

CCSF NAVD88 (2013) Vertical Datum Benchmarks, Routes \& Photos available on CCSF Website (kmz files)

5/1/2014

Benchmark Routes, Photos, KMZ's \& Descriptions available on CCSF Website

2013 BM Monument - 2014 BM Monument

Detailed BM Descriptions available in a Spreadsheet on the CCSF Website

Specification and Procedures Second Order Class I

- The "Federal Geodetic Control Subcommittee (FGCS) Specifications and Procedures to Incorporate Electronic Digital/Bar-Code Leveling" (ver. 4.1) for Geodetic Leveling -
- Combined with best practices, experience and "Murphy" in a document titled "2013 Second Order Leveling Network Specification and Procedures"
- Field Surveys: Three person crew committed about 1/3 time from January-October 2013
- Instrument: Leica DNA10 electronic digital level and a pair of 4.05 meter Leica GKNL4 fiberglass bar code rods
- The DNA10 level was calibrated by Leica prior to the survey and a level collimation test (peg test) was performed prior to each field day of operation

The Rods \& Rod Seams Calibrated
Rod \& Seam Calibration Form Published in the Cal Surveyor "Tech Tips"

DNA 10 Digital Level \& Bar Code Rod

20

Leveling Demonstration \& Validation Survey Required all personnel to demonstrate their proficiency in the instrument operation, their understanding of the "Leveling Specification \& Procedures" and that the equipment was operating correctly

ADJUSTMENTS: 22 Loops / 115 km

- Average Closure for 22 Loops $=3 \mathrm{~mm}$ ($0.01^{\text {' }}$)

	Length	closure	1stOrd/I	2ndord/I		Length	closure	1stOrd/I	2ndord/I
Loop	Km	min	$\mathrm{mm}=3 \mathrm{Vkm}$	$\mathrm{mm}=6 \mathrm{vkm}$	Loop	Km	mm	$\mathrm{mm}=3 \mathrm{Vkm}$	$\mathrm{mm}=6 \mathrm{Vkm}$
A	24.3	0	15	30	L	1.1	1	3	6
B	25.7	9	15	30	M	0.6	1	2	5
C	11.4	-3	10	20	N	0.5	2	2	4
D	10.1	-4	10	19	0	0.5	2	2	4
E	5.8	-3	7	14	P	0.8	0	3	5
F	6.8	1	8	16	Q	0.8	0	3	5
G	3.1	1	5	10	R	2.4	0	5	9
н	2.6	1	5	10	S	3.5	-16	6	11
I	1.8	-1	4	8	T	2.4	0	5	9
J	1.6	1	4	8	U	3.5	1	6	11
K	0.6	1	2	5	v	4.8	9	7	13

- 20 loops closed $<=1^{\text {st }}$ Order Class I ($3 \mathrm{~mm}{ }^{*} \sqrt{ } \mathrm{~km}$)
- Loop "V" closed $9 \mathrm{~mm}=1$ 1st Order Class II ($4 \mathrm{~mm}{ }^{*} \sqrt{\mathrm{~km}}$)
- Loop "S" closed -16 mm = $2^{\text {nd }}$ Order Class II ($8 \mathrm{~mm} * \sqrt{\mathrm{~km} \text {) }) ~(1) ~}$

Level Network \& High Precision Network 22 Loops - 115 km included the High Precision Network

NAVD88 DATUM RECOVERY:

- NAVD88 is realized by NGS benchmarks leveled circa 1977 and 1989 and published in the original 1991 national adjustment
- As a result of the 2013 leveling, the realization of NAVD88 in San Francisco is based on an extensive recovery of "First Order" NGS benchmarks in the City.

FINAL NETWORK ADJUSTMENT

- All loops were combined in a Minimally Constrained Adjustment fixing one BM to develop final heights
- Adjustment Residuals less than +/-1 mm
- The combined network adjustment statistically resulted in $2 \mathrm{~mm} * \sqrt{\mathrm{~km}}$ (First Order Class I $=3 \mathrm{~mm}^{*} \sqrt{ } \mathrm{~km}$)

NAVD88 DATUM RECOVERY:
All NGS Published Benchmarks in San Francisco

NGS BM's: Green=1 ${ }^{\text {st }}$ Order Class I - stability A/B, Yellow=1 ${ }^{\text {st }}$ Order Class I - stability C/D, Brown=VertCon

Datum Recovery:

Criteria for Benchmarks deemed the best candidates for recovering the NAVD88 Datum

- Height derived from the 1991 national adjustment of NAVD88
- Accuracy classification of "First Order"
- Stability Classification of A or B (on a scale of A-D)
- All such candidates were searched for and 14 recovered in the County

Datum Recovery: 35 NGS Benchmarks were recovered and included in the Leveling Network

NAVD88 DATUM RECOVERY:
Selecting a reference point for the
adjustment that best fit all the candidate BM's

- The record height at NGS Benchmark HT2255 located east of the Golden Gate Bridge was found to agree with a best fit of all candidate Benchmarks.

NAVD88 DATUM RECOVERY:

Selecting a reference point that
best fits all the candidate BM's

- HT2255 has the following attributes:
- First Order Class I classified as a stability "A" benchmark set in a bedrock formation and expected to remain stable,
- Agreed 1-2 mm with two nearby stability "B" benchmarks (HT0698 and HTO700) a further indication of long term stability,

HISTORICAL CCSF LEVELING FOUND CONSISTENT WITH THIS SURVEY

- CCSF conducted extensive precise leveling surveys between 1999-2002 using a first order NA3003 Digital Level and invar rod with struts
- 37 BM's were recovered. The average difference from the 2002 Record Ht's to this survey is +1 mm with a Std. Dev. of 9 mm .

SAN FRANCISCO VERTICAL DATUMS

2013	2002	Survey	2002-2013	2013	2002	Survey	2002-2013
Name	Name	Ht (m)	Difference	Name	Name	Ht (m)	Difference
BM10249	T-0089	3.479	0.005	BM10299	BM-0005	3.471	-0.006
вм10251	T-0087	3.467	-0.007	вM10300	T-0179	3.565	-0.005
вм10252	T-0086	3.485	-0.014	вм10303	вм-0004	3.441	0.000
BM10254	T-0085	3.369	-0.007	BM10310	T-0181	3.469	-0.006
вм10255	T-0017	4.721	0.000	BM10427	т-0169	56.460	0.016
BM10256	T-0016	4.716	-0.001	BM10450	T-0144	11.401	0.004
вм10258	T-0083	4.506	-0.013	BM10468	T-0121	8.516	0.044
BM10261	T-0080	4.392	-0.017	BM10469	T-0120	7.066	-0.004
BM10263	T-0078	5.323	-0.014	BM10522	T-0109	22.196	0.001
BM10264	T-0077	5.509	-0.016	BM990604	HT0604	4.691	0.000
BM10265	T-0076	5.677	-0.012	вм990726	HT0726	6.990	0.004
BM10271	T-0069	12.953	0.005	BM990728	HT0728	4.378	-0.002
вм10272	T-0068	13.305	0.003	вм990781	HT0781	7.158	0.000
BM10273	T-0067	13.010	0.003	BM992267	HT2267	67.480	0.012
вм10276	T-0065	8.136	-0.005	вм992268	HT2268	102.431	0.021
BM10278	T-0064	5.853	0.028	вм993541	HT3541	5.601	0.004
вM10293	T-0176	4.715	-0.001	BM997677	AB7677	23.757	0.004
BM10294	T-0177	4.266	-0.004	вм99999	SM No. 1	59.213	0.010
BM10295	T-0161	6.590	0.001				

- The new "SFVD13" realization of the NAVD88 Datum supersedes previous NGS Benchmark Heights, and the old "SF Datum"
- The City and County Surveyor has determined that the conversion from the CCSF 2013 NAVD88 Datum to the old City Datum, henceforth shall be the following:

> - Conversion Constant (Feet)

- 2013 NAVD88 Datum - 11.35 feet = City Datum

GPS SURVEYS

- In July 2013 a high precision GNSS survey observed all CCSF-HPN points (101-120)
- The ellipsoid heights were combined with a refined Geoid 2012A Model to compute NAVD88 Heights and found to agree with the leveling survey,
averaging $4 \mathrm{~mm}\left(0.01^{\prime}\right)$ and a range of $+/-7 \mathrm{~mm}\left(0.02^{\prime}\right)$
- CCSF intends to utilize GNSS and a local RTN to replace conventional differential leveling for determining heights in the future at the subcentimeter level

ACCURACY

- Relative accuracy of adjacent monuments is expected to be less than 0.001 meters (0.003')
- 95\% Error of the heights range 1 to 12 mm relative to fixed constraint HT2255 (average 9 mm)
- Absolute accuracy of the heights is dependent on the recovery of the NAVD88 Datum which was based on a best fit of 12 BM's with a Std. Dev. of 8 mm

ACCURACY

- This survey is classified as Second Order Class I;
- however, the average actual loop closures of 3 mm (0.01 feet),
- the agreement with 2002 precise leveling
- and the results of the GNSS survey indicate results consistent with First Order specifications were obtained.

2014 Densification (112 km) of the Leveling Network (227 km total)

Report Contents

OVERVIEW

DATUMS, REFERENCE SYSTEMS \& HISTORY VERTICAL NETWORK

EQUIPMENT, DATA COLLECTION
ADJUSTMENTS
NAVD88 DATUM RECOVERY

HISTORICAL LEVELING \& SAN FRANCISCO CITY DATUM

Report Attachments

- NAVD88 (2013) Orthometric Height List
- Benchmark Descriptions, Photos \& KMZ Files
- "CCSF 2013 2nd Order Leveling Network Specification and Procedures"
51/2014

Regional \& CCSF High Precision Network

PROJECT OVERVIEW

- The Survey established 20 high precision control points in July 2013 utilizing GNSS technology
- The Network is referred to as the "City \& County of San Francisco High Precision Network" (CCSF-HPN)
- Purpose: Provide a framework for densification, support the City's GIS, and provide a Deformation Network to measure secular and episodic ground movements
- Under the old classification system, the network is classified as a "B" Order Survey 1:1,000,000

Planning/Preparation

Station Recovery \& Obstruction Diagram, Photos and KMZ Files are available on the Website

EQUIPMENT

- Four Leica GS15 geodetic GNSS receivers mounted on fixed height poles ($5^{\text {th }}$ Recvr on Secondary Pts)

EQUIPMENT CALIBRATION

- Fixed Height Poles calibrated for height and plumb

- Receiver PCV's calibrated for eccentricity

CREW CALIBRATION

- Validation Survey: Verify the crews understand their assignments, procedures, receiver operation, filling out the paperwork, communication protocols and verify the equipment was operating properly before starting the field campaign.

OBSERVATIOIN \& DATA COLLECTION

- GNSS Survey:
- Constellation: 32 US Navstar GPS satellites and 24 Russian GLONASS satellites
- Satellite Observed: 12-21 satellites observed with a minimum of 6 GPS and 6 GLONASS; GDOP<2;
- Elevation Mask set at 10° and post-processed at 15°
- Observables: GPS L1 \& L2, GLONASS L1 \& L2

OBSERVATIOIN \& DATA COLLECTION

- GNSS Survey:
- Absolute Antenna Models used in processing baselines; imported from the NGS and listed in the Survey Report
- Space Weather: Planetary K Index = 1-3 (gauges ionospheric activity on a scale of 0-9, <5 preferred)
- Vectors (baselines) were processed in IGS08 (WGS84) with the Precise Ephemeris imported from the NGS (GPS) and IGS (GLONASS)
- Post-Processing: Leica Geomatics Office (LGO) v8. 1
- Network Adjustments: Starnet v7.2.

REGIONAL NETWORK

Four nearest NGS CORS stations (TIBB, P224, WINT \& P176) were included and are the basis for recovering the IGS08(2005) and NAD83(2011) Datums

Four CGPS stations

 (EBMD, P178, UCSF and MHDL) were included to add strength and redundancy to the Network.

NGS CORS

REGIONAL NETWORK STATISTICS

The network contained 57 vectors averaging 20 km (12 mi.) in length, max. 38 km

Each vector represents three 24 hour observations staggered every other day

Min. Constrained Adjustment 2D Residuals Av. 2 mm , Std. Dev. 2 mm, Max. 10 mm; Vertical Residuals Av. 2 mm, Std. Dev. 2 mm, Range -7 to +8 mm

HIGH PRECISION NETWORK (HPN) SURVEY

Field campaign took 5 days during the week of July 15-19, 2013
(average epoch 2013.54)

Four crews operated
Four Leica GS15 GNSS
Receivers on FHP's

HPN points were occupied for 45 minutes at 15 sec. epoch rate

${ }^{67}$

Field Campaign: Day-1 - Radial Network A Base Receiver occupied \#101 while three crews occupied 19 remaining points at will

Field Campaign: Day-2 - Radial Network A Base Receiver occupied \#102 and three crews occupied 19 remaining points

Field Campaign: End of Day-2
Day-3: Tandem Operation - Four Crews working in unison at assigned points; completed surveyed in nine sessions

HPN STATISTICS

The network contained 83 non-trivial vectors averaging 4 km (2 $1 / 2 \mathrm{mi}$.) in length, maximum 8 km

Min. Constrained Adj.
Vector Residuals:
2D Av. 3 mm, Std. Dev. 2 mm, Max. 10 mm;
Vertical Av. 3 mm , Std.
Dev. 3 mm , Range -9 to
+16 mm

Network Solution: Fix 101

Hub Solution: Fix 101

Stat dN dE dZ

- 101 -0.000 -0.000 -0.000
- 102 -0.000 0.0000 .000
- 1030.0020 .0010 .001
- $1040.001-0.001-0.002$
- $105-0.003-0.001 \quad 0.002$
- 106 -0.004 -0.0000 .000
- 1070.0010 .0010 .003
- $1080.004-0.0020 .001$
- $109-0.003-0.0010 .003$
- $110-0.001-0.0000 .003$
- $111-0.0020 .001-0.002$
$\begin{array}{lllll}- & 112 & 0.001 & -0.002 & -0.001\end{array}$
- $1130.002 \quad 0.000-0.001$
- $1140.0010 .001-0.001$
- $1150.002-0.000-0.001$

-	116	-0.000	0.002

- 117 0.000 -0.000 -0.002
- $1180.0010 .002-0.002$
- $119-0.002-0.0000 .004$
- $120-0.000-0.001-0.005$

Coordinate Changes from Network to a Radial or "Hub" Solution (meters)

DATUMS - REFERENCE SYSTEMS

. Geometric Datums (3D) and Reference Frame

- NAD83 (2011) Epoch 2010.00 \& Epoch 2013.54
- IGS08 (2005) Epoch 2013.54 (July 17, 2013)
- Reference Network
- NGS CORS (Continuously Operating Reference Stations)
- Vertical Datum
- CCSF NAVD88 2013 Vertical Datum (SFVD13)
- Reference Network
- Reference by the HPN

DATUM RECOVERY

Four nearest operating CORS were the basis for recovery of the IGS08 \& NAD83 Datums

- IGS08 and NAD83 positions and velocities were obtained from the NGS CORS website
- HTDP model v3.2.3 was used to move positions between epochs for CORS operating <2.5 years
- Six network adjustments were processed to develop geodetic and plane coordinates in two reference frames at two different epochs

HTDP = Horizontal Time Dependant Program

- Why HTDP? Why Change Epochs?
- SF Bay Area is crossed with multiple faults and the CORS are each moving in a different direction and speeds.
- The CORS do not have the same relationship today as in 2010.00; therefore, must process in real time by moving the 2010.00 positions to 2013.54 (date of field survey).

REGIONAL NETWORK

Four NGS CORS:
TIBB
P224
WINT
P176
Four CGPS stations:
EBMD
P178
UCSF
MHDL
CCSF (Private RTN Sta.)

OVERVIEW of the ADJUSTMENTS

- \#1 MA and \#2 CA: Developed positions in IGS08(2005) 2013.54 Epoch for referencing future secular and episodic movements
- \#3 MC and \#4 CA: Developed positions in NAD83(2011) 2013.54 Epoch on the Regional Network for the purpose of establishing NAD83(2011) in the City
- \#5: Developed positions in NAD83(2011) 2010.00 Epoch for the HPN in the City
- \#6: Analyzed the Geoid 2012A Model for accuracy and consistency with the 2013 Leveling Network

System Test: Compute a 3D 7-Parameter Transformation of the Measured Network to Best Fit the IGS08 Positions of the CORS Stations

- Verify the consistency of the network computed with the precise ephemeris and the NGS IGS08 positions of the CORS Stations. The expectation is no change.
- Datum Transformation
- Scale Factor $=1.0000000685$ (1:15m)
- Rotation Around North Axis $=-0.07 \mathrm{Sec}$
- Rotation Around East Axis $=-0.06 \mathrm{Sec}$
- Rotation Around Vert. Axis $=-0.01 \mathrm{Sec}$
- Station dN dE dV
$\begin{array}{lllll}\text { - } & \begin{array}{llll}\text { P176 } & 0.003 & -0.001 & 0.002\end{array}\end{array}$
$\begin{array}{lllll}\text { - } 224 & 0.006 & 0.002 & 0.006\end{array}$
- TIBB $\quad-0.005 \quad-0.001 \quad-0.003$
$\begin{array}{lllll}\text { R WINT } & -0.004 & 0.000 & -0.005\end{array}$

IGS08(2005) Epoch 2013.54
 Adjustment \#1

Steps:
1- IGS08(2005) positions of the CORS obtained from NGS I
2- IGS08(2005) positions moved to 2013.54 with HTDP I
3- WINT was fixed in a Minimally Constrained Adjustment (includes four CORS, four CGPS stations, RTN CCSF and the HPN

> |

4-Coordinate differences (closures) reviewed at other three CORS
5/120014

IGS08(2005) Epoch 2013.54

Adjustment 1: 3D Minimally Constrained

- Coordinate Differences: IGS08 to Computed

-	Station	$\mathrm{dN}(\mathrm{m})$	$\mathrm{dE}(\mathrm{m})$	$\mathrm{dZ}(\mathrm{m})$
	P176	0.007	-0.004	0.006

$\begin{array}{rrrr}\text { P176 } & 0.007 & -0.004 & 0.006 \\ \text { - } 224 & 0.012 & 0.003 & 0.002\end{array}$
$\begin{array}{llll}\text { - TIBB } & 0.003 & -0.001 & -0.015\end{array}$
$\begin{array}{llll}\text { - WINT } 0.000 & 0.000 & 0.000 \text { FIXFD }\end{array}$

- Diff. N 3 to $12 \mathrm{~mm}, \mathrm{E}-4$ to $3 \mathrm{~mm}, \mathrm{Up}-15$ to 6 mm

IGS08(2005) Epoch 2013.54

Adjustment 2: 3D Constrained Adjustment

- All four CORS were constrained to develop IGS08(2005) 2013.54 Epoch positions on the CGPS and the HPN Stations
- UCSF position obtained from OPUS used as a check (mean of three 24 hours observations)
- Coordinate Difference: UCSF/OPUS to Computed (m)
- Station dN $\begin{aligned} & \text { dE }\end{aligned}$
- UCSE $-0.001 \quad 0.001 \quad-0.014 \mathrm{CA} /$ free
- Difference of 1 mm at UCSF indicates the compatibility with the NGS process

NAD83(2011) Epoch 2013.54
 Adjustment \#3

Steps:
1- NAD83(2011) 2010.00 Epoch positions of the CORS obtained from NGS Data Sheets

I
2- NAD83(2011) 2010.00 Epoch positions moved to 2013.54 with HTDP

I
3- WINT was fixed in a Minimally Constrained Adjustment (includes four CORS, four CGPS stations, and CCSF) |
4- Coordinate differences (closures) reviewed at other three CORS

NAD83(2011) Epoch 2013.54

Adjustment 3: 3D Minimally Constrained

- Coordinate Differences: NAD83(2011) to Computed
- Station $\begin{array}{cccc}\text { - P176 } & 0.006 & -0.004 & 0.005\end{array}$
$\begin{array}{llll}- & \text { P224 } 0.012 & 0.004 & 0.006\end{array}$
$\begin{array}{llll}- \text { TIBB } & 0.004 & -0.001 & -0.010\end{array}$
$\begin{array}{llll}- \text { WINT } 0.000 & 0.000 & 0.000\end{array}$
Max. Closures N 12mm, E 4mm, Up 10mm

NAD83(2011) Epoch 2013.54 Adjustment 4: 3D Constrained

- All 4 CORS were constrained to develop NAD83(2011) 2013.54 Epoch positions on the CGPS
- A 2013.54 position of UCSF (in SF) was obtained from SOPAC/SECTOR as a check.
- Coord. Differences: From UCSF to Computed
- Station dN dE dz
- UCSE $0.004 \quad-0.001 \quad-0.004$ CA/free

Note, SECTOR is referenced to NAD83(2007), whereas this adjustment is referenced to NAD83(2011)

NAD83(2011) Epoch 2010.00

Adjustment 5: 3D Minimally Constrained

- Coordinate Differences: NAD83(2011) to Computed
- Stat. dN(m) dE dZ Epoch
- UCSF $-0.000 \quad-0.000-0.000 \quad 2010.00$ FIXD
$\begin{array}{llllll}-M H D L & -0.003 & 0.003 & -0.006 & 2010.00\end{array}$
- CCSF $-0.005 \quad 0.002 \quad 0.007 \quad 2010.00$
- A 2010.00 Epoch position of UCSF was obtained from OPUS as a check base on three 24 hour observations.
- Coord. Differences: From UCSF/OPUS to Computed
- Station
$\begin{array}{llll}- \text { UCSF } & -0.004 & 0.001 & -0.013 \mathrm{CA} / \text { free }\end{array}$

NAD83(2011) Epoch 2010.00
 Coordinate Differences from HTDP to Computed

- The closures on the HTDP positions of MHDL and CCSF are less than the noise level of the HTDP model.
- Therefore, the results of this adjustment were held to established NAD83(2011) 2010.00 Epoch positions on MHDL, CCSF and the City's HPN.

NAD83(2011) Epoch 2010.00
 Adjustment 5: HPGN in the City

- Coordinate Differences at the HPGN stations: NGS NAD83(2011) 2010.00 Epoch to Computed
- Stat. $\mathrm{dN}(\mathrm{m}) \mathrm{dE} \mathrm{dZ}$ (BH) Epoch Source
- $\begin{array}{llllll}107 & -0.034 & 0.007 & -0.040 & 2010.00 & \text { NGS Candlstck }\end{array}$
- $201-0.029 \quad 0.002-0.045 \quad 2010.00$ NGS Tidal
- $202-0.053 \quad 0.017-0.031 \quad 2010.00$ NGS Sloat

Adjustment 6: Geoid Model Analysis

- Two Methods for incorporating Ellipsoid Heights and

Geoid Model Analysis

Adjustment \#6

- Method Two: Takes advantage of the relative precision of geoid heights. The Geoid 2012A Model was incorporated in a seven parameter Heights are discussed here.
- Method One: Approximates NAVD88 Heights by applying the hybrid Geoid 2012A heights to the measured NAD83 Ellipsoid Heights using the equation $\mathrm{H}=\mathrm{h}-\mathrm{N}$
- (H=Orthometric Ht, h=Ellipsoid Ht, N=Geoid Ht). transformation to best fit the leveled NAVD88 2013 Heights on the 20 HPN points
- Transformation Explained:
- Two horizontal constraints, scale fixed to 1.0 and heights loosely weighted
- The accuracy of this method in San Francisco is about 0.06 meters (Note, Geoid 12A is a hybrid model, compatible with NAD83(2011) Ellipsoid Hts)
- Least Squares solution allows the geoid to float and rotate around the north and east axis to best fit the vertical constraints.
5/120014

Geoid Model Analysis

Adjustment \#6

- Method Two: Takes advantage of the relative precision of the geoid model heights.
- The Geoid 2012A Model was incorporated in a seven parameter transformation to best fit the leveled NAVD88 2013 Heights on the 20 HPN points
- Least Squares solution allows the geoid to float and rotate around the north and east axis to best fit the vertical constraints.
- The rotations represent the tilts applied to the Geoid 2012A surface model to best fit the leveled NAVD88 2013 Heights

Geoid Model Analysis
 Adjustment \#6

- The rotations represent the tilts applied to the Geoid 2012A surface model to best fit the leveled NAVD88 2013 Heights

Column "A" are Differences from Leveled Ht to Modeled Column ' A ': Mean $=$ zero, Range $=-7$ to +7 mm , Std Dev $=4 \mathrm{~mm}$,
Solved rotations $=+0.21^{\prime \prime}$ around the N and $+0.24^{\prime \prime}$ around the E axis

	A	B	c	D=C-B	E	F=E-D
Point	Diff's	NavD88 Hts	NAD83 EH	Meas'd G H	2012A	Diff.
101	-0.003	150.799	118.188	-32.611	-32.548	0.063
102	0.004	170.991	138.344	-32.647	-32.587	0.060
103	0.004	46.352	13.592	-32.760	-32.712	048
104	0.000	7.550	-25.278	-32.828	-32.771	0.057
105	-0.004	56.489	23.607	-32.882	-32.817	0.065
106	-0.007	110.302	77.575	-32.727	-32.653	0.07
107	0.006	3.698	-28.944	-32.642	-32.574	0.06
108	0.000	4.484	-28.109	-32.593	-32.523	0.070
109	-0.004	3.461	-29.098	-32.559	-32.491	0.068
110	0.003	3.279	-29.261	-32.540	-32.486	0.05
111	0.003	4.000	-28.605	-32.605	-32.555	0.05
112	-0.004	54.344	21.692	-32.652	-32.593	0.05
113	-0.001	74.816	42.159	-32.657	-32.598	0.05
114	-0.001	99.656	66.915	-32.741	-32.681	0.060
115	0.003	61.448	28.692	-32.756	-32.697	0.05
116	0.007	89.985	57.292	-32.693	-32.635	0.05
117	-0.004	117.172	84.526	-32.646	-32.572	0.07
118	0.003	78.553	45.947	-32.606	-32.543	0.06
119	-0.003	18.941	-13.634	-32.575	-32.511	0.06
120	-0.002	85.887	53.304	-32.583	-32.524	0.059
Mean=	0.000	63.188	30.513	-32.675	-32.613	0.062

102

Leveled Hts \& GNSS Modeled Hts at
HPN 101 \& 102 Agree 6 mm (0.02')

Determine Orthometric Hts

- The accuracy will be the combined accuracy of the NAVD88 height of the HPN points, the accuracy of the measured ellipsoid height differences, the relative accuracy of the geoid heights and the residual tilt between the geoid modeled surface and the actual geoid surface. The effect of the tilt listed above (rotations of +0.213 and +0.243 seconds around the north and east axis) is 1.6 mm per kilometer (0.008 per mile) or less and would be absorbed in a constrained adjustment. The largest source of error is usually in the measured ellipsoid heights.

Determine Orthometric Hts

- Following the specifications and procedures used in this survey, an orthometric height accuracy of 0.007 meters (0.02 feet) was achieved at the HPN Stations utilizing GNSS.
- CCSF is in the process of developing procedures to utilize the local RTN Network to establish centimeter level orthometric heights.
5/1/2014

Accuracy

- Vector Residuals: Resulting from the minimally constrained adjustment in meters.
- USGG2012 Model used in a trial transformation to best fit the NAVD88 heights of the HPN points
- Returned results similar to the hybrid model; however, the rotations were +0.138 and +0.120 seconds around the north and east axis (negligible improvement as expected)
- Two Dimensional Residuals Vertical Residuals (absolute values
 $\begin{array}{llllllll}\text { - Regional CORS } & 57 & 0.002 & 0.002 & 0.010 & 0.002 & 0.002 & -0.007 \text { to }+0.008\end{array}$
- Local Accuracies: Resulting from the minimally constrained adjustment at the 95\% Level of Confidence in meters

	Vector Lengths(m)		Relative Dist. Error			el.Vert. Error
Network	Vary	Average	Avera	Max.	Precision	Average Max.
CCSF HPN	1675-	42	0.00	0.0	1:1,070,000	0.003
Regional	5322-3	20224	0.003	0.003	1:6,740,000	0.0030 .00

Local Accuracy

- Local Accuracies: Resulting from the minimally constrained adjustment at the 95\% Level of Confidence in meters

Relative Dist. Error Rel.Vert. Error
Network Average Max. Precision Average Max. $\begin{array}{llllll}\text { CCSF HPN } & 0.004 & 0.005 & 1: 1,070,000 & 0.003 & 0.004\end{array}$

| Regional 0.003 | 0.003 | $1: 6,740,000$ | 0.003 | 0.004 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Computing Network Accuracy

- RMS's for the Latitude, Longitude \& Ellipsoid Heights of the CORS stations were obtained from the "Short Term Time Series" at the NGS CORS website,
- and used to in a weighted constrained adjustment to develop the Network Accuracies on each point (Public Resources Code requirement)

Computing Network Accuracy

NGS Reference Document

- Standard Deviations for three of the four CORS were not available (less than 2.5 years of data),
- therefore the "Short Term Time Series" were used for all CORS for consistency

```
                CONSTRAINED ADJUSTMENT GUIDELINES
bunt vpdetel movember 2012 (Joen Appondix D)
```



```
gecrron 1 - Motoriblo, weeded to gutait for the Projeot
meczon 2 - preliminary procouning
mectron 2 - Dotomining control
mection 4 - Minimally Constrained (Pree) Horizontal Adjumtamen
mecrow S - Constctined Morimontal adjurment
geczon f-Verticel Adjurtamts (rree & Constrined)
avecton 7- Conbinimg the Horizontel and vertied1 nosulte
```



```
Avprworx A - Procensing progrmo
Apprworze - rinal ptive Checkint
Avpun+IX & - projeot neport cheexiot
Angrowx D - Upatees
```


Network Accuracy

This table allows users to calculate the propagated network error for future surveys based on the HPN positions

	NETWORK ACCURACY in Meters					958 confidence
	tatio				Horizontal	E11ipsoid Ht
	101	0.002	0.002	0.004	0.005	0.008
	102	0.002	0.002	0.004	0.005	0.008
	103	0.003	0.003	0.004	0.006	0.009
	104	0.003	0.003	0.004	0.006	0.009
	105	0.002	0.002	0.004	0.006	0.009
	106	0.003	0.003	0.004	0.006	0.009
	107	0.003	0.003	0.004	0.006	0.009
	108	0.002	0.002	0.004	0.006	0.009
	109	0.003	0.002	0.004	0.006	0.009
	110	0.002	0.002	0.004	0.006	0.008
	111	0.002	0.002	0.004	0.006	0.008
	112	0.002	0.002	0.004	0.006	0.008
	113	0.002	0.002	0.004	0.006	0.008
	114	0.003	0.002	0.004	0.006	0.009
	115	0.002	0.002	0.004	0.006	0.008
	116	0.003	0.002	0.004	0.006	0.009
	117	0.002	0.002	0.004	0.006	0.009
	118	0.002	0.002	0.004	0.006	0.008
	119	0.002	0.002	0.004	0.006	0.008
	120	0.002	0.002	0.004	0.006	0.008
	ccss	0.002	0.002	0.004	0.005	0.008
	ввмд	0.002	0.002	0.004	0.004	0.008
CORS $>$	MRPL	0.002	0.002	0.004	0.004	0.008
P176	${ }^{\text {P176 }}$	0.001	0.001	0.004	0.004	0.008
P224	(1788	${ }_{0}^{0.002}$	0.002 0.001	0.004 0.004 0.004	0.004 0.003	0.008 0.008
TIBB	тtbв	0.001	0.001	0.004	0.004	0.008
WINT	ucsF	0.001	0.001	0.004	0.003	0.008
	wint	0.001	0.001	0.004	0.003	0.008

Transformation: 1999 NAD83 (1991.35 Epoch) SPC > 2013 NAD83 (2011) 2010.00 Epoch SPC

Accuracy Classification per FGDC-Std-007, 2-1998

- Following the FGDC "Geospatial Positioning Accuracy Standard, Part 2, Geodetic Control Networks" (FGDC-Std-007, 2-1998), at the 95\% Level of Confidence this survey is classified as.....
- Local Horizontal Accuracy Classification is 5 mm
- Local Ellipsoid Height Acc. Classification is 5 mm
- Network Horizontal Accuracy Classification is 1 cm
- Network Ellipsoid Height Acc. Classification is 1 cm
- This Survey conforms to the requirements of Public Resources Code Section 8801 through 8819 and 8850 through 8880.

New CCSF Coordinate System

City \& County of San Francisco
Coordinate System 2013 (CCSF-CS13)

- CCSF-CS13: A low distortion grid projection designed for and centered on the County

Minimizes grid-ground differences in distances

- CCSF-CS13 provides a grid scale distortion of less than 1:100,000 (10 ppm) in most parts of CCSF
. For the average combined factors of the 20 HPN points, a ground distance of 1000 foot equals
- 1000.003 feet in the CCSF-CS13 and
- 999.925 feet in SPC Zone 3

City \& County of San Francisco Low Distortion Projection

- Projection surface was positioned at the most common ground height so that the combined scale factor is 1.0 and the distortion is zero
- Projection Surface Height
- Ellipsoid Height = 44.50 meters (146.0 feet);
- NAVD88 Height = 77 meters (253 feet)
- (see Purple Contour on next Slide)
- Note, Changes in height increases/decreases the scale 4.8 ppm for every $\mathbf{3 0 . 5}$ meters (100 foot)

CCSF-CS13: PPM (Distortion) Contours Purple $=0$, Yellow $=-10$, Green $=+10$ (Bill Hurdle)

City \& County of San Francisco Low Distortion Projection

- CCSF-CS13 system is referenced to the GRS80 ellipsoid, centered in the NAD83(2011) 2010.00 Epoch reference frame (same as SPC)
- Therefore: Coordinates are referred to as NAD83 (2011) Epoch 2010.00 CCSF-CS13
- North coincides with NAD83 Geodetic North at the Central Meridian near the center of the City
- Convergence Angle varies +/- two minutes east-west across the City

City \& County of San Francisco Low Distortion Projection

- Projection specifications for input in user's software:

Projection: Transverse Mercator
Ellipsoid: GRS-80
Scale: 1.000007
Latitude of Origin: $37^{\circ} 45^{\circ} 00^{\prime \prime}(37.75)$

False Northing: 24,000 meters (78,740 feet)
False Easting: 48,000 meters (157,480 feet)
(same idea as SPC Projections only less local distortion) 5/1/2014

SUMMARY

- CCSF sits between two major faults, the San Andreas \& Hayward. Future re-surveys of the HPN will be conducted to determine secular and episodic movements in the City
- If future surveys of the HPN follow the specifications and procedures adopted for this survey, the relative accuracy of measured movements is expected to approach 5 mm at the 95% level of confidence
- Statistically, this means the probability at the 95% level of confidence is that movement (signal) has occurred if the movement between two epochs is greater than the relative error (noise)

RECOMMENDATION - SUMMARY

- The differences in successive coordinates on a point can be used to estimate ground movements but they do not provide statistical information about the relative accuracies of movements; therefore the signal cannot be distinguished from noise.
- Measurements of temporal movements must be based on a rigorous simultaneous least squares adjustment of multiple independent observations at two different epochs for each point to compute the relative accuracy and thus the actual movement

129

Report Contents

Survey Report

City \& County of San Francisco
2013 High Precision Network Survey
 INDEX
Ber sed
mosctompas ameneress

- crourmuc coondmans or commouluge sintoss consa ccra
- skwonk biscarnaw

10. bata colue mon, mocessmag mat roumant

- accumer lochamanwong

Anspox

 \qquad

Page 5/11

Page 6/11

Survey Report

of the
2013 CCSF High Precision Network Survey(pdf)
Available At
http://www.sfdpw.org/index.aspx?page=1781
(Google "HPN Survey)
Attachments
Record of Survey
HPN Point Description/Obstruction Diagrams HPN KMZ Files
Transformation Spreadsheets

Report Appendix

Glossary
Geodetic Coordinate List
NAD83(2011) \& IGS08(2005)
Plane Coordinate List NAD83 SPC \& CCSF-CS13 (LDP)

Maps: CCSF 2013 Regional \& HPN GNSS Network

CORS Reference Data:

CORS Coordinates, HTDP Solutions, NGS Data
Sheets \& Short Term Time Series

