

National Geodetic Survey

ADVANTAGES OF FEEDBACK AND GPS GUIDANCE IN AN ADVANCED TECHNOLOGY AIRBORNE GRAVITY METER

dynamicgravitysystems.com

Nigel Brady

DYNAMIC GRAVITY SYSTEMS BACKGROUND

- Dynamic gravity Systems (DgS) was founded in April 2013 by Daniel Aliod (Electrical Engineer) and Nigel Brady (Geophysicist) with a combined experience of over 50 years in the gravity business.
- Build new airborne, marine and land gravity systems as well as service, repair and upgrade zero length, metal spring based gravity meters (LaCoste & Romberg, Micro-g, ZLS and DgS).
- We have delivered or are currently building 5 new and 3 upgraded dynamic gravity systems

DESS OFNAMIC GRAVIT

WHY AIRBORNE GRAVITY?

Advantages

- Cover very wide area cost effectively
- Consistent coverage (line spacing and altitude)
- Access to rough or restricted terrain and coastlines
- Data and hardware typically has rapid access to processing and maintenance personnel after every flight

Disadvantages

- High cost of equipment and personnel vs land survey
- Logistics and reliability in remote locations
- Weather, aircraft and pilot delays
- Hardware is exposed to a very high acceleration environment
- Lower resolution

WHY AIRBORNE GRAVITY?

- Sensitive enough for oil, gas, mineral and water exploration
- Detection and mapping of faults and other structural geology
- Continental shelf mapping
- Ice shelf mapping in Antarctica and Greenland
- Geoid mapping
- Volcanic hazard monitoring

DESS OFNAMIC GRAVIT

THE ADVANCED TECHNOLOGY AIRBORNE GRAVITY SYSTEM

- Reliability and Sensitivity of the metal spring gravity sensor.
- Full-feedback, magnetically damped system with worldwide range provides faster response and much lower sensor errors.
- Higher accuracy and repeatability is maintained during turbulent flight conditions (No cross coupling).
- No spring tension motor, gearbox or measuring screw required (no mechanical moving parts aside from the clamp).
- Completely redesigned electronics and data acquisition system integrated with the sensor and temperature controlled.
- Data acquisition rate of 10 Hz for airborne system.
- GPS timing synchronization for data collection and GPS aided platform control for airborne system.
- Easy system setup and operation.
- Price

A LITTLE HISTORY... THE LACOSTE & ROMBERG AIR DAMPED SENSOR O'WAMIC GRANT

Example Of Typical Beam Displacement During An Airborne Survey

Example of Relative Gravity vs Beam Position for an S Meter

dynamicgravitysystems.com

Platform Tilts versus Survey Time for an Airborne Survey Flight

Gravity versus Platform Tilt in Long and Cross Axes

dynamicgravitysystems.com

Gravity vs Long Level at Different Beam Positions

dynamicgravitysystems.com

IN AIR III

SYSTER

Configure Window Set Help

DGS FULL FEEDBACK SYSTEM

DGS FULL FEEDBACK SYSTEM

DgS Full Feedback System Simple Schematic

DGS FULL FEEDBACK SYSTEM

dynamicgravitysystems.com

DGS FULL FEEDBACK SENSOR

ADVANTAGES OF THE FULL FEEDBACK SYSTEM

- Beam is locked at the reading line (o volts) by the feedback electronics
- Effectively reduces cross coupling errors and corrections to zero for virtually all motions
- Eliminates errors caused by non linearity of the beam position when it is non zero
- Eliminates errors caused by imperfections in the counter screw
- Reduces significant errors caused by the combination of platform off level and beam non zero
- Data retains high sensitivity of the zero length spring and is much more repeatable and consistent
- Maintains data quality much better in turbulence and during course deviations

THE DYNAMIC GRAVITY SYSTEM

DYNAMIC GRAVITY SYSTEMS AT1M - 3

6

6

HE DYNAMIC GRAVITY SYST ΈΜ

dynamicgravitysystems.com

THE DYNAMIC GRAVITY SYSTEM

Dgs

dynamicgravitysystems.com

ROSETTA - ANTARCTIC AIRBORNE GRAVITY PROJECT

Objective:

Obtain baseline measurements of the Ross Ice Shelf

- Gravity and magnetic data to determine water depth and ocean floor topography beneath the shelf
- Radar, LIDAR and imaging systems to map ice thickness and fine structure (ICEPOD)

Project:

- 36 flights using an LC-130 aircraft operating from McMurdo Station
- Ross Ice Shelf = 487,000 km² x 350 m thick on average

Science Team:

- Lamont Doherty Earth Observatory (LDEO), Columbia University, NY
- Scripps Oceanographic Institute, San Diego
- USGS, Denver
- Dynamic Gravity Systems, Denver
- GNS, Wellington

ROSETTA - ANTARCTIC AIRBORNE GRAVITY PROJECT

ROSETTA - ANTARCTIC AIRBORNE GRAVITY PROJECT

DESS OFWAMIC GRANT

ROSETTA - ANTARCTIC AIRBORNE GRAVITY PROJECT

ROSETTA AIRBORNE GRAVITY

dynamicgravitysystems.com

S. AIR FORCE

ROSETTA AIRBORNE GRAVITY

AIRBORNE GRAVITY

DESS OFNAMIC GRAVIT

ROSETTA PROJECT GRAVITY PROFILE

dynamicgravitysystems.com

Longitude

ROSETTA PROJECT GRAVITY PROFILE OYNAMIC GRAVIT

Rosetta 2015 DGS Airborne Gravity Profile and NASA Icebridge Data

ROSETTA PROJECT EXAMPLE GRAVITY MAP

Filtered Free air corrected disturbance

ROSETTA PROJECT – SOUTH POLE

dynamicgravitysystems.com

No.

ROSS ICE SHELF – ANTARCTICA

SUMMARY - DGS ADVANCED TECHNOLOGY AIRBORNE GRAVITY SYSTEM

- The system shows dramatic improvement over older zero length spring based systems
- Lab and field results show almost no cross coupling effects and extremely stable, near zero drift gravity in static testing
- The system requires no operator control during flight
- The platform guidance improvements allow for drape survey flights and minimize the effects of aircraft course corrections
- Very low setup, calibration and maintenance requirements compared to other systems
- Faster delivery and much lower cost than other systems
- Older zero length spring sensors can be upgraded to Advanced Technology systems

DYNAMIC GRAVITY SYSTEMS

Contact Information

- Web www.dynamicgravitysystems.com
- Email info@dynamicgravitysystems.com
- Phone +1 303 815-6376 (Nigel Brady)
- Address: 7120 W 117th Ave

Denver Colorado 80020 U.S.A.