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APPENDIX B3
LEGENDRE POLYNOMIALS

COMPUTATION OF THE

Lse of a

means of reducing computation time; it is standard

recursion formula can be one of the best
procedu 1o use such a formula in computing the
Legendre polynemials. We have also used such a
formula for computation of the values sin (mk) and
cos {mh) which shoudd also be standard procedure
becauge sine and cosine routines are relatively
inefheient.

A standard formula has been used to compute
Pix) for the case m =0, as given below in Equation
(1h).
nPy0)4+  — P, ) —2n—1)xP, () =0,

(1h)

This relation is discussed by Hobson {19315 (p. 32}
and Wh aker and Watson 1927 (p. 3081, In hoth
cases a prool is given. and it is noted that various
proofs exist,

The formula used for the case m # 0 (the as-
but the
derivation fullows readily from the definition of the

sociated polynomialsy is also  standard.

associated polynomials, and we therefore include

the derivation for illustrative purposes,

By defin .
P(x) = “2:;";;"@(;£ o= 2h
brut
(‘{’; (x2—| )=% 2me(x?— 1)1
=In [% (x?—1}y2!
+2(n—l)%xz(.rg-l)""3]
» i3b)
dU T eyt 4D

dxrn =2

11

=0 thal Equation (3b) becomes

N -2

du "
1 "t

(r¥*=1)"=2n2n—1) (xZ—1)#-1

IM«-HI—'_’

ﬂ'n+m—2

+ 2 n{n—1)——— (- 1)r*
d‘x H+ =2
15b)
and Equation (2b) becomes
(2,1_1)(]_1.2):::,’3 ]mmfz )
I}m R — '_'A.I -1
"('1} 2”71(!‘!—]): dxuwn—z (l’ )
(1 __rz)m-':! efrrem—e . e
2n72("—2)! dyntm-—2 (X ])
or
P (x)=(2n—1) (1 2%)'% Py (x)+ Pl (x).
16b)

Programming Equations (1by and (6inis clearly quite
simple. and this subroatine is incleded below, [
should be noted that the angle beta is always in the

range [—E E] so that

{(1—x2)}1=]cos B|=rcos 8. (7h)

ng the deriva-
{5),
text) 1s valid for all m = 0, and is derived as follows:

The form we have used for expr
tive of the Legendre polynomials (Equat

JdPm(x) d s
A [T
o (It ((1 ) ({ mP" (\))
dm—l
= — 2 ’l
(1—x) ,[xm-v—l{ nl(x)
mr(] — 'z)mfz L )
{1—a-) d‘t"'[”(l)
_ P+l gy _me}{'(_L). .
( 1 —X'.’.)'I.fz ( 1 j— )
A« noted previously, we {eel for the m: ity

of cases normalization is not indicated. An example



of the accuracy inherent in today’'s |  ze-word com-
puters is given by comparison runs of the routine
presented in the following appendixes. These vom-
parisons indicated agreement of resulis to at least
nine significant hgures, and it will be noted that in
the program contained in Appendix D, virtually no

concession was made to accuracy. Furthermore, in

[

debuggiug these routines, we ran tests on a GE 400
time-sharing computer system and obtained results
accurate to at least five significant figures. even
though we entered as data the associated poly-
nemials and the harmonic coefficients rounded to
six or seven significant figures.






APPENDIX C
A FORTRA SUBROUTINE FOR THE €HAIN-RULE !}


















APPENDIN D
A FORTRAN SUBROUTINE FOR THE FUNCTION METHOD





















APPENDIX E
A FORTRAN SUBROUTINE FOR THE METHOD OF COEFFICIENT MODIFICATION















