The Trouble with Constrained Adjustments

Charles R. Schwarz

ABSTRACT. A coustritned adjlisinent, in Wkich @ new swrwey is fir (o existng &ontrol points, produces
resuits that are al least s good #s, wnd asiatly better than, the corresponding free adjustnent, However, the
pro#f of this property deperls on the assumption that the iincertninty of the fixed comtrol is much salter than
the uncerfafuiies of tie reiw sutvey, When fhis assurmption (s not fuifilled, the usual ervor.propogtion euutiuns
must be extended o toke tnito account the effecis of the sericeriaintes of the fixed controf peints. The opposie
conchsion thea can be ronchied: N is possitle for edfusted observations (o have greater axvors then the odscrved
walves. so the anistraincd.adjustment procodure csn indecd degrade n perfer!ly good survey and produce resulls

that are wesse than the free adjustment.

Introduction

( jonslraincd adjustmenls are quite common in
tho processing of survey dala, Every time we
adjust a new sucvey into an existing coordi-

nate system by using existing control points, we are

performing a constrained adjustment.

The control network is intended to help suiveyors
piace Lheir surveys into some larger coordinate sys-
terr, detect blunders in their abservations. and con-
trol the build.up of the effect of observatienal errers
on the adjusted coordinates. However, there are cir-
cumstances under which control networks become
inadequate for their intended purpose. When this
happens, surveyors may have difficulty fitting a new
survey into the existing control network. Misclosures
may be much larger than expected, and the difference
between observed and adjusted values of obsena-
tions may be much Jarger than can be explained by
abservattonal error.

Free and Constrained Adjustments

In the majority of leasi-squares adjustment preblems,
the unknown parametersare the coordinates of phys-
ical paints. When coordinates are used, it is usually
necessary to fix the coordinates of one or more points
to define the coordinate system. The snevey obser-
vations alone are not sufficient. Angle obseevations
are completely independent of any coordinase sys-
tem, and therefore cannot tcfl us anything about ac-
lual coordinates. Distance observations tell us only
rbout the scale of a coordinate system, not its ori-
citation or position.

In an adjustment one can fix a coordinate by in-
chuling an appropriate equation that specifies the vatue
to be assigned to the coordinate, such as x; = 0, y,
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= 0. Such equations have the same form as regular
abservation equations, but do ndt represent actual
observations. Thev sre sometimes called “direct oly-
servitions of coordinates” and semetimes called
“constraint equations.”

Conventionalty, we use the words “free adjust-
ment” to describe an adjustment that uses just the
number of constraint eguations necessary to define
the coordinate system, but no more. When more con-
straint equalions are used, wg say that we have a
**constrained adjustment.” The wording is perhaps a
bit misleading, since a free adjustment indeed can
include censtraint equations (those necessary to de-
fine Lhe cosrdinate system). Many authors prefer the
phrase “minimal constraint adjustment’” to denote a
free adjustment; unfortunately, the use of this more
descriptive phrase is not universal. When more thar
the minimum nurber of constraint equations aie used,
the resulting adjusted quantities are constrained not
only to be in lhe proper coordinote system, but also
lo fit the additional constraints.

Consider the horizontal survey shown in Figure 1.
Suppose that peints | and ] are pre-existing marks
and we run « traverse between them, setling the new
marks 1 and 2 in the process. We measure the dis-
tances [- 1.1 - 2. and 2 - ), as well as the angles | -
1-2and 1-2-.]. Thus we have five measurements
with which to deterrnme the four coerdinates of the
two new points —a redundancy of orne.

There are at least two common ways of treating the
coordinates of the old pomts. In a horizontal netwaesk
that confains distance observnlions, we need theey
quantities to define the coordinate systein—two to
define the origin and one for the orientation. Thus
wre might perform a free adjusiment by constraining
both coordinates of point | and one of the two coce-
dinates of point J. Attternatively, we might constrain
ihe two coordinales of point | and the aztmwuth frum
lto}.

Free adjustments have the disturbing property that
things move when they should stay fixed. In a free
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Eigure 1. Sample froverse,

adjusiment of the example network, point | is still
free 10 move in @ne direchion. This is not goed, since
the coordinales of point ] Have already been deler-
mined and published. [t might be preferable to make
sure that the exist.ng control stays fixesi by censtrain-
ing both coordinates of beth point [ and point f in a
censtrained adjustiment.

Why a Censtrained Adjustment is Goed

Qurintent is Ihat the caordinates of the eid peints i
and J serve to “control’” the new suwivey. These old
coordinates actnaly accomplish this in three different
ways. First, they serve to define the origin and oui-
entation of the new suvey se that the coerdinales of
the new points 1 and 2 are in the same coordinale
system s the old woints. Secend, they provide a means
of detecting blunders in the new sucvey. Thicd, the
censtrained adjnstment dampens the butld-up ef the
effect of accidental error.

The argument abeut censtraining the cffect of ac-
cidental observalional errors goes like this: The co-
erdinates of the existing poinls arc assumed lo be
“correct.”” If the free adjustment has a misdosure at
point J. it must be because of errers in the new sur-
vey. If the misclesure is large, we should loek fer a
blunder irs the @bservations. If it is within the tofer-
ance allowed (er this type of survey, we dislvibute
the misclosure. The resulting adjusted ebservalions
arc merc accurale lhan the obseeved values, and the
acjusted coordinates from the constrained adiust-
ment arc moze accurate than those from the free
adjnstment.

We can show this malhematically. The canstrainl
cqualions that are wsed to fix the coerdinates of (he
contrel points can be treated as regular obscrvations
whose associated vaciance is zers. Thus we have nine
observations altogether—five from the new survey

and feur “observal:®ns’ of the ceordinates of thé two
old points. We also have eight unknown garamzlers
altogether —two coordinates for cach of thedfour points.
Let the (otal set of obscivalien equalions be writlen
in slandard ne{ation as

AX=L+V {1

where A is the design matrix (partial derivatives of
the observations with respect to the parameless), X
1s the vecter of unknewn parameters (or correclions
te appreximate values of paramcters), L contains lhe
observecl values (observed minus computed terms),
and V is the vector of re¢iduals.

We partitien these nine obsecvatien ecluations thtQ
three groups. Let

AX=Ly+V; Dbe the fire obscrvation cqualiens
arising from the new survey.

be the thrce ebservations of old co-
ercdinates (er functions of old ceor-
dinates) that arc uwsed in the free
adjustment to define the ceoxdinate
syslem. Clearly these equatiens do not
tnvolve the cooidinates ¢f the new
peints 1 and 2, se A, will have zerqges
in the columns corresponding to those
coordinates in X.

be the remaining obsecvation ef an
eld ceordinate {or function of an old

ceurdinale).

AX=0L,+V,

A3X=L3 +V3

Lel tlte covariznce matrices associated with these
three scts of ebservations be denoted ¥,, T, end ¥,
respectively. Since the ceordinates of the old centrel
1’eints are lo be fixed, we will use Xz = Qand %y =
0. However, it will not hurt te carry these quantities
symbelically.

If we perform an adjustment with only the ficst bwwo
sets of observations, we ebtain lhe free-adjusiment
estimate X~ of X, with covariance matrix Z-. If we
then seguendally add the third se!, we eblain Lhe
updated (censtrained) exlimate

, PN

5o X v EAL(B v AEAT) Ls—aX) ()

The covariance matrix of the tpdated estimate is
3= 87 = TARE+ AXAD-AE- (3)

This is a well-known equatidn. With a change of no-
tation; il is cquation (4.118) in Leick (1990) oc ecpua-
(ton (12.5a) in Mikhail (1976}. The sccond term on the
rightis a pesitive semidefinile metiix (whether or nol
£, = Q). Posilive semidefinite matrices ave analogous
to numbers that are greater than ov equal to zero.
Since 3* is equal te T- minus a pesitive semicicfinite
mattix, we say that 2+ = X, This méans thai the
varfance of any sealer function of X* ts tess than or
equal to the variance of the same funclien cvahiated
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at X-. Intuitively, it means that by adding new in-
formation (the third set of equations) to an old set,
we cannot make things worse, and generally make
things beatter.

In principle, it is passible to make a new observa-
tion that gives no new information abeut the param.
cters. For instance, we could make an additional
observation of a parameter that is already fixed, such
as one of the courdinates of peint L in the example.
This is why tie second term on the right ¢f equition
(8} can e zero. In practice, this almost never hap-
pens. In practice, almost all new obsec:vations (in-
cluding redundant constraints) help. Sometimes they
help only a little, but more often they make the ve-
sults much better.

Why a Constrained Adjustment
May Not Be So Geod

The pre-ious seciion scems to prove that the con-
strained adjustment is at least as go#d as, and may
be much heiter than, the free adjustment. Further-
more, the constrained adjustmeent uses all the infor-
mation available to us, which is intuitively preferusbie
to a procedure that ignores some data. Why, then,
do we hear surveyors complain that they have to
“distort” or “degrade” highly accurate GPS surveys
to fit the existing NAWD 83 contrel?

The answer is that the errer-propagation equations
givenn above, and indced all the error-propagation
equations usually associated with least-squares ad-
justments, depend on the assumption that ihe ad-
justment was performed with a weight matrix that is
tnversely proportional to the covariance matrix of the
ebsérvaliens (i.e., W = g X-*). This assumption does
not hold when we fix the contcol points, since we
then carry out the adjustment as if the variances of
the ceordinates nf these points were all zero, white
we know that these points are net known perfectly.

Least-squares estimatesare often-said to be optimal
esttmates or. ecuivalently, minimum variance linear
unbiased estinates. This means that the least-squares
algorithm can be derived from the priaciple that the
covariance matrix of the est:mated parameters must
be smallest among all possible lincar anbiased esti-
mates that satisfy the obgervatian equations. The
principle of minimum variance realiy gues to the heart
of the matter—it says that we should pick the esti-
mate that is the mest accurate. For this reason, many
analysts find the principle of minimum variance to
bemore satistying than the princtple that simply says
to minimize the sum of sjuares of the restduals.
However, when the least-squares equations are de-
rived from the principle of minimum variance, we
mus! explicitly use a weight malix |hat ts inversely
preportional to the covariance matrix of the obser-
vations (Appendix C).

2k

This means that least-squares adjustments using a
weight mattix that is not inversely proportional te the
covariance matrix of the ebservations do not have the
minimum variance property. Since they are ncot op-
timal, we can say that they are subdptimal. In spite
of being lessthan optimal, stich adjustmends are done
all the time. In fact, every constrained adjustment in
which the contro! points are held fixed is subeptimat.

Effect of Uncertainties of the
Fixed Control

The famitiar equation
Sxx = ooN-F = eF{ATWA)-? (1)

wich says that the covartance matrix of the param
eters is proportional to the inverse of the normal
equations; does nat apply without modification to
constrained adjustments. The medified equation is

Dy = U&{ATWA)"
+ (ATWA) ATWBZ e BIWAATWA) Y (3)

wherse B contains the partial derivatives of the five
new observations with respect to the fout coordinates
of the two control points Taad I and 2.¢ is the cor-
rect 4xd tovartance matrix of the coordinates of the
control points. Since this equation is not welt known,
a derivation is given in Appendix 3.

Equation {5} says that the 4x4 covariance matrix of
the coordinates of the two new points is the sum of
two terms. The Ffrst ternt gives the centribution of
the variance of the five new observations, and might
be called theinternal error; the second gives the con-
tribution of the real uncerlainiy of the fixed control,
and might be called the external errer. Thus we might
write

EXX = .Emr + Eﬂr (GII

Equation (5) provides a mathematical explanation of
how control networks become inadequate. The clas-
sical cencept, of course, is that the conirol network
is sttpposed te be much more accurate than ie ncw
densificatien survey. Mathematically, this means that
Xece should ¥e so small (ih comparisen with ) that
the second term In equation {5) is much smaller than
the first term. As long as this is 5o, ecvation (4) can
be used as a reasonable approximation of equalien
5).

This is indeed how classical control networks are
developed. We expect a reugh correlation between
purpose and accuracy: Primary networks should be
surveyed to first-order accwracy; sccondary networks
te sccond-order,.etc. As longas this rough corrclation
holds, we can use equation {4) instcad of {5).

The concept falls apart if the acturacy of the new
survey approaches er exceeds that of the existing
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control points. For instance, if we try to fit a second-
order traverse between two third-order peints, the
result is not what is expected of second-order work.
The uncertainty of the new points must be computed
by equation (5), not equation (4). Unforlunately, this
is 2lmost never done in practice, with the result that
we often do not know how to describe the accurscy
of such points.

We also can look at what happens to the adjusted
observatlons when the existing control points are held
fixed. As shown in Appendix B, the covariance ma-
tnx of the adjusted observations also ¢onsists of two
terms. For example,

S = FZANTWA)-1AT
+ [A(ATWA)-'TATW - |]
X B BTMANWAY'ATW — 117 (7)

If the sccond term in this equation vanishes, then we
are lelt with the conventional cxpression

El'f_" =) ﬂ'sﬂ{ﬁr"‘rﬁ} -’ﬂr (8)

In this case, the difference between the covariance
mahix of the actual observations and that of the ad-
justed observatiosts is

2 bt SL’L’ = 2 —_ G%A(ATWA)-jAT

[I — A(ATWA)-'ATW]
% Tfl = AINWA)-ATWIT  (9)

This is a positive semidefinite moatrix. Thus we can
write

.= X (18
which says that the variance of an adjusted obser-
vation is always at least as small as the variance of
the actual observatien {i_e., the adjusted observations
arc bettev).

If the sccond term in gquation (7) does net vanish,
equation (10} does net necessarily hold. In fact, it is
quite possible that the variances of the adjusted ob-
servations could be lazger than the variances of the
correspondtng actual obsecvations. [n other words, if
we fix the controt points, we might cause the ad-
justed velues of the obseivations to be worse than
the actual observed values.

The same atguments apply when we try to fit GI’S
vectors accurate to 1:1,000,000 into the existing NAB
53 network, accurate to about i:300,000. We can in-
deed adjust these vectors while holding the existing
control fixed, but the covsriance matrix of the new
points must then be competed by equation (3}, not
equation (4). The covariance matrix of the adjusted
observations musl be computed by equation (7), and
aquation {10) may cot hold.

Effects en Free Adjustments

Equation (5) also halds for a free adjustment. We might
perform a {ree adjustment by fixing only those ce-
ordinates necessary to define the coordinate system.
Following the normal least-squeres algorithm, we
swould compute the covanance matrix in equatien (4).
FHewever, this only gives us the uncertainty in the
adjusted cosrdinates that is due to the uncertaintics
of the new observations. 1t tells us how well the co-
ordinates of the new points are known relative to the
fixed control, but not how well they are known rel-
alive to the datum as a whole. The second term in
equation (5) accounts for the contribution of the un-
certainty of the fixed control.

A {ree adjustment can be shown to have the psop-
erty that the columns of matrix B aze linear combi-
nations of the cotumns of matrix A, siy B = AH for
some matrix 1. Then

(ATWA)-TATWB = (A"WA)'ATWAH = H
and equation (5) becomes

Exx = O’E(.‘\WA)" + Plzccﬂr (Il)

Even more interesting, we then have

[ A(ATWA)-TATW — 1]B
= [ANWA)-'ATWAH — AH| = 0

so that the secend term in equation {7) vanishes. This
means thal equatien (18) helds for all free adjust-
ments, ircespective of how the coordinate system is
defined and of the uncertainly of the fixed controi.
The coordinates obtained in a free adjustment may
be affected by the errors in the fixed control, but the
adjusted observations are not. This is the sense in
which these adjustments are *“{ree.”

Practical Implications

Many surveyors have an intuitive grasp ef these
mathematiczl results. They say that the constrained
adjustment *“distorts” their observations. This does
not mean that the oeserved values are actvztly
changed; it means Ihat the adjusted values of the
observations are more uncertain, and could, there-
fore, have greater errars than the observed vaiues.
They rebel against this possibility; no onc waats his
or her work to be “degraded” by putting it through
a process that can preduce worse results than ene
starteel with.

Thus many survevers processing GES vectors are
rejecting constrained adjustments in favor of free ad-
justments, for which equation (10) holds. Others are
required by contract to fit their GPS surveys into the
existing contro! network; bul are uncomfortable with
this requirement to do so.
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‘The problems dcscribed here mathemnatically are
indeed the fouble wilth constrained adjustments, and
the lrouble with the entire concept of a hierarchy of
control networks in which the more accurate net-
works control the lower-order surveys. From time to
lime, news lechnology comes along that allows new
surveys lo be performed with higher accuracy tian
the existing contro! network. When tais happens, the
extended error-Prepagation ecuations developed in
this acticle must ke used, with the unhappy result
tiiat equation (10) may not hold.

This situation has ansen twice in this centuy. [n
the 1960s, the introduction of electronic distance
measurement cquipment sllowed new surveys to be
performed with greateraccuracy than the existing NAD
27. This eventuslly led ta the creaiion of NAW 83.
Now the same situation is occurring again. GPS sur-
veys can be perforimed with greater accuracy than
NAD 83. It is likely that {his situation sc.oner or later
will lead to (he computation #f a new conlinentsl
datum.
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Appendix A: Linear Error Propagalion
Lel X be a vector of random variables and let Y =

B{X) be a vector of functions of X. Assume that the
covariance matrix X, 1S known. Then the covariance

matrix of Y is
Iy ay\!
R it ] [

Wilh a change of netien, this is cquation (4.34) ef
{eick (1990) and equation (4.40) of Mikhail (1976).

Appc:u‘lix B: Effect uf Unestimated
Parameters

In the example lraverse shown in Figure 1, we have
four peints and eight coordinates altogelher. Let us
partition these inta lwo scts. Let Xy be the four co-
prelinates of the twao new paints 1 and 2, and lel Xe
be the four coordinates of the lwoe existing control
points | and ).

Mathematical Development

The five observatinas in the traverse shown in Figure
1 mvolve all etght unknowns. This cet ol five obser-

vation equalions can e wntten
AXy -~ BXe=L 4+ V (13)

where the covariance malrix associated with these
five observations is .

We also wish t¢ add four constraint equations for
the coordinates of the existing corttio] points. We wr:te

Xe = Le + Ve (14)

where the covanance matiix associated with 1these
four constraint equatens is Ley:.
The 1ota] set of all wiine equations 1s new

(0 D0 - () () o

wilth covariance matrix

X B
(ﬂ E:'c) e

The most correct way to treat all these data is to
perform the minimum-variance adjustment. which is
an adjustment ef the complete system (15) using a
9x9 weight maleix that is inversely propertional to
(16}. @f course, this is atmost never done, since it
might result in changes to the coordinates of the ex-
isting contro) points.

To perform a constrained adjustment, we arbitrar-
ily (i.e.. withont mathemnatical jusiification) set the
residuals Vo in (14) to zero. The result X¢ = Lc is
substituled into equaiion (13), which is ecarranged to
read

AXpe = L = BLe + V (17}

This system of five e#servation equations in leur un-
knowns is adjusted with a weight matax W that s
inversely proportional lo Z, yielding the estinvate

Xn = (NWA)-ATW(L — BLc) (18)

Since the coerdinatles of the existing contrl points
X¢ sheuid have been carried as unknowns but were
not, they are called “unestimated parameters.” Even
lheugh these rnordinales are not esfimatecd in the
constrained adjustment, we can still take account of
their effect when we perform error propagation

The estimate in (18) has lwo sources of crror—the
errors in the five traverse observations L and the er-
rors in the coosdinares of the exisling control l¢. Since
these two grouwps of cuanlities were determined by
different people al different times, we can reasenably
assume lLhal they arc independcent. Thus the lotal sel
of independent variables is

v (&)

| L1
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snd the covanance matnx of this vector is given by
(16). The partial derivatives are

Ko (K L)
L I alc

= ((ATWAY-'A'W  —(ATWA)-'ATWEB)} (19)

Thus the covariance matrix Zyy of the-estimate in (18)

= (AT WA) TATW — (ATWA)-'ATWB)
( WAATWA) =

Sec) \ = BAWAIATIVA) !

= (\7 WA)TATW EWAATWA) !
+ (ATWA)Y TATWBE BTWA(ATWA)-!

= a(ATWA)?
+ (AVWA) AT WBZBTWA(ATWA)L (20

Similarly, the adjusted value of the five tzaverse ob-
servaiions is

L2 = AX,y + Bl
AATWA)ATWL

— [AMATWA)'ATW — (IBL:  (21)
and the covananee matr'wof the adjusted obseiva-
l{ens is

T = GEAATWA)'AT

+ [AATWA)-TATW - []
X BEaeBTIAATWA)Y-ATW — )7

Ir

I

22)

A Numerical Example

Te keep the numerical example small, we reintetpret
Figure 1 to be a drawing of a leveling network. Points
G and ) are now assumed to be benchmarks in the
natienal vertical network. The object of the new sur-
vey is lo determine the elevations of the new painis
1 and 2. Observed elevation differences are accu-
mulated, setup by setup, between the marked points,
resulting in the following observations:

Obs. Model Value (m) DOistance (km)
1, Hy — Hg 5.013 100
La H: - H, ~17.062 200
1 El, — H, 2771 100

The pubitshed elevations of points C and [ are He =
123.113 meter and H; = 153.805 meter. From the ad-
justment Of the national network, we have

= 0.010 m?
# = 0.010
Ty = 00075
Or. in matrix form,
o _ [0.010 0.0075)
= LnonTs 0.010

The leveling is done to specifications that result in an
uncertainty of elevation difference of 0.004VR me-
ters, where K is the length of the line in kilenseters.

Of course, in practice we are net usually given for-
mal standard errors of the elevations of peinis in the
national network. It would be even more unusual
(almost unheard of} were we actually te be given a
formal cevariunce between two elevations. Neverthe-
less, such numbers do exist in priaciple. and the
numbers given here are reasonatle estimates of what
might be obtained in a real network, Note thal the
elevation errors at poinls G and ) have a significant
positive-correlation (0.75). This seys that pein!s close
together share some of the same error seurces.

We sclect a value of the refercnce vartance of ¢ =
0.0016 and compute the weights as

Obs. Model  Value {m) Bistance (km) o? 1w
1, Hy-Hg  5.013 100 0.00t6 1
1, H:-H, -17.062 200 0,0032 4
Y, H -1, 2277 100 0.0016 1

The observation equzations are then

(-} ?)(m)
H

0 —1/\H
5.013 -1 0 o

£ (—17.062) - ( 0 0)(}3;;) + (v,)
2,771 01 : y

X

This is in the form of equatlon (17), so that we im-
mediately idenhify

1 0 5.013
A=(-I :) 1. = (—17.062)
0 -1 42.771
-1 0
. _ (t23.113
e ( g ?) s (xsa.sos)

The weight matlnix is

1 ) 0
W = (D 4 u)
] 0 I
We compute
i o (0.8 6129
AR (o 25 075)

and, by equation (18),

A :(Hﬂ)= 128.1185
= LH, 111.0415

The true covariance matrix is camputed by equation
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(20). We get

. -1 @
! -
AWE = ( 0 _1)

and

o £
S = 0001 6(0.75 0....3) (0.(1')90623 0.0084375)

0.25 0.75 00084375 0.0090625
_ [0.0012 0.0004) . [0.0050625 0.0084375
~ \0.0004 0.0012) 7 \0.0084375 0.0490625

0.0102625 0,0088373
0.0088375 0.0102625

As expected, the uncerlainty of the [wxed centrol points
dominastes this expression. The uncertainlies of the
elevations of the new points are much larger than
would have been expected from the accuracy twilh
svhich the new survey was performied. The elevations
of two new points arc also highly correfaled, siixce
they share the uncertainties of the control points.
The covariance maitnx of the adjusted observations
can be found by evaluating equalion (22)- This yiclds

3 -2 -1 2 4 2
zw(z . -2) +w(4 i )

1 X%_T 2 3 24 2
-0.0012 ~0.0008 —-0.0804
= (~o.oooe 0.0016 —0.0008)
-0.0004 -0.0008 04012
0.00125 0.0025 0.00125
+ (0.0025 0.0050 0.0025 )
0.00125 0.0025 0.00125

0.0024S 0.0017 0.00085
= (0.0017 0.0066 0.0017 )
0.00085 0.0017 0.00245
The unce:tainty of the fixed eentrol points, respon-
sible for the seoond term, also dominaies this expres-
sion. Furlhermore, remembering that the cevariance
matrix of the observed quantities is

0.0016 0 0
( 0 0.0032 ] )
0 0 0.0816

we see thal lhe second term causes the covariance
matrix of the acjusted ebservations te be larger than
the covartance matrix of the actual obseevations.

D=

Appendix C: Minimum Variance
Adjustment (Gauss-Markov Theorem)

Consider the linear model

AX=L+V (1)

208

in which the obscrvationsare inbiiased and hove ce-
varicince matiix ¥. We look for an estimate X of X
that s

l. Best (m che sense of snninutn varance), se thai
Tox = Ef(x—x)x-x}"] is a mimimum

2. Linear 1n the observations L. 30 that %= BL for
some matrix B

3. Unbused. so that E[x] = x

We must define what we mean by minimizing 2
covartance matr x. Since there is no strict ordering of
matrices, we must minimize some scaler measure of
the natrix. A commen chaice is to minimize the hiace
TS

Since the observatiens are unbiased, £{V] = 0 and
EII,] = AX. Then

EfX) = E{BL] = BE{L.] = BAY

and by the unbiased property, we must have BAx=x.
Swuce this must hold wrespective of the value of X, we
must have

BA=-t=0 (23)
If there are u unknowwn parameters X, (23) represents
u? separate equations. Let A be a matrix of u* La-
grange mullipliers. Then
Tr[{8A —~ DA]

cepresents the sum of all u* cquations in {23), each
mulliplied by a Lagrange multiptier.

Furthermere, since X = E[X] = E|BY.] = BE|L}, we
have

X — X = BL - BE[L] = B(L - E[L)

so that
Txx = EIX — X)X ~ X)T}
= BE{(L — EIL]ML — EIL)”)BT = BEHBT

Now the prablem is i0 niinimize the augmented cost
function

d = Tr(BEF) + 2Tr((BA — DA]

29)

(25)

Tius 15 dooe by differentialing (251 with respect to B
and L., and selting cach set of Partial derivauves to
LT We get

ap | A
EE —UD?[EB "'p"h'.'l)‘f = () (26)
ﬂﬂd
£=G$BA—I=O {27)
e\

From (26) we obhtam

B=-ATATE-!

.Sur:ql-'l_g ard L:rlﬂ' fpbﬂu.u—.-mh-m .E-:,-,g};m;



andusmg (27}

BA=-ATATE ' A=]

Thus
Rz (ATE-IA)-TACD-IL (28)

is the best linear unbizsed estnnater. As a final mod-

= 0 ification, we can write X=* = (/o)) W in (28). The
% . -(ATE" A.] =, tv_mla'ppearances of of cancel each other, yielding the
familiar form
and 3
=1 X = (ATWA)-TATWL 29
B=(ATS1A) AT D @)
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