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In "2 top (polar) view the eye is likewise ar an infinite distance and on the extension of
the polar axis above the north pole whose image NT now coincides with that of the polar

axis. The meridian planes all contain this axis and appear as a bundle of straight lines
through the center NT' ['he parallels appear in troe length and shape as a family of circles

concentric at NT, the diameter of cach circle being the length of the trace of the parallel

in the front view. The angice between the meridian lines in the top view Is the true longitude
difference; with each guadrant in the rtop view divided into 6 equal parts the meridians arc
therefore separated by 13° of longitude ©

In order 1o draw the meridians in the front view and thues complete the grid of the basic
figure it is merely necessary 1o remember from geomeltry that every parallel projection of
a circle is an ellipsc including, as limiting cases, the cirele itself and a line segmert (its
diameter). From the symmetry of the figure and the faco that all meridians pass through
the poles it follows that the center of cach meridian ellipse in the front view is the point OF

and that the line NFSF is in cach case the major axis. The minor axis lic along the line

representing the equator, its end points being determined by parallel projection fre the
top view onto the trace of the equator, of the intersections of the straight line meridian
with the outline circle. Having determined the four vertices of the cllipse, the curve can be
drawn, using proportoenal dividers as described in section 13,

Figure 1




3. The Oblique Side View of the
Intersection of Sphere and Cone of Sight

All this is elementary descriptive geometry and sketched here merely to fix tt  ideas.
Consider, next, a point ~  at a given distance from, and directly over, a given point on the

surface of the sphere. In figure l the latitude of this point is 30°N. and its meridian plane
is assumed, for convenience, to be theplaneof the paper in the front view. The correspond-
ing point in the top view is ET' From E the eye can see that portion of the sphere enclosed

by a right circular cone with vertex E and tangent to the sphere. The circular intersection
of this cone and the sphere lies in a plane perpendicular to the axis OFE of the cone, its

trace in the front view being the chord AFBF. By parallel projection in the direction OFEF
this circle with diamerer AFBF appears in its true shape as seen from E and forms the

ourline of the visible portion of the earth’s surface. It is our purpose to draw within this
circle the geographic grid of meridians and parallels as they would appear from E if they
were actually etched on the surface of the sphere. This, it must be borne in mind, will be
a perspective view or projection in contradistinction to the auxiliary front and top views
which are, as usual, parallel or orthographic projections. The intersection of the cone of
sight and the sphere is also shown in the top view because we shall have occasion to refer
to it in the following, although we shall circumvent its use in our constructions for the
reasons stated at the outset. It is an cllipse whose minor axis lies on NTET’ the ends being

projections of A _ and BF, and whose major axis has the length of chord A

F Fer

4, The Projective Projection of
Points on the Sphere

In figure 2 let PF be the arbitrary point on the visible spherical cap whose image in the
oblique perspective view, the side view, is sought. The corresponding point P in the rop

view is found in the usual way, by parallel projection. The eye, or the camera lens, “pro-
jects” the point P along EFPF 10 CF on plane AB which is parallel to the camera plate.

”

This point CF is therefore where P is “scen,” and projection parallel to OFEF will give

the ordinate ¥ of the image of P. In the top view the line ETPT represents the same line
in space as line EFPF and the image must therefore lie on ETPT' Hence the point in the
top view corresponding to the interior point C of the front view is CT' the intersection of
ETPT and the vertical from CF‘ The distance CTCT from the central meridian plane to
Cr is therefore the abscic 1 x of the image, or map, of P--completing the transfer of the

point P on the sphere to its full scale visual image. It should be noted that the construction
is carried out entirely with lines and circles, and the attainable accuracy of construction is
limited only by the precision of the drawing instruments.

it would now be possible to choose a number of other points on the straight line repre-
scenting the parallel of PF in the front view and proceed to plot this parallel in the perspec-

tive view point by point, using the front and top views for each one. Similarly, by choosing.
addizionat points P, on the straight line meridian of P in the top vicw the meridian of P

could be completed. This procedure, however, is redious and unsatisfactory in other re-
spects.  We seck therefore more elegant methods of constructing these curves, both with
and without compurtations, that is to sayv analytically and synthetically.

5. Characteristics of the
Projected Grid Lines

1e completed meridian and parallel of P are shown in f° 1re 2 1o illustrate the discus-
sion. Some features common to all such curves are ar once apparent.,
(1) Lach curve is the intersection with plane 4B of the cone whose vertex is E and whose
ie is a circle on the sphere, and is therefore a conic section.
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{2) Furthermore, since the tangt  cone to the sphere contains all of these cones its pro-
jection, the circular outline of our map, must enclose all of these sections. They are there-
fore bounded, hence ellipses.

(3) In aspects, such as { re 2, thatdonot incluc  a visible pole each curve in the visible
portion of the sphere crosses (twice) the plane AB separating the visible portion from the
invisible and therefore all curves have poin in common with the circular boundary of the
map.

(4) At such points the curves must be tangent to this circle since by (2) they cannor leave
(cross) it. These points of tangency are therefore the end points of the two arcs constitut-
ing the cllipse, one of which is the visible and the other the invisible branch of the meridian
or parallel.

(5) Each of the meridian ellipses passes through two fixed points, the images of the
north and south poles which lie on the y-axis, the trace on the map of the central (zero)
meridian.

We conclude, therefore, that the visible meridians are a tamily of ellipses which are
tangent to the boundary circle exactly twice and which have two fixed points in commor. The
parallels also form a family of tangent cllipses but without a fixed point condition. How-
ever, the family of parallel cllipses has a further geometric property which we shall see
presently. In either case, after having determined the points of tangency on the outline
circle with a simple and precise construction the vertices of the ellipse in question can be
readily found, and the curve therefore constructed by any of a number of convenient mcthods.

i ore?2




6. Construction o, he
Parallel of Latifude

We consider first the construction of a given stra‘~*t line parallel LFKF {fig. 3} inter-
sec 1g AFBF at CF‘ Its latitude - is the angle in the front view formed by L O and the

F F

trace of the equator. e point CF projected parallel to O O intersects the outline circle

F
at € and C which are the poliats of tangency. Since the points € and C arc located symmet-
rically with respect to the map of the central meridian OA, the minor axis of the ellipsc
will lie on QA and the major axis will be parallel to the chord CC', in accordance with the
theorem: “If a circle has double contact with a conic the chord of contact is parallel to one
or other of the axes.”! When the circle encloses the conic, as in the present case, the
chord is parallel to the major axis. The points of the ellipsc on 04, and hence the ex-
tremities of the minor axis, are L and K, the map images of LF and KF‘ Kand L are de-

termined from KF and LF by the general method of section 4, and the center M of the el-

lipse is located by bisecting the segment KL, The latitude ellipse is now completed by the
method illustrated in figure 4, an abstract from figure 3.

Our wiven data at this point consists of the major axis, the two verrices K and L on the
minor axis, the center M, the chord CC" parallel to the major axis, and the points C and
C at which the cllipse is tangent to the outline circle. The tangents at these points are
also tangents of the circle and arce therefore constructed perpendifcular to the radii OC and
OC', intersecting the major axis at Pand P . Lrecta perpendicular  rough C (or C') to
the major axis MP., A circle with diameter MP intersects this perpendicular ar D, and the
circle with center M and radius MD is the major auxiliary circle of the ellipse, cutting the

VElementary Treatise on Conic Sections by C., Smirth, Macmillan, New York, 1910, p. 252.

Figure 3




major axis in V and W, the vertices on the major axis. MD cuts CC' in S, and MS is the
radius of the minor auxiliary circle that cuts the minor axis in the vertices L and K. Since
these latter points were part of the given data it is seen that the construction could have
procecded in reverse order, i.e., construct the circle with radius ML, intersect it with
CC for § and produce MS ro intersect the perpendicular throv-4 C for D. The former
method, however, is preferable, ¢s cially when MS is small since it does not involve the
extrapolation of M5 to D, Furthermore this method is applicable when, as in the case of the
longitude ellipses, only the center M, but not the vertices L and K, are given.

The above construction is based on the well-known property of the cllipse, that a tangent
to the ellipse and the tangent to the auxiliary circle at the corresponding point of the circle
intersect on the axis of the ellipse.

FIGURE 4

The complete ellipse, or the visible portion of it between the points of tangency with the
outline circle, can now be drawn by one of the methoo  suggesrted in part I, It may be
noted in figure 6 that one of the parallels in the map degencrates into a straight line. This
is characteristic of all perspective views inwhich neither of the poles is in the field of view.
[t is the parallel of the front view which, if produced, would pass through the obscervation
point EF' and the visible arcs of the latitude ellipses on either side are concave with re-

spect o ii.
The discussion up to this point has been limited to aspects in which neither pole 15 vis-
ible. In cases where one of the poles is in the field of view the plane AFBF intersects the

polar axis, and parallels of latitude sufficiently close to the pole are not interscected by
AFBF. ifence the cllipses representing these parallels will nowhere be rangent to the out-

line of the map, so that a modification of the above procedure is necessary. The situation
is analogous to the invisible parallels in the case we have been discussing and the necessary
procedurce can be illustrated by constructing the parallel SFTF of figure 3. The vertices

S, T on the minor axis are found, as before, by way of points s and ¢ on AFBF. The mid-

point U of 8T is the center of the ellipse andd the major axis is the perpendicular wo 5T
through U. To find the cxtremities of the major axis project u, the midpoint of s¢, from E 5

to the parallel SFTF into RF and onto the trace of the parallel in the top view into RT' In-
tersect R’I’ET with the parallel (o NFNT through #, cutting RTET inun and NTET mu’p
The length of the segment uTu' 7 s e semimajor axis 7R, thus fixing thefour vertices of

the laritude ellipse. It can be seen that this method is perfectly general and could be used,
if preferred, for all latitude ellipses.  The method does, however, introduce 1 additional
source of vrror, the use of both front and top view, whereas the first method uses tf front
view only.



7. Construction of the Meridians

The points of tangc  of the “ipses that represent the meridians in the perspectiy
vi correspond again to the intersections of the meridians on the sphe  : with the base of
the tangent cor of sight. These points can therefore be derived, eitner from the inter-
scections of the straight line AFBF and the elliptical meridians shown in the front view of

figure 1, or from the intersections of the elliptical section of the cone and sphere in the top
view of the samc figure with the family of straight line meridians. For a rough sketch it
would be sufficient to draw this eclliptical section inio the top view which would then im-
mediately yield the nccessary points of rangency for any desired visible meridian. For a
careful construction, however, it is advisable to determine directly each point of the ellipti-
cal section as needed. This requires the construction: Given the defining elements of an
ellipse--say, the four vertices, or the two auxiliary circles and the directions of the princi-
pal axes; rto find the intersecrions of the ellipse with an arbitrary given line. This con-
struction is c¢xplained in section 16.

In figure 5 the method is illustrated using the top view although in certain cases the
front view would give a more positive intersection. If, for instance, the eventual projection
of the intersection from the top to the pe: »ective view should be at a distance close to the
radius of the outline circle of the perspective view, then the arc of this circle and the line
of projection would intersect at an angle near 0°. In this casc the projection from the
front view would intersect thearc atneariy a right angle and would, thercfore, be preferable.

et the meridian to be constructed be the indicared diameter in the top view. The scee-
tion of plane AB in the top view is an cllipsc whose minor axis lies on N’I‘ET’ the plane of
the central meridian. AT and BT are the vertices of the minor axis, and bisection of this
segment gives the center CT' The major axis lics along the projection line CTCF’ its

length being that of AFBF' On the segment JCT, the intercept of the meridian on the semi-
major axis, determine point K so that KCp: JCp = CTAT: CTCr T This is done most con-

veniently with proportional dividers, but in the absence of these can be accomplished with
a ruler by extending the meridian and drawing the tangents to the auxiliary circles as indi-
cated in the top view. NTK intersects the minor auxiliary circle in H T and ¢ - Parallels

to the major axis through G 7 and H T intersect the meridian in GT and HT' the sought in-
tersections, and the central meridian in G'.'r and H::r- Parallels to NS atdistances HTH"Tand
GTG"T respectively intersect the outline circle of the perspective view in i and G, the points

of tangency.

The tangents to the circle at H and G, intersecting at T, and obtained by erecting per-
pendiculars through H and G to the radii EH and EG respectively, are again tangent to the
cllipse as well. The line TE is the perpendicular bisector of the chord HG and hence the
minor axis of the ellipse, from the theorem quoted in section 6. The poles N and S should
also be projected from the front view since these two points are common to ail meridians.
With these four points and two tangents the projection of the meridian eliipse is now fixed,
in fact overdetermined; but these are all critical data for the curves and should be used in
the construction.

Next, draw a line through one of the poles, say S, parallel to the minor axis £T. On this
line we will find the other extr ity, D, of the chord of the ellipse, using the theory of the
Pascal line. (See section 19.) The perpendicular bisector of SD will then be the major
axis and we can proceed with the construction of the “lipse as in s¢ ‘on 6. There are a
number of different possible procedures to effect this construction, such as the choice of
poles just mentioned, but these choices will inmost cases be obvious as well as immaterial,

Extend the line connecting S and one of the points of tangency, say H, to intersect the
tangent TG at the other point in M. The line joining M and L, the intersection of the chord
HG and the chord SD, cuts thetangent TG in R and is the Pascal line of the combination. The
interscction of GR and SD is the required point D.

Due to the symmetry of the perspective view with respect to the plane of the central me-
ridian, every meridian » constructed yields at the same time the construction of the cor-
responding meridian -* by reflection through the axis NES.



This completes the synthetic, or purely geomerric, construction of the grid of the sphere
as viewed normally fra  an arbitrary heightabovean arbitrary point on its surface. Figure
6 shows, on an enlarged scale, the completed side view of figure 1. The dashed (invisible)
arcs of the various ellipses are included in this figure as a matter of interest and do neot,
of course, form any part of the camera picture. By themselves, the dashed grid lines form
a map of the invisible major portion (not realizable in its entirety in our space of three
dimensions) of the surface of the sphere, often referred to as the external projection. As
shown in the next section, this synthetic approach readily yields the transformation equa-
tions needed for an analvtical treatment of the projection.

[I. ANALYTICAL TREATMENT
OF THE PROBLEM

8. Plane Coordinates of a Point

In figure 2 let E, the viewing point, be given in latitude », longitude 0, and at distancce &
above the surface of the sphercof radius R, so that OFEF: R + k. Let the trace of the equa-

tor in the front view be the X axis of a rectangular coordinate system in the plane of the
front view, with the center OF of the circular trace of the meridian of EF’ the zero merid-

ian, as origin and OFNF as Y axis. A _ and BF are on the intersection of the tangent cone

F
with the sphere and EFAFOF is therefore a right angle. The angle EFOFAF is designated

Figure 5




# and its cosine is AFOF/OFEF, or
cos 8 =R/R + 1. (8.1)

This definition replaces, for convenience, the parameter k with 4. The length of the nor-
mal OD to linc ABis R cos 8 and its inclination is Dy The normal, or perpendicular, form

of the equation of AB is therefore

X cos -, +Y sin P - Rcos=s=0 (8.2)

0
Similarly, the equation of OF is

X sin ;oO-Ycos q30=0 (8.3)

FIGURE 6

Agsume an arbitrary point P on the sphere with given latitude ¥, and longitude \ with re-
spect to the meridian plane of E. The ordinate YP of P is constant for all points that lie

on the given parallel » since their locus is the straight line through Ppn parallel to the X
axis. By considering the end peint of this chord it is apparent that YP is R sin ¢, and that
half the length of the chord which, by construction, is also the radius NTPTin the top view,
is R cos v. The lo1 “tude X appears undi >rted in the top view as <PTNTET. The X coordi-
ne of PT' hence also of PF.’ is therefore R cos v cos . These coordinates of PF(R cos ¥
cos A, R sin ¢} substituted in (8.2) and (8.3) yield the perpendicular distances LP . and

F
MPF from AFBF and OFEF respectively to PF:
LPF = R (cos Py €OS p COS ) + sin 20 sin ¥ - cos 8)
MP_, = -R (sin s, cos » cos » - cos o, sin 1) (8.4)
F~ 0 0=

Assuming a second coordinate system (x,¥) in the plane of the map (the oblique side view),
with O as origin and the aXes as indicated in figure 2, it follows from the method of con-

9



struction of the map point P thar its y coordinare Yp is the distance DCF, and from similar

triar es

MPpP MP _ -DE

__E EF —F"F

ME F DEF LPF

Since DEFV FD = R gin & tan 3,
R (cosr‘nosinco—sinco( CO80C0o8))
y = DC= Rsinftan® - LoD . :
n(sin 9 tan A - cos e COs @ Cco8 b - sin ®( Sin ¥ *cos 8)

or

R gin® vy sin p - si b P
Y- sin® 8 {cos 2 Sin v - sinmg cos 3 cos ) . (8.5)
1 - cos 2 (cos T €OS » cos y + sin 29 sin )

¢ fCr CpEp  Cp CFp , C

PTPT P EL s PR TET

»all the segments in this proportion being corresponding projections of the same

From the figure we have the proportions

_CFEF
Pptp

line in space CiI‘CT being, by construction, the map abscissa x of point P we have x = C’TCT

1 T or since P, = R cos » siny and DC
T =¥
F

‘= R cos » sin y, and finally from (8.5)

R (cos ER sin rp - sin i COS P COS 1)

R sin® 8 cos p sin & (8.6)

x =
1 - cos 2 (cos T €Os » cos L+ sin ¥, sin =)

Equations (B.5) and (8.6) are the mapping equartions for the prejection, the word “pro-
Jjection” being applicable in this case. both in its literal sense and in the extended meaning
used in the mathematical theory of ca: graphy. They cnable one to compute so-called plane
coordinates (x,y} of any point P with spherical (geographic) coordinates (»,4) as seen from
an exterior ~aint E with spt raal (3 ) and & ation k. The elevation °

pressed in the same u... of length as the radius R of the sphere and transformed by (3.1)
to the parameter 3. 10 is, for convenience, set equal to zero so that the & to be used in

(8.5) and (8.6) is actually the difference, - *

%q» Of the Greenwich longitudes of P and E,

with a suitable conventic as to sign.

9, Equations of the Grid Lines

Since the mapping egquations are lincar in the two variables sin », cos o, they can be
solved explicitly by elementary methods for these two variables. Squaring 2and adding the
resulting two equations climinates » and results in the equation of the meridians:

x%(cos® xjy tan® 1 +sin? ¢) +y* ran®\(co: B COS® 8 + 5inZa) 20 oo
-2x R cos T SIN? € cos £ tan > - 2y R sin 2 €08 Ty sin® 8 ¢ LA (9..
-R® cos?® 7o sin® 8 tan® * = 0

10



Operating similarly with respect to the linear variables sin A, cos x in (8.5) and (8.6)
eliminates % and yields the equartion of the parallels:

x°(sin Py ~ COS € sin 4)2 +y? {(sin 2 - COS B sin )® + cos® %y sin? § }

+ 2y R cos 0

0
cos ¢ - sin ») + R? sin* a (sin® 4 - sin® ~50) =0

9.2
sin® g (sin 2 ¢-2

10. Inverse Mapping Equations

Arranging {9.2) in the form A sin® v + 2B sin p + C =0 and solving by the quadratic
formula we obrain the expression

{xa sin  cos 8 +y% sin D €OS 5*YR cos v sin® 2 £sin & (R sin " sinaﬂ}
_ . Taind no o8 L 2%
i o= Y cos vy COS Q)E(R s’m a-x" - y3)7 . (Lo.1)
%7 cos® £ +¥° cos® @ +R% gin*s
An analogous procedure with respect to tan A in equation (9.1) yields
1
sin & (y sinwp,_ - R cos v, cos 8) * cos v, (R® sin® 6 - x* - y2)3
tanxaxsins{ v sin 9 - Q%H)(aiz = -1 (10.2)
(R cos g SIN® 8 +y sin 7, cos §)° - (x° cos Pty )
or, alternatively,
x sin @ .
tan x = 1 (10.29)
2

sin 2 (R cos 3 cos & - ¥ sin 3} * cos 7, (R® sin® & - x* - y%)

Equations (10.1) and (10.2) are the inverse mapping equations by means of which a point
on the map with given coordinates {x,y) can be transformed back on the sphere. As was
to be expected from previous geometrical considerations, the ambiguity introduced by the
radical indicates that to each point in the map correspond two points on the sphere, the two
points (one visible and the other invisible) in which the ray from E pierces the sphere.

11, The Envelope and Singularilies

The discriminant B® - AC of the above-mentioned quadratic equation set equalto 0 gives
in each case the condition

x* +y? = R? sin? ¢ (11.1)

--the equation of the outline circle or trace of the plane AB—which is therefore the envelope
of both families of curves (10.1) and (10.2) or, equivalently, of (9.1) and (%.2).

In addition, the family of parallels (10.1) has the singularity found by setting the factor
(R sin 20 sin ¥z -y cos ® COS ¢) of the discriminant equal to zero. The resulting condition

R sin o sin® &

(11.2)
COs 7 COs ]

is the equation of the pa: lel for which sin ¢ = sin uo/cos dand which maps into the degen-

erated straight line ellipse mentioned in section 6. The geometrical significance of this
singularity is apparent from a consideration of figure 6.

The family of meridians (10.2) also has a further singularity which was anticipated in
the synthetic treatment. It results from setting the factor x in the discriminant of (10.2) = 0.
The corresponding y values from (9.1) are

R sin® a cos v - R cos g sin® &
Y, = i 'Y = (11.3)
1 -SlnprCOSC' 1 +sin 0 cos 8

11






how er, that we are dealing with a tw jarameter family of pro tions the computational
cor lications would not appear at all excessive.
nutating the coordinate axes through angle =, where

tan o = sin ¥ tan (13.1)
eliminates the xy term and gives the equation of the curve with respect to the rotated axes in
the form

3 -3).

¥'% (sin® & + cos” ¢ cos® ¢ sin® 1) +y'® cos® yy sin

U

-2x’Rcos*rosinz gcos?sink (l-cos® :Osin2 1) (13.2)

1
2 R®cos® ﬂosin“ﬁsjnzl

an ellipse whose center lies on the y’axis and one of whose principal axes therefore passes
through the origin. It may be noted that equation {13.1) is independent of €, which means
that the skew of the meridian ellipses is independent of the height of the observer above the
ground, a fact which is nor obvious from the synthetic treatment of part I.

Completing the square in (13.2) and following the procedure outlined in section 12 we can
find the lengths of the principal axes and the coodinates of the center. These coordinates
are then projected through angle o onto the original x,y axes to give the coordinates of the
center with respect to this coordinate gystem.

Summarizing the results thus obtained we have for the lengtha , of the major semiaxis
and for the length & of the miner semiaxis (which passes through the center with inclina-
tion 2} the following:

R sin® a R sin® &
ay = - —_—
{(sin® & + cos? 0 cos® & sin® 1) 7 T
) (13.3)
R sin® 8 cos gy Sin A a) cos g sin X
by = = F] F] 2 ] =
sin® & + cos g COS 8 sin® A T
L
with T = (sin® & +cos® g cos® 2 sin® A7
The center {xc, yc) of the meridian ellipse is
R cos zj sin® & cos 8 sin » cos i
%, = =h) cos = COS A
sin® & - cos® 2 cos® § sin® (13.4)
R sin p, cos p, sin® 8 cos § sin® A
0] 0 . .
Vo= = by sin wocosesml=xctana

sin® & + cos® 0 cos® 5 sin® A

Computing the numerical values of (13.1), (13.3), and(13.4), in that order, gives sufficient
data to plot the meridian ellipse. Alternatively, the four vertices can be computed and con-
ructed. Their x,y¥ coordinates can be obtained from the coordinates of the center (13.4) by
adding and subtracting the appropriate x or y component of a; and &,. The result for the
vertices on the minor axis is

v

.| x =5y (cos € cos )t rcos a}
Vy, Va: A
1 tE {yu= by tana {cos A cos ) zcos a)= %, tan g (13.5)

where the two upper signs of the ambiguities are used for one vertex and the two lower for
the other.

nilarly, the two vertices on the major axis are

V. v {xv—b.‘ cos 8 cos . ~a, sina
3y 4 . N 13.6)
y =Db cos8cositanz T4, cosx (
v 3 3

13



2 2
Simultaneous solution of (13.2) a ; envelope x'  +y’ = R® sin® 2 gives the points of
tangency in terms of rotated coor tes x', ¥'. A rotation through -« then yields these
points in terms of the x,¥ coordinate system of figure 2 as

R sin ) . . 2 2 .2 Ai)
x= ——F ———3 ([ cosv.cosfcost =sin s, (sin® & - cos® v, 5in” 22
1-cos® p, sin® A( 0 g (sin® &-c 0 )
. (13.7)
R - 2y - i 2 P2 T
Y= z 3 sin®, cos g, cos F sin® A T cosi(sin £ - cos ) SN A)
1-cos e Sin o 0] 0

An interesting geometrical property of the centers (13.4) of the meridian ellipses is that
they all lie on an ellipse; this curve can therefore be usced in locating the centers by inter-
secting it with the perpendicular .sector of the chord connccting the points of tangency
(13.7). This locus of centers is found by eliminating » from equations (13.4). Sinc J{/xc
= sin n, tan » it follows that sin®i = y’C/(xQC sin® =, + y* ), and this quanrity substituted

in the second of equations (13.4) effects thedesired elimination of 1. Dropping the subscript
¢ of x and ¥, since these are nowrunning coordinates, and arranging the equation in standard
form results in

i . P N
[: ) R sin %9 €08 T sin® 8 cos ]
¥
+

x2 2 (1 - sin® 9 cos? 8)
=1 (13.8)
R® cos? % sin® & cos® 8 R? gin® % cos® N sin* 8 cos® =
4(1 - sin® 2 cos® 8) 4 (1 - sin® v Cos® 8y

an ellipse whose minor axis lies on the v axis, one of the vertices being at the origin of the
coordinate system.

14, Formulas for the Orthographic
Projection

The orthographic, or parallel, projection is a limiting case of this class of projections
obtained by letting k in cquation (8.1) approach infiniry. Setring, in consequence, 6 = 90Y,
sin 8 = 1, cos 8 = 0 simplifies the various equations considerably. We list, for reference,
some of the results.

The mapping cquati s (8.3), (8.6)

x R cos »sin
y = R (cos 20 sin » - sin 9 COs ® COS A)

The inverse mapping equations (10.1), (10.2')

_ 1 : i
gin & = Tz(ycos 1 ¢ Sin 7 (R® -x7 - y°)2 )

x

tan A = 1
- ¥ sin 3 = cos 3, (R -x® - y%)2

The vertices of the latitude ellipse

Vi: (0, Rsin T~ coo),' Va: (U, R sin o + mU); Va, Vi: (= R cos o, R cos o sin o)

The meridian ellipses all have their centers at the origin. The inclination of the by
dis is still 90° =2 = 60% + arctan (sin oy tan X), but its le  his con : e 1 c
diameter of the circular envelope x® +3° = R®, so that each meridian e :is Mt to
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this circle at the extre "  of the major . ;. The two vertices at the extremities of the
minor axis have coordinates x = + R sina, y = =+ R cos o,
Making the further simplification of setting Py = 0, N 90°, we obiain the familiar equa-

torial and polar orthographic projection respectively of the sphere which we assumed as
known a priori, and used as our front and top views.

X=PRcos 2sini

apping cquations front view {y - R sin o

X= R cos » sin X

Mapping equations 1op view
ppIng ©q P {y=—RCOSDCOSl

—~
3
<

FIGURE 7

I, AUXILIARY THEOREMS
AND CONSTRUCTIONS

15, Construclion of the Ellipse
With Pyroportional Dividers

When a circle of radius ¢ is rotated abour a diameter through an angle [ and projected
orthogonally onto the plane of the circle in its original position, the resulting trace is an
cllipse whose major axis coincides with the axis of revolution of the circle and whose min-
or semiaxis is & = q cos i, Obviously cvery chord of the circle perpendicular to the axis
of revolution, the major axis of the ¢ilipse, is reduced in the ratio 1 cos € or a:h. Revers-
ing the motion it i3 cen that, conversely, if the chord of an ellipse parallel 1o 1 o
axis is extended in the ratio a:b its end points will lic on a circle with radius a and con-
centric with the ellipse, the so-called major auxiliary circle.

Similarly, If the cllipse with major semiaxis @ and minor semiaxis b is rotated abour its
minor axis through the angle 4, the corresponding trace on the initial plane will be a circle,
concentric with the ellipse and with radius b, theminor auxiliary circle of the ellipse.  Any
desired number of peoints P on the ellipse (see fig. 7) can therefore be constructed by draw-
ing an arbitrary half-chord RQ of the minor auxiliary circle parallei to the major axis, and
extending it in the ratio a:h 1o P, ur, by constructing a half-chord TS of the major auxiliary
circle parallel to the minor axis and reducing it in the ratio b:a w P.

This optional cxpansion or reduction is casily and accurarely accomplished with one
fixed setring of proportional dividers for a given ellipse and this method of constructing the
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points of an ellipse with prescribed axes seems superior to other methods when an adequate
instrument is available.

16, Chovds and Tangents of the Ellipse

The ratio a:b is also the key to the construction of the points of intersection of an ellipse
with an arbitrary chord and to most other constructions involving cllipses. In figure 7 let
UV be the given chord, where, as before, the cllipse is defined by the auxiliary circles with
center O, radii a and b, and the indicated directions of the axes. Set one end of the propor-
tional dividers to a with the other end b, clamp, and divide OV at W in the ratio a:h. The
line UW is the locus of points which divide perpendiculars from points on UV to the e OU
in the ratio a:b. (A diligent student of high school geometry will also be able to cc truct
this line UW with merely a ruler.) Through the intersections @ and @ of UW with the minor
auxiliary circle draw parallels QR and Q' R’ to the major axis cutting UV in P and P', the
points sought.  An aliernative and analogous construction, involving the extension of the
minor axis segment OU in the ratio a:b to Z and using the intersections $ and §° of ZV with
the major auxiliary circle, is also shown in the figure, Depending on the slope of the given
chord UV onc or the other of these twe alternatives will, in general, be more accurate.

A tangent to the ellipse is the special case of a chord for which the points of interscction
P and P’ merge into a single point p as indicated in the lower right-hand quadrant of figure
7. The auxiliary lines UW and VZ bcecome inth  casc tangents to the auxiliary circles and
can therefore be constructed without recourse to proportionalirty. A number of problems
involving tangents to an cllipse can be solved by using the interrelations of the lines in this
figure.

17, Ruler-and-Compass Constructions

In the absence of proportional dividers a number of other methods of constructing the
ellipse cxactly, though not in general precisely, due to propagation of errors resultirg from
interdependent constl  tions and the like, are available, not to mention the variety of con-
structions for quasi-cllipses by means of circular arcs. The best known, probably, is the
one using the angle variously called cecentric, parametric, or auxiliary angle and designated
by astronomers as the eccentric anomaly. In figure 7 the points O,@, and S are collinear
and this line OS5 forms with the major axis the angle in question, or its supplement. Hence
to consiruct a point P of the ellipse, corresponding to an arbitrary radius vector (line

N2

Fi Fs

Figure 8
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ates from this line the resulting image on the plate will be correspondingly distorted. The
consequent complications in the analysis take us beyond the scope of this paper, but we in-
dicate here one optional course of procedure in developing for this general case mapping
equations corresponding to (8.5,8.6).

In figure 10, EF (AF D BFJ is the trace of the tangent cone from the front view of figure

2. A tilt of the camera through an angle § in the plane of the central meridian rozates line

A F D BF around EF into position AF D B F Since we have left aside, throughour, all

considerations of scale reduction depending on the optics of the camera we may assume
the points (8.5,8.6) of the normal aspect of our map to lie in the plane AFBF which is, of
course, the trace of the oblique section of figure 2.

AF
Q(xy)
4.5 23
=
1
B
FIGURE 9
FIGURE 10 Br

l.Let @ be an arbitrary point of the normal aspect with coordinates (x,y) as computed
from mapping cquations (§.5,8.6). The ray QEF intersects A’F BF in @', the image of

@ in the tilted aspect. The ordinate v of @ projects orthogonally, in true length, into QD of
figure 10 which lics in the plane of the central meridian. Hence

vy otan DEF(J, (20.1)

with » = DEF or, from figure 2, ¢ = R gin 6 tan £.

The trace of the straight line central meridian projects in the rotation into a straight
N . » + - - . . .
line on plane 4 FB Fand through D', the center of the camera plate, This line is desig-

nated the v’ axis of the coordinare system on plane A’ FBrF with D' as origin. The ab-
scissas of points @ remain unchanged, x° = x, and the ordinates y’ bhecome @ D'=D’EF
’ ’
tan b E = ¢ tan (DE -i} 0
a Y an (DE @ - i), or
tan DE . - tan i

yo=r - .
1L 4+ tan i tan DEFQ

Ls









21, An Aerial View of the United States

Assuming the point with Totitwde ) = 40°N.and longitude 3 . =93° W, of Greenwich o be,
roughly, the center of the continental Uls., exclusive of Alaska, it will be found, by rough
measurement on a globe, thar a value for the parameter 2 of 257 in formulas (8.5,8.6) will
extend the horizen sufficiently to include all of this arva. An exact value for 2 can be com-

puted from the formula

Cos f = CO8 7, COS wUUs .~ sin v osin ,
0 0 {21.1)

which expresses the functional relation between - and ¥ for points on the horizon, found by
seiting LP = 0 in (8.4). It may be noted conversely that, having fixed £, for a given value of
v (respectively ) the corresponding value of & {respectively ) of the parallel (meridian) on
the horizon can be found by solving this cquation (21.1).

Figure 11 is a sketch of this area on the above assumptions. The 3° grid lines were
drawn by connecting the points rabulared in the accompanying rable in which the main body
was computed from (5.3,8.6) with £ = 23°, o= 10° and R = 10U, The points listed at the top

and bottom margins arc the intersecrions (points of tanyency) of the meridians with the cir-
cular perimeter, or horizon, of the map as computed from (13.7). The points to the right
of the main body of the table are the tangent intersections of the parallels of latitude with
the perimeter, computed from (12.53),

S ce the map is symmetrical with respect to the central meridian (- = U), points to the
eas. of this meridian O positive) only arclisted. Thus, for example, the entry in the tablefor
== 30%, % =20° 1x = - 36.809, ¥y = - 17.408) represents the coordinates of the intersection of
the 30th parallel with the 75th Greenwich meridian, 20° to the cast of the 95th, or central,
meridian. The symmuetrical point on this parallel, 20° west of the central meridian, i.e., the
115th meridian would therefore have the same y courdinate, -17.408, but its x coordinate is
- 36.809.
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