GRAV-D General Airborne Gravity Data User Manual

GRAV-D Airborne Data Release User Manual v2.0

Applies to Data Releases starting in 02/2013

Edited by Dr. Theresa M. Damiani and Monica A. Youngman

Introduction to Data User Manuals

This manual describes details of the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project's data naming schemes and distribution, nominal airborne field operations, data post-processing software specifics, data formats, and how to calculate other commonlyused gravity values from the released data.

For details specific to a block of data, see the "GRAV-D Airborne Gravity Data Release User Manual" version that is most current for that block of data.

GRAV-D uses some specialized terminology and acronyms (e.g. "block" for a geographic area with enough flown data and tie lines to provide accurate error statistics, and "survey" for an occupation of the field team at a particular airport with a particular aircraft and instrument suite). For a full list of terminology, refer to the Glossary in the Appendices of this manual.

Contents

Introduction to Data User Manuals 1
Figure List 4
Table List 4

1. General GRAV-D Project Description 4
1.1 Data Distribution (How to find what you're looking for) 6
1.1.1 Survey \& Block Name Scheme 6
1.1.2 Block Line Naming Conventions 7
1.1.3 Where to find data 8
1.1.4 What data are available 8
1.1.5 Point of Contact for more info 8
1.2 Field Operation Details 9
1.2.1 Block Layout and Survey Flight Execution 9
1.2.2 Aircraft 12
1.2.3 Airborne Instrumentation and Data Products 12
1.2.4 Ground Instrumentation and Data Products 13
1.2.4 Quality Control Data Processing 14
2. Post-Processing and Software Specifics 14
2.1 GPS Processing 14
2.1.1 GPS Processing Overview 14
2.1.2 GPS Processing Specifics 14
2.2 Gravity Processing 15
2.2.1 Gravity Processing Overview 15
2.2.2 Gravity Processing Theory 16
2.2.3 Gravity Processing Software 17
3. Calculating other Commonly-Used Gravity Values 17
3.1 Ellipsoidal Height and Orthometric Height. 18
3.2 Free-air Gravity Disturbance (FAD) 19
3.3 Free-air Gravity Anomaly (FAA) 20
3.4 Free-air Gravity Residual (FAR) 21
3.5 Mathworks Matlab Code 22
3.5.1 Free-Air Disturbance for WGS-84 Ellipsoid 22
3.5.2 $2^{\text {nd }}$ order Free-Air Correction for WGS-84 Ellipsoid 23
3.5.3 Normal Gravity Correction for WGS-84 Ellipsoid 23
Appendix A: Data Formats 24
Appendix B: Glossary 25
Appendix C: References 26

Figure List

Figure 1: Time Zones of Continental United States overlaid with the block name for each North or South section of the time zone (delimited by the $40^{\circ} \mathrm{N}$ latitude, thick white line).... 6
Figure 2: Time Zones of Alaska overlaid with the block name for each North or South section of the time zone (delimited by the $63^{\circ} \mathrm{N}$ latitude, thick white line)7
Figure 3: Layout used for the TS01 data block (Atlantic time zone, south \#01). 11
Figure 4: Sketch (not to scale) of the difference between orthometric height (height above thegeoid), ellipsoidal height (height above the ellipsoid), and geoid height (height ofgeoid above ellipsoid).18
Table List
Table 1: Nominal Block and Survey Characteristics 9
Table 2: Aircraft Used by GRAV-D as of 03/2013. 12
Table 3: NGS Owned Airborne Instrumentation and Data Types 13
Table 4: NGS Owned Ground Instrumentation and Data Types 13
Table 5: Internationally-accepted parameter values for two common ellipsoids, GRS-80 (Moritz,2000; Hofmann-Wellenhof, 2006) and WGS-84 (NIMA, 2000; Hofmann-Wellenhof, 2006) 20Table 6: Publicly released data, By Block (a compilation of the By Flight files):NGS_GRAVD_Block_BB\#\#_Gravity_Data_v\#.dat andNGS_GRAVD_Block_BB\#\#_Supplement\#_v\#.dat.24

1. General GRAV-D Project Description

NOAA's National Geodetic Survey (NGS) has initiated an ambitious program to re-define the vertical datum of the United States and its holding by the year 2022. The project is titled "Gravity for the Redefinition of the American Vertical Datum," or GRAV-D.

The new gravity-based vertical datum will be accurate at the 1 to $2-\mathrm{cm}$ level (where possible) throughout most of the United States. The current vertical datum, NAVD 88, is known to be biased by approximately 50 cm , with a 1 m tilt across the conterminous United States. Orthometric heights—unlike ellipsoidal heights—may be used to accurately predict water-flow patterns, land slide/slump risk, and other factors affected by Earth's gravity field. Currently, the Global Positioning System (GPS) provides only ellipsoidal heights, but a new GRAV-D-derived datum will facilitate rapid access to orthometric heights. The GRAV-D Project will provide $\$ 4.8$ billion in socio-economic benefits to the United States including costs avoided by improved floodplain mapping and management.

GRAV-D consists of three major goals:

- First: A high-resolution "snapshot" of gravity in the United States.

The entire United States and its holdings will be flown in the following order of priority: Puerto Rico and the Virgin Islands, Alaska, the Gulf Coast, the Great Lakes, the East and West Coasts of the continental United States, Hawaii, the American Pacific island holdings, and the interior of the continental United States.

- Second: A low-resolution "movie" of gravity changes.

Primarily a terrestrial campaign, the second phase will involve periodic visits to Absolute Gravity sites to monitor changes in gravity over time. This phase will allow timedependent geoid modeling-and thus time-dependent orthometric height monitoringthrough Global Navigation Satellite System (GNSS) technology. A steering committee comprised of members of the scientific community will advise NGS on this project phase.

- Third: Regional partnership surveys.

Throughout the data collection and monitoring campaigns, the GRAV-D Project seeks to collaborate with local partners (governmental, commercial, and academic) willing to support airborne or terrestrial surveys or to monitor local variations in the gravity field. Please see our contact information, below, if your organization would like to participate.

For more information and project materials, visit NGS on the Web or contact us by email:
GRAV-D Homepage: http://www.ngs.noaa.gov/GRAV-D
Project Manager, Dr. Vicki Childers: Vicki.Childers@noaa.gov

1.1 Data Distribution (How to find what you're looking for)

1.1.1 Survey \& Block Name Scheme

GRAV-D uses some specialized terminology to differentiate between geographic data areas and field team occupations for data collection. The term "block" refers to a pre-defined geographic area with enough planned data lines and cross lines to provide accurate error statistics. The term "survey" refers to an occupation of the field team at a particular airport with a particular aircraft and instrument suite. This naming scheme allows a block of data to be completed by multiple surveys spanning several years, or to be completed as only part of the work done during a large survey. Since their purposes are different, block and survey names are generated uniquely.

Block names arise from the geographic area of the U.S. in which the data were primarily collected, according to time zone. The time zones are then split into North and South sections by the $40^{\circ} \mathrm{N}$ latitude line, allowing for further distinction of the blocks (Figure 1). In Alaska, the $63^{\circ} \mathrm{N}$ latitude line serves the same purpose (Figure 2). From there, blocks are numbered chronologically by when they were planned (not by when data collection is started or finished within them). For instance, the first block planned in the Central time zone, north of the $40^{\circ} \mathrm{N}$ latitude line would be CNO1. The next planned in the same area would be CNO2. CNO2 could be completed either before or after CN01. Similarly, the first block planned in the Pacific time zone, south of the $40^{\circ} \mathrm{N}$ latitude line would be PS01; And the first block planned in the Alaska time zone, south of the $63^{\circ} \mathrm{N}$ latitude line would be AS01.

Figure 1: Time Zones of Continental United States overlaid with the block name for each North or South section of the time zone (delimited by the $40^{\circ} \mathrm{N}$ latitude, thick white line).

Figure 2: Time Zones of Alaska overlaid with the block name for each North or South section of the time zone (delimited by the $63^{\circ} \mathrm{N}$ latitude, thick white line).

Surveys are named for the 2 letter state abbreviation where the airport of operations is located and the year in which the survey was started. For example, the first time that the field team takes a particular plane and equipment suite to Buffalo, New York in 2011, the survey will be named NY11-01. If the plane or equipment changes while at Buffalo, a new survey is started and it would be called NY11-02. If the plane and equipment are then transferred to Anchorage, Alaska for a survey and then transferred again to Miami, Florida later in the 2011 season, the surveys for each would be called AK11-01 and FL11-01, respectively.

1.1.2 Block Line Naming Conventions

Within each block, data lines and cross lines are named according to the following rules:

100s- Primary data lines (closely spaced)

200s- First reflight of a data line
300s- Second reflight of a data line
400s- Third reflight of a data line
500s- Primary cross lines (widely spaced)
600s- First reflight of a cross line
700s- Second reflight of a cross line
800s- Third reflight of a cross line
900s- Lines of opportunity (specially-planned e.g. cross-grid or different altitude; or transits)

Examples of line naming are:

- A primary data line: 115
- First reflight of that line: 215
- Second reflight of that line: 315
- Third reflight of that line: 415
- A primary cross line: 507
- First reflight of that line: 607
- Second reflight of that line: 707
- Third reflight of that line: 807
- Third transit collected in a survey with no pre-planned special lines: 903

During a survey, full line names are used. These names designate which data block and line is being flown. For example, if the NY11-01 survey is meant to accomplish two blocks (EN01 and ENO2) during their occupation, the log books and data files will show the line 103 in each block as ENO1103 and EN02103.

1.1.3 Where to find data

GRAV-D airborne data products and metadata are available on the data distribution website: http://www.ngs.noaa.gov/GRAV-D/ data products.shtml. This GoogleMaps data portal will always display the most up-to-date information about GRAV-D blocks that are planned, being executed, being processed, and publicly released. When data are available for public release, clicking on that block will produce a pop-up link to that block's data site.

1.1.4 What data are available

On each block site, a new GoogleMap displays the extent of the block and block lines that are available for download. The block lines are clickable for information about when they were collected and during which survey. All lines must be downloaded together in a .zip file. In the download section of that webpage, the .zip file will contain the most up-to-date versions of data, metadata, and block documentation. Usually, the .zip file will contain: a ReadMe file, a gravity data file of the official products, a supplementary data file (containing cross line data, transit line data, or other experimental data), a .txt file containing xml metadata written to Federal Geographic Data Committee (FGDC) standards, a .kml file of the block extent, and a .kml file of the line locations for that block. The gravity data file format is found in Table 13: Publicly released data, By Block (a compilation of the By Flight files):
NGS_GRAVD_Block_BB\#\#_Gravity_Data_v\#.dat. Also on the block webpage, there will be a link to the FTP site where older data release versions are stored.

Finally, the webpage for each block will provide specific citation information that should be used when GRAV-D data, methods, or information are incorporated into research, presentations, or papers. The same citation information can also be found in the block documentation.

1.1.5 Point of Contact for more info

On every GRAV-D block data webpage, a point of contact (POC) will be provided for technical questions about the data, methods, and project. Usually, this POC will be one of the GRAV-D staff scientists who was involved in the data collection and/or data processing. Please direct all
question about the data to this person, but direct any website concerns or download problems to the NGS webmaster: ngs.webmaster@noaa.gov.

1.2 Field Operation Details

1.2.1 Block Layout and Survey Flight Execution

GRAV-D airborne gravimetry data blocks are generally planned to meet certain standard requirements. However, every GRAV-D block and survey is unique and may depart from these requirements in some way. Refer to the block-specific documentation that accompanies each data set for details on the surveys that were conducted inside that data block. Blocks are laid out by taking into account the:

- trends of the gravity field in the collection area;
- locations of nearby airports;
- practical altitude for aircraft and adequate terrain clearance;
- practical line lengths for the duration of the aircraft and gravity signal capture;
- adequate data sampling along line and between lines;
- minimum cross line spacing needed for error statistics; and
- adequate overlap with previous surveys or extension into neighboring nations.

Table 1: Nominal Block and Survey Characteristics

Characteristic	Nominal Value
Altitude	$20,000 \mathrm{ft}(\sim 6.3 \mathrm{~km})$
Ground speed	$250 \mathrm{knots}(250$ nautical miles $/ \mathrm{hr})$
Along-track gravimeter sampling	1 sample per second $=128.6 \mathrm{~m}$ (at nominal ground speed)
Data Line Spacing	10 km
Data Line Length	$\sim 400 \mathrm{~km}$
Cross Line Spacing	$40-80 \mathrm{~km}$
Cross Line Length	$\sim 500 \mathrm{~km}$
Data Minimum Resolution	$\sim 20 \mathrm{~km}$ (dependent on altitude and line spacing)

The nominal block characteristics listed in Table 1 represent the ideal layout for a block to be flown with a medium duration, double-engine aircraft like a King Air 200. A real example of this kind of survey layout is shown in Figure 1. The nominal altitude represents the best tradeoff between recovery of the mid-wavelengths of the gravity field, suppression of noise for downward continuation in geoid models, and logistical concerns such as density of commercial air traffic and length of time to complete long lines at this altitude. In a nominal survey such as described in Table 1, a 500 km line is flown in just over 60 minutes.

A main limitation of the resolution of high-altitude gravimetry is the flight altitude. Childers, et al. (1999, Equation 8), approximately defines the "geologic wavelength" (λ_{g}) of the minimum recoverable feature as:

$$
\begin{equation*}
\lambda_{g}=2 w_{1 / 2}=1.54 z_{c} \tag{1}
\end{equation*}
$$

where $w_{1 / 2}$ is the half-width of the anomaly at the half-amplitude point and z_{c} is the height of the measurement point above the center of the spherical body causing the anomaly. For the general case of airborne surveying above flat terrain, the height is defined as the flight altitude. The Fourier wavelength of the smallest recoverable feature is defined in relation to the "geologic wavelength" and flight altitude:

$$
\begin{equation*}
\lambda_{f}=2 \lambda_{g}=4 w_{1 / 2}=3.08 z_{c} \tag{2}
\end{equation*}
$$

For GRAV-D surveys, our nominal altitude of $20,000 \mathrm{ft}(6317 \mathrm{~m}$), yields a minimum recoverable geologic wavelength of 9.7 km and Fourier wavelength of 19.4 km . Accordingly, no matter the line spacing flown at this altitude, no feature smaller than almost 20 km wide will be resolved for an area with flat terrain. If there is significant terrain, then the Fourier wavelength will be smaller and result in better small feature recovery.

Based on Nyquist theory, the minimum resolution (or the expected minimum size of a wellsampled feature) for the block is 20 km , as a result of the 10 km data line spacing. Along-track resolution is a function of aircraft speed and altitude and the amount of low-pass filtering required, and is usually better than 20 km . It is possible that some data would require heavy filtering, which would become the limiting factor on feature resolution. However, this is unlikely because quality control processing in the field is in place to ensure that noisy data are flagged and the line reflown. Each block manual will contain the survey plans and data resolution for that area.

Figure 3: Layout used for the TS01 data block (Atlantic time zone, south \#01). The block was completed during the PV09 survey. Data line spacing 10 km ; cross line spacing 40 km .

GRAV-D surveys may purposefully refly good data lines a second time. This practice is critical for calibrating the final filter used in post-processing the data set, given that the noise properties of each survey are different. Since the location of the lines is the same, the gravity field is also the same for both lines. The best filter is found by applying various filters to the reflown data until a correlation of at least 99% and an RMS nominally below 1 mGal is attained between the two recordings. A close match between the reflown lines provides a guide with which to filter the rest of the data and cross lines.

1.2.2 Aircraft

GRAV-D uses a variety of aircraft, depending on their availability, location of the survey, and capabilities (Table 2). When GRAV-D is using a shorter-duration aircraft ($\sim 4-5$ hours per flight), two flights per day are accomplished as weather permits. When using longer duration aircraft (6 hrs or greater), only one flight per day is logistically possible. Flights are normally done during the daytime, while airfields are regularly open for business. Weather forecasts are consulted the day of the flights to find the smoothest, least turbulent, air in the survey area. Aviation weather forecasts are available online (http://aviationweather.gov/).

Table 2: Aircraft Used by GRAV-D as of 03/2013

Aircraft Operator	Aircraft Type	Engine Type	Number of Engines	Approximate Maximum Duration (hrs)
NOAA	Cessna Citation II CE-550	Jet	Double	4.5
Naval Research Lab	Hawker Beechcraft King Air RC-12 (Non-military: 200)	Turboprop	Double	4
NOAA	Turbo Commander 1000 695A	Turboprop	Double	4
Bureau of Land Management	Pilatus PC-12	Turboprop	Single	5
NOAA	Lockheed P-3 Orion	Turboprop	Four	9.5
Fugro Earth Data/ Airborne Services	Hawker Beechcraft King Air E90A	Turboprop	Double	5.5
Fugro Earth Data/ Airborne Servives	Cessna 441 Conquest II	Turboprop	Double	6.5

1.2.3 Airborne Instrumentation and Data Products

GRAV-D uses a Micro-g LaCoste TAGS (Turn-key Airborne Gravimetry System), which is a beam-type, zero-length spring gravity sensor on a gyro-stabilized platform (Micro-g LaCoste, 2010). The TAGS is a modern gravimeter that measures to 0.01 mGal precision in the laboratory, has horizontal accelerometer output recorded to the data files, is controlled by a computerized user-friendly system, and provides digital data files. The TAGS unit is started each morning and allowed to settle to take a still reading screenshot. The TAGS is run continuously throughout the day until the last flight is completed and an end-of-day still reading is taken. If two flights are accomplished, a third still reading is taken between the flights to more closely monitor for gravimeter drift or tares.

The TAGS (depending on the unit serial number) comes with either a NovAtel DL4+ or NovAtel DLV3 GPS unit integrated into its timing unit module. The timing unit provides real-time location information to the TAGS, as well as accurate timing via the GPS and rubidium clock inside the module. Nearly all GRAV-D flights have a second GPS on the aircraft that is integrated with an inertial measurement unit (IMU) into a positioning system. Post-mission, this positioning system provides attitude information about the aircraft (pitch, roll, yaw, and true heading) in addition to the GPS positions. In case GPS+IMU data is not available for a flight, a spare TAGS timing unit
is installed in the aircraft to provide GPS redundancy. A list of all airborne instrumentation available to GRAV-D is in Table 3.

Table 3: NGS Owned Airborne Instrumentation and Data Types

Type of Instrument	Manufacturer and Model	Data Files
Relative Gravity	Micro-g LaCoste (MGL) TAGS S-137 or S-161	.dat, .env, .bmp
GPS-only	NovAtel DL-4 Plus or NovAtel DLV3	.pdc
GPS+IMU Positioning	Applanix POS AV 510 (stopped using in September 2011)	DEFAULT.\#\#\#
GPS+IMU Positioning	NovAtel SPAN (began using in January 2011)	SPAN.log

1.2.4 Ground Instrumentation and Data Products

One or two GPS base stations are set up at temporary points around the airport of operations, usually near the parking space of the aircraft. These bases are put in as backups, in case GPS processing in differential mode is needed. The GPS base stations are put in locations with the best view of sky and fewest possibilities for multipath. Usually, GRAV-D uses GPS units that have a separate antenna and receiver, though- on rare occasion- integrated receiver/antenna units have been used. The antennas are always set up on 2 m fixed-height poles, attached to a receiver in a Pelican case and running off of battery power for the whole day. A few types of GPS base stations have been used by GRAV-D, including: Ashtech Z Surveyor, NovAtel DL4+, and Trimble R8 (Table 4).

A gravity tie is necessary for any relative gravity instrument, such as the TAGS, in order to convert the meter's counter units (an arbitrary measurement unit) to $\mathrm{m} / \mathrm{s}^{2}$ or mGal . A field-tested absolute gravity meter (an MGL A-10) takes measurements on the exact spot on the airport tarmac where the TAGS will be parked in the plane, but at a lower height. A gradient is measured at the spot with the hand-carried relative meters and is used to calculate gravity at the height of the TAGS' sensor center.

Table 4: NGS Owned Ground Instrumentation and Data Types

Type of Instrument	Manufacturer and Model	Data Files
GPS-only	Trimble R8	.DAT, .T01
GPS-only	Ashtech Z-surveyor	B,E, \&S files
GPS-only	NovAtel DL-4 Plus	.pdc
Absolute Gravity Lab Instrument	Micro-g LaCoste FG-5 102	N/A
Absolute Gravity Field Instrument	Micro-g LaCoste A-10	N/A
Relative Gravity	Micro-g LaCoste G and D meters (NGS owns 5)	N/A

1.2.4 Quality Control Data Processing

During the survey, it is critical that data be processed not long after flying to ensure that all instruments are working and data quality is acceptable. Field personnel perform data checks at least once per day to ensure all GPS receivers, the gravimeter, and IMUs are working up to standard. The field personnel also process GPS and gravity data, mapping the preliminary gravity product, to check quality. Additional quality control plots are built into the GPS and gravity processing software packages for advanced data analysis in the field.

2. Post-Processing and Software Specifics

2.1 GPS Processing

2.1.1 GPS Processing Overview

Kinematic GPS processing is done for every GRAV-D flight, either differential or PPP. If a GPS+IMU (inertial measurement unit) instrument was working on the aircraft, a combined solution is obtained. If IMU data are not available, a GPS-only position file is produced.

2.1.2 GPS Processing Specifics

Both differential and PPP processing for GPS are used. If no NGS-run base station has acceptable data quality for a flight, PPP is used.

The choice of rover GPS is straightforward, since coupled GPS + IMU solutions are the preferred product. Since September 2011, GRAV-D retired their use of the Applanix POS AV system and moved entirely to operations with the SPAN system.

No matter the system used, GPS solutions are created for a variety of satellite elevation masks, usually between 8 and 12 degrees. The qualities of these solutions are compared by checking six plots within the processing software: combined separation (i.e. the difference between the forward and reverse solutions); position dilution of precision (PDOP); number of satellites shared between rover and base; estimated position accuracy; carrier phase residual RMS and standard deviation; and a software-estimated quality factor. Based on these plots, a final GPSonly position solution is chosen.

NGS has created a "quality grade" (QG) measure for the GPS-only solutions coming from POSGNSS or GrafNav. The combined separation (CS), estimated position accuracy (EPA), and fix/float ambiguity (FFA) information are exported from the GPS-processing software and fed into a Matlab code to assign a quantitative QG to the flight's position solution. The QG is calculated as:

$$
\begin{equation*}
Q G=[(0.6 * \text { CSgrade })+(0.4 * \text { EPAgrade })] *\left(\frac{\text { FFAgrade }}{100}\right) \tag{3}
\end{equation*}
$$

where QG is the flight's quality grade, CSgrade is the combined separation grade, EPAgrade is the estimated position accuracy grade, and FFAgrade is the fix/float ambiguity grade. The criteria-specific grades are calculated as follows:

$$
\begin{align*}
& \text { CSgrade }=(0.1 *[\% \text { of CS < } 0.4 \text { meters }])+(0.15 *[\% \text { of CS }<0.3 \text { meters }]) \\
&+(0.35 *[\% \text { of CS }<0.2 \text { meters }])+(0.4 *[\% \text { of CS }<0.1 \text { meters }]) \tag{4}\\
& \text { EPAgrade }=(0.1 *[\% \text { of CS }<0.4 \text { meters }])+(0.15 *[\% \text { of CS }<0.3 \text { meters }]) \\
&+(0.35 *[\% \text { of CS }<0.2 \text { meters }])+(0.4 *[\% \text { of CS }<0.1 \text { meters }]) \tag{5}\\
& \text { FFAgrade }= {[\% \text { Fixed ambiguity in both forward and reverse }] } \\
&+(0.5 *[\% \text { Fixed ambiguity one way }])+(0 *[\% \text { Float ambiguity }]) \tag{6}
\end{align*}
$$

All weights in the QG calculation (including criteria-specific grades) were optimized to produce a realistic range of final grades and to more-heavily weight the best solutions. The user-noted, qualitative range of GPS position qualities for the 2008-2010 GRAV-D surveys are reflected in the quantitative range of QGs produced by the program. The QG is calculated as a guide so that users understand that quality of GPS product used in the gravity product calculations.

Finally, for every GRAV-D aircraft installation, lever arms are measured by the field team. A lever arm is the distance along the body of the aircraft between instruments on board and the aircraft center of gravity. Measuring the distances relative to the center of gravity for the aircraft is important because the center of gravity is the "origin" of the aircraft body frame. For instance, the GPS antenna for the aircraft is always mounted on the outside of the aircraft fuselage, but can be positioned anywhere between the fore and aft of the aircraft. So, GPS solutions yield the location of the GPS antenna, but not that of the gravimeter sensor unless the distance between the two is accounted for in vertical, along the fuselage, and along the wings (i.e. in the body frame of the aircraft). This is an important and non-trivial correction during flight because the aircraft is often oriented so that it is not pointed in the direction of flight. Also, if the GPS antenna is on one side of the aircraft center of gravity and the gravimeter is on the other, their senses of motion will be opposite. E.g. A GPS fore of the center of gravity will move up when the plane pitches up, but a gravimeter aft of the center of gravity will move down for the same maneuver. Using the lever arm while taking IMU aircraft orientation data into account will yield the best estimate of the gravimeter's position while in the air. However, when IMU orientation data are not available, only a vertical rigid distance correction is applied during the gravity processing, which is likely insufficient to account for orientation errors in the positioning.

2.2 Gravity Processing

2.2.1 Gravity Processing Overview

Newton , the NGS-developed airborne gravity processing software, is used to compute full field gravity at flight altitude from raw gravimeter data and GPS solutions. In the processing, first the raw gravimeter reading is re-computed as described in the TAGS manual. Next, the timing of the gravity and GPS data are synchronized to within 0.01 seconds by adjusting the gravity's timing. Corrections for aircraft motion (Eötvös and vertical acceleration corrections), meter offlevel, and drift are calculated and applied with an absolute gravity tie. The results are then filtered with a simple time-domain Gaussian filter applied three times. Tracks are trimmed to remove any remaining effects of the turns. This data are then checked for internal consistency by examining crossing points and the correlation of adjacent lines. Finally the processed gravity profile is compared to both satellite gravity and geoid models.

2.2.2 Gravity Processing Theory

The TAGS gravimeter is a highly-damped, beam-type gravity sensor mounted on a gyrostabilized platform. The raw gravity measurement can be computed:

$$
\begin{equation*}
g_{\text {raw }}=\text { CalScale } *(S T+k * \dot{B}+C C) \tag{5}
\end{equation*}
$$

where CalScale is the calibration scale converting counter units to $\mathrm{mGal}, S T$ is spring tension, k is the scaling factor for converting beam velocity to counter units, \dot{B} is the beam velocity and CC is the cross coupling correction (Micro-g LaCoste, 2010). For more detail on calculating the raw gravity see the TAGS Hardware Manual version 2.0, 13 April, 2010 pages 1-2 to 1-6.

The raw gravity is a measure of specific force in the direction of the local vertical averaged over four minutes by the stabilized platform. The raw gravimeter output must be differenced with the aircraft's acceleration as measured by GPS to yield an uncorrected gravity measurement. The raw gravity is a relative measurement and must be tied to an absolute measurement of gravity. Instrument drift and any instantaneous off-level must also be corrected. So, g can be calculated as follows:

$$
\begin{equation*}
g=g_{\text {raw }}-a_{\text {vertical }}+\text { offlevel }-d r i f t+\text { tie } \tag{6}
\end{equation*}
$$

The vertical acceleration due to the motion of the aircraft in a rotating reference system, $a_{\text {vertical }}$, can be computed from the GPS-derived positions throughout the flight by taking the vertical component of the following equation of motion,

$$
\begin{equation*}
\vec{a}=\frac{d^{2} \vec{r}}{d t^{2}}+2 \vec{\omega} \times \frac{d \vec{r}}{d t}+\frac{d \vec{\omega}}{d t} \times \vec{r}+\vec{\omega} \times \vec{\omega} \times \vec{r} \tag{7}
\end{equation*}
$$

Where t is time, r is the distance from the axis of rotation of the Earth and ω is the rotation rate of Earth. Following Harlan (1968), the vertical component of terms two and four together comprise the Eötvös correction. Term three is the acceleration of the coordinate system which is zero if we assume the rotation rate of the Earth is constant. The first term is the acceleration of the aircraft within the coordinate system.

Off-level errors, where the meter sensitive axis is slightly misaligned with the instantaneous vertical vector, are a problem for two reasons. The first is that only a portion of the gravitational acceleration, which by definition is along the local vertical vector, is measured. The second and more challenging is that a component of the aircraft's horizontal acceleration is mistakenly included in the raw gravity. To correct this we apply a variation of the direct method from Peters \& Brozena (1995).

$$
\begin{equation*}
o e=\sqrt{g^{2}+\left(x a c c_{\text {meter }}^{2}+l a c c_{m e t e r}^{2}\right)-\left(x a c c_{g p s}^{2}+l a c c_{g p s}^{2}\right)}-g-\widetilde{o e} \tag{8}
\end{equation*}
$$

The offlevel error is oe and $\widetilde{o_{e}}$ is the median of the offlevel error. The nominal value of gravity is g and the cross (xacc) and along track (lacc) accelerations from the meter accelerometers and derived from GPS complete this equation.

Meter drift is found by linearly interpolating between the pre-flight and post-flight still readings.
The absolute gravity tie is measured for each survey as described in the Field Operations section 1.2.4 Ground Instrumentation and Data Products of this manual.

2.2.3 Gravity Processing Software

Newton is a Matlab-based post processing packaging for airborne gravimetry. It was developed specifically to handle a high-altitude, high-speed survey configuration while delivering the precision and accuracy required by NGS's GRAV-D project. The software has been under development since 2008 and continues to be refined, though several operational versions have been used as of 2013. There are three basics steps to processing with Newton. First the unfiltered gravity is computed following the basic theory presented above. Next the best length for a time domain Gaussian filter is found by comparing data from repeat tracks. That filter is then applied three times and data are edited to remove periods that are unrecoverable due to large aircraft motion or maneuvers. Finally, data quality is assessed by comparing cross-over points, correlation of adjacent tracks, and comparison with satellite data and geoid models. It is important to note that although GRAV-D data presents the crossover statistics and comparisons with EGM08 in each data manual, no leveling (also called crossover adjustments) or bias corrections of any kind are applied to the airborne data that is released. The released data are simply the full-field values as calculated above, with no other post-processing adjustment. If the user would like to apply any adjustments or corrections of their own to the data, that is at their discretion.

3. Calculating other Commonly-Used Gravity Values

There are three scalar gravity quantities that can be calculated from the full-field gravity values: free-air gravity disturbance, free-air gravity anomaly, and free-air gravity residual. These quantities are more useful in the interpretation of gravity signals than the full-field gravity values. In the scientific literature and other texts, the definitions of these terms can be confusing and vary from source to source. The definitions also tend to vary somewhat between the geodesy and geophysics communities; two good discussions of this are Li and Götze (2001) and Hackney and Featherstone (2003). For a traditional geodesy perspective on working with both gravity potentials and gravity, see Hofmann-Wellenhof and Moritz (2006).

All three quantities ($g_{\text {free-air }}$) are calculated by the same general formula, but with differences in the reference surfaces used to calculate the corrections:

$$
\begin{equation*}
g_{\text {free-air }}=g_{\text {observedFFG }}-g_{F A C}-g_{\text {normal }} \tag{9}
\end{equation*}
$$

where the observed full-field gravity value at the measurement altitude/elevation ($g_{\text {observedFFG }}$) is reduced by 1. a free-air correction ($g_{F A C}$, sometimes denoted as $\frac{\partial \gamma}{\partial h} h$), which is the change in normal gravity (i.e. gravity gradient) along the ellipsoidal normal times the measurement height above a datum (see height discussion below) and 2. a value for normal gravity ($g_{\text {normal }}$).

3.1 Ellipsoidal Height and Orthometric Height

Since the choice of reference surface is so important to the calculation of free-air gravity products, a brief discussion of their differences is necessary (Figure 4). If the datum for the freeair correction is an ellipsoid, ellipsoidal heights (h , height along a line normal to the ellipsoid) are used in the calculation. If the datum is a geoid model instead (i.e. a model of the equipotential surface that best fits mean global sea level), orthometric heights (H , height along the curved plumb line above the geoid) are used in the free-air correction calculation.

Figure 4: Sketch (not to scale) of the difference between orthometric height (height above the geoid), ellipsoidal height (height above the ellipsoid), and geoid height (height of geoid above ellipsoid).

Because of the curvature of the plumb line,

$$
\begin{equation*}
H \approx h+N \tag{10}
\end{equation*}
$$

where H is orthometric height, h is ellipsoidal height, and N is geoid height. Although this relation is accurately stated as approximately equal, the error attributed to H when assuming that H runs along ellipsoidal normal instead of along the plumb line is usually considered negligible: "...the directions of [normal gravity along the plumb line] and [normal gravity along the ellipsoidal normal] coincide virtually." (Hofmann-Wellenhof and Moritz, 2006; just below equation 2-232). So that, for the purposes of defining gravity quantities:

$$
\begin{equation*}
H=h+N \tag{11}
\end{equation*}
$$

3.2 Free-air Gravity Disturbance (FAD)

The FAD is the observed full-field gravity at altitude corrected for 1. the free-air effect using ellipsoidal height and 2. normal gravity on the ellipsoid.

$$
\begin{equation*}
g_{F A D}=g_{\text {observedFFG }}-g_{F A C _ \text {ellipsoid }}-g_{\text {normal_ellipsoid }} \tag{12}
\end{equation*}
$$

where $g_{F A D}$ is the free-air gravity disturbance, $g_{\text {observedFFG }}$ is the observed full-field gravity at altitude, $g_{\text {FAC_ellipsoid }}$ is the $2^{\text {nd }}$ order free-air correction using ellipsoidal height, and $g_{\text {normal_ellipsoid }}$ is normal gravity computed on the ellipsoid.

Further, the $2^{\text {nd }}$ order free-air correction ($g_{F A C_{-}}$ellipsoid) equation (modified from Hackney and Featherstone, 2003) is:

$$
\begin{equation*}
g_{F A C _ \text {ellipsoid }}=\frac{\partial \gamma}{\partial h} h=\frac{2 \gamma_{e}}{a}\left(1+\frac{(a-b)}{a}+\frac{\omega^{2} a^{2} b}{G M}-2 \frac{(a-b)}{a} \sin ^{2} \phi\right) h-\frac{3 \gamma_{e}}{a^{2}} h^{2} \tag{13}
\end{equation*}
$$

where γ_{e} is the equatorial normal gravity at the ellipsoid, a is the semi-major axis for the ellipsoid, b is the semi-minor axis for the ellipsoid, ω is the angular velocity of Earth for the ellipsoid, $G M$ is Earth's gravitational constant, ϕ is geocentric (i.e. geographic) latitude, and h is ellipsoidal height at the measurement point. One simplification is:

$$
\begin{equation*}
f=\frac{(a-b)}{a} \tag{14}
\end{equation*}
$$

where f is the flattening of the ellipsoid and a and b are as in Equation 13. Equation 13 can now be rewritten as:

$$
\begin{equation*}
g_{F A C_{-} \text {ellipsoid }}=\frac{\partial \gamma}{\partial h} h=\frac{2 \gamma_{e}}{a}\left(1+f+\frac{\omega^{2} a^{2} b}{G M}-2 f \sin ^{2} \phi\right) h-\frac{3 \gamma_{e}}{a^{2}} h^{2} \tag{15}
\end{equation*}
$$

where all variables have been defined above for Equation 13 and Equation 14.

A $1^{\text {st }}$ order free-air correction exists, which approximates the vertical gravity gradient around the world as an average:

$$
\begin{equation*}
g_{F A C_{_} \text {ellipsoid }}=\frac{\partial \gamma}{\partial h} h=0.3086 h \tag{16}
\end{equation*}
$$

where h is ellipsoidal height. However, for airborne gravity measurements where the measurement height is large, the error in using the $1^{\text {st }}$ order free-air correction is also large. The $2^{\text {nd }}$ order free-air correction (Equation 13 or Equation 15) should always be used for free-air gravity products derived from GRAV-D airborne gravity data.

Finally, the Somigliana-Pizetti normal gravity ($g_{\text {normal_ellipsoid }}$) formula for numerical calculations (modified from Moritz (2000) and Hackney and Featherstone (2003)) is:

$$
\begin{equation*}
g_{\text {normal_ellipsoid }}=\gamma_{e} \frac{1+\left[\frac{b \gamma_{p}}{a \gamma_{e}}-1\right] \sin ^{2} \phi}{\sqrt{1-e^{2} \sin ^{2} \phi}} \tag{17}
\end{equation*}
$$

where γ_{e} is equatorial normal gravity, γ_{p} is polar normal gravity, a is Earth's semi-major axis, b is Earth's semi-minor axis, e^{2} is the first eccentricity of the Earth squared, and ϕ is geocentric (i.e. geographic) latitude.

Table 5: Internationally-accepted parameter values for two common ellipsoids, GRS-80 (Moritz, 2000; Hofmann-Wellenhof, 2006) and WGS-84 (NIMA, 2000; Hofmann-Wellenhof, 2006)

Parameter	Description	GRS-80 value	WGS-84 value
γ_{e}	Equatorial normal gravity	$9.7803267715 \mathrm{~m} / \mathrm{s}^{2}$	$9.7803253359 \mathrm{~m} / \mathrm{s}^{2}$
γ_{p}	Polar normal gravity	$9.8321863685 \mathrm{~m} / \mathrm{s}^{2}$	$9.8321849378 \mathrm{~m} / \mathrm{s}^{2}$
e^{2}	First eccentricity squared	0.006694380022 90	0.00669437999014
a	Semi-major axis	6378137 m	6378137.0 m
b	Semi-minor axis	6356752.3141 m	6356752.3142 m
f	Flattening	0.003352810681 18	0.003352810664747
ω	Angular velocity of Earth	$7292115 \times 10^{11} \mathrm{rad} / \mathrm{s}$	$7292115.0 \times 10^{11} \mathrm{rad} / \mathrm{s}$
$G M$	Earth's gravitational constant	$3986005 \times 10^{8} \mathrm{~m}^{3} / \mathrm{s}^{2}$	$3986004.418 \times 10^{8} \mathrm{~m}^{3} / \mathrm{s}^{2}$

FAD values should always be reported with a statement of which ellipsoid was used for the calculation of the disturbance. An example would be to report "Free-air disturbance values were calculated with respect to the WGS-84 ellipsoid (NIMA, 2000) for both the free-air correction and the normal gravity correction." Note that FAD values are relative to an ellipsoid that is (by definition) not representative of global sea level.

3.3 Free-air Gravity Anomaly (FAA)

The FAA is the observed full-field gravity at altitude corrected for 1 . the free-air effect using orthometric height and 2. normal gravity on the ellipsoid.

$$
\begin{equation*}
g_{F A A}=g_{\text {observedFFG }}-g_{F A C_{-} \text {geoid }}-g_{\text {normal_ellipsoid }} \tag{18}
\end{equation*}
$$

where $g_{F A A}$ is the free-air gravity anomaly, $g_{\text {observedFFG }}$ is the observed full-field gravity at altitude, $g_{\text {FAC_geoid }}$ is the $2^{\text {nd }}$ order free-air correction using orthometric height, and $g_{\text {normal_ellipsoid }}$ is normal gravity computed on the ellipsoid. The $g_{\text {normal_ellipsoid }}$ equation is the same for the FAA as for the FAD (Equation 17).

Given that we can consider the orthometric height to be along the ellipsoidal normal (see Equation 11), the free-air correction applied for a FAA is:

$$
\begin{equation*}
g_{F A C _ \text {geoid }}=\frac{\partial \gamma}{\partial h} H=\frac{2 \gamma_{e}}{a}\left(1+\frac{(a-b)}{a}+\frac{\omega^{2} a^{2} b}{G M}-2 \frac{(a-b)}{a} \sin ^{2} \phi\right) H-\frac{3 \gamma_{e}}{a^{2}} H^{2} \tag{19}
\end{equation*}
$$

Thus, the relationship between the FAD and FAA can be summarized as this (HofmannWellenhof and Moritz, 2006):

$$
\begin{equation*}
g_{F A D}=g_{F A A}-\frac{\partial \gamma}{\partial h} N=g_{F A A}-\frac{\partial \gamma}{\partial h}(H-h) \tag{20}
\end{equation*}
$$

where $\frac{\partial \gamma}{\partial h}$ is the vertical gravity gradient along ellipsoidal normal, N is the geoid height, H is the orthometric height, and h is the ellipsoidal height.

Note that the accuracy of the FAA is dependent on the accuracy of the orthometric height value used in the free-air correction. Choose a geoid that is well-defined in your study area to avoid propagating orthometric height errors into the FAA. As of 2013, the best global geoid model freely-available is EGM2008 (NGA, 2008). The best gravimetric geoid model for the United States is USGG2012A (http://www.ngs.noaa.gov/GEOID/USGG2012/) and is roughly equivalent to EGM2008.

FAA values should always be reported with a statement of which geoid and ellipsoid were used for the calculation of the anomaly. An example would be to report "Free-air anomaly values were calculated with respect to the EGM2008 geoid (NGA, 2008) and WGS-84 ellipsoid (NIMA, 2000) for the free-air correction and with respect to the WGS-84 (NIMA, 2000) for the normal gravity correction."

3.4 Free-air Gravity Residual (FAR)

Full-field gravity corrected for 1. the free-air effect using orthometric height and 2. normal gravity on the geoid. This definition is in keeping with the standard definition of a residual, where the residual is the quantity remaining after subtracting the best-available modeled values from the observed values.

$$
\begin{equation*}
g_{F A R}=g_{\text {observedFFG }}-g_{F A C _ \text {geoid }}-g_{F F G_{\text {_geoid }}} \tag{21}
\end{equation*}
$$

where $g_{F A R}$ is the free-air gravity residual, $g_{F A C-g e o i d}$ is the $2^{\text {nd }}$ order free-air correction using orthometric height (see Equation 9), and $g_{F F G_{_} \text {geoid }}$ is the full-field gravity from the same geoid model providing the orthometric height. In this case, not one equation can define how $g_{\text {FFG_geoid }}$ is calculated, since global geoid models are often represented in spherical harmonics. Because of this, an equivalent equation that would be more useful is:

$$
\begin{equation*}
g_{F A R}=g_{F A A}-g_{F A A _ \text {geoid }} \tag{22}
\end{equation*}
$$

where $g_{F A A}$ is from Equation 18 and $g_{\text {FAA_geoid }}$ is calculated directly from the global model using their distributed software. For instance, the Harmonic Synthesis software available on the EGM2008 website can calculate free-air gravity anomalies anywhere in the world based on that geoid (NGA, 2008).

FAR values should always be reported with a statement of which geoid was used for the calculation of the residual. An example would be to report "Free-air residual values were calculated with respect to the EGM2008 geoid (NGA, 2008) and WGS-84 ellipsoid (NIMA, 2000) for the free-air correction and with respect to the EGM2008 geoid (NGA, 2008) for the normal gravity correction."

3.5 Mathworks Matlab Code

The three functions below can be copied into separate Matlab .m files and the "calc_fad.m" file will call the other two in order to calculate a free-air disturbance.

3.5.1 Free-Air Disturbance for WGS-84 Ellipsoid

Content of file named "calc_fad.m".

```
function fad=calc_fad(lat,ht,ffg)
%fad is the free-air disturbance
%Data Inputs
%1.Geodetic latitude: lat
%2.ELLIPSOIDAL height: ht
%3.Full-Field Gravity at Altitude: ffg
fac=calc_fac(ht,lat); %free air correction
gnorm=calc_gnorm(lat); %normal gravity
fad=ffg+fac-gnorm;
```

3.5.2 $2^{\text {nd }}$ order Free-Air Correction for WGS-84 Ellipsoid Content of file named "calc_fac.m".

```
function fac=calc_fac(lat,ht)
%Data Inputs
%1.Geodetic latitude: lat
%2.ELLIPSOIDAL height: ht
%Define Ellipsoidal Parameters
a = 6378137; %semi-major axis, WGS-84
g_e = 978032.53359; %equatorial normal gravity, WGS-84
f = 0.00335281066474; %flattening, WGS84
m = 0.00344978650684; %defined as (w^2*a^2*b)/GM, WGS-84
%use GEOCENTRIC latitude, which is defined as: phi
phi = atan(tand(lat).*((1-f).^2));
sphi2 = sin(phi).^2;
c1 = ((2.*g_e)./a);
term1 = (1+f+m-(2.*f.*sphi2)).*ht;
c2 = (3.*g_e./(a.^2));
term2 =ht.^2;
fac = (c1.*term1)-(c2.*term2);
```

3.5.3 Normal Gravity Correction for WGS-84 Ellipsoid

Content of file named "calc_gnorm.m".

```
Function gnorm=calc_gnorm(lat)
%Data Inputs
%1.Geodetic latitude: lat
latr=deg2rad(lat);
sin_lat = sin(latr);
sin_2lat=sin(2.*latr);
gnorm = 978031.85 * (1 + 0.005278895 * sin_lat.^2 + 0.000023462 *
sin_lat.^4);
```


Appendix A: Data Formats

Table 6: Publicly released data, By Block (a compilation of the By Flight files):
NGS_GRAVD_Block_BB\#\#_Gravity_Data_v\#.dat and
NGS_GRAVD_Block_BB\#\#_Supplement\#_v\#.dat

Column \#	Data	Format	Units
1	Block + Line Number	$\% 7 \mathrm{~s}$	None
1	Time	$\% 5 \mathrm{~d}$	Seconds since start of day
2	Latitude	$\% 3.8 f$	Signed dec. degrees
3	Longitude	$\% 3.8 f$	Signed dec. degrees
4	Ellipsoidal Height (at altitude)	$\% 5.3 \mathrm{f}$	Meters
5	Filtered Full-Field Gravity (at altitude)	$\% 7.2 \mathrm{f}$	mGals

Appendix B: Glossary

Block

A geographically-defined section of the country that is planned with airborne gravity data lines and cross lines to provide a self-consistent data set, with meaningful crossover-error statistics. The name for a block is generated from the time zone in which it is located, north or south portion, and number of blocks that have been planned in that time zone.

Cross Line

A widely-spaced ($40-100 \mathrm{~km}$) line of gravity data that was collected for the purpose of calculating the error of the data lines. The cross line gravity data are considered supplemental and may not be included in any NGS geoid products.

Data Line

A closely-spaced (10 km or less) line of gravity data that was collected for inclusion into NGS gravimetric geoid models, toward a new vertical datum.

Equipotential Surface

A surface along which the gravitational potential is constant.

Flight

The time period that includes pre-flight preparation, take-off, data collection, landing, and postflight completion.

Geoid

The equipotential surface that most closely approximates mean sea level.

GRAV-D

Gravity for the Redefinition of the American Vertical Datum program, started by the National Geodetic Survey in 2007 for the purpose of collecting airborne gravity data toward adopting a 12 cm accuracy (where possible) gravimetric geoid in 2022.

NGS

The National Geodetic Survey, a Program Office within NOAA's National Ocean Service, has a mission "To define, maintain, and provide access to the National Spatial Reference System (NSRS) to meet our nation's economic, social, and environmental needs." The GRAV-D project us a part of the NGS Ten Year Plan to modernize the National Spatial Reference System by 2022.

Newton

The airborne gravity processing software developed in-house by NGS, to meet the needs of high-speed, high-altitude gravity data processing for geodesy purposes.

Survey

An occupation of the field team with a particular aircraft and instrument suite at a specific airport. The name for a survey is generated by the state in which the airport of operations is located, the calendar year operations commenced, and the number of times they've operated out of that state in the current calendar year.

TAGS

Turn-key Airborne Gravimetry System, manufactured by Micro-g LaCoste, Inc. to measure the acceleration due to gravity from aircraft, using a spring-type gravity sensor in a gyro-stabilized platform.

Appendix C: References

Childers, V. A., Robin E. Bell, and John M. Brozena. "Airborne Gravimetry: An Investigation of Filtering." Geophysics 64, no. 1 (1999): 61-69.

Hackney, R.I., Featherstone, W.E., 2003. "Geodetic versus geophysical perspectives of the 'gravity anomaly'." Geophysical Journal International, 154, 35-43.

Harlan, R.B., 1968. "Eötvös Corrections for Airborne Gravimetry." J Geophys Res, 73, 46754679.

Hofmann-Wellenhof, B. and H. Moritz, 2006. Physical Geodesy. Springer-Verlag Wien: Austria. 403 pp .

Li, Xiong and Hans-Jürgen Götze (2001). "Tutorial: Ellipsoid, geoid, gravity, geodesy, and geophysics." Geophys, 66(6), 1660-1668.

Micro-g LaCoste, 2010. "TAGS Turnkey Airborne Gravity System AIR III Hardware \& Operations Manual."

Moritz, Helmut (2000). "Geodetic Reference System 1980." Journal of Geodesy, 74(1), 128-162. DOI: 10.1007/s001900050278. Available online as of 06 September 2011: http://www.springerlink.com/content/Obgccviji5bedgdfu/

Peters, M.F., Brozena, J.M., 1995. "Methods to improve existing shipboard gravimeters for airborne gravimetry," in: K.-P. Schwartz, J.M. Brozena, G.W. Hein, (Eds), IAG Symposium on Airborne Gravity Field Determination, IUGG XXI General Assembly, Calgary, Boulder, CO, pp. 39-45.

National Geospatial-Intelligence Agency- NGA (2008). "Earth Gravitational Model 2008 (EGM2008)." Available Online as of 06 September 2011: http://earth-
info.nga.mil/GandG/wgs84/gravitymod/egm2008/index.html

National Imagery and Mapping Agency- NIMA (2000). "Department of Defense World Geodetic System 1984: Its Definition and Relationships with Local Geodetic Systems." Third Edition, Ammendment 1. NIMA Stock No. DMATR83502WGS84, NSN 7643-01-402-0347. Available online as of 06 September 2011:
http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350 2.html

