

V. Theoretical Fundamentals of Inertial Gravimetry

- Basic gravimetry equation
- Essential IMU data processing for gravimetry
- Kalman filter approaches
- Rudimentary error analysis spectral window
- Instrumentation

Inertial Gravimetry

• Vector gravimetry, instead of scalar gravimetry

- determine three components of gravity in the *n*-frame

- Use precision accelerometer triad, instead of gravimeter
 - OTF (off-the-shelf) units designed for inertial navigation rather than gravimetry
- Usually consider strapdown mechanization, instead of stabilized platform
- Need precision gyroscopes to minimize effect of orientation error on horizontal components
- Two documented approaches of data processing

- either integrate accelerometer data or differentiate GPS data

Direct Method

Recall strapdown mechanization

- \ddot{x}^i kinematic accelerations obtained from GPS-derived positions, x, in *i*-frame.
- a^{b} inertial accelerations measured by accelerometers in body frame

- accelerometer data typically are
$$\delta v_k = \int_{t_{k-1}}^{t_k} a^b(t) dt \implies a_k^b \approx \frac{\delta v_k}{\delta t}$$
 (e.g.)
better approximations can be formulated

• where $\delta t = t_k - t_{k-1}$ is the data interval, e.g., $\delta t = 1/50$ s

Determination of C_h^i (1)

• Let e_{ζ} be the unit vector about which a rotation by the angle, ζ , rotates the *b*-frame to the *i*-frame

by the angle,
$$\zeta$$
, rotates the *b*-frame to the *i*-frame
 $e_{\zeta} = \begin{pmatrix} b \\ c \\ d \end{pmatrix} \rightarrow \text{quaternion vector:} \quad q = \begin{pmatrix} \cos(\zeta/2) \\ b\sin(\zeta/2) \\ c\sin(\zeta/2) \\ d\sin(\zeta/2) \\ d\sin(\zeta/2) \end{pmatrix} = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{pmatrix}$

 $C_b^i = \begin{pmatrix} q_1^2 + q_2^2 - q_3^2 - q_4^2 & 2(q_2q_3 + q_1q_4) & 2(q_2q_4 - q_1q_3) \\ 2(q_2q_3 - q_1q_4) & q_1^2 - q_2^2 + q_3^2 - q_4^2 & 2(q_3q_4 + q_1q_2) \\ 2(q_2q_4 + q_1q_3) & 2(q_3q_4 - q_1q_2) & q_1^2 - q_2^2 - q_3^2 + q_4^2 \end{pmatrix}$

• Quaternions satisfy the differential equation:

$$\frac{d}{dt}\boldsymbol{q} = \frac{1}{2}\mathbf{A}\boldsymbol{q}$$

- where
$$\mathbf{A} = \begin{pmatrix} 0 & \omega_1 & \omega_2 & \omega_3 \\ -\omega_1 & 0 & \omega_3 & -\omega_2 \\ -\omega_2 & -\omega_3 & 0 & \omega_1 \\ -\omega_3 & \omega_2 & -\omega_1 & 0 \end{pmatrix}$$
 and $\boldsymbol{\omega}_{ib}^b = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \text{gyro data}$

- this is a linear D.E. with no singularities

Determination of C_b^i (2)

• Solution to D.E., if A is assumed constant,

$$\hat{\boldsymbol{q}}_{k} = \left(\boldsymbol{I} + \frac{1}{2}\boldsymbol{\Theta}_{k} + \frac{1}{8}\boldsymbol{\Theta}_{k}^{2} + \frac{1}{48}\boldsymbol{\Theta}_{k}^{3} + \cdots\right)\hat{\boldsymbol{q}}_{k-1}, \quad k = 1, 2, \cdots$$

- using gyro data, typically given as $\delta \theta_k = \int_{t_{i,j}}^{t_k} \omega_{ib}^b dt$

- where
$$\mathbf{\Theta}_k = \int_{t_{k-1}}^{t_k} \mathbf{A} dt$$

- note: A is assumed constant only in the solution to the D.E., not in using the gyro data (model error, not data error in Θ)
- $\hat{\boldsymbol{q}}_0$ is given by an initialization procedure
- solution is a second-order algorithm, neglecting terms of order δt^3
- higher-order algorithms are easily developed (Jekeli 2000)

Determination of δg^n (1)

- Kalman filter approach to minimizing estimation errors
 - estimate IMU systematic errors and gravity disturbance vector
 - formulate in *i*-frame and assume negligible error in \mathbf{C}_{i}^{n}
 - system state updates (observations) are differences in accelerations

$$\mathbf{y} = \left(\tilde{\mathbf{a}}^{i} + \tilde{\mathbf{g}}^{i}\right) - \ddot{\mathbf{x}}^{i}$$

$$= \left(\mathbf{a}^{i} + \delta \mathbf{a}^{i}\right) + \left(\mathbf{g}^{i} - \delta \overline{\mathbf{g}}^{i}\right) - \left(\ddot{\mathbf{x}}^{i} + \delta \ddot{\mathbf{x}}^{i}\right) \qquad \tilde{\mathbf{g}}^{i} = \mathbf{\gamma}^{i} + \mathbf{\Omega}_{ie}^{i} \mathbf{\Omega}_{ie}^{i} \mathbf{x}^{i}$$

$$= \underbrace{\mathbf{C}_{b}^{i} \delta \mathbf{a}^{b} - \left[\mathbf{\psi}^{i} \times\right] \mathbf{C}_{b}^{i} \mathbf{a}^{b} - \delta \ddot{\mathbf{x}}^{i} - \delta \overline{\mathbf{g}}^{i}}_{\delta \mathbf{a}^{i}}$$

- δa^i includes accelerometer errors and orientation errors
- over-script, ~, denotes indicated (measured) quantity

Determination of δg^n (2)

- System state vector, ε_D
 - orientation errors, $\boldsymbol{\psi}^{i}$; $\frac{d}{dt}\boldsymbol{\psi}^{i} = -\mathbf{C}_{b}^{i}\delta\boldsymbol{\omega}_{b}^{b}$
 - IMU biases, scale-factor errors, assumed as random constants
 - gravity disturbance components, modeled, e.g., as second-order Gauss-Markov processes in *n*-frame, with $\delta \overline{g}^i = \mathbf{C}_n^i \delta \overline{g}^n$

$$\frac{d^2}{dt^2}\delta\overline{\boldsymbol{g}}^n = -2 \begin{pmatrix} \beta_N & 0 & 0\\ 0 & \beta_E & 0\\ 0 & 0 & \beta_D \end{pmatrix} \frac{d}{dt}\delta\overline{\boldsymbol{g}}^n - \begin{pmatrix} \beta_N^2 & 0 & 0\\ 0 & \beta_E^2 & 0\\ 0 & 0 & \beta_D^2 \end{pmatrix} \delta\overline{\boldsymbol{g}}^n + \boldsymbol{w}_{\delta\overline{g}}$$

- $w_{\delta g}$ is a white noise vector process with appropriately selected variances
- β_N , β_E , β_D are parameters appropriately selected to model the correlation time of the processes = $2.146/\beta_{N,E,D}$
- System dynamics equation

 $\frac{d}{dt}\boldsymbol{\varepsilon}_D = \mathbf{F}_D\boldsymbol{\varepsilon}_D + \mathbf{G}_D\boldsymbol{w}_D \qquad \text{where } \boldsymbol{w}_D \text{ is a vector of white noise processes}$

Determination of δg^n (3)

• Alternatively, omit gravity disturbance model

- observations assume normal gravitation is correct

$$\mathbf{y} = \left(\tilde{\mathbf{a}}^{i} + \mathbf{g}^{i}\right) - \tilde{\ddot{\mathbf{x}}}^{i}$$

$$= \left(\mathbf{a}^{i} + \delta \mathbf{a}^{i}\right) + \mathbf{g}^{i} - \left(\ddot{\mathbf{x}}^{i} + \delta \ddot{\mathbf{x}}^{i}\right) \qquad \mathbf{g}^{i} = \mathbf{\gamma}^{i} + \mathbf{\Omega}_{ie}^{i} \mathbf{\Omega}_{ie}^{i} \mathbf{x}^{i}$$

$$= \underbrace{\mathbf{C}_{b}^{i} \delta \mathbf{a}^{b} - \left[\mathbf{\psi}^{i} \times\right] \mathbf{C}_{b}^{i} \mathbf{a}^{b} - \delta \ddot{\mathbf{x}}^{i}}_{\delta \mathbf{a}^{i}}$$

- optimal estimates of IMU systematic errors by Kalman filter yield \hat{y}
- gravity disturbance estimates: $\delta \overline{g}^i \approx \hat{y} y$
 - assumes residual IMU systematic errors are small and white noise can be filtered
- successfully applied technique (Kwon and Jekeli, 2001)

Indirect Method

• Recall inertial navigation equations in *n*-frame

$$\frac{d\boldsymbol{v}^{n}}{dt} = \mathbf{C}_{b}^{n}\boldsymbol{a}^{b} - \left(\boldsymbol{\Omega}_{ie}^{n} + \boldsymbol{\Omega}_{in}^{n}\right)\boldsymbol{v}^{n} + \overline{\boldsymbol{g}}^{n}$$
$$\frac{d\boldsymbol{x}^{e}}{dt} = \mathbf{C}_{n}^{e}\boldsymbol{v}^{n}$$

- integrate (i.e., get IMU navigation solution) and solve for \overline{g}^n using a model and GNSS tracking data
- analogous to traditional satellite tracking methods to determine global gravitational field, except gravity model is linear stochastic process, not spherical harmonic model
- navigation solution from OTF INS should not be integrated with GNSS!
 - IMU and GNSS must be treated as separate sensors, just like in scalar gravimetry
 - use raw accelerometer and gyro data to obtain free-inertial navigation solution

- one could pre-process IMU/GNSS data to solve for IMU systematic errors, neglecting gravity

Determination of δg^n (1)

- Solve for gravity disturbance treated as an error state (among many others) in the linear perturbation of navigation equations
 - typical error states collected in state vector, ε_I , include:
 - position errors, velocity errors, orientation errors
 - IMU systematic errors (biases, etc.)
 - gravity disturbance components

 $\frac{d}{dt}\boldsymbol{\varepsilon}_{I} = \mathbf{F}_{I}\boldsymbol{\varepsilon}_{I} + \mathbf{G}_{I}\boldsymbol{w}_{I} \text{ where } \boldsymbol{w}_{I} \text{ is a vector of white noise processes}$

- integration is done numerically (e.g., using linear finite differences)

$$\boldsymbol{\varepsilon}_{I}(t_{k}) = \boldsymbol{\Phi}_{I}(t_{k}, t_{k-1})\boldsymbol{\varepsilon}_{I}(t_{k-1}) + \boldsymbol{G}_{I}(t_{k})\boldsymbol{\overline{w}}_{I}(t_{k})$$
 where $\boldsymbol{\Phi} =$ state transition matrix

 observations are differences, IMU-indicated minus GNSS positions, treated as updates to the corresponding system states

$$y(t_k) = \mathbf{H}(t_k) \varepsilon_I(t_k) + v(t_k)$$
 where v is a vector of discrete white noise processes

Determination of δg^n (2)

- Gravity disturbance model
 - stochastic process; e.g., second-order Gauss-Markov process,

$$\frac{d^2}{dt^2}\delta\boldsymbol{g}^n = -2 \begin{pmatrix} \beta_N & 0 & 0\\ 0 & \beta_E & 0\\ 0 & 0 & \beta_D \end{pmatrix} \frac{d}{dt}\delta\boldsymbol{g}^n - \begin{pmatrix} \beta_N^2 & 0 & 0\\ 0 & \beta_E^2 & 0\\ 0 & 0 & \beta_D^2 \end{pmatrix} \delta\boldsymbol{g}^n + \boldsymbol{w}_{\delta g}$$

- $\circ w_{\delta g}$ is a white noise vector process with appropriately selected variances
- β_N , β_E , β_D are parameters appropriately selected to model the correlation time of the processes = $2.146/\beta_{N,E,D}$
- Kalman filter/smoother estimate, is optimal in the sense of minimum mean square error
 - theoretically the gravity model is an approximation since the gravity field is not a linear, finite-dimensional, set of independent along-track signals as required/modeled in the system state formalism
 - successful estimation depends on stochastic separability of gravity disturbance from accelerometer errors and coupled gyro errors

Rudimentary Error analysis

• Assume that *n*- and *i*-frames coincide (approx. valid for < 1 hour)

• **Solution Solution Solution**

$$\boldsymbol{\Phi}_{\delta g_1} = \boldsymbol{\Phi}_{\delta \ddot{x}_1} + \boldsymbol{\Phi}_{\psi_3 a_2} + \boldsymbol{\Phi}_{\psi_2 a_3} + \boldsymbol{\Phi}_{\delta a_1}$$

$$\boldsymbol{\varPhi}_{\delta g_3} = \boldsymbol{\varPhi}_{\delta \ddot{x}_3} + \boldsymbol{\varPhi}_{\psi_2 a_1} + \boldsymbol{\varPhi}_{\psi_1 a_2} + \boldsymbol{\varPhi}_{\delta a_3}$$

PSD Models

– Aircraft speed = 250 km/hr; altitude = 1000 m

PSDs of Gravity Errors, δg_1 , δg_3 , Versus Along-Track PSDs of Signals, g_1 , g_3

- Signal-to-noise ratio > 1 over larger bandwidth for g_3
- Significant error source is orientation bias, especially for g_1, g_2
- Signal PSD's move to right and down with increased velocity

Pendulous, Force-Rebalance Accelerometer (e.g.)

• Torque needed to keep proof mass in equilibrium is a measure of acceleration

Pendulous, Force-Rebalance Accelerometer (e.g.)

• Honeywell (Allied Signal, Sundstrandt) QA3000

• Litton (Northrop Grumman) A-4 Miniature Accelerometer Triad

Performance	QA3000-030
Input Range [g]	±60
Bias [mg]	<4
One-year Composite repeatability [µg]	<40
Temperature Sensitivity [µg/ºC]	<15
Scale Factor [mA/g]	1.20 to 1.46
One-year Composite Repeatability [ppm]	<80
Temperature Sensitivity [ppm/ºC]	<120
Axis Misalignment [µrad]	<1000
One-year Composite Repeatability [µrad]	<70
Vibration Rectification [µg/g ² rms]	<10 (50-500 Hz)
	<35 (500-2000 Hz)
Intrinsic Noise [µg-rms]	<7 (0-10 Hz) <70 (10-500 Hz) <1500 (500-10,000 Hz)

INS Used for Airborne Gravimetry

Honeywell Laseref III

University of Calgary

Honeywell H-770

Litton LN100

iMAR RQH 1003

Bauman Moscow State Technical University