National Geodetic Survey

V. Theoretical Fundamentals of Inertial Gravimetry
* Basic gravimetry equation

 Essential IMU data processing for gravimetry

e Kalman filter approaches

* Rudimentary error analysis — spectral window

e Instrumentation
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Inertial Gravimetry
* Vector gravimetry, instead of scalar gravimetry
— determine three components of gravity in the n-frame

e Use precision accelerometer triad, instead of gravimeter

— OTF (off-the-shelf) units designed for inertial navigation
rather than gravimetry

e Usually consider strapdown mechanization, instead of
stabilized platform

* Need precision gyroscopes to minimize effect of orientation
error on horizontal components

* Two documented approaches of data processing

— either integrate accelerometer data or differentiate GPS data
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Direct Method

* Recall strapdown mechanization

Grayvitational Vector
in n-frame

«— gn ICin(j‘c.'i—Cibab)

/ ‘r \
L accelerometers }

transformation from
GPS

inertial frame to n-frame
transformation from body -
) ) gyros
frame to inertial frame

X' — kinematic accelerations obtained from GPS-derived positions, x, in i-frame.

b L Ld L L
a” — inertial accelerations measured by accelerometers in body frame
1:k

— accelerometer data typically are Ov, = I a’ (t)d'[ = a, ~—~ (e.g.)

t._, better approximations
can be formulated

o where Ot =t, —1, _, is the data interval, e.g., &t = 1/50 s
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Determination of CL (1)

e Let e, be the unit vector about which a rotation

by the angle, {, rotates the b-frame to the i-frame 3b 3
cos(¢/2) ) (4
b . €
_ bsin(¢/2) | |a,
e, =| C| — quaternion vector: ¢ = , =
] csin(&/2) d,
dsin(¢/2)) \a, b

C(are e -ar 2(a0+ad)  2(00 - 0)
C=| 2(0,0,-90,) F-C+F-q 2(q0,+q0) 1
2(9,0,+90;)  2(a,0,—-99,) G —0;—0a; +0;

* Quaternions satisfy the differential equation: %q = %Aq

—where A= and o) = = gyro data

£ &8

-0, o, -0 0

— this is a linear D.E. with no singularities
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Determination of CL (2)

e Solution to D.E., if A is assumed constant,

g =(I +%(—)k +é®ﬁ +4Lg®ﬁ +-~-jc}k1 , k=12,

b
— using gyro data, typically given as 00, = j a)i%dt
tc-1
&

— where O, = | Adt
|

k-1

— note: A is assumed constant only in the solution to the D.E., not in
using the gyro data (model error, not data error in ®)

— éo is given by an initialization procedure
— solution is a second-order algorithm, neglecting terms of order ot

— higher-order algorithms are easily developed (Jekeli 2000)
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Determination of dg” (1)

« Kalman filter approach to minimizing estimation errors
— estimate IMU systematic errors and gravity disturbance vector
— formulate in i-frame and assume negligible error in C ,n

— system state updates (observations) are differences in accelerations

~ -

y=(a'+g')-x%
= (ai +5ai)+(gi —5§i)—(3’c'i +5.5c'i) g =7 +Q Q x'
=Cyoa’ - y' x |Cla® - 5% - 5%

Y_
|
oa
— oa' includes accelerometer errors and orientation errors

— over-script, ~, denotes indicated (measured) quantity
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Determination of og” (2)

* System state vector, &,
— orientation errors, y'; %y/i = —Cibéa)i%

— IMU biases, scale-factor errors, assumed as random constants

— gravity disturbance components, modeled, e.g., as second-order
Gauss-Markov processes in n-frame, with 5g' =C!og"

. B 00 g0 0
Fﬁgn =-21 0 ﬂE 0 Eégn -1 0 ﬁé 0 5§n + W5g—
0 0 4, 0O O ﬂé

° Wg is a white noise vector process with appropriately selected variances

° B\, Be, Pp are parameters appropriately selected to model the correlation
time of the processes =2.146/f,  ,

e System dynamics equation
d

—&p =Fy6p +Gpw, where w, is a vector of white noise processes

dt
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Determination of dg” (3)

 Alternatively, omit gravity disturbance model
— observations assume normal gravitation is correct
y=(d +g')-%
:(ai +§ai)+gi —(ki +55&i) g =7 +Q Q x'
=Cyoa’ | y' x |Cla’ - 5%

oa'
— optimal estimates of IMU systematic errors by Kalman filter yield y
— gravity disturbance estimates: Jg' ~p—y

o assumes residual IMU systematic errors are small and white noise can be filtered

— successfully applied technique (Kwon and Jekeli, 2001)
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Indirect Method

* Recall inertial navigation equations in n-frame

dvn n_»b n n n —n
cmba —(ﬂie+ﬂin)v T g
di:Cﬁvn

dt

— integrate (i.e., get IMU navigation solution) and solve for g" using a
model and GNSS tracking data

— analogous to traditional satellite tracking methods to determine global
gravitational field, except gravity model is linear stochastic process,
not spherical harmonic model

— navigation solution from OTF INS should not be integrated with GNSS!
o IMU and GNSS must be treated as separate sensors, just like in scalar gravimetry

o use raw accelerometer and gyro data to obtain free-inertial navigation solution

-one could pre-process IMU/GNSS data to solve for IMU systematic errors,
neglecting gravity
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Determination of dg” (1)

* Solve for gravity disturbance treated as an error state (among
many others) in the linear perturbation of navigation equations

— typical error states collected in state vector, &, include:
o position errors, velocity errors, orientation errors
o [MU systematic errors (biases, etc.)
o gravity disturbance components

d

d_ g =F & +G,w, wherew,is a vector of white noise processes
t

— integration is done numerically (e.g., using linear finite differences)

g (t )=, (t.t_ )& (4 )+G, (t)w, (t ) where @ = state transition matrix

— observations are differences, IMU-indicated minus GNSS positions,
treated as updates to the corresponding system states

y(t)=H(t )& (t )+v(t,) where v is a vector of discrete white noise processes
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Determination of og” (2)

* Gravity disturbance model

— stochastic process; e.g., second-order Gauss-Markov process,

, fu 00 B0 0
Fé‘g” =210 p. 0 a&g" -1 0 pBE 0 |5g" + W,

2

0 0 Gy 0 0 p;

° Wg is a white noise vector process with appropriately selected variances
° B\, P, Pp are parameters appropriately selected to model the correlation
time of the processes =2.146/5, .
e Kalman filter/smoother estimate, is optimal in the sense of
minimum mean square error
— theoretically the gravity model is an approximation since the gravity

field is not a linear, finite-dimensional, set of independent along-track
signals as required/modeled in the system state formalism

— successful estimation depends on stochastic separability of gravity
disturbance from accelerometer errors and coupled gyro errors
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Rudimentary Error analysis

* Assume that n- and i-frames coincide (approx. valid for <1 hour)
negligible

g ~X —a" = og" =06x"+¥"Cla® -Clsa" -T"5p"

gravitation errors in errors in errors in gravitational position
errors kinematic sensor inertial gradients errors
acceleration orientation acceleration

* o2 PSD is obtained from models of IMU and position error PSDs
and PSD of vehicle acceleration

@591:@5X1+d§ + @ +d§5a1

Wsa, W)y

b. =P.. +D  +OD  +@

99, 0% Wody 18y 08y
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PSD Models

Gravitational Field Accelerations*® o
14 ' L0 Jashed-line: psd model |
110 \ EGM96 > -\‘.‘ ashed-line: pls mode
1x1012 — ].0 ‘-‘o :u'n“ @a
e 2
o 1.0 1'x1' Ag 1= /
S \ R j
= 8 o ICRORN
Z e N N 0l / — \7{\
(E 1X106 E 0 01 \'- \-\\' WI"- —
So 4 R\ &) ' 7 T A
g 110 model— £ ), iR
£ N\ £ 0001F Dy, -
~ 100 N =
% \ 0.0001
S D
0.1 1107 4
' N &
1107 1,10 i
1107 1106 110 ni0? 140 0.1 01 0.0001 0.001 0.01 0.1 1 10 100

frequency [Hz]

* data from Twin Otter aircraft

— Accelerometers: white noise (£25 mGal) )
— Gyros: rate bias (+ 0.003°/hr) plus white noise (+0.06 °/hr/YHz) approximated

: e e > by simple PSD
— Orientation: initial bias (0.005°) models

frequency [cy/m]

— Position: white noise (£0.1 m) J

— Aircraft speed = 250 km/hr; altitude = 1000 m
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PSDs of Gravity Errors, 0g,, 0g,, Versus
Along-Track PSDs of Signals, g,, 2,

Spectral Window:

signal-to-noise ratio > 1

gl AR

[m?/s*]/Hz

EN
b ] +
3 ° FR R

0.01 0.1

Frequency [Hz]

* Signal-to-noise ratio > 1 over larger bandwidth for g,
* Significant error source is orientation bias, especially for g,, g,

 Signal PSD’s move to right and down with increased velocity
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Pendulous, Force-Rebalance Accelerometer (e.g.)

* Schematic:
: Pulse Rebalance :
pulse train <+ : <—| Amplifier
Electronics input axis
E plan view
_ orcer
e Proof 1¢

DlI‘CCthIlI Shadow Arm

| Massl ] o .

VA

AT =2

Case  Hinge 7 ‘
Permanent Photo Detector
\ | l Magnet Forcer Coil
/ side view
[— 2¢

——— 3¢

™~ Light Emitting
Diode

e Torque needed to keep proof mass in equilibrium is a measure of acceleration

Airborne Gravity for Geodesy Summer School , 23-27 May 2016  Theoretical Fundamentals of Inertial Gravimetry, C. Jekeli, OSU 5.15



Pendulous, Force-Rebalance Accelerometer (e.g.)

* Honeywell (Allied Signal,
Sundstrandt) QA3000

i

| &l
o~ et I
& i Il
1 I
anm
| e
e

(1
| I | {
I T 3
-Iq..l.iilllj H
i
ZF
g

 Litton (Northrop Grumman) A-4
Miniature Accelerometer Triad

Airborne Gravity for Geodesy Summer School , 23-27 May 2016

Performance QA3000-030
Input Range [g] 60

Bias [mg] <4

One-year Composite repeatability [ug] <40
Temperature Sensitivity [lg/°C] <15

Scale Factor [mA/g] 1.20t0 1.46

One-year Composite Repeatability [ppm]

<80

Temperature Sensitivity [ppm/°C]

<120

Axis Misalignment [prad]

<1000

One-year Composite Repeatability [urad]

<70

Vibration Recfification [pgr’gzrms] <10 (50-500 Hz)
<35 (500-2000 Hz)
Intrinsic Noise [ug-rms] <7 (0-10 Hz)
<70 (10-500 Hz)

Theoretical Fundamentals of Inertial Gravimetry, C. Jekeli, OSU

<1500 (500-10,000 Hz)
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INS Used for Airborne Gravimetry

Honeywell Laseref 11 Honeywell H-770 Litton LN100
University of Calgary Intermap Technologies Ohio State University
R
ITC-2 Inertial Survey System Strapdown Platforms

N\

Stabilized
Platform

Bauman Moscow State Technical University iMAR RQH 1003
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