

#### Some Examples of AIRGrav Vector Gravity Data and Comparison with Ground Truth



Marianne McLeish, Steve Ferguson Sander Geophysics



- About Sander Geophysics
- AIRGrav System
- Comparison to ground truth (Kauring Test Area)
- AIRGrav results of the "Geodetic Slope Validation Survey 2014" test line

### **Sander Geophysics**

- High resolution airborne geophysics petroleum, mineral, environmental
- Founded in 1956 currently 150 employees, 17 aircraft
- Head office at the Ottawa International Airport, Canada
- World-wide operations fixed-wing and helicopter





## **AIRGrav System**

#### **Airborne Inertially Reference Gravimetry**

- AIRGrav designed and built specifically for airborne gravity surveying by SGL
- 10 years of R&D following by 16 years of survey flying, 12 gravimeters
- Three axis (x y z) gyro stabilized platform, three (x y z) accelerometers
- Dual frequency GPS receivers
- Gravity = inertial accelerations GPS accelerations
- Raw gravity data sampled at 128 Hz





## **AIRGrav Operations**

- < 100 kg can be used in any of SGL's aircraft and others</p>
- Concurrent magnetic, radiometric, methane sensing, LIDAR, etc.
- Height above ground level: 60 m to 1000 m or higher
- Operate under normal flight conditions
- Short lead-ins to lines
- Drape surveys unaffected by horizontal accelerations and turbulence



## Comparison to Ground Truth

- Kauring Test Area
  - Established by Geoscience Australia, Geological Survey of Western Australia, Rio Tinto Ltd. And CGG-Airborne
  - Located approximately 100 km East of Perth, Australia
  - Gently rolling topography, 200 400 m ASL
  - Larger "AG" area is ~21 km E-W and 20 km N-S
  - Ground data spaced at ~500 m
  - Smaller "AGG" area is ~5.6 km by 5 km, centred in the AG area
  - AGG area has dense ground data to allow airborne gradiometer testing



# **Comparison to Ground Truth**

- Survey Description
  - Approx 21 km x 20.5 km
  - 200 m line spacing
  - 2 km control line spacing
  - Flown in 2012 for Victoria Department of Primary Industries
  - Nominal clearance of 80 m
- AIRGrav Data
  - Line data low pass filtered to 40 sec full wavelength
  - Gridded with 50 m cell size
  - Traverse and control line data adjusted at intersections



# Comparison to Ground Truth

- Reference Data
  - Grid all available ground data at 50 m interval
  - Upward continue to surface defined by flight data, using frequency domain method
  - Vertically integrate Gz at flight height and create horizontal derivatives
  - Correct for long wavelength errors
    using EGM2008



#### **Reference East Gravity Component**

#### Measured East Gravity Component



#### East Gravity Component Comparison with Reference

| Filter       | Lowpass (G <sub>E</sub> – Ref) | Lowpass (G <sub>E</sub> )– Ref |
|--------------|--------------------------------|--------------------------------|
| ( <b>m</b> ) | (mGal)                         | (mGal)                         |
| 750          | 0.61                           | 0.62                           |
| 1125         | 0.59                           | 0.60                           |
| 1500         | 0.57                           | 0.59                           |



\*filters are stated as half-wavelengths

#### **Reference North Gravity Component**

#### Measured North Gravity Component



#### North Gravity Component Comparison with Reference

| Filter<br>(m) | Lowpass (G <sub>N</sub> – Ref)<br>(mGal) | Lowpass (G <sub>N</sub> )– Ref<br>(mGal) |
|---------------|------------------------------------------|------------------------------------------|
| 750           | 0.85                                     | 0.85                                     |
| 1125          | 0.83                                     | 0.84                                     |
| 1500          | 0.81                                     | 0.83                                     |



\*filters are stated as half-wavelengths

#### **Reference Vertical Gravity Component**

#### Measured Vertical Gravity Component



#### Vertical Gravity Component Comparison with Reference

| Filter       | Lowpass (G <sub>U</sub> – Ref) | Lowpass (G <sub>U</sub> )– Ref |
|--------------|--------------------------------|--------------------------------|
| ( <b>m</b> ) | (mGal)                         | (mGal)                         |
| 750          | 0.63                           | 0.63                           |
| 1125         | 0.56                           | 0.58                           |
| 1500         | 0.49                           | 0.54                           |



\*filters are stated as half-wavelengths

## Kauring Conclusions

- Kauring area is probably the most accurate gravity test site available
- Contains challenging small anomalies suitable for testing gravity gradiometers
- AIRGrav matches reference data to ~0.6 mGal at 750 m wavelength, ~0.5 mGal at 1125 m wavelength
- Bouguer corrected gravity data produces slightly better results: matches reference data to ~0.4 mGal at 1000 m wavelength
- Horizontal components match to ~0.6 mGal (east) and ~0.8 mGal (north) at 1125 m wavelength
- Integral transform of east and north components produces independent estimate of the vertical gravity component to ~0.8 mGal at 1125 m wavelength



## Geoid Slope Validation Survey 2014

- GSVS14 represents the second survey conducted by the NGS to test the accuracy of the gravimetric geoid model, which will be the basis for the next American Vertical Datum
- It was conducted in Iowa, predominantly along Highway 30, from Denison to Cedar Rapids
- ~ 200 miles (325 km) long, 204 survey benchmarks
- Medium-high, relatively flat, and gravimetrically complex area ranging from 740 feet to 1,440 feet above sea level



#### SGL GSVS14 Survey

#### Flight Information

- June 28, 2015
- Repeat line flown West then East
- 600 m ellipsoidal (~ 400 m AGL at East end, ~200 m AGL at West end)
- 320 km long
- ~ 55 m/s (200 km/h)
- Also flown next day at 2185 m ellipsoidal, 58 m/s, West and East (results not presented here)



#### **Processing Steps**

- Kalman Filter combination of GPS positions and gravimeter accelerations
- EGM 2008 used during processing to loosely constrain horizontal component estimates, which are corrupted by uncertainty in gyro drift
- 100 s (5.5 km) full wavelength filter applied



#### **East Component**

- Blue = Westward
- Red = Eastward
- Std dev from mean = 0.582 mGal
- W std dev from EGM2008
  = 1.27 mGal
- E std dev from EGM2008
  = 1.21 mGal





#### **North Component**

- Blue = Westward
- Red = Eastward
- Std dev from mean = 0.567 mGal
- W std dev from EGM2008
  = 1.35 mGal
- E std dev from EGM2008
  = 1.62 mGal





#### **Normal Gravity Disturbance**

- Blue = Westward
- Red = Eastward
- Std dev from mean = 0.418 mGal
- W std dev from EGM2008
  = 1.62 mGal
- E std dev from EGM2008
  = 1.67 mGal



#### EGM 2008 error trend

- Comparison of EGM 2008 with both the Eastward and Westward passes indicates a sloping trend
- Likely indicates error in EGM 2008
- ~ 2 mGal error over 4° longitude



#### **Difference of Equipotential Surfaces and EGM 2008**

- Horizontal components corrected for remaining long wavelength error (600 km fullwavelength) using EGM 2008
- Integrate horizontal components along flight path (Westward and Eastward separately) to compute relative equipotential surfaces
- West std dev of diff = 11.3 mm
- East std dev of diff = 11.5 mm





#### **Difference of Computed Relative Equipotential Surfaces**

 Standard deviation of the difference between the Eastward and Westward computed relative equipotential surfaces = 2.03 mm





- AIRGrav produces measurements of three gravity components repeatable at the sub-mGal level
- Data is capable of extending the EGM2008 model to wavelengths as short as 5 km
- Capable of producing equipotential surfaces accurate to mm level
- Horizontal components can be used to verify geoid models have provided data to Geodetic Survey Division of NRCan

#### Thank you!

The processing team at SGL

Stefan Elieff for his work on the Kauring Test Area data