














digital xy-coordinates produced by the compara-
tor and ending with the computed X, ¥, Z co-
ordinates of points on the ground in any con-
venient svstem such as a State Plane Coordinare
System, rthe form of the output is both printed
and on IBM cards.

Data processing is considered as being com-
posed of four stages, The stages are not identi-
cal to computer programs as, for example, the
first stage is accomplished with a single pro-
gram and six programs are uscd in the second
stage. Again it is emphasized that no practical
work has yet progressed beyond the Cantilever
Adjustment in the second stage although Larth
Curvature and the Inverse Transform have been
applied occasionally omitting Resection and Block
Adjustment.

2.1 Reduction of Measured

The reduction of the measured coordinates
includes the several steps needed beginning with
the punched paper tape output of the comparator
and ending with a set of image coordinates in a
form suitable for entry into the perspective
computation phase. The reducrion includes the
averaging of multiple observations, corrections
for all known sources of systematric errors, and
a transformation of the image coordinates into
a system in which the perspective cent  serves
as the origin.
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FIG, 5.—Diagram of photograph format indicating the order
of numbering the corner fiducial marks.

2.11 Film Distortion Correcticn

Anv type of plastic aerial film chaazes shape
slightty and nonuniformly between the time the
photograph is exposed and the time it is printou
on glass, when any further changes are consid-
ered to be arrested.  Evidence of the distortion
Is revealed by the comparator me  urements
of fiducial marks as compared to the known fixed
measurements in the cameraiiself. The following
dguations® are used o correct for the distorrion
in the best manner available 1o da-e, as de-
scribed more fully in appendix L.

The corner fiducial marks arc considered to
be numbered clockwise from 1 to 4 (fig. 5), and
corner 3 is arbitrarily selected as an interim
computational origin, with the ordinate passing
through corner 2. The given constant camera
coordinates of the corner fiducial marks and
principal point are designated as Xj‘ Yj; XP' YP
wl e ¥3 = Xs =Y3=0,j= 1.4 The observed
coerdinates of the four corners based onthe com-
parator coordinate svstem are correspondingly

designated by small letters g yj.
A series of coefficients are define
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Once the six coefficients m, n, p, ¢, ¥, s have
been determined for a given diapositive, then
the observed coordinares Xpv Voo of any image
on the photograph can be transforme.d into com-
pensated coordinates xl.’, _vz.' through the applica-

rion of the formulas:
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The effect of the transformation is to apply
lincar transformations (translation, rotation, Jdi-
lation) to correct three corners and then 1o apply
a conformal fitring to correct the fourth point
without disturbing the other three. Tests so far

4Film distortion compensation for photuogrammetric usc
by G, C, Tewinkel, Coast and Geodetic Su y Technical
Duffetin No. 14, 19064,



have indicated smaller remaining residual dis-
cref cies from film distortion than was origi-
lally anticipated, but it is nevertheless recog-

=zd that a more effective correction method
s need  in order to exploit fully the accuracy
potentiar of the analytic system., It is alsc
recognized that some residual systematic distor-
tions can be absorbed in the relative orientation
prograr and attributed to orientation parameters
without _adicating any abnormal y-parallax re-
siduals. The effectiveness of the correction is
exhibited only by an analysis of the results of
block adjustment in an overcontrolled area.

It sl 1ld be pointed our that the application of
Equation (3) not only corrects for film distortion
but also translates the origin of the final coordi-
nate system to the principal point of the photo-
graph, through the presence of the terms xp, yp,
thus f nishing the data in the form needed in
subsequent operations.

2.111 Translation to the Perspective Center

Although the translation of the image coordi-
nates to the perspective center (or the principal
point) as the origin is not theoretically associated
with film distorrion, nevertheless the film-dis-
tortion computational phase offers a convenient
place for accomplishing the step. This is exe-
cuted through the addition of the values x_, yp

shown in Equation (3). The two values are con-
stants associated with the particular camera,
Its fiducial marks and the system adopted for
numbering the marks (fig. 3).

2.12 Radial Lens Distortion

Corrections for lens distortion are applied in
two steps, one for the asymmetric, elliptical or
tilt effect, and the other for the normal sym-

:strical radial distortion. No effort is made
in the present programs for the correction of
tangential distortion. This is not to deny the
existance of tangential distortion, but only to
admit that it has not yet been determined for
the cameras.

2.121 Asymmetric Radial Lens Distortion
Correction

In all of the aerial cameras used to date, the
radial lens disrortions are not identical for the
different radii, resulting in noticeable residual
discrepancies if an average uniform distortion
is assumed. Another way of visualizing the
condition is that lines of equal distortion are
not symmetric or circular with respect to the
principal point. However, the pattern in each
case closely conforms to an ellipse drifted off
center and, as indicated by F.E. Washer® , is
nractically identical to a small tilt of the focal

plane. Consequently, a false rtilt is intrc iced
as shown in appendix 2 to correct all image
points for the asymmetric effect, after v__:h ti
total remaining correction for uniform radial
distortion is applied.

The false tilt is composed of two paramelters:
a direction and a magnitude. The “upper”® end
of the axis of the ellipse is considered to form
an angle @ with the x-axis of the photogra in
the sense of analvtic geometry, and it is defined
that a = sin 2, & = cos 9, which become constants
for a camera. It is convenient first to rotate
the coordinate axis for an image through this
angle &, make the asymmetric correction and
then rotate back into the original photographic
coordinate system.

The formulas for the initial rotation are:
xg=ax+by yg=-bx+ay (4)

where x, ¥y are the coordinate values of an
image after film distortion compensation.

Based on the analysis in the Manual of Pho-
togrammetry’ and utilizing the formula

d_ = 2 (sin t)/f

in which d is the x-component of the radial rilt
displacement of an image having an abscissa x
on (the *upper® side of) a photograph of tilt £
and focal length f, it can be shown thart the cor-
rected coordinates of the image are

x,= % [1 +x, (sin t)/f]

S
vy = vg [+ 2, (sint)/f] ®
The term (sin f}/f becomes a constant for a cam-
era. The angle f is determined from an analysis
of the radial distortions on four or more diago-
nals. The small values of for fof 10, 17, and 18
seconds, respectively, for the three cameras
used to date, allows certain approximations in
deriving the simplified Equations (5).
Then the final rotation is the inverse form of
the initial one:

x

ax, - by
H ¢
(6)

Y= bxt +G}'t

2.122 Radial Lens Dislortion Correction

Uniform radial lens distortion is corrected
along with atmospheric refraction through the
use of the formulas

SPrism effect, camera tipping and tangential distortion by
Frances E, Washer, Photogrammetric Engineering, v. 23,
p. 721, 1957,

6Manual of Photogrammetry, American Society of Phnt-
grammeltry, second edition, p. 321, 1952.

7Ibid,



rE‘ - x2 +y2
= x[1 T @rd)/rF vk T hyrT)
y' =yt (rd)/r® 4k + ko) {7}

in which the 2, and B; terms relate to atmos-
pheric refraction, which is discussed later. Here
our interest is confined ro the term {rd)/r*. The
coordinates x, y are those of any image after
they have been corrected for the asymmetric
condition, x¥* and y’ are the resulting corrected
values, and d is the uniform radial distortion
factor at radius # after the removal of the asym-
metric portion and is essentially the average
distortion factor along all four radial directions.
(See also app. 3).

The value rd isobrained in the computer through
table lookup and interpela’ n based on #? as the
independent argument. Values of the product
rd are supplied as constants for each camera for
150 values of 7, that is, one for each millimeter
ranging from the principal point to any corner.
The values are determined by desk calculator
from the lens distortion data.

The numerical errcor of these methods for
distortion compensation for asymmetric and uni-
form radial lens distortion is in the order of 0.1
micron, which is somewhat betrter than the validity
of the distortion data.

2.13 Aitmospheric Refraction Correction

As indicated previously, the &, and k&, terms
in Equation (7) relate to the atmospheric re-
fraction for near vertical photographs only: if
obligque photographs are used, this method of
correction will need to be revised.

Based on the tables by Axel Leiyonhufvud®, the
values of the ®#'s have been determined by dask
calculator to correct the coordinares through
their radial distances in accordance with the
simplified power series (Appendix 4),

x' = x(l + B, YRy
YUy ey + ) (8)

where v is as define by Equation{7). The values
of the 2's have been determined so that a very
close agreement is obta :d with the rtables.
The phc  rrammerrist who submits the compara-
tor data 10r computer processing is supplied with
large scale graphs of the k-values in terms of
the camera altitude and terrain elevation as
independent arguments. He reads off tl two
values and enters them as constants on the
record form which acco anies the coordinate
data for a strip of photographs.

80n astronomic, photogrammetric and trigonometric r
fracrion by Axel Leijonhufvud, Kungl. Boktryckerietp. a.
Norstadt & Soner, Stockholm, 1950,

Thus Equation (7) is used to compensate e

ordinates both for radial lens distort Y
table-lookup, and for refraction by using the tw¢
constants.

It is realized that the refraction correction
is based on the assumption that the nadir point
of the photograph coincides with the principal
point, that is, that the tilt is zero. Thus a small
error is introduced because the rms of the tilt
is a little less than 1°. However, this error is
probably not as great as the assumption of a
standard atmosphere nor as applying no factors
for surface and aerial variations in temperature,
humidiry and baromertric pressure.

2.2 Provisional Data for the Block Adjustment

As indicated in the Introduction, a series of
computational steps is utilized to obtain an ap-
proximate, provisional solution so thar the block
adjustment can be accomplished with a single
iteration. Tl reason fc the provisional solu-
tion is an economic one inasmuch as cachi -a-
tion of the block adjustrment involves the solurtion
of a very large sy 2m of simultaneous equations

Origin (perspective center)

4 (Xo, Yo, Zg)
zl
Z-ZO Image ‘X',Y-,Z‘)
Plane of photograph
y X-v Object
(XY 2

Ground Datum

FIG. 6.—Geometry of the projective situation, colineation
and rotation,



whose unknowns may number in the hundreds
whereas the provisional solution is relatively
easy and short.

2.21 Relative Orientation

Relative orientation is defined both here and
in conventional instrumental photogrammetry as
the determination of rthe three angular and two
linear parameters that specify the attitude and
position of one photograph (camera starion) with
respect to another (overlapping) one that shows
a sufficiently large commonarea, Relative orien-
ration is perhaps the most important itern in this
analytic system: it embodies all the basic
mathe 1tics that is peculiar teo the system, is
utilizea again later in resection and the block
adjustment, and requires the second- largest com-
puter effort next to the block adjustment (never-
theless it is accomplished through a single IBM-
650 program). It is in relative orientation that
the principles of projective geornetry are applied
wherein the mathematics of the system may
differ from that of other engineering and com-
putational disciplines.

A classic geometric rotation of the axes in
three dimensions (fig. 6) is needed in relative
orientation to express the artitude of one photo-
graph to another. Instead of using the three
angles between the respective axes as in analytic
gec etry, a systemn of three sequential rotaticns
are used, the primary one w about a horizontal
x-axis he secondary one = about the once ro-

where x, ¥, £ are the coordinates of any irnage
on a photograph and x*, y*, x* are thec  :-
sponding coordinates in an erect, untilted (recti-
fied) system in which the x*, y*, z* axes may
also be conceived as being parallel, respectiv  /,
to those of a ground survey coordinate system,
X, Y, Z. The coordinate z corresponds to focal
length. Equations (%) may be written in the form

X =qa.q1 x* +az y* + aiaz*

y=az, x* +azz y* +azaz*

Z=az, x* + a3z y* tazaz* {10}
In matrix notation this becomes
x a1 Qia Aya x*t
dz, Qzz Gza y*
43, agaz Qaz 2" (L1}
The inverse notation is also useful:
x* a,1 Q2. 4a; 1—|
y* = Q12 Qaz Qsz
12
z* Gz Gza Qas (12)

it is also convenient to write Equations (11) and
(12), respecrtively, as, using X to include all
xr y! z!

. : X = AX*
rated y-axis, and the tertiary one = about the T
camera axis, as explained by G.H. Rosenfield® X*=A'X=A"X, (13)
and al derived in appendix 5. The rotation
Juatious are in which explicitly
X =x% cos wcos* +y*(cos W sin % + sinw sin » cos k) + z¥(sinw sin % - cosw sin o cos ®)
¥y = x* (-cos © sin 1) +y* (cos w cos # -sin W sin @ sin %) + 2*(sin w cos ® + cos w sin ¥ sin x) (%
z=x"gin o +y* (-sinw cos ¥) + z*(cos w cos »).
COS P COS M cos w sin % sin w sin »
+sin @ sin ¢ cos # -cos W sin P cos A
a1 12 Qa3
A=|az1 Q=3 Aazs = -cos ¥ sin » COS W Cos & sin w cos #
-sinW sin » sin & +Cos W sin » sin %
da1 Qdaz Qaas
sin ¥ -sine cos @ COS ¥ Cos e (14)

9The problem of exterior orientation in photogrammetry
by George H. Rosenfield, Photogrammetric Engineering, v.
25 (2.7), 544, 1959,

It is convenient to note that the values of the
nine elemen of A are handily formed in a com-
puter by matrix multiplication as indicated by



Rosenfield*® which demons 1tes that A is com-  Then Equation {17} can be expressed in determi-

posed of the three se ential plane rotations.  nant notation:
cos X sin =« 0 coso O -sinop 1 0 0
= |-sin X cos = O 0 1 0 0 coswsinw {15)
0 0 l_' sint 0 cos o 0 -sinw cos w
It is also useful late  to fo the product of the x 2 1.0 b z 0.
last two marrices nrst inasmuch as the order AB A:B "|A:B  A,B (19}
of formation is otherwise irrelevant:
cos ® sinx O cos P gint sine  -cosw sin ®
A = |-sin % cos # 0 0 cos & sin v (16)
0 0 1 sin 2 -sini cosv® COS 1 COSI
As derived in appendix 6, the basic projective It should be noted that Equations [17), (18),
transformation equations are (fig. 6}: and (19) are merely different forms of the same
(X-Xo)a,, + (Y-Yo)a,, +(Z-Z,) a,, equation Whlch expresses.the condition thgt the
x= im: :, object andperspective center are colinear.
z (X-X,)a,, ~(Y-Yo)as, +(Z-Z;) ay, It 1s this condition we seek to enforce, and if
(X-X_)ay, +(Y-Yo) @2z *+(Z-Zy) Ga3 perchancg the condition does? not exist, we wish
x= : to allow incremental corrections to the observed
z (X-Xo)@a, ~(Y-Yo) @3, +(Z-Zs) a35(17)  coordinates x, ¥y, such that sum of the squares
) of the corrections is minimum.
where X, ¥, Z are the coordi ates of an object Equation (18) is transcendental and, inthe most‘

on the ground, Xo, Yo, Zo are the coordinares of  general case, all twelve terms are considered
the camera station in the  me system and x,%,2  as unknowns. Consequently a form of Newton's
are the image coordinates, in which z = -f, the  Method'! is used to solve them as shown in

camera focal length. (Compare Equation (1).) By  appendix 8. This is an iterative method based
clearing fractions and transposing,

x[(X-Xo)sin = + (Y-Y5) (-sin & cos v) + (Z-Zs) cOs & cos * ]
-z [ (X-Xg)cosmc aw +(¥Y-Yo) (cosw sinx + sinu sin p cos »)
+(Z-Z ) (sinw sin » -cos v sin g cos x)|=0
Y[ (X-Xo) sin 2 + (Y-Yo) (-sin ¥ c0s 2) + (Z-Z,) cOs £ COS 7]

-z [ (X-Xo) (-cos v sinx) +(¥-Y5) (cos ¢ cos % - sinw sin» sin &)

(18)

+(Z-Zo) (sin v cos » + cos w sin  sin x| =0 .

If Aj is defined as representing the three ele- on initial approximations which are quite easily
ments in row i of the matrix in Equarion (11) obtained for all the unknowns. Experience in-
dicates that about 93 percent of the problems

A.=(a. a_ a.) require three iterations. Applying partial dif-
¢ Bt ferentiation and rearranging the terms, using
and also vx=a‘x and v =dy, the following observation
I’ equations can be formed {as explained in app.
X-Xo 8)
B Y-¥,
LZ-ZO

i1Handbook of engineering fundamentals by Ovid W. Esh-
10 [bid, hach, fohn Wiley & Sons, second edition, pp. 2-16, 1957, ‘

10



A.B v = Py t Plzdw +prade +pyada - prdXy -
A,B Uy = P21 *Pa2dV S poade + pogde - Py edX, -

in which the p-coefficients are defined by Equa-
tion (21) (rable 1}). (See also app. 10.)

Table 1,—The basic coefficients of the observa-
tion equations (Equation (21}) used in relative
orientation, resection, and block adjustment

x 2 Y z
Pyy = b2y =
AB  A4B A,B AB
x z ¥y F4
P12 = P22 =
34, 3A 5 3A, 3A;
—_ —B B B
AW au aua 3L
x 2 ¥y 4
P13 = P23 =
3A, 34 34, 34,
~——~B —B —B  —B
g ax g v
x -4 ¥ Z
Prg = Pagq =
3A,  3A, 2A, 34,
—B —B —B —B
RES AN EES 3K
x z ¥y z
Pis = pas =
4 3 azq 231
x z y 2
Pye = pae =
ayz a3z azz Q33
x Z y 4
P17 = P2y =
y3 Q33 Qz3 a3

The parrial derivatives of A are formed from
Equation (14):

Pred¥y - prrdZ + predX + pyadY + py,dZ 20
PaeldYo - pyrdZy + posdX + ppdY - pyrdZ

{Note for computation that Equation (23) closely
resembles Equation {16): the first two rows can
be formed from the third row of Equation (16)
by multiplying by (-cos ») and (+sin »), respec-
tively, and that the third row of {23) is the first
row of (16).)

-cos = sin k COS W CO5 X
-sin ¥ sin - sin »

3A= | -cos v cos k -cos ¢ sink
Ak -gin ¥ sin = cos k
0 0
-
sin ¥ cos » . o .
+Cos W sin m sin % 21 Qa2 2a
-gin ¢ sin k = P01y ~@iz -Gya| (24)
+cos ¥ sin » cos k 0 0 0
o]

Equation (20) is in a sense a “universal” type
of formula for analytic photogrammertry. It is
used here to solve three somewhatr different
problems: relarive orientation, resection, and in
the block adjustment of either a strip and a gen-
uine block of photographs. If the approximate
values of X, ¥, Z are sufficiently near correct
{which is the function of the Provisienal Solution,
fig. 1), the dX, d¥, dZ terms may be neglecred
leaving six unknowns. In relative orientarion,
however, these three terms cannot be neglected,
and also the term in dX. has no significance.
It is shown presently how the three terms can be
eliminated, leaving five independent unknowns.

It is shown by Hellmut Schmid'® as well as in
appendix 7 that the elevation Z of anobject whose

12An analyrical treatment of the problem of triangu
by stereophotogrammetry by Hellmut H, Schmid, Repm
961, Ballistic Research Laborateries,
Ground, Md,, p. 14, 1935.

an
o.
Aberdeen Proving

0 -sinw sin x cos & sin x 0 -a,a ais
+Ccos W osin i COs 1 +s5in 4 sin 2 cos »
A =0 -sin W cos x cos @ cos u a a {22)
A -cOS W sin = sin ®x  -sin W sin » sin & za  Hes
0 -COs W CoS5 -sinw cos = 0 aaa ag,
-5in © Ccos # 5iN ¥ COs mCOsS ¥ -COS W COS m COSK
AA . . . . ) .
5o = sinm sin»  -5in & cos ¢ sin X COS 4 COs = sin ® (23)
cOs ™ sinw sin o -cOos ® sinm
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tograj 3, the models are connected into a single
continuous chain by means of successive co-
ordinate transformations of rotation, dilation,
nd o Jation for all the objects in the models
ased on the coordinates of common objects in
adjace models, along with the orientation data,
and without any ground control informarion, but
referr=d to the first model as a reference sys-
tem. is termed “cantilever” because of the
successive artachment of each model to the pre-
ceeding one. As one might expect, the assembly
is affected by an accumulation of systematic
errors, but these errors are adjusted as de-
scribed 1 the next section.

If Ri 2notes a rotation matrix for the model

ceordinates of the i-th model in the same sense
that A is used in Equations (13), (12), (11}, {10)
and
X'=RX (29;
such that X consists of the model coordinates

before rotation and X' those after rotation, it
can be shown that

T
-1

R, A (30)

-1
In words, the. rotation matrix for any model can
be det mined by forming the matrix product of
that of the previous model and the transpose
matrix from relative orientation. In order to
get the system started, (1) the model coordinates
in the first model are considered 10 be already
in the desired system and require no further
rotation; (2) those in the second model are ro-
tated bv the application Equartion (29) in which

R = A’I +f the first model; (3) thereafter Equation

(30) applies. It may be noteworthy that R is a

function only of angular parameters, v,
A scale factor m is determined from

':P ){,

(X, - Xy (Y5 - Y302 +(2Zy - Z3)°
T (Xa - Xy +(Ya - V)P +(Zs - Z,

m (31)

in which X, Y, Z are the model coordinates of
a selected common object and X', Y', Z2' are
its final coordinates in the previous model. The
two objects are selected by a photogrammetrist
from opposite sides of the model on the basis
of favorable residual parallax values from rela-
tive or razion. All coordinates of objects in a
model weing attached are then changed by mul-
tiplying by the common factor m. The coordi-
nates X,, Yo, Zs of both camera stations arc
also multiplied by this factor. (In the present
program the initial camera srtation in each model
is assigned arbitrary, constant, nonnegative co-
ordinates, whereas some simplification might
have been achieved by assigning zeros.)

13

A rtranslation of coordinates is needed so as
to form a single continuous system. The trans-
lation elements a, b, ¢ are based « the coor
nates of the camera station which is common
to the two models:

a=X, -Xo, b=Ys -Ys, ¢c=2Z4 - Zs (32)
where the primed coordinates are tho. of the
previous m¢ : and the unprimed ccordinates
are those of the subject model after rotating and
scaling. Then the translated coordinates of any
object point are

X =X+a, Y=Y+b 20=Z+¢ (33)
which is applied to all the object coordinates in
the subject model and also those of the second
camevra station for use in the next model.

After the three operartions of rotation, scaling,
and translation are complete, those object points
common to both models will obviously have two
slightly different sets of coordinates. The mean
value is computed and : pted as the final value,
and the deviation from th2 mean for each of the
three coordinates is printed out. The function
of the deviations is to enable the detection by
visual scanming of any unusually large errors
which might be sufficient reason to disregard
a given point in subsequent mapping applications.

2.23 Adjusiment of the Cantilever Data

For the adjustment of the caniilever strip,
two computer programs normally used in the
adjustment of data from plotting instruments are
applied without change. These were described
by W.D. Harris'® '* based on the work of R.5.
Brandi*® and C.W. Price'® and the formulation
is repeated here. The programs are relatively
short and might easily be combined into a
singie step. The formulas provide a generally
conformal transformation of the ccordinates of
points using quadratic and cubic te: s tocorrect
for the accumulation of systematic errors. The
input of the horizontal program?®” consists of a
ligt of cantilever coordinates (Equation {33)}
for four to ten conirol points and also al of
the State Plane Coordinates of the same points,

13Acrotriangulation adjustment of instrument data by con-
ventional methods by William [, Harris, Coast and Geodetic
Survey Technical Bulletin No. 1,1958.

l4vertical adjustment of instrument aerotriangulation by
computaticnal metheds by William D, Harris, Ceast and
Geodetic Survey Technical Builetin No, 10, 1959,

15Resume of aerial triangulation adjustment at the Army
Map Service by Robert S, Brandi, Photogrammetric Engi-
neering, v. 17, 1951,

165ome analysis and adjustment methods in planimetric
aerial triangulation by Charles W, Price, Photogrammetric
Engineering, v. 19, 1953,

17 Harris, William D., see footnote 13, above.



in addition to a list of the cantilever coordinates
of all the other points in str  of photography.
The vertical program'® similarly consists of
a list of coordinates of points in the two systems,
including the ground =levations of the objecis.
The posifions of bench marks are obtained from
the horizontal adjustment; and the vertical pro-
gram furnishes elevations of horizontal control
stations, values which are usually not determined
during field operations. The output consists of
the State Plane Coordinates and elevaric  of all
the points used in the sirip. The coordinates are
converted to geographic pc tions by a separate
computer program.

As the programs were devised for use with
plotting instrument d 1, 1e features and pre-
cautions might be unnecessary in analytic work,
But the cost of reprograming, and the added work
load on the programing staff, precludes unneeded
reprograming for the present since the program
serves adequately.

Horizontal Adfustment,—The origin of the co-
ordinate system is preferred to be at the center
of a strip because of symmetry and computer
scaling, and the abscissa is assigned to the
longitudual axis of the strip. To transform the
centilever strip coordinates x, ¥, into such a
system, a standard type of combined rotation and
translation is introduced:

£

v

x=ax-by+c, y =bx+ay+d (34)
in which x’, y’ are the transformed values. The
constants a, b, ¢, d, determined by solving (34)

for two known points simultaneously, are

(% - x )%y - x2) +{y, - ¥ )01 - ¥2)
a= -
(%, - %) + (¥, - ¥a)°
5 (% - %2)(¥1 - ¥3) - (1 - ¥2)(xy - %3)
- 2 - %2)° +(y - J’a)a
c= x} -ax, +by,, d=y) -bx, - ay,

in which x,, y,, x5, ¥, are the coord tes in
the cantilever of points near the centers of the
first and last photographs of the strip, respec-
tively, and =x3, v;, x2, ¥5 are the transformed
coordinates of these two centers having the values

+ % [xy - %) + (3, - v2)°J%

-Xa, y'l =y'2 = 0.

X3

x1

Once a, 8, ¢, d are determined, all the points
in the strip are transformed using Equation (34}).

The next part of the solution uses the same
type of transformation 1o convert the new strip

18 Harris, William D., see footnote 14, above.
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coordinates into ground coordinates, and the in-
verse transformation to convert the State Plane
Coordinates of horizontal ground control stations
into strip coordinate system for purposes of
comparison. Actually the inverse is utilized
first, and then the direct transformation is used
later as a fin  step in the procedure. This
routine was considered necessary because of the
use of diagonally flown photographs. The trans-
formation is based on the State Plane Coordinates
X, ¥y, X,, Y, of two control points near the
ends of the srrip, together with their strip co-
ordinates x,, ¥,, xa, ¥». 1he direct rransforma-
tion is

X=ax- by +c, Y=>56x+ay+d {35)
where the inverse is

x=a'X+bY¥-c, y=-bX+ayY-d (36
and the values of the coefficients are

_(x. -x MXL - X)) +(yy - v (Y, -1L)
a =

(x, - %) + (¥ - y2)°
5 (x, - 22{Y1 - o) - (3 - ¥ )Xy - X3)
B (%, - 227 + (¥, - ¥2)° (37)

c= X, -ax, +by,, d=Y, - bx, - ay,
a = a/(a® +b%), b = b/(a® +b°)
¢' = (ac +bd)/(a® +b"), d' = (ad - bej(d® +b7) .

Consequently, the constants are determined after
which Equation (36) is used to transform the
coordinates of all the horizontal control stations
into the cantilever coordinate system. The
similarity between Equations (34) and (35) is
urilized advantageously in computer programing.

The cantilever coordinates x, y ordinarily
differ from the transformed control coordinates

x', ¥ for all the conirol points except the two
that a1 used to determine the constants in Equa-
tions (37). A conformal polynomial transforma-

rion'? is used to express the relationship between
these “ffering coordinate values:

x" =Ax® +Bx® +(C+l) x - 2Dxy - Ey - F
¥y = 3Ax°y + 2Bxy + (C+l})y +Dx® + Ex + G . (38)

These equations are used first with control
point coordinates to determine the values of the
seven unknown coefficients A...G. Ordinarily
more than four control points are used, making
more than eight equations which are solved ap-
plying least squares in the same routine as

19Harris, William D,, see footnote 13, above,



Equations (28) earlier. Then the equations are
applied to determine corrected cantilever co-
ordinates for all the other points in the strip.
Next, Equation (35) is applied to rransform the
cantilever coordinates into the State Plane Co-
ordinates. This is the place where the program
for h izontal coordinates has terminated for
all pro ™ ction jobs to darte.

Vertical Adjustment.— The vertical adjustment
follows the horizontal adjustment although it is
« sidered that they ought to be done simultane-
ously. The horizontal data from the previous
program is utilized. Specifically, the values
after the application of Equations (38) (and not
Equation (35)) are used becausc they are sym-
metrically arranged with regard to the center
of the strip.

As a preliminary measure, the ground eleva-
tions are transformed into the cantilever system
through scaling and translation using

2= Zjg+k (39)
whose inverse form is
Z=g(z' - k) (40)
where
o Xy - Xo) 4 (Y, - Ya)”
AR A (TR 79 (41}

the coordinates being those used to determine the
constants in Equation (37), and where %k is a
rough constant determined by solving Equation
{(39) * rth any normal vertical control station.
Once g and % are evaluated, alil the control ele-
vations in the strip are transformed using the
same equation.

As with the horizomal coordinates, the vertical
cantilever coordinates z at control points do not
agree with transformed values z' except for the
single point used in deriving R A polynomial
similar to that used in Equation (38) is used to
indicate the relationship of the different values:

2=z +He®* + I+ Jx + Kx®y + Lxy + My + N{42)
which introduces seven new unknown coefficients
H . N. Using at least seven verrical control
points, FEquation (42) is formed for each point
where the coefficients are regarded asunknowns,
Solving these as simultaneous linear egquations
using least squares(as for Equations (28) and (38)},
unique values are obtained for the coefficienrs.
Then with the cocefficients known, Equation (42)
is ap_ ed to all the other points in the strip to
deter ne z'. The next step is to find the cor-
rected ground elevation Z (or k) for each of the
points with Equation (40).
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This until now completes the provisional ad-
justment, yielding coordinate values which are
ready to use for map compilation or other ap-
plications as survey data. The print-outincludes
the computed coordinates at control stations
which should be identical to known correctvalues
and allows one to scan the results t detect
faulty data. Large differences are due to er-
roneous data. As the computer programrequires
but ten minutes for a long strip, little cost is
involved by recomputing with any erroneous or
guestionable daia deleted.

Where strips have been very long and involve
mountainous terrain, the secant plane system of
the next section has been applied. These canti-
lever adjusiments are repeated with the different
system of control data. The initial adjustments
furnish sufficiently accurate elevations of hori-
zontal control stations and the positions (which
ordinarily do not result from field surveys) of
vertical control stations for the secant plane
transformation. The readjustments to the secant
plane data fully recognized the effect of earth
curvature. Obviously, the secant plane coordi-
nates need to be transformed back into the State
Plane Coordinate system for mapping uses as
indicated by the Inverse Transform (fig. 1}.

2.24 Transformation of Control Data to a Secant
Plane System

As pointed out heretofore, the purpose of the
secant plane transformation is to account for the
curvature of the earth. The term “secant plane”
is used instead of “"geocentric” (o maintain a
correct nomenclature inasmuch as the classic
geocentric system results in coordinate values
which are too large for convenient handling in a
computer and also bear little resemblence ro
map coordinates except in special cases. The
secant plane system is a local system pertinent
to the map project and in which the coordinate
directions are comparabhle to map directions.

The formulation for the block adjustment in-
troduces a three dimensional Cartesian coordi-
nate system in which X and " are comparable to
horizontal grid coordinates and Z is comparable
to elevation. Geographic positions andelevations
of control points (data obtained from the previous
section) may be transformed into such a space
system In which the Z-axis is the extension of
the no: 1 to the ellipsoid of a point near the
center of the mapping project. This point (the
origin}) may be any selected value of laritude
and longitude and not necessarily a control or
pass point. The XY -plane should be "secant”
o the ellipsoid in order to avoid negative Z-
values. The Y axis isinthe plane of the meridian
of the origin and thus may be considered as the
north-south axis.






(47)

e COn-
Section 2.21 on relative orienration,
these eclements were referred to differemt as-
sumed and unrelared reference systems for each
separate photograph. Now after Section 2.24 on
each photograph are ordinarily available 18 points
whose ground coordinates are known with a fair

Although most of rhese parameters v
sidered in tl

T =Xt Ay - ¥Ysin® sindg +Z cos o sini,
YG = -X ginkg - Y sin ¥, cosipe + Z cos P, cos ke
' ZG= + Y cos 7 + Z sin 9,
From Equation (43),
ran A = XG/ YG {48)
from which the longitude is calculated. Also
from Equations (43) and (44),
= 2 2y1/2a i .
ran ZG/(XG + YG Y approximately (49

By an erative process involving two iterations,
the second term of [quation (44) canbe corrected
o be consistent with the latitude of the point

being transformed rather than based on the
origin, then the Z of {44) is

degree of accuracy expressed in a single secam
plane system for the entire block of photographs.
Inasmuch as all large mistakes have been de-
tected, and as the accuracy cannot be improved
appreciably at this stage, a unique solution using
only three points is applicable.

A form of Equarion (20) is repeated:

Aanx=P11 + pradt + pyad® + pyadu - prydXs - pyedY, - piadZ,

ABB'Uy'*' Payr * Paad® + poad® + Pasdn - predX - poedY - pondZg

Z={(N+h)sine (50)
and Fquation (49) is adequate to compute an
accurate latitude. The elevation k may be com-
-nuted from Equation (43),

h= {XG/cos Pginy) - N or

h= (YG/COS ¥ siny) - N, (51)
using the equation with the larger functioninvolv-
ing A.

The ~omputer program for the direct trans-
forma m may be modified to make the inverse
become the similarity of operartions and equations.
The input and output of the two types of computa-
tion are merely reversed.

2.25 Resection

A solution of the resection problem is needed
tor each photograph as initial approximations for
the block adjustrment. However, this portion of
the program is designed not only to yield the
six parameters, but so to furnish the coeffi-
cients of the normal equations for the block ad-
justment inasmuch as the routine is a relatively
short one and as this is a favorahle stage for
terminating one program and beginning the next
one.

Resection in photogrammetry is defined as the
determination of the six fundamental parameters
w,9,%,X,, Yy, Zs of asingle photograph from the
given positions and elevations of at least three
non-colinear points imaged on the photograph.
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(52)

These equations with the coefficients already
defined by Equation (21) apply to the resection
problem. The 8§ and T terms of Equation (28)
are not used because at this stage it can safely
be assumed that dX, d¥, dZ are insignificantly
small. Thus by using an abbreviated form of
the routine for relative orientation, six simul-
tancous linear observation eguarions canm be
formed for a phorograph and solved in the same
iterative manner for the unknowns asused before,

The initial approximations of the angular terms
w, 9 can again be zeros, but x and the linear
terms X, Yo, Zo are not zero. As an image
near each principal point is invariably selected
and carried with the others through Section 2.24,
the X- and Y-coordinares of this point are satis-
factory first approximations for X;, Y,. Inthe
first photograph of block, Z, is taken initially
as the reported flight altitude. For all the other
photographs, the finally iterated value of the
previous photograph, is used as the initial ap-
proximation.

The angle « is approximated initially through
the following analysis involving the photo coordi-
nates x,, ¥,, Xz, ¥z of the two well-separated
images and rhe ground coordinates X,, Y, X,,
Ya of the two corresponding objects. The angle
# may he defined {(app. 3) as the counter clock-
wise angle from the reference X-axis to the cor-
responding photo x-axis. Inasmuch as the line
joining the two points in one coordinate system
is identical to the line of the other system, « is

the difference in the inclinations: == o, - cg

where @, refers to the photo system.






plus "ree times the number of ground points.
For ample, a project with 20 photographs and
an average of 3 addidonal ground points per
7 2itional plate would produce a network of
i x6)+(3x20x3) or 420 unknowns.  Con-
sequently it is planned to use only one of the
w0 pass points observed in cach of the locations.
If a side overlap of 60 percent is uscd ina
block of photographs, then the number of ground
points need be only a few more than the number
of photographs instead of five times the number.

The control points may be entered as observa-
tion equations and added directly to the normal
equations prior to solution. If a point is a tri-
angulation station withoutr a known clevation,
two cquations X = 0 and Y =0 are used. These
may be weighted to suit the problem. For ex-
ample, if a weight of 4 is used, 47 or 16 may
be added to each respective diagonal term in the
normal equations prior to solution, Similarly,
Z =1 mav be used as the equation for elevation.

When control data are used in this manner,
the X, ¥, Z secant plane coordinates consistent
with the control (Section 2.24) should be used
in Scction 2.25 for developing the respective
observarion cquations, rather than use the X, 7,
Z covrdinates for the same points which re-
sulted from the cantilever adjusiment and sub-
sequent transformation.

2.4 The Inverse Transformalion

The inverse transformation consists of the
usc of Equation (46) to change the coordinate
system back from that of the secant plane toa
system which is pertinent to the mapping proj-
ect, sresumably a State Plane System for the
X, Y coordinates and elevation above sea level
for the Z coordinates. Obviously the final co-
ordinate system might be any one of several
systems, such as the Military Grid System, the
Universal Transverse Mercator, or simply lati-
tude  lengitude and elevation (», 3, &), Programs
had already been developed for these transfor-
mations.
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FIG. ¢ Control diagram for a portion of U.5. Route 11 tem-
porary rtest area used for a comparison between analytic
and instrumental methods.,
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3. REPORT OF RESULTS

As noted earlier, all productive results and
rests complated prior 1o 1962 terminatsd with
the adjustment of the cantilever strip (Section
2.23) whereas the block adjustment is on' in
the stage of preliminary testing, Howevel, 25
strips of various lengths and various locations
in the United States have been satisfactorily
aerotriangufated in this manner for productive
work alongside of conventional methods using
first-order plotting (analog) instruments.

3.1 Accuracy Tesls

Fach computer program was tested initially
with fictitious data as it was completed, but the
most  interesting part of the development of
analytic aerotriangularion was the step by step
testing with real photegraphs and the comparison
of results with the rather well-perfected in-
strumental method. A comparison was made on
11 models of a strip of overcontrolled 1:40,000
scale photographs {fig. 9), which was flown
specially for the evaluation of the analytic
method.  The upper diagram shows the distri-
bution of horizontal ground control stations all
of which were premarked with temporary pho-
tographic target panels. The six solid triangles
indicate the control points that were used for
a least squares adjustment of both instrumental
and analytic aerotriangulations, and the open tri-
angles the points that were withheld from the
adjustment but included in tbe accuracy evalua-
tion. The lower diagram shows the 'dist: ~ ation
of vertical points. These points, thougn not
premarked, were established at sites where the
terrain was flat. The same diapositives were
used for both merhods with the following results.
The rms errors for the analytic method were
1.6 feet {12 1 (microns) at photo scale) for hori-
zontal position, and 1.4 feet for elevation, while
the instrumental method gave rms errors of
6.4 feet for position and 3.5 feer for elevation.
The analytic methed was used on another strip
of photographs of the same area to compare the
clevations obtained for the 6Y common pass
puints between the strips: the rms elevation
difference was 2.4 feer for the two independent
analytic aerotriangulations, whereas, it was 6.9
and 7.4 feet between the instrumental and two
analytic solurions. The maximum observed dif-
ference for the pass points was 6.6 feet {31u)be-
tween the two analytic strips and 16 and 22 fect
between the instrumental and the analytic strips.

As mentioned earlier, the Coast and Geodetic
Survey method uses a third-degree conformal
adjustment for the cantilever strip to obtain a
better fir to ground control points and refined
camera-orientation parameters for the final block
adjustment. The adjustment curves shown in















finally to translate the origin of the coordinate
system 1o rthe principal point. The general
schemce is to apply linear transformations inso-
far as possible to achieve the desired agreement
at three corners, and then to apply a nonlinear
scheme for the fourth corner.

The first step is to makexs = yz = Xs = Ya = 0
(translation) by subtracting x, from each ab-
scissa and ya from each ordinate, calling the now

coordinates Uy U

(1.1)

The second step consists o 1) arotation of the
coordinate axes about Corner 3 so that the #-axis
passes through Corner 2 (vy =U), (2) an adjust-
ment of the angle between the w and v axes so
that the wv-axis passes through Corner 4 (uf = 0)
and (3) changes in rthe scales along the 4 and v
axes so that the new valueud = X, andvy = Y.
All four of rhese condirions can be satisfied
through the use of the Helmert ransformation

u* = mu - nv v o= pu - qu (1.2)

which is linear. By substituting the known co-
ordinares at Corners 2 and 4 into Equation (1.2},
two pairs of simultancous linear eguations are

formed in the unknowns w, n, p, ¢:

XNao=tg m +y;n {Yz=u9p+t'zq

Xe=u, m+uv, n Yy =us p~vy q. (1.3)
If these are solved for the unknowns, recogniz-
ing that Y, = U and defining 4 as the determinant

d- |H2 Ve

Uq Uy
m = (Xav, - Xyvp)/d  p=vaY,/d
e (Xewe - Xov,0/d  g=-we¥o/d  (1.4)

Based on these known values for m, n, p, q,
Equation (1.2} can then be applied to Corner 1:
u{ = muy, TRy

Uy = pu, +nr,. (L.3)

If the film distortion is linear, uy=X,, ¢y =Y,,
but normally they will not be equal except fr
glass plates. It is noteworthy that all operatio.._.
thus far have been affine or linear rather than
conformal, that all the affine schemes for fitting
at Corner 1 are exhausted, and thar any further
attempt at fitting must be nonlincar. The follow-
‘=~ equations have been selected for making this
" warping”:

!-*

W= vy (1.6)

vt s v

24

If r and s are solved for in terms of Corner 1,

ra(X, -w')w'el s=(Y: - v)/uv" (1L.7)

It may be obvious thar Equarion (1.6) applies a
maximum correction at Corner 1 and that the
correction diminishes lineariy to zero along both
of the coordinate axes so that the corrected co-
ordinates at the first three corners are not dis-
turbed.

Finally, if Equations (1.2) are substituted into
(1.6}, and the coordinates of the principal point
applied so as to translate the origin from Corner
3 to the photo center, the new compensated co-
ordinates arc

H

%! = (muy ) [1 - 7(pu; ~ qv; 3] - X,

it

Y

, (18)

g (pu, + nv)) 1 *x(muz.+nvi):| -

which were srated in Section 2.11 and which fol-
low I ations (1.1), (1.4}, and (1.7} in application.

APPENDIX 2

DERIVATION OF FORMULAS FOR
ASYMMETRIC LENS DISTORTI(

An idealistic method tor adjusting image co-
ordinates for the sy matic effects of lens
distortion might consist of a table lookup system
in which the corrections in & and in y are stored
in the computer for, say, each millimeter square
over all the photographic area. In such a svsiem
it would be possible to correct for asymmetric,
radial, and also tangential distortion accurately
and in a single operation. However, the data
storage for this amounts to about 100,000 three-
digit words each with a decimal point and an
algebraic sign.

An alternative approximate scheme i used
herein. To avoid this storage problem, this
scheme has the characteristic of leaving aresid-
ual error, which is made sufficiently small so
as to be of little or no practical consequence.
In this alternative scheme, radial distorrion is
correcied by means of a table-lookup involving
150 stored values, a simple second-degr=e cor-
rection is used for the asymmertric characteris-
tic, and tangential distortion is constdered to be
nonexistant (based mainly on a lack of dara art
this time).

As indicated in Section 2.121, the asymmetric
distortion is corrected by fi 1 rotating the
ordinate axes through the use of the furmulas

L)

x,=ax+by _=-bx-ay, (



then correcting the coordinates by

x (2.2)

' v. (1 ~cx,)

= xe {(1+cx,) ¥y

and finally rotaring back into the eriginal coordi-

nate system using the inverse of Eguation (2.1)
’ - -

x' = ax, byt

y' = bx,tay, (2.3)

We shall proceed to show how the constants a,
b, ¢ arc determined and to justify the use of

thes “srmulas.
F: e 15 is a graphic representation of the
tota. adial distortion along each of the four

sem’““agonals of a photograph as reported for an
aeri camera. It is noteworthy thac the values
diffe~ along the four directions, and it is this
diffe. once which is referred to as asymmetric
distr-<ion. Here, an average correction is af-
fecte. through radial distortion compensation
discussed in appendix 3, and the remainder by
the present analysis.

Figure 16 shows the differences from the aver-
age with the negative values (as along the D-
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FIG, 15.—Radial lens distortion alongthe four semi-diagonals
of the aerial photograph.
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FIG. 16,—Asymmetric radial distortion on the fc semi-

diagonals derived by subtracting the average from cne total
distortion at each radius and plorting negative values in the
positive direction,

radial) plotted as positive values. It should be
expected that the B graph should be identical
to the D, and the A to the €. The facr that they
are not identical is partly explained by un-
avoidable observarional errors which cccur in
the practical determinarion of the distortion
values. We approximate the B-D and A-C en-
velopes by the two expressions

d=¢, v* and d=c¢:7® (2.4)
to which we limit o elves. Here ¢ = (sin t)/f,
but one need not be concerned with the 1 ms ¢
or f. It is sufficient to recognize that this is
quite similar to a tilting effect on the photo plane
as shown by F. E. Washer®® and that it be-
haves like rilt as depicted by L.. W. Swanson®°.

22Washer, Frances E., see footnote 5, above.

23Topographic Manual by Lawrence W, Swanson, Coast
and Geodetic Survey Special Publication No. 249, Part I,
p. 162, 1949.






Now that ¢, and ¢, may b evaluated, it is pro-
posed that

c= (Cle 4'c:??)"/3
tan ® = ¢o/c,
a=cos(F+nT/4)

b=gin{d +n-/4) (2.8)

Thus, in the example,
¢ = 0.106, & = 29.3°

The direction quadrant for rotation is deter-
mined by inspection from the relative displace-
ments along the separate semidiagonals. Thus,
the upper end of the inclined principal direction
{fig. 18) is in the general direction of the D-di-
agonal, (which is defined asthe positive end of the
x,-axis) because the greatest negative distor-

tion must occur bewween the diagonal C and D
(which arc both negartive) at an angle of 29.3° from
the D-diagonal. This selection is verified by
the fact that the zero tilt axis {perpendicular ro
the principal direction) occurs berween the di-
agonals where the distortions change sign. Thus
the analytic rotation angle from the x-axis o
the principal direction is simply, from the fig-
ure, 29.3° + 45° = 74.3°, and

cos 74.3% = £ 0,271
sin 74.3° = + 0.963.

a

The logic of this formulation is included on
page 341 of the Manual®®, on pages 162 ff., by

l.. W. Swanson®®, and is not repeated here.

APPENDIX 3

SYMMETRICAL RADIAL. LENS DISTORTION

The word symmetrical applied here to lens
distortion implies that the distortion is consid-
ered to be identical along all radii. In the pres-
ent applicarion, the distortion is the average
value along four semidiagonals where systematic
departures from the average are accounted for
as shown in appendix 2.

In figure 19, d is the positive distortion which
has displaced an image a' at radius v 10 its
obse 2d position a. The observed coordinates
of a are x, y and the desired corrected coordi-
nates of @ are x', y’. Through the proportion-
ality of corresponding sides in the similar tri-
angles aa’h and Oae,

257anual of Photogrammetry, see footnote 6, above.
26 Swanson, Lawrence W,, see footnote 23, above.
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a'h = xd/y, o - vdlr.
FFrom the figure,
x' = x-ath=x - xd/r - x(l - d/r)
Visy-ab =y-yd/rsy(l-dm, (B
and also,
r¥=x® s y®,

Ubviously it is sufficient in making a desired
correction to know merely the value of the ratio
d/¥. However, the ratio is undefined if ris
zero, which creates an awkward condition. To
avoid this, one might tabulate simply the values
of d and rthen perform the division operation as
needed later.  Better vet, inasmuch as 7% is
needed also for other purposes and v is not
needed, the values of the product d¥ are enrered
inte the computer, later to be divided by r® as
ne=ded, which avoids computing the square root
of r*. Consequently the values of dr are pre-
pared by desk calculator for each millimeter of
¥ for cach aerial camera as input data 1o the
computer for table lookup andinterpolation. Cor-
repondingly, the independent argument in the
table is also ¥® instead of r. A portion of one of
the tables is included as an example ble 3).

APPENDIX 4

DERIVATICN OF THE CORRECTION TOR
ATMOSPHERIC REFRACTION

Except [or an image at the nadir, atmospheric
refraction causes photographic images to be dis-

Distorted
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’ d |
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FIG, 1B.—Diagram showing the analysis of radial lens dis-
tortion.,












The y* coordinates are not changed. The ex-
pression for z*' in Equation {5.1) is substituted
into Equation {5.2):

z =-y* sinw cos m + 2" coswcosm

+x* sin o

x* = y* sinw sin» -z* cos w sin ¥

+x* cos M. (3.3)
z*-axis
z -II.XIS\\
y‘
\ = 3 .
- \ - i'.ﬁ’-\s
\\’T b z* v -
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| w _
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FIG, 22.—Diagram showing the three sequential plane ro-
tations for camera orientation.

The final x-rotation is abour the z-axis as
shown in figure 22c. Applying the same rotation
formulas:

x=x% cosx + yY sina
¥ = -x* sinx - 9% cos %, (5.4)
The z* coordinate is unchanged. The expres-
sien for x™ from Cquation (5.3) and y* from
Equation (3.1) are substituted into Equation (5.4):
x=x*cosnmcos T Fy* sing sin T cos
-z* cosw sin P cos ® + y* cos b osin x
+2* sin & sin
y - -x* cos mgin X - y* sinw sin 9 sin »
+2* cos 4 osin v sin % + §% cos L Cos X
+z* gin W cos A -

Factoring,

X = x* cos "cos i
+3* (cosw sin * + sin o sin = cos x)
+z* (sinw sin ® - COs ¢ 8in © COs %)
y = x* {-cos o sin %)
~y* (Cos ¥ cOS X -8in & sin p sin n)
+2* (sinw cos ®x + cos w sinm sin ®)
z=x" sinw +y* (-sin L cos %)

+ z*(cos w cos 1),

which is Equation (%) shown in the main text.

APPENDIX 6

THE PROJECTIVE TRANSFORMATION
Equartion (17) is derived from the upper part
of figure 6, utilizing Equation (10). Itis evident
from the similar triangles in the figure that
(X-Xo)/(Z-2;) = x7/2*
from which

x* = (X-X,) 2" )/(Z-Zo). (1

Similarly, by viewing the figure from the side,

yr=(¥-Y,) 27/(2-2;), (6.2)
and by algebraic identiry
2t =(Z2-2,) */[(Z-Z;). (6.3)









Similarly

T
dz* = (3As/38) Cde + (BAg‘/ar) C dx
T
+{nAa/2x) C dn. (9.8b)
A’? is used to indicate the three elements in the

i-th row of the transform matrix Equation {12).
T - .
Consequently, 3A i/aw indicates the elemen in

the i-th column of Equation (22), which is not in
the transformed arrangement.

By substituting Equation (8.8) into (9.6), col-
lecting terms, and employing a determinant no-
tation,

dZ = (1/uz) [x* dZ,

+ xX-1 Z - ZQ du
T,.. AT
(3AL /34)C  (3Aa /w)C
. X -1 Z-=Zo |4
T AT, :
(34, /o0)C (2435 /39)C
X-1 Z = Zo
+ T T d{]
(3A; /am)YC  (3A3 /3)C {9.9)

If the coefficients are symbolized by T,

dZ = {lfuz) (Ta dv +Ta dp + T, dn + T dZ
(9.10)
where the definition of the T"s is obvious.
Now let us recall the last three rerms of Equa-
tion (20}:
s AX 4 Py dY + Py, dZ

..+paﬁ dX+p35 dY+p27 dZ. (gll)

Substituting Equations (9.2),

oot pis s Y Py, U T Pra) dE

. +(P25 Uas T Pas Ue pg’?) az. (9.12)

Let be defined as

S: = (L/uz) (P15 ta + Prg U + Py7)
S = (1/uz) (pzo ua + ety *P27)- (g 13

Then Equation (9.12) can be expressed as

oS, T dw + S, Tado + 8, Tydn + 8, T, dZ,

8o Tpdu + S, Tydw + S, dn  5,T, d~ (9.14)

If (9.14) is substituted into Equat 1 (20) for the

34

terms in dX, d¥, dZ, Equation (28) is the result,
which completes the explanation.

APPENDIX 10

COMPUTLR FORMULATION

The following notes on the computation of the
coefficients of the observarion equations may be
helpful to a programer. Actually some of these
ideas were proposed after the programing had
been completed in a different manner, whance all
of these ideas have not been rtested. It should
be obvious that these suggestions constitute but
onc of many appropriate arrangements of the
computation.

This discussion commences with the iniro-
duction of the 6 approximate photo par etcrs
Xo, Yo, Zo, &, p,% together with the coordinates
x, y, ¢ of corresponding images on 2 photo-

graphs and terminates with the eval tion of
the 14 coefficients p,y ... Py, (Equation {21})of
the ol ‘rvation equations incl ~1g in ‘mediate

dara consisting of (1) the orientation matrix for
the photograph (Equation(14)), (2} the “rectified”
coordinates of the image on the second photo-
graph (LCquation {12)yand {3) the “model” coordi-
nates of the corresponding object (Equation {27)).

It is assumed thar data can be stored in the
computer in table form in such a manner that
a value can be idensified by a table designartion
and one or two subscripts (A (I,J)) as in the
Fortran program language. Five such tables
(fig. 23) are utilized and they are designated
generally by algebraic terms already introduced
by equations in the text.

The first, or A-table, is discussed at some
length (fig. 24).

The first two rows are input data consisting
initially of approximate values, and later as
corrected values. Ordinarily, with the exception
of X¢ = 1, they will always be zero initially for
the usual vertical photography. [f, however, a
constant angle » or w (as in convergent photog-
raphy) or #, (as in crabbed photographs), is
present, the sine of the nominal value is entered.
Accordingly, the computation determines the
correction to the sine of the angle rarher than
the angle itself. Incor :ting the terms o + diy,
etc., the two are added as though rhey were in
radians, even though they are both sines, which
is a valid approximation inasmuch as the cor-
rections are relatively small, and also any sig-
nificant nonvalidity merely causes an additional
iteration having no effect on the final resulrs.

Row 3 consists of the cosii > three
angles computed from, for example, cos L = (I
- sin® w)1/2,










APPENDIX 11

NOTES ON THE ADJUSTMENT OF
CANTILEVER DATA

The constants a...in Equations (34) and (37)
may require derivation although for those famil-
iar with martrix algebra no explanation may be
needed. Consider first Equation (34):

ax-by+c=x'" bx~+ay+d=y (11.1)
which represent a plane orthogonal rotation com-
bined with translation in analytic geometry. Sup-
pose the transformed coordinates %', y' are
known for two distinct points. Then both the
original coordinates x, ¥, Xz ¥a and the trans-
formed values x; y;, %2 Y2 can be considered
as known values with a, b, ¢, d as unknowns:

X, ¢ -y, b+c=x}
Xz O -yb+e=x (11.2)
y. @ +x,b+d=y/
ya @ +xab +d=y; (11.3)

If the second equation of (11.2) is subtracted
from e first, and similarly for (11.3), two si-
Tultascous linear equations are formed in terms
>f the two unknowns a and b:

{("1 - X)) a-{yz - ¥) b= (%] - %)

(Y1 -xa)a~(% - x)b=(y -¥%) (1.4

If these equations are solved for a and b by any

method, of which Cramer’'s Rule is very con-

venient,

{xy - x2) (%" - 2" ) ~ (v, = ¥=) (9, - 9a')
(xy - %) + (91 - y2)°

a=

b (%0 - %2) (9" - ¥a') - (3, - ¥a) (5 - %)

(%, - %)® +{y, - vz )

and substitution into either one of Equarions
(11.2) gives ¢ and into (11.3) gives d:

c=x' -ax; +by,

d=y, -ay, - bx .

Equations (37) also state formulas for the
terms a', b*, ¢, 4" in terms of a, b, ¢, d, hased
on Ec tion (36) which is said to be the inverse
form wi Equation {33). One way for definii the
primed coefficients is as follows.  Equauions
(11.1) are rearranged in the form

ax - by = (X - ¢)

bx +ay = (Y - d). (11.5)

Then Equation {11.3) is solved for x, v in exactly
the same manner as (l1.4} was solved for a, b:

a(X - ¢y BbY - d)
+

x=a2+ba ag+b2
ay - d) b(X-c)
Y= @ v 07 a® +p? , OT
a b ac + bd
X = X+ -
aE +b2 az sz aﬂ +b2
y = ;wa+ a Y_ad-bc , or
a2 +b2 aE +b2 az +b2
x=a'X+pY-c!
y=bX +a'Y - 4 (11.6)

which completes the definition of the primed co-
cfficients.

An alternate way for defining the primed co-
cfficicnts refers them to the cight given coordi-
nates as used in Equation (11.2). Accepting the
form of Equation (36) of the main text:

n=aq' X +b Y -¢
xa=a X, +b Y, - ¢!
y, =att, - X, - d
v = al¥s - b, - d'. (11.7)

Subtracting, and rearranging,

(X, - Xa)a' +{Y, - Y;) b' = (%, - x2)
(Vs - Yo)a' - (Ko - Xo) B = (92 - 92). (11.8)

Solving for a' and b’

(% - ) (X - Xa) - (¥ - ¥2)(Y - Ya)
“{y, - ya

a' =
(% - %2

“(x - X (¥ - Ya) 2 (¥, - ¥a) (X - Xa)
(%, - %)% +(¥; - ¥a)°

b =

and substituting back into (11.7),

c=alXy +8'Y, - x

d = alY, - b'X, -y, (11.9)

It is stated withour further demonstration that









