

Practical Aspects of Strapdown Inertial Gravimetry

David Becker, TU Darmstadt, Germany dbecker@psg.tu-darmstadt.de

TECHNISCHE UNIVERSITÄT DARMSTADT PSGD

- Why Strapdown?
- Kalman-Filter design
- A few practical ideas...
- System analysis
 - Observability
 - Error propagation simulations
- Thermal calibration
 - Motivation
 - A simple approach
 - Parametric approaches (BSC, BSSC)
 - Sample-based approach
- Test data sets
- Results

Why Strapdown?

- small
- "low" cost
- lightweight
- low power consumption
- autonomous operation
- little maintenance required
- vector gravimetry
- robust against turbulence
- allows gravimetry during altitude changes

Why not?

• poor long-term stability

- do a bias adjustment per line?
- do a drift adjustment per line?
- linear interpolation based on errors of closure
- sensor calibration

- Why Strapdown?
- Kalman-Filter design
- A few practical ideas...
- System analysis
 - Observability
 - Error propagation simulations
- Thermal calibration
 - Motivation
 - A simple approach
 - Parametric approaches (BSC, BSSC)
 - Sample-based approach
- Test data sets
- Results

Gravimetry ^{for}Geodesy Summer school

State transition model:					
$\mathbf{d}\mathbf{x}_{k+1} = (\mathbf{I} + \mathbf{F}_k dt)\mathbf{d}\mathbf{x}_k + \mathbf{w}_k$					
$\mathbf{F}_{9\mathbf{x}9} = \begin{bmatrix} \mathbf{F_{11}} & \mathbf{I} & 0 \\ \mathbf{F_{21}} & \mathbf{F_{22}} \\ \mathbf{F_{31}} & \mathbf{F_{32}} & -\begin{bmatrix} \mathbf{C}_b^n \mathbf{f}_{ib}^b \times \end{bmatrix} \\ -\mathbf{\Omega}_{in}^n \end{bmatrix}$					
$\mathbf{F}_{24x24} = \begin{bmatrix} \mathbf{P}_{9x9} & 0 & 0 & 0 \\ -\mathbf{C}_b^n & 0 & \mathbf{I} & 0_{9x3} & 0_{9x3} \\ 0 & -\mathbf{C}_b^n & 0 & 0 \\ 0_{6x9} & 0 & -\mathbf{C}_b^n & 0 \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} & 0 \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} & 0 \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} & 0 \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} & 0 \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} & 0 \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} & 0 \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} \\ 0_{3x9} & 0 & 0 & 0 & \mathbf{I} \\ 0_{3x9} & 0 & 0 & 0 \\ 0_{3x9} & 0 \\ 0_{3x9} & 0 & 0 \\ 0_{3x9} & 0 \\ 0_{3x9$					
Observation model: $\vec{z} = H \cdot \vec{x} + \vec{v}$ $H_{\text{coordinate}} = \begin{bmatrix} I & 0 & [\vec{l}^n \times] & 0 & 0 & 0 \end{bmatrix}$ $H_{\text{velocity}} = \begin{bmatrix} 0 & I & [-C_b^n \Omega_{ib}^b \vec{l}^b \times] & 0 & C_b^n \cdot [\vec{l}^b \times] & 0 \end{bmatrix}$?					

Kalman Smoother

Malaysia 2014 (DoY 237)

- Why Strapdown?
- Kalman-Filter design
- A few practical ideas...
- System analysis
 - Observability
 - Error propagation simulations
- Thermal calibration
 - Motivation
 - A simple approach
 - Parametric approaches (BSC, BSSC)
 - Sample-based approach
- Test data sets
- Results

TECHNISCHE

PSGD

NIVERSITÄT ARMSTADT

- Observability
 - Is the system state (fully) observable?
 - Or only a subspace?
 - Structure graph observability conditions:
 - 1. each state must have a path to an output node (= an observation)
 - 2. for any set of nodes A and its targets T(A): $|T(A)| \ge |A|$ (otherwise: *contraction*)

Airborne Gravimetry System analysis (2/5) summer school

Observability (2): algebraic definition •

$$oldsymbol{\Xi} = egin{pmatrix} oldsymbol{H}_k & & & \ oldsymbol{H}_{k+1} oldsymbol{\Phi}_k & & \ oldsymbol{H}_{k+2} oldsymbol{\Phi}_{k+1} oldsymbol{\Phi}_k & & \ oldsymbol{H}_{k+2} oldsymbol{\Phi}_{k+2} oldsymbol{$$

- coordinate and velocity observations •
- evaluated for different sets of active states •
- 4 basic scenarios for an aerogravity flight: ٠

scenario	w/ attitude changes	w/ horizontal accelerations
S1	×	×
S2	\checkmark	×
S3	×	\checkmark
S4	\checkmark	\checkmark

	active states					rank deficiency r for the			
	$\delta oldsymbol{\psi}^n$	δb_a^b	$\delta m{b}^b_\omega$	δdg^n	sim	plified /	′ full me	odel	
	N/E/D	x/y/z	x/y/z	N/E/D	S1	S2	S3	S4	
0	•••	000	000	000	0 / 0	0 / 0	0 / 0	0 / 0	
1	• • •	000	000	000	1 / 0	1 / 0	0 / 0	0 / 0	
2	• • •	$\bullet \bullet \circ$	000	000	3 / 1	1 / 0	1 / 0	0 / 0	
3	• • •	000	000	000	1 / 0	1 / 0	0 / 0	0 / 0	
4	• • •	• • •	000	000	3 / 1	1 / 0	1 / 0	0 / 0	
5	• • •	000	• • •	000	2/2	1 / 0	1 / 1	0 / 0	
6	• • •	$\bullet \bullet \circ$	• • •	000	4/4	1 / 0	2 / 2	0 / 0	
7	• • •	000	• • •	000	2 / 2	1 / 0	1 / 1	0 / 0	
8	• • •	• • •	• • •	000	4/4	1 / 0	2 / 2	0 / 0	
9	• • •	000	000	$\bullet \bullet \circ$	3 / 1	3 / 1	1 / 0	1 / 0	
10	• • •	$\bullet \bullet \circ$	000	$\bullet \bullet \circ$	5/3	3 / 1	3 / 2	1 / 0	
11	• • •	000	000	$\bullet \bullet \circ$	3 / 1	3 / 1	1 / 0	1 / 0	
12	• • •	• • •	000	$\bullet \bullet \circ$	5/3	3 / 1	3 / 2	1 / 0	
13	• • •	000	• • •	$\bullet \bullet \circ$	4/4	3 / 2	2 / 2	1 / 1	
14	• • •	$\bullet \bullet \circ$	• • •	$\bullet \bullet \circ$	6/6	3 / 2	4 / 4	1 / 1	
15	• • •	000	• • •	$\bullet \bullet \circ$	4/4	3 / 2	2 / 2	1 / 1	
16	• • •	• • •	• • •	$\bullet \bullet \circ$	6 / 6	3 / 2	4 / 4	1 / 1	
17	• • •	000	000	00•	1 / 0	1 / 0	0 / 0	0 / 0	
18	• • •	$\bullet \bullet \circ$	000	00•	3 / 1	1 / 0	1 / 0	0 / 0	
19	• • •	000	000	00•	2 / 1	1 / 0	1 / 1	0 / 0	
20	• • •	• • •	000	00•	4 / 2	1 / 0	2 / 1	0 / 0	
21	• • •	000	• • •	00•	2 / 2	1 / 0	1 / 1	0 / 0	
22	• • •	$\bullet \bullet \circ$	• • •	00•	4/4	1 / 0	2 / 2	0 / 0	
23	• • •	000	• • •	00•	3/3	1 / 0	2 / 2	0 / 0	
24	• • •	• • •	• • •	00•	5 / 5	1 / 0	3 / 3	0 / 0	
25	• • •	000	000	• • •	3 / 1	3 / 1	1 / 0	1 / 0	
26	• • •	$\bullet \bullet \circ$	000	•••	5/3	3 / 1	3 / 2	1 / 0	
27	•••	000	000	•••	4 / 2	3 / 1	2 / 1	1 / 0	
28	•••	• • •	000	•••	6/4	3 / 1	4 / 3	1 / 0	
29	•••	000	• • •	•••	4/4	3 / 2	2 / 2	1 / 1	
30	• • •	$\bullet \bullet \circ$	• • •	•••	6/6	3 / 2	4 / 4	1 / 1	
31	• • •	000	• • •	•••	5/5	3 / 2	3 / 3	1 / 1	
32	•••	• • •	• • •	•••	7/7	3 / 2	5 / 5	1 / 1	

Simulation-based error propagation analysis

- 12 flights
- 13,000 km (9,600 km on lines)
- 41 h airborne (31 h on lines)
- average speed: 87 m/s
- used as basis for ground-truth simulation
 - spline-"imitation" of attitude and velocity
 - spline-"imitation" of EGM gravity disturbance
 - exact determination of sensor measurements
 - → realistic flight characteristics

- Accelerometer bias *changes* on the lines are (almost) undetectable
 - more precisely: Gravity *changes* and accelerometer bias *changes* are almost inseparable
- A reduction of in-flight accelerometer bias *changes* is desirable
- **Calibrations** may help to reduce such changes •

- Why Strapdown?
- Kalman-Filter design
- A few practical ideas...
- System analysis
 - Observability
 - Error propagation simulations
- Thermal calibration
 - Motivation
 - A simple approach
 - Parametric approaches (BSC, BSSC)
 - Sample-based approach
- Test data sets
- Results

Gravimetry ^{for}Geodesy Summer school

- Calibration of <u>b</u>ias, <u>s</u>cale factor and <u>c</u>ross-coupling¹⁾
 - least squares estimate with 3x3 parameters
 - based only on **scalar** observations of gravity
- requires...
 - IMU at rest in different poses (e.g. face/edge/corner down → 26 poses)
 - ground-truth scalar gravity

¹⁾ Shin, Eun-Hwan, and Naser El-Sheimy. "A new calibration method for strapdown inertial navigation systems." *Zeitschrift für Vermessungswesen.*–2002.–Zfv 127.1 (2002): 41-50.

Repeat this calibration at different sensor temperatures...

- > 26 poses
- 4 oven temperatures: 10°C, 20°C, 30°C, 40°C
- 3 repetitions for each temperature (to check the repeatability)
- > 1 minute per pose
- sensor temperature has to be constant for each set
 add 3 hours waiting time after temperature change
- total: ~ 19 hours (incl. table motion times)

Gravimetry ^{for}Geodesy Summer school

Idea: Extend the error model by an **additional scale factor** (for negative sensor readings)

NOAA's National Geodetic Survey

TECHNISCHE

UNIVERSITÄT

DARMSTADT

NOAI

Airborne for Geodesy summer school

Gravimetry Thermal BSSC-calibration (2/2)

Discussion

- bias + scale factor or bias + 2 x scale factor are both unsatisfactory error models!
 - cross-coupling might change among different poses
 - the good repeatability suggests that we can do better...
- so? add even more parameters to the model?

- Idea: build a look-up table of sensor errors
 - 1. select a **sample space**
 - 2. define a **set of samples** to be included in the table
 - 3. for each sample: **measure the error** (measured quantity true quantity)
 - masks *all* influences in a single value (per sensor)
 - error is 3-D for a sensor triad
 - 4. if required, **smooth** the sample data
 - 5. use **interpolation** to get correction (=neg. error) for *any* coordinate in sample space

- 1. select a sample space
 - reasonable dimensions are
 - temperature (T) (strong dependencies for accelerometers, should *always* be included!)
 - sensor reading (S)
 - roll angle (R)
 - pitch angle (P)

T (1-D) → used for "simple approach"

TS (2-D) ...still no (explicit) attitude modeling...

TRP (3-D) vehicle accelerations unmodelled

TPS (3-D) ...if error is independent of roll angle

TRPS (4-D) difficult/impossible to calibrate

TRS (3-D) ... if error is independent of pitch angle

Gravimetry ^{for}Geodesy Summer school

- 2. define a set of samples
 - choose a set of relevant samples (reduce calibration time)
 - fixed-wing airborne gravimetry:
 - ambient temperatures: -15°C...40°C
 - (equiv. sensor temperature: -1°C...52°C)
 - roll: max. -45°...45° (on the lines: -5°...5°)
 - pitch: max: -15°...15° (on the lines: 0°...5°)

→ 15 temperatures, 114 poses

Gravimetry Sample-based calibration (4/5)

summer school

3. measure the errors

- overall calibration duration: 64 hours
- with a 2-DOF table, *heading* changes can not be avoided to set up roll/pitch angles
- deflections of the vertical may distort the calibration
- estimate deflections
 - additional horizontal poses
 - adjustment with deflections and biases as parameters

Gravimetry ^{for}Geodesy Summer school

4. / 5. smooth / interpolate

- interpolate to regular grid in TRP-space
- apply e.g. a 3-D Gaussian low-pass filter
 - sensor noise may depend on temperature!
 - horizontally aligned accelerometers are sensitive to small random bends (1" → 4 mGal)

Example: Z-accelerometer errors [mGal] (no smoothing):

- Why Strapdown?
- Kalman-Filter design
- A few practical ideas...
- System analysis
 - Observability
 - Error propagation simulations
- Thermal calibration
 - Motivation
 - A simple approach
 - Parametric approaches (BSC, BSSC)
 - Sample-based approach
- Test data sets
- Results

TECHNISCHE

PSGD

NIVERSITÄT ARMSTADT

Gravimetry Test data sets (1/4): Chile 2013

- 24 flights ٠
- 88 flightlines ٠
- 30,000 km / 80 h ٠
- ~200 kts ٠
- 3,300 16,000 ft ٠
- 20 km line spacing ٠

Airborne for Geodesy summer school

Gravimetry Test data sets (2/4): Malaysia 2014/2015

- 46 flights •
- 181 flightlines •
- 34,800 km, 110 h •
- 170 kts •
- 3,000-8,000 ft (mostly 6,000 ft) •
- 5 / 10 km line spacing

- 21 flights
- 130 flightlines
- 21,000 km, 78 h
- 150 kts
- 4,700 15,300 ft
- 20 km line spacing

Airborne Gravimetry ^{for}Geodesy

Gravimetry Test data sets (4/4): Antarctica Polar Gap

- 32 flights
- 121 flightlines
- 32,400 km, 78 h
- 130 kts
- 1.5 4.3 km

(*) 15" topographic reductions applied in the EKF (30' RTM)

Results: Thermal Calibrations (2/2)

Chile 2013

Errors of Closure

with/without STC of Z-accelerometer

flight number	day of year	sensor temperature <i>min. max.</i> [°C]		error of closure without with thermal corr. [mGal]		flight duration [h:mm]	drift without with thermal corr. [mGal/h]	
1	285	22.7	33.6	10.8	0.5	4:15	2.55	0.12
2^{*}	287	28.2	39.0			5:41	-	
3	288	26.9	41.1	14.5	0.3	5:01	2.88	0.06
4	289	22.7	33.7	6.3	-1.9	3:17	1.91	-0.56
5*	290	15.3	39.4	-	6.25	10:53	1.2	÷
6	291	14.8	38.5	18.3	1.3	9:46	1.88	0.14
7	292	16.4	28.4	10.3	2.0	5:13	1.97	0.39
8	294	20.0	38.9	19.8	1.6	4:31	4.38	0.35
9	295	17.8	34.8	20.6	3.1	6:09	3.35	0.50
10	296	19.2	36.8	26.2	1.2	5:54	4.44	0.20
11	297	18.0	41.2	35.8	1.6	4:45	7.55	0.33
12	298	20.7	40.7	23.5	-1.9	9:16	2.53	-0.20
13	299	16.6	42.4	22.6	-3.2	9:42	2.33	-0.33
14	301	19.6	35.0	24.8	2.1	4:33	5.44	0.47
15**	301	33.5	36.1	-0.3	1.5	2:41	-0.10	0.58
16	302	19.4	38.0	15.3	-1.0	10:18	1.49	-0.09
17	303	20.1	38.2	28.3	-1.4	9:04	3.11	-0.16
18	304	15.6	37.3	31.4	-1.6	5:22	5.83	-0.30
19	305	16.3	40.2	30.9	-0.2	9:24	3.29	-0.02
Mean		20.2	37.5	20.0	0.24	6:37	3.22	0.09
Min.		14.8	28.4	-0.3	-3.17	2:41	-0.10	-0.56
Max.		33.5	42.4	35.8	3.10	10:53	7.55	0.58
σ				9.3	1.73	and the second s	1.79	0.32
RMS				22.0	1.74	5	3.69	0.33

Chile 2013 (DoY 288) LCR, IMU

- For an off-the-shelf navigation-grade strapdown IMU, ...
 - the **1 mGal level** appears to be possible (without adjustment)
 - calibrations are required to reach this level, unless the IMU is thermally stabilized
 - Standard parametric error models (bias/scale factor) can be insufficient!
 - Some IMU errors are relevant for airborne gravimetry...
 - in-flight drifts,
 - sensor triad misalignments / sensor cross-couplings,
 - timestamping errors,
 - leverarm instability (?), ...
 - ... while others are (usually) not
 - constant accelerometer biases,
 - constant lever arm errors (up to 10 cm),
 - discretization errors (coning/sculling).

A good prospect for strapdown gravimetry!

→ Strapdown gravimetry on miniature drones? (new RQH housing: 7.5 kg)

→ Getting 1 mGal from a combination of tactical-grade strapdown IMU (2-3 kg) and GGM?

→ Thermal stabilisation for fixed-wing aerogravity. Higher power/space/price.

→ Enabling a reliable 1 mGal-accuracy

Acknowledgements

The Chile aerogravity campaign was carried out in cooperation with the Instituto Geográfico Militar, Chile, and the US National Geospatial-Intelligence Agency (NGA).

The Malaysia aerogravity campaigns were financed by the Department of Survey and Mapping Malaysia (JUPEM).

The Mozambique/Malawi aerogravity campaign was financed by NGA.

Questions?