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V. Theoretical Fundamentals of Inertial Gravimetry 
 
• Basic gravimetry equation 
 
• Essential IMU data processing for gravimetry 
 
• Kalman filter approaches 
 
• Rudimentary error analysis – spectral window 
 
• Instrumentation 

National Geodetic Survey 
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Inertial Gravimetry 

• Use precision accelerometer triad, instead of gravimeter 

− OTF (off-the-shelf) units designed for inertial navigation 
rather than gravimetry 

• Usually consider strapdown mechanization, instead of 
stabilized platform 

• Vector gravimetry, instead of scalar gravimetry 

− determine three components of gravity in the n-frame 

• Need precision gyroscopes to minimize effect of orientation 
error on horizontal components 

• Two documented approaches of data processing 

− either integrate accelerometer data or differentiate GPS data 
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• Recall strapdown mechanization 

ba – inertial accelerations measured by accelerometers in body frame 

ix – kinematic accelerations obtained from GPS-derived positions, x, in i-frame. 

GPS transformation from 
inertial frame to n-frame 

transformation from body 
frame to inertial frame gyros 

accelerometers 

Gravitational Vector 
in n-frame ( )n n i i b

i b= −C Cg x a

◦ where                         is the data interval, e.g., δt = 1/50 s 1k kt t tδ −= −
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Determination of       (1)  i
bC

• Let eζ  be the unit vector about which a rotation 
by the angle, ζ, rotates the b-frame to the i-frame ζ
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− this is a linear D.E. with no singularities 

• Quaternions satisfy the differential equation: 1
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• Solution to D.E., if A is assumed constant, 

− using gyro data, typically given as 
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Determination of       (2)  i
bC

− note: A is assumed constant only in the solution to the D.E., not in 
using the gyro data (model error, not data error in Θ) 

− solution is a second-order algorithm, neglecting terms of order δt3 

− higher-order algorithms are easily developed (Jekeli 2000)  

−      is given by an initialization procedure 0q̂
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Determination of δgn (1) 

• Kalman filter approach to minimizing estimation errors 

− estimate IMU systematic errors and gravity disturbance vector 

− formulate in i-frame and assume negligible error in n
iC

− system state updates (observations) are differences in accelerations 
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− over-script, ~, denotes indicated (measured) quantity 

− δai includes accelerometer errors and orientation errors 
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• System state vector, εD 

− IMU biases, scale-factor errors, assumed as random constants 

Determination of δgn (2) 

− orientation errors, ψ i; i i b
b ib

d
dt

δ= −Cψ ω
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◦ wδg is a white noise vector process with appropriately selected variances 

◦ βN , βE , βD are parameters appropriately selected to model the correlation 
time of the processes , ,2.146 N E Dβ=

− gravity disturbance components, modeled, e.g., as second-order 
Gauss-Markov processes in n-frame, with i i n

nδ δ= Cg g

D D D D D
d
dt

= +F G wε ε where wD is a vector of white noise processes 

• System dynamics equation 
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Determination of δgn (3) 

• Alternatively, omit gravity disturbance model 
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− observations assume normal gravitation is correct 

− optimal estimates of IMU systematic errors by Kalman filter yield ŷ

− gravity disturbance estimates: ˆiδ ≈ −g y y

◦ assumes residual IMU systematic errors are small and white noise can be filtered 

− successfully applied technique (Kwon and Jekeli, 2001) 
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Indirect Method 
• Recall inertial navigation equations in n-frame 

( )
n

n b n n n n
b ie in

d
dt

= − + +C Ω Ωv a v g
e

e n
n

d
dt

= Cx v

− integrate (i.e., get IMU navigation solution) and solve for      using a 
model and GNSS tracking data 

ng

− analogous to traditional satellite tracking methods to determine global 
gravitational field, except gravity model is linear stochastic process, 
not spherical harmonic model 

− navigation solution from OTF INS should not be integrated with GNSS! 

◦ use raw accelerometer and gyro data to obtain free-inertial navigation solution 

◦ IMU and GNSS must be treated as separate sensors, just like in scalar gravimetry 

- one could pre-process IMU/GNSS data to solve for IMU systematic errors, 
neglecting gravity 
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• Solve for gravity disturbance treated as an error state (among 
many others) in the linear perturbation of navigation equations  

Determination of δgn (1) 

− typical error states collected in state vector, εΙ , include: 
◦ position errors, velocity errors, orientation errors 
◦ IMU systematic errors (biases, etc.) 
◦ gravity disturbance components 

I I I I I
d
dt

= +F G wε ε where wI is a vector of white noise processes 

− integration is done numerically (e.g., using linear finite differences) 

( ) ( ) ( ) ( ) ( )1 1,I k I k k I k I k I kt t t t t t− −= +Φ G wε ε where Φ = state transition matrix 

− observations are differences, IMU-indicated minus GNSS positions, 
treated as updates to the corresponding system states 

( ) ( ) ( ) ( )k k I k kt t t t= +Hy ε v where v is a vector of discrete white noise processes 
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Determination of δgn (2) 

• Gravity disturbance model 
− stochastic process; e.g., second-order Gauss-Markov process, 
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◦ wδg is a white noise vector process with appropriately selected variances 

◦ βN , βE , βD are parameters appropriately selected to model the correlation 
time of the processes , ,2.146 N E Dβ=

− theoretically the gravity model is an approximation since the gravity 
field is not a linear, finite-dimensional, set of independent along-track 
signals as required/modeled in the system state formalism 

• Kalman filter/smoother estimate,  is optimal in the sense of 
minimum mean square error 

− successful estimation depends on stochastic separability of gravity 
disturbance from accelerometer errors and coupled gyro errors 
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Rudimentary Error analysis 

• Assume that n- and i-frames coincide (approx. valid for < 1 hour) 

n n n≈ − ⇒g x a

gravitation 
errors 

errors in 
kinematic 

acceleration 

errors in 
inertial 

acceleration 

gravitational 
gradients 

errors in 
sensor 

orientation 

position 
errors 

n n n n b n b
b b

n nδ δδ δ= + − −Ψ C C Γg x a a p
negligible 

•  δg PSD is obtained from models of IMU and position error PSDs 
and PSD of vehicle acceleration 

1 1 3 2 2 3 1g x a a aδ δ ψ ψ δΦ Φ Φ Φ Φ= + + +

3 3 2 1 1 2 3g x a a aδ δ ψ ψ δΦ Φ Φ Φ Φ= + + +
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PSD Models 
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MathCad: degvarfit4.mcd 
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Accelerations* 
dashed-line: psd model 
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− Aircraft speed = 250 km/hr; altitude = 1000 m 

– Accelerometers: white noise (±25 mGal) 

– Gyros: rate bias (± 0.003°/hr) plus white noise (±0.06 °/hr/√Hz)  

– Orientation: initial bias (0.005°) 

approximated 
by simple PSD 
models 

− Position: white noise (±0.1 m) 
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PSDs of Gravity Errors, δg1, δg3, Versus 
Along-Track PSDs of Signals, g1, g3 

• Signal-to-noise ratio > 1 over larger bandwidth for g3 

signal-to-noise ratio > 1 

+ g3 : 

g1 : 

• Significant error source is orientation bias, especially for g1, g2 

• Signal PSD’s move to right and down with increased velocity 

Spectral Window: 
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• Schematic: 
Pendulous, Force-Rebalance Accelerometer (e.g.) 

• Torque needed to keep proof mass in equilibrium is a measure of acceleration 

input axis 

Case Hinge 
Permanent 
Magnet Forcer Coil 

Light Emitting 
Diode 

side view 

plan view 

Photo Detector 

Shadow Arm Proof 
Mass 

Forcer 
Direction 

pulse train Pulse Rebalance 
Electronics Amplifier 

1c 

3c 

2c 

3c 
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• Honeywell (Allied Signal, 
Sundstrandt) QA3000 

Pendulous, Force-Rebalance Accelerometer (e.g.) 

• Litton (Northrop Grumman) A-4 
Miniature Accelerometer Triad 
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INS Used for Airborne Gravimetry 

Honeywell Laseref III 

University of Calgary 

Strapdown Platforms 

Ohio State University 

Litton LN100 Honeywell H-770 

Intermap Technologies 

ITC-2 Inertial Survey System 

Bauman Moscow State Technical University 

Stabilized 
Platform 

iMAR RQH 1003  
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