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Error Study for the Detennination 

of the Center of Mass of the Earth 

from Pageos Observations 

K. ~. Koch and H. H. Schmid 

Abstract 

The least squares adjustment for the station co­

ordinates of the worldwide satellite triangulation net 

gives, in addition to the station positions, the posi­

tions of the satellites observed in a simultaneous event 

from two or more stations. Through successive events 

short arcs can be fitted and the coordinates of the center 

of mass of the earth can be determined. It is shown that 

the center of mass will be obtained with an accuracy con­

sistent with the accuracy of the station positions, if 

well distributed Pageos arcs of about one quarter of a 

revolution are taken and if three events per arc are 

given. 
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1. Introduction 

The worldwide satellite triangulation network being 

established by the Coast & Geodetic Survey (U.S. Depart­

ment of Corrunerce) and the U.S. Army Topographic Cormnand 

(Department of Defense) will give the coordinates of 44 

stations distributed rather uniformly over the world in an 

earth fixed reference system whose orientation is derived 

from the astronomical right ascension and declination system 

[Schmid, 1969]. The origin of the coordinate system is 

situated in an arbitrary position; it cannot be related 

to the mass center of the earth, since geometric methods 

are employed to establish the satellite triangulation net. 

lbwever, the least squares adjustment for the station 

coordinates of the satellite triangulation net gives as 

additional results the coordinates for the positions of 

the satellites photographed simultaneously from two or 

more stations. In the world net mainly Pageos has been 

observed and in a few cases Echo II. From the satellite 

trail on the photographic plate seven images are generated 

so that the adjustment for the station coordinates gives 

seven satellite positions per simultaneous event together 

with the covariance matrix associated with the satellite 

positions. Through these positions an orbit can be fitted 

and the origin of the coordinate system for the orbit 
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computation, which is the center of mass of the earth, gives 

the desired relationship between the center of mass and t h e 

coordinate system of the satellite triangulation. The or­

bits so obtained extend only over about 5 minutes. As we 

shall see, these arcs are too short to obtain the center 

of mass of the earth with an accuracy which is consistent 

with the accuracy of the stations in the triangulation net­

work. In quite a number of cases, however, Pageos and 

Echo II have been photographed by adjacent pairs of stations 

in two successive simultaneous events. The time difference 

between the successive events varies between 8 minutes and 

46 minutes, so that orbits of corresponding length can be 

fitted through the observations. 

The purpose of this study is to find out how accurately 

these arcs determine the center of mass of the earth if 

two or three events per arc are given. Furthermore, the 

extent to which errors in the gravity field distort the 

results is investigated. These studies are based on gen­

erated data for Pageos. 

2. Coordinate Systems 

Satellite orbits are computed in an inertial coordinate 

system. As mentioned, the time span of one arc is less 

than 50 minutes. During 50 minutes the movement of the 

instantaneous pole of the earth and the movement of the 
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true vernal equinox are negligibly small. Hence, each 

satellite position computed in the rectangular system, 

whose origin is the mass center of the earth, whose x-axis 

points towards the true vernal equinox and whose z-axis 

towards the instantaneous pole at the time of observation, 

can be assumed as given in an inertial coordinate system. 

The position vector r of the satellite in this inertial 

system is given by 

T r = [x,y,z] 
*) 

(1) 

The position vector v of the satellite 

vT = [u,v,w], (2) 

which is obtained from the adjustment for the station co-

ordinates of the satellite triangulation net, is given in 

the earth fixed coordinate system whose w-axis points 

towards the mean pole 1900 - 1905 and whose u-axis points 

towards the intersection of the Greenwich meridian, i.e. 

the zero meridian of the BIH-UTl System, with the equator. 

Together with the satellite positions v the covariance 

matrix E of the positions v of 'each event are obtained -v -
from the adjustment. The covariances between positions of 

successive events can be assumed to be zero. The position 

vector v of the center of mass of the earth in the earth -o 

*) Underlined letters denote vectors or matrices. 



fixed system 

T 
-
v

0 
= [u ,v ,w J 

0 0 0 

has to be determined. 

(3) 

The satellite position with respect to the mass center 

of the earth is given in the earth fixed system by 

~ - v 0. (4) 

By means of the rotation matrix R which transforms the -xu 

coordinates of the earth fixed system into the inertial 

system, the satellite position r in the inertial system is 

given by 

with 

r' = 

r = r' r - _Q. 

R v, 
-xu- Eo = Rxuvo 

and the covariance matrix ·r , of r' by 
-r 

r , = R l RT 
-r -xu-v -xu 

3. Model of the Force Field 

(.5) 

(6} 

The satellite position E at the time t is a function 

of the orbital elements ~o at the epoch t 0 , the so-called 

initial conditions, and a function of the force acting upon 

5 
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it. The force is a combination of the earth's gravita-

tional effect, the sun's and the moon's attraction, the 

atmospheric drag ef f ec~ and the effect due to the radia-

tion pressure. Since the time ove.r which the orbit has 

to be integrated is less than 50 minutes, the earth's 

gravitational field will be regarded as known. Because 

of the height of Pageos and Echo .II the atmospheric drag 

effect can be neglected over this short time period. How-

ever, radiation pressure has to be taken into account. 

~cause its effect on balloon satellites is predominant 

over the other effects which do not stem from the earth's 

gravity, a variable parameter is introduced into the model 

for the radiation pressure. Hence, 

(7) 

where Ea denotes the vector with the parameter pa · of the 

radition pressure model as its element. 

The gravitational potential W of the earth is expressed 

by an expansion into spherical harmonics 

oo n . 
w = k: [ 1 + 1: 1: ( ~)n Pnm ~in Cl') 

n=2 m=O r 

(8) 

where r, ~' A are spherical coordinates in the earth fixed 

coordinate system, k is the gravitational constant, M the 
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mass of the earth, a the mean equatorial radius, P the 
run 

fully normalized associated Legendre function of degree n 

and order m, and cnm and snm the fully normalized harmonic 

coefficients. The potentia~ Wis assumed to be known. The 

values for kM, a, C and S can be taken, for instance, 
run nm 

from the parameters of the 1966 Standard Earth of the 

Smithsonian Institution [1966]. 

The perturbations caused by the sun or the moon on 

a satellite orbit are computed by defining a perturbing 

function R. which can be treated as the gravitational 
l. 

potential W [Danby, 1962, p. 209] 

(9) 

where Mi is the mass of the sun or the moon, £ the position 

vector of the satellite, and r . the position vector of the 
-l. 

sun or the moon. The position of the sun and the moon is 

obtained from the mean orbital elements of the sun and the 

moon published in the -Explanatory Supplement to the Astro-

nomical Ephemeris [1961]. 

The perturbing function Rr caused by radiation pressure 

of the sun is represented by 

r•r - -s = -p K -a lrsl 
(10) 

where r is the position vector of the sun. The parameter -s 
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Pa depends on the reflection characteristics of the sat­

ellite, Pa is unknown. The constant K is given by K = 

(A/m) (I/c) where A/m is the cross-sectional area-to-mass 

ratio of the satellite, I the solar flux in the vicinity 

of the earth, and c the speed of light [Shapiro, 1963). 

-3 2 For Pageos it is K = 6.04SxlO cm/sec • The acceleration 

of a satellite due to radiation pressure is a discontinuous 

function since it equals zero in the earth's shadow. 

4. Method of Analysis 

The satellite position r' in (S) is the observed 

quantity 

r' = r + !.o Q.l) 

and with i) and 0) 

Q.2) 

By means of approximate values for the initial conditions 

e 0 , the radiation pressure parameter n , and the coordinates - La 

v 0 of the center of mass in the earth fixed system we corn-

pute an approximate value rn .' for r'. Using Taylor's series 

we obtain f.rom (12) 

r I -r I ar A ar A R A 

-n = a.[0 u!:o + Cl.Ea 0 .E.a + -XUuVO U3) 



where 6~0 , 6Ea' and 6~0 denote the corrections to the 

approximate values for ~0 , Ea' ~0 , respectively. With 

CJ!. 
ae---o 

ar - R 
A, a:e.a - ~, -XU = C, r' -r ' = _ri., .l: , -n -r 

(14) 

we obtain the observation equations where ~ is the vector 

of the residuals of the least squares adjustment 

A 6~0 + B 6E_a + C 6~0 = Q. + m . (15) 

If the subscript i denotes the i th event, the normal 

equations for one arc with n events are given by 

n T -l 
• L: ~i£L~i 
1=1 l. 

or abbreviated 

D. F. 
-J -J 

F~ E. 
-J -J 

n T -1 
L: A.L:n C. . 1-1-)(, .-l. 

i= l. 

6f. 
-J 

= 

6~0 

T. 
-J 

To. - J 

n T -1 

. L ~iIQ.. !i 
1=1 1 

n T -1 
.l: C.[n L 

. 1 1 Jt., , -1 
1= 1 

(16) 

{17) 

9 
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where the subscript j denotes the j th arc. With m arcs 

we find 

9.1 0 0 Fl tif l !1 

0 9.2 . 0 !'.. 2 tif 2 !2 

= • (18) 

0 0 D 
-m 

FT 
m 

FT FT L: 
-1 -2 -m j=l 

We eliminate 6f . and obtain 
-J 

F tif I 
-m -m -m 

m 
E. tiv

0 
L: I 

-J j=l -oj 

= [ ~ (-r . - F~D~ 1 1" •. )] . -OJ -J-J -J 
J=l 

The solution of (19) gives the corrections 6~0 to the 

(19) 

approximate coordinates of the center of mass of the earth 

in the earth fixed coordinate system. The inversion of 

the left side of (19) yields the covariance matrix E 
-VO 

of tiv . -o 

The equations (19) are built up successively with 

each arc. The storage requirement for (19) in a computer 

is therefore independent of the number of arcs. The con-

tributions of one single arc to the determination of the 

center of mass is obtained by the solution of (16) . 



For the error study it is helpful to rewrite (19}. 

If ~v . denotes the result for the center of mass obtained 
-OJ 

from the j th arc by the solution of (17) and E . its 
-VO) 

covariance matrix, it holds . [Wolf, 1968, p. 187] 

and 

-1 
E . 
-VO) 

T -1 = E. - F.D. F. 
-J -J-J -J 

-1 r .tw.='I. 
-VO) -OJ -OJ 

T -1-
F. D. R.. 
-J-J -J 

Hence, instead of (19) we get 

-1 
+ • • • + I: ) ~v = -vom o 

11 

+ E-1 ~ ) 
-vom ~om' (20} 

which gives the coordinates ~v 0 of the mass center of the 

earth as the general arithmetic mean of the results for 

the center of mass of the single arcs. 

5. Orbit Integration and Data Generator 

The equations of motion of Pageos . were integrated 

numerically using the Cowell-Stormer multistep method. 

For the starting process and the interpolation between the 

time steps, a modified Runge-Kutta-Gill integration was 

applied. The derivatives of the position vector in (13) 

with respect to the initial conditions and the parameter 

' 
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of the model for the radiation pressure were obtained by 

numerical integration of the variational equations. The 

computer program employed is a modification of the program 

by which density values were determined for a simple layer 

model of the geopotential [Koch and Morrison, 1970]. 

The modified program was also used to generate f ic-

titious data for Pageos. Approximate orbital elements 

for Pageos were taken at the epochs 

t 1969, Sept. 12, oh 50rnin s = 0.000; 
0 l 

19 68, 26, oh om in s (21) t = June 0.000; 
02 

t 1967, 5, 23h 40min s = Jan. 0.000; 
03 

and used as initial elements for generating positions ~ 

at 22 second time intervals over a time period of 50 minutes 

and for the arc with epoch t over one revolution, that 
02 

is 180 minutes. The values for kM and a, C and S up nm nm 

to the 4 th order and degree were taken from the parameters 

of the 1966 Standard Earth of the Smithsonian Institution 

[1966). It was pa= 1 in UO) and a 12th order Cowell­

Stormer process of integration was applied. The selection 

of the three epochs guarantees an even distribution of the 

arcs with respect to the inertial coordinate system. 

When generating the positions ~, it was assumed that 

the coordinates of the center of mass of the earth in the 



earth fixed system are given by 

T 
v = [lOm, lOm, lOm] . -o (2 2) 

According to ~) and Ul} the observed quantities r' are 

obtained from 

with 

R = 
-XU 

r' "" r + R v -xu-o 

cos 8 -sin e 

sin 8 cos e 

0 0 

~3) 

0 

0 

l 

where a rotation around the z-axis through e, the Greenwich 

Sidereal time, was assumed to be sufficient to rotate the 

earth fixed system into the inertial system. 

6. Results 

Seven positions r' at 44 second time intervals com-

prise one event. With each event a covariance matrix E , 
r 

is associated which is assumed to be equal for all events. 

The matrix E , chosen here is characteristic for the ac­
-r 

curacy of the satellite positions ~' obtained by the geo-

metric satellite triangulation method. The square roots 

of the variances, i.e. the standard deviations, for x, y, 

13 
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and z lie between ±Sm and ±14rn with the exception of one 

value which equals ±30m. Arcs of different lengths with 

different numbers of events were processed, see Table 1. 

The six events of the arc of 180.4 minutes length begin at 

0.3667, 33.0, 70.033, 106.333, 142.633, and 176.0 minutes, 

respectively, after the chosen epoch. The three events of 

the arcs of 49.5 minutes length begin at 0.3667, 22.0, and 

45.l minutes after the epochs defined by ~l). In the 

case of two events the event after 22.0 minutes is omitted. 

The three events of the arcs of 26.4 minutes length begin 

at 0.3667, 11.733, and 22.0 minutes after the epochs given 

by (21). In the case of two events the event after 11.733 

is omitted. Finally, the arcs of 4.8 minutes length with 

one event begin 0.3667 minutes after the epochs ~l). 

With the processing of the three arcs with the initial 

conditions at the epochs ~l) , the coordinates of the mass 

center and its accuracy were determined according to (19) 

and the contribution of a single arc was computed from U6) . 

It was found that the arc at the epoch t 02 gives the least 

accurate results. These results are shown in Table 1 in 

the case of one arc. 

To generate the data, a 12 th order Cowell-Stormer 

process with a 22 second step size was used, as already 

mentioned. For the processing of the generated data a 10 th 

order process with a 45 second step size was applied. 



Table 1. Determination of the Center of Mass and Its Accuracy 

No. Length No. of No. of Distorted Coordinates of the Mass Center and 'l'heir 
of Arc Arcs Events Gravity Standard Deviations 

[minutes] Field x [m) y[m) z [mJ 

1 180.4 1 6 no 10.03 .±3 .1 9. 9 0 ±3.3 9.98 ±4. 5 

2 49.5 3 3 no 9.93 _+: 9. 0 10.01 ±10.9 9.99 ±8.5 

3 49.5 1 3 no 10.02 .±128 9.95 ±41 10.01 ±97 

4 49.5 3 3 yes 8.27 "':9. 0 11. 48 ±10.9 9.54 ±8.5 

5 49.5 1 3 yes 11. 34 ±128 6.87 ±41 12.14 ±97 

6 49.5 3 2 no 9.94 ±29 10.00 ±34 9.99 ±30 

7 49.5 1 2 no 10.02 ±146 9.94 ±74 10.01 +106 

8 26.4 3 3 no 9.98 ±29 9.99 ±33 9.99 ±31 

9 26.4 1 3 no 10.01 ±547 9. 99 ±76 10.00 ±185 

10 26.4 3 3 yes 10.74 ±29 9.80 ±33 10.00 ±31 

11 26.4 1 3 yes 11. 38 ±547 4.11 ±76 13.81 ±185 

12 26.4 3 2 no 9.96 ±58 9.99 ±69 10.00 ±63 

13 26.4 1 2 no 10.01 ±593 9.98 ±132 10.00 ±200 

14 4. 8 3 1 no 10.06 ±1770 9.98 ±1790 10.00 ±1130 

15 4.8 1 1 no 10.03 ±94700 9.95 ±3140 10.00 ±2970 

,_. 
U1 
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Furthermore, the initial conditions at the epochs t , 
01 

t
0 

, and t were changed arbitrarily by ±lOOm in position 
2 0 3 

and by ±200 m/hour in velocity before determining the mass 

center. Thus it was necessary, first to get a good orbit 

fit and then to solve for the parameter of the radiation 

pressure model and the coordinates of the mass center. 

To investigate errors in the expansion (8) for the 

geopotential w, the gravity field was distorted by using 

an expansion up to the 3rd degree and order, instead of an 

expansion up to the 4th degree and order with which the 

data was generated. This omission of the harmonic co-

efficients of the 4th degree introduces an error which 

probably has a greater effect on the orbit of Pageos than 

that due to the lack of knowledge of the gravity field. The 

results for the mass center obtained with the distorted 

gravity field are also given in Tablf~ 1. The absolute 

amount of the correction to the parameter pa of the ra­

diation pressure model is less than 0.07 for each arc in 

the case of the distorted gravity field, and less than 0.002 

for each of the rcrn.ainin0 arcs. 

7. Conclusions 

With an errorless gravity field the coordinates of 

the mass center are recovered with differences of less than 

10 cm. These deviations are caused by round-off errors 



since a different step size and integration order has been 

used for generating and processing the data. Errors from 

introducing a distorted gravity field affect the results 

for the mass center by less . than 6 min the case of single 

arcs and by less than 2 m in the case of three arcs. 

Of special interest are the square roots of the var­

iances, i.e. the standard deviations, computed for the 

coordinates of the mass center. These values give a clear 

picture of the geometric strength of the solution. While 

the results of one single arc of less than 50 minutes length 

are very discouraging, see No. 3 and 9 in Table 1, the 

picture completely changes if the same arc is extended over 

180.4 minutes, that is one revolution of Pageos, see No. l 

in Table 1. The results demonstrate the restrictions of 

short arc methods, see also Hartwell [1968]. However, 

17 

three well distributed arcs of less than 50 minutes length, 

that is about one .quarter of a revolution of Pageos, with 

three events each give an accuracy for the center of mass 

which is compatible with the accuracy of ±6m for the latitude 

and longitude components and of ±llm in the direction of 

the height, with which the station positions of the sat­

ellite triangulation net are determined [Schmid, 1969]. 

As mentioned in the introduction, Pageos has been ob-

served several times in two successive events. Up to 



18 

October 1969 observations of two successive events were 

obtained forming two arcs extending over a time period 

from 40 to 46 minutes, four arcs from 30 to 39 minutes, 

13 arcs from 20 to 29 minutes, and several shorter arcs. 

By assuming that the accuracy computed for three arcs in 

Table 1 is representative of the accuracy to be obtained 

from real data and by negle cting the covariances in ~O) 

and considering only the variances, we obtain a standard 

deviation for all three coordinates of the center of mass 

of the earth of about +40m from the two longer arcs, +40m 

from the four arcs of 30 to 39 minutes length, and +30m 

from the 13 arcs of 20 to 29 minutes length. The 19 arcs 

together give a standard deviation of about i20m in all 

three coordinates of the center of mass of the earth. After 

the observations in the worldwide satellite triangulation 

network have been completed, more than 1100 simultaneous 

events forming arcs of about 5 minutes length will be avail­

able. These urcs will determine the center of mass to 

about t60m, so that they cannot contribute significantly 

to the accuracy obtained with the longer arcs. 

With the completion of the obsen'a tions in the sat­

•.: lli te triangulation network in the middle of 1970 JTtore 

2hort ar=s will be available to determine the center of 

~~ss of the e~rt~. However, it is irriprobable that there 



is enough data to obtain the center of mass with an ac­

curacy consistent with the accuracy of the station po­

sitions of the world net. It is therefore planned to apply 

long arc methods using Doppler satellite tracking from 

stations of the worldwide triangulation net. The results 

will be combined with gravity measurements by applying the 

simple layer model of the geopotential [Koch, 1968] and the 

coordinates for the tracking stations obtained by the sat­

ellite triangulation method. 

19 



20 

Ref er enc es 

Danby, J. M. A., Fundamentals of Celestial Mechanics, 
~~~~-

Ma cmi 11 an Co., New York, 1962. 

Explanatory Supplement to the Astronomical Ephemeris, Her 

Majesty's Stationery Office, London, 1961. 

Hartwell, J. G., A Theoretical Development for the Deter-

mination of the Center of Mass of the Earth from 

Artificial Satellite Observations, paper presented at 

the 1968 Spring Meeting of the AGU, Washington, 1968. 

Koch, K. R., Alternate Representation of the Earth's 

Gravitational Field for Satellite Geodesy, Ebllettino 

di Geofisica Teorica ed Applicata, vol. 10, p. 318, 

1968. 

Koch, K. R. and F. Morrison, A Simple Layer Model of the 

Geopotential from a Combination of Satellite and 

Gravity Data, Journal ~ ~eophysical Research, in 

print, 1970. 

Schmid, H. H., Application of Photogrammetry to Three-

Dimensional Geodesy, ~~, Transactions, American 

Ge~J:!y_sical Union, vol. 50, p. 4, 1969. 

Shapiro, I. I., The Prediction of Satellite Orbits, in 

D_y_nami~ qf_ Satellites, edited by M. Roy, Academic 

Press Inc., p. 257, New York, 1963. 



Smithsonian Institution, Geodetic Parameters for a 1966 

Smithsonian Institution Standard Earth, edited by 

C. A. Lundquist and G. Veis, Smithsonian Astrophys. 

Obs. Spec. Rpt. 200, 1966. 

~lf, H., Ausgleichungsrechnung nach der Methode der 

kleinsten Quadrate, Diimrnlers Verlag, Bonn 1968. 

21 


