): These gravity signals are	DESTINATIONS OF THE DESTITUTION OF THE DESTITION OF THE DESTITICATION OF	E r O S i O n	 Max value: Several Hundred µGal Rivers of rock, earth, or debris saturated with water Local effect, within minutes/hours Four instances in Taiwan, after a typhoon, yielded gravity changes between 27 ± 2 and 285 ± 3 µGal, depending on flow thickness and station proximity to the flow. Refs: [9, 14] 	 Max value: Several Tens of µC Masses of rock, earth, snow, or moving downslope Local effect Occurs within minutes Two landslides in Taiwan, after a phoon, yielded -41 ± 11 µGal and 19 µGal gravity changes at two s within a few 100 meters. Refs: [9]
 Ambient Temperature Earth "Noise": Hum Earth "Noise": Microseisms Instrument Noise: Setup Error Sea Level Rise Subduction Zone Lithospheric Processes Variation in Length of Day Two known gravity sources have uncertain magnitudes, including: Coastal Erosion, which should be large based on the amount of mass moved but is not well-studied gravimetrically. Inner and Outer Core Free Wobbles, which are of agreed-upon small magnitude but are most well-studied for their frequencies.		V o l c a n i c	 Large Eruptions Max value: 400 μGal Many events are of this size and can occur within a few hours Gravity may be recovered. One eruption example is that Mt. Etna recovered 100 μGal / hour to near-starting values. Error: Need gravimeters with 10 μGal to 100 nGal accuracies to measure eruption precursor activity. Refs: [2] 	•
Near-Station ConstructionEl Niño SouthernContinental Water StoragePresent Day Ice NNear Sensor Mass MovementSoil Moisture / SnPolar MotionWater VaporRain EventsAmbient TemperaStorm Surge, Wind Forcing, and Thermohaline CirculationAmbient work to eCONCLUSION: The gravity community has much work to eOnly one known source of gravity is well-constrained to the serrors > 1 µGal. Error budgets on these gravity signals need to	OscillationEarth "Noise": HumAeltingEarth "Noise": MicroseismshowSubduction Zone lithospheric processeshowFree WobblesatureFree Wobblesdo to fully-exploit a 1 nGal precision instrument.sub-nGal level (Earth Tides) and most sources haveto be reduced for use by a more precise instrument. The	p h e	 Max value: A few μGal Up to ± 3 μGal / yr, mountain glaciers. 80% of PDIM gravity created < 10 km from station. Remaining from < 50 km. Estimated with GPS+absolute gravity, 	Glacial Isostatic Adjustme - Max value: A few μGal - GIA Nominally: -6.5 mm = 1 μGa - GRACE measures -1.33 μGal / ye of Fennoscandian and N. Americ - Largest 10 mm / year uplift in H Bay from GPS. Absolute gravity to west agrees at 1.53 ± 0.38 μGal / - Best models agree with ground 1-2 mm / yr. Refs: [34-37]
multi-disciplinary nature of the gravity sources will require d and continued collaborative work in monitoring the atmosp			Storm Surge, Wind Forcing, and Thermohaline Circulation	El Niño Southern Oscillati - Max value: 2-3 µGal at coasta
 Geodesy, T. Herring, Editor. 2009, Elsevier. p. 65-122. Crossley, D., J. Hinderer, and U. Riccardi, The measurement of surface gravity. REPORTS ON PROGRESS IN PHYSICS, 2013. 76: p. 47 pp. Merriam, J.B., Atmospheric pressure and gravity. Geophysical Journal International, 1992. 109: p. 488-500. Strasbourg, U.o. Surface Gravity Variations (atmosphere, ocean, hydrology). 2014; Available from: http://loading.u-strasbg.fr/GGP/. Lambert, A., et al., Improved ocean tide loading corrections for gravity and displacement: Canada and northern United States. Journal of Geophysical Research: Solid Earth (1978–2012), 1998. 103(B12): p. 30231- 30244. Niebauer, T.M., et al., The self-attraction correction for the FG5X absolute gravity meter. Metrologia, 2013. 	 Leatherman, S.P., Shoreline Change Mapping and Management Along the U.S. East Coast. Journal of bastal Research, 2003: p. 5-13. Mouyen, M., et al., Investigating possible gravity change rates expected from long-term deep crustal prosses in Taiwan. Geophysical Journal International, 2014. 198(1): p. 187-197. Wong, P.P., et al., Coastal systems and low-lying areas, in Climate Change 2014: Impacts, Adaptation, and Inerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment port of the Intergovernmental Panel of Climate Change, C.B. Field, et al., Editors. 2014, Cambridge University ess: Cambridge, United Kingdom and New York, NY, USA. p. 361-409. Christiansen, L., et al., Measuring gravity change caused by water storage variations: Performance assessent under controlled conditions. Journal of Hydrology, 2011. 402(1–2): p. 60-70. Merlet, S., et al., Micro-gravity investigations for the LNE watt balance project. Metrologia, 2008. 45(3): p. 	nea -ad Tni i n d g a	- Max value: Ones to tens of μ Gal - E.g.: 2 m storm surge in southern North Sea = 6-8 μ Gal signals in coastal Europe and UK. 1 μ Gal., 600 km inland - E.g.: In Finland, wind and current forc- ing cause 2-3 m of loading (as fast as 1 m / 12 hr. 1000 km inland, SG measures 3.1 μ Gal / m of loading. Refs: [2, 27, 29]	- Max value: 2-3 µGar at coasta torial stations - Multi-year period Refs: [2]
 20(1): p. 1-8. 7. Biolcati, E., S. Svitlov, and A. Germak, Self-attraction effect and correction on three absolute gravimeters. Metrologia, 2012. 49(4): p. 560-566. 8. Agostino, G.D., et al., Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter. Metrologia, 2011. 48(5): p. 299. 9. Mouyen, M., et al., Erosion effects assessed by repeated gravity measurements in southern Taiwan. Geophysical Journal International, 2013. 192(1): p. 113-136. 11. Schimmel, M., et al., Polarized Earth's ambient microseismic noise. Geochemistry, Geophysics, Geosystems, 2011. 12(7): p. n/a-n/a. 12. Bromirski, P.D. and P. Gerstoft, Dominant source regions of the Earth's "hum" are coastal. Geophysical Research Letters, 2009. 36(13). 13. Arneitz, P., et al., Gravity effect of glacial ablation in the Eastern Alps – observation and modeling. The Cryosphere, 2013. 7(2): p. 491-498. 14. FEMA. Landslides & Debris Flow. 2014 2/12/13; Available from: http://www.ready.gov/landslides-debrisflow. 15. Wahr, J., et al., Time-variable gravity from GRACE: First results. Geophysical Research Letters, 2004. 31(11). 16. Morton, R.A., T. Miller, and L. Moore, Historical Shoreline Changes along the US Gulf of Mexico: A Summary of Recent Shoreline Comparisons and Analyses. Journal of Coastal Research. 2005. 21(4): p. 704-709. 	 5-274. Pool, D.R., Variations in climate and ephemeral channel recharge in southeastern Arizona, United States. ater Resources Research, 2005. 41(11): p. W11403. Rodell, M., et al., Global biomass variation and its geodynamic effects: 1982-98. Earth Interactions, 2005. 2): p. 1-19. Defraigne, P., V. Dehant, and J. Hinderer, Stacking gravity tide measurements and nutation observations ir der to determine the complex eigenfrequency of the nearly diurnal free wobble. Journal of Geophysical search: Solid Earth, 1994. 99(B5): p. 9203-9213. Rodell, M., et al., Estimating groundwater storage changes in the Mississippi River basin (USA) using RACE. Hydrogeology Journal, 2007. 15(1): p. 159-166. Fratepietro, F., et al., Ocean loading deformations caused by storm surges on the northwest European elf. Geophysical Research Letters, 2006. 33(6): p. L06317. de Linage, C., et al., Separation of coseismic and postseismic gravity changes for the 2004 Sumatra-idaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-odes summation. Geophysical Journal International, 2009. 176(3): p. 695-714. Virtanen, H., Loading effects in Metsähovi from the atmosphere and the Baltic Sea. Journal of Geodynami-, 2004. 38(3-5): p. 407-422. Rosat, S., et al., Performance of superconducting gravimeters from long-period seismology to tides. Jourla of Geodynamics, 2004. 38(3-5): p. 461-476. 	O t h e r	 Oil and Gas Extraction / Mining Max value: > 70 μGal Varies by extraction technique, depth, mass removed, and location in area. One example: Secondary recovery of oil through water injection in Prudhoe Bay, AK changed gravity by 70 μGal in 4 years over a several hundred km² area. Similar rates reported in Norway of -3.75 to +15 μGal / year Refs: [2, 19] 	 Max value: No upper Limit Depends on the mass moved at tance from the instrument One example: 3 µGal total effect new parking lot and new nearby ing. Effect modeled by modifying DEM.

Source: Earth Mass Movement

ling	Global Pressure Loading	Ambient Temperature	Water Vapor	
_	- Max value: 1 μGal	- Max value: Nearly 1 μGal	- Max value: Varies from 100 nGal	
	- >1000 km from station - Complex correction, needs model.	- Often ignored - Linear: 13 nGal / °C	(theoretically) to up to 1 µGal (measurements)	
on, 500 n	- Error: Best modeling yields errors of	- Error: Not well understood	- Often Ignored	
station, are 400	several-hundred nGal near coasts and ~100 nGal inland. Extreme weather	Pofc [1, 2]	- Local Effect - Increases during rain events	
mperature	adds several-hundred extra nGal of error	Refs: [1, 3]	- Increases during rain events - Error: Not well understood	
•	to this correction. Refs: [1, 2, 3]		Refs: [1, 2, 3]	
	Continental Water Storage	Bodies of Surface Water	Soil Moisture / Snow	
	- Max value: 3-10 μGal	- Max value: 1 to Tens of µGal	- Max value: Several µGal	
IV	- Regional signal, well-resolved by satel- lite gravity time series (GRACE)	- Within a few 100 km of station for small bodies (rivers, small lakes)	 Rate: ~0.02 μGal/min Frequency: 1-8 cycles per day for soil 	
tion of rain	- Strong seasonal periods	- Changes due to water mass and bed-	moisture, Seasonal for snow	
and model- ad surface	- Example: Gravity varies by \pm 3 µGal in the Mississippi River Basin as measured	load of sediments/rocks during storms. - Error: Needs to be modeled, especially	- Calculated globally (E.g. GLDAS/Noah Land Surface Model) or Regionally (E.g.	
unted for	by GRACE	for rivers with a winding path. Very diffi-	North America NLDAS and The Euro-	
		cult to separate the water mass and	pean Center for Medium-range Weathe	
	Refs: [2, 25]	bed-load effects. Refs: [9]	Forecasts (ECMWF)) Refs: [1, 25-27]	
S	Coastal Erosion			
μGal or debris	- Max value: Gravity value uncertain - Coastal erosion rates go as high as 80			
	m / yr in places in the U.S.			
	- Average erosion rates are 1-2 m / yr			
er a ty-	with extreme variability spatially and temporally.			
and $-32 \pm$	Refs: [16, 17]			
vo stations : [9, 14]				
· / · ']	1			
lμGal				
Yellow-				
TEHOW-	Key:			
n low,	AG = Absolute Gravimeter SG= Superconducting Gravimeter			
r better ect. Refs:				
ment				
µGal. / year max				
erican GIA.				
n Hudson :y to the				
al / yr.				
ind data to				
ation	Sea Level Rise			
	- Max value: a few hundred nGal			
	- SLR rate from 1993-2010: 3.2 mm/yr;			
	Rate range projected for 2100: 5.1 to 8.6 mm/yr			
	- These roughly translate to gravity			
	changes at coasts : from 1993-2010 of 133 nGal/yr, and 212 to 358 nGal/yr by			
	2100			
	Refs: [19]			
		Miscellaneous Processes		
d and dis-	- Max value: Depends on mass and provimity to instrument	- 70 nGal for subduction zone pro-		
u anu uis-	proximity to instrument - E.g. People or other machinery	<pre>cesses Refs: [18] - Vegetation biomass (modeled in</pre>		
fect of a	- A 50 kg (110 lb.) person 0.5 m away is a	Land Use Models like GLDAS) changes		
rby build- /ing a local	2 μGal signal. Refs: [31]	by \pm 5 kg/m ² yearly and gravity effect is detectable in GRACE harmonic models'		
		degrees 4-14. Ref: [23]		

*Note: Maximum values listed are yearly or per event unless otherwise stated

s from 100 nGal up to 1 µGal

Snow

	Earth Tides	Ocean Tidal Loading- Global
ain events derstood	 - Max value: 300 μGal - Periodic, Rate Max: 1 μGal / min - Magnitude and rate vary with latitude and phase of lunisolar cycle - Error: Varies with model type and 	 Max value: < 33 μGal Global effect often less, e.g. 5-10 μGal in Canada Periodic signal. Usually use 9 waves: 4 diurnal, 4 semidiurnal, and 1 monthly
Snow ral μGal min cles per day for soil	number of tides used. Largest 3 tides: Diurnal, Semidiurnal, Annual. Two esti- mates of best accuracy: 0.1 nGal (2009) and 0.39 nGal (2013). Refs: [1, 2]	- Can use TOPEX/POSEIDON data - Error: One estimate is 5 μGal. Another study says biggest errors are in regional tidal loading. Refs: [1, 2, 5]
for snow ly (E.g. GLDAS/Noah el) or Regionally (E.g. DAS and The Euro- edium-range Weather) Refs: [1, 25-27]	 Ocean Tidal Loading- Regional Max value: 50-100% of global (16.5 - 33 μGal) Periodic; complex near the coastline and with coastal bathymetry Regional modeling is necessary Error: One estimate says with careful modeling, 0.05-0.1 μGal. Another says a regional model coupled to a global, 0.1 μGal (as of 1998). Refs: [1, 3, 5] 	 Earth's Motions Polar motion max value: 15 μGal Polar motion: Annual (365 days) and Chandler (435 days) periods Length of day max value: < 500 nGal LOD corrections frequently neglected Nearly diurnal free wobble max value: Uncertain. Period: ~430 days; -(1 + 1/434.1 ± 0.9) cycles per sidereal day. Refs: [2, 24]
	 Large Earthquakes: Coseismic Max value: ± 20 µGal (GRACE estimates within a 200 km² area of Sumatra 2004 earthquake.) SGs can't detect offsets from earthquakes of < 0.1 µGal. Gravimeters < 700 km from a medium to large earthquake may see offset. Gravimeter frequencies measured: 10 minutes to 24 hours. Refs: [2, 28] 	Large Earthquakes: Postseismic - Relaxation max value: +12 to -4 μGal - Permanent change: -13 to 12 μGal (Estimates from GRACE, Sumatra 2004 earthquake) - After earthquakes, deformation relax- ation recovers some gravity. E.g. Suma- tra rate: 1.5 μGal / month. - Always after 26 months, gravity change is permanent. Refs: [1, 3]
	Earth "Noise": Microseisms - Max value: < 1 μGal - Complex; seasonal and latitudinal - Most are Rayleigh waves 0.04 - 1 Hz. Primary microseisms (0.05-0.08 Hz) cre- ated by breaking waves near shore. Sec- ondary (larger magnitude than primary, 0.1-0.16 Hz) created by downward pres- sure waves. Deep ocean creates P-waves and core phases 0.1-1.4 Hz. Refs: [11]	 Earth "Noise": Hum Max value: < 1 μGal. Just above the detectable limit for stacked SG signals from quiet sites. Periodic, seasonal influences 5- 20 mHz. E.g. Waves traveling south along Pacific coast of N. America excite a hum in the 2.5 -8 mHz range. Refs: [12, 30]

Source: Instrumentation

Instrument Noise	Instrument Self-Attraction		
- Tares max value: Varies by instru-	- Max value: -1.7 to 0.5 μGal (AGs)		
ment. 5 µGal common for AG/SG	- Attraction between instrument pieces		
- Tares caused by instrument malfunc-	and test mass in instrument for precise		
tion, mechanical shock, electrical distur-	gravimeters.		
bance, etc.	– Error: 0.1 – 0.2 μGal.		
- Drift: Tens to hundreds of µGal/day.	- Largest errors in calculation are setup		
Varies by instrument.	error and simplifications to the instru-		
- Setup error: < 1 μGal (tilt, etc.)	ment modeling.		
Refs: [1, 20, 29]	Refs: [6, 7, 8]		

References (continued)

30. Schmidt, M., A mobile high-precision gravimeter based on atom interferometry, in Physics. 2011, Humboldt-Universität zu Berlin. p.

31. Jacob, T., et al., Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer. Journal of Geophysical Research: Solid Earth, 2010. 115(B6): p. B06402. Research: Solid Earth, 2010. 115(B6): p. B06402.
32. Sun, W., et al., Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by glacial isostatic adjustment. Journal of Geophysical Research: Solid Earth, 2010. 115(B12): p. B12406.
33. Mémin, A., et al., Secular gravity variation at Svalbard (Norway) from ground observations and GRACE satellite data. Geophysical Journal International, 2011. 184(3): p. 1119-1130.
34. Sella, G.F., et al., Observation of glacial isostatic adjustment in "stable" North America with GPS. Geophysical Research Letters, 2007.
34: p. 6pp.
35. Ivins, E.R. and D. Wolf, Glacial isostatic adjustment: New developments from advanced observing systems and modeling. Journal of Geodynamics, 2008. 46: p. 69-77.
36. Braun, A., et al., Glacial isostatic adjustment at the Laurentide ice sheet margin: Models and observations in the Great Lakes region. Journal of Geodynamics, 2008. 46: p. 165-173.
37. Larson, K.M. and T. van Dam, Measuring Postglacial Rebound with GPS and Absolute Gravity. Geophysical Research Letters, 2000. 27(23): p. 3925-3928.