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Transformation of Rectangular Space Coordinates 
ER\VI~ SCIL\llD, i\Iathematic ian 

C . S. Coa r and Geodetic Sun·ey 

1. INTRODUCTION 

FIXING the position of points on the earth's surface by means of the two variables latitude 
and longitude is one of the most familiar examples of the use of a curvilinear coordinate 
system, leading to a (two-dimensional} non-Euclidean geometry, the geometry of curved 
spaces. This description of points is not only more elegant, in a mathematical sense, than 
would be a three-dimensional rectangular coordinate system but is a practical necessity as 
well. A rectangular (Cartesian) coordinate system implies the measurement of distances 
along straight lines, whereas the geodesist is, in effect, restricted to measuring along the 
cur ved surface of the earth. 

On the other hand, in dealing with points not lying on the assumed surface of the earth, 
it is necessary to introduce a third dimension, and for many purposes it is convenient to 
introduce a three-dimensional rectangular coordinate system, familiarly known as an x. y. z 
or i. j, k system, with its concomitant Euclidean metric - the Pythagorean theorem. 

The conversion of geodetic coordinates to x , y. z coordinates r equires only the most 
elementary notions of analytic geometry in addition to some basic geodetic concepts, but as 
the latter are not universally known to scientists whose fields have in recent years, with the 
development of missiles, been broadened to include geodesy, it was felt that a compilation 
of such formulas would serve a useful purpose. 

2. LATITUDE AND LONGITUDE 

Latitude ¢ and longitude A. are known as spherical coordinates, and have been used by 
astronomers since antiquity to designate the position of points on the celestial sphere, such 
as stars, as well as of points on the earth, assumed spherical - which it was, within the 
limits of err or of the observational methods in use until Newton's time. Newton's conjec­
tures, and subsequent refinements in observational techniques, have shown that an oblate 
ellipsoid of revolution is a much c loser approximation to the figure of the earth, but the 
original concept of latit.ude, as the elevation of the pole, has been retained because this is a 
physical, measurable quantity. The latitude thus observed is in fact the astronomic latitude 
and not the geodetic latitude which is a mathematical fiction arising from computation on an 
assumed ellipsoid; but as a first approximation the two are reasonably close. At any rate, 
after having computed a geodetic position on the ellipsoid by means of triangulation or 
traverse , we set the geodetic latitude there equal to the elevation of the pole relative to the 
ellipsoid normal or, equivalently, to t he angle at which the normal meets the plane of the 
equator (fig. l}. 

The longitude \ on the ellipsoid is, as in the case of the sphere, the angle which the 
meridian plane of a point makes with an arbitrarily designated, fixed meridian plane. 

3. THE MERIDIAN ELLIPSE 

Figure 1 shows the meridian ellipse, a cross section of the reference ellipsoid through 
the axis of revolution, this latter being the y axis. The x axis lies in the plane of the equa­
tor; the origin o is the center 01 the ellipse and of the· ellipsoid generated by r evolving the 
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meridian ellipse about the y axis. With semimajor axis a and semiminor axis b as indi­
cated in figure 1, the equation of the ellipse is x 2/ a 2 + y 2/ b 2 = 1. From this equation all 
the quantities needed for the geometry of the ellipsoid can be computed. 

y 

a 

F IGURE 1 

In particular, by differentiation, the slope of the normal PH is - dx/ dy - a 2y/b2x . From 
the figure, on the other hand, this slope is t an ¢ . Hence 

(3 .1) 

where x and y are the abscissa and ordinate, respectively, of P. Designating the length PH 
by N , it follows from figure 1, that 

(3.2) x = Ncos ¢ . 

Substituting (3.2) in (3.1) and setting e 2 1 - b2; a2 , 

(3.3) y = N(l- e 2)sin ¢ . 

With these values of x and Y, the equation of the ellipse is 

whence, solving for N, 

(3.4) N - ----=-a-=----:-~ 
( 1 - e2sin2 q;) l 2 

4. DEFLECTION OF THE VERTICAL 

With each geodetic position ( </JG, ~G) on the ellipsoid can be associated the point ( <1>. ~) on 
the celestial sphere to which the ellipsoid normal at the geodetic position is directed- the 
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so-called geodetic zenith. The initial assumption in geodetic computation is that this normal 
coincides with the direction of the gravity vector. Actually, however, the gravity vector is 
not normal to any artificially c r eated mathematical surface but to the l eve l surfaces of its 
potential field . To the extent that a designated one of these equipotential surfaces, called 
the geoid, deviates at a point from the ellipsoid, will the direction of the gravity vector at 
that point fail to coincide with the direction of the ellipsoid normal. Thus the gravity vector 
at (cp0 ,>,0 ) points toward the point ( .;.:A. "- A) on the celestial spher e, known as the astronomical 
zenith, which differs quite generally from the geodetic zenith. The angle between these two 
diverging normals is called the deflection, or deviation, of the vertical. 

5. THE GAUSS SPHERE 

A simple way to deal with these concepts is to think of the celestial sphere as shrunk to 
unit radius and centered at the center of the ellipsoid, as Gauss did in his spherical r epre ­
sentation of a surface . He assigned to each point of a surface with its given surface normal, 
that point on the unit sphere in which the radius parallel to the normal pierces the sphere. 
It is obvious from this construction that the r elative positions of points on the ellipsoid or , 
for that matter, on the geoid, mapped on the Gauss sphere are the same on this latter sphere 
as the corresponding images on the celestial sphere. Hence, for example, the deflection of 
the vertical is numer ically equal to the arc length of the gr eat cir cle segment connecting 
the images of the astronomic and geodetic positions on this unit sphere, and the direction 
cosines of the ellipsoid normal at point P are the x, y, z coordinates of the image P' of P on 
the sphere. It also makes clear why, given the direction cosines of the ellipsoid normal in 
t erms of the geodetic position of a point, we merely substitute the corresponding astronomic 
position to get the direction cosines of the gravity vector at the same point. 

6. RECTANGULAR COORDINATES OF A GEODETIC POINT 

We are now in a position to establish a r ectangular coordinate system with prescribed 
orientation and an origin P0 whose position in space is given r elative to a geodetic system, 
using the formulas of analytic geometry or vector analysis. 

In figure 2 let the meridian plane of Po be the xz plane of a right-handed Cartesian 
coordinate system, with origin o at the center of the ellipsoid, the z axis coinciding with 
the axis of rotation pointing north, and the equatorial plane the XY plane. The x axis points 
from o toward the side of the meridian on which P0 lies. Given are the geodetic coordi­
nates (<Po. A.0 ) of P 0 and its elevation h 0 above the r efer ence ellipsoid. (Elevations with 
respect to the ellipsoid are not directly measurable, but can be approximated from the cor­
r esponding geoid elevations, if sufficient data are available to determine the distance between 
the two surfaces.) 

Let P (¢ , >-.. ) be any point on the ellipsoid, and >.,.' = \ 0 - , i.e., >-.. ' is longitude with ref­
erence to the meridian of p 0 , measured positive eastward. The rectangular coordinates of 
P a r e ther e fore, from figure 2 and figure 1: 

X = OK = N cos ¢ cos A.' 

Y - OL - N cos q; sin A.' 

z = r.1P N ( l- c 2 )s in ¢ 

where N is the length of the normal PH at P , and c the eccentricity of the meridian ellipse. 
The quantity N is one of the principa l radii of curvature of the ellipsoid and hence exten­
sively tabulated in the geodetic literature together with the second principal radius of 
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FIGUR E 2 F IGURE 3 

curvature R. R is also the radius of curvature of the meridian ellipse. Its length 
a( 1 - e2) ( l - e2 s i n2.;)3 2 can easily be derived from the equation of the meridian ellipse, 
using the formula for curvature of a plane curve, but does not enter into the formulas 
used here. 

With P a distance h , measured along the normal, above the ellipsoid surface it is appar­
ent from figure 3 that its coordinates will be 

X = ( N + h) cos <;, cos A.' 

(6. 1) Y = ( N + h ) cos ¢ s i n A.1 

Z [N( l- e 2 ) •h] s i n q; . 

In particular the coordinates of p0 are 

x0 = ( N0 + h0 ) cos ¢ 0 

(6.2) 

z0 [N0 ( 1 - e 2 ).,. h 0 ] si n ¢ 0 . 

Now translate the origin from o to P0 and rotate the X and z axes in the xz plane, as 
indicated in figure 4, so as to make the direction of the z axis coincide with the outward 
direction of the ellipsoid normal at P0 • This leaves the di rection of the Y axis and the Y 
coordinates unchanged and rotate s the x and z axes through an angle of - (90° - ; 0 ) . Sub­
stituting this angle in the familiar linear transformation formulas and calling the coordi­
nates with r espect to the new axes, x , y , and z the transformed coordinates are 

x ( X - X0 )s in cp0 - ( Z - Z0 )cos y..0 

(6.3) y y 

z - (X-X
0

)cos q,0 + ( Z - Z0 )sin ¢ 0 . 

This result is also readily apparent by inspection of figure 5 in which an arbitrary point 
P is projected on both sets of axes. 
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Substituting the quantities (6.1) and (6. 2) into (6. 3), the rectangular coordinates of a 
point in space in terms of its geodetic coordinates, and its perpendicular distance h from 
the ellipsoid are 

x = ( N + h )[s i n ( cp
0

- cp) - s i n cp0 cos ¢ ( 1 - cos t...')l 

(6.4) y = ( N + h ) cos ¢ s in t...' 

z - ( N + h ) [cos ( cp
0

- cp ) - c os ¢ 0 cos <P ( 1 -cos >-.' ) ] 

The quantities with zero subscripts are the constant functions of the origin P0 of the 
system, and t... ' = t... 0 - t... is longitude of P with reference to the meridian of P0 . 

7. DIRECTION OF THE GRAVITY VECTOR 

Since equations (6.4) give rectangular coordinates of a point on the ellipsoid normal at 
(¢ , t... ' ) in terms of the parameter h , the coordinates of a second point on this normal can be 
found by, say, setting h = o in (6.4). The direction cosines of the line joining two points 
( x 1 , y 1 , z1) and ( x2 , y 2 , z2 ) being proportional to the three differences x 2 -x 11 y 2 - y 11 and 
z 

2 
- z 

1
, we have for the ellipsoid normal 

x 2 - x 1 :y 2 -y 1 : z 2 -z 1 = h [ s i n ( cp
0

- cp ) - s in ¢
0 

cos <t ( 1 - cos t...') ] 

h cos ¢ s i n t...' : h [cos ( ¢ 0 - ¢ ) - cos ¢ 0 cos ¢ ( 1 - co s f...1 )]. 

Dividing through by h , the length of the segment, the direction cosines of the normal are 
found to be 

s in (¢ 0 - ¢ ) - s in ¢ 0 cos¢ ( I- cos t-.1 ) : cos ¢ s i n f...1 : 

(7 .1) 
I 

c os ( cp0 - cp ) - cos ¢ 0 cos <P ( 1 - cos >-.. ) 

where ¢ and t... ' correspond to the geodetic position of the point in question. 

p .. -:.:.-=. ____ -----
" I I 
I I 
I I 
I I 
I .., •• )\ r---r-- --- ----
11 I 
I I I 
I I 1 

I \ \ I 
I 
I 
I 
I 

' I 
I 

o---- {X-X0l-+! 

FI GUR E 4 F IGURE 5 
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The direction of the gravity vector, as determined by astronomic observation, is paral­
lel to the ellipsoid normal at the astronomic position and its direction cosines are, therefore, 

(7 .2) 
sin (¢ 0 - ¢ A) - sin ¢ 0 cos ¢ A ( 1 - cos A

1
A): 

cos ¢ A sin A1A: cos ( <Po - ¢ Al - cos <Po cos ¢ A ( 1- cos A
1
A) 

. the subscript A indicating that astronomic coordinates are used. Specifically, ¢ A is the 
astronomic latitude of point P, and A 1 A = AA - A0 , A0 still being the geodetic longitude of the 
origin P0 • 

8. DIRECTIONS OF THE AXES OF A SECOND COORDINATE SYSTEM 

The rectangular coordinate system established at P0 with the ellipsoid normal (or, if 
preferred, the gravity vector) for its z axis is designated the principal, or master, system 
and coordinates with respect to it as, for example, the geodetic control points (6.4) are 
designated x0 , Yo, z0• 

We consider next a secondary coordinate system with origin at the point P
1 

( ¢
1

, A
1

) . 

The z 1 axis is to be the ellipsoid normal at P 1 pointing outward, and its direction cosines 
with respect to the principal system have already been computed in (7 .1). If, on the other 
hand, the gravity vector is to be the z 1 axis, the direction cosines follow from (7 .2), where 
¢ A and A A are astronomic latitude and longitude of P 1 respectively. 

In either case the x 1y 1 plane shall pass through P 1 and be perpendicular to the z 1 axis, 
with the x 1 axis pointing south, and the y1 axis completing a right-handed system in the 
sequence x 1y 1z 1 • 

The next step is to compute all the cosines of the angles which each axis in a set forms 
with the three axes of the second set, nine in number. For this purpose the origin P 1 may 
be assumed to be on the ellipsoid since the axes are similarly oriented for all values of h . 
P 1 is the general point P in figure 2. The ellipsoid normal at P 1 cuts the polar axis at H 
and HP 1 is therefore the direction of the z 1 axis. A tangent to the ellipsoid at P 1 cuts the 
polar axis in T, hence TP i is the direction of the x 1 axis. In the right triangle P 1 QT the angle 
QTP 1 = ¢ (see also fig. 1),and QT = P 1Q cot ¢ 1 = N1 cos ¢ 1 cot ¢ 1 • The geodetic coordinates 
of P 1 an~ P 0 are ( ¢ 1, A1) and ( ¢ 0 , A0 ). The longitude difference A0 - A 1 is again designated 
A ' . In the XYZ system of figure 2 the coordinates of P 1 , H , and T are therefore 

T : { :: : : 

ZT = OQ + QT = ;, + N 1 cos ¢ 1 cot ¢ 1 . 
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Hence the direction cosines of the x
1 

axis, i.e., of the tangent 'IP are 

N 1 cos cp1 cos 'A.1 

N1 cot ¢ 1 

= sin q;1 cos 'A.1 

N1 cos ¢ 1 sin 'A.1 

N 1 cot ¢ 1 

N1 cos ¢ 1 cot ¢ 1 
N1 cot ¢ 1 

s in ¢ 1 sin ~ : - cos cp1 

Similarly, using the coordinates of P and H, the direction cosines of the z 1 axis are 

X - XH . Yp - YH . Zp - 2iJ = · ~ cos ¢ 1 cos 'A.1 : cos ¢ 1 s in ~ 
HP HP HP 

The dir ection cosines of the y 1 axis a r e the three two-rowed determinants from the 
matrix 

( cos ¢ 1 cos A
1 

\s i n ¢ 1 cos 'A.1 

c os ¢ 1 sin 'A.1 

s in ¢ 1 sin 'A.1 

consisting of the cosines of the z 1 and x 1 axes, or 

cos ¢i_ s in A' 
= - sin 'A.1 cos 'A.1 0 . 

In vector analysis the direction cosines of a line are interpreted as the components of 
the unit vector parallel to that line and with suitable orientation. In this type of analysis the 
unit vector along the y axis is obtained as the cross, or exterior , product of the z and x unit 
vectors in that order for a right-hand system, with computations similar to the above. 

Combining the above results the three direction cosines of the x l ' y 1 , and z l axes 
through P 1, relative to the XYZ system of figure 2, are respectively 

xl ax i s: sin ¢ 1 cos A.' . sin ¢ 1 sin A.' . - cos ¢ 1 

(8.1) 
Y1 axi s: - s in A.1 cos >...' 0 

z l a xi s: cos <P 1 cos 'A.1 . cos <t1 sin >...' . sin ¢ 1 

Similarly, with ¢ = ¢ 0, A.' ~ o, the three axes at Po have the direction cosines 

XO axis: sin ¢ 0 , 0 • - cos <Po 

(8.2) 
Yo axis: 0 1 0 

zo ax is: c o s ¢ 0 , 0 sin ¢ 0 

9. ANGLES BETWEEN THE TWO SETS OF AXES 

The cosine of the angle which a line A whose direction cosines are ( a. 1 • a. 2 • a.3 ) makes 
with a second line B ( f31 , J32 ,f33 ) is 

cos ( A,B) = a. 1/3 1 t a. 2"52 t a. f3 3 · 
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This quantity is also the length of the orthogonal projection of a unit length of either 
line upon the other. Hence, for example, a unit length on the x0 axis projects on the x 1 
axis, from (8.1) and (8.2), as 

The form in the second line is preferable for most computing purposes since many 
significant figures are needed in the trigonometric functions and these are more likely to be 
available for small angles . 

Computing similarly the other projections and arranging them in the following tabular 
form 

(9.1) 

it can be seen that these nine quantities are the direction cosines of the three axes of each 
of the two systems of coordinates relative to the other. Thus, for example, the first row in 
(9.1) represents the three direction cosines of the x 1 axis relative to the x0 y0 z0 system, and 
the second column contains the three direction cosines of the y 0 axis relative to the x 1y 1z 1 
system of coordinates. 

The table (9.2) below gives the numerical values, arranged in the order indicated in 
(9.1) 

(9.2) 

x 0 

- sin ¢0 sin ,' 

, 
/ -- / -~- -

/ 

Yo 

, , , 

cos A. 1 

' ' ' ' ' ' ' ' ' ' 

F IGURE 6 
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10. TRANSFORMATION OF COORDINATES FROM ONE SYSTEM TO THE OTHER 

Given: the rectangular coordinates ( x 0 • y0 . z0 ) of a point P with respect to the principal 
coordinate system at PQ. Required: to find the coordinates ( x 1,y1 • z 1 ) of the same point 
with respect to the coordinate system of P 1• 

P 0,beingthe origin, has coordinates ( x 0 ,y0 ,z0 ) = (O,O,O). The correspondingcoordinates 
for P l' designated ( x 0°,y0°, z0° ) in figure 6, are computed from equations (6.4). 

The position vector P 1P in the new coordinate system is, from figure 6, equal to the 
difference P0P - P0P 1 of the indicated position vectors of P and P 1 r e spectively in the old 
coordinate system. The components of position vector P

1
P, i.e., the rectangular coordinates 

of its end point P, are therefore obtained by projecting the corresponding components of the 
vector P0P - P0P 1 onto the appropriate axes of the coordinate system in which P1P is the 
position vector. 

The resulting transformation equations are 

z 1 = (x0 - x 0°)cos(x0 z 1) -r ( y 0 -y00)cos(y0 z 1 ) + (z0 - z0°)cos ( z0 z 1) 

which may be written, for computational purposes , 

x l = x 0cos( x0x 1 ) ... Yocos(yox 1 ) + z 0cos( z0x 1) - x* 

(10.1) 
Y1 x0cos( x0y 1 ) + y0cos(y0y 1 ) + z 0cos( zoY 1 ) - y* 

z l = x0cos(x0 z 1 ) + y0cos(y0 z 1 ) + z 0cos(z 0z 1) - z * 

where 

x* = x 0° cos(x0x 1 ) + y 0° cos(y0x 1 ) + z00 cos(z0x 1 ) 

y* = x0° cos(x0y 1 ) + Yoo cos(YoY1 ) + z0° cos(z0y 1 ) 

z* = x 0° cos( x 0 z 1) + Yoo cos(yoz1 ) + z0° cos(z0 z 1) 

are constant for all points, and the cosines are the quantities (9.2). 

11. GRAVITY SYSTEMS 

Either, or both , of the coordinate systems involved in the transformation (10.1) may be 
gravity systems, that is to say the z axis does not point in the direction of the ellipsoid 
normal corresponding to the geodetic position but in the actual and observable direction of 
gravity at the origin. It is convenient in questions involving direct i on (but not distance) to 
think of the astronomic coordinates ( ¢ A ,t...A) as specifying a point on the ellipsoid whose 
ellipsoid coordinates are (¢ A,t...A) and therefore different, in general, from the point ( ¢G,t...G) . 
A gravity system at a point (¢ G. t...G) has axes which are parallel to the axes of a normal-to­
the-ellipsoid system at the assumed point (¢ A,t... A) of the ellipsoid. Hence for a gravity sys­
tem at P 0 or P 1 it is necessary to substitute the appropriate astronomic coordinates in 
equations (8.1) and/ or (8.2), and also in (9.2) and (10.1). However, the coordinates x0° . y 0°. z0° 
which appear in (10.1) are functions of the geodetic distance between P0 and P 1 and must 
in every case be computed from (6.4) with geodetic coordinates. 
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As an illustration, consider the transformation of coordinates from a gravity system to 
an ellipsoidal system with the same origin. The geodetic coordinates of the common origin 
P

0
, as determined from triangulation, are ¢ 0 ,t...0 ; its astronomic position, resulting from 

direct astronomic observation, is ¢ A,>.."A" In the transformation equations (10.1) x 0 ,y0 ,z0 are 
coordinates of a point in space referred to the gravity system, and are assumed to be given. 
The latitude ¢ 0 in the formulas is the astronomic latitude ¢ A since the z0 axis has the 
direction of the gravity vector. Likewise ¢ 1 = ¢ 0 and A. ' = t...0 - A. 1 = A.~ - t...0 • With these 
values of ¢

0
, ¢ 1 , and A. ' we can compute the elements of the matrix t9.2) which are the 

cosines (9.1) required as coefficients in (10.1) . 

The quantities x*, y* , z* in this case are all zero because x 0°. y00. z 0° are all zero. This 
follows from equation (6.4) which, when dealing with gravity systems must be interpreted 
carefully. We have, up to this point in the example, been dealing only with directions of the 
various axes relative to each other, and have found it convenient for this purpose to interpret 
the astronomic position of P 0 as a point P 0' on the ellipsoid whose geodetic coordinates ¢ 0 . t...Q 
are numerically equal to ¢ A, A.A. This concept is not admissible in using equations (6.4J 
which are, in effect, formulas for distance between two points on the earth in terms of their 
geodetic coordinates, ¢ ,A. and ¢ 0 . t...

0
, and their ellipsoid heights h and h 0 • In all cases, 

whether either or both coordinate systems are gravity systems, the computation of x0° , y 0°,z0° 
from (6.4) requires the geodetic coordinates ¢ ,>... and ¢ 0 . t...0 of the two origins. In the present 
case the two origins are one and the same point; hence ¢ = cf>o, A.= t...0 • h = h0 in (6.4) , making 
the right hand side of those equations identically zero. 

12. ASTRONOMIC AND GEODETIC AZIMUTHS: THE LAPLACE CORRECTION 

Figure 7 shows the x0 , y0 • z0 axes of the gravity system at P 0 discussed in 11. The 
directions of these axes are fixed, at the time of astronomic observation, relative to the 
celestial sphere. In particular, the z0 axis points to the astronomic zenith, and the x0 axis 
points to astronomic south, the zero point of astronomic azimuths which are measured in 
the plane of the horizon - the x0y 0 plane. Also shown, in grossly exaggerated position, is 
the x 1 axis of the ellipsoidal system pointing in the direction of geodetic south. This latter 
direction is defined implicitly at a triangulation station by other visible points in the trian­
gulation. Astronomic azimuth at P 0 are measured with reference to the x0 z0 plane, while 
geodetic angles are observed with the plane of the z 0 and x 1 axes as initial plane so that 
geodetic azimuths are, in fact, also measured from the :x 1 z 0 plane. The difference between 
the two kinds of azimuth is therefore the angle between the two initial planes, i.e., the angle 
8 in the XoY 0 plane Of figure 7. 

If the segment of the x
1 

axis shown is assumed to be of unit length, then its indicated 
projections a 1, a 2, a 3 on the x0 , y0 , and z0 axes are the direction cosines of the x 1 axis or, 
from the matrix (9.2): 

a l = cos ( ¢ 0 - ¢ 1) - sin ¢ 0 sin ¢ 1 ( 1 - cos A.' ) = s i n ¢ 0 s in ¢ 1 cos A.' + cos ¢ 0 cos cp1 

a 2 = s in ¢ 1 sin A.' = sin ¢ 1 s in A.' 

a 3 = - s i n(¢ 0 - ¢ 1) - s in ¢ 1 cos ¢ 0 ( 1 - c o s A.') = sin ¢ 1 c os ¢ 0 cos A.' - cos ¢ 1 sin ¢ 0 

where now, for the present purpose, the second form is preferable. 

It is now a simple matter to get a close approximation to the angle e, the so-called 
Laplace correction. From the figure 

(12.1) sin e= --­Vl - a
3
2 • 
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a.3 cannot exceed (¢ 1 - ¢ 0 ) numerically due to the obvious inequality 

!a.
3
1 = !sin ¢ 1 cos ¢0 cos~ - cos ¢ 1 sin ¢0 I~ I s in ¢1 cos ¢ 0 - cos ¢ 1 sin ¢0 1 

Yo 

F IGURE 7 

Since deflections of the vertical are at most, say, 1' or 0.0003, ¢ 1 - ¢ 0 , which is a com­
ponent of the deflection, and, a fortiori a. 3, cannot exceed this amount. Hence the denomi­
nator in (12.1) agrees with the number 1 to at least 7 significant figures, and 

(12.2) sin e = a. 2 = sin ¢ 1 sin ~ 

to the same number of significant figure s . t...' being small, and hence also e, s in t...' and 
sin e can be replaced by f...1 and e in (12.2) . The resulting relation is in the form given by 
Laplace 

(12.3) 

From figure 7 it is apparent that an observed astronomic azimuth incr eas ed by the 
quantity e will give the geodetic azimuth to the same station. The geodetic azimuth so 
obtained, called a Laplace azimuth, is, in general, more accurate than the same azimuth 
computed through a chain of triangulation and is therefore , when available, held fixed in the 
adjustment of the triangulation. 
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13. COORDINATES OF THE ELLIPSOID CENTER 

Many other arbitrarily oriented coordinate systems are of course possible. Consider, for 
example, a system in which the origin is a point with geodetic latitude ¢ 0 = 28° 29' 28:19451 
and an ellipsoid elevation h = 6.255 m. Let the z axis have the direction of the inward 
pointing normal to the ellipsoid at the origin and let the y axis have a geodetic azimuth of 
262 ° 49' 07" (from south), with the x axis completing a left-handed system. Required are 
the x, y , z coordinates of the center of the Clarke 1866 ellipsoid ( a = 6,378, 206.4 m, 
e 2 = 0.00676 86580). 

north 

x 

FIGURE 8 F IGURE 9 

Figure 8 is the meridian ellipse of the origin P of the xyz system. P ' and P are on the 
same ellipsoid normal, the z axis of the coordinate system. A line through the ellipsoid 
center o, parallel to the normal PP ', cuts the tangent at P 1 in M' and the trace of the xy plane 
in M. From the discussion in connection with figure 1 the abscissa and ordinate of P' are 

and 

RP' = 
a( 1 - e 2)sin¢ 

i/1 - e 2sin2¢ 

Projecting these segments on OM ' and M' P' respectively 

6 ,373 , 292 . 533 m. 

M 'P 1 = OR s i n ¢ - RP ' cos ¢ = 

= l R, 113. 914 m. 

a e2s in ¢ cos ¢ 

Vl - e 2 s i n 2¢ 
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Figure 9 shows the xy plane and the trace PM of the meridian plane of the origin P . 
Hence the direction PM is due north and the x and y axes must have directions as indicated 
to meet the specifications of the given data. The projections of MP ( = M'P ' ) on the x and y 

axes give the x and y coordinates, respectively, of the ellipsoid center 

x = -MP c os 7° 10 153 11 = - 17,971. 817 

y = MP s i n 7° 10'53" = 2, 264 . 438 

z ·-OM = -(OM ' + h ) - 6, 373 , 298. 788 
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