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ABSTRACT 

This paper gives compact formulae for the direct and inverse solutions of geodesics of any 
length. Existing formulae bave been recast for efficient programming to conserve space and reduce 
execution time. The main feature of the new formulae is the use of nested equations for elliptic 
terms. Both solutions are iterative. 

I. r. TRODUCTION 

In selecting a formula for the solution of geodesics it is of primary importance 
to consider the length of the prograJn. that is the amount of core which jt will 
occupy in the computer along with trigonOlnetric and other required functions. 
It is advantageous to have on the computer system only one direct and one inverse 
subroutine, both of which should give complete accuracy over lines of any length, 
from a few centimetres to nearly 20 000 km. 

Experiments have shown that non iterative solutions, such as Bowring's inverse 
[2] for lines up to about 1500 km, Sodano's direct and inverse [5], or McCaw's 
direct as given by Rainsford [3], consume nl0re space than th.e iterative solutions 
described in tllis paper and that some may even be slower in execution. 

The reconlffi_ended direct and inverse solution were developed from Rainsford's 
inverse formula [3]. The direct solution was obtained by reversing the inverse, 
using the approach of Rapp [4]. Rainsford's terms in f4 have been omitted as 
negligibJe but the most significant terms in uB have been retained. Certain closed 
equations were taken from [5]. 

The compactness of the recomnlended solutions is due to the usc of nested 
equations to com_pute elliptic terms and of only three trigonometric functions: 
sine, cosine, and arc tangent. esting reduces the number of operations involving 
storage and retrieval of intermediate results (particularly when programming 
in assembly language), reduces the length of the program and the time of execution, 
and Jninimizes the possibility of underflow. 

2. NOTATION 

a. b, tnajor and Ininor semiaxes of the ellipsoid. 

f, flattening = (a-b)/a. 
<1>, geodetic latitude, positive north of the equator. 

L, difference in longitude, positive east. 

s, length of the geodesic. 

all a2, azimuths of the geodesic, clockwise from north; a2 III the djrection PI P2 
produced. 
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�, az.imuth of the geodesic at the equator. 

II' = cos' a(a'-b')/b'. 

V, reduced latitude, defined by tan V = (I-f) tall </>. 

A, difference in longilude on an auxiliary sphere. 

a, angular distance P, P2� on the sphere. 

ai' angular distance on the sphere from the equator to Pl' 

am. angular distance on the sphere from the equator to the midpoint of the !.ine. 

3. DIRECT FORMULA 

tan a, = tan U,/cos a,. (I) 

sina = cos V, sina,. (2) 

u2 
A = I + 

16384 
{4096 + II' [ -768 + II' (320 -I 7511')]). (3) 

u2 ., .,  
B = 

1024 
{256+II'[-128+,r(74-4711-)]}. (4) 

2am = 2a, +a. (5) 

I!.cr = B si n a{cos 2crm +tB [cos cr( - I + 2 cos' 2cr m) 

-liB cos 2crm( -3 +4 sin' u)( -3 +4 cos' 2um)]}. (6) 

s 
cr=-+M. (7) 

bA 

Eq. (5), (6), and (7) are iterated until there is a negligible change in cr. The fiISt 
approximation of a is the first term of (7). 

cjJ _ 

sinU, cosa+cosUI sin a cos (X, 
tan 

,
-

(I _ /)[sin' a +(sin V, sin cr-cos V 1 cos cr cos "I)']t . 

sin a sin (XI 
tan t. = ----='-'-="'-'---­

cos U I cos a-sin U 1 sin a COSCiI 

e = � cos' "[4+/(4-3 cos' all. 

(8) 

(9) 

(10) 

L = ).- (1-e)/ sin a{cr + e sin cr[cos 2crm + e cos u( -I +2 cos' 2crm)]}· (J I) 

sin Ci 
tan '" = . 

V 
. 

V - Sill I Sin a +COS 1 cos a COS ('j, J 
(12) 

If the terms in uS and B3 are omitted, Ila will give a maximum error of less than 
0·00005". Therefore the following simplified equations may be used for lesser 
accuracy: 

/12 
A = 1+ 

256 
[64+11'( -12+511')]. (3a) 
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II' 
B = ill [128+11'(-64+3711')]. (4a) 

/;u = B sin u[cos 2um +tB cos u( -I +2 cos' 2um)J. (6a) 

4. INVERSE FORMULA 

i. = L (first approximation). (13) 

sin'u= (cosV,sin).)'+(cosV, sinV,-sinV,cosV,cosi.)'. (14) 

cosu = sinV, sinV,+cosV,cosV,cos).. (15) 

tall u = sinu/cos u. (16) 

sin" = cos V, cos U, sin )./sin u. (17) 

cos 2u", = cos u-2 in V, sin V,/cos' rt. (18) 

i. is obtained by eqn. (10) and (II). This procedure is iterated starting with eqn. (14) 
until the change in 2 is negligible. 

s = bA(u-M), 

where /;u comes fro111 eqn. (3), (4), and (6). 

COS U2 sin ), 
tan a I = -------'=--=-:....::.="---- -­

casUI sinU2-sin V1 casU2 cos), 

cos U I sin ), 
tan rt, = -----==-=-'-'=--=----­

-sin U, cos V, +cos U, sin U, cos). 

(19) 

(20) 

(21) 

As in the direct solution, the simplified equations (3a), (4a), and (6a) may be used 
when a maximum error of less than I· 5 mm is acceptable. 

The inverse formula may give no solution over a line between two nearly 
antipodal points. This will occur when )., as computed by eqn. (II), is greater 
than 'It in absolute value. 

5. ACCURACI' CHECKS 

Elliptic terms have their maximum effect on angular and geodesic distances 
over north-south lines. Indcpendent checks 011 distances were obtained by using 
the direct formula to compute the latitudes of forepoints in azimuths of 0', and 
eqn. (I) and (2 ) of [7] (quoted from [1]) to compute meridional arcs corresponding 
to the same lines. The latitudes of standpoints were from 0° to 80° in increments 
of 10' and the distances were in multiples of 2 000 km up to 18 000 km, which gave 

81 test lines. The maximum disagreement was 0·01 mm. 
Rainsford's eqn. (II) gives coefficients Ao, A" A., and A6, to include terms in 

f', for computation of ().-L) by an equation corresponding to eqn. (II) of this 
paper. ]f the latter equation is rewritten in conventional form, we obtain the 
following approximate coefficients: 
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Ao' = I-C. ) 
A' = C ( I-C). 

A; = C'(I- C)j2. 

A" = O. 

(22) 

The maximum errors in (),- L) due to omission of terms in /3 in the A' 
coeflicients are then given by 

00 = (Ao' -Ao)! sin �rr. 
0, = (A,'-A,)! sin�. 

0, = (A; - A.l/ sin a. 

o. = (A" -A.)! sin a. 1 (23) 

These errors were computed for lines in equatorial azimuths of 2.50 to 87·5 , 
in increments of 2·5°. do attained a maxinwm of +3 in the 6th decimal of a second. 
The maximum value of ()2 was - I in the 6th decimal. The remaining errors were 
at most in the 8th decimal. 

The values do and d2 are given in Table J; ()o was computed for a = 3·1 radians; 
O2 applies to lines over which sin a cos 2u", = I. 

The recommended direct and reverse solutions duplicate each other perfectly 
if the values obtained from the previous computation are used without rounding. 
This was to be expected, since one formula was obtained by reversing the other. 
They were tested independenLly on five examples (a) to (e) given by Rainsford 
[3], using direct and inverse subroutines prepared in FORTRAN IV by this writer 

and the IBM 7094 (Model I) computer of DMAAC Geodetic Survey Squadron. The 
programs iterate until the change in a in the cUrect or;" in the inverse computation 
diminishes in absolute value to 10-12 radians or less. The first ex.ample is on the.::: 
Bessel Ellipsoid and the remaining ones are on the International. The parameters 
are 

Bessel: a = 6377397· I 55 111, 1//= ,. = 299· 1528128 

lnternational: a = 6378388·000 m, 1//= r = 297. 

The results are listed in Table II. Columns A and B show Rainsford's published 
(1955) data. Column C gives the amounts (in tbe 5th decimal of a second) by which 

the results of the direct subroutine differed from those in column B when the 
inputs were those of column A. The last column 0 lists the differences in azimuths 
and distances (the latter in millimetres) from the published (1955) results when the 
inverse routine was lIsed with 4>1' �2' and L as dala from the published results. 

The disagreements shown in columns C and D can be explained. Rainsford 
states that in his example (c) there is a residual error in longitude of 3 in the fifth 
decimal and that in example (e) the disagreements in latitude and azimuth are 2 and 
I in the fifth decimal respectively. Distances obtained from the inverse solution 
and rounded off to the millimetre may be in error by lip to O· 5 111m, which represents 

TABLE I-MAXIMUM ERRORS IN (�-L)· 

• 10° 200 30° 40° 50° GO° 70° 80° 

8. 0·4 0·8 1·4 2·2 2·9 2·9 1·9 0·6 
Ii, -0·1 -0·2 -0·4 -0·6 -0·9 -0·9 -0· 6 -0·2 

• In the sixth decimal of a second. 
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TAULE II-Rt:sULTS Of SOLUTIONS 

A B C D 
Lint> </>, ¢, o¢, 0" 

x, L oL JX1 
s " OXl (�j' 

(a) 55045' 00· 00000' -33 26' 00·00000' -I<? -0,4 

96 36 08·79960 108 13 00·00000 +0'7 -0'5 

14110526'170;11 137 52 22·01454 -1'2 -0,4 

(b) 37 19 54·95.167 26 07 42·83946 -0,7 -0,2 

95 27 59·63089 41 28 35'50729 + 1·1 -0,1 

4085966'70.1 118 05 58·96161 +0'5 -0'4 

(el 35 16 II· 24862 67 22 14· 77638 -2,0 -0,2 

15 44 23·74850 117 47 28·31435 + 2·9 +0,] 

8084823·839 144 55 39·92147 +3'0 -0'7 

(d) I 00 00·00000 -0 59 53'83076 -0,2 -102,9 

89 00 OO·onooo 179 17 48'02997 +0·6 + 102'6 

19960000' 000 91 00 06' 11733 -0'.1 -0,2 

(e) I 00 00·00000 I 01 15·18952 +2, 5 +0'4 

4 59 59·99995 179 46 17·84244 -0,2 -0'8 

19780006·558 174 59 59·88481 -0'.1 +0·8 

0·000015" in the direction of the line. Another source of discrepancy in azimuths 
is the lise in the inverse solution of rounded co-ordinates which were computed 
in the direct solution with more precision. This will now be investigated. 

After Rapp (41 and other sources we have 011 a sphere 

da, = (sin aI/tan a) dU, - (sin ,,/sin a)dU, +(cos U, cos a,/sin (J)d).. (24) 

We may write similarly 

da, = (sin a , isin a) dU, - (sin a,ilan a) dU, + (cos V, cos , ,isin a) cU. (25) 

We note that the displacement of the forepoint (in arc measure) in the direction at 
right angle to the direction of the line is given by 

(26) 

which, when divided by si.n a, gives the corresponding change in Cl]. This cbange is 
precisely the same for a short line of angular length a as for a line ofsupplemcntary 
length a' = rr-a. At aboul 10 000 km a small change in U, does nol affecl lhe 
azimuth at the standpoint, as tan a becomes infinite. 

Errors in computed azimuths due to rounding of co-ordinates are large for 
short lines and decrease progressively up to about [0 000 kJTI. after which they 
start increasing. Very large errors can be expected over lines between nearly 
antipodal points. Conversely, the error in position of the forepoint due to an error 
in azimuth attains its maximum value of 0·3 111m per unil of the 5th decimal of a 
second at a distance of about 10 000 km. The assumptions dV = d<l> and dl. � dL 
are not quite correct but they give us an idea about the magnitudes of changes in 
azimuths due to changes in co-ordinates. 

The change in distance is given by the well-known equation 

ds = - M, cosO', d<l>, +M, cos�, d<l>, +N, cos <1>, sin" dL, (27) 

in which M and N denote radii of curvature in the meridian and in the prime 
vertical respectively. This equation applies to lines of any length. A mean radius of 
the Earth may be used instead of M and N for approximate results. See [6J, p. 55. 

The disagreement or 0·001" in azimuth over Rainsford's line (d) is justified 
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TAUU· 111�OIANGf:S IN IN\ FRS'" R .. sULTS J)Ul. TO CtIAj\;(i!:S IN CO-ORDINATES OF J Hf FORI:POINI 

LiuC' d".tl/d9z (/21 'tIL (/21 'd¢l d'J.! IdL dS/(/(>2* d!) /elL" 

io) -0-84 -0-78 +0-51 -0-08 -0-2J +0-17 

Ib) -1-47 -0-71 -1-18 -O-IJ -0-14 +0- 25 

Ie) -0-60 -0-3] -0-18 +0-82 -0-25 +0-07 

lei) -58J- -10-] + 583- + 10· 2 -0-01 +0-]1 

(e) -1-90 -21'8 + 1-89 +21·8 -0-31 +0-0] 

.. In min per 0·0000' .... 

by the fact that this linc is very sensitive to a change in latitude. The errors in 
distances and azimuths due to errors in cpz and L are given in Table III. They were 
obtained from inverse cornpulations after changing the co-ordinates of the fore­
points by small amounts. 

The direct and inverse subroutines, as now written. require I wo to four iterarions 
ill 1110st cases. Lincs connecting nearly antipodal points may need considerably 
morc repetitions in the inverse case. Rainsford's line (e) converged in the direct 
SOIUlioll after four iterations but it needed 18 iterations in the inverse sol ution. 

6. PROGRAMMING SUGGI:STIONS 

A useful FORTRAN IV function to evaluate arc tangent in double precision is 
OATAN 2(v, x) which accepts the numerator and the denominator as arguments 
and gives the result between -1[ and + It. This function may be used with seven 
equations of the above formulae. 

Eqn. (I) and (18) become indeterminate over equatorial lines but this will not 
cause trouble, provided that division by 0 is excluded. In this case it is unimportant 
what values are computed by these equations. since B = C = O. so that !3.a, L, and 
i will be computed correctly_ 

Nested equations are designed for programming from right to left. I dentic:.i1 
e�pressions, such as Ihose found in (8) and (12) or (14) and (20), should be com­
puted once, stored, and used as needed. Trigonometric identities may be used to 
obtain c.os U and sin U from tan U and cosz a from sin Ct. 

If reverse azimuth is desired (i.e. the azimuth at P2 La P.) instead or (X2, the 
signs oflhe numerators and denominators should be reversed in eqn. (12) and (21). 
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