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Martin Hotine's death on Nove mber 12, 1968, 
ended a brilliant career; his energetic leadership 
in geodesy will be missed. Although seriously ill, 
his drive and enthusiasm enabled him to complete 
the manuscript of this monograph, Mathematical 
Geodesy- a fitting climax to a lifetime of geodetic 
research and application. 

During the 50-year span of Martin Hotine's 
professional career, he provided numerous valuable 
contributions of lasting significance to basic re­
search and practical applications of geodesy. 
Among the many achievements from his surveying 
and mapping career in England, two contributions 
are most outstanding-the retriangulation of 
Great Britain under his direction from 1935 until 
its completion in 1962, and the surveys and mapping 
of underdeveloped countries, initiated and directed 
by him in 1946 and still continuing with his high 
standards of accuracy. Martin Hotine was truly a 
builder of worldwide geodetic networks. 

A firm belief in international geodetic coopera­
tion was one of Martin Hotine's convictions. This 
was manifested by his leadership of the Common­
wealth Survey Officers Conferences from 1955 to 
1963, by his intense participation in the general 
assemblies of the International Association of 
Geodesy, and most notably by his collaboration 
with Professor Antonio Marussi of Italy in the 
formation of three symposia on three-dimensional 

and mathematical geodesy. He was heavily involved 
in the program planning for the fourth symposium 
to be held in May 1969. 

Many significant theoretical contributions to 
the science of geodesy were made by Martin 
Hotine. He expanded the classical theoretical 
limitations of the current geodetic horizo n by 
insisting on a unified three-dimensional approac h 
to geodetic measurements and principles, and by 
applying the most relevant mathe matical tools, 
such as the tensor calculus, to exploit these con­
cepts properly. Many of the papers on these sub­
jects never appeared in print. Howe ver, by being 
presented at various international meetings, they 
were well publicized and proved very influential 
in their impact on other geodesists. 

It was thus fortunate that while employed at 
ESSA, Martin Hotine was able to combine and 
expand these ideas, formulated over the years, 
into this treatise on mathematical geodesy. In 
recognition of his service to the United States 
Government, Martin Hotine was awarded posthu­
mously the Gold Medal of the Department of 
Commerce "for highly distinguished and producti ve 
authorship of exceptional quality and extraordinary 
importance to science: for outstanding leadership 
in assisting ESSA in formalizing it s geodetic 
research program. ' ' Mrs: Hotine accepted the award 
at the American Embassy in Lundun on January 24, 
1969 . 
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Foreword 

In 1963, Martin Hotine completed a distinguished career of gove rnment 
service-both military and civil-in Great Britain. He attained the military rank 
of Brigadier, and later as a civil servant he was Director of the Directorate of 
Overseas Surveys and Advisor on Surveys to the Secretary of the Department of 
Technical Cooperation. In November 1963, he accepted an invitation uf Rear 
Admiral H. Arnold Karo, Director of the U.S. Coast and Geodetic Survey, to join 
his scientific staff as a research geodesist. When ESSA was form ed in 1965, 
Martin Hotine became a member of the Earth Sciences Laboratories in Boulder, 
where he remained until his return to England in August 1968. During these 5 ye ars 
in the United States, Martin Hotine devoted his attention to new conce pts in the 
geodetic sciences and continued the work that led to his recognition as one of 
the world's foremost authorities on geodesy. 

To compile scientific thought within a particular specialty of any discipline 
is never an easy task. Only an individual who has a proficiency in his field gained 
through years of practical experience and one who is dedicated to the advancement 
of science would undertake such a difficult task. Martin Hotine was such an in­
dividual, and the result of his efforts provides a foundation in basic theory and 
current thought in mathematical geodesy and another step from which the science 
of geodesy can progress. 

ESSA is highly honored and extremely fortunate to be able to include this 
volume in its monograph series. The purpose of this series is to add authoritative 
information to the depository of total scientific knowledge. Mathematical Geodesy 
is such a treatise. 
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Robert M. White 
Administrator 





Preface 

This book is an attempt to free geodesy from its centuries-long bondage in 
two dimensions. This does not mean that any geodesist, from Eratosthenes to 
modern contenders for the title, has ever considered the Earth to be flat; the 
two dimensions, such as latitude and longitude, have always been non-Euclidian 
and have been taken as coordinates on a curved reference surface. lt has been 
usual, nevertheless, to project points from the topographic surface of the Earth 
to the reference surface and thereafter to work entirely between points on the 
reference surface. The third dimension of height above the reference surface is, 
after all, small compared with the mean radius of the Earth; this fact has made it 
possible tu avoid any precise definition of the actual process of projection or of 
the exact location and orientation of the reference surface in relation to points 
on the topographic surface. The main process of projecting the line of observa­
tion into curves of normal section on the reference surface (usually a spheroid 
or ellipsoid of revolution), combining these curves into a spheroidal geodesic, 
and solving geodesic triangles does give sufficiently accurate results from fairly 
simple formulas over short lines. Unfortunately, the process involves an element 
of indiscipline which could bring the subject into disrepute; for example, the 
author's own interest was aroused some years ago by an argument in print between 
two leading European geodesists on the correct application of Laplace azimuth 
adjustment, between points not located on the reference surface, which showed 
that neither geodesist had clearly defined what he meant by a geodetic azimuth 
at points in space. The classical process could not, in any case, deal with the 
longer lines of observation in flare triangulation, stellar triangulation, and now 
satellite triangulation without excessive complication; it is actually simpler to 
consider the line of observation as a line in three dimensions and to carry out all 
computations and network adjustments in three dimensions. 

lt can be said that one form of the classical process was first introduced 
for the reduction of a survey of Hanover, Germany, by the celebrated Karl Fried­
rich Gauss who also introduced the differential geometry of curved surfaces. 
There is little doubt that Gauss, faced with modern geodetic problems, would 
have antedated Ricci and others by extending his differential geometry to three 
or more dimensions. The first geodetic application of these extended methods 
was made in 1949, far too many years after Gauss, by Marussi of the University 
of Trieste. (See, Marussi (1949), "Fondements de Geometrie Differentielle Absolue 
du Champ Potentiel Terrestre," Bulletin Geodesique, new series, no. 14, pp. 
+11-439.) 

Cartesian coordinates in three dimensional space are not suitable for all 
geodetic processes. We are led inevitably to consider more general curvilinear 
systems, and to publish a book requiring the differential geometry of such systems 
without using the tensor calculus (including vector calculus in index notation) 
would indeed be an archaism. Unfortunately, very few geodesists have yet studied 
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this important branch of mathematics, and the older generation is now unlikely 
ever to do so. 

Geodesists are by no means alone in their conservatism. Most new and ad­
vanced texts on mathematical physics are still being published in the old dot-and­
cross boldface-type vector notation, which is peculiarly suitable for only a very 
few applications; this notation is much more restricted than the use of index 
notation even for vectors considered as first-order tensors. Index notation is a 
practical necessity for tensors of higher order than the second; for the derivation 
of results, particularly those involving differentiation, which are true in any 
coordinate system; for generalized curvilinear coordinate systems and other 
applications requiring a mixture of both vectors and higher order tensors; and for 
the notion of curved space required not only in relativity but also in such applica­
tions as generalized conformal transformations. Nevertheless, physicists have 
still to acquire the no less difficult dot-and-cross boldface-type vector and dyadic 
notation for use in the more elementary applications. For more advanced work, 
they also need index notation which would serve all purposes. The waste of effort 
involved in using one notation for first-order tensors and an altogej:her different 
notation when tensors of higher order are required should be avoided in geodesy, 
which already requires the use of higher order tensors in quite elementary 
applications. 

It is still possible to obtain a master's degree in mathematics at most uni­
versit ies without any knowledge of the tensor calculus, but we may expect less 
conservatism in the future now that the subject is being taught to undergraduates 
in some universities and is being included in a growing number of special courses 
in applied mathematics. Moreover, many simplified texts have been made avail­
able since Eddington in 1923 sought a wide English-speaking audience with his 
Mathematical Theory of Relativity. 

Part I of this book attempts to introduce tensor calculus to geodesists and to 
cover the ground required for present and foreseeable future geodetic applica­
tions. It has been written only after searching the readily available literature in 
the hope of recommending instead a single text containing all the required material 
and written by someone with teaching experience. It is not surprising that none 
suitable for the purpose could be found among the many excellent books which 
are now available. Many of these books are naturally written to cover in outline a 
wide range of applications, and those that specialize are usually relativity-oriented. 
Moreover, most books on the subject have been written by mathematicians who 
are compelled to treat the subject rigorously; whereas the geodesist, who has to 
keep up to date in many other areas, is prepared to take much on trust , and is 
able to do so because he deals only with such well-behaved functions as Newtonian 
potentials in free space or with very regular functions suitable as coordinates. 
Even so, the treatment in Part I, necessarily compressed in a book which is re­
quired to cover even in outline the e ntire ground of theoretical geodesy, may 
prove too difficult for the beginner. It is recommended that he read a more ele­
mentary account of the broad basis of the subject first; for example, the first 83 
pages of Spain's (1953) Tensor Calculus or Chapters 2 and 5 of Lawden's (1968, 
2d ed.) An Introduction to Tensor Calculus and Relativity. It is always better to 
read two books on a subject, one more general than the other, instead of one 
specialized book twice. Much, but by no means all, of the subject matter of Part I 
is covered by McConnell's (1931) Applications of the Absolute Differential Calculus 
(also published in a 1957 Dover edition as Applications of Tensor Analysis). The 
reader who requires a more elegant and rigorous treatment- and some geodesists 
demand rigor- might read Guggenheimer's (1963) Differential Geometry. 

Part I was fir~t drafted as a collection of formulas to save the reader from the 
annoyance of continual reference to several other books and also to include some 
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formulas which are not to be found readil y, if at all, in books or papers. By the 
time the formulas and the notation had been explained, the manuscript had reached 
perhaps half of its present size; it was then decided to derive, or at least indicate 
how to derive, the results and to expand the explanation of some points likely 
to prove difficult. In the writer's expe rience, for example, mos t geudes ist s shy 
at the notion of covariance and contravariance, which seems to be the count erpart 
of the Euclidian pons asinorum, perhaps because geudesists us ually acquire so me 
knowledge of statistics in which covariance means something quit e different. 
In these days of aids to rapid reading, the expert need lose no time ove r such 
elementary exposition, but he is , nevertheless, advised to skim through Part I, 
if his knowledge is rusty, to get the feel of the notation and the conve ntions. 

The temptation to include indefinit e metrics, requiring little more explanation 
and leading straight into relativity, has been resisted. Apart from measurements 
based on the position of stars, geode ti c measurements have not yet been made 
beyond the Moon and relativistic corrections for high velocities in the solar sys te m 
can be, if necessary. applied quit e simply without much knowledge of relativity 
theory. (See, for example, Walker, in a lett er to Nature, v. 168, December 1, 1951 , 
pp. 961-962.) The methods used in relativity, like the tensor calculus itself, may, 
nevertheless, become important to the research geodesist who, if he knows or 
acquires Part I will have no difficulty in extracting keen enjoyment from Synge 
and Schild's (1949) Tensor Calculus, to prepare himself for Synge's two master­
pieces on relativity. 

Some consideration has also been given to including in Part I a short account 
of more general defo rmations of space than the conformal tran sformations of 
Chapter 10. This will come, together perhaps with some geodetic excursions into 
non-Riemannian geometry, but the geodetic application of this subject is still 
young and publication in book form would probably be premature. Meanwhile, 
some account has been given in §30-19 of a me thod of systematically deforming 
one member of a general family of s urfaces into another me mber of the famil y 
for a particular application. 

Part II deals with coordinat e systems of special int erest in geodesy. In 
Chapter 12, th e properties of a gen eral class of three-dimensional systems are 
developed from a single-valued, continuous and differentiable scalar N which 
serves as one coordinate, while the other two coordinates are defined by the 
direction of the gradient of N. In Chapters 15 through 18, the scalar N is restrict e d 
to provide simpler systems , whose properties can then be derived at once from 
the general results of Chapter 12. Transformations be tween me mbers of the 
general class for different values of N are treated in Chapter 19. Another advan­
tage of treating the subject in this way is that the scalar N can also be given 
a physical meaning (for example, the gravitational pote ntial in Chapter 20) so 
that Chapter 12 also provides the geometry of the gravitational fi eld. 

In case it should be required to transfer the values of point fun ction s from a 
point in space to a particular N-surface, which is the rigorous counte rpart of sev­
e ral operations of classical geodesy, methods of transfer along the isozenithals 
(the N-coordinate lines) and along the normals to the N-s urfaces are worked out 
for each coordinate system . in Part II , following a general discussion in Chapt ers 
13 and 14. The process is connected intimately with Gaussian spherical representa­
tion, which is developed in this context, following a more general discussion in 
Chapter 11, and is extended to nonspherical representation in Chapter 13. Such 
methods of projection are seldom any simpler than three-dimensional methods, 
although they are put to occasional special use in Part III, but it is as well that the 
process should be more fully understood in the future. 

Part III deals with the main geodetic applications of the mathe mati cs in Parts 
I and II. Geometry, which used to mean lite rally the science of Earth measure -
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men ts, is no longer confined to geodesy, but there is, nevertheless, still a con­
siderable overlap, more so perhaps than the overlap with physics, and we cannot 
~xpec t a rigid division between the two subjects. For example, the differential 
geometry of Chapter · 12 contains all the metrical properties of tl}e gravitational 
field used in geodesy if we restrict one coordinate in accordance with a physical 
law. As another example, the transformation between two members of a class of 
coordinate syste ms in Chapter 19 includes the process of switching between 
geodetic and astronomical systems. Part III simply attempts to show how these 
mathe matical concepts can be used today in attacking the main problems in 
geodesy. The treatment is not complete; for example, nothing is included on the 
formation and solution of normal equations in least-square adjustments, which are 
adequately treated in existing literature. Nor does the treatment cover all pos­
sible applications; few geodesists have so far worked on these lines, and future 
developments may be considerable. For example, the reader cannot expect to 
learn all about so-called physical geodesy (which in fact is again mostly geometry) 
from Chapters 29 and 30, although it is hoped that he will acquire a clear idea of 
the basic theory which will enable him to follow the considerable literature of 
the subject more easily and critically. The same applies to satellite geodesy in 
earlier c hapters . 

Manipulative skill in any branch of mathematics cannot be obtained by 
reading alone. In most cases, the work has been shortened by omitting several 
steps leading to a result, but full references are given to enable the reader to fill 
in the missing steps, if he so desires. It is hoped that this procedure will serve the 
purpose of the examples and problems in textbooks which would be quite out 
of place here. The experts, no doubt, will omit the whole procedure and will 
take the results on trust. 

References to other publications are given only as required by the text. 
They do not provide anything like a complete bibliography or any indication of 
priority or re lative importance. For example, Marussi's classical paper noted earlier 
in this preface is refere nced only once in the text , although it can be considered 
the foundation stone of modern theoretical geodesy. However , the reader who looks 
at the references. particularly those to books , will soon find that he has access 
through them to a considerable bibliography. 

The question of credits and priorities is particularly difficult in this subject. 
Classical results are given a nametag to help identify them in the literature, but 
the name is that normally associated with the result in English. without attempt­
ing to assess priority between, for example, Gauss, Green, and Ostrogradskii. 
Some of the named results seem almost trivial when derived by modern methods, 
but it is hoped this will not dim the luster of great men who unearthed them 
with less serviceable tools. Credit is also given, when known, for particular recent 
results, but such credits are few because not many geodesists as yet have worked 
in this area. To offs e t what must seem like cavalier treatment, no priority is 
claimed for any results, although it is believed that some are new, either in con­
tent or in presentation. 

The title of the book requires some explanation. An attempt has been made 
to cover only the basic mathe matical discipline of geodesy, excluding such spe­
c ialized matters as routine computer programs and including only such references 
to instrume ntation and fi e ld (or laboratory) procedures as may be necessary to 
a full appreciation of the unde rlying theory. The book accordingly bears much 
the same relation to the whole of geodesy as numerous books entitled "Mathe­
matical Physics" do to the whole of physics. Various alternatives have been con­
sidered and rejected ; for example, the title would be some variant of "Higher 
Geodesy" if published on the European continent, but the content of the book 
is quit e differe nt from any othe r book bearing that title. 
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The terminology and symbolism used in the book cannot he expected tu com­
mand universal acceptance. For exa mple, there is a growing tendency in geodesy 
to call an ellipsoid of revolution simply an ellipsoid and to reserve the term sphe­
roid for an equipotential surface of the standard gravitational field. This conven­
tion can cause confusion whenever reference is made to mathematical literature 
in English where a spheroid is defined geometrically as an ellipso id of revolution 
and an ellipsoid in general means a quartic with three unequal axes: for example, 
the treatm ent of spheroidal and ellipsoidal harmonics in Hobson's standard 
work on the subject is based on this definition, which is clearly s tated in the 
Van Nostrand (1968, 3d ed.) publication, Mathematics Dictio~rnry, edited by 
James and James. In a mainly mathematical book, it has accordingly been decided 
to retain the mathematical convention, which incidentally is also used by most 
English-speaking geodesists. In much the same way, the physical sign conven tion 
has been used for a Newtonian potential, although the fact that the potential is 
invariably negative in terrestrial applications has led most geodesists to change 
the sign. No good can come through willfully di scarding scientifi c conventions 
universally accepted in a parent subject which has every right to prescribe the 
convention. Adoption of the physical convention for potential not only facilitates 
reference to the literature of physics, but also accords better with the geometrical 
basis of this book. 

Most geodesists use the symbol A for longitude. However, in a book using 
vectors, there is an overriding need for an orthogonal triad Ar , µ,,., v,. frequently 
used in mathematical literature. In the geodetic applications, A,. is associated 
with longitude, but it is not the gradient of the longitude as the use of A for the 
scalar longitude would imply. The symbol w, usually associated with a rotation, 
is accordingly used for longitude. Whenever possible, however, the symbolism 
most generally adopted by the best literature in a partic ular branch of the subject 
has been used to facilitate wider reading although this often results in using 
the same symbol for different purposes in different chapters. The Index of Sym­
bols at the end of the book indicates the general use of a symbol, any departure 
from which is invariably noted in the text . For example, a and f3 are generally 
used for azimuth and zenith distance, which differ in different coordinate systems, 
but the context will show which coordinate system is being used. The same applies 
to latitude and longitude, and thi.s arrangement enables us to dispense with 
special symbolism for particular coordinate systems, such as spherical (geo­
centric) and spheroidal (geodetic) systems. Following standard mathematical 
conventions in English, right-handed systems are used throughout the book, 
and sign conventions are adopted to conform. In general, some warning or com­
ment is given in the text whenever there is a departure from standard mathe­
matical or physical conventions in the geodetic literature; for example , the use 
of left-handed systems imported from photogrammetry into satellite triangula­
tion. 

To facilitate reference, summaries of main formulas are collected as a Sum­
mary of Formulas at the end of the book. In some cases, a particular chapter 
suggests a particular arrangement; for example, some formulas in the summary for 
Chapter 17 are obtained by specializing the results of earlier chapt ers at sight and 
are not given in the text of Chapter 17, although they do apply to the subject matter 
of Chapter 17. The best way of using the Summary of Formulas is to look first at the 
chapter headings or subheadings for the required subject matter. Each equation 
in the index carries a reference to the text which gives the derivation and sym­
bolism. Back references in the text are always to the text , but a reference to the 
Summary of Formulas may be sufficient and quicker; however, if the back refer­
ence is not given in the index, it will be necessary to ref er to the text. 

It is difficult to make adequate acknowledgment covering a lifetime of st udy, 
discussion, and collaboration. The author's main source of inspiration in the sub-
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ject of this book has been Professor Antonio Marussi of the University of Trieste, 
not· only for the range and originality of his ideas but also for continual advice 
and e ncourage ment. The book and its writer owe much to the two official reviewers, 
Mr. Bernard H. Chovitz of the Earth Sciences Laboratories of ESSA and Professor 
Ivan I. Mueller of the Ohio State University, for careful reading and checking 
and for many improvements. In addition, specialist reviews and information have 
been freely provided by Professor Arne Bjerhammar and his associates of the 
Royal Institute of Technology, S tockholm; Mr. Robert H. Hanson of the Earth 
Sciences Laboratories of ESSA; Dr. Karl-Rudolf Koch of the Ohio State University; 
Professor Helmut Moritz of the Technical University of Berlin; Mr. F. Foster Mor­
rison of the Earth Sciences Laboratories of ESSA; Mr. Allen J. Pope of the Coast 
and Geodetic Survey of ESSA; Professor Erik Tengstriim of the University of 
Uppsala; Dr. Moody C. Thompson of the Institute for Telecommunication Sciences 
of ESSA; and Mr. John Wright of the Directorate of Overseas Surveys of Great 
Britain. None of these distinquished men , es pecially neither of the official re­
viewers, is responsible for any remaining errors and omissions. 

The difficult and unrewarding task of editing such a specialized book has been 
successfully undertaken throughout by Mr. John R. Bernick. The index has been 
compiled by Jean S. Campbell. The production coordination of the publication 
has been accomplished by Mr. Edward W. Koehler and the manuscript has been 
marked for printing by Miss Lila Paavola and Mrs. Helen Hoener. 

Last, but far from least , the manuscript has been typed and retyped most 
expeditiously and efficiently by Mrs. Nancy Durazzo and Mrs. Judy Shore. 

August 1968 MARTIN HoTI NE 
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CHAPTER 1 

Vectors 

CARTESIAN VECTORS 

1. Geo metrically, a length in a certain direction -defin es a vector OP. In ordinary three -dimensional 
space, we can , for instance, take 0 as the origin 
of a rectan gular Cartesian coordinate sys te m and 
specify the vector complete ly by the three coordi­
nates of P. Or, if we wish to de fin e a number of 
vectors at differe nt points in the space, we can take 
a fixed ori gin and de fin e the vector by the diffe rences 
in rectangular coordinates over the length OP , that 
is, by the orthogonal projection of OP on the co­
ordinate axes . These three qu antities , known as 
the rectangular Cartesian components of the vector , 
will depend on the choice of coordinate syste m; but 
the sum of their squares will be the square of the 
length OP, which does not depend on the coordin ate 
s ys te m. If the vector is of unit length , or if we divide 

Figure l. 

3 

the com ponent s by the length , the components 
become the direction cos ines of the direction OP, 
and the vector is known as a unit vector. 

2. The matter becomes more com plicated when 
we consider inclined coordinate axes. Fur the 
present , we shall continue to consider a Cartesian 
syste m; that is, a system in which the coordi nates 
are actua l le ngths along s traight coordinate axes. 
For ease of illustration, we sha ll consider a vector --.. . 
OP in re lation to coordi nate axes OX, OY (fig. 1) in 
two dimensions, but similar conclusions will apply 
in three or niore dime nsions. We can still specify 
the vector by it s orthogonal projections OQ, OR on 
the coordinate axes, in which case the components 
of a unit vector in the direction OP will still be the 
direction cosines of OP. We call these covariant 
co mponents a nd writ e 

1.01 

f 1 = OQ = OP cos 81 

l2 = 0 H.. = OP cos 82 . 

making use of index notation 11, /2 for the com­
ponent s. 

3. Alternati vely, we could s pecify the vector com­
pletely by takin g the differences in coordinates 
OS , OT as components, which we shall call the 
contravariant co m ponents. We dis tinguish them 
fro m the covariant co mpone nts by us ing super­
sc ript indices and writ e 

/ 1 =OS= OP sin 82/sin (81 + 82) 

1.02 12 =OT= OP sin 81/sin ({)1 + 82). 

We can no longe r square and add either set of 
components as a mean s of obt ainin g th e length or 
magnitude of the vector, but the above formulas 

~-~-- -
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lead at once to the result 

/1/, + /2/2 = OP2. 

As a form of shorthand whose value will become 
more apparent later, we can write this as 

1.03 

in which we use the summation convention. When­
ever a superscript and a subscript index are the 
same, we assume that this index takes all possible 
values (in this case a= 1, 2), and the results are 
then summed. 

...... ____... 
4. Next, suppose we have two vectors OL, OM 

(fig. 2), and that the angles giving the direction of 

Fi~ure 2. 

---+ 
OM are distinguished by overbars. We have 

/1m1 + f2m2 = /ama 

OL · OM (sin e2 cos e, +sin e, cos 02) 

sin ( (), + ()2) 

= OL ·OM cos e, 
and we can obtain the same result from lam a. We 
call this the scalar product of the two vectors and 
write 

1.04 

Or, to phrase this in words, the scalar product is the 
product of the two magnitudes and of the cosi ne of 
the angle between the two vectors. The scalar prod­
uct of two perpendicular vectors is c learly zero. Also, 
Equation 1.03 is a special case of Equation 1.04 in 
which the two vectors coincide. 

5. The reader with an inclination for spherical 
trigonometry can verify that Equation 1.04 holds 
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equally well in three dimensions. A simpler method 
is to assume that 

(r=l,2,3) 

has the same value in all coordinate systems-or, in 
other words, is invariant under coordinate transfor­
mations - as we found /ama to be in two dimensions, 
and tu ev aluate the expression in a special coordi­
nate system. We choose OX to coincide with OL 
and leave OY, OZ arbitrary. In that case, / 1 = OL 
and / 2 , / 3 are both zero because the y- and z-coordi­
nates do not change in the direction OL. Conse­
quently, we have 

frrnr = OL · m 1 = OL ·OM cos e. 
By choosing a coordinate axis along OM, we find 
that /,mr is the same so that we have 

1.05 

6. Throughout this book, we shall adopt Greek 
indices for the two-dimensional components of 
vectors and Roman indices for three dimensions. 
The index notation for a vector fr need not be con­
fused with the rth-power of a quantity/. The context 
will usually distinguish between the two without 
explanation, but in cases where confusion could 
arise, we shall use and shall describe special nota­
tion for a power index. In the same way, numerical 
subscripts will often be used to distinguish certain 
quantities. Covariant vectors will usually have a 
literal subscript; but if u numerical subscript has 
to be used for a particular compo11.ent, attention will, 
if necessary, be called to the fact. 

7. It will be clear from the definitions of the 
covariant and contravariant components of a vector 
that the two sets of components are equal in rectan­
gular Cartesian coordinates, but are not equal in 
inclined Cartesian coordinates. By introducing the 
two sets of components, however, we have been 
able to ensure that such results as Equation 1.05 
apply in both rectangular and inclined Cartesian 
coord inates. 

VECTORS IN CURVILINEAR 
COORDINATES 

8. We have now to generalize the matter still 
further by considering curvilinear coordinate sys­
tems. Through each point in some region of three­
dimensional space, there will still be three unique 
coordinate lines along each of which only one co­
ordinate varies, the other two being constant; but 
the coordinate lines may be curved as well as 
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inclined, and will not , as a rul e, be parallel tu the 
directions of the corresponding coordinate lines 
at other points. The space it self may be cu rved, 
like the surface of a sphere in two dimensions, and 
in that case . the space can only be described in 
curvilinear coordinates; we should be unable to 
find a Cartesian system which would give the pos i­
tions of points in an extended region of the space. 
Finally, a c urvilinear coordinat e will no longer 
necessarily be an actual length meas ured along a 
coordinate line, as in the case of Cartesian coordi­
nat es, although lengths and coordinates mu st 
obviously be related in some way because a dis­
placement over a given length in a certain direction 
must involve a uniqu e change in coordinates. 

9. This re lation, which may var y from point to 
point , is ex pressed by the metric or line element of 
the s pace; the square of an e le men t of length ds 
in a s mall ne ighborhood of a point can be ex pressed 
in terms of the changes in coordinat es dxr over 
the ele ment of length by a relation of the form 

1.06 (r, s= 1, 2, 3). 

We assume that the summation convention is used 
in thi s formula, which accordingly may contain 
nine coe ffi c ients /:rs in three dimensions to go with 
all possible combinations of the coordinat es. We 
do not need, however, more than six and can take 
g,.s as symmetrical so that we have g,2 = gz1, for 
example. We can then expand Equation 1.06 as 

ds 2 =K1ddx1f + K2Adx2f + K:ddx:!f 

+ 2[:i"!dx 1dx2 + 2[:1:idx 1dx:1 + 2[:"!:idx2dx:i. 

Throughout this book, we s hall use only what are 
known as positive-definit e metri cs; that is, for any 
real and nonze ro displacement dx 1

", the value oft he 
quadrati c form in Equation 1.06 is positive and not 
zero. Only in this way can the form represent th e 
square of a real element of le ngth. Relativity me trics 
in four dimensions, on the other hand, are usually 
indefinite, in the sense that ds'!. may be zero without 
all the dx" being zero. 

10. The numbers grs (totaling nine , of which six 
may have different values) will vary continuous ly 
from point tu point, but will be defin ed unique ly 
at each point for a particular coordinate system; 
in other words, they will be fun ctions of the coordi­
nates xr, or functions of position. This array of 
numbers is known as the metric tensor, for reasons 
which will appear later. In rectangular Cartesian 
coordinates, the metric must reduce to the Pythag­
orean form 

1.07 

ds 2 = (dx) '!. + (dy)'!. + (dz)'!. 

= (dx112 + (dx'lf' + ( dx=1)2 

in which case we have 

g,.s= 1 (r=s); g,.s=O (r =Ps). 

In inclined Cartesian coordinates , the grs (r =P s) are 
functions of the angles e nclosed by the coordinat e 
axes and are therefore the same at all point s . but 
are not zero. 

11. As a simple example of curvilinear coordi ­
nates, we take sphe ri cal polar coordinates (w , </> , r). 
defined by 

x = r cos </> cos w 

y = r cos </> sin w 

z = r sin <f>. 

By straight differentiation and subs titution 111 

Equation 1.07, we have the metric 

ds'l = (r2 cos2 <f>)dw2+r2d<f>2+dr2 , 

and the components of the metric tensor are 

g11 = r 2 cos2 </> ; 

g,.s= 0 (r =P s). 

The w-coordinate lines, along which <f> and r are 
constant , are circles parallel to the xy-plane and 
centered on the z-axis; the </>-coordinat e lines are 
circles centered on the Cartesian origin whose 
planes contain the z-axis; and the r-courdinat e lines 
are radial lines from the Cartesian origin. Alt e r­
natively, we can say that the w-cuordinat e surfaces 
(over any one of which w is a constant) are planes 
cont a ining the z-axis. the </>-coordinat e surfaces 
are cones whose common axi s is the z-axis, and the 
r-coordinate surfaces are spheres ce nte ring on the 
Cartesian origin. In a Cartesian syst e m, all the 
coord inat e lines would be straight and all the co­
ordinat e surfaces would be planes. 

12. Over short distances, we can, neve rthe less, 
cons ider that th e coordinate lines are straight in a 
cu rvilinear system. By analogy with the Cart es ian 
definition , we sti ll can say that a small change in 
coordinat es 

(r = 1. 2 . 3) 

represents the three contravariant component s of a 
small vector of length ds, and that in the limit. the 
ratios 

1.08 dxr = /r 
ds 

(r = 1. 2, 3) 

are the con travariant components of a unit vec tor 
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fr. Although we are no longer dealing with finite 
lengths, it is easy to see that this definition of a 
contravariant unit vector agrees with the Cartesian 
definition. We can also define a ·nonunit vector of 
magnitude A, in the sam e direction as the unit 
vector fr , as 

1.09 

without contradicting the Cartesian conce ption, 
although we may no longer be able to interpret A 
as a finite length. 

13. The covariant components, however, need 
further consideration because they were de fin ed 
in Cartesian coordinates as lengths along the axes. 
By dividing Equation 1.06 by ds 2 and subs tituting 
Equation 1.08, we have 

1.10 

To preserve the Cartesian conception of a covariant 
vector as far as possible, we may use Equation 
1.05 and writ e for a unit vect6r 

1.11 u s=l. 

However, if both Equations 1.10 and 1.11 are to 
hold for all directions at a point , that is, fo r arbi­
trary values of the contravariant components /s, 
we must have 

1.12 

as the definition of the covariant components of a 
unit vector. From Equation 1.09, we have also 

However, to preserve the Cartesian conception 
corres ponding to Equation 1.05, this must e qual 
L,.Lr so that a general covariant vector can be 
written as 

1.13 

Co mparing this with Equation 1.09 , we see that 
multiplication by Krs and use of the s ummation 
convent ion have lowered th e indices of the vector 
Equation 1.09. It is easy to see that the sa me opera­
tion would lowe r the free (not summed) index in 
any vector equation. 

14. We now cons ider whether the above definition 
of a generalized covariant vector agrees comple te ly 
with the Cartesian conception , in the sense that a 
Cart esian sys te m provides a s pecial case. For ease 
of illus tration, we s hall again consider the case of 
two dimensions. In figure 3, we take a small dis­
placement of le ngth ds, made up of di s placements 
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of length Va"::dx 1 and Va';;dx2 along the coordinate 
axes, obtained, respectively, by making dx 2 =0 and 
dx 1= 0 in the metric 

ds2 = 011 ( dx 1 )2 + 2a12dx1dx2 + a 22 ( dx2
) 2 • 

From the figure, we have at once 

ds 2 = o 11 ( dx 1 ) 2 + 022 ( dx 2
) 

2 

+2~~dx 1 dx2 cos (01+02). 

By comparing these two forms of the metric , we have 

1.14 

x2 

~dx1 

Fi~ure 3. 

Using the generalized definition of the covariant 
~ 

co mponents la of OP and evaluating dx 1/ds, etc., 
from triangles in figure 3, we have 

/1 = a1f3ff3 = 011 (dx 1/ds) + ol2(dx2/ds) 

_ ~sin 02 + a12 sin 01 
- s in (01 + 02) Ya: sin ( 01 + 02) 

1.15 =~ cos 01, 

on s ubstitution of an from Equation 1.14 and expan­
sion. In the same way, we have 

1.16 /2 =~ cos 02. 

If the coordinat e system were Cart esian (a 11 =a22=1), 
this would agree exactly with Equations 1.01 for a 
unit vector. We can obtain the same result in three 
dim ensions. We can accordingly c laim to have 
generalized the conception of contravariant and 
covariant vectors for a general curvilinear coordi­
nat e system and to have shown that previous results 
in Cartesian coordinates are merely special cases. 
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15. It will be noted that we use the symbol 

<1af3 (a, {3 = 1, 2) 

for the metri c te nsor in a two-dime nsional space 
instead of the three-dime ns ional Krs· We s hall 
adopt this convention as standard. 

16. We are now able to conclude in much the 
same way that Equation 1.05 holds equall y well in 
curvilinear coordinat es . If u·' Mr are I WO vectors in 
the directions of unit vectors /r, m•· and of magni· 
tudes A., µ.,, we can write 

1.17 

L,.Jlfr = KrslrJl1s = A.µ,g,..Jrms 

= A.µ,/rm,. 

= A.µ, cos fJ 

where (J is the angle be twee n the two vec tors. This 
generalizes the scalar product of I wo vec tors, which 
again is zero for two pe rpendic ular vectors. 

TRANSFORMATION OF VECTORS 

17. We now consider the effec t on the component s 
of a vector when the coordinat e system is changed. 
We s hall denote the ne w coordinates xr and the 
new components by overbars . For a contravariant 
unit vector, we have at once 

- axr di,. ax~ axr 
fr=-=--=- /S 

as axs as axs 1.18 

in which , of course, the summ ation convention is 
appli ed to the index s, and we have used the chain 
rule of elementary calculus. The same formula 
clearly will apply to non unit vectors [r, U. 

18. In the case of a covariant vector, we form the 
scalar product with an arbitrary vector /ir. The 
result is an invariant , which has the same value 
in eithe r coordinate system, because it depe nds 
only on the magnitudes of the two vectors and the 
angle be twee n them so that we may write 

7,.Ar= lsA 8 = ls(axs faxr)if r, 

using Equation 1.18 for the vector Ar. S ince thi s 
relation holds for any arbitrary vec tor /Ir, we mu s t 
have 

1.19 
- ax~ 
I =- / r dXr S• 

which is the required transformatior:!.: The same 
formula will apply to nonunit vectors l,. , l s. 
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19. We cuuld define a vec tor as a set of three 
quantities (in three dime ns ions) whic h tran sform 
in thi s way. Tu illus trat e the point. we take a C'o n· 
tinuous differentiable sca lar N; that is, a real num· 
be r which has a unique va lue at a ll point s of a region 
of s pace a nd can therefore be cons idered a fun c tion 
of the coordinat es. The sca lar N is also an inuariant 
whose va lue at a particu lar poi nt is the same what· 
e ve r the coordinate sys te m. i\los t ph ysical quan· 
titi es, s uch as pot ential or gravit y. are scalar 
invariant s. We differenti ate N with respect to each 
coordinat e x,. and write 

N,. = aN/axr. 

But because N is an invariant (N = N), we can write 

1.20 
- aN CIN aN CJx' ax~ 
N,. = -_- = -_- = -. - -:---::- = ---=-:- Ns 

axr axr dx' dx,. ox' 

so that N,. transforms like a covariant vector and 
can be taken as a covariant vector. It is called the 
gradient of N. Because N is differentiable, there 
will be some directions /r in which N is constant 
so that we have 

N,. /r = aN/ as = 0. 

The gradient of N is acco rdingl y pe rpe ndicular to 
all s uch direc tions. If N is cons tant over a s urface, 
it s gradient is pe rpe ndicular to all surface direc· 
tions at a point and is the refore in the direction of 
the unit normal v,. tu th e s urface. We can then write 

1.21 N,.= nv,. 

whe re n ts the magnitude of the gradient vec tor. 
In thi s disc ussion , we have, of co urse, assumed 
that at leas t some of the derivatives of N exis t, 
eve n though N it self ma y be zero; otherwise, the 
gradie nt of N and therefore v,. would be undefined. 
The assumption is jus tifi ed in the case of surfaces 
dealt with in this book. 

20. If, in three dimensions, we kno w the com· 
ponent s in both coord inate sys te ms of three mutu ally 
pe rpendicular unit vec tors Ar, J.Lr, v,., we can derive 
the set of transformati on factors from the formulas 

1.22 

ai 1
'/ axs = XrA.s + µ..r J.Ls + 17v., 

dx''/ axs= A_ r~s + J.Lriis + vrvs. 

To verify these formu las, we multiply the first equa· 
tion by A_s, for example, use Equation l.11 and the 
fac t that the scalar product of two perpendi cular 
vec tors is zero , and so recover Equation 1.18. 
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21. We can also s how th at the scalar produc t of 
any two vectors is an invariant , 

- - I' - dXs axr I - s . I = I = r 1.23 ArB - :i- r As a I B - 8,AsB A ,B A ,B . 
uX X 

Here we have used the Kron ecker de lt a 

1.24 

of = 1 (s = t) 

87 = 0 ( s~ t) 

so th at the only value of s whic h contributes to the 
summation is t . and we accordingly may write t fo r s 
in Equation 1.23. We have also used the c hain rule 
in partial different iation , that is, 

clx8 clx '" - ax~ - <;: s 
- - - U1• 

flx '" clx1 (Jx1 

22. We s hall oft en want to set up a right-handed 
set of three vectors Ar, µ,,. , v,. in three dimens ions. 
If the three vec tors are mutually orthogonal, we s ay 
tha t the set is right handed in the order l!iven if the ir 
directions are the same as the us ual right- handed 
conventions for the (x, y, z ) coordinate axes of a 
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rec tangular Cartesian coordi nate sys tem. If, for 
exa mple , the d irec tio n of v,. is toward the reader , the 
set in figure 4 is right handed in the orde r Ar , J.1- r, Vr. 

y 

vr • t-z ________________ ....._)..r 
x 

Figure 4. 

However. it is not necessary fo r the vectors to be 
orthogo na l, so long as the ro ta ti on fro m one vector 
to another is in the same ge neral sense. Lookin g 
along Ar, fo r inst ance, v,. must be to the right of J.1-r· 
We sha ll arrange for the coordina te axes, even 
curvilinear. to be a ri ght-handed syste m in the order 
(x 1 , x:!, x :1) or (1, 2. 3). 
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Tensors 

GENERAL RULES 

1. A matrix or set of quantities, defined in a par­
ticular coordinate system in 3-dimensional space, 
such as 

A rs ( r, s = 1, 2, 3) , 

is considered as a t ensor if it transforms like a vector 
for each index so that we have 

2.01 
- (JxP dXq 

A,.s= axr axs A,,q 

in which the summation convention applies to the 
indices p, q. We may have covariant tensors like 
the above, or contravariant tenso rs like 

_ axr axs Ars=--Apq 
dXP dXq ' 

2.02 

or mixed tensors like 

2.03 

and we may have any number of indices. The order 
of the tensor is the number of free (not summed) 
indices; all the above examples being of the second 
order. A vector is accordingly a first-order tensor, 
and an invariant is a tensor of zero order. 

2. It is evident from the transformation formulas 
that, if all the components of a tensor at a point are 
zero in one coordinate system, they are all zero in 
any othet . coordinate system. This implies, for 
instance, that the tensor equation 

A,.8 =0 

is true in any coordinate system , if it is true in one. 
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We shall see later that all tensor equation s have thi s 
property. 

3. lt will also be apparent from the formula s that 
a te nsor transformation is transitive. lf we transform 
from a coordinate system (a) to another (b}, and then 
tu a third (c), the result will be the same as a tran s­
formation direct from (a) to (c). 

4. We can add tensors uf the sa me orde r and 
type. Fur example. the su m of two mixed third­
order tensors 

A~· t + B.~·I 

1s obtained by adding corresponding components , 
such as 

A13+Jlh , 
to provide the corresponding component of the s um 

CJ:i 
so that we can write 

2.04 (r, s, t= 1, 2, 3). 

If we multiply this equat ion across by the appro­
priate transformation fac tors. we have 

ax" a X 8 a X 1 
r - - /; - " - - k 

a ,. :.- i a- 111 C81-A1,,1 + B1,,, - C1111 x ox x 

111 which the compone nt s of the tran sformed sum 

Cf;" 
are obtained in the same way by adding corre ­
sponding components of the transformed te nsors. 
The s um accordingly obeys the transformation law 
for tensors and is therefore a tensor. 

5. We can similarly multiply two tensors . not 
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necessarily of the same order and type, and can 
show that the result is a tensor of higher order. We 
can write the product , for example, as 

2.05 

in which all the indices are free, and can obtain each 
co mponent, for instance, 

CJ:i, 
of the product by multiplying the components 

A23· B 1
• 

6. If an upper and lower index of a produc t are 
the same, then we must apply the summation con· 
vention, and the result will be a contracted tensor 
of lower order containing only the remaining free 
indices. For instance, we have 

2.06 

in which each component of the contracted product 
is now obtained as, for exampl e (in three dimensions), 

C1 = A 11B1 + A 12B2 + A13S:1• 

We can prove the tensor character of the contracted 
product Equat ion 2.06 as follows. 

A R'=A· B' axj ax' .. a:x1 _ 
SI jk (Jj;S (Jj;I ax/ 

= C. axi 
J a.x:s 

= C~. 

7. Any letter can be chosen for a summation or 
dummy index, so long as it is not one of the free 
indices, because it will, in any case, assume all 
values during the summation. We can accordingly 
alter or can exchange dummy indices as, for 
exa mple, 

A.~·,ssC' = A i~B'CS = A ;; 11 B1'C<1. 

so long as we do not confuse them with the free 
indices (r in this example) . 

8. It is evident that any scalar formed by tensor 
contract ion will be an invariant, whose value will 
be the same in an y coordinate sys tem. 

9. A tensor is said to be symmetric in two indices, 
both upper or both lower, if it remains the same on 
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interchanging those two indices. For example, if 

then the tensor is symmetric m the second- and 
third-covariant indices. If its value remains the 
same but the sign changes, for example, 

B~tu = - B~ut • 

then it is said to be skew-symmetric or antisymmetric 
in the two indices. These properties are retained 
on change of coordinates because , for example, all 
component s of the te nsors 

(A.;111 -A;;11 ) or (B:;111 + B:;w) 

are zero in one coordinate system and must there­
fore be zero in any other. 

10. Any second-order ten sor can be expressed 
as a sum of a symmetric and a skew-symmetric 
tensor, as is evident from the identity 

Ars={(Ars+ Asr}+{-(A,.s-Asr}, 

the first tensor within parentheses being symmetric 
and the second being skew-symmetric. 

11. If we contract the product of a symmetric 
tensor Ars and a skew-symmetric tensor Bjrs on the 
symmetric and skew-symmetric indices, the result 
will be zero because 

on interchanging the dummy indices so that we 
have 

/JjrsA ,.s=O. 

12. The relations, Equations 2.04, 2.05, and 2.06, 
are examples of tensor equations. If we take any 
such equation relating the components of tensors 
in one system of coordinates and multiply across 
by the transformation factors for the fre e indices 
as was done , for example, with Equation 2.04, we 
see at once that the same equation holds between 
component s in the transformed coordinate system. 
In other words, if a tensor equation is true in one 
coordinate system, it is true in any coordinate sys­
tem. This fact is of fundam ental importance in all 
applications of the subject, particularly the physical 
applications, because a physical law must, from 
it s very nature, be inde pendent of a man-chosen 
coordinate system and so is best expressed in tensor 
form. We can very often set up a tensor equation 
in a simple coordinate system, for instance Car­
te sian, and immediately can assert that it is true 
in a complicated system; whereas it would be very 
difficult to find it or to prove it in the complicated 
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system alone; we have mere ly to make quit e sure 
that all the te rms in the equation are tensors. 

TENSOR CHARACTER 

13. T ests for tensor character are for this reaso n 
most important. Ultimat e ly, these must require the 
set of quantities in ques tion to obey the transforma­
tion law, but we can de rive some simple rules to 
avoid having to resort to the transformation law in 
each case. If. for example, the given set of quan­
tities form an invariant when contracted to a scalar 
with arbitrary nonzero vectors, the n it will be a 
tensor. In that case, we have, for example, 

a,.,,A 1B' = (1,. . .fir8s = iij1,/[jjj1; 

in which a,.8 is the set under tes t and A 1
·, Bs are 

arbitrary vectors . Transformin g the vectors, we have 

In three dimensions, this is an equation with nine 
arbitrary coefficients A 1B2 , e tc. , connecting the 
nine co mpon ents of the matrix within parentheses . 
Nine or more of these equations containing different 
values of the arbitrary coeffi cient s can only be satis­
fied if each component of the matrix within paren­
theses is zero, that is, 

_ axj ax" 
a,.s = aj/.: - - , axr axs 

which proves the tensor character of a,.5 • We could 
not say thi s if A,., Bs were the same vector because 
we should have then only six inde pend ent coe ffi­
cients connecting the nine component s of the matrix. 
We could, however, interc hange the indices r, s 
and add the result to provide an equation of the 
form 

( 
_ aij ai" _ a:ij axi) . , 

a,.s+ as,.-aJ1 . .- -. --ajl.: - - A 1A"=O ax' ax• axs axr 
m which the re are now six di s tinct components 
of the matrix and six arbitrary coeffi cients (A 1 )2, 
A 1A2

, etc . We now can say that 

_ ai) ax,.. _ axJ axk 
a,.s+ a s,. = ajl.; - -+Oji; - -. ax'" axs axs axr 

_ _ a.xj a.x,.. 
= (a · .. + a,,. ·)- -

)h J axr ax' 

on interchanging the dummy indices j. k in the last 
term. This shows that 

(a rs+ as,.) 
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is a tensor , and so is a,.8 if a,.s and <tjl, are sym1rn-•tri c. 
that is, if 

a,.s = as,. 

in all coordinat e sys te ms. In that case, a,.8 is a 
tensor if it forms an invariant with only one arbit rary 
nonzero vector. 

14. It is ev ide nt from the working that , ins tea<l of 
two arbitrary vectors Ar, 8 5 , we could equally well 
have used an arbitrary tensor crs; and that thi s could 
be an arbitrary symme tric te nsor whe n a,._. is sym­
metric in all coordinate sys tems. Moreove r , it is not 
necessary that the operation of contraction should 
result in an invariant. It is sufficient if cont rac tion 
with an arbitrary vector results in a tensor, but the 
proof of this, on much the sa me lines as above, is 
left to the reader. 

15. We must now prove that the me tric tensor is 
in fa~ t a tensor. From Equation 1.17, we can say 
that 1f Lr, Ms are arbitrary vec tors, we have 

g,.sUMs= g,.sLrJCfs 

because the magnitud es of the vectors and the a n o-Je 
be tween the m are obv iousl y unaffected by tl1 e 
choice of coordinate system. Th erefo re, g,.s form s a n 
invariant with an y two arbitrary vectors (even 
though not the same invariant for diffe rent vectors). 
and is accordingly a tenso r. Again, the square of the 
line e lement ds 2 is clearly inde pe ndent of the 
coordinate system so that 

g ,.sdx ,.dxs 

is an invariant for an arbitrary s mall vec tor dxr. 
Because grs is symmetric in all coordinate systems, 
it is the refore a te nsor. Yet again , we have from 
Equation 1.13, in the case of an arbitrary vector Lr, 

g,.sL8 =L,., 

and this again shows that g,.8 is a te nsor. 

16. The Kronecker delta is a mixed tensor because 

s traight from the tran sformation law. 

17. Now suppose that we have a mutuall y or­
thogonal triad of unit vectors (.\,., µ,r , v") and con­
sid e r the tensor 

ArAs+ µ,rµ, s+ V"Vs . 

In r ectangular Cartesian coordinat es whose axes 
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are in the direction of these vec tors, their com­
ponents a re 

t...·· or As (L 0, 0) 

µ,,. or /.ls (0, 1, 0) 

v,. or Vs (0, 0 , 1), 

and we can see in thi s Cartesian syste m that 

2.07 

But thi s is a tensor equation because we have seen 
above that the right-hand s ide is a te nsor and the 
left-hand s ide is formed by the multiplication of 
vec tors. Consequently, thi s equation is true in any 
coordinates for any orthogonal triad of vectors. 

THE ASSOCIATED METRIC TENSOR 

18. If, in the same Cartesian system . we co n­
sider the tensor 

ArAs + /.lr/.ls + VrVs, 

we find that it is equivalent to the metri c tensor 
g,.s, which in thi s system is unity for r= s and is 
zero for r =i's. Conseq uen tly. we can say that the 
tensor equC1tion 

2.08 

is true for the metri c te nsor in an y coordinates fo r 
any orthogonal tri ad. If we know the components 
of such a triad in any coordinate system , we can 
find the components of t he metri c tensor in the same 
coordinates at once. 

19. Usi ng the same triad of unit vectors, we now 
inqu ire what meaning should be attached to the 
tensor 

2.09 

If we multiply Equations 2.08 and 2.09 and reme m­
ber that the vectors are unit perpendicular vectors 
so that /....,./....,. = l, /.... ,.µ,,. = 0, e tc., we have 

grtg,.s= A_IA_s + /.ll/.ls+ V/Vs= 0~. 

Next, we multiply thi s equation by o·s, the cofactor 
of g1,s in the determinant for med by the components 
of the me tric tensor which we shall denot e by g. 
Using the ordinary rules for ex panding a deter­
minant and applying the s ummation conve ntion, 
we then ha ve 

so that 

2.10 
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which enables us to calc ulat e all the components 
of thi s tenso r from the component s of the metric 
tensor. We see from Equation 2.09 that K.-i is a 
tensor and is symmetric. It is called the associated 
or conjugate metric tensor. 
We can easily show that the determinant of the 
associated tensor is l /g. 
In deriving these result s, we have assumed that g 
is not zero. It can be shown 1 that in the case of 
the positive-definite me tri cs used throughout this 
book, g is positive and never zero. 

20. We can use the associated tensor to raise the 
index of a vector and to determine it s contravariant 
from the covariant components in the same way as 
we use the metric tensor to lower the indices. An 
arbitrary vector L,., whose Cartesian components 
relative to the axes (/....,. , µ, ,., v,.) are (a, b, c), can 
be written as 

L,.= at...,. + bµ,,.+ cv,. 

or 
Lr = at..."+ bµ,r + CV,., 

both of which are vector equations true for any 
coordinates. If, in a general coordinate system, we 
multiply the first of these equations by Equation 
2.09 , we have 

2.11 gr1L,.= a/....1 + bµ,1 + cv1 = U. 

which raises the index of the vector. 

21. The process is not confin ed to vectors, and 
we can raise or lower the indices of te nsors in the 
same way. By the ordinary multiplicati on rules for 
tensors, we have . for example, 

grsA ,.1 = 8?1 

where B is so me tensor of the type and order indi­
cated. If we multiply thi s across by {!."s1..· and s um, we 
have 

0A:Ar1 =Akt = gs1..B ~1 = C1..-1, 

for instance. in which all component s of A and C 
are equal so that they are the same tensor. The re­
sult of raising an index and then of lowering: it again 
is similar to recovering: the original tensor: there­
fore. we are justified in conside ring B as simpl y 
another form of A. just as the covariant and con­
tra variant component s are considered as describ­
ing the same vector. We may accordingl y write 

grsA rt= A~/. 

But. because A,.1 is not, in genera l, the same as 

1 Levi- Civita (l 926), Th e Absolute Differential Calculus, 90. 
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A1,., we mus t be careful to leave a space or a dot to 
show from where the raised index came so that it 
may be returned later to the ri:,dH place. If there is 
like ly to be any confusion, it is best to write any 
tensor so that no superscript is ve rtically above a 
subscript. 

THE PERMUTATION SYMBOLS 
IN THREE DIMENSIONS 

22. We now introduce a syste m erst or e1·sr in three 
dimensions, defined as follows: 

(a) When any two indices are the same, the sys­
tem is zero-for example. e'':!=O. 

(b) When the arrangement of indices is 123, or 
the cyclic order 231 or 312- that is, an even per­
mutation of 123-it is+ 1. 

(c) In all othe r cases, that is, an odd permutation 
of 123, it is - I -fur exa mple, e:! t:i = -1. 
In short. the system s ?re s kew -symmetri c in any 
two indices. 

23. If At is a term in any third-order determinant. 
the superscript being the row and the subscript the 
column, it is not difficult to verify that the value of 
the determinant A is given in terms of these e­
systems by the formula 

2.12 

using, as always, the summation convention. If the 
term s of the determinant are the tensor transfor­
mation matrix, this is 

2.13 :! 

I 
ax.'' I = .. axi ax . .i ax". axq erst eljk a.xr a.xs a.xi 

But the values of the e-systems are the same in all 
coordinates and, in consequence, the left-hand 
side cannot, in general, be erst· The e-systems are 
accordingly not absolute tensors, although systems 
which transform like Equation 2.13 are often called 
relative tensors. 

24. We now take the unbarred coord inates to be 
rectangular Cartesian. The met ri c tensor of the 
transformed space ts 

- ax'' axq 
CT =--CY 
/:°'I'S a:xr a.xs t°'/lf/• 

By taking the determinant of this and using th e 
ordinary rul e for the multipli cation of det erminant s 
with I K11q I = 1. we find that 

2 Throughout this book, side-line notation will be used, as 
here, for determinants. In a few cases, which will be clear from 
the context, s ide lining may indicate an absolute value. 

l
ax''j =w ax'· g. 

Conseq uently. if we writ e 

2.14 Erst = Y';ers1, 

we c an make Equation 2.13 into 

- axi ax.i ax'; 
Erst = E;p; a_xr dx" a.\-' 
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so that for thi s tran sformation fro m Cartesian to 
ge t1 e ral coordinat es, the covarian t E-sys tem be­
haves like an absolut e te nsor. But if Erst is a te nsor 
in one general coordinate system, it is a tensor in 
any ot her. In mu ch the sa me way, using the fact 
that the determinant of the associated tensor g'"' 
is l/µ:. we can s how that 

2.15 E,.,, , = e'"'' I 0 · 
is an absolute tensor. 

25. We can write Equation 2.12 for the expansion 
of a determinant in the a lt ernative form 

2.16 
or 

3 !A / p: = Eij/.'E'"'1A ;,A jsA kl, 

which s hows that if A;,. is a tensor. then A/p: is a n 
abso lut e invariant which has the same valu e 111 

any coordinat e syste m. 

26. We can also write cofactors Air of the deter­
minant in the form 

2.17 

which can easily be verifi ed from th e ordinary rules . 
Equation 2.17 shows that if Aj., is a tensor, the n 
Air/g is an absolut e te nsor. We have met one ex­
ample of this in the metric te nsor itse lf. 

GENERALIZED KRONECKER DELTAS 

27. Next. we introduce a generalized Kron ecker 
delta formed by multiplying E-systems a nd defined 
as 

2.18 15f.'.~V' = E111111 Ersl = e'""'ersl· 

28. If we contract on. for instance. the indices 
(I. r). we have yet anothe r form of the Kronecker 
delta defined as 

2.19 

in which we have. of course, applied the summation 
co nvention. By co mbining Eq uations 2.18 a nd 2.19 
and using the rules for the e-sys tem. we can verify 
without difficulty that Equation 2.19 equals 
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(a) + 1 when ( m . 11 ) a nd (s. t) are the same two 
numbers in the sa me order ( m =F- n and t =F- s). for 
example, 

8li=8ill =+ 1: 

(b) - 1 when (m , 11) a n<l (s. t) are the same two 
numbers in the opposite order ( m =F- n and t =F- s). 
for exa mple. 

8~f = 8 :g =- l: and 

(c) otherwise zero. 
If we co ntract a tensor with thi s 8-sys te m, it is not 
difficult to verify such resu lts as 

2.20 

2.21 

8.~/ 11A 1111111 = As111 - At.•11 

8;~111A~~v= A ~~ -A ~1_1;~-

29. We can furth er contract Equation 2.19 int o 
the ordinary two-index Kronecker delta , but, in thi s 
case, to square wit h the pre vious de finition in Eq ua­
tions 1. 24, we sha ll need a factor of (1/2) so tha t 

2.22 

which can easily be veri fi ed. 

VECTOR PRODUCTS 

30. We sha ll ofte n meet a contracted product of 
the E-syste ms with two vec tors, and shall now con­
sider what thi s means. 
We revert to the mutually orthogonal triad of vectors 
(A.,., µ,,. , v,.) di sc ussed above, and again take these 
temporari ly as rectangular Cartesian axes as m 
§ 2- 17. Then the tensor equations 

,\ l'= t:rst/J.-sVt : 

2.23 

are evidently true in these coordinates and are 
accordingly true in any coordinate syste m , as we 
have seen in § 2- 12. 
We now take a unit vector {i s in the plane of /1- s and 
Vs, and making an angle () with V s so that 

'fLs= /J.-s Sin(}+ Vs COS(), 

we evaluate 

E,...1P,sVt = Erst /1-sVt s in () + E/'S/ VsVt cos H. 

But all co mponent s of the last term are zero in the 
Cart esian syste m. owing to the skew-symmetry of 
the E-syste ms, and must therefore be zero in any 
coordinate syste m. We may th erefore writ e 

Er.~tj.L.~v1 = ,\ 1
• s in (). 
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But µ,.~, Vt are quit e general unit vectors , and ,\,. is 
perpendicular to both. Instead of these unit vectors, 
we can also introduce nonunit vectors As . B, of 
magnitudes a. b and write 

2.24 

in whi ch ,\,. is .a unit vector perpendi cular to both 
As and Bt. If we go back over the derivation, we see 
that ,\,. , As. Bt must be a right-handed syste m in 
that order like ,\,. , µ,.~, Vt . even though two of the m 
are no longer orthogonal. The expression on the 
left of Equation 2.24 is a generalized vector product 
in tensor notation. Its components in Cartesian 
coordinates become the usual definition of a vector 
product of Cartesian vectors. 

31. If we multiply Equation 2.24 by a third vector 
C,. and contract, we have 

2.25 E.~t 1A.~BtC,. = abc sin() sin <b 

in which <b is the angle C1· makes with the plane of 
As. B,. The ex pression on the left of Equation 2.25 
is known as a scalar triple product. For the product 
to be positive. the three vectors must be right­
handed in the order of the E- system indices. If any 
two of the vectors have the same direction, the 
scalar triple product will be zero because either () 
or <b will be zero . This also follow s from § 2-11. 

32. It is evident from Equation 2.25 that , if 
(A.,., µ,,. , v,.) is any right-handed mutually orthog­
onal triad of unit vectors, we have 

2.26 Ers1A.,.µ,sv1 = 1. I 
The sign of thi s product will be changed if any two 
of th e vectors are interchanged: the product will be 
zero if any two of the vectors are the sam e. We can 
accordingly ex press the E-syste ms as products o 
the three vec tors as follow s, 

E,..~t = ,\ ,. ( µ, svt _ v~ µ,') + µ, ,. ( v·~ ,\t _ ,\svt) 

2.27 

with a covari ant equation obtained by s imply lower 
ing all the indices. 

33. By multiplying two tensors of the form Equa 
tion 2.27 and contracting with the me tric tensor 
we have 

p:,.i ErstEijl.' = ( µ, svt - v~µ,') (µ,jvl.' - vjµ, I.') 

+ two similar te rms. 

Multiplying thi s out and using Equation 2.09, w 
have finall y 

2.28 
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with a similar equation obtained by rai sing or lower­
ing each index. 

THE PERMUTATION SYMBOLS AND 
THE METRIC TENSOR IN TWO 
DIMENSIONS 

34. One advantage of th e te nsor cal culus is that 
if we have a tensor equation in three dimens ions, 
for instance, the n it is like ly that a similar equation 
exist s in two or four or any number of dime nsions . 
In many cases , the equation will be exactly the 
same with the Creek indices of two dimensions as 
it is in the Roman indices of three dimension s. 
The reason for this is that the defining and trans­
formation equations of tensors are of the same form 
in any number of dime ns ions. Thus corresponding 
to Equation 2.01 , for example, we s hould have 

2.29 
- axY a.:t° 
A .. 13= a.xa a.rl3 Ay/) (a, {3, y, o = 1, 2). 

35. There will , of course, be fe wer components 
in two dimensions because fewe r numbers can be 
assigned to the indices, and thi s may affect the 
form of the tensor. Fur instance , we cannot have 

Eal3y (a, {3 , y= L 2) 

defined in th e same way as th e E-syste ms in three 
dimensions because all it s component s would be 
zero. We can , however, have 

(a,{3=1,2) 

defined in the same way, that is , 

2.30 

in which a is the de terminant of th e two-dimens ional 
metri c tenso r a .. 13 and the e,,w or eal3-sys te ms are 
defined as equal to 

(a) zero if a=f3, 
(b) + 1 if (a, {3) = (1, 2), and 
(c) - 1 if (a , {3) = (2, 1). 

36. By analogy with Equation 2.26. we should 
expect 

2.31 

if (Au, µ.,13) are any two mutually orthogonal vectors 
in the orde r of the coordinates (1, 2), just as the 
triad (.\,. , µ.,,., vr) in three dimensions is arranged 
in order of the coordinat es (1, 2, 3) to give a right­
handed sys te m. The rotation of.\" to µ.,13 must be in 
the same direction as the rotation of the x 1-co­
ordinate line to the x2-cuordinat e line. W e may also 
expect , us ing the same argument s as for Equation 
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2.27 , that the following tensor equa tion s s hould 
hold. 

2.32 

37. Buth Equations 2.31 and 2.32 can eas il y IJe 
verified . re me mbering tha t as tensor equ ations we 
ha ve only to verify the m in one parti cula r coord i­
nate syste m. If we take .\", µ.,13 as unit vec tors in the 
direction s of the coordin a te lines in the orthogona l 
me tric 

ds 2 = (/11 ( dx Ir + 0 22 ( <fx 2 )'2· . 

the ir compone nt s are 

µ,a = (O , l /~) 

2.33 .\,,= ( ~. 0) J..Ln = (0. ~). 

and Equations 2.31 and 2.32 a re verifi ed at once. 

38. In this same coordinate sys te m , definin g 
aa/3 as th e cofactor of a 0 13 in the de te rminant I a a13 I, 
divided by the value of the determinant a = a 11a·.n, 
we can at once ve rify that 

2.34 

2.35 

2.36 

a u/3 = AaA13 + J..Laf..L l3 

a af3 = A a A_/3 + µ., aµ.,f3 

a af3a {3Y = A_a.\y+ µ.,aµ.,y= o~ 

correspond to the three-dimensional Equa tions 
2.08 a nd 2.09. Since these a re te nsor equation s, they 
are true in any conrdina te system and for any pair 
of orthogonal vec tors. It should be noted that we 
have not appealed to Cart esian coordinates (in th e 
plane) in order to prove the m. 

39. The equations in Equations 2.32 are of par­
ticular importance because, give n a surface vec tor 
Aa, we can define an orthogo nal surface vector in 
te rm s of it as 

2.37 e tc. 

40. As in three dimensions. we can form general­
ized Kronecker deltas from produ c ts of the E­
systems , that is, 

2.38 

and we can contract thi s to 

2.39 

whic h defines the ordinary Kronecker de lt a (Equa­
tions 1.24), that is , 

2.40 

og= i 
og=O 

(a = {3 ) 

(a =I= {3). 
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41. Corresponding to Equation 2.20, we have also, 

for example, 

2.41 

in which A is any tensor. 

42. Corresponding to Equation 2.16 , we have for 
the expansion of a seco nd-order determinant 

2.42 
which shows that if Aa/3 is a surface tensor. then 
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A/a is a surface invariant , having the same valu 
in any coordinate system. The cofactors are given b 

2.43 
which shows that if A..,,5 is a surface tensor, then ~ 
is Aaf3/a. If A..,,5 is the metric tenso r, then we hav 

2.44 
a te nsor equation in which we can raise and lowt 

indices to obtain also 

2.45 



CHAPTER 3 

Covariant Differentiation 

THE CHRISTOFFEL SYMBOLS 

1. We have considered a tensor as a set of point 
function s de fin ed at a number of discrete point s in 
space. and we must now consider how it s compo­
nents vary from point to point -in other words . how 
to differe ntiat e a te nsor with respect to a s mall dis ­
placement of the coordinat es dx'". The differentials 
of a general tensor mus t clearly involve the dif­
ferentials of the me tri c tensor whose component s 

' will also vary, in general. from point to point. We 
shall see that the analysis ine vitably leads to the 
followin g grouping of differentials of the metri c 
tensor , requiring the special symbols on the left. 

I 

3.01 [ .. k] = l_ (aK;~· + ag;~· _ ag;j) 
lj, 2 ax' axJ ax" 

3.02 

These s pec ial symbols are known as the Christoffel 
symbols of the first and second kinds. res pectively. 
We note that both Christoffel symbols are symmetric 
in(i.j). 
In Cartesian coordinates , all component s of the 
metri c tensor are constants and therefore all the 
Christoffel symbols are zero. 

2. In the case of a transformati on from Cart esian 
coordinates (overbarred), we have 

in which the K11111 are constants; and by direct dif­
ferentiation and s ubstitution, we find that 

3.03 . . _ a~x'" ax" 
[11. k] = /.(11111 axiaxj ax'•" 

306-963 0-69-3 

17 

Multiplying this across by 

a vi• ax·' 
a-1."1 = ; w1 --'- - · -

1:°' I:°' ax'' a ;_.q • 

we have aft er so me s implification 

3.04 I a"2.t 111 ax1 r .. =----
'J axiaxj a.¥111 • 

3. We can now take a fie ld of paralle l unit vec tors 
Ar whose Cartesian compone nts (still de noted by 
ove rbars) are the same at a ny point in space and 
are given by 

- . ax 111 

A'"= A'--. · 
ax1 

If we differentiat e this equation with respec t tu each 
of th e coordinates xj in turn . then no matter what 
the corresponding change in the Cart esian co­
ordinates may be, the differe nti als of the constant 
Cartesian components on the le ft will be zero; we 
may write the comple te se t of resulting equatio ns as 

a A; a.x ,,, . a2 x'" 
-.-.+ A1 - .-.= 0. 
fJxJ dx' ax1(1xJ 

If we multiply thi s result across by ax' /ax"' and 
use Equation 3.04, we have 

3.05 aA~ +f!.Ai=O 
(lxJ I) ' 

which are the diffe re nti al equations of a set of par­
allel vectors A' in gene ral coordinates. In much the 
same way , by diffe rentia ting 

Ax111 -
A;=-;-; A111, 

ox 
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we have 

so that 

3.06 aA; f'A -O 
axj - ij 1- ' 

which is the covariant form of Equation 3.05. 

COVARIANT DERIVATIVES 

4. Next. we take a general vector fie ld A_i (de fin ed 
in some way at all points of a region of space), 
which may vary in both magnitude and direction 
from point to point. We also define an arbitrary set 
of unit parallel vectors A; over the same region as, 
for instance, a field of unit vectors all parallel to a 
Cartesian axis. We differentiate the scalar product 
of the two vectors with respect to each coordinate 
xj and use Equation 3.06 to give 

= G~~+ r;k"-k) A ; 

on changing the dummy indices. But we have al­
ready seen in § 1-19 that the differentials of an in­
variant form a covariant vector, so that the left-hand 
side of this equat ion is a covariant vector as is also 
the right-hand side . Because A i is arbitrary, this 
means that the expression within the pare ntheses 
is a mixed te n sor. This we call the covariant de­
rivative of the contravariant vector A_i with respect 
to the coordinate xj, which we write as 

3.07 A_ i-()A_i+fi A" 
j- axj jk . 

In exactly the sam e way, we can find the covariant 
derivative of the covariant vector A; as 

3.08 

Covariant derivatives are so metimes distinguished 
from other te nsors by writing a comma or a bar 
before the index of diffe rentiation, thus 

A.; , j or A.;u. 

But we shall not do this where the context clearly 
indicates that the te nsor has been formed by co­
variant differentiation, or where the distinction is 
immaterial. 
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5. We can similarly derive an expression for the 
covariant derivative of a te nsor ~f any order or 
type by reduction to an invariant with a number of 
arbitrary parallel vector fields. For example, or­
dinary differentiation of the invariant 

"-r1A,.BsCt 

will show that the covariant derivative of the tensor 
IS 

3.09 \,. - dA~1 + [r \j - fj \ r - fj \ r 
"-stu - axu uj"-st us"-jt w""sj. 

The rule is to place each index of the original tensor 
inside a Christoffel symbol at the same level. The 
s ign of the Christoffel symbol is positive for a trans­
ferred contravariant index and is negative for a 
transferre d covariant index. The place of the trans­
ferred index is take n by a dummy (summation) 
index U), which must also be inserted at the oppo­
sit e leve l in the Christoffel symbol. The Christoffel 
symbol is completed with the derivative index (u in 
the above example). 

6. The covariant derivative of the gradient of a 
scalar cJ> can be writt en as 

3.IO -~-[IA.. cj>,. , s - axraxs rs'+'t. 

which is evidently symmetric in (r, s) because the 
Christoffel symbols are symmetric in these indices 
and the ordinary derivatives commute. We can 
accordingly write in this case 

3.11 

7. Compared with ordinary differentiation of the 
separate components. the great advantage of co­
variant diffe rentiation is that it results in a tensor. 
If we differe ntiat e a tensor equation covariantly, we 
ge t anothe r tensor equation which remains true i 
any coordinate system and retains all the othe 
advantages of working in tensors. 

8. The Christoffel symbols are not tensors , eve1 
though the ir addition to the ordinary derivatives 
which are not te nsors either, produces a derive 
tensor of a higher orde r. From Equations 3.0 
and 3.02, it is c lear that the Christoffel symboL 
are all zero in Cartesian coordinates; if they wen 
components of a tensor, they would have to b 
zero in all coordinate systems. That this is not so 
we can obse rve from Equation 3.04. 
The fact that all the Christoffel symbols are zen 
in Cartesian coordinates implies that covarian 
derivatives become ordinary derivatives in Car 



Covariant Differentiation 

tes ian coordinates . This fac t is apparent at once 
from Equa tion 3.09. 

DIFFERENTIAL INVARIANTS 

9. Suppose we form the second covariant d e­
rivative of a scala r F , or the first covariant de ri va ­
tive of it s gradient F ,. , and then contrac t the 
de rivati ve with the assoc iat ed me tri c te nsor to 
form the invariant 

g 1
" 8 Fr s, 

which, as an invariant , will ha ve the same value 
in all coordinat e syste ms . In rec tangular Cart esian 
coordin ates (x , y, z ), 

g,. 8 =1 (r=s) and grs=O (r ~ s ) 

and the covariant de rivatives beco me ordin a ry 
deri vatives so that the invariant is 

azF azF azp 
-;---;-+ :i 2 +~. 
uX uy oz 

Thi s is well known as the Laplacian of F , which 
we shall writ e as t:lF. Accordingly, in any coordi­
nate sys tem , we can writ e 

3.12 

whethe r F,. is a ge neral vec tor or the gradient of 
a scalar. If it is a gene ral vec tor , the Laplacian is 
called it s divergence. 

10. Other differential invari ant s , which we shall 
meet oft e n , are given with their Cart esian equiva­
lents as 

3.14 = (aF) (ac) + (aF) (ac) + (aF) (ac)· 
ax ax ay ay az az 

11. Again , if F, is a vector and we ex pand the 
contravariant vector 

3.15 Erst Ft.~ 

\ in rectangular Cartesian coordina tes (x 1 , x~, x :i), 
we have a vector whose compone nts are 
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which are usually known as the curl of the ori gin a l 
vec tor. Accordingly, we ta k<' Equ ation .3.1 .5 as t lw 
c url of a vector in ge nera l coordinates. 

R U LES FOR COVARI ANT 
DIFFERENTIATION 

12. A few rules for co variant diffe rentiation may 
be noted rapidl y. S ince all com ponents of the tensor 

E 1·s1. 11 

are ze ro in Cart esian coordinates where the Erst 
a re constants, they mus t he zero a lso in any co­
ordin a tes, which me ans th at the E-systems , covari ant 
and cont ra vari ant , behave as cons tant s under 
covariant differenti a tion. For the sa me reason. the 
me tric tensor and it s assoc ia te a nd the Kro necker 
deltas be have as cons tant s. 

13. Expansion of these re sult s leads to a number 
of useful formulas. For e xample, we have 

-o- 0vg- r" -r" -r" E1 23, 11- - dX" 111 E k2:i 2 11 E1 k3 3 11 E1 2k 

_avg __ '<r1 r2 r3) 
- (ix " Y g 1u+ 211 + 3 11 

so tha t 

3.16 
a (ln Vg) 

ax 11 

which e nables us to writ e the di vergence of a 
vector F,. in the form 

3.17 1 a vie: 
Pr= vg (Jxr ( gF r), 

or the Laplac ian of a scalar F in the fo rm 

3.18 
} d , / t:lF= - - ( vg egrsF .) . vg ax r ~ 

14. The s um or prod ucts of te nsors can be dif­
fe rentiated covaria ntly by the same rules as those 
fo r ordinary diffe re ntia tion. T o es tabli s h this fac t, 
we have only to re me mber th a t covaria nt d iffe r­
enti a tion is the same as o rdin a ry d ifferent iation rn 
Cartesian coordina tes . Thus , the product 

Ag BJ,, 

diffe re ntiated covariantly, is 

(A ~Bi1 ) 11= A~. 11 Bi1 +A~B~1 • 11 • 
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This , with ordinary differentials , is clearly the 
correct result in Cartesian coordinates and must 
also be true in any coordinates because it is a 
tensor equation. 

15. If [r is any unit vector, we have from Equation 
1.11 

[r[,.= 1; 

diffe rentiating this covariantly , we have 

L:·s L,.+ L1·L,. , s= 0. 
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By ra1s111g and lowering indices 111 the first term 
we find that 

3.19 

Similarly, if [r , p· are two unit perpendicular vec 
tors, then we have 

l 1j,.=O 
and 

3.20 

These two simple e quations will be in constant use 



CHAPTER 4 

Intrinsic Properties of Curves 

CURVES IN THREE DIMENSIONS 

1. We have dete rmined the covariant derivatives 
with respec t to each coordinat e , which means that 
the tensor being differentiated must be defined in 
space. If the tensor is merely defined along a line, 
we can use the same formulas (as if we were dealing 
with a family or congruence of lines in space) and 
can restrict the ir application to a particular line 
by contracting with the unit tange nt vector of the 
line. For example, the differential of a tensor A~, 
along a curve whose unit tangent is lu is 

4.01 

where dl is the arc element of the c urve. This is 
known as the intrinsic derivative of the ten sor, 
with respect to the arc length of the curve, and is 
written as 

:1 (A.~,). 
In place of the arc element, we could use equally 
well any parameter ( q) defined along the curve 
because thi s parameter would be some function 
of the arc. In that case, 

would be the intrinsic derivative with respect to 
the parameter. 

2. The intrinsic derivative of the unit tangent 
itself is 

l,.sl 8 

and is called the vector curvature of the line; it 
represents the arc rate-of-change in the tangent 
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vector along the line and so is a generalization of 
the notion of curvature for plane curves. If the 
vec tor curvature is zero throughout, the c urve is 
said to be a geodesic of the space-that is, a straight 
line in flat space-although it would not necessarily 
be "s traight" in a c urved space, such as a c urved 
two-dimensional surface. 

3. We can write the vector curvature as 

4.02 

in which m,. is a unit vector, known as the principal 
normal to the curve. The magnitude of the vector 
curvature is the scalar invariant 

and is known as the first or principal curvature, 
or simply the curvature of the curve. If we multiply 
Equation 4.02 by grt/, and use Equation 3.19, 
we have 

xgrt l,m,. = l, .. ~ l r1s = 0 

which shows that unless x= 0, the principal normal 
is perpendicular to the unit tangent. If x= 0, the 
curve is a geodesic, and it s principal normal is 
indeterminate. 

4. In the case of a curve in three dimens ions, we 
ca n associate another unit vector n,. with the c urve, 
such that (/,., m,., n,.) form a mutually orthogonal 
right-handed system. This third vector, known as 
the binormal, is perpendicular to the osculating 
plane of the curve defined by l,. and mr and will 
therefore remain parallel to itself along a plane 
curve. However, if the curve is not a plane but a 
twisted curve, the binormal will not remain parallel 
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to itself but will have an intri nsic derivative 
n,., sfs' 

which is a vector and can the.refore be writte n 111 

the form 

4.03 

where T is the magnitude of the unit vector p,. (the 
negati ve sign is simply a convention ). If we take 
([,. , m,. , n,.) as te mporary coordinate axes, it is 
clear that p,. must be expressible as 

p,. =A l,.+ Bm ,. + Cn,. 

in which A, B, C are the components of p, .. Using 
Equation 3.20, we then have 

wh ic h from Equation 4.02 is zero because 11 ,. ts 
perpendicular to m ,.; also we have 

-7C=-7p,.n 1·= n,.snr[s, 

which is zero from Equation 3.19. Because T . ts 
not, in general. zero, we have 

A=C= O 
and thus 

p,.=m., .. 

both being unit vectors. We may accordi ngly re­
write Equation 4.03 as 

4.04 

T he magnitude T of this vector is called the second 
curvature or torsion of the curve. 

5. The variation of the principal normal along 
the curve is settl ed by the va riation of the tangent 
and binormal because. by definition , the principal 
normal remains perpe ndic ular to both. We cannot , 
therefo re , obtain an independent expression for 
the variation of th e principal normal , but it is, 
nevertheless, useful to express the variation in 
terms of Equations 4.02 and 4.04. Proceeding on 
the same Jines as above, we write 

m,..J8 = Cl,.+ Dm,.+ En,. 

in which D is zero from Equation 3. 19 and 

C= m,.sfs[r=-l,.smr[s=-x 

from Equation s 3.20 and 4.02. Also, we have 

so that we have finally 

4.05 m,.8 [ 8 =-xl,.+ Tn,.. 

Mathematical Geodesy 

The three Equations 4.02, 4. 04, and 4.05, two of 
which are inde pende nt, are know n as the Frenet 
equations of th e curve and are collected for easier 
reference as 

4.06 

l,.sl 8 = xm,. 

m,.sl 8 =-xl,.+Tn,. 

n,.sfs= -Tm,. . 

CURVES IN TWO DIMENSIONS 

6. In the case of a curve contained wholly on a 
surface, the vector curvature can similarly b<: 
defined as 

4.07 (a, {3= 1, 2) 

in which the covariant derivative of the unit tangent 
Lu is take n with res pec t to the two-dimensional 
surface metric. If we multiply Equation 4.07 b)' 
[

0 and use the two-dimensional form of Equation 
3.19, we find that the unit surface vec tor j o. i~ 
perpendicular to the unit tangent la and is known 
as the normal to the curve . The magnitude u oJ 
the vector curvature is called the geodesic curvatur~ 
of th e curve. Jf u is zero, the curve is called 1 
geodesic of the s urface, paralleling the definitio1 
of a three-dimensional geodesic in §4-2. We mus 
rem ember, however, that the curve is also a curv 
in the surrounding space and will have a first o 
principal c urvature in three dime ns ions as wel 
as geodesic curvature in two dimensions. Th 
curve wiJJ not be a geodesic of the surroundin 
space unless it s principal curvature is zero. W 
shaJJ see lat er that the prin cipal curvature an 
geodesic curvature are re lated ; but for the present 
we s hall conside r only the intrin sic c urvatur 
prope rties of surface c urves and s hall de fer con 
sideration of them as curves in the s urroundin 
space. 

7. If we confine our attention to the surface alon 
it is clear that the curve can have 11 0 surface b 
normal bec ause there is no surface directio 
perpendicular to both lo. and jo. . The only indepen 
e nt Frenet equation is accordingly Equation 4.0 
We can , howeve r, derive a useful dependent equ 
tion in much the same way as we de rived the secon 
Frenet equation in 3-space from the other tw( 
We write 

and not e at once that B= 0 from the two-dimension 
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form of Equation 3.19. Further , we use Equation 
3.20 and find that 

A= ja13[a[f3=- la{3j alf3 =- er 

from Equation 4.07, so that finally w e have 

4.08 

8. Suppose that la is defin ed over some finit e 
region of the surface as the unit tange nt to a family 
of curves. The unit tangent to th e orthogonal 
trajectories of the family will be ju. In that case, 
the ja can be differentiated over the surface and 
will have a geodesic curvature er* defined as 

4.09 

In obtaining this e quation from Equation 4.07, we 
must preserve the same se nse of the rotation from 
la to ja for the rotation from ja to its normal , which 
is accordingly minu s la. Corresponding to Equation 
4.08, we have also 
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4.10 

We can finally express laf3 and jaf3 as produc ts of 
vectors in the form 

la{3 = erjal{3 + <r ... }aj{3 

4.11 j af3 = - erlalf3- er* Lajf3 , 

reme mbering that , hecause of Equation 3.1 9, there 
can be no la-term s in , for example, the expansion 
of la{3 . 

9. If, as we shall assu me throughout. the ro tation 
from L to i x is made in the same sense as the 
rotation from the x 1 - to th e x 2 -coordinate line and 
we use Equations 2.31 or 2.32, tlwn we have 

4.12 

Eaf3la{3 =-er 

Eaf3 ja{3 = - er* 





CHAPTER 5 

Intrinsic Curvature of Space 

THE CURVATURE TENSOR 

] . We shall consider briefly the second covariant 
derivatives of a vector 'A,., that is, 

Ar, Sf• 

In flat space, defined as a space which can be 
expressed in Cartesian coordinates, the resulting 
third-order tensor reduces to the ordinary deriva­
tives of the components, 

in Cartesian coordinates; and because the ordinary 
derivatives commute, we can writ e 

5.01 'A,., sf= Ar, ts 

as a tensor equation, which is true in any coordinates 
but applies only in flat space. 

2. It is possible to conceive a space which is not 
flat, in the sense that it cannot be expressed over 
a finite region in Cartesian coordinates. For exam­
ple, in two dimensions, the surface of a sphere is 
not flat, and the relative positions of points on such 
a surface cannot be described in Cartesian co­
ordinates as they can be on a plane. The line 
element or metric of the space is, nevertheless, 
still expressible by means of a symmetric covariant 
tensor of the second order. A space with this form 
of metric is known as a Riemannian space; it may 
be flat or curved, and of any number of dimensions. 

3. We first consider whether the second covariant 
derivatives of a vector commute in such a space. 
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We have 

.. _A'Aij_f111\ ·-f111\ . 
'A, , 11.- - Axk ;1.-"-1111 jJ.;"-1111· 

Int erchanging (}, k) , subtracting, and remembering 
the symmetrical property of the Christoffel symbols , 
we have 

\ . . - \ . __ __!!___ (AA.; - fl \ ) - f"' (AA.,,, - fl \ ) 
"-1.11.- "-1, 1.-1- Axk Axj ij"-1 ik axj 111j"-l 

_ _!!_ ((J'A; - fl ) f111 ((J'A,,, -fl ) 
. k ;1-.A1 + ij • k 1111.-A.1 

(JxJ ax dx 

5.02 

if, after some simplification and c hange of dummy 
indices, we writ e 

5.03 R 1 .. , = _i_ ri _ __i!__ ri + r 111 f! - f 111 1~, 
.,y.,· axj ik Axk ij ik 111 j ij 1111-. .. 

Because 'Ai is an arbitrary vector and the left-hand 
side of Equation 5.02 is a third-order te nsor, then 
it follow s that Equation 5.03 is a fourth-order tensor, 
known as the Riemann-Christoffel or curvature 
tensor. If the space is flat, there exists a Cartesian 
coordinate system in which all th e Chri stoff~! sym­
bols in Equation 5.03 are zero; therefore. all com­
pon ents of the Riemann-Christoffel tensor are 
zero. All components of this te nsor are then zero 
in any coordinate system. The vanishing of the 
Riemann-Christoffel tensor is accordingly a neces­
sary condition for flat space, and it can be shown 
that the vanishing of the ten sor is also a suffic ie nt 
condition. 

4. From Equation 5.03, we can see at once that 
the tensor is skew-symmetric in (j, k) so that 
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we have 

5.04 

Further, by s traight subs titution, we can also show 
that 

5.05 

in which the three lower indices are given a cyclic 
permutation. 

5. There is a lso a covariant form of the Riemann­
C hristoffel te nsor, ob ta ined by lowering the supe r­
script and written as 

5.06 

With a little manipulation, the covariant te nsor 
can be written in e ither uf the following forms, 

R111u1;=~ [ik , m]--;.[ij, m] 
flxJ ilx 

5.07 + rumk, l]- ff,;[mj, l] 

or 

5.08 + gPQ{[mk, p ][ij , q ]-[mj, p ][i k, q]} 

in whic h the C hri stoffel symbols are given by 
Equations 3.01 a nd 3.02. The covariant fo rm has 
the same properties as the mixed form in Equations 
5.04 and 5.05 with the superscript lowered. In 
addition, the covariant form is skew-symmetric 
in the first two indices (m, i) and symme tri c with 
respect to the two pa irs of indices, that is, 

5.09 

LOCALLY CARTESIAN SYSTEMS 

6. In earlier sections, we have de rived a number of 
result s such as Equations 2.23 by assuming a 
Cartesian coordinate syste m; the question arises 
whether these results are true only in flat space. 
It is apparent from Equation 5.03 that the c urvature 
of the space e nters the que!:>tion only when we dif­
fere ntiat e the C hristoffe l symbols -that is, when 
we compare their values a t different points in 
space. There is not hing to stop our c hoosing a co­
ordinate sys tem in which the C hri s toffel symbols 
are ze ro at one particular point; it is only when we 
insist on these symbols re maining zero at all other 
po int s that we require the space to be flat. A co­
ordina te system in whic h all the C hristoffel symbols 
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are zero at one point of the space is kn ow n as ; 
locally Cartesian system. In suc h a sys tem, tht 
curvature te nsor would be 

a a R1 =-fl --fl 
. ijk axj ik ilx" ij' 

but only at the origin, or the point where the 
C hris toffel symbols are zero. If the space is curved 
the symbols are not , in general, zero elsew here 
and we s hould use the full formula of Equation 5.0: 
for the c urvature te nsor. 

7. Clearly, any result obtained by applying < 

Carte sian sys te m to tensor point functions, sud 
as those in Equation 2.05, is valid because we coulc 
have obtaine d the same result by c hoosing a locall~ 
Cartesian syste m at the point unde r consideration 
Any results containing the firs t covariant derivative~ 
of a te nsor (or the second covariant de rivatives of< 
scalar) are valid because they do not contain de 
rivatives of the C hri s toffel symbols. In short, al 
result s, given prior to this c hapter, are valid ir 
curved space. We cannot, however , verify a tenso1 
equation containing higher covariant derivative! 
by an appeal to Cartesian coordinates unless tht 
space is fl at. 

8. In a locally Cartesian syste m, the firs t ordinar 
derivatives of co mpone nt s of th e metric te nsor ar 
zero at the o rigin of the sys tem because the Christo 
fel symbols a nd the covariant derivatives of th 
metric te nso r are zero. We can accordingly say th 
the sys te m is Cart esian to a fir s t order, or in th 
immediate ne ighborhood of the origin where th 
Christoffel symbols are zero. 

9. Fermi 1 has proved further that a locall 
Cart esian syste m need not be confined to the ne igl 
borhood of one point assigned before hand ; it i 
possible to c hoose a Cartesian sys te m in curve 
space which applies in the immediate neighbo1 
hood of all points of a given line ass igned befor 
hand. This exte nsion is sometimes useful. 

SPECIAL FORMS OF THE 
CURVATURE TENSOR 

10. It can be shown 2 that the numbe r of ind 
pe nde nt compone nts of the covariant c urvatur 
te nsor in a space of N dimen sions is 

1 Levi·Civit a (1926), Th e Absolute Differential Calculus, 16 

2 See for exa mple, Synge and Schild (corrected reprint of 196 
Tensor Calculus, origi nal ed. of 1949. 86. 
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5.10 JV2(1V2- l)/12. 

This means that in three dime nsions there are only 
six independe nt components; thus, all the curvature 
properties should be expressible in terms of a 
simpler symmetric second-order tensor formed by 
contracting the full curvature te nsor. 

11. One such contraction, known as the Ricci 
tensor, is formed by contracting the first and last 
indices, thus we have 

5.11 

Using the symmetrical and skew-symmetrical 
properties of the curvature tensor, thi s can also be 
written as 

which shows that the Ricci tensor is symmetric. 
The tensor has the refore six inde pendent compo­
nents and can represe nt all the curvature proper­
ties of 3-space. 
By direct contraction of Equation 5.03 on the indices 
(l, k) and use of Equation 3.16, we can write the 
Ricci tensor as 

.. -j_ I _j__fl f11fl -fmfl RIJ - . r ii • I ij+ ,J mj ij 111/ 
<JxJ dX 

5.12 

in which the first and last terms are 

a2 (lnVg) 
axi<Jxj 

f 11! _a _;_(l_n _Va-"'g-'-) 
IJ ()xiii 

(ln Vg) ij· 

In this last expression, g is the determinant of th e 
metric tensor which is obviously not an invariant, 
although in a particular coordinate system, the 
determinant will be a function of the coordinat es; 
and we can accordingly take its gradient and i;econd 
covariant derivative . 

12. Another contraction of the curvature tensor 
in three dimensions is 

5.13 

If we multiply this by 

EprsEqtu 

and use Equation 2.20 and the skew-symmetrical 
properties of the curvature te nsor, we have an 

· alternative form 

5.14 

We can also write Equation 5.13 as 
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showing that the tensor is symmetric with six in­
dependent compone nt s, which again can repre~ent 
all the c urvature properties of 3-space. We s hall 
call thi s the Lame te nsor because, whe n all of it s 
components are set equal to zero in fiat 3-space, the 
tensor gives the well-known six Lame equations 
which must be sat isfied by the metric uf any co­
ordinate system in fiat 3-space. 

13. We shall finally relat e th e Ricci and Lame 
te nsors from Equations 5.11 and 5.14 as 

Rij = g 111kEpmiEqjkSpq 

= g 111 kE111ipEkq;5PQ 

= (g;qgpj - gijgpq) SPQ' 

using Equation 2.28, so that if S is the contraction 
gpqS 1iq, we have 

5.15 

CURVATURE IN TWO DIMENSIONS 

14. The idea of curved space is difficult because 
we are accustomed to think of "space" as th e 
ordinary Euclidian fiat space of three dimensions. 
We are more familiar with curved spaces of two 
dimensions, or curved "surf aces," because we can 
measure the curvature from the outside. As far as 
the te nsor calculus is concerned, there is no esse n­
tial difference between spaces of two- and three- or 
n-dimensions, except in the numbe r of components 
which tensors can have in such spaces. A c urved 
space of two dimensions has intrinsic curvature 
properties which do not depend on outside measure­
ments. We can define the curvature te nsor of two­
dime nsional curved space, as in Equation 5.03, 
by simply substituting Greek indices for Roman and 
restricting them to the numbers (1 , 2). However. 
reference to Equation 5.10 will show that in two 
dimensions, the curvature tensor has only on e inde­
pendent component. The intrinsic curvature prop­
ertie s of a two-dimensional surface can accordingly 
be completely exhibit ed by an invariant , just as 
those of a 3-space can be completely specified by 
the six independent components of a symmetric 
second-order tensor. We denote this invariant by 
K and call it the Gaussian or specific curvature of 
the surface, defined by the following contraction 
of the curvature tensor, 

5.16 

corresponding to Equation 5.13. 
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15. We could, of course, have contracted the 
curvature tensor in another manner and so have 
defined K differently; but, if. we had used a sym­
metric tensor, such as aa/3 in the same way as Ea/3, 
the result would have been zero because of the 
skew-symmetry of the curvature tensor. By substi­
tuting for the E-systems from Equations 2.30 and 
using the skew-symmetry of the curvature tensor, 
we can reduce Equation 5.16 to 

5.17 

which, in conjunction with Equation 5.07 or 5.08, 
enables us to calculate K for any given metric. The 
sheer labor of substitution is lightened if we choose 
orthogonal coordinates, so that a12 = 0 and the 
metric is 

ds 2 = a11 ( dx 1 )2 + az2 (dx2
)

2
• 

In that case, if we form the Christoffel symbols 
directly from the definitions of Equation 3.01 and 
substitute in Equation 5.08, we can express the 
result as 

K=- 2 ~ [a:1 (~ ~:~2) + a:2 (~ ~;; 1)} 
5.18 

16. Multiplying Equation 5.16 by EEpE"r and usinf? 
Equations 2.40, we have 

5.19 

as an alternative expression which is sometimes 
useful. If we contract this equation to form the 
Ricci tensor in two dimensions and use Equations 
2.32 and 2.34 for two arbitrary orthogonal vectors 
Aa, J.La, we have 

5.20 

Rprr = Kaa ( AEJ.Lp - J.LEAp) ( ArrJ.Lr - J.LrrAr) 

= - K ( ApArr + J.LpJ.Lrr) 

We could accordingly have defined K by contract­
ing the Ricci tensor as 

5.21 aP<IRpcr=- Ko~=-2K, 

which gives us another way of calculating K from 
the two-dimensional equivalent of Equation 5.12. 

17. Corresponding to Equation S.02, we have for 
an arbitrary vector Aa, 

5.22 Aa, /3Y-Aa, y13= A.oR?af3Y= A6Raa{3Y· 

If we substitute Equation 5.19 and use Equation 
2.36, we have 
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5.23 

in which J.La is the usual vector orthogonal to A.a. 
we multiply this by E/3Y and use Equation 2.38, w 
have after some interchange of dummy indice 

5.24 

These equations enable us to interchange indicE 
in the second covariant derivatives of surfac 
vectors. 

18. It should be noted that in this chapter w 
have derived only properties of a surface whic 
depend on the metric tensor and its derivative: 
Such properties are called intrinsic. They usuaU 
have counterparts in the intrinsic properties < 

spaces of more than two dimensions, which is on 
of the great advantages of the tensor calculus .. 
surface can also have extrinsic properties, derive 
from the space in which it is embedded. We sha 
consider these properties later. 

RIEMANNIAN CURVATURE 

19. We can simplify the notion of curvature of 
general space by considering the curvature of s 
faces within it. 
We take a pair of unit orthogonal vectors A_r, J.L,. 
a point P in the space and let the pair define 
section of the space, so that any other unit vect 
in the section is given in terms of a parameter (} 
the relation 

fr=A_r sin e+J.Lr cos e. 

The geodesics of the space in all these direction 
fr, will form a definite surface whose Gaussi 
curvature is called the Riemannian curvature of ti 
space for the section defined by A. 1

", J.Lr. If the spa 
is flat, all the geodesics would be straight lines; a 
the Gaussian curvature of all the section planes 
zero, so that the Riemannian curvature for all se 
tions would be zero. 
Working from this definition, it can be shown 3 th 
the Riemannian curvature of the section, defin 
by the unit orthogonal vectors (A_r, J.L,.), is given 

5.25 C = R111iik"- 111 J.LiA.iJ.Lk. 

20. In two dimensions, the only "section" of t 
space in this sense is the space itself; and the g 
desic surface formed by geodesics of the space 
that is, by geodesics of the surface-is again t 

1 Levi-Civita, op. cit. supra note l, 196. 
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surface it self. Accordingly, we may write the Rie­
mannian curvature as 

C = K = Ra{3YBA"µJ3A. 'Y µ,Ii. 

Evaluating thi s invariant for the s pecial coordinate 
system of Equations 2.33 gives 

C = K = R121 2/a, 

which agrees with Equation 5.17. This result does 
not, of course, prove the more general formula of 
Equation 5.25, but does demonstrate the consistency 
of Equation 5.25. 

21. Now suppose that in three dimensions we 
complet e the orthogonal triad with a third vector 
vr, such that {A. 1

· , µ,r, vr) is a right-handed sys tem. 
If we multiply Equation 5.14 by A"µ,8 '11.1µ,u and use 
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Equations 2.23, we ha ve 

5w1v,,vq= Rrs111A"µ,sA.tµ,11 

so that the Riemannian curvature in three dimen­
sio113 can be writte n in terms of the Lame tensor as 

5.26 

It should be noted that the geodesic surface. whose 
Ga uss ian curvature is C, is now formed hy all the 
geodes ics perpendicular to the direction vJJ. It can 
be shown 4 that , in gene ral, the re will be three 
mutually orthogonal principal directions at a point 
which give rise in thi s way to stationary (usua lly 
maximum or minimum) values of the Riemannian 
curvature known as the principal curva tures. The 
analogy with a curved surface will become clear 
later. We can also consider the Rie mannian curva­
ture as analogous to ine rtia or s train , the only 
difference being the nature of the te nsors/IQ· 

~Ibid., 201. 





CHAPTER 6 

Extrinsic Properties of Surf aces 

FORMS OF SURFACE EQUATIONS 

1. We have considered the intrinsic properties 
of surfaces as two-dimensional spaces in their own 
right. We have now to consider the properties of 
the same surfaces when embedded in space of 
three dimensions. 

2. The link between the two se ts of properties 
will be an infinites imal di s place ment on the sur­
face , which can be described e ither as dxr in the 
space coordinates or as d;Ci in the surface coordi­
nates, following the convention introduced in § 1-6 
and §2-34. The two are rel~ted by the ordinary 
formula for total differentiation 

6.01 

in which the partial de rivatives are cons idered as 
known from the eq uations of the surface, so that 
each space coordinate is expressed in terms of th e 
two surface coordinates-either explicitly or im­
plicitly. For example, the equations of a spherical 
surface of cons tant radius r are given in terms of 
latitude (cf>) and longitude (w) as 

x = r cos cf> cos w 

y =r cos cf> s in w 

z= r s in cf>. 

In these equations, the xr are (x, y, z) and the x 0 

are (w, cf>). We can obtain the ax1'/fJx0 by direct dif­
ferentiati on as, for example, 

ax . ,J... 
acf> =-r Sin 'P COS W. 

3. These partial derivatives occur so often that 
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it is usual to give them the special symbol 

axr - ,. 
Axa - Xa· 6.02 

Evidently, the set of these quantities will transform 
like a contravariant space vector for each value of 
a a nd like a covariant surface vector for each 
value of r. This las t point ca n be illustrated by con­
sidering each space coordinate as a scalar defined 
over the s urface, in which case the correspondin g 
x~ becomes the surface gradient of the scalar. 

4. The equations of a surface in relation to the 
surrounding space may be given in one of three 
form s. The first, or Gauss' form, expresses e ac h 
space coord inate as some fun c tion of the two sur­
face coordinates (u 1 , u2 ). ln sym bols, thi s form is 
usually s hown as 

6.03 xr = xr(u 1, u2) (r= 1, 2, 3 ) , 

much as the equation s of a sp here are expressed 
above. 

5. The second , or Monge 's form, expresses one 
space coordinate a s a fun c tion of the othe r two as, 
for example, 

6.04 

which s imilarly imposes a restriction on what points 
of the space can form the surface. We could take 
(x 1 , x2 ) as surface coordinates, in which case th e 
form is equivalent to the Gauss form 

x3=f(u', u2) 

x2=u2 

x 1 =u1 
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If, for example, th e surface is given by 

z= f( x, y) 

in rec tangular C art esian coordinates, then y or u2 

is constant over the xz-plane, and the x - or u 1-surface 
coordinate lines are accordingly the intersection of 
the surface with the xz-planes. W e then have 

x1 = af/au 1 = af/ax 

and similarly 

x~ = af/au 2 = af/a y, 

while the other component s are given by 

x~ = o~ (r= 1, 2). 

It should be noted, however , that thi s last equation 
is not a tensor equation , but is me rely a relation 
be tween som e compon ent s of the tensor x~ in a 
particular coordinate syste m. We cannot manipu­
late thi s last equation as a tensor equation by, for 
example, taking it s covariant de ri vative . 

6. This device of taking two of the space co­
ordinates as surface coordinates often leads quickly 
to simple result s, and we shall use thi s device 
throughout Part 11. W e lose no generality by doing 
so , but we must check the result s for tensor charac­
te r , as in th e case of x~ above, before manipulating 
the result s further as tensors. 

7. The third form of surface equation expresses 
some fun c tional relation between the three space 
coordinates, which are accordingly restric ted in 
value at points on the surface. In thi s case , we may 
write 

6.05 

in which N is a constant over the surface. By as­
signing diffe re nt values to N, we should have d iffe r­
e nt surfaces which would, ne ve rtheless , have some 
prope rties in common , dictat ed by the form of the 
fun ction /. This third form, or it s equivalent 

f(x 1 , x2
, x3 , N) = O, 

is accordingly most useful when we are required to 
express a famil y of surfaces. If we are not given 
the surface coordinates in terms of the space co­
ordinates, we could , as in Monge 's form, take 
x 1 , x 2 as surface coordinates. Ily partial differ­
entiation of Equation 6.05 over the surface with 
x2 and x 1 , respec tively , constant, we the n have 

af + af x3= 0 
ax l (l;r3 I 

af af 
3

_ 

ax2 + () x3 X2- 0, 
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which give the x~; the other components are give1 
as before by 

(r=l,2). 

8. Finally, we could take N in Equation 6.05 a~ 

one of the space coordinates. The other two spac( 
coordinate s , which could be adopted as surfac( 
coordinates on the family of constant N-surfaces 
must then be chosen in such a way that they car 
vary indepe ndently of N and of each other; thi~ 

implies that the gradient of each coordinate musl 
be perpendicular to the other two coordinate lines 
This arrangement is adopted for Part II, where ii 
will be explained in greate r detail. 

9. The function s 'in the three form s of surfac( 
equations and their derivatives must satisfy certair 
conditions if the function s are to represent a rea 
nondegene rate surface , and even then there ma) 
be singular points on the surface. 1 This need nol 
present too much of a problem because the sur 
faces with which we shall be dealing will eithe1 
satisfy these conditions or will be prescribed a~ 

exi sting surfaces by the physical conditions. 

THE METRIC TENSORS 

10. W e c an easily relat e the space and surfac 
m etric ten sors , g,.8 and aa13 , by considering a sma 
surface line element ds. Conside red as a displace 
ment in space , this is 

ds 2 = g,8dxr dxs = g,8x~x~d~dxf3 

in which we have used Equations 6.01 and 6.0 
But considered as a displacement on the surfac 
it is 

ds 2 = aa13dxadxf3' 

and because the two invariant di splacement s ar 
the same for any arbitrary dxa and the tensor 
multiplying the dxa are symmetric, we must hav 
as in§ 2-13, 

6.06 

SURFACE VECTORS 

11. If we suppose that the changes in coordinate 
in Equation 6.01 take place over an arc le ngth ds i 

1 See, fo r exa mple, Kreyszi g (revised reprint of 1964), Diffe 
ential Geometry, English ed. of 1959, 1- 117. This is a fr 
translation of "Differenti algeometrie," printed in 1957 in Math 
matik und ihre A nwendungen in Ph ysik und Technik, series 
v. 25, 1- 143. 
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the direc tion of a unit surface vec tor whose space 
component s are fr and whose surface components 
are fa and then divide Equation 6.01 by ds, we have 

6.07 

which relates the space and surface contravariant 
compone nts of any unit surface vec tor. If we mul­
tiply Equation 6.07 by g,.8X1/J and use Equation 6.06, 
we have 

6.08 

which relates the covariant components. 

12. We have seen that the x~ are equivalent to 
the contravariant space components and the co­
variant surface components of a surface vector and 
must the refore be expressible in te rms of any two 
mutually orthogonal surface vec tors [r or l a and j" or 
ja. We can easily verify from Equations 6.07 and 
6.08 that this expression is 

6.09 

We not e that the two vectors in thi s tensor equation 
are quit e arbitrary. If we know the space and sur­
face components of any two orthogonal unit surface 
vectors in a particular coordinate syste m, then we 
have all the x~ in the same system. 

THE UNIT NORMAL 

1 
13. We s hall normally be dealing with closed 

surfaces , and we denote the unit vector normal to 
the surface by vr and define it s direction as outward 

Figure 5. 

306-692 0-69-4 

xi 

(increasing) 
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from a closed surface, that is, away from the region 
of space enclosed by the surface. We s hall consider 
that the two surface vectors in Equation 6.09 form 
a right-handed orthogonal triad with vr in the order 
{l 1

·, /, vr), and the rotation from [r to j" is in the 
same sense as the rotation of tlw positive direction 
of the x 1-s urface coordinate line toward the x2 -

s urface coordinate line. The diagram (fig. 5) illus­
trates the situation if the paper represent s a ta nge nt 
plane to the surface and if the unit normal points 
toward the reader. 

14. W e are now able to obtain a re lation be tween 
the contravariant me tric tenso rs corresponding 
to Equation 6.06. Using Equations 2.09 and 2.35, 
we have 

grs= [rfs+ j'J8+ vrvs 

= x~·xb (fa [13 + .fj13) + vrvs 

6.10 

15. Next, we shall express the unit normal in 
terms of the x~. Using Equations 2.27 and 2.32, 
we have 

6.11 

v,.€"81 = fsjt- jsl1 = X~xb (lajf3 - / 'l13 ) 

= e13xt;xh. 

Multiplying this by Epst and using Equations 2.19 
and 2.22, we have 

6.12 

showing that vp, besides being a covariant space 
vector, is a s urface in variant : it s compone nts do not 
c hange if the surface coo rdinates are transformed 
independently of the s pace coordinates. 

SURF ACE COVARIANT DERIVATIVES 

16. All the formula s in Chapter 3 on covariant 
diffe rentiation can be obtained in exactly the same 
way in two dimensions, in regard to the diff erentia­
tion of tensors which are defined only on the s ur­
fac e . We have only to form the surface C hristoffel 
symbols from the metric Uaf3 instead of g,.s and to 
res trict the indices (a , {3) to (1, 2). In cases where 
we used locally Cartesian coordinates _xr in the 
course of a proof, we now use locally Cartesian 
coordinates _xa in two dimensions, when all com­
ponents of the metric tensor aaf3 will be consta nts 
at the point considered. The metric tensor aa13 and 

--------------------------'-'-----------~"--"-''-'-'---------
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·it s associated tensor aa/3, the E-systems Ea/3 and Eaf3. 
and the Kronecker deltas all behave as constants 
under covariant differentiation in two dim ensions 
just as their cou nterparts did In three dimensions~ 
We can immediately write down, for instance, the 
counterpart of the Equation 3.16 as 

6.13 
a(ln Va) 

r~{:l· 

17. In the case of tensors defined in space, the 
procedure is much the same. First, we differentiate 
the tensors covariantly with the respect to the space 
metric g,.s in order to discover the variation of the 
tensor for a chan ge in the space coordinates dx,. ; 
and then second, we restrict thi s change to a dis­
placement on the surface, just as we did along a line 
in § 4-1. For example, the change in a space tensor 
A,.s for a change in the space coord inates dxt is 

Ars,t dxt. 

But if the change in the space coordinates results 
from a displacement on the surface corresponding 
to a change dxa in the surface coordinates, this is 

A rs, t xhd~. 

We call the new tensor 

A,.s, t xh, 

the surface covariant derivatives of the space tensor 
A rs with respect to the surface coordinates xa. 

18. It is at once evident that grs, grs, Erst , Erst and 
all the Kronecker deltas formed from the three­
index E-systems behave as constant s under surface 
covariant differentiation. For example, the surface 
covariant derivative of g,.s is 

g,.stx~=O 

because g,.8 t is zero. 

19. As an example, we take the surface covariant 
derivative of x~ with respect to xf3, which we shall 
write as x~13 , from the tensor Equation 6.09, 

x~ = frfa + lia· 

We then have 

X~13 = lfx~la + frl a13 + j~XMa + j'}a/3· 

By expanding the covariant de rivatives and re­
a rranging te rms, thi s expression becomes 

a 
axf3 (frla + j'ju) + f~·I (ltfa+ /ja)x~- f~13(frfy + j'jy) 

so that finally we have 
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6.14 

in which the space Christoffel symbols formec 
from g,.s are given Roman indices; and the sur 
face Christoffel symbols formed from aa/3 are giver 
Gree~ i~dices . It should be noted that x~f:l is sym 
metnc m the Greek indices . 

20. The rules for surface covariant differentiation 
of mixed space and surface tensors are illustrated 
by Equation 6.14 for the tensor x~. To obtain the 
terms containing the space Christoffel symbols, we 
simply treat the tensor as a space tensor with re· 
spect to each of its Roman indices and hold the 
Greek indices fixed. If we are differentiating with 
respect to the surface coordinate xY, we complete 
the term with x~ in which u is a dummy index ap· 
pearing also in the space Christoffel symbol. The 
te rms containing surface Christoffel symbols are 
obtained by treating the tensor as a surface tensor 
with respect to each of it s Greek indices while hold­
ing the Roman indices fixed. Thus, the surface 
covariant derivative of A~~ is 

aArs 
Ars13 y=__@+f.rAtsxu+f.sArtxu a . axY tu af3 Y tu af3 y 

- f ll A rs _ f ll ,4 rs aY ll/3 {3Y i all' 

21. It is of no consequence if a space tensor i 
de fin ed over one surface only, such as the surfac 
vector whose space components are fr , or th 
vector vr normal to one given surface. We can al 
ways suppose that the given surface belongs t( 
some family of surfaces in which case, for example 
the vr would become a unit vector field, differen 
tiable in any direction in space. When we multipl 
by x~, we restrict the variation to displacements 0 1 

one particular surf ace, and we can forget the othe 
me mbers of the family. We have already used thi 
device to find the variation of tensors defined alon 
a line in Chapter 4. 

22. We shall often denote surface covariant dif 
ferentiation, with or without a comma, by simply 
adding a Greek subscript, particularly when all th 
Roman indices are superscripts, for example, 

The commas will be dropped if it is clear from th 
context or from the usage that covariant diffe 
entiation is involved. 
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THE GAUSS EQUATIONS 

23. If we take th e surface eova riant derivative 
of Equation 6.06, we have 

By cyclic permutation of the free surface indices 
(a , {3 , y), we have also 

g,.,~x~"x~+ g, ... xfjx~o: = 0 

g,.8x),13x~ + g,.,.x),x ~13 = 0. 

Adding the first two, subtracting the third, and 
rememberin g that x~13 is symmetric m (a, {3) and 
that g,.s is symmetric, we have 

6.15 

If we conside r the space coord ina tes, it is appare nt 
from Equation 6.09 that xt is an arbitrary surface 
vector: therefore, xf;y must be a space vector in the 
direction of the normal. We can then write 

: 6.16 
I 

in which buY is evide ntly a symmetric surface tensor 
like x~y · These equations are usually know n as the 
Gauss equa tions of th e surface (not a very distine­
tive name in thi s s ubject), and the tensor baY is 
known as the second fu11dame11tal form of the sur­
face. (The metric te nsor anY is sometimes known 
as the first fundamental form.) We shall see lat e r 
that the second fundame ntal form se ttles the 
extrinsic c urvatures of the surface. 

THE WEINGARTEN EQUATIONS 

24. We take next the surface covariant derivative 
of Equation 6.10 as 

If we multiply this by Vs and use Equation 3.19, we 
shall have 

and, from Equation 6.09, 

so that finally, using Equation 6.16, we have 

6.17 

These equations, giving the surface derivatives of 
the normal , are known as the Weingarten equations 
'of the surface. They give rise to a thirdfundamental 
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form of the s urface whieh we defin e as 

If we substitute Equal ion 6.17 and ust> Equations 
6.06 and 2.36, we havf' also 

25. We shall see later that the three fundamental 
forms a"13 , ba.13 , Caf3 are not independent; correspond­
ing components are conn ected by a linear relation. 

26. If we contract the Weingarten Equation 6.l 7 
withg,.sxg, we have 

g,."u~xg = - a"f3bwa o: I\ =- 8~b13y =- byr, 

as a n alternative express ion for the second fun­
dame nt al form. Comparable expressions for all 
three fundamental forms are collected here for 
easy refe rence as 

6.1 8 

THE MAINARDI-CODAZZI EQUATIONS 

27. We have so far not considered the sort of 
space in which the surface is embedded; it could 
be e ither c urved or flat. As we have st>en, this 
question involves the second covariant derivatives 
of a s pace vector , for wh ic h we shall take the unit 
normal. 

28. We s tart wi th the relation u,.x~= 0 , obtainable 
from Equation 6.09, because v,. is perpendieular 
to all s urface vectors. Taking the surface covariant 
derivative and using Equation 6.16, we have 

6.19 

diffe rentiating again , we have 

6.20 

in which we have used Equations 3.19 and 6.16. 
We shall now int erchange (/3, y). In the first term , 
we can also interc hange (s, t) 1f th e space is fiat 
because, as we have seen in Equation. 5.01, 

so that the first te rm remains unchanged. The 
second te rm also remains unc hanged because b13y 

is symmetric. We co nclude therefore that if the 
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space in the immediat e ne ighborhood of the surface 
is flat , we have 

6.21 

T hese are known as the Mainardi-Codazzi equa­
tions. Owing to the symmetry of the baf3, there are 
onl y two inde pendent equations , namely, 

b112=b121 

We ha ve shown that the Mainardi-Codazzi equa­
tions are necessary conditions for the surface to 
be embedded in flat space. They can take various 
forms, which we s hall derive later, sometimes by 
conside ring the second covariant derivatives of 
space vectors other than v ,. ; but all these forms 
are equivalent to the s imple relation in Equation 
6.21 be tween the su rface covariant de rivatives 
of the bo:f3 · 

29. It should be noted that while the bo:f3Y are 
fir st covariant derivatives of the surface tensor 
baf3, it is evide nt from the Gauss Equation 6.16 or 
from Equation 6.20 that they are co nnected with 
the second derivatives of space vectors a nd, for 
t hi s reaso n, are affected by the curvat ure of the 
surroundi ng s pace. 
In flat space, the surface tensor bo:f3Y is sym metric 
in any two indices because of the Codazzi Equation 
6.21 and also because bo:f3 is symmetric. 

30. However, if th e surface is embedded in space 
whose curvature tensor is R11rs1 , we can use Equa­
tion 5.02 and make the necessary modifications in 
worki ng from Equation 6.20 to show that the 
"Mainardi-Codazzi" equations would the n take 
the form 

6.22 

T his equation reduces to Equation 6.21 whe n the 
space is flat. If the curvature tensor is specified, 
as it usually will be by the conditions of the proble m , 
the n these equations, although different , a re just 
as restrictive as Equat ion 6.21. 

THE GAUSSIAN CURVATURE 

31. We shall see later that the baf3 de te rmine the 
curvatures of the surface, so that the re must be a 
relat ion be tween the baf3 and the intrins ic curvature 
of the surface conside red as a space of two dime n­
sions- that is, the Gaussian or specific curvature 
whic h we defined in Equation 5.16. 
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We start with Equation 6.08 for an arbitrary um 
surface vector 

and take it s surface covariant derivative 

6.23 

the last term be ing zero because /,. is perpendicula 
to vr. Agai n, we differe ntiate and have 

6.24 

If we int erchange (/3 , y), the firs t term on the righ 
remains the sa me if the surrounding space is fla 
because, in that case, we have l,.81 = l,.18 from Equa 
tion 5.01. The second term re mains the same an)' 
way because XbY is symmetric in (/3 , y ). We the1 
have 

6.25 

using Equations 3.19 and 6.07. If we now introduc, 
Equations 6.19 and 5.22, we have 

R rio:{3Yl 0 = ( baY b{3o - briY bo:{3) l 0
• 

Because l 8 is arbitrary, we have also 

6 .26 

the only nonzero form of which, introducing Equ 
tion5.17 , is 

6.27 

In Equation 6.27, we write b for the dete rmina 
of the baf3, while a is as usual the determinant 
the metric tensor a o:f3· This remarkable result relat 
the bo:f3 to the express ion of K or R121 2 in terms ' 
diffe rentials of the ao:f3 (for example , Equation 5.18 
This result is again due to Gauss and is in fa 
equi valent to his "theorema egregium." The for 

b=R1212, 

when expanded, is sometimes known as the Gau. 
characteristic equation. 

32. It should be noted, however, that thi s res 
is true only if the surface is embedded in flat spa 
If we make the necessa ry modifications and fro 
Equation 5.02 use 

lrst - lrts = Rurstf 11
, 

we find that for a surface embedded in space who 
curvature te nsor is Rurst , the co mbination of Eq 
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tion 6.26 with Equation 5.19 would be 

6.28 

The Gaussian curvature K, being intrinsic to the 
surface, is the same whether the space is curved 
or flat. We conclude the refore that the b a/3 mus t 
change with the curvature of the space . We shall 
consider this further in §8-19 through §8-26. 

33. According to a theorem of Bonnet, any six 
quantities a0 13 and b0 13, togethe r with their deriva­
tives, which satisfy the Gauss charac teristic equa­
tion and the two Mainardi-Codazzi equations , 
determine a surface uniquely except for it s position 
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anrl orie ntation in space. The theore m is usua ll y 
proved for a s urface in flat space ,2 but is obviously 
true also in curved space, provided the c urvature 
te nsor is s peci fi ed and the full Codazzi and Gauss 
e quations, Equations 6.22 and 6.28, are used. W e 
cannot expec t the refore to derive any othe r in ­
de pende nt prope rtie s of a surface; indeed, som e 
of the quantities we have alre ad y de riv ed , suc h 
as the Ca13, cannot be inde pe nde nt. They are, 
ne vertheless, useful tool s, so long as we do not 
expec t them to unearth a comple tely new result 
which could not be obtained ot herwise. 

2See, for instance, Forsyth (reprint of 1920), l ectures on th e 
Differential Geometry of Cun,es and Surfaces, original ed. of 
1912, 51. 





CHAPTER 7 

Extrinsic Properties of Surf ace 

Curves 

THE TANGENT VECTORS 

1. We shall now investiga te the properties of 
surface curves considered both as curves on the 
surface and in space. The unit tangent to the curve 
will be either [r or / '\ depending on whe ther we 
consider the unit tangent to be a space or a surface 
vector, and the orthogonal surface vector will be Jr 
or j 0 as in figure 5 (see §6-13). As before, we shall 
also cons ider , as we can do without any loss of 
generality, that the two vectors a re the unit tangent s, 
respectively, to a family of surface curves and to 
their orthogonal trajectories, de fin ed in so me way 
over a finit e region of the surface, in which c ase we 
can differentiate the vectors with respec t to the 
surface coordinates without confining our a tte ntion 
to one partic ular c urve . 

CURVATURE 

2. As in Equation 6.07 , the space and surface 
components of the unit tangent are connec ted by 

We differentiate thi s with respect to the surface 
coordinate x/3 and use Equation 6.16 to obtain 

l';x~= vr(b a13l 0
) + x~l{J . 

In the last term , we substitute Equation 6.09 for x~ 
and introduce the (intrinsic) geodesic curvatures u , 
er* of the /0 -c urves and of their j a·trajectories from 
Equations 4.11. We then have 
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7.01 

We a re now able to introduce the principal normal 
nz r and the c urvature x of f r considered as a curve 
in space from Equations 4.06; we do so by co ntrac t­
ing the last equation with /13. We then have 

7.02 l~fs= xmr= (b a.13l 0 / f3)v 1"+ uj,. , 

which shows that the principal normal to the space 
curve lies in the plane conta ining the surface normal 
vr and j'·. Moreover, /r must be perpendic ular to 
this plane because /r is perpendicular to all three 
space vectors in Equation 7.02, so that the plane also 
contains the binormal n 1

•• The si tuation is shown 
with the appropri ate conventions in figure 6, which 
represents the plane perpendicular to fr . 

Fi~ure 6. 
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If e, as shown in figure 6, is the positive rotation 
from m ,. to vr about lr . then we have at once from 
Equations 3.20 and 7 .02 

7.03 

7.04 

l,.svrls=-v,.8lrls=b af3 fa/f3=x COS O=k 

lrsfl s= er= x sin e. 

From thi s last equation and Equation 4.07, it is 
evident that 

lrsf ls= la{3j al f3 

for any pair of surface vectors. This expression is 
a special case of a more general proposition which 
we shall obtain in Equation 8.25. 

3. Eq uations 7.03 and 7.04 are usually attributed 
to Me usnier. The quantity k in the first equation 
depends only on ba13, whi ch is a surface tensor point 
function , and on the direction la; it does not depend 
on the curvature of any particular curve in thi s 
direction. Consequentl y, the quantity k is the same 
for all surface curves in this initial direction (la) 
and is therefore a property of the surface in thi s 
direction. It is called the normal curvature of the 
surface in the direction la. 

4. If the c urve la is a geodesic of the surface, as 
previously defined by er= 0 in § 4-6, then because 
it is not, in general , a geodesic also of the space, 
x #- 0, we must have e = 0. The principal normal to 
a surface geodesic accordingly coincides with the 
surface normal. Also from the first Meusnier equa­
tion, we determine that the normal curvature of the 
surface in a given direction is the space curvature 
of the geodesic in that d irection. 

TORSION 

5. We have now to consider the torsion T of the 
curve fr . Frum figure 6, we can express the binormal 
as 

n,. =v,. sin e-j,. cos e, 

and by differentiating thi s along the curve (arc 
element ds), we have, using Equations 4.06, 

ll rs fs=- rm,. =vrsls s in e-j,.sl~ cos e 

+(v,. cos e+j,. s in 8)(d8/ds). 

If we contract with j" (or v,.), we have 

7.05 r+ (dO/ds) =- v,.sj'·ls. 

Contraction with l,. would give us nothing new, but 
if we contract Equation 6.19 with /aj f3 or lf3j a, we 
have, because ba/3 is symmetric, 
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7.06 VrsF fs = Vrsf'js = - ba13lajf3. 

Combining these last two equations, we have 

7.07 

But the ex pression on the right, like baf3lalf3 =A 
de pends only on the direction la and not on an 
particular c urve in thi s direction , and so expresse 
a property of the surface in the direction la which i 
the same fo r all c urves in that direction. For th· 
geodesic in the direction la, we have e = 0, so tha 
the expression on the right of Equation 7.07 is th· 
space torsion of this geodesic. For this reason, th+ 
expression on the right of Equation 7.07 is known a 
the geodesic torsion (t) of the surface in the direc 
tion la. Collecting all the relevant formulas, we hav1 

t = r + (dO/ds) = ba13 fajf3 = ba13j alf3 

7.08 

6. The geodesic torsion in the direction ja 
similarly 

ba{3jU(-lf3)=-t, 

so that the sum of the geodesic tors ions in any tw 
pe rpendicular directions is zero. 

7. From Equations 7.03 and 7.08, we obtain at on I 

a useful formula for the intrin sic cha nge of the un 
normal vector along a line whose unit tangent is l 

7.09 

having not ed that the vector on the left can have 
v,.-component because of Equation 3.19, togeth 
with the corresponding two-dimensional formula 

7.10 

8. If the norm al curvature in the j f3-direction 
k*, the corres ponding equation to Equation 7. 
for the direction j f3 is 

7.11 ba{3j f3 = k*ja+ tla. 

In deriving thi s equation, we have used the fa 
that the geodesic torsion in the direction jf3 is min 
t; also that the direction corresponding to j a 
Equation 7.10 is now minus la. Equations- 7.10 a 
7.11 lead to the explicit expression of the seco 
fundam ental form in te rms of any two orthogon 
surface vectors as 

7.12 

which may easily be verified by contracting w1 
lf3 and j f3 in turn. This last equation may be co 
pared with the corresponding formula for t 
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metric tensor in Equation 2.34, that is, 

7.13 
We can also obtain the corresponding formula for 
the third fundamental form by substituting two 
equations of the form of Equation 7.12 in Equations 
6.18, and we find without difficulty that 

Ca13=(k2+t2 )lal{3 +2Ht(laj13+jal13 ) + (k *'2 +t'!.)juj{3 

7.14 
in which, anticipating the next section, we have 
written 2H for (k + k*). 

CURVATURE INVARIANTS 

9. From Equations 2.35 and 7.12. it is easy to 
form the invariant 

7.15 

which no longer depends on the particular pair of 
orthogonal directions Lu. ju. W e conclude that the 
sum of the normal curvatures for any pair of orthog­
onal directions is the same, and we call H the mean 
curvature of the surface. 

10. To re late the normal curvatures in flat s pace 
to the Gaussian intrinsic curvature uf the surface, 
we need to find the determinant b from Equation 
7.12 for substitution in Equation 6.27. The simplest 
way of doing this is tu take [a. j°' as orthogonal co­
ordinate axes , in which case we hav e, as in Equa­
tions 2.33 , 

la=(v;;;:, 0) ja= (O, ~) 

and, from Equation 7.12, 

b11 = ka11. b12= t~ v;,;;, b22 = k*a'2'2. 

so that we have 

7.16 b = (kk* - t'2)a11a'2'2 = (kk* - t 2)a 

and finally 

7.17 K = kk*-t'!.. 

We conclude that the right-hand side of Equation 
7.17 must be the same for any pair of orthogonal 
directions because K is an invariant which has the 
same value in any coordinate system. not only in 
the temporary system used above. 

11. The same temporary coordinate system ap-
plied to Equation 7.14 gives 

Ctt = (k2 + t2 )a1 I 

C12=2Ht~~ 
C22 = (k* 2 + t 2)a22, 
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leading to the de terminant 

c = (kk* - t 2) 2a = aK2 • 

Because K is a surface invariant , so is cfa which 
accordingly has the same value in any coordinate 
system. We can then write 

7.18 K =bf a= cf b = (kk* - t 2) 

and c an assert that these relations are true in any 
coordinate system and for any pair of orthogonal 
directions. 

12. An alternative formula for the mean curvature 
can be found at once from Equations 7.03 and 2.09 
as 
7.19 2H=-v~ ,. , 

which is the negative of the divergence of the unit 
normal. 

13. The components of th e three fundam e ntal 
forms are not independent , but are relat ed by means 
of the curvature invariants. From Equations 7 .12, 
7.13, and 7.14, we find at once that 

7.20 Ka a13 - 2H bu{3 + Caf3 = 0. 

PRINCIPAL CURVATURES 

14. We consider next the maxima and minima of 
the normal curvature for diffe rent directions around 
a fixe d point. For thi s purpose, we take a pair of 
fixed unit orthogonal surface vectors Aa, Ba at the 
point. If [a makes an angle a with Aa, we can write 

[a=Aa cos a+ Ba sin a 

j a=-Aa sin a+ Ba cos a ; 

and if we diffe rentiat e the compone nts with respect 
to a as a paramete r, we hav e 

&a A . +B . -=- asma acos a=1a. 
da 

Now we differentiate the normal curvature 

keeping bu/3 cons tant because we are merely going 
to alter direction , not position. For stationary values 
of k, we must have 

bu13j a[f3 + ba13 l<Xj/3= 0, 

or, because baf3 is symmetric, we have 

ba13ja[f3 = t = 0. 

But if t is zero in the [a-direction , it must also be 
zero in the j "-direction because we have seen that 
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the s um of the geodesic tors ions in the two direc tions 
is zero. We conc lude. in general, that the re are two 
orthogonal directions in which the geodesic tor­
sions are zero, and the normaf curvatures are e ithe r 
a maximum or a minimum. 1 Moreover, proceed in g 
on the above lines, or differentiating (2H) which 
is the same for all pairs of directions , we find that 

(/2 k = - d2 k* = 2 ( k * - k) ' 
da 2 da 2 

whic h s hows that the normal curvature is a maxi­
mum in one dire ction and a minimum in the othe r. 
We call these directions the prin cipal directions 
Uo:, Vo:. and the corresponding normal c urv atures 
the principal curvatures Ki, K2. 

15. Because t = 0 for the principal directions. the 
c urvature invariants can be expressed as 

7.21 

7.22 

2H=K1 + K2 

1 For a more rigorous solution , not confined to two dim ensions, 
see Lev i·Civita (1926), Th e Absolute Differential Calculus, 204. 
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The three fundam ental forms beco me 

7.23 

7.24 

7.25 

acx13 = UaU{3+ VaV{3 

bcx13= K1UaU{3+ K2VaV{3 

Caf3= KyU 0 Uf3 + K~VaVf3 . 

From Equation 7.09, we can also writ e 

7.26 

7.27 

16. The curves which are tangential to the prim 
pal directions throughout their length are known ; 
lin es of curvature. If ii,., v,. are the unit surfa< 
normals a t two points separated by a short distan< 
ds along a line of curvatm·e u5

, we have to a fir 
order 

;;;,. = v,. + v,..,.u 8 ds . .. = v,.- Kt u,.ds ... , 

which shows that the three vectors ii,., v,.. and u,. ai 

coplanar. Co nsequently. successive surface norma 
along a line of curvature intersect. In the case of ar 
other curve . they would generally be skew. 



CHAPTER 8 

Further Extrinsic Properties of 

Curves and Surfaces 

THE CONTRA VARIANT 
FUNDAMENTAL FORMS 

1. We now consider a set of quantities ba/3 de­
fined as the cofactors of bcr/3 in the expansion of the 
determinant I ba/3 I divided by the value b of the 
determinant , in the same way as the associated 
metric tensor aa/3 is re lated to the determinant 
I aa/3 I· The ba/3 can also be considered as consti­
tuting the inverse of the matrix ba/3· We shall show 
that ba/3 is a surface tensor, although it is not the 
tensor formed by raising the indices of buf3, that is , 

ba/3 =I= aayaf38byr,. 

2. From the definition and Equation 2.43, we have 

bba/3 = eay ef38byr, : 

and dividing this by a, we have 

8.01 

which shows at once that ba/3 is a surface tensor 
because K is an absolute invariant. We can expand 
this last equation from Equations 2.32 and 7.12 as 

8.02 Kba/3 = k*/a//3- t(/aj /3+ j a/ /3 ) + kjaj /3, 

reducing, if we take /a, j a as the principal directions 
ua, va, to 

8.03 

3. If we define ccr.f3 in the same way as the cofactor 
of Caf3 in the expansion of the determinant I Caf3 I 
divided by c, or as the inverse of the matrix Caf3, then 
we have similarly 
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8.04 

which shows that ca:/3 is a te nsor and, using Equation 
7.14, expands to 

8.05 

K2caf3 = 'k*2 + t2) [a//3- 2Ht (l aj /3 + j a: / f3) 

+ (k2+t2)ja:j /3 

4. We have already fou nd an express ion in Equa­
tion 2.35 for the contravariant first fundame ntal 
form (the metric tensor) as 

8.06 

and can derive the contravariant form of Equation 
7.20 by simple substitution as 

8.07 aa:f3-2Hba:f3+ Kca:/3=0. 

5. From the definitions, we have, as for any 
matrix and its inverse, 

8.08 

which enable us to switch between the fundam e ntal 
forms. For instance, if we contract Equations 6.18 
with b /3£ and rearrange indices, we ha ve 

8.09 

Thus , Weingarten 's formula in Equation 6.17 can 
be written e ither as 

8.10 

or as 

8.11 
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If we contract this last equation with grsxi and use 
Equations 6.18, we have 

8.12 

which is a reciprocal form of Equation 8.09. 

6. Use of the above formulas, together with 
Equations 7.20 and 8.07 , gives us without difficulty 
the fo llowi ng alternative formulas for the curvature 
invariants , 

8.13 

8.14 

2H = aaf3ba13= baf3ca13 = Kcaf3ba13= Kb 0!3aa13 

aa13ca13=K2c0f3aa/3= (4H 2 -2K)= Ki+ K~. 

7. The main advantage of the formulas in this 
section is that one or the other of the forms may be 
simple in a particul ar coordinate system, or may be 
constant under some transformation , such as 
spherical re presenta tion, in which case we can often 
achieve a simple res ult quickly by switching into 
the favorable form. 

COVARIANT DERIVATIVES OF THE 
FUNDAMENTAL FORMS 

8. The covariant derivative of the fir st funda­
mental form (the metri c tensor) is zero as we have 
seen in § 6-16. Conseque ntly, by differentiating 
Equation 2.34, we have 

8.15 

for any pair of perpendicular unit surface vectors, 
although we shall use thi s equation only for the 
princ ipal directions (u a. Va) to simplify differentia­
tion of the other fundamental form s. 

9. We now differentiate Equation 7 .24, use Equa· 
tions 8.15 and 4.11, and obtain after some manipu· 
lat ion 

ba{3Y = (K1 hllallf3 + (K2 hvaVf3 

8.16 + (K1 - K2) ( <Tll y+ <r*vy ) ( ll oV{3 + Voll{3) 

in which Ki, <T (K2, <r*) are, respectively, the prin­
cipal curvature and geodesic c urvature of the lin es 
of curvature Ila. (Va). We may not e that the lines 
of curvature are defin ed at any point on the surface, 
other than at s ingular points (such as an umbilic 
where the normal curvature is the same in all 
directions and the principal directions are accord­
ingly inde terminate) or on special s urfaces (such 
as the sphere where all points are umbili cs). Con­
sequently, K1 , K'!. are functions whose values are, in 
general, defin ed at every point and may accordingly 
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be differentiated with respect to the surface coordi 
nates; for example , in Equation 8.16 . we have 

(K1h = aKi/axY. 

10. Differentiating Equation 7.25 in the same wa)' 
we have 

Caf3Y = {KT) yUaUf3 + ( K~) YVoV{3 

8.17 + (KT - K~) { <Tlly + <T*Vy) { UoV{3 + VaUf3); 

and similarly from Equations 8.03 and 8.05, w1 
have 

b~~y= {l/Ki )yu0uf3 + (l/K2hvavf3 

8.18 + (1/ K1 - l/K2) (<ruy+ <r*Vy) (uaif3 + vauf3) 

~/!y= (l/Kihuauf3+ (l /K~)yv0vf3 

8.19 + ( l / KT- l/ K2)(<ruy + <r*vy)(uavf3 + vauf3). 

IL From the above formulas , we may easil: 
derive contrac tions which are sometimes useful 
such as 

b013 ba13Y= (In K)y b013Caf3Y= {4H)y 

caf3ba{3Y=- (2H/Kh ca13ca{3Y=2(ln K)y. 

8.20 

12. We can obtain more compli cated expression] 
in terms of any pair of orthogonal vectors (10 , ja 
defined in some way over the surface, by diffe 
entiating Equation 7.12, etc.; but we shall find i 
more convenient to obtain parti cular contraction~ 
such as 

when required. 

13. The Codazzi equations for flat space (Eq 
tion 6.21) can be rewritt en as 

8.21 Ef3Ybo13Y= ba13Y( ll f3vY-vf3 uY) = O 

because baf3Y is symmetric in (/3 , y) . If we contra 
Equation 8.16 accordingly and se parate the resul 
ing vector equation , we have 

8.22 

(K1 -K2)<r= (K1 hvY 

(Ki -K2)<r*= (K2huY, 

which are an alternative form of the Codazzi equ' 
tions. We can obtain another form in terms of a 
two orthogonal unit vectors /0 , ja by differentiatin 
Equation 7.12, and shall do so later by a differe 
method. The res ult, 

<T(k-k* ) = (k)yjY- (t)y/ Y-2t<r* 

8.23 <T* (k-k*) = (f..-*)y/Y- (t)yjY+ 2t<T, 
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is merely stated at this place for the sake of com­
pleteness. In these formulas, k, t, <J are the normal 
curvature, geodesic torsion, and geodes ic curvature 
of la, necessarily considered as belonging to a 
family of curves defined in some way over the sur­
face, while k* , <J* , and minus t refer to ja in the 
usual right -handed syste m (/,., j,., v,.). 

RELATION BETWEEN SURFACE AND 
SPACE TENSORS 

14. We have seen in Equation 6.08 that if Fr is a 
, surface vector, its space and s urface components 

are related by the equation 

8.24 

The same equation holds true if F,. is the grad ie nt 
of a scalar F because, by definition, we the n hav e 

aF ax,. aF 
axr ax° axa 

It is also true if F,. is any space vector, as long as 
Fa. is int erpreted as the orthogonal projection of F,. 
on the s urface. In that case, F,. is expressible in 
terms of any two orthogonal s urface vectors and 
the unit normal as 

F,. =Al,.+ Bj,. + Cv,.: 

and contracting this with x~, we have 

F,.x~=Ala+ Bjo, 

which is clearly a surface vector having the same 
components on lo. ja as the space vector has. 

15. Surface covariant differen tiation of Equation 
8.24, with res pec t to the xl3-coordinat e (assu ming as 
usual that F,. is defined over some finit e region of 
the surface), and use of Equation 6.16 give 

1 
8.25 FrsX~X~ = F a/3 - F,.x~/3 = F a/3 - (F,.vr) ba/3 

in whi ch F,.s is taken with respect to the space 
metri c and Fa/3 with respect t.o the surface metri c . 
If F,. is a s urface vector, the las t term is zero. 

16. If we contract this result with the principal 
directions ua, vf3 (for which t = ba13L1°v/3= 0), we have 

8.26 

17. If we contract Equation 8.25 with a0 f3 and use 
Equations 6.10 and 7.15, we have 

8.27 

connecting the space and surface divergences of 
the vector F,.. If Fis a scalar, F;: and F~ are its space 
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and s urface Laplac ians. We can rewrite the last 
term as 

8.28 

in which vfVS is the vector c urvature of the normal. 
The vector curvature must be a surface vector be­
cause its normal component v,.v.fv8 is zero from 
Equation 3.19, so tha t we may write 

V.~v8 = XUf 

in which x is the curvature of the normal and uf is 
a unit s urface vector. If F is a scalar and ds is the 
arc e le ment along the normal, Equation 8.28 
becomes 

F,.sv,.v~ = a2F/as2 - x (F,.w,.). 

so that Equation 8.27 can be written as 

8.29 b.F= b.F- 2H (iJF/as) + a2F/as2 
- x(F,.w,.) 

where the surface Laplacian (taken with res pect to 
the surface metri c) is given an overbar. If F is con­
s tant over the s urface, the last term is zero a nd the 
s urface Laplacian is also zero. 

18. We can connect the space and surface in­
variants of the type in Equation 3.14 by using 
Equation 6.10. We have 

V' (F, C) = KrsF,.Cs= aa/3x{,.x~F,.Gs + vrvsF,.C,; 

8.30 = V' (F, C) + (~:) G~} 
assu ming in this case that both F and Gare scalars. 

EXTENSION TO CURVED SPACE 

19. In Equation 6.28, we derived an equat ion 
connecting the intrinsic curvature K of a surface 
with the ba13's and the curvature tensor of the sur­
rounding space. We def erred further consideration 
of this eq uation until we had developed the con­
nec tion between the ba13's and the extrinsic c urva­
ture of the surface and of s urface curves. 

20. We take the usual pair of orthogonal s urface 
vectors /a, ja, together with the normal curvatures 
k, k* in those directions and the geodesic torsion t 
in the direction /a, a nd contract Equation 6.28 with 

/ f>ja /J3jY. 

Using Equations 2.31, 6.07, and 5.25, we then have 

8.31 

in which C is the Riemannian curvature of the s pace 
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fo r the section (/ 0
• j 0

). Because K and C a re in­
variant s which are inde pe ndent of the pa rticular 
s urface direc tions. so also is (kk* - t 2 ). Indeed, we 
have alread y proved in Equations 7.16 and 7.18 that 

8.32 (kk * - 1'!. ) = b/a = (c/a) 112 • 

The las t two members of thi s equation are inde pend­
ent of directi on and from § 2-42 are also inv ariant s . 
We are, however , no longe r e ntitled to equate Equa­
tion 8.32 to the intrins ic c urvature of the s urface 
if C is not zero. Neverth e less~ it is clear from Equa­
tion 8.31 that all th e equations containing K, which 
we have derived in Cliapters 7 and 8, are still true 
pro vided that we write (K - C) for K. 

2 1. From the de finiti on of Riemannian curvature 
in §5-19, we know that C is the intrins ic or Gaus­
sian curvature of the s urface, form ed by the s pace 
geodesics whic h are ta ngent to our s urface at the 
point unde r cons ideration. Equation 8.31 then s ug­
ges ts that the normal c urvatures of the surface 
a re in some way co nnec ted with s pace geodesics 
tangential to the surface. We will inves tigate thi s 
sugges tion. 

22. We use a rec tangular locally Cartes ian co­
ordinat e sys tem with an origin at the point P under 
cons ideration , x:1-ax is in the direction of the surface 
norm al 11'", and x 1-ax is tangential to the s urface in 
the initi al di rec tion of a s urface c urve 11

". The unit 
ta ngent to a space geodes ic, e ma na ting from P 
initi ally in the same di rection , is gr. The situation 
is s hown in fi gure 7 which represents the (x 1-, x:1-) 

x3 

,,r 

Figure 7. 

surface 

coordinate surface . The 1,.- and gr-curves, initially 
in thi s surface, will not , howeve r, remain in the 
coordinate s urface. We shall dete rmine now the 
coordinates of neighboring point s to P on these 

Math ematical Geodes: 

curves . For a s mall di s place me nt ds along the 11 

c urve, we have the Taylor expans ion 

8.33 dx ,. = l,.ds + i(l'.~ l 8 )(ds) 2 

in which it is understood that the coefficients ar• 
to have their values at P. In the Cart esian system 
the coe fficient of t(ds) 2 is, of course, 

<f2xr 
ds2 ' 

but it will be s impler to re tain the ge ne ral te nso 
notation. 
The change in coordinates along the s pace geodesi 
for an equ al di s tance ds is to a second order 

dx,. = g,.ds ... + 
because g'.~g8 = 0. Because we have made gr= i 
at P, the difference in coordinat es to a second orde 
IS 

dx ,. - di,. = ~ U::J~) (dsV 

The diffe re nce in x:1-coordinates is the n 

~ (v,.l'.:~ r~ ) (ds )2=- t (Vrs frlS ) (ds )2 = ! k(ds) 2 

where k is the normal curvature of the surface i 
the direction l,. as de fined in Equation 7.03 and use 
throughout thi s book. 
If j,. is as usual the surface vector perpendicular 
l ,. at P, then the differe nce in the x2-coordinates · 

} (j,.l'. :~ 18
) ( ds) 2 =+ iUrs/1 8

) ( ds )"2 = t u( ds) 2 

where u is the geodesic curvature of l,. as defin 
in Equa tion 7.04 and used throughout this boo 
There is no second-order difference in the .x 
coordina tes because 

l,.l'.'.J 8 = 0. 

If x is the s pace curvature of the surface curve 
from Equa tions 7.03 and 7.04, the total de partu 
of the curve from the s pace geodes ic is according 

h (ds) 2, 

which is evidently the same as the total departu 
of the c urve from a straight line tangent in flat spac 

23. All our notions about the curvature of su 
faces and surface c urves thus appl y tu curved s pac 
as long as we consider de partures from the tange1 
s pace geodes ics. All we need do is to ge nerali 
the s traight tangent s and tange nt planes of ordina 
flat space to geodesic tangents and geodes 
surfaces. 

24. In the same way, we can easil y show that ti 
geodesic curvature uf a surface curve in two 
mensions is measurable as a linear de parture fro 
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·the tange nt geodes ic . T hi s is the sa me ge nera li za­
tion a pplied to the ordinary notio n of th e c urva tu re 
of pla ne c u rves. 

25. We do not need to cons ider geodes ic tors ion 
in thi s cont ext because we coul d replace (kk* - t 2 ) 

in Equ ation 8.31 by the prod uc t ( K1 Kz) of the pri n­
cipa l norma l c urvatures, wi thout affect ing ei the r 
K or C in tha t eq uation . 
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26. S pec ia l form s of the Codazz i C' qua tions, whic h 
have been ol1 tained from tire flat space form in 
Equa tion 6.21, wou ld need res tateme nt to include 
the extra term in the full Equation 6.22. It does 
not seem. however, that a n y ge ne ra l conclu ~ion s 
l'an be drawn from Equal ion 6.22 without kno wl­
edge of the curvature te nsor in pa rticul ar l'ases. 
We sha ll provide an ill us tration in § l (}-29 of the 
use of a parti c ular form of the c urva ture te ns or. 





CHAPTER 9 

Areas and Volumes 

ELEMENTS OF AREA AND VOLUME 

1. We shall require an expression for the area 
of the small near-parallelogram formed by succes­
sive coordinate lines on a surface. Fur short lengths 
ds1, ds2 along the coordinate lines, the area is 

(dsi) (ds2) sin 0 

where 0 is the angle between the coordinate lines 
as shown in figure 8. But, if the unit vectors in th e 

Figure 8. 

coordinate directions are A.(1 i. A.&i and if µ, a is a 
unit vector perpendicular to A.(il, then we have 

sin 0 = /-Lf:lA~2 i = Eaf:lA(oA.f2i 

= Vcz (dx 1/ds1) (dx2/ds2), 

using Equations 2.37 and 2.30, so that finally the 
element of area is 

306-962 0-69-5 
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9.01 

2. For a similar ele ment of volume in three dimen­
sions, we have 

(dsi) (ds2) (ds3) sin 0 s in <f> 

where <f> is the angle which the A.fai-courdinat e line 
makes with the plane of A.(~ i and A.(;n· But in this 
case, it is clear frum the expression in Equation 
2.25 for a scalar triple product that we have 

si n 0 sin</>= Erst A.l'oA. f2i A.bl 

= Vg (dx 1/ds1) (dx 2/ds2) (dx:3/ds:i). 

so that finally the required e le ment of volume is 

9.02 dV = Vgdx 1dx 2clxa. 

SURF ACE AND CONTOUR INTEGRALS 

3. We shall use unly une int egral sign for con­
tour, surface, and volume integrals, distinguishing 
the m by the suffixes C, S, and V, respectively. 
We state, without proof or consideration of its 
limitations,1 a textbook formula attributable (i11 

most English texts) to Green. If U1, U2 are two 
scalars, we have 

9.03 l (au., au1) J ---- dxdy = (U1dx+U2dy ) 
s ax ay c 

in which the double integral on the left is take n 

1 The reader with no previous knowledge of this sec tion 
should read Springer(l962), Tensor and Vector Analysis.147-199, 
where the elementary theory is c learly explained. The treatment 
in thi s section generally follows Brand (1947), Vector and Tensor 
Analysis translated. with variations, int o index notation . 
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over a clused region of the (x -, y-) plane and the 
line or contour integral on the right is taken arou nd 
the closed boundary of the region. If ds is an element 
of the length of the contour ~ if dS is an e lement 
of area, and if we take U1 , U2 to be the components 
of a vector Fa, then this formula can be written 
in the tensor form 

9.04 1 Eaf3F13. a dS = { Fafads 
s Jc 

in which fa is the unit tangent to the contour. It 
is clear that in this invariant form the equation 
holds true in any coordinates - not necessaril y 
Cartesian. Moreov er , because only the firs t co­
variant derivative of the vector is involved, it is 
immaterial whether the space is flat or curved , 
even though we deriv ed the re sult from a plane 
fo rmula in Cart esian coordinates . Th e for mula 
accordingly holds for an y curved surface , provided 
that Fa is defin ed and it s covariant de rivatives 
exis t ove r the c losed region S. The sam e conditions 
relating to connectivity (which are usuall y satisfied 
in the geodetic appli cations) must apply on the 
curved surface as on the plane. 

4. To obtain the correct signs in either formu la, 
we mu st describe the contour in such a direction 
that /°' generally rotat es in the same sense as from 
the x - to the y-coor<linate line (or, in ge neral coor­
dinates, from the u 1- to the u:!-coordinate line). T he 
sense of desc ription is as shown in figure 9, whic h 

Figure 9. 

also shows our usual conventio n for the pe rpendicu­
lar vector j " . The normal to the surface (v,.) is 
toward the reader. 

5. If we expand Equation 9.04 in general surface 
coordinates u 1, u:! , we have, using Equation 9.01 
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and the sym metry of the Chris toffel symbols , 

9.05 J (aF~_aFi) du 1du :! = { (F 1du 1 + F2du 2 

s au au2 Jc 

which is the same form as Equation 9.03. 

6. To ex tend these results to three dimension 
we consider the following expression and m 
Equation 6.11. The tensor T;jl.: can be of an y ord1 
and type, but we shall assume Cartesian spac 
coordinates so that covariant and ordinary deriv 
tives are the same, and we then have 

= (l/Va )e"f3xaa (T;il..) /aua 

_ 1 (ax 11 iJT;il, ax 11 AT;jl.-) 
- Va au 2 Tut - au 1 au2 

=-1 {_i_ (ax
11 

Tij1.;)-_i_ (ax
11 Tij,..)} · Va au 1 au 2 au2 au 1 

Next, we multiply by dS= Va'du 1du2 and integra· 
over some region S of the surface bounded by 
closed contour C. Using Equation 9.05, we ha, 

E111111 v1T- ·,.. dS= T- ·,.. -du1+-du2 1 f (ax11 ax11 ) 
S I) , Ill [" I ) aul dU2 

9.06 

in which / 11 is the unit tangen t vector to the conto 
The boundary contour can be any closed curve 
space spanned by any surface, subjec t to the usu 
conditions. We have proved this formula f 
Cartesian space coord inates a nd for the com 
nents of T ;jk in Cartesian coordina tes , which mea 
a lso that the space must be fl at. If, however , " 
reduce the equat ion to an in variant fo rm contai 
ing only first covariant derivatives, then both the 
limitations will disappear. For example, if T;jl.- is 
space vector F11, we then have 

9.07 Is V1E 111111F11. mdS= Jc F11 f11 ds 

in which the two integrands are, respectively, t 
normal compone nt of the curl (Equation 3.15) 
tlie vector and it s component along the bounda 
contour. This is the tensor form of S tokes' theore1 
true in any coordinate system - in flat or curv 
three-dimensional space. Moreover, we can expe 
a similar fo rmula to hold true in any number 
dimensions. In fo ur dimension s, we should ne 
different forms of the permutation symbols, whi 
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we shall not discuss in thi s chapter. 2 However, 
in two dimensions, we should expec t 

J Ea.f3Ff3. a. dS=J Fa. fads 
s (' 

in which Fa. is now a surface vector, a nd if we use 
Equation s 6.11 and 8.25, we find at once that thi s 
is so. We have in fact recovered Equation 9.04. 

7. If the surface is closed, it can be considered 
as divided into two parts by a closed contour. The 
contour integral will have the same value but 
opposite s igns for the two parts of the surface, so 
that over the whole closed surface, we have 

9.08 

8. If we are pre pared to continue working in 
Cartesian s pace coordinat es, we can de rive a num­
ber of other formula s from the basi c Equation 9.06. 
We can. for instance, multiply by E11 1,,1 which are 
constants in Cart esian coordinat es and can therefore 
go under the integral signs. The surface int egrand 
is then 

and we have 

9.09 

which is no less general than the basic Equation 
9.06 and may be conside red as an alt ernative. 

9. If, for example, we take a contravariant vector 
Gq for the general te nsor T;ji,, we have at once 

9.10 f s (v1,C?,,-v.,C?,,)dS = f cE,,1,qC"l"ds 

for the co ntour integra l of the vec tor product 
of a general vector with the unit tangent to the 
contour. Springer :3 uses thi s res ult tu provide 
an interesting compari son. obtaining the result 
first in the old dot-and-cross notation and then 
deriving the same result in index notation in order to 
interpret the dot-and-cross result! 

10. We can also use Equation 9. 09 to introduce 
the perpendicular s urface vector j 1, (see fi g. 9) by 
taking the general tensor T;p; in the form vqU;,.... 

2 See Synge and Schild (corrected reprint uf 1964). Tensor 
Calculus , original ed. of 1949, 240-281. 

3 Springer, op. cit. supra not e 1, 196. 
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Us ing Equation 3. 19. we have for the s ur-fa<'(.' 
int egrand 

But from Equation 6.10, we have 

If we s ubs titute this a nd Equation 7. 19. the s urface 
integrand becomes 

- 2lf v1,lii1; - aa.f3g11,x';1.xkUp,, ,,. 

We now multiply thi;; result li y r;''1 and can do the 
same to the contour integrand beca use the g''1 are 
constants in Cart esian s pacC' coordinates . The fin al 
res ult is 

9.11 J (2Hv 1UJ1; + a a.f3x:!x~Ujl, , ,,)dS =- J j'Ujl, ds 
s c 

wltic h. because UJI, is a ge neral te nsor not neces­
sarily of the second order. is just as gene ral as e ither 
Equat ion 9.06 or 9.09. 

11. As an example of th e use of this las t res ult , 
we take ujl .. to be the gradient of a scalar </>1 and 
contract to 

Is {2H (v1</>1) + a°'13x?,x1</>1 . ,J dS =-f / <1>1ds. 

Using Equation 8.25 , we can furth er reduce this to 

9.12 J l:i<J>dS =- J </>1/ds 
s c 

in which the Laplacian is taken with res pect tu the 
s urface metric . In the same way as we obt ained 
Equa tion 9.08, we conclude that over any closed 
s urface 

9.13 J l:i<bdS= 0. 
s 

VOLUME AND SURF ACE INTEGRALS 

12. We shall now conside r the triple int egration 
of a tensor Tijk . 111 ove r a closed region T. of 3-s pace 
bounded by a closed s urface S. A~ain . v•e ass ume 
C artesian coordinates in flat !; pace. and we ::-; uppose 
that an arbitrary field of parallel unit vec tors A 11 1 

is defined over the region in mu ch the same way as 
one of the Cartesian coordinat e vectors would be de­
fined. We s uppose further that Am is the axis of an 
element ary prism of con stant cross-sec tional area 
da- running th rough the region. and that dl is an 
ele me nt of length in the direction A 111

• We then 
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have by integrating along the prism. all co mponents 
of A 111 being constant, 

9.14 

A 111 J T;jk. 111dV= J Tijk . 111 A 111dlda 

= f aTijk ax'" dlda 
ax"' al 

= J [Tij i.] fda 

in which the integrand is now the differe nce in 
values of T;ji, on the boundary surface at the two 
ends of th e pri s m. But. if an ele ment of area of the 
boundary surface is dS and if the exterior or out­
ward-drawn unit normal to the boundary surface 
is V111. we then have 

da=v111 A 111dS 

at the (2 ) e nd of the prism and 

da= -v111 A 111 dS 

at the (1) end of the prism. By adding Equations 
9.14 for all the elementary prisms required to fill 
the region, we can write 

A 111 J T;ji,, "' dV = f TijkV111A 111 dS 
I ' S 

=A 111 J srijkVi11dS 

because the co mponent s of the parallel vectors 
A 111 are constant over the whole region in Cart esian 
coordinates. But A 111 is an arbitrary vector fi eld , 
and so we have 

9.15 
J 

Tijk , 111dV= J Tijkv111dS. 
I ' S 

Because we are working in Cartesian space co­
ordinates, we can raise any of the indices of Tijk. 
which can be of any order or type. 

13. Again , we can re move the limitation to 
Cartesian coordinat es in flat space if we form 
invariants containing: only first covariant deriv atives . 
For example. if we make the tensor T;p, a contra­
varian t vector F 111

, the n we have 

9.16 J F % dv= J F 111 v111ds = f F111v 111 dS, 
v . s s 

which is th e tensor for m of the divergence th eorem. 
Or, if F 111 are the contravariant components g"',.¢,. 
of the gradient of a scalar <P and if ds is an ele ment 
of length along the surface normal , then the last 
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equation becomes 

9.17 J v (D.<P)dV = I s (a¢/as)dS, 

which seems to have been given originally l: 
Gauss. 

14. Again , if we make 

Fm= g111"( <Pt/J11) 

where ¢ , t/J are any two scalars, then Equation 9. ] 
becomes 

9.18 
J 

{ \7 (¢, t/J) + <PD.t/J}dV= J ¢(at/J/as)d: 
I ' S 

which is usually attributed to Green. If we inte 
change <P and t/J and subtract , we have 

J 
{<PD.t/J- t/JD.<P }dV = J (<P at/J - t/J a<P) d: 

v s as as 
9.19 

which is a form of Green much used in potenti 
theory, wh ere one of the scalars is often taken < 

the reciprocal of the radius vector. 

15. The intrin sic invariance of the Gauss equatic 
(Equation 9.17) suggests that we could also wri 
in two dimensions 

in which va is now a surface vector, normal a:r 
outward-drawn to the contour, and the Laplaci· 
is taken with respect to the surface metric. In fa 
we have obtained this result as Equation 9.12 
which jl or j a is the inward-drawn normal to t 
contour (fig. 9) and is therefore the same as min 
va. The two-scalar forms of Equations 9.18 a 
9.19 are similarly valid in two dimensions 
be twee n surface and contour integrals. 

16. If we are prepared to continu e working 
Cartesian coordinat es, then, as in the case 
surface and cont our integrals, we can obtain ma 
other formulas by giving the basic tensor T;ji, 
Equation 9.15 special forms. An instructive exam 
is to give it the form 

in which case the closed surface integral vanish 
because of Equation 9.08. The volume integ 
therefore vanishes over any arbitrary volu 
which means that its integrand 



Areas and Volumes 

must be zero. Although this is an invariant whic h 
allows us to use any coordinate system, we cannot 
generalize the result to curved space because it 
contains second covariant derivatives. We must 
therefore consider that the space is flat, in which 
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case the te nsor is symm etri c in the two covariant 
indices. We the n have 

so that the volume integrand is ze ro , as it should be. 





CHAPTER 10 

Conformal Transformation of Space 

METRICAL RELATIONS 

l. We now consider the transformation of a space 
whose metric is ds 2 to another space whose metric is 

10.01 

in which m is a scalar func tion of position -contin­
uous, single-valued, and diffe rentiable over some 
finite region. The function m must also be an in­
variant because ds 2 and ds2 are invariants in 
Riemannian space. We shall call this fun ction the 
scale factor because it multiplies infinitesimal 
lengths in the one space to obtain the corresponding 
lengths in the other. 

2. We shall also assum e that th ere is a one-to-one 
correspondence of pomts over some region of the 
two spaces. This relation means that the coordinates 
of points in one space are single-valued functions 
of the coordinates of co rresponding points in the 
other; for instance, we have 

x= f (x, y, z), 

which implies further that the xr can be transformed 
to the i,. and are therefore possible coordinates 
in the overbarred space. We shall take the coor­
dinates to be the same in both spaces. In that case, 
if Equation 10.01 is to hold true for all corresponding 
directions around a point , the two metric te nsors 
will be related by 

10.02 

We then have the following relations be tween the 
determinants of the metric tensors and betwee n 
the associated tensors, 
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10.03 

in three dimensions , and 

10.04 

3. W e can al so re lat e the Chri stcffel symbols 
straight from the definitions, 

111 - :![ij, k] = [iJ, k] + g;k (ln m) j + µj1<(1n m ); 

10.05 - g;j( In 111 )h· 

10.06 

in whi ch o:, e tc., are Kronecker de ltas and (in m)j 

is th e gradient of the natural logarithm of the 
scale factur. 

4. Fina lly, we can re lat e the two curvature te nsors 
s traight from the definition in Equat ion s 5.03 an d 
5.06, a nd after some manipulation , the result will be 

- mg,.s( l/m )q1 + mg,-1 ( l / m ),1s 

10.07 

in whi ch V ( l / m) is the diffe renti al in variant from 
Equation 3.13, th at is, 

V (l / m ) = g'-.~ ( l / m ) ,.( l / m ) _. : 

and the ex pression s (l / m) ,.1• etc . , are second co­
va1_:iant derivatives of ( l /m). The equations in 
Equation 10.07 are known as the Finzi equations. 1 

1 Le vi-Civita (1926). Th e Absolute Differential Calculus. 
229-232. 
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THE CURVATURE TENSOR IN THREE 
DIMENSIONS 

5. By contracting the curvat ure tensors in Equa­
tion 10.07 with gqt or m 2 {!:Q1, we obtain a relation 
between the Ricci tensors, which, as we have seen 
in §5-11, are suffici ent to describe the curvature 
of 3-space. The res ult. introducing the Laplacian 

and usi ng the identity 

10.08 Am = 2m :iv (1 / m) - m 2A (1 / m), 

IS 

10.09 Rrs - Rrs =- m ( l / m) rs + ( l / m) (Am )g,.8 • 

6. We can also relate the Lame tensors in three 
dimensions by means of Equation 5.13. Using the 
identity 

10.10 A(ln m) =-mA(l/m) +m2\J (l/m) 

and lowering indices, the result is 

10.11 

7. If both spaces are flat, then the left-hand side 
of the last equation is zero , and the scale factor 
must satisfy six second-order differential equations. 
Using rectangular Cartesian coordinates and sub­
stituting Equation 10.10, we see that three of 
these equations are of the form 

a2(1/m) _o 
axay 

and three are of the form 

r/2(1/m) + a2 (1/m) 
ax2 ayz 

m { (a(!~m)r + (a(~~m)r 

+ (a(~~m))l 

It can be shown 2 that the only nontrivial transfor­
mations which satisfy all six equations are inversions 
with respect to a sphere. If the curvatures of both 
spaces were to be specified witho ut being zero, 
the scale factor similarly would have to sati sfy 
six equations, and the choice of scale factor would 
si milarly be restricted so that very few transforma­
tions would be available. We shall us ually be com­
pelled by the nature of the problem to make one 

2 See, for example, Forsyth (reprint of 1920). Lectures on the 
Differential Geometry of Cun•es and Surfaces, original ed. of 
191 2, 428. 
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space flat, but there is no need to make the otht 
space flat or to specify its curvature. Nor do w 
have to attribute any physical significance to th 
other space; we can consider it simply as a math1 
ma ti cal device. We can then take the scale fact< 
to be any continuous differentiable function an 
let it settle the curvature of the space in accordanc 
with Equations 10.09 and 10.11. If, for instance, th 
unbarred space is flat , then we have S,.s=O, and th 
metric tensor and covariant derivatives on the rig! 
of Equation 10.11 are all taken with respect to th 
metric of the flat space. For the present, howeve 
we shall keep the discussion quite general and rn 
assume that e ither space is flat. 

TRANSFORMATION OF TENSORS 

8. Unit contravariant vectors in correspondir 
directions can easily be related because we ai 

using the same coordinates for both spaces. We hm 

10.12 
a ,. I a ,. 

7r =~=-~= m - 1/r 
as m as 

and, for the covariant components, 

10.13 

9. It is eviden t that the scalar product of ar 
two unit vectors remains the same on transform 
tion so that angles between corresponding directior 
are preserved. Small corresponding figures will l 
similar, differing only in scale . which. howeve 
will vary from point to point. The transformati~ 
is called conformal for this reason. 

10. In the case of a nonunit vector field, we co 
say that the magnitude is a function of the 
ordinates and remains the same on transformati 
so that nonunit vectors would transform in t 
same way as Equations 10.12 and 10.13. A tens 
which can be expressed as a s um of products 
vectors, would also transform in the same w 
but the power of m would, in accordance w· 
Equations 10.12 and 10.13, be the number of 
variant indices less the number of contravari 
indices, for instance, 

A~~1 = m 2A?s1· 

But it must be noted that all this refers only 
tensor point functions. It does not apply to 
variant derivatives which involve a difference 
the values of a vector or tensor at two points wh 
m may have. different values. Covariant derivativ 
must accordingly contain derivatives of m and m 
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also contain derivati ves of the magnitudes of 
nonunit vectors. 

11. We can relate the covariant derivatives of 
unit vectors by differentiating Equations 10.12 and 
10.13 and by using the relation between the Christof­
fel symbols in Equation 10.06, the res ult s being 

10.14 

10.15 

m - 1I,, s= l,., s - (In m) ,.Is+ g , .. ~ (ln m )1l1 

ml~.~= l~s+ i>; (ln m) 1ft- gr1(ln m)tf.~. 

The second equation can be shown to be equiv­
alent to the first by multiplying the equation by 

(m - :!g,.q) =g,.q. 

Higher derivatives can be related in the same way 
as required. 

12. If <P is a scalar defined to have the same value 
at corresponding points, such as the scale fa ctor 
or a common coordinate , then the second covariant 
derivative of the scalar will be 

=</>rs -<J>,. (In m )s-<J>.~(In m ),. + g , .. ~\J (In m , </>), 

10.16 

the differential invariant 'V being as defined in 
Equation 3.14. We multiply by m "2~rs = g"s to obtain 
the Laplacian invariants 

10.17 

Note that in two dimensions the las t term is zero, 
whereas in three dimensions, we have 

10.18 m 2D..<J> = D..<J> + 'V (In m, <P). 

CURVATURE AND TORSION OF 
CORRESPONDING LINES 

13. We shall now consider a curve whose unit 
tangent, normal, and binormal are /,. , p,., q,.. In 
the transformed space, the unit tangent , normal , 
and binormal are l, ., ii,. , b,.. The two tangents /,., lr 
are corresponding directions because the two 
curves correspond. However, we cannot say that 
nr, br, corresponding to nr, br, will be the same as 
p,., q,. because we have no reason to suppose that 
the normals and binormals are corresponding direc­
tions. From the conformal or angle-true properties 
of the transformation , we can, however, say that 
nr, b,. will be perpendicular to each other and to !,.. 
The uncertainty in the correspondence is thereby 
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reduced to one angle () between n,. and p,. , which 
we shall have to determine. The si tuation is as 
shown in figure 10, which re presents a plane (or 

transformed 
normal 

nr 

Figure 10. 

bi normal 
qr 

transformed 
binormal br 

"section" 3 in curved space) perpendicular to [, .. 

14. The vector curva tures of the corresponding 
lines /,., l,. are related by Equations 10.14 and 
10.12 as 

10.19 

We can also write 

(In m),.= {(In m) 1/ 1} I,. + {(In m) 1p 1} p,. 

+ -{ (In m)1q1}q,., 

and if x, x are the two principal curvatures, we 
then have 

;Xii,.= mx_n,. = {x - (In m)1p 1} p,.- {(In m )1q1} q,.. 

10.20 

But from figure 10, we have 

and so 

10.21 

n,.= (cos ())p,.+ (sin ())q,. 

mx cos ()= x- (In m)1p1 

mx sin ()=- (ln m)1q1, 

which determine both x and e. 

15. If the transformed curve is a geodesic, we 
then have X. = 0. The first equation of Equations 
10.21 then shows that the principal curvature X 

3 A "section" in curved space is defined by a pair of vectors, 
p,. , q,. for instance, a nd is suc h that any other vector in the sec­
tion can be exp ressed linearly in te rm s of p,, q,.. If / ,. is per­
pendicular to p,, q,. then all vec tors in the section are perpe n­
dicular to Lr. See also §5-19_ 
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of the curve in the unbarred space is the arc rate 
of change of (ln m) in the direction of the principal 
normal to the curve. The second equation of Equa­
tions 10.21 shows that the . scale factor remains 
constant for a small displacement in the direction 
of the binormal to the curve. 

16. In regard to the torsion of a general curve, 
we differentiate the equation 

n,p,.= cos() 

along the line and have, if ds is the arc element, 

TlrsPrls=-n,.p'.Js-sin 8(d8/ds) 

=-n,.(-xl,. + Tq'") -sin 8(d8/ds) 

=-Tsin 8-sin 8(d8/ds), 

using the Frenet equations in Equations 4.06 and 
introducing the torsion T. Next, we transform the 
expression on the left to the barred space by means 
of Equations 10.14 and 10.12 to have 

{m- 1n,.s+ (In m),.n8 -g,.8 (ln m) 1n 1}pr[s 

=-mt sin 8, 

again using the second Frenet Equations 4.06 
and introducing the torsion f of the tran sformed 
curve. We have finally 

10.22 

By differentiating Equations 10.21, we have after 
:some manipulation 

mX_(d8/ds) =-sin 8(ax/as) +T(ln m),.n 1
• 

10.23 

and by eliminating (d8/ds) with Equation 10.22, 
we have 

m~x..1' = XT cos 8- sin 8(ax/as) + m (l/m) 1·sbr1s. 

10.24 

We have also the fo llowing equation connecting 
the arc rate of change of the two c urvatures along 
the line, 

10.25 + m ( l/m) rsll rls. 

17. The curvature of space enters the equa tions 
for the torsion (but not for the curvature) because 
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Wx/as) involves second covariant derivatives. T~ 
second covariant derivative of the scale factor al~ 
involves the curvature of the two spaces. We ha, 
in fact from Equations 10.09 and 10.11 

- m ( l /m) rsb,.I·' = (Rrs - R,."') b1·1s 

= (Srs -5,.s) b 1"fS. 

18. A useful way of checking results in a co 
respondence between two spaces is to interchan~ 
the spaces. We can transfer the overbars in a 
equation , suc h as Equation 10.14, provided "' 
write ( l /m) for m; and we then have 

ml,._,= 7,.8 + (In m) ,.7, - ji·,._, (ln m) ,71, 

which is easil y shown to be equivalent to t~ 
original equation. In the case of Equation 10.2 
we shall also have to change the s ign of() becam 
the rotation from the normal to the transfornH' 
normal has the opposite sense in the barred spac 
Moreover, instead of p 1

, we must write the norm 
in the barred space, that is, n1; and instead of G 
we must write the binormal in the barred spac• 
that is ,[/. We then have 

or 

(l/m)x cos e=x + On m),n. 1 

( 1/m)x sin 8=- (In m) 1b1 

10.26 

mx = x cos()- (In m),n 1 

X sin ()=-(In m )1h1, 

which are equivalent to the original equation 
A check on Equations 10.23 and 10.24 is mo 
difficult. but can be applied usin1,r only results whi 
have already been given-such as Equation 10.l 

TRANSFORMATION OF SURF ACE 
NORMALS 

19. A continuous differentiable scalar N in 
space of three dimensions will define a family 
surfaces. over each of which N is constant. F 
example, 

N= f(x, y, z) 

defines a s urface containing all the points 
which N has a particular constant value: differe 
me mbers of the family will be obtained by assigni1 
differe nt constant values to N. But N is consta 
in directions perpendicular to its gradient, so th 
the gradient of N must lie in the direction of ti 
normal to that surface of the family which pass 
through the point under consideration. Excludi1 
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singular points where the gradi ent of N 1s a null 
vector, we can write 

10.27 N,.= nv,. 

in which v,. is the unit surface normal and 11 is the 
magnitude of the gradient vec tor. We take the 

; covariant derivative of Equation 10.27 and di vi de 
J by n to give 

( l /n )N,.,, = Vrs + v,.(ln n ).,. 

Because N is a scalar, it s second covariant deriva­
tive is a sym metric te nsor ; thus, we ca n inte rchange 

· (r, s) and subtrac t to find that 

10.28 V rs = Vsr + Vs (l n Tl ) r - V r (In Tl ) s. 

If we contract thi s eq uation with v 8 a nd use Equation 
3.19, which makes v.,,.vs zero, we have 

10.29 

Findl!y, we compare thi s res ult wi th Equation 10.19 
and conclude that a scale factor of n wi ll transform 
the space conformally to another space in whfrh 
the surface normals become a family of geodesics. 
Because of the co nformal prope rty of the trans­
formati on. these geodes ics will be normal to the 
transformed N-surfaces. Moreover, a n element of 
length along a tran sformed geodesic will be 

ds= nds= (N,.v,.)ds =N,.dx,.= dN. 

The length of a geodesic int ercepted between 
two N-s urfaces N1 and N'2 will accordingly be 
(N2 - N 1) and will be the sa me for all geodesics 
between these two s urfaces. For thi s reason, 
the transformed N-s urfaces are kno wn as geodesic 
parallels. 

20. Conversely , if the re exists a family of geo­
desics and geodesic parallels, expressible by a 
scalar N, in a confo rmal transformat ion with scale 
factor n, then we can say that the relation 

N,.=nv,. 

must hold true be twee n the corresponding lines 
and surfaces in the untran sformed space. 

21. If we write 
n= m .f(N) 

in which f(N) is an arbitrary , continuous , dif­
ferentiable, and nonvanishing fun c tion of N and if 
we substitute in Equation 10.29, we have 

v 1.,~v 8 = (ln m) ,.- v,.(ln m)s v 8 

+ f(N) N.- Vrf(N) (N ) 
f(N) ' f(N) sVs . 
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T he la st two terms cancel by virtue of Equation 
10.27. Comparing thi s re sult with Equat ion l0.29, 
we conclude that the scale factor can well be /1 

multipli ed by an arbitrary function of N. 

TRANSFORMATION OF SURF ACES 

22. It s hould be noted that we have nowhere 
assumed that either space is flat~ the curvature 
of the space does not arise until we assign particular 
values to the curvature tensor or until we introduce 
the second covariant derivatives of vectors. More­
over, all the above properties are intrinsic to the 
space, being based solely on the metric te nsor and 
its derivatives . We can accordingly use all the 
above ten sor formulas with Greek indices for 
transformations between curved surfaces con­
side red as two-dimensional spaces, provided we 
do not use results, such as Equation 10.09, which 
are valid only in three dimensions. We have, for 
ins tance, 

10.30 

and all of Equations 10.05, 10.06, 10.07, 10.12, 
10.13, 10.14, 10.15, 10.16, and 10.17 are val id . 

23. Because there is only one co mponent of the 
curvature tensor in two dimensions. we can simplify 
the Finzi equations of Equation 10.07 whi ch are, 
in two dimensions, 

m - '2Ru/3Yf>- Ruf3Yf> = lll<l nY( 1/ Ill )13r, - lllll af>(l/ Ill )13y 

- 111(113y(l /Ill )uf. + flW 13r,(l / m lu Y 

+ m 2 
( a13ya"i:,- a13aauY) \J ( l/m) 

where th e invariant \J is now taken with res pec t to 
the surface metric Ocrf3 · \Ve contract with a crY= m '2ficrY 

and use Equations 5.19 and 2.45 to have 

Ka 13a - J\.a13a = m a 13 r, D.( 1/ 111 ) - m'2a13a \J ( 1/ ml. 

Cf we s ubstitute 

and use the identit y 

D.(ln m) = -mt:.(l/m) + 111'2\J(l / 111), 

we have fi nall y as the sole curvature equation 

10.31 D.(ln 111) = /\. - 111 2/{ 

in which , of co urse, the Laplacian is take n with 
respec t to the unbarred surface metric. This is a 
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well-known formula in the theory of conformal map 
projections, attributed by Marussi 4 to Souslow 
(1898). If the Gaussian curvatures of the two surfaces 
are given, then this formula is a· differential equation 
which the scale factor must satisfy. Alternatively, 
we could choose the scale factor and one surface, 
in which case the Gaussian curvature of the other 
surface is settled by Equation 10.31. If one surface 
is a plane, then we have 

10.32 A(ln m) = K 

in which the Laplacian and, of course, the Gaussian 
c urvature refer to the curved surface. 

GEODESIC CURVATURES 

24. In two dimensions, Equation 10.19 becomes 

frj~ =a)a -(ln m)a+ {(ln m)13lf3}la 

in which <T, ii" are, respectively, the geodesic curva­
tures of the curve la and of its transform; and j a, ]a 
are perpendicular to la and to its transform in the 
usual sense of figure 5 in § 6-13. But in this case, 
ja, Ia. which are both surface vectors, must corre­
spond because of the conformal property of the 
transformation. (Note that in three dimensions , we 
could not say that the two principal normals cor­
respond.) So, from the two dimensional form of 
Equation 10.13, we have 

and the above equation reduces to 

10.33 

If et= 0, this is equivalent to a well-known formula 
in the theory of map projections ,5 attributable to 
Schols. 
All the properties of two-dimensional transforma­
tions naturally hold true for corresponding surfaces 
in a three-dimensional transformation. The Gaussian 
curvatures of the corresponding N-surfaces of the 
last section must, for example, satisfy Equation 
10.31. 

~ Mamssi (1957), "Sulle rappresentazioni fra superfici definit e 
mediante la forma quadratica che ne determina ii modulo di 
deformazione," Festschrift zum 75. Geburtstag von Prof Dr. 
C. F. Baeschlin, 201-210. Reprint available from Istituto di 
Topografia e Geodesia dell' Universita di Tries te as Pubblica­
zione No. 33. 

5 See also Taucer (1954), "Alcune considerazioni sul teorema 
di Schols," Bollettino di Geodesia e Scienze A.ffini, v. 13, no. 2, 
159- 162. Reprint available from Istituto di Topografia e Geodesia 
dell ' Universita di Trieste as Pubblicazione No. 16. 
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EXTRINSIC PROPERTIES 
OF CORRESPONDING SURF ACES 
IN CONFORMAL SPACE 

25. It is clear from the defining Equation 10.02 
that conformal transformations are based solely 
on the metric tensor and its derivatives and there­
fore lead only to intrinsic properties. We cannot 
expect to derive any more conformal properties 
of surfaces from their extrinsic properties , even if 
the surfaces are embedded in conformal space. 
Nevertheless, this is a useful alternative approach, 
which, at the least, can serve as a check. 

26. Because the coordinates are the same in both 
spaces, we can write 

10.34 x~=x~. 

In order to relate the second and third fundamental 
forms, we need an expression for fl~. By expansion 
and use of Equations 10.06 and 10.12, we have 

10.35 mv~= v~+nx~ 

where we have used the special symbol 

10.36 n = (ln m),.vr 

for the arc rate of change of (ln m) along the surface 
normal. This special symbol should not be confused 
with the " n" in the general gradient Equation 10.27 
as used extensively elsewhere in this book. 

27. The second and third fundamental forms 
follow as 

10.37 

10.38 

m- 1 ba13 = -m- 1g,.8x~v~= ba13 -naa13 

Caf3 = g,.s V~V~ = Caf3 - 2nba{3 + n2 aa13 , 

and the normal curvatures and geodesic torsion in 
the usual orthogonal directions are 

10.39 

10.40 

10.41 

10.42 

mk = mba13 l alf3 = k- n 

m k* = mba13]a ]13 = k * - n 

mt= mba13fa]"f3= t 

m 2(kk* - t 2) = (kk* - t2)-2Hn + n2 • 

28. But from Equation 10.31, we have 

m2K = K-A(ln m), 

all with respect to the surface metric; and subtract­
ing Equation 10.42 from this expression and using 
Equation 8.31, we have 

10.43 m2C=C-{A(ln m)-2Hn+n2 } 

for the Riemannian curvatures perpendicular to 
the surface normals. 
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We can ve rify this last equation by contrac ting 
Equation 10.11 with 1/ir as 

m2C-C=- m(l/m)rsvrv'-~(ln rn), 

all with res pec t to the space metri c . With some 
manipulation and use of Equations 8.27 and 10.10, 
we can reduce thi s to Equation 10.43. However, we 
have added nothing ne w, but have confirm ed a 
number of othe r 'result s . 

29. From Equation 10.41 , we conclude that th e 
principal directions correspond. Acco rdingly, we 
can write Equation 8.16 for the barred surface and 
transform the right-hand side to obtain a relation 
between th e b"f3y's . Or, we can take ordinary dif­
ferentials of Equation 10.37 , for exa mple, 

() b"13 - - - - -
--= baf3Y+ fgyb1>13+ l h ba/), 
()xY 

and transform the Christoff e l sy mbols by th e two­
dimensional form of Equation 10.06. The result in 
either case is 

10.44 

m- 1 baf3Y - baf3Y= Daf3m(l/ m)s1Vsx-{, 

- L (ln m )abf3Y 
crf3Y 

+al>•(ln m), L Uaf3bY1> 
crf3 Y 

in which we have used the s ummation symbol for 
the sum of te rms with cyclic permutation of the 
indices (a, {3, y), for example, 

L (In m)abf3Y = (ln m)abf3Y +(In m )13bYa + (ln m hbaf3· 
af3Y 

The summation terms drop out if we interchange 
(/3, y) and s ubtrac t, as we shall do when we form 
the Codazzi equations. 
Next , we contract the Finzi e quations in Equation 
10.07 with 

and have 
- 1 R- -q -r -s -1 R q r s I m qr,,tV XaXf3XY - qrstV XaXf3XY 

10.45 =- nWaf3(lf m)q1VqXt + maaY ( l/m)qsVqX~ . 

By inspection, we can see that Equations 10.44 
and 10.45 sati sfy the full Codazzi equations of Equa­
tion 6.22- another useful ve rifi cation. 

THE GAUSS-BONNET THEOREM 

30. The properties of conformal transformations 
enable us, as one example, to establish easily an 
important result relating to the angles of closed 
figures drawn on a surface. 
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We s uppose that one of the surfaces is a plane 
(K=O) so that Equation 10.32 holds true, and we 
then integrate Equation 10.33 around correspond­
ing closed contours whose unit tangent s are l a. la. 
This amounts to multipl yi ng Equation 10.33 by 
ds= (l/m)ds and integrating. We have 

l a-ds -J <rds = l On m)uj"ds 
c (' c 

=-f ~(In m)dS 
s 

10.46 =-L KdS, 

using Equation 9.12 in converting from the con to ur 
to the surface integral, which has to be taken over 
the whole area of the surface e nclosed by the con­
tour. In the plane, the geodesic curvature of the 
contour becomes the ordinary curvature of a plane 
curve, and the contour integral is the total angle 
swept out by the tangent to the contour in describ­
ing the contour. If the contour is continuous, thi s 
angle is 27T; for any continuous contour on the 
curve d surface, we have accordingly 

1 a-ds + J KdS = 27T. 
c s 

10.47 

But if the contour in the plane has a corner enclos­
ing an angle 0, then the tangent at that corner will 
turn (7T- 0) without any contribution from the con­
tour integral. If the re are n such corners, then we 
have · 

J O-ds=27T-n1T+ L 011 • 
(' II 

The angles e nclosed by the co rners of the corre­
sponding contour on the curved surface will be the 
same bec au se of the conformal property of the 
transformation , and we have finally 

10.48 r a-ds+f KdS= 21T-n1T+ L 011. Jc S 11 

In the c ase of a triangle with curved sides enclosing 
angles A, B , C, this is 

10.49 L a-ds+ L KdS=A +B+C-1T; 

and if the sides are geodesics, this is 

10.50 L KdS= A +B+C-1T. 

This last equation is the exac t form of an approxi­
mate formula used in classical geodesy for calc u­
lating "spherical excess." 





CHAPTER 11 

Spherical Representation 

DEFINITIONS 

1. W e can "represent" one surface on another 
by defining a correspondence between points on 
the two surfaces, so that to any figure drawn on 
the one surface, there corresponds a figure on the 
other surface. The conformal transformations be­
tween surfaces considered in the last chapter are 
a special class of such representation because they 
result in small corresponding: figures being similar. 
The idea of represe nting a curved surface on a 
plane, as another example, is common in the theory 
of map projections; but whereas few map projec­
tions can be constructed by means of geometrical 
projection, they can all be defined by setting up a 
correspondence of points on the Earth and on the 
map, so that there is one and only one point on the 
map corresponding to or representing a given point 
on the Earth. 

2. In this chapter, we shall consider the represen­
tation of a given surface on a sphere of unit radius, 
as first proposed by Gauss who defined the cor­
respondence of points by making the normals to 
the two surfaces parallel at corresponding: points. 
If the normals at two different points on the given 
surface are parallel and in the same sense, this 
means that both points would be represented by 
the same point on the sphere. To make the corre­
spondence unique, we shall exclude regions of the 
given surface containing such points. 

3. We shall assume that both surfaces are em­
bedded in the same flat space, which means that 
we can choose Cartesian space coordinates and 
can use the same Cartesian axes for both surfaces. 
In later applications, we shall find this important. 
Without any lo~s of generality, we can, moreover, 
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take the origin of Cartesian coordinates as the center 
of the sphere; in which case, the following: vector 
equation holds true in Cartesian coordinates be­
tween corresponding points on the two surfaces, 

11.01 

where v,. is the unit normal to the given surface and 
j/ is the position vector of the corresponding: point 
on the sphere. All quantities relating to the sphere 
will be denoted by overbars. We choose surface 
coordinates (x"') to be the same for both surfaces at 
corresponding points: for instance, the latitude and 
longitude will be the same in relation to the same 
Cartesian axes because the two normals are parallel. 
Moreover, because any surface coordinates must 
be some single-valued functions of latitude and 
longitude, we can take the surface coordinates to 
be the same for both surfaces without specifying: 
what they are. The ordinary derivatives of Equation 
11.01 with respect to a surface coordinate will 
the n be the same as the surface covariant derivative 
because the space coordinat es are Cartesian and 
the space Christoffel symbols are accordingly zero. 
The following equations therefore hold true in 
space Cartes ian coordinates, 

11.02 ,. _ - r - ~ r - - ,. 
Va - pa -Xa - Va, 

provided that both surfaces are referred to the same 
surface coordinates x"'. 

FUNDAMENTAL FORMS 
OF THE SURFACES 

4. The metric tensor on the sphere is accordingly 
obtained from Equation 6.06 as 

11.03 
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and the second and thi rd form s for the sphere are 
give n by Equa tions 6. 18 as 

11.04 

1 1.05 

From Equation 7.18, we find that the determinant 
of the metric tensor is given by 

1 1.06 

and thus from Equations 11.04 and 11.05, we have 

11.07 

5. The fac t that the third fundam ental form is the 
same for both surfaces is of considerable impor­
tance. For example, we have from Equation 6.17 
(Weingart en 's formula) , using Equation 8.09, 

v~=-afhbo:13x~=- bf3Yco:f3X~ 

and so 

11.08 bf3Yx~ = -cf3Yv~= bf3Yx~ 

in which, it must be repeated , the space coordinates 
are Cartesian and the surface coordinates are the 
same for both surfaces. This means that all compo­
nents of the tensor on the left are unaltered on 
spherical representa tion. 

CORRESPONDING SURFACE VECTORS 

6. Because the surface coordinate s are the same 
for the two surfaces, a difference in coordinates 
between corresponding point s will also be the same. 
T he element of length (ds) be tween the two points 
will not, however , be the same: but to a firs t order , 
we can connect two unit vectors (/ '\ [ o: ) as fo llows, 

11.09 

T he covariant component s will then be connected by 

1 1.10 lads= iio:13 L13ds = ca13 lf3ds. 

By multiplying Equations 11.09 and 11.10, con­
tracting, and using Equation 7.14, we have the 
square of the line ele ment as 

11.11 

where k and t are, respectively, the normal curva­
ture and geodes ic torsion of the given surface in 
t he direction l °'. The spherical representation is 
not therefore, in general, conformal because the 
scale factor (ds/ds) is not the same for all direc tions 
at a point. 
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7. If the scale factor (ds/ds) in the direction fa 
ism, then from Equation 11.09, we have 

11.12 

always assuming that the same coordinates are 
used for the surface and for the spherical 
representation. 
In regard to the covariant components, we have 
from Equations 11.10 and 7.14 

11.13 

Another formul a connecting covari ant components 
may be found as follows. From Equations 2.30, we 
have 

11.14 

with the contravariant form 

ll.14A 

If we multiply Equations 11.1 2 and 11.14 and use 
Equations 2.32, we have 

11.15 

in which j 13, ] 13 are unit vectors perpendicular to 
l °' , l o:, res pec tively. It should be noted, however. 

that }13 is no.t , in general. the spherical representa­
tion of j 13 because the representation is not conformal 
and a pair of perpendicular vectors will not neces­
sarily remain perpendicular in the s pherical 
represent ation. 

THE PRINCIPAL DIRECTIONS 

8. We s hall now conside r two directions at :; 
point given by two s mall differences in surfac 
coordinates dx°' and (dxf3). which , as before, wil 
be the same fo r both s urfaces. From Equation 7.2 
we have 

Ka o:f:Jdx°'(dxf3)- 2Hbo:f:Jdx°'(dxf3) + Caf:Jdx°'(dxf3) = 0. 

11.16 

If the two directions are orthogonal on the give 
s urface, the first te rm is zero: and if the two direc 
tions are to remain orthogonal in the spheri ca 
representation (iio:f:J = Co:f:J), then the third term mus 
a lso be zero. The re maining term is, in general 
zero onl y if 

bo:f:Jdx°'(dxf:1 ) = 0, 

in which case the orthogonal directions dx°' . (dxf3 
must al so be principal directions. On the s phere 
any pair of orthogonal directions can be considere 
principal directions; and we conclude that the prin 
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cipal direc tions (or lines of curvature) are, in gen­
eral, the only directions (or c urves) which re main 
orthogonal on s phe ri cal re present ation. 
Moreover, the normals at consecutive points on 
a line of curvature int ersect. and the plane con ­
tainin g the normals must be parallel to the corre­
sponding plane because the co nsecutive normals 
are parallel in the s pherical representation. Co n­
seque ntly, a princ ipal direction is parallel in s pace 
to it s s pherical representation. 

9. We could sati sfy Equation 7.20 without making 
dxa, ((fx/3) the principal direc tions if 2H were zero: 
In that case, the square of the scale fa ctor in a 
direc tion /a would be 

Caf31" / /3 =- Ka"13/"' //3 =- /\, 

whic h is the same fo r all directions a t a point, so 
that the s phe ri ca l re presentation wo uld be co n­
formal. But in thi s case, we are restri c ted to a specia l 
class of surfaces whose mean curvature H is zero. 
Such surfaces are known as minimal surfaces. 
They are of considerable import ance in the phys ics 
of soap bubbles and in the minima of double in­
tegrals, but do not appear to have any present 
application in geodesy. 

10. If the prin cipal directions of the give n s urface 
are ua, vf3 (the principal curvatures are K1 , K 2, re­
spectively), then t = 0 for these directions, and the 
scale fact or for the u"'-direction reduces to 

11.17 ds /ds = -v,J. 
We s hall conside r that correspo nding ele ment s of 
length are in the sa me sense so that the scale factor 
is essentia lly pos itive. Throughout thi s book, we 
shall be dealing with convex s urfaces whose radii 
of normal curvature run inw ard in the opposite 
sense to the outward-drawn norm al and will there­
fore be numerically negative when comput ed in 
accordance with the usual sign conventions from 
formulas given in this book. Conseq uently, we must 
take the negative square root in Equation 11.17 
and write 

11.18 d s/ds=- K1. 

The scale factor in the va·directi on will similarl y 
be - Kz. In thi s c ase . Equations 11.12 and 11.13 
reduce to 

11.19 

11.20 

306-692 0-69-6 

SCALE FACTOR AND DIRECTIONS 
REFERRED TO THE PRINCIPAL 
DIRECTIONS 
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11. If the unit surface vector /" makes an angle 
ljJ with the principa l direction u a, then an alternative 
ex press ion for the square of the "'ca le fa<"tor (111) 

in the direction/"' is from Equation 7.25 

111 2 = (ds /dsF = cu13 l" //3 = K~ cos 2 l/J + K ~ si n 2 ljJ. 

11.21 

Fro m this equation and from Equations 11.12 and 
11.19, we can obt ain express ions for~ , th e angle 
be twee n the s phe rical representation"' of f l•. u". 
as follows. 

cos~= f "'ua= - K11° LL a(ds /ds) 

11.22 
- Ki Cos ·l/J . 

and s imil arl y. we have 

. - - _ - K 2 s in ljJ 
11.23 smljl = / "'va= .. .. ... ., ., 

(K( cos- l/l+ K~ s in - l/J) I/_ 

from which 

11.24 tan ~ = (K"!./K 1) tan ljJ. 

The sense of ljJ is th at of a positive rotation from 
ll " to /" about the outward-dra wn normal. as s hown 
in figure 11. 

vr 

Figure l l. 

CHRISTOFFEL SYMBOLS 

12. We are no w able to derive an import ant 
for mula connec tin g th e surface C hris toffel symbols 
at corres ponding point s of the two surfaL'es. By 
ta king ordinary derivatives wi th res pect to a 
surface coordinat e x/3 of the Equation 11.02 and 
by rememberin1'!' that the s pace coordinat es are 
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Cartesian , we have 

11.25 

By surface covariant differentiation of the Wein­
garten formula (Equation 6.17), we have also 

11.26 

together with 

11.27 

in which we have used Equations 6.16, 11.04, and 
11.01. S ubstitution in Eq uation 11.25 gives 

11.28 

Contraction wi th g,.sx~ gives 

11.29 

Contraction wi th bEP and some rearrangement of 
indices give finally 

11.30 

The Christoffel symbo ls in the s pheri ca l representa ­
tion are usually very easy to evaluate in a given 
coordinate system, so that we have now a compact 
form ula for the Chri stoffel symbols nf any give n 
s urface, whic h we s ha ll ha ve frequent occasion 
to use. We note from Eq uat ion 11.04 that because 
batJ = - anf:J, we must have bntJfJ = 0, so tha t Equation 
11.30 red uces furth er to the stat ement that the 
quantities 
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11.31 

are unalt ered on spherical representation. 

REPRESENTATION OF A FAMILY 
OF SURFACES 

13. If we have a family of surfaces defined over 
a certain region of s pace , for example , by assigning 
different values to a scalar N which is co ns tant 
over each s urface as dis c ussed in §10- 19, then 
the s urface normals will also be defined over the 
region. In general, as we shall see in the next 
cha pt er, there will be a family of lines -to be 
known as the isozenithals-along any one of which 
the surface normals are parallel. Th e s pherical 
re present ation of an isozenithal is accordingly a 
point. We can , moreover , draw a figure on any one 
of the N-s urfaces and projec t it down the iso­
zenithals ont o the other surfaces of the family. 
The original fi gure and it s isozenithal projections 
will all have the same spherical representation. 
Moreover, any set of quantities, s uch as those in 
Equation 11.31 which have the sa me values at 
corres ponding points in the spherical representa­
tion , will also have the sam e value at isozenithally 
proj ected points . The ir differentials along the iso­
zenithals will be zero. 
We shall carry the question of spheri cal re presenta­
tion furth er in the next two chapt ers by using a 
special coordinate system, which , nevertheless , 
produces quit e general results. 
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CHAPTER 12 

The (w, cp, N) Coordinate System 

DEFINITIONS 

l. We shall now consider a speciaL but quit e 
general, coordinate system, ge nerat ed by a con­
tinuous differe ntiable scalar fun ction of position 
N in three-dimensional space,. Points having a 
particular value of N, for instance C, will lie on a 
surface N = C; for different values of C, we shall 
have a family of surfaces. We take N as one co­
~rdinat e of the system. But , if N is specified through­
out some region of space, then so is the magnitude 
(n) and direction (vr) of its gradient (Nr) because , 
!>Y definition, we have 

12.001 

The direction of v,. in relation to three fixed Car­
tesian axes in flat space will de fin e two independent 
scalars, which c an take the form of longitude (w) 
and latitCide (</>}. We s hall take these as the other 
two coordinates. Each of these scalars generates 
a fari1ily of surfaces distinct from the N-s urfaces 
and from one another. The position of a point in 
space can accordingly be defined as the intersection 
of three surfaces, one from each of the w, <f>, and 
N famili es over which each of the three coordinates 
has an assigned value, in mu ch the same way as 
the position of a point in Cartesian coordinates 
(a, b, c) can be defined as the int ersection of three 
planes x= a, y=b, z =c. In the more general case, 
'the coordinate surfaces are curved; each coordinate 
iine - that is, the line of inte rsection of two coordi-­
nate surfaces along which only the third coordinate 
varies - will also be curved. The three coordinate 
lines passing through a point will not, as a rule, be 
orthogonal, nor will they be parallel to the coordinate 
lines at any other point. 
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It will be assumed thro ughou t this chapt er that 
(w, </>) are the N-su rface coord inates as well as 
two of the s pace coordi nates so tha t, with the 
notation of Equation 6.02, we have 

In some cases, this leads to results which are 
c learly only tru e in thi s coordinate syste m because 
they relate only so me of the co mponen ts of tensors. 
In other cases, we s hall derive relations connec ting 
all the compone nt s of tensors. These will accord­
ingly be te nsor equations, true in any coordinates, 
which can be differenti ated covariantly and manipu­
lated generally as tensors even though they were 
derived in a special coord inate system. 

SIGN CONVENTIONS 

2. There is some advantage in making the (w , 
</> , N) sys tem right handed in the sense that (x, )', z) 
is conve ntionall y right handed , as discusse d in 
§1-22. If we look along the positive direction of 
an N-coordinate line, then the positive direction 
of the ¢-line is to the right of the positive dire ction 
of the w-line; a similar rule applies to the c yclic 
permutations (<f>Nw), (Nw<f>). A positive rotation 
about the N-coordinate line will be clockwis e wh en 
we look outward along the posi ti ve direction of the 
N-coordinate line. We could say therefore that the 
w-line can be rotated positively about the N-line 
toward the ¢-line . 

3. We shall later identify N with the gravitational 
pote ntial, or geopotential, or some standard pote n­
tial. The N-surfaces will be the level or equipotential 
s urfaces; the n will be the gravitional force g. 
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The positive direction of N, following the ordinary 
physical convention, will be toward the zenith even 
though thi s will make N negative in the geodetic 
applications. For Equation 12.001 to hold true- and 
in such applications as conformal transformation 
it is desirable that the equation should hold true 
in this positive form-we must also draw the positive 
direction of the normal to the N-surfaces toward 
the zenith; this accords with the usual mathematical 
convention of an outward-drawn normal to a closed 
surface. We have finally to make the (w, ¢, N) 
system right handed in that order; to do this , we 
must make longitude positive toward the east if 
we are to adopt the almost universal convention 
of making latitude positive toward the north. This 
accords with the European convention and with 
astronomical conventions for right ascension and 
local time (but not hour angle, which is reckoned 
positive toward the west). It also makes longitude 
a positive rotation in the mathematical sense about 
the northward axis of rotation of the Earth. It 
does not accord with geodetic practice in the United 
States where it is customary to make west longitudes 
positive, no doubt for reasons of historical develop­
ment, although some Agencies in the United States 
adopt the more usual eastward convention. On the 
whole, the balance of advantage seems to lie with 
positive longitudes east. Any country using the 
opposite convention has merely to change the sign 
of longitude, or difference in longitude, wherever 
it occurs in any formula in this book; the same 
applies to south latitudes. 

4. In the proposed convention, longitude will be 
the first coordinate, whereas the almost universal 
convention is to list latitude first. However, this 
should cause no confusion. We consider longitude 
to be the first coordinate in a right-handed system 
(w, ¢, N = l, 2, 3) in the derivation of mathematical 
formulas, but the results can, of course, be listed 
in any convenient order. 

5. A positive rotation about the zenithal direction 
(vr) in the mathematical sense will be from north 
to west, whereas the almost universal geodetic 
convention for azimuth (a) is from north to eas t. 
The only way of reconciling the two would be tn 
adopt an inward-drawn normal to the N-s urfaces; 
this could lead to serious confusion in cases where 
formulas are taken straight from standard mathe­
matical works. However, we can avoid confusion 
Ly giving azimuth it s own convention and by re­
membering that azimuth is a negative mathematical 
rotation in cases where it is derived that way. 
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6. In another geodetic application, we shall nee 
to identify N with "height." By universal conven 
tion, this is positive in the zenith direction; thi 
then agrees with the proposed convention for N 

7. The conventions which will be adopted through 
out this book are illustrated in the diagram (fig. 12); 

north 

east 

w positive 
>=:::::-------------(</>, N constant) 

Figure 12. 

the zenith direction (v,.) or the gradient of N is 
toward the reader. In an unsymmetrical field, the 
w- and ¢-coordinate lines will not run exactly to 
the east and north, but they will, nevertheless, run 
in those general directions. In the same way, the 
N-coordinate line- that is, the direction in which 
w, <P are constant-will not coincide. in general, 
with v,.. The other two vectors A,. , µ,,. on the diagram 
lie in the plane of the paper and will now be defined. 

THE BASE VECTORS 

8. Next , we set up three mutually orthogonal unit 
parallel vector fields A,., B,., C,. to serve as the axes 
of a right-handed Cartesian coordinate system 
(x, y, z). This assumes that we are working in flat 
three-dimensional space because such a coordinate 
system would not otherwise be possible. In Carte­
sian coordinates , the components of these vectors 
would be 

12.002 

A,. = (1. 0. O) 

B,. = (O, 1. 0) 

C,.= (0, 0, 1), 

but we shall often require their co mponents in 
other coordinate systems. The vectors are constant 



The (w , </J , N) Coordinate System 

in the sense tha t their Cart es ia n compone nts are 
the same th roughout the region uf space con sidered . 
Their compone nt s will nut he the sa me at all points 
in other coordinat e syste ms, but because they are 
paralle l at a ll point s , their covariant derivatives, 
from Equations 3.05 and 3.06, will be zero in all 
syste ms . We shall later ide nti fy these vectors 
physically- fo r example, in so me a pplications 
c1• will be paralle l to the ax is uf rota tion of th e 
Earth wi th it s positi ve direc tion toward th e north­
but for the present , th e vec tors simply provide a 
fix ed Cart esia n refere nce syste m. 

9. We a lso introduce a local syste m of mutuall y 
orthogonal unit vectors Ar, µ.'·, v 1

·, right handed in 
that order. As before, vr is the zenith di rec tion or 
the out ward-draw n unit norma l to the N-s urface 
passin g th ro ugh the point under consideration. We 
defin e µ./ as copla nar with vr a nd a paralle l to C 1

". 

and call it the direction of the meridian; the positive 
direction of µ/ will be roughl y in the direction of 
the ¢ -coordinate line, and because µ/ is perpendicu­
lar to v 1

·, it will be tange nti al to the N-surface . The 
vector Ar simply completes the orthogonal triad. It 
will also be an N -surface vector , roughly in the direc­
tion of the w-coordinate line, a nd will be called the 
parallel direction to accord as nearly as possible 
with ord in a ry geographical terms. It is easy to see 
that Ar will be paralle l to a plane cont ainin g A,. 
and B r because it is perpendicular to the plane of 
µ,'" and v 1

· , and is therefore perpendicular to er. 

10. Next, we defin e longitude (w) and latitude 
(</J ) in terms of the di rec tion cos ines of the unit 
normal vr by means of the fo llowi ng scalar p rod ucts, 

12.003 

12.004 

12.005 

cos <P cos w= v,.Ar 

cos <P s in w = v,.Br 

sin <P = v,.C 1
•• 

The arra ngement is illustrated by figure 13 in 
which the meridi an plan e is the p lane of the paper , 
excep t fur the vectors A r, Br. 

11. We de fine azimuth (a) as a rotation about 
v r from µ..'· toward Ar, as s hown in fi gure 12. A un it 
N-s urface vector fr in azimuth a is accordin gly 
given by 

12.006 fr= Ar sin a + µ,'· cos a. 

The use of the term azimuth s uggests th at the 
N-s urfaces are level in the geodetic se nse; in the 
main geode tic applications, th is wi ll be so. We do 
not yet , however, identify the N-surfaces wi th leve l 
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pr 

F igure 13. 

or equipote nti al surfaces; and in t his chapter. the 
term azimuth is to be unders tood in a wide r sense. 
With th e sa me object of avoiding multiplicatio n of 
terms and on th e same ana logy, we shall sometimes 
refer to th e directio n of the normal Vr as the zenith 
and to an angle measured fro m the zenith as a 
zen ith d istance. A uni t vector in azimuth a and 
ze nith distance f3 wi ll be given by the vector 
equa tion 

fr =\r sin a si n {3 + µ,i· cos a sin {3 +vr cos {3 , 

12 .007 

whi ch can eas ily be verifi ed from the direction 
cos in es of f r relative to th e (Ar, µ..'·, vr) axes. 

RELATIONS BETWEEN BASE 
VECTORS 

12. We can now express one set of vectors in 
terms of the others. through their direction cos ines. 
as fo llows, 

A,. = -Ar sin w + Br cos w 

JJ.- r= - Ar sin <P cos w-Br sin <P sin w+Cr cos <P 

Vr=Ar cos <P cos w+Br cos <P sin w+Cr sin¢. 

12.008 

In these vector equations. we can s imply raise all 
the indices to obtain the contravariant components. 

13. If we consider the Cartesian coordinat e x to 
be a scalar fu nction of position. then its gradient is 

x,.=A,., 
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a vector equation whic h is true in any coordinate 
syste m. We can solve the covariant form of the 
Equations 12.008 for A ,. , e tc . , and obtain the 
reverse formulas 

12.009 

x,.=Ar=- A.,. s in w - µ,,. si n <f> cos w 

+ v ,. cos </> cos w 

y,. = Br = A.,. cos w- /L r sin <f> sin w 

+ v,. cos <f> s in w 

z,. = C,. = µ,,. C4 >S <f> + vr s in <f>. 

14. To obtain C artesian coordinat es in the 
(A.,., µ,,. , vr) syste m , which we shall denot e by over­
bars (.i, etc.) from (A 1

·, B ,. , ci·) and vice versa, we 
need onl y contract wit h the position vec tor equation 

p,. = p,.- (po)r 

where (p0 ),. is the position vector of the (A.", µ, 1
·, v,.) 

origin . Thus, Equat ions 12.008 give 

12.010 

.r=- (x -xo ) s in w+ (y-yo) cos w 

_v=- (x-xo) sin <f> cos w 

- (y - yo ) sin <f> sin w+(z-zo) cos <f> 

z= (x - xo) cos </> cos w 

+ (y- Yo) cos <f> sin w + (z - zo) s in <f> , 

and Equations 12.009 give 

(x-x0 ) =-.X s in w-y s in <f> cos w + i cos</> cos w 

(y-yo) = .i cos w - y sin <f> sin w + i cos <f> sin w 

(z- zo) = y cos <f> + i sin <f>. 

12.011 

15. We may also note that the (A.,. , µ, ,., v") syste m 
can be obtained from the (Ar, B,. , Cr) syste m by the 
fo llowing rotat ions : 
Firs t , (t1T + w) about th e 3-axis C1" which brings Ar 
into parallelism with A.'"; a nd , 
Second, Um-</>) abo ut the new I-axis A,. which 
brings er into parallelis m with vr. Accordingly, we 
may s ubs titut e the fo llowing matrix equation for 
Equations 12.008, 

12.012 
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In this equation, as in Equations 12.008, we may 
s ubstitut e co mponents of the vectors in any one 
coordinate syste m. The same rotation matrices in 
the same order may be used on the position vectors 
to reproduce Equations 12.010. 
The inverse tran sformation equivalent to Equations 
12.009, which may also be used instead of Equations 
12.011 , is obtained by tran sposin g the orthogonal 
rotation matrices as follows, 

(
A,.) (-sin w 
B,. = cos w 

C,. O 

-cos w 0)(1 0 0 )("-,.) 
- sm w 0 0 sin </> - :os </> /Lr · 

0 1 0 COS </> S ll1 </> Vr 

12.013 

A very convenient , special notation for rotation 
matrices will oft en be found in the literature. A 
positive rotation of() about each coordinat e axis­
positive in the us ual mathe matical sense illustrated 
111 § 12- 2 and § 12- 5- is denoted by 

R,(O)~( 
1 

0 0 ) 0 cos () s in () 
0 - sin () cos () 

C°s e 0 ~s~n) 
R 2(8) = 0 1 

sin () 0 cos () 

cse sin () 0 ) R3( 8) = - s~n () cos () 0 
0 1 

Using braces notation {A,. , B,., C,.} for column 
matrices, Equation 12.012 would the n be written 

{A.,., µ,,. , v,.}=R1(t17-<f>)R3(t1T+w){Ar, Br , C,.}. 

12.012A 

In these formulas, the axes are rotated and points 
in the space are he ld fixed ; if the axes were fixed , 
the rotations would have opposite signs. To avoid 
any possible confusion, the few rotation matrices 
required in this book will be writt en in full. 

DERIVATIVES OF THE BASE 
VECTORS 

16. If we take the covariant derivative of the 
first equation of Equations 12.008 and re member 
that A,., B,., C,. are constant under covariant differ­
entiation, we have 

A. 1-.~ = (-A,. cos w- B,. sin w )w8 

12.014 =(/Lr sin </>- Vr cos <f> )ws 
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by subs tituting the other equations of Equations 
12.008; in the same way, we have 

12.015 

12.016 

/.Lrs = - sin </> ArWs - Vr</>s 

Vrs =COS </> ArWs + JLr<f>s· 

In these expressions , Ws , </>s are the gradients of the 
coordinates considered as scalars. They are not 
necessarily s urface vectors. But if we take (w, </>)to 
be the N-surface coordinates as well as two of the 
space coordinat es, then the (1, 2) component s 
Wa, </>a will be the s urface gradient s. In the (w, <f> , N) 
system, we have 

but if we do not make thi s s ubs titution , the n the 
above te nsor eq uations are true in any coordinate 
system. 

17. By covariant differe ntiation of the basic 
gradient equation 

we have 

12.017 N,.s = nsVr + n Vsr• 

But because N is a scalar , N,.s is a sym me trical 
tensor by Equation 3.11. Int e rchanging r, s and 
subtracting, we have 

12.018 

Multiplying by Vs and noting that Vs,.vs= 0 because 
Vs is a unit vector (Equation 3.19) , we have 

12.019 

But the vector n,. is expressible in te rms of three 
orthogonal vectors as 

nr= (nsA.s) A.,.+ (nsµ., s)µ.,r+ (nsV'~)v,. 

so that Equation 12.019 reduces, aft er division by n , 
to 

12.020 

· showing that the principal normals to the v,. are 
1 

N- surface vectors . We shall writ e the arc rate of 
change of (In n) in the parallel and meridian direc­
tion as y1 , Y2, respectiv ely, so that this last equation 
can be writt en as 

12.021 

· showing that the curvature of the normal is 
M + YD112 The principal normal to the curve is in 
azimuth arctan (yi/y2); the binormal, along whi ch n 

· is constant , is a surface vector in azimuth arct an 
(-y2/yi). 
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18. It s hould be not ed that A. ,.8 is a s pace tensor 
take n in relation to the space metri c. It will , never­
the less, have (1 , 2) co mpone nt s whi ch can be wri t te n 
as 

Again , if (w , </>) are s urface coordinat es, we know 
from Equation 8.25 that Aaf3 is a lso the correspond­
ing s urface tensor. We s hall see lat er that va= 0 
in (w, <f>, N) coordinates so that we have 

12.022 Aa(3 = JLaW{3 sin </>' 

wheth er 1t 1s conside red to be a surface tenso r or 
the (1, 2) components of a s pace tensor. 
In the same way, 

12.023 /.La{3 = - AaWf3 s in </> 

is either a surface tensor or the (1, 2) compone nt s 
of a space tensor in (w, <f>, N) coordinates, provided 
(w , </>) are taken as s urface coordinates. 

19. We can see from Equation 6.19 that the (1 , 2) 
components of the space tensor v,.s, again in the 
(w , <f> , N) system with (w , </>)as surface coordinates, 
are give n by 

12.024 Va13=-ba{3 

where ba13- the second fundam e ntal form of the 
surface -is a surface tensor. Here again, we could 
say that Vaf3 is a surface tensor because baf3 is a 
s urface tensor, and the Vaf3 are also the (1, 2) com­
ponent s of a space tensor. 
Equations 12.022 and 12.023 are, however , surface 
tensor equations, but Equation 12.024 is merely a 
relation expressing some compone nts of the space 
tensor Vrs· If we want to manipulat e Equation 12.024 
further, we should have to generali ze it first as 

CONTRAV ARIANT COMPONENTS 
OF THE BASE VECTORS 

20. If we differentiate the defining Equation 
12.005 covariantly and re me mber that Cr is a con­
s tant vector, we have 

(COS </> )</>s = VrsCr 

= Vrs( µ.,r cos </> + v" s in </> 

in the derivation of which we have used Equations 
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12.009 and 3.19, with vr a unit vector, so that finally 
we have 

12.025 

21. In the same way, by covariant differentiation 
of Equations 12.003 or 12.004, we have 

12.026 

by repeat in g Equation 12.001 to complete the series, 
we have also 

12.027 

22. In addition, we have already found in Equa­
tion 12.021 a formula for the vector curvat ure of the 
normal to any family of N-surfaces, 

VrsV8 = {(In n}si1.8 }Ar+ {(In v)sµ. 8 }µ.r 

12.028 = Y1Ar + Y2/Lr· 

23. Now, if (dA.) is an element of length in the 
A_r~direction , then the contravariant co mponent s of 
A_r in the (w , <fa, N) system are, by definition and by 
using Equations 12.026, 12.025, and 12.027, 

12.029 

A_r = (aw/a A. , a¢/a A. , aN/aA.) 

= (wsA8 , <fasA8 , Ns A8 ) 

=(sec <fa VrsA.rA_s, Vr 8 A8µ.r, 0) 

= (- k1 sec <fa, - t1, 0) 

where k 1 is, from Equation 7.03, the normal c urva­
ture of the N-surface in the direction of the parallel, 
and where t1 is, from Equation 7.08, the geodesic 
torsion of the N-surface in the same direction. 
(The geodesic torsion of the N-surface in the direc­
tion of the meridian is, of course, minus t1 .) 

24. In the same way, we have 

µ. ,. = (aw/aµ., a¢/a µ. , aN/aµ.) 

= (sec <fa VrsA,.µ.8 , VrsfL,.µ. 8
, 0) 

12.030 = (-t1 sec <fa, -k2, 0) 

where k2 is the normal curvature of the N-surface 
in the direction of the meridian. 

25. To comple te the triad , we need simil arly to 
evaluate the components of vr. Writing (ds) for an 
element of length in the direct ion of the norma l, we 
have from Eq uations 12.026, 12.025, 12.027, and 
12.021 

12.031 acp/as = v,.sµ. '"v8 = (ln n)sµ.8 =y'.! 

12.032 

12 .033 

cos <P aw/as = Vrs Arvs = (In n)sA8 = Yt 

aN/as = Nsv~ = II 

so that we have finally 

12.034 v 1·= (y1 sec <fa, y2, n). 
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26. W ithout any loss of generality, we can tak1 
(w , <fa ) as coordinates in the N-s urfaces as well a ~ 

two of th e space coordinates. We s hall as usual us1 
Greek indices restricted to the values (1, 2) fo 
surface vectors and tensors; it is then evident fron 
the definition that the components of A_u, µ.'", con 
sidered as surface vectors. are 

12.035 

12.036 

A.a= (-k1 sec <fa , -ti) 

µ. o: = (-ti sec <fa , -k'.!). 

27. Co llecting results for easier reference, we hav1 

A,. = (-k1 sec <fa. - ti , 0) 

µ.r = (-t 1 sec <fa. -k2. 0) 

12.037 vr = (y1 sec <fa , y2, n) , 

with the same (1, 2) components for the surfac1 
vectors A.a, µ.a in (w , <fa) coordinat es . 

28. All contravariant and, as we shall see, al 
covariant co mpone nt s of the base vectors ca1 
accordingly be written in terms of the five second 
order quantities k1, kz, t1, y1 , y2, which we shall cal 
the curvature parameters of the space or of the field 
We have seen in Equation 12.021 that y1 , y2 defirn 
the curvature of the normals: we shall see in th1 
section comm encing with § 12- 36 that k1• k2 • t 
completely define the curvature properties of th, 
N-s urfaces. 

COVARIANT COMPONENTS OF THE 
BASE VECTORS 

29. Next, we find the covariant components fro 
Equation 2.07 

A,.As + µ.rµ. s + VrVs = D~ 

in which 5.{ is the Kronecker de lta. 
For r= 3, we have at once 

II Vs= D~, 

which gives the co mponents of the normal as 

12.038 v8 = (0, 0. 1/11). 

30. For r= l . 2 : s = 1, we have the two equation 

- (ki sec cp)Ai - (ti sec <fa)µ.i = 1 

- t1A1 - k2µ.1 = 0: 

a nd writing K fo r (k1k2-(i), which we have seen i 
Equation 7.17 is the Gaussian or s pec ific curvatur 
of the N-s urface in flat s pace, we can solve these las 
equations to provide the I-component s as follow~ 

A., =- k2 cos <PIK 

µ.1 =+ t1 cos <PIK. 



The (w, <J>, N) Coordinate System 

31. In the same way for r= 1, 2 : s = 2. we have 
the e qua tions 

- (k1 sec </>) A.'l - (t1 scc </>)µ2 = 0 

- t1A.'2 - l.-2µ'2 = l. 

which ca n be so lve d for tli e 2-components 

A.2 =+ ti/ /\. 

µ '!.=- kif/\ . 

32. For r = 1. 2: s =3, we have 

-(k1 sec </>)A.:1 - (t, sec </>)µ:1+y1 sec <J> /n = O, 

- t1A.3- k2µ:1 + y2 /n = 0. 

from whi c h we have 

12.039 

l<A.3 = (/.-2y1 - t1y2)/n 

l\.µ3= (k1y2 - /1ytl / 11 ; 

or, substituting for y1 , y2 from E<Jua tion 12.021 , we 
have 

12.040 

f\ A:i = - ( 1/11 ) ·' ( k2 A8 - t 1 µ s) 

Kµ:i =- (l /n )s( - t1 A.5 + k1µ 5 ). 

Again, s ubs tituting the above values for A.1 , µi, 
etc., we have 

A:1 COS <J> = {l / n) s (A.1A.s+ µ1µ g+ v,v~ ) 

= (l/n) so~ 

and 

= a(l/n) /aw 

/1-3 = (l /n )s( A.2A.s + /l-'2 /1-'' + V2Vs) 

= (l/n)so~ 

=a (1/ n) /a<J>. 

33. Collecting results, we have 

12.041 K.A.,. =(- k.!. cos <J> , + 1,. I\ sec</> a(l/n)/aw) 

12.042 Kµ,. =(+ t1 cos <J>, - l.-1. K.a(l/n)/a<J>), 

with th e alternative expressions in Equations 
12.039 and 12.040 for the 3-components , and 

12.043 v,. = ( 0. 0. 1 I II ) . 

34. We can s imilarly find th e covariant co mpo­
nents Ao:, µ a, cons idered as surface vectors from th e 
two-dime ns ional formula 

and have finally 

12.044 

12.045 

KA.a= (-k2 cos</>. + t1) 

Kµ a= ( + tl cos</>, - ki). 
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wl1i<'h are th e sa me as tir e (l. 2) < · ompo1H·11t ~ of tlt e 
s pace vectors. 

3.5. The gradients of th e coordilla les can 110w Ii <' 
ex pressf' d in te rm s of t lr e hast' vec tors Ar, /1-r, Vr liy 
meCJns of th e followin g formula s . 

12.046 

12.047 

(cos </>)w ,.=-k1A.,.- t1µ,.+y1v,. 

<J>,.= - l1A.r - k2µ 1·+ Y2Vr , 

a nd we havf' a lso 

12.048 

because th ese gradient s are vec tor eq uations, no t 
m e re ly relations be twee n some components of 
vectors in a s pec ial coordin a te syste m , they are 
tru e in any coord ina tes -provided w, </> are con­
s ide re d to he sca lars. 

CURVATURES OF THE N-SURF ACES 

36. The three quantiti es /.- 1, 1.-'l. a nd tl -respec­
tiv e ly, the normal c urvatures of an /\I-s urface in th e 
direc tion of the paralle l a nd the meridian, and th e 
geodesic tors ion in th e direc tion of the parall e l­
e na bl e us to d e te rmine th e normal c urvature and 
geod esic tors ion in a n y azimuth (a). A unit s urface 
vec tor in thi s azimuth will he 

a unit vector in th e perpe ndi c ular direction. ob­
ta ine d by a positive ri ght -h a nded rotation of 113 about 
the normal, will be 

The normal c urvature i11 th e direction 113 • usi ng space 
coordinat es, will be 

k = -vrs l 1I~ 

= -v,.5 A.rA_s sin 2 a-2v,.5A.rµs sin a cos a 

- Vrs/1-r/l-s Co s 2 a 

= l.- 1 si n 2 a + 2t1 s in a cos a+k2 cos2 a: 

12.049 

th e geodesic torsion in the direction 113 wi ll he 

t =- Vrsf'j 5 

= VrsArAs s in a cos a -- VrsArµ s ( sin2 a - cos'!. a) 

- Vrs/l-r/1-s sin a COS a 

= (k2-k1) s in a cos a-t1(cos2 a-sin:? a). 

12.050 
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37. The geodesic torsion in a principal direction 
is ze ro so that the azimuth (A ) of the principal 
directions is given b y 

12.051 

38. The principal curvatures (K1 in azimuth A 
and K2 in azimuth (A - t 7T)) are then given by 
Equation 12.049 as 

K1 = k1 s in 2 A+ 2t1 sin A cus A+ k2 cos2 A 

K2= k1 cos2 A-2t1 s in A cos A+ k2 sin2 A 

12.052 

so that the mean curvature is 

12.053 

as we should expect , becau se it is the sam e fo r an y 
two perpendicul a r direc tions. 

39. We have also 

(Ki - K2) = U 2 - ki) cos 2A + 2t1 s in 2A 

= U.-2 - ki) sec 2A 

12.054 = 2t1 cusec 2A , 

usin g Equation 12.051. 

40. The Gauss ur s pecifi c curvature uf the surface 
is then 

12.055 

as we should ex pect from Equation 7.17. 

41. We can also recast Equation 12.049 to 
the normal curvature in any azimuth (a) as 

12.056 k = K1 cos2 (A- a) +K2 sin2 (A- a) 

a nd the geudes ic tors ion in azimuth (a) as 

12.057 

give 

By putting a = -!7T , o r ze ru , in these last two equa­
tions, we have also 

12.058 

k1 = K1 sin 2 A+ K2 cos2 A 

k2 = K1 cus2 A + K:! sin2 A 

t1 = (Ki - Kz) s in A cus A. 

showing that , instead of the three curvature param ­
ete rs k1, k2. ti , we could equally we ll use K1 , K:!. A. 

42. If k , t , a are the nurmal curvature, geodes ic 
torsion, and azimu!h in th e direction of a ge neral 
unit surface vector/" and if k*, - t. (a - }7T) refer 
tu a pe rpendic ular unit surface vectur j" , then frum 
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Equations 12.049 and 12.050. we have 

k = k1 s in2 a + 2t1 s in a cos a+ /..:2 cos2 a 

t = (k2 - ki) s in a cos a -ti( cos2 a-sin2 a) 

k* = k1 cos2 a - 2t1 sin a cus a+ f..·2 sin2 a. 

12.059 

From th ese equations and Equations 12.046 an 
12.04 7, if di. dj are elements of le ngth in the t\\ 
directions, we eas il y derive 

12.060 

(cos <fJ)iJw/<Jl=- k1 sin a- ti cos a 

=- k s in a+ t cos a 

<J¢/<Jl =- t1 sin a-k2 cos a 

= - k cos a - t sin a 

(cos </J)<Jw/iJj=k1 cos a-t1 s in a 

= k* cos a- t s in a 

<J<fJ/iJj = t1 cos a-k2 s in a 

= -k* sin a-t cos a , 

which ena ble us to rewrite Equations 12.046 an 
12.047 as 

( cos </J)w,.= (-k sin a+t cos a)lr 

12.061 

12.062 

+ (k * cos a- t sin a)j,. + Y1V1· 

<fJ,. = - (k cos a+ t sin a)/,. 

- (k* s in a+ t cos a)j,.+ y2v,.. 

GEODESIC CURVATURES 

43. Because the geudesic curvature of a surfac 
curve is intrin sic and does nut de pend un the su 
rounding s pace . we can use s urface cuordinat 
througliuut tu ex press it. We wis h to de te rmine t 
geodes ic curvature (CT) of an N-s urface curve 1 

azimuth a whose unit tangent vector is 

!µ= Aµ sin a + µµ cos a; 

and. we sha ll a lso require the geodes ic curvatu 
(CT *) uf the us ual orthugunal vector 

j µ= -A.µ cus a+µ µ sin a. 

We s hall ass ume as oft en befor e th at Iµ. jµ refer t 
a famil y of surface c urves and their urthogon· 
trajectories. 
By direct surface covariant diffe rentiation. we ha 

/µy= Aµy sin a+µ, µy cus a-jµa y 

12.063 

using Equations 12.022 and 12.023. Equating th 
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to the first equation of Equations 4.11, we find that 

12.064 

if the arc e lement in the direction /y 1s dl. thi s 
reduces to 

12.065 u= sin cp(aw/al) - (aa/al). 

44. For the parallel trace, that is. for a s urface 
curve whose ta ngent is throu ghout in the paralle l 
direction, we have a= h r and aa/al = O; while 
from Equation 12.029, we have aw/al = - k1 sec </> 
so that the geodesic curvature of the parallel trace 
is given by 

12.066 0"1 = - k1 tan </>. 

45. Similarly for th e me ridian trace, we have 
a= O and aa/al = 0: while from Equation 12.030, 
we have aw/al = - ti sec </> so that the geodesic 
curvature of the meridian trace is given by 

12.067 CT2 = - t1 tan </>. 

46. We can now express the geodes ic curvature 
of any s urface curve [Y in azimuth a in terms of 
0"1, u2 as 

u= (s in <f>)wy{/...Y s in a+ µ.,Y cos a)- (aa/al) 

=u1 sin a+u2 cos a- (aa/al) 

12.068 

in which di is the arc element in th e direction /Y. 

4 7. By equating Equation 12.065 or 12.068 to 
zero, we have the differential equation of the surface 
geodesics. It has usually bee n assumed in class ical 
geodesy tha t the form of the equation derived from 
Equation 12.065. that is, da= {sin <f>)dw , applies 
only to a surface of revolution: indeed , it has been 
stat ed that a reference s pheroid was originally 
chosen for thi s purpose. Neverth e less, the equation 
is true for the geodesics on any s urface. 

48. In particular, Equation 12.067 enables us to 
say that the meridian trace is a geodesic if. and only 
if, t 1 = 0, a nd thns is also a line of curvature; it 
wonld the n be also a plane c urve because its space 
torsion (Eqnation 7.08) would be zero. The s urface 
normals would also be plane c urves because they 
are coplanar with the meridian and th e fix ed Car· 
tesian axis Cr. Moreover, we can say by contracting 
Equations 12.046 and 12.047 that the meridian and 
paralle l traces are then </>· and w·conrdinate lines. 
Finally , w would not vary in the meridian plane. 
which co nt ains the normal; and so, from Equation 
12.032, we have y1=0. All these co nditions occur 
when the fi e ld is symmetric about a n axis paralle l 
to er. 
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49. Wr may not e now that the parallel trace is a 
plane c urve anyway , eve n if t1 is not ze ro; it s vec tor 
cmvature from Equation 12.014 is 

ArsA.S= (-A,. cos w-B,. s in w)wsA8 

= (k1 sec</>) (A,. cos w+ B,. sin w), 
its principal normal is accord ingly 

- (A,. cos w+B,. si n w), 

a nd it s binormal is C,. which is a co nstant vector. 
The angle 8 be tween the principal normal and th e 
s urface normal is given by Equations 12.009 as 

cos 8=- cos </> 
so th at we have 

8=rr-<J>. 

Finally. Equation 7.08 gives the s pace torsion as 

ti - (ao/at...) =ti + (a<J>/at...) = o, 
nsing Eqnation 12.029. Again , we have proved th at 
A,. is a plane cnrve. 

THE METRIC TENSOR 
50. We can now ob tain the covariant and con· 

t ravar iant component s of the metric tensor from 
the for mulas, Equations 2.08 and 2.09, as 

g,.s= A.,.A.s + f.L r f.Ls + v,.v.~ 
grs=A.rA.s+ µ.,'"µ.,"+ V,.V'~ . 

Co mpone nt s of the surface metric te nsor are 
simila rly given by Equations 2.34 and 2.35 as 

a af3 = AaAf3 + f.L af.L f3 

a a(3 = A a A_ f3 + µ., a µ., f3 . 

Using (w, </>) as both surface and space coord inates 
and substituting the vector co mponent s from 
Equation s 12.041. etc .. we have 

g 11 = a11 = (k~ + d) cos:! <J>/K 2 

ff, = - k2 a(l/n) +t1 cos</> a(l /n) 
c.1.i K aw K a<f> 

=- [yi(/d + ti)- 2Hy2t il/(nK 2 sec </>) 

ti sec</> a (l /11 ) k1 a (l /n) 
g:!:i= K a;;;-- K ~ 

= - [y2(kf + tf)-2Hy1t1] /nK 2 

er . . = s z </> (a(l/11))2 + (a(l /n))2 + _!_ 
c..l.I ~ eC aw a<1> 11 2 

= [yH/d + tD +yH/d + ti) 

-4Ht1Y1Y2 + K 2
]/ (n 2K 2

) 

12.069 = sec:! {3/n 2 
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in which f3 is the zenith dis tance of the isozenithal. 
In this last res ult , we have anticipated Equation 
12.098. 

51. The determinant s of the metric tenso rs by 
direct expansion are 

12.070 a =cos 2 <f> /K 2• 

52. Component s of the contravariant s pace 
me tric te nso r are 

12.071 

g 12 = (y1y2+ 2Ht1) sec </> 

g 22 = (k ~ +ti+yV 

g 13 = ny1 sec </> 

53. Cont ravariant co mponent s of the s urface 
me tric tensor are 

12.072 

a 11 = (ld+ tI) sec 2 </> 

a 12= 2Hti sec </> 

a 22 = (Id + t n . 
54. The de te rminant s of the associat ed te nsors 

a re 

12.073 

which are, as they should be , the reciprocals of 
the covariant determinant s. 

SECOND FUNDAl\IENTAL FORM 
OF THE N-SURF ACES 

55. By contracting Equation 12.016 with x~x& and 
using Equation 6.19, we have 

12.074 - ba{3 = ( COS </>) AaW[3 + JL a</>{3 

frnm which , assumin g as usual that w, </> are also 
surface coordinates, we have 

ba{3=- ( COS </>A.1 , /LI , /L2) 

12.075 = (k 2 cos 2 <f> /K , - t1 cos <f> /K , ki/K). 

56. The determinant of the form by direct cal­
culation is 

12.076 b =cos 2 </> /K 
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from which the contravariant form (from §8-1) is 

12.077 

57. We have already seen in Equation 12.024 that 

12.078 

in which it is understood that Vaf3 are components 
of the s pace tensor Vrs taken in relation to the 
space metric. 

58. By combining Equation 12.075 with Equations 
12.044 and 12.045, we can write 

12.079 

which are frequently useful relations: also. we have 

12.080 

59. Yet , another useful formula can be obtained 
by noting from Equation 12.016 that in these co­
ordinates we have v,.3 = 0. We then have from 
Equations 12.020 and 12.024 

12.081 

or 

12.082 

THIRD FUNDAMENTAL FORM 
OF THE N-SURF ACES 

60. There are several ways of computing the 
third form Caf3; perhaps the simplest being from 
the formula in Equation 7.20 

Caf3 = 2H baf3 - Kaa{3 

so that we have 

= cos 2 </> 

C12 =- (k1+k2)l1 cos <f> /K + 2Ht1 cos <J> /K 

= 0 

C22 = (k1 + k-i)k i/K - (Id+ tf)/K 

= l. 

and collec ting results we have 

12.083 Ca f3 = (cos 2 <f>, 0 , 1). 

The determinant is 

12.084 c= cos 2 <f>, 
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agreeing with Equations 7.18 and 12.076; the con­
travariant form is accordingly 

12.085 

It may be not ed that if we take the de terminant 
of the defining Equations 6.18, 

Caf3 = aYf3bo:Yb{3i'J, 

by the ordinary rule for multiplying de termina nt s, 
we have 

a relation which is accordingly true in an y coordi ­
nate syste m , as we may see also from Equation 
7.18. It can easily be verified from the (w , q, , N) 
values in Equations 12.070, 12.076, and 12.084. 

THE COORDINATE DIRECTIONS 

Longitude 

61. From the m etri c, an ele me nt of length in the 
w-coordinat e direction (d<f>, dN zero) is ~ dw. 
The contravariant component s of a unit vector in 
this direction are accordingly 

12.086 

i and it s azimuth O't will be give n by 

cos 0'1 = i"µ,,. = ti/ (Id + ti) t/2 

12.087 sin O't = i')..,. =- /.'2/ (/d + tf) t/2. 

62. Using Equations 12.058 in whic h A is the 
azimuth of the Ki-prin cipal direction , we find 
without diffic ult y that 

(k~ + m t/2 = (K~ s in2 A+ Ki cos 2 A ) 1/2 

= m2, for instance, 

so that we have 

12.088 

12.089 

cos O't = (Kt - K2) sin A cos A/m2 

sin a1 =- (K2 sin 2 A+ K1 cus 2 A ) / m2 

sin (A - O't) = Kt cos A/m2 

cos (A - at)=;- K2 sin A/m2. 

Latitude 

63. In the same way, the contravariant com­
ponents of a unit vector in the ¢-coordinate direc­
tion are 

12.090 

a nd its azimuth a 2 will be given b y 

cos a2 = p-µ, ,. = - kt! Ud + If) 11'2 

12.091 

Again , us ing E quations 12.058, we have 

U.-1 + t1) t/:! = (K1 s in 2 A + K ~ cos 2 A) 1!2 

12 .092 

12.093 

= mt . fo r instance, 

cos a2 = - (Kt s in2 A + K2 cus 2 A) /mt 

sin a2 = (Kt - Kz) si n A cos A/m1 

sm (A-a2) =- Kt s in A/m 1 

cos (A - a:d =- K2 cos A/mt . 
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64. Now cons ider the s phe ri cal re presentation 
of the N-s urface in whi ch the surface coordinates 
(w , <P) will be the same because the normals at 
corresponding point s are paralle l. It is evident 
that the ¢ -coordinat e line is re present ed by the 
s pherical meridi a n , whi ch is paralle l in space to 
the me ridi an direction µ r on the surface . We have 
also seen in C ha pter 11 that a principal d irection 
and it s s pherical re presenta tion are para lle l in 
s pace . Conseque ntly, the a ngle (A - a 2) on the 
surface corres ponds tu A on the sphe re: from 
E quation 11.24, we have 

tan A = (K2/Ki) ta n (A-a2), 

which verifies Equations 12.093. 

65. In the same way, the a ngle (A - ai) on the 
s urface corres ponds to (A - h r ) on the sphere so 
that we have 

- cot A = (K2/Ki) tan (A - at), 

which verifi es E quations 12.089. 

66. The fa ct that the (w, <P ) coordinate lines are 
re present ed by the s pherica l meridi ans a nd parallels 
again shows that the re present ation is not as a r ule 
conformal because the coordinate lines are not, 
in general , orthogonal. It is clear fro m Equations 
12.087 and 12.091 , or from a t2 in Equations 12.069, 
that the coordinate lines will be ort hogonal if, and 
only if, t1 = 0, corres ponding to the axially sym­
metrical case. 

67. The me tri c of the s phe ri cal representation 
in these coordinates will be 

12.094 

so that the scale fac tor (ds/ds ) in the d irect ion of 
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thew-coordinate line will be 

Y (cos:! <Pla11) = K/(q + ti) 112 = K / 111 2 

and in the direction of the ¢-coordinate line will be 

Y (l /ad = K/(kf+ti) 112 =K/m 1 

in whic h m1 , m2 have been defined in con nec tion 
with Equations 12.092 and 12.088. 

The Isozenithal 

68. A unit vector in the N-coordinate direc tion 
(w, <P cunstant) is si milarly given by 

12.095 k,. = (0. 0, l/~) , 

and it s azimuth (a) and zenith di stance (/3 ) will be 
give n by 

s in a s in {3 = k'"i1.,.= {sec <Pa ( l / n) /a w}/~ 

cos a sin {3 =k,.µ..,. = {a(l/n)fa<P}ly;;;; 

12.096 

ur 

12.097 

cos {3 = k'·v,. = (l /n) /y;;;; 

s in a t a n {3 =- (sec ¢)a(ln n) /aw 

cos a tan {3 =-a (ln n) /a<P. 

69. Because w a nd <P are cons tant along this line, 
it is evide nt from Equations 12.008 that the A,. at 
a ll points along the line are parallel; and so are the 
µ..,. and vr. The whole triad of vec tors can be trans­
ported paralle l to itself along the line, whic h we 
shall call the isozenithal because the zenith direc­
tion v,. is th e sa me at a ll points along any one such 
line. Anot her way of expressing the paralle l trans­
port of these vectors is to s tat e that there is no 
intrinsic c hange in their compone nt s along the line. 
or in tensor not a tion 

12.098 

These te nsor equations are , of course. true in any 
coordinates. 

LAPLACIANS OF THE COORDINATES 

70. For so me applications, we need formulas 
for the Laplacian of each coordinate. particularly 
that of N and it s derivatives. We s tart with the 
gradie nt equation 

,'V,.= nv,. 
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and differen tiat e it covaria ntly as 

12.099 N,.s= nsvr+ nvrs· 

The Laplacia n of N in space is the n 

and the las t term from Equation 7.19 1s equal I 

(- 2Hn) , so that we have finally 

12.100 !lN = an /as- 2Hn 

in whic h ds is an e le ment oflength along the norma 
This las t equa tion will be recognized as an exa• 
form of a for mula usually attributed to Bruns i 
applications where N is the geopo te ntial and n 

gravity, but we see that it is simply a geometric 
propert y of any family of surfaces. 

71. From Equations 12.025 and 12.026, togetht: 
with Equation 12.099, we have -without difficult y ­
the following generall y useful relations, 

12.101 

12.102 

12.103 

(COS <P) Ws = (1 / Tl )NrsAr 

<Ps =( 1/ n )N,.8µ,. 

differe ntiating the first covariantly , we have wit 
some substitution 

(cos <P) Wsr = (sin <P) Ws<P1 - (In n) 1 (cos <P) Ws 

+ (1/ n) N,.$1 /...,. + (s in <P) <Pswr 

- (ln n )s( cos <P)w, . 

We note that because N is a scalar in flat space. i 
third covariant derivative is symmetrical in any t 
indices so that we have 

f:.t'1Nrsr = (gs1N,,,),. = (flN),.. 

We also introduce the sy mbol \7 for a differe nti 
invaria nt from Equation 3.14, suc h that we ha 

\l( w, <P) =grsw,.<Ps; 

and finally ob tain 

(cos <P)llw =2 sin <P \l( w, <P) -2 cos <P \7 (w, In 

12.104 + (l / n) (llN),.f...'". 

72. In the sa me way. we have 

~<P =- 2\7(¢, In n) -sin <P cos <P \l(w) 

12.105 + (l/n) (!lN),.µ..'". 

These last two equations are of particular val 
in this form in applications whe re !lN is a const· 
because the last terms are the n ze ro. 
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73. Frum Equations 12.103 , 12.099, and 12.016, 
we have also 

~n = n{ cos 2 <P \7 (w) + \7 (¢)} + (~N),.1/. 

12.106 

74. We can eas il y find the \7 invariants from 
Equations 12.046, 12.04 7, and 12.048 in te rms of 
the fiv e parameters of the space, but firs t we need 
to find an alternative expression for the third 
component of (In n ),., taking acco unt of Equation 
12.100. We have 

12.107 {In n),.v,.= (l/n)an/a~=2H + (~N)/n 

so that Equation 12.048 becomes 

(ln n),.= y1A.,.+y2µ.,. + {2H+ (~N)/n}v,.. 

12.108 

We then have from Equations 12.046, etc., 

12.109 

12.110 \7 ( <P) = k~ + tj + y~ 

12.111 cos </> \7 (w, </>) = 2Ht1 + y1y2 

cos <P \7 (w, In n ) = -k1y1 - tt''/l. + 2Hy1 + ( y1~N)/ n 

12.112 =k2y1 -t1y2+ (y1~N)/n 

\7(¢ , Inn) = -t1y1 -k2y2+ 2Hy2+ (y2~N)/n 

12.113 

We have also 

12.114 

which is the sum of the squares of the principal 
curvatures of the N-s urface plus the square of the 
principal curvature of the normal. all at the point 
under consideration. An alternative expression for 
the Laplacian of n is accordingly 

(l/n)~n = 4H 2 -2K + (yf + y p 

12.115 + (l/n) (~N),.vr. 

75. All the previously mentioned formulas in 
this section refer to the space invariants. We can 
easily find the surface invariants of w and <P (de­
noted by overbars) from the (l, 2) component s of 

306-962 0-69-7 

Eq ua tions 12.026 and 12.025 

12.116 

12.117 

(COS </>) Wa = - Va13A.f3 

</>a= - Vaf3/.L f3, 
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whic h are surface tensor equations. By surface 
covariant differentiation of Equation 12.116, we 
have, using Equation 12.022 , 

(cos </>)way= (sin <f>)wa</>Y- Vaf3YAf3- ba/3/.L f3Wy sin <P 

so that we have 

( cos <f>)~w = (sin ¢)\7(w, <P) -a"'Y LJ a13YA/3 

+(sin ¢)\7(w, ¢) 

12.118 =2(sin ¢)\7(w, </>)- (2H) aAa 

with 

12.119 'V(w, ¢) =2Ht1 sec¢: 

similarly, we have 

12.120 ~<J>=- (sin <P cos ¢)\7(w) - (2H)aµ. a 

with 

12.121 

76. We cannot differentiate Equation 12.081, 

(In Tl) a= - ba13v 13 , 

in the same way because this equation is simply 
a relation involving selected components of the 
space vector vr in a special coordinat e system; it 
is not a surface tensor equation because ·v f3 is not 
a surface vector. 
We shall , how ever, find in Equation 14.28 an ex­
pression for the surface Laplacian of n , which can 
easily be put into the fo llowing form, comparable 
wi th Equation 12.115 , as 

(l/n)~n =(4H 2 -2K) + 2(yi + y D-a(2H)/as 

12 . 122 

in which s is again the arc length of the normal. 
It should be noted that thi s, unlike the s pace 
invaria nt , does not depend on ~N. 

77. The s urface Laplacian of N is, of course, 
zero because N is constant over the s urface. 

THE CHRISTOFFEL SYMBOLS 

78. We can comput e the Chri stoffel symbols 
·'st raight from the definitions and the components of 
the metric tensor or from transformation form ulas; 
but , because we know the co mponents of the base 
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vectors and have formulas for the covariant deriva­
tives of the coordinates, it is possible to take various 
shortcuts which are more instructive. 

79. For example, we can express the tensor Nrs as 

Nrs=-nsN1=-0s; 

by covariant differentiation of the gradient equation 

N,.= nv, .. 

we have 

12.123 N,.s = llsVr + 11 Vrs• 

We have also, from Equation 12.016, v,.3 = O; from 
Equation 12.024, we have Vaf:J=-baf:J· By simple 
substitution, we can then obtain all the distinct 
Christoffel symbols with superscript 3 as follows, 

12.124 

80. To evaluate the symbols which have a sub­
script 3 but no superscript 3, we shall make use of a 
device which is frequently useful in other directions . 
We can express a Christoffel symbol in terms of the 
components of any three mutually orthogonal 
vectors by means of the following formula, which 
can eas ily be verified by multiplying Aj, µj, Vj in turn, 

f {i = a Ak A._j + a µk j + a Vk vj 
ox1 ax1 µ ox1 

12.125 

If (A.,., µ,., v,.) have their usual significance rn this 
chapter and I= 3, then the whole term within 
parentheses vanishes because of Equations 12.014, 
12.015, and 12.016; thus we have 

fa = o Ak A a + aµ" " + av" v" 
k3 aN aN µ aN 

12.126 

the last line being obtained by differentiating the 
identity 

For k = f3 ( ~ 3) we have from Equations 12.079 
and 12.080 

12.127 
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We shall show in Equation 12.144 how this symbol 
can be expressed rn terms of n and N-surface 
tensors. 

81. For k=3, using Equations 12.041, etc., we 
have 

fa =- a2(l/n) b1a - a2(l/n) b2a - a(l/n) baf3(1 ) 
33 awaN a<{>aN aN n n f3, 

which simplifies without difficulty to 

12.128 fa = (1/ )baf3 °2

(1n n) · 
33 n axf3aN 

82. The remaining symbols are all of the form 

r oA.a oµa \ 
~{3= ()xf3 A.Y+ (Jxf3 µY-Aaf31\.Y-µaf3µY-vaf3VY 

on substituting Equations 12.022, 12.023, and 12.024. 
In evaluating this expression, we can make use oi 
the symmetry of the Christoffel symbol in the sub· 
scripts. For example, if either a or {3= 2, then WE 

can eliminate the whole of the third term by taking 
f3 = 2. The expressions on the right, obtained b) 
interchanging a and {3 , can be made identical b) 
using the Mainardi-Codazzi equations of the N 
surfaces, which we shall consider in the next 
section. 

83. We can apply the general formula of Equatior 
12.125 in two dimensions and write 

12.130 f CJA." CJµ,_, \ \ Y y =- A_Y+-- µY-l\. cr{31\.Y-µ,_,f3µ 
a{3 iJxf3 iJxf3 

in which the Christoff el symbol must now be take 
in relation lo the surface metric; Aaf3, µaf3 are su 
face tensors. By subtraction from Equation 12.12 
we have 

f'i:f3 (space) - f'i:f3 (surface) =- Vaf3V 

12.131 

because, as we have seen in Equations 12.022 an 
12.023, the tensors Aaf3 . µ af3 can be cons idered eithe 
as surface tensors or as components of space te 
sors in these coordinates. This last result is o 
frequent use. 

THE MAINARDI-CODAZZI EQUATION 

84. The two Mainardi-Codazzi equations of 
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surface may be considered as conditions of integra­
bility, or from § 6-27 as conditions for the surface 
to be e mbedded in flat space. In either case, use 
must be made of the fact that the Christoffel 
symbols are symmetrical in the two subscripts 
because this is a distinguishing mark of Riemannian 
geometry, arising from the nature of the metric 
tensor. 

85. If we are given a set of functions llo:f3, ba13, 
does a surface exist for which these functions are 
the appropriate fundamental forms? To prove that 
a surface does exist in the neighborhood of a point 
where the aa/3 and bo:/3 are given, we must be able to 
integrate the Weingarten and Gauss equations 
(Equations 6.17 and 6.16) 

v~·=- al3Yb"yx§ 

x:_:,13 = ba13Vr: 

it can be shown that the necessary conditions for 
this are the Mainardi-Codazzi equations. For our 
purposes, we shall always start with a family of 
surfaces-definable in nature over finite regions by 
other means-so that these equations may be 
considered as properties of the geometry or of the 
space. 

86. If we take the surface covariant derivative of a 
surface vector Aa, we have 

Aa13= dAa/dx13 -A.yf;i;13; 

then a necessary condition for the Christoffel 
symbol to be symmetrical in a, f3 is 

12. 132 Aa13 - A130: = dAo:/CJxf3-(JA.13/dx0
• 

For a given superscript, there is only one Christoffel 
symbol in two dimensions with dissimilar subscripts 

' and therefore only two such symbols in all. It will 
accordingly be sufficient to satisfy Equation 12.132 
for one other independent vector /l-a so that we have 

12 .133 

Both equations are satisfied identically unless a 
and /3 are different; so it will be sufficient to make 
a= 1, /3 = 2, and to substitute Equations 12.022 
and 12.023 to obtain 

-µ,2 sin <P=CJA.i/CJ<P-CJA.2/dw 

A.2 sin <P=CJµ,i/CJ<P-aµ,2/aw, 

which reduce on substitution of Equations 12.079 to 

db11 / a<J>- ab12! aw+ b11 tan <P + b22 sin <P cos <P = 0 

12.134 

12.135 abda<P-abdaw - b12 tan <P=O. 
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It should be noted that in deriving these formulas, 
we have used Equations 12.022 and 12.023. whic-h 
were themselves derived on the assumption that 
the space is flat through use of the Cartesian vec tors 
.4,., B,.. C, .. 
Equations 12.134 and 12.135 are the Mainardi­
Codazzi equations of the N-s urfaces in (w, </>. N) 
coordinates. They can be expressed in several oth e r 
equivalent forms, but for the present, we s hall be 
content with them as they s tand. 

87. If, instead of the s urface vectors A.,. , µ,,, we 
take the space Cartesian vectors A,., B,.. C,. whose 
cova riant derivatives are zero, then. so far as th e 
N-surfaces are cuncerned, we have to satisfy the 
following equations to ens ure that the appropriate 
Christoffel symbols are symmetrical. 

in which A1, etc., are components in (w, <J>, N). If 
we obtain Ai, etc., from Equations 12.009 by substi­
tuting the (w, <J>, N) components of Ar, etc., from 
Equation 12.041, then these conditions give exactly 
the same results as Equations 12.134 and 12.135 -no 
more and no less. Moreover, it is evident from Equa­
tions 12.009, etc., that the above conditions are 
equivalent to 

a2x a2x 

a<Paw awa<P • 

which are well-known integrability conditions for 
the existence of the Cartesian coordinates (x, y. z). 
This demonstration goes part of the way toward 
justifying the statement made in § 12-84 and § 6-27 
that the Mainardi-Codazzi equations are conditions 
for a given surface to be embedded in flat space. 
If the surface is embedded in curved space, the 
Mainardi-Cudazzi equations or integrability condi­
tions take the different form of Equation 6.22. 

88. We have so far considered only the N-surfaces, 
but there must similarly be two equations for each 
of the other coordinate surfaces. We need not, how­
ever, consider these surfaces specifically. We shall 
derive the same answer more easily if we form equa­
tions similar to Equation 12.132 for three indepe nd­
ent space vectors and if we substitute such relations 
as Equations 12.014, 12.015, and 12.016 which apply 
only in flat space. 

89. First, we consider the equation 

12.136 

and then substitute Equation 12.016 and the (w, </>. 
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N) compone nts of vr. For r= 1 , s = 2, the equation is 
satis fi ed identi cally. F or r= 1, s=3 and r = 2, s =3, 
we have 

A.3 cos <f> = a(l/n )/aw ; 

obtained before in Equations 12.041 and 12.042. 

90. The equation 

12 .137 A.rs - Asr = a A.r/axs - a A.s/a xr 

for r= 1, s= 2 gives Equa tion 12.134 , and for 
r= 1, s= 3 gives 

-µ,3 sin </>+ v3 cos <f>=<JA.i/aN -<JA.3/aw , 

which , on substitution of Equations 12.079, 12.042 , 
and 12.043 , reduces to 

abu 
aN 

12.138 

a2(1/n) +sin</> cos </> a (l/n) - cos:? </>. 
aw2 <J<f> n 

For r = 2, s=3, we have similarly 

or 

12.139 a2(1/n) 
awa<f> </>

a(l/n) 
tan - - -

aw ' 

both of which are new. 

91. The equation 

/1- rs - /1-sr =a f.1-r/d X8 
- df.1-s/a x r 

fo r r = 1, s = 2 gi ves Equation 12.135, and for 
r= 1, s =3 gives Equat ion 12.139. For r = 2, s=3, 
we have 

or 

12.140 

92. There are accordingly only three inde pendent 
Mainardi-Codazzi equations for the space in addi­
tion to the two for the N-surfaces - a total of fiv e 
out of a maximum of s ix. The coordinate syste m is , 
neve rtheless, perfec tly general , except that the 
N-surfaces are generat ed by a scalar, which means 
that the equation 

Nrs = nsVr + nvrs = nrVs + nVsr 

must appl y because Nrs is symmetri cal in r and s. 
This symmetrical rel~tion serves to satisfy Equation 
12.136. W e are not therefore missing one of the six 
equations ; we have already included it. 

93. Next , we shall put the Equations 12.138, 
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12.139, and 12.140 in tensor form. From Equation 
11.03, the metric of the s pherical re presentation of 
an N-surface in (w , </>) coordinates is 

12.141 

using Equation 12.083. It is easy to show by direct 
calculation from the definitions that the only non­
zero Christoffel symbols in this metric are 

12.142 fi 1 =sin </> cos </> ; q 2 =-tan <f>. 

By ins pection, we can now writ e the Equations 
12.138, 12.139, and 12.140 in the form 

12.143 

substituting Equation 11.30, we have 

12.144 dba.13 (1) (1) Ca.f3 --= - - +bY0ba./3o - --
<JN n a./3 n Y n 

in which the second covariant derivative of (l/n) 
is taken with respect to the metri c of the N-surf ace. 
Each term of the right-hand side of this equation is 
a surface tensor; therefore, the left-hand side must 
be a surface tensor. 

94. The foregoing analysis has been given in some 
detail because it is important to ensure that we have 
not overlooked an y essential relation in the differ­
ential geometry of the s pace , such as an omitte 
Mainardi-Codazzi equation. Moreover , we requir 
Equation 12.144 to show how the Chris toffel sym 
bols of Equation 12.127, 

ra. -bay ab13y 
133- aN' 

can be expressed in terms of n and surface tensors -
as in the case of all other Christoffel symbols wit 
a fixed 3-index. 

ALTERNATIVE DERIVATION OF THE 
MAINARDI-CODAZZI EQUATIONS 

95. In view of the fundamental importance of th 
three additional space equations in Equation 12.144 
we shall now approach them from a different direc 
tion and, at the same time, shall derive some gen 
erall y useful formulas. 
We take one particular N-surf ace and draw th 
tange nt plane at a point P (fig. 14). We drop 
perpendicular OQ on the tangent plane from th 
Cartesian origin 0, and denote the length of thi 

~ 

perpendicular by p. The vector OQ is according} 
of magnitude p and of direction vr, while the vecto -OP is the position vector pr. The coordinate 
(w, </> , p) may be known as tangential coordinates 
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· isozenithal 

Figure 14. 

We have at once 

12.145 

taking th e surface covariant derivative of this, we 
have also 

12.146 

the remaining term being zero because of the 
orthogonality of x~ and vr as space vectors. We 
have also used the fact that the tensor equation 
Prs = g,.s is true in Cartesian, and therefore in any 
coordinates. 
Again, taking the surface tensor derivative of 
Equation 12.146, we have 

=- b,,13 + p,.(bY0baf3oll'Y - c,,13vr) 

in which we have used Equations 11.26 and 8.10. 
With some slight rearrangement and use of Equa­
tions 12.146 and 12.145, we have 

b,,13 = - Pa/3 + bY0ba/3oPY - pc,,13 

a2p -=----+ fY py-pC (3 ax<>ax/3 a/3 a 12.147 

where we have used Equation 11.30; the (overbarred) 
Christoffel symbols of the spherical representation 
have values from Equations 12.142 in (w, </>) 
coordinates. 

96. Next , we differentiate this last expression 
along the isozenithal at P. The tangent plane moves 
parallel to itself because the direction of the normal 
is unaltered; for the same reason, the spherical 
representation remains unalte red. Consequently, 
the Christoffel symbols in Equation 12.147 remain 
constant , as is otherwise obvious from Equations 
12.142, because they are functions of</> only. Again , 
the c,,13 from Equation 12.083 are constant during 
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the differentiat ion. If the unit isuzenithal vector is 
k,. and if the displacement a long the isozenithal is 
ds, the n we have 

dN =N,.k,.ds = nv,.k,.ds= n cos f3 ds = ndp 

so that we may write 

12.148 

This result also could have bee n obtained from the 
third component of the space covariant derivative 
of Equation 12.145 in (w, </> , N). 
Ordinary partial differentiation of Equation 12.14 7 
.accordingly gives us 

12.149 a2
(1/n) + fY (!) _ Caf3, 

axxa:x!3 a/3 n 'Y n 

which is precisely the same as Equation 12.143 or 
12.144. In deriving this equation, we have made use 
of the properties of the Cartesian position vector 
and of the consta nt compone nt s of Cart es ia n vec tors 
during spherical representation. In other words, we 
have assumed that the space is flat , but have as­
sumed nothing else ; this again illustrates the two 
ways of considering the Mainardi-Codazzi equat ions. 

97. We can also show by ordinary partial differ­
entiation of Equation 12.147, with respect to surface 
coordinates, that we have 

12.150 

which on expansion is easily shown to be equivalent 
to the Codazzi equations of the N-surface in Equa­
tions 12.134 and 12.135. Accordingly, we can say 
that Equation 12.147 is an integral of all fiv e Codazzi 
equations, which are automatically satis fi ed every 
time we use Equation 12.147. A more co mpact form 
of Equation 12.147 is 

12.151 

in which the overbar indicat es that the second 
covariant derivative of pis taken with respect to the 
metric of the spherical re presentation of the 
N-surface. 

HIGHER DERIVATIVES OF THE 
BASE VECTORS 

98. Now that we have formulas for the Christoffe l 
symbols and for the Mainardi-Codazzi equations. 
we can without difficulty find expressions for the 
higher derivatives of the base vectors in these co­
ordinates. First , however , we shall collect some 
formulas for the first de rivatives. 

-
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From Equations 12.014, etc., we have at once 

12.152 A,.3 =./Lr:i = Vr:i = 0. 

The only nonzero components containing a 3-index 
are accordingly A.3a:, etc.; by ~ubstitution in Equa­
tions 12.014, 12.041, etc., we have at once 

12.153 A3a:= (sin¢ a(l/n)_ cos <P) ot 
a¢ Tl a 

12.154 a(l/n) 1 
/L:ia:=- tan <P -a- o~ -- o~ 

w n 

12.155 

99. The only other nonzero components have been 
obtained before in Equations 12.022, 12.023, and 
12.024, but are collected for easy reference as 
follows, 

12.156 

12.157 

12.158 

Aa:13= f.La:Wf3 sin ¢ 

/La:/3 = - Aa:Wf3 sin ¢ 

Va:13=-ba:/3· 

100. Components of the second covariant deriva­
tives may now be obtained straight from the defi­
nition. For example, we have 

Aa:/33 =a Aa:13/ aN - f ~3 A.,.13- f {33 Aa:r 

= (w13 sin ¢)(aµ,a:/aN)-f;foµ,yw 13 sin <P 

- f13J.La:WY sin ¢ 

in which the first two terms cancel because /La:3 = 0. 
In the same way, using the fact that the second and 
third indices are interchangeable in flat space, we 
have 

12.159 

Aa133= Au:i13=-(sin ¢)µ,ab 1Y(abf3YfaN) 

/Lo:/3:i= /Lo:3/3 =(sin </J)A.o:b1Y(abf3YfaN) 

Vuf33= Vo::i/3= abo:13/aN 

in which we can substitute Equation 12.143 or 
12.144 for ab13y/aN. 
In much the same way, we find 

Au:i3 =-n3AuY = /Lo:(l/n) tan¢ A.0 {a2(ln n)/ax0aN} 

/Lu:i3=-n3/LuY=- Ao:(l/n) tan¢ A.0 {cJ2(ln n)/ax0aN} 

l'o:33 =-n3Vo:Y = (l/n){a 2(ln n)/cJx°'dN}. 

12.160 

We can also find by direct covariant differentiation 
and by use of Equation 12.131 that 

I2.161 

other components can be found similarly when 
required. 

Mathematical Geodes) 

THE MARUSSI TENSOR 

101. It is now clear that the second and highe1 
order metrical properties of the system can be 
written in terms of the five curvature parameterE 
(k1. k2, ti, y1, y2) and their derivatives. But the en tin: 
system has been generated from a single scalar A 
whose covariant derivatives must be related to tht: 
curvature parameters. To show this, we have onl) 
to contract the tensor Equation 12.017, 

N,.s = TlsVr + TlVrs. 

with the base vectors t'o obtain 

12.162 

N,.sA"A.8 =- nk1 

Nrsf.L" µ,3 =- nk2 

N,.sJ...,.µ,3 =- nt1 

N,.sA.rvs = ny1 

Nrsf.LrV'5 = Tl Y2 

N,.8 vrvs = n(ln n )8 v8 

in which we have used only definitions and Equa· 
tion 12.028. Apart from the factor n , all the param 
eters on the right are accordingly the component~ 
of the symmetric tensor Nrs· This fact was firs1 
noticed by Marussi 1 in the case where N is a gravi 
tational potential as well as a generalized coordinate 

102. As we shall see later, the case of a Newtonia 
gravitational field simply involves assigning a 
ticular value to the Laplacian of N, 

!::.N = Nrs(A''A.8 + µ,rµ,s + vrvs) 

12.163 

par 

so that the law of gravity eliminates one of th 
components of N,.8 , leaving us with the other five 
In a local Cartesian system (x. y. z) with axes (A" 
µ,r, vr), we have 

NrsA.rA.s = a2N/ax2 

12.164 

The parameters are usually given in this par 
ticular form in the literature. except that the x-axL 
is sometimes µ,''. 

THE POSITION VECTOR 

103. We have seen in § 12-95 that the perpen 
dicular p from the Cartesian origin to the tangen 
plane of an N-surface is of special significance i1 

1 Marussi (1949), "Fondements de Geometrie Differentiell 
Absolue du Champ Potentiel Terrestre," Bulletin Ceodesiqu 
new series, no. 14. 411-439. 
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this coordinate system. Because p is th e scalar 
product of the position vector p,. and the unit nor­
mal v", the question naturally arises whether we can 
express the other components of the position vec tor 
in terms of p. We can express any vector in terms 
of the orthogonal triad A.,., µ.,,., v,., and so can writ e 

12.165 p,. = qA.,. + rµ.,,. + pv,. 

in which the scalars q, r have to be determined. 

104. In rectangular Cartesian coordinates, the 
components of p,. are (x , y, z): it is easy to verify 
from Equation 1.07 that in these coordinates 

12.166 

which is a tensor equation true in any coordinates. 
If we take the covariant deriva tive of Equation 
12.165 and substitute Equations 12.014, 12.015, and 
12.016, we have 

g,.s={qs- (r sin </>)ws+(p cos </>)ws} A.,. 

+ {r.. + (q sin </> )ws + p<f>,} µ.,,. 

+ {ps-(q cos </>)ws-r</>s}v,.: 

contracting this in turn with A", µ.," , v", we have the 
equivalent three vector equations 

12.167 

A.s=qs- (r sin </>)ws+ (p cos </>)W.1· 

fLs=rs+ (q sin </>)ws+P</>s 

105. Evaluation of the third of these equations in 
(w, <f>, N) coordinates gives at once 

dp/dw=q cos <P; dp/a<f>= r ; Clp/dN= l/n ; 

12 .168 

substitution of these values in the first two equations 
of Equations 12.167 , togeth er with the (w, <f>, N) 
components of As, fLs, enables us to recover Equation 
12.147 , which, as we have seen in§ 12-97, is an 
integral of the Codazzi equations. 
We can finally rewrite Equation 12.165 as 

12 .169 p,.= (sec</>) (ap/dw)A.,.+ (dp/a<f>)µ.,,. + pv,.. 

106. The same result co uld have been obtained 
from Equations 12.145 and 12.016, but it is of some 
interest to obtain the result by this alternative route, 
and at the same time to verify Equation 12.147. 

107. If the equations of one of the N-surfaces are 
given in the Gaussian form of Equation 6.03 as 

x" = x,.(w, </>) 

where the x,. are Cartesian space coordinates 
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(x, y, z), then we can eas ily find p and it s deriva tiv es 
from the formulas 

p = p,.,,,. = x cos </> cos cv + y cos </> sin w + z sin cf> 

12.170 

dp/a<f>=p,.µ.,'=-x sin</> cos w-y sin</> sin w+z eos </> 

12.171 

(sec </>)dp/flw=p,N·=-x sin w+ycos w 

12.172 

in which we have used Equations 12.008. 

108. Otherwise , if a surface is given in th e form 

12 .1 73 N=f(x, y. z) =constant , 

then by evaluating the gradient Equation 12.001 in 
Cartesian coordin ates. we have 

11 cos </> cos w = df/dx 

11 cos <f> s in w = df/ay 

12.174 11 sin <f>=df/dz 

with 

These eq uations are sufficient to express p and its 
derivatives in te rms of (x . y. z); toge ther with 
Equation 12.173. these equations may serve to ex­
press (x. y, z) in terms (w. </>), that is. to recast the 
equation of the surface into the Gaussian form. By 
substitution in Equations 12.170. etc., we have 

np =x (dfldx) + y(dfldy) 

+ z(dfldz) 

n ap {(af)2 
+ (df)2

}
1
1
2 

= (af) (z af _ x df) 
a<f> ax dy ax ax dz 

+ (df) (z df _ Y df) 
dy dy dz 

12.175 n( dp/aw) =-x(df/d_y) + y(df/ax ). 

It should be noted, however , that n in these equa­
tions refers to the family in Equation 12.173 for 
different values of N. There are other families to 
which a give n surface could belong. and the form 
of one given surface does n<it settle the va lue of n 
on th at surface. 

109. We have so far considered the position 
vectors of points in one particular N-surface. One 
of the basic operations of geodesy is, however, to 
det ermine the re lative posi tions of the two e nds of 
a line in s pace, which is equiva lent to finding a 
relation between the position vec tors at the two 
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ends. If one end of the line (of length s and unit 
tangent vector tr) is distinguished by overbars, 
then the equation 

12.176 

is true in Cartesian coordinates where it reduces to 
a Taylor expansion for each Cartesian coordinate. 
If pr is interpreted as drawn through the barred 
point parallel to its current direction and length so 
that its Cartesian components remain the same 
during the parallel transport, then Equation 12.176 
can be considered as an equation between vectors 
all at the barred point. It is accordingly true between 
such parallel vectors in any coordinates, provided, 
of course, that the Taylor expansion is valid. We 
may also lower the r-index by contracting with 
g,.1:, in which case p1: become the covariant com­
ponents of the parallel vector. 

110. If the line is straight, then Equation 12.176 
reduces to 

12.177 
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which is an elementary vector equation either be­
tween the Cartesian components or between the 
components in any coordinates of vectors drawn 
equal and parallel to pr, pr, /r through any point in 
space. 

111. The expression in Equation 12.169 of the 
position vector in terms of the base vectors is im­
portant because we are usually concerned with the 
terminal azimuths a and zenith distances f3 of the 
line. For example, if we contract Equation 12.177 
with lr and note that lr= 7,. for a straight line in Car­
tesian coordinates and in the invariant scalar 
products, we find that the length s is equal to the 
difference in the values of 

(sec <P )(o pf ow )sin a sin {3+(a p/o<P )cos a sin {3+ p cos f3 
.at the two ends. This depends on knowing the value 
of p and its derivatives for the two N-surfaces. The 
problem then arises how to transfer such functions 
from one N-surface to another, usually along the 
isozenithals. We shall see how to do this in later 
chapters, both in a general (w, ¢, N) system and in 
simpler coordinate systems which can be used to 
linearize the problem. 



CHAPTER 13 

Spherical Representation 
in (w, cp, N) 

GENERAL 

1. Some properties of the spherical representa­
tion of s urfaces, over and above those derived in 
Chapter 11 , can be obtained most simply in the 
special coordina te system of the las t cha pter ; we 
are now able to do this. 

CURVATURES AND AZIMUTHS 

2. W e have seen in § 11- 8 that a principal direc­
tion of the s urface is paralle l in s pace to it s s pheri cal 
image. The meridian planes at corres ponding points 
are parallel because they contain the paralle l nor ­
mals and parallels to the common C'"-axis. Accord­
ingly, the meridian direc tions at corres pondin g 
points are paralle l, and therefore the azimuth A of 
a principal direction is unaltered in the s pheri cal 
representation. 

3. If a , ii are, res pective ly, the azimuth of a line 
on the surface and the azimuth of the corres ponding, 
line on the sphere, and if l/J, ijj are the angles (in the 
sense of fi g. 11 , C hapter 11) between these corre­
sponding directions and the prin cipal direc tion 
whose azimuth is A , then we have 

13.01 (A-a) = l/J; (A -a)=ljj. 

4. The normal c urvature k in azimuth a is then 
from Equation 12.056 
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k =Ki cos ljJ sin (A - a) + K 2 sin ljJ sin (A - a) 
= - m cos ljj cos (A - a ) - m sin ljj sin (A - a) 
= -m cos (A - ii) cos (A-a ) 

-m sin (A-a) sin (A-a) 

= -m cos(a -ii) 

13.02 

in which m is the scale fac tor fo r the direc tion a, 
that is, (k2 + t 2 ) 112 from Equation 11.21 , and we have 
used Equations 11.22 and 11.23. 

5. S imilarly, from Equation 12.057, the geodesic 
torsion in azimuth a is 

13.03 t =- m s in (a-ii), 

which s hows that the two azimuths a re the same 
only if the direction considered is a principal 
direc tion. 

6. Direct expressions for the azimuths are easily 
obtained from the las t two equations as 

m cos a=-k cos a -t sin a 

=-kt cos a -ti sin a 

13.04 = iJ<f>/iJs, 

in the second line of which we have used Equations 
12.060 while ds is the arc eleme nt in azimuth a: 
similarly, we have 

13.05 

m sin a= - k s in a + t cos a 

=-k1 sin a -ti cos a 

=(cos </>)iJw/ as . 
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These equations give us the spherical azimuth and 
scale factor in term s of the three curvature param­
eters k1, k2 , t1 of the surface. 

7. For the ¢-coordinate direc tion , we have 
a= a2 and a= O so that Equation 13.05 gives 

13.06 tan a2=-tifk1=t/k, 

agreeing with Equations 12.091, which , substi­
tuted in the Equations 13.02 and 13.03 , give 

13.07 

k=Kki/( ki +tD 

t=-Ktd (ki+ ti) 

m=K/( k~+ ti) 1 !2 . 

8. For the w-coordinate direct ion , we have 
a= a 1 and a= -}rr so that Equation 13.04 gives 

13.08 tan a1 =-k2/t 1 =-k/t, 

agreeing with Equations 12.087 , which , substituted 
in the Equations 13.02 and 13.03, give 

k= Kk2/ (k~ +ti) 

t=Ktd ( k~+ti) 

13.09 m = K/(k~ + ti)1!2 • 

GEODESIC CURVATURES 

9. T he geodesic curvature of a surface c urve 
whose unit tangent is /a is derived fro m Equation 
12.065 as 

er = (w13 sin <1>-a13) l13 : 

for the corresponding curve in the spherical repre­
sentation, (w, </> ) remaining the same, we have 

ii = (w13 sin <1>-a13) f13 . 

But if m is the scale facto r in the direc tion fa. that 
is. (k2+t2

) 112 , we have from Equation 11.12 

ff3 = mff3 

and fi nally 

mii-er= (a-iX.)13113 

13.10 =("2
) a(t/k ) 

m2 al 

in which di is an ele ment of length in the direction 
/a. The last line in this equat ion is obt ained by differ­
entiation of 

t an (a-a)= t/k 

from Equations 13.02 an<l 13.03. 
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10. We see at once that a geodesic of the surface 
(er = 0) cannot corres pond to a great circle (ii= 0) 
unless (t/ k) is constant along the curve. This 
would usually imply that t = 0 so that the curve 
would also have to be a line of curvature. Even in 
the symmetrical case when the meridian geodesics 
are lines of curvature, they would , in general, be 
the only geodesics to correspond with great circles. 

11. If we multiply Equation 13.10 by the element 
of length ds = (l/m)ds of a closed continuous contour 
and then int egrate Equation 13.10 around corre­
sponding contours , we have 

L a-ds-L erds= 0 

because the total change in azimuth around each 
contour is 27r. We conclude from Equation 10.47 that 

Is KdS 

is the same over corres ponding areas: we shall see 
in Equation 13.14 that thi s is true. 

12. Equation 13.10 reduces in the case of the lines 
of curvature (t = O) to 

er = mu. 

If as usual the lines of curvature are 

ll a ' er'' K1 ' A 

then we have 

13 . 11 I - I er = Kl er 

COVARIANT DERIVATIVES 

13. We suppose as usual that la are the unit 
tangent s to a family of surface c urves and that ja are 
tangential to their orthogonal trajectories. This 
involves no loss of generality in dealing with one 
particular curve because an y given curve can be 
considered a member of some family. For example, 
it is well known that any surface c urve can generate 
a famil y of geodesic parallels. in which case the 
ja wo uld be t angenti al to a fa mil y of geodesics. 
F rom Equation 12.063. we have 

l a/3 = i ,(w13 s in </> - a13) 

and the corres ponding equation 

laf3 = J;, ( Wf3 sin </> - 0-13) 

in which Jo is perpendicular to fa on the sphere, but 
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does not necessarily corres pond to ja. Nevertheless. 
from Equation 11.15 , we have 

jn= (m //\).}a ; 

the required relation follows at once as 

(m//\). l u13= lu13+ ja(a- a)13 

. ( k2 
) d(t I k) 

= I a/3 + Ja --:; -a 13 • m- x 13.12 

14. If F is a scalar defined over a region of the 
surface, it must be some function of (w, </>) and can 
be regarded as having the same value at the corre­
sponding point on the sphere. For its second co­
variant derivative , we have 

and 

- a2F -
F a13= CJx"CJx13 -fX13Fy. 

Using Equation 11.30, we then have 

13.13 

EXPANSION IN SPHERICAL 
HARMONICS 

15. If K is the Gaussian curvature of an N-surface 
and if dS is an element of area of the surface, then 
in (w, </>) coordinat es, we have 

13.14 KdS=KVa dwd<f>=(cos <f>)dwd<f>=dS, 

using Equations 9.01 and 12.070 and writing 
dS for the corresponding element of area in the 
spherical representation. If we integrat e ove r a 
closed area of the surface, then 

LKdS 

is evidently the total corresponding area on the unit 
sphere, or is the solid angle enclosed by parallels to 
the surface normals around the boundary. 

16. If F is a scalar defined over an N-surface as 
a function of (w , </>), it can be considered as having 
the same value at corresponding points of the 
spherical representation where (w, </>) are the same. 
It can accordingly be expanded in spherical har­
monics u11 of (w, </>) as 

13.15 
1 in which the coefficients an are constant over the 
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sphere or over the N-surface. Moreover, since all 
points on the same isozenithal will have the same 
spherical representation and the same (w. </>), F can 
be a scalar defined over some region of space, in 
which case the a" will be functions of N at most, 
always assuming that the resulting series is 
convergent. 

17. We can also write 

13.16 

in which case the coefficients b11 for a particular 
N-surface can be obtained in the usual way by 
integrating over that surface and by using Equation 
13.14. All the operations of spherical harmonic 
analysis, usually carried out in spherical polar co­
ordinates over a sphere, can be generalized in this 
way for a family of N-surfaces. Ordinary spherical 
harmonic analysis is, in fact, a particular case (K = 1) 
of this generalization. 

DOUBLE SPHERICAL 
REPRESENTATION 

18. We shall now consider the case of two sur­
faces having a common spherical representation, 
which implies that the surface normals are parallel 
at corresponding points on the two surfaces. This 
definition would enable us to represent one surface 
directly on the other without a spherical inter­
mediary; but if we retain the conception of a common 
spherical representation, we shall be able to use all 
the spherical results without having to rederive the 
geomet ry again. As in ordinary spherical represen­
tation, we use the same surface coordinates and the 
same Cartesian space system. 

19. As an illustration, suppose we draw a figure 
on one of the N-surfaces of a (w, <f>, N) system and 
then project it down the isozenithals to another N­
surface of the same family. The two figures will 
clearly have a common spherical representation, 
and are accordingly in this form of correspondence. 
We shall call this process isozenithal projection. 

20. In the more general case, not restricted to 
two surfaces of the same family, we denote quan­
tities related to the second surface with a star. 
and can then write equations corresponding io 
Equations 13.04 and 13.05 as 

13.17 

13.18 

m* cos ii=-k~ cos a*- ti sin a * 

m* sin ii=-ki sin a*- tt cos a * 

in which the same spherical azimuth ii is retained 
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for the common corresponding direction on the 
sphere. Division of these equations into Equations 
13.04 and 13.05 then gives 

m kz cos a+t1 sin a 
m* kt, cos a*+ tf sin a* 

k1 sin a+ t1 cos a 
kt sin a*+ tf cos a* 

13.19 

in which m/m* is the scale factor multiplying an 
element of length on the unstarred surface to 
obtain the corresponding length on the starred 
surface. Solution of these equations gives us 

13.20 

13.21 

where 

13.22 

a+b tan a* 
tan a=-----­

c+dtana* 

tan a*= 

a = (kztf- t1H) 

c-= (t1tf-k1M) 

a+ c tan a 
b+d tan a 

b = (kzkf- t1tf) 

d= (t1kt-k1tf) 

ad-bc=KK*. 

It is easy to verify from Equations 13.06 and 13.08 
that the coordinate directions satisfy these formulas, 
and so are corresponding directions. 

21. The unstarred surface will often be a refer­
ence surface which can be taken as symmetrical 
about the Cartesian z-axis, in which case t1 = 0 
and the remaining curvature parameters become 
the principal curvatures K1, Kz. In that case, we 
have 
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13.23 
Ki tf +kt tan a* 
- tan a 
Kz kt.+ tf tan a*' 

which is a simple generalization of the formula 
for the spherical azimuth a, obtainable directly 
from Equations 13.04 and 13.05 as 

13.24 tan a tf +kt tan a* 
kt,+ tf tan a* 

22. It should be noted that the functions a, b, c, d 
are the same for all directions at a point, but vary 
from point to point. Without a knowledge of the 
curvature parameters, either by calculation on a 
given surface or by measurement, the transforma­
tion cannot be effected. Once we have calculated 
the corresponding azimuth a*, the scale factor 
follows from Equation 13.19, with the following 
alternative formulas connecting the scale factor 
and corresponding azimuths, 

13.25 

(m/m*)K* sin a*=-(a cos a+csin a) 

(m/m*)K* cos a*= (b cos a+ d sin a) 

(m*/m)K sin a= (a cos a*+ b sin a*) 

(m*/m)K cos a=-(ccos a*+dsina*). 

23. All the spherical formulas in Chapter 11, 
which depend on the scale factor or on direction, 
can now easily be modified for the more general 
case. Tensor point functions, such as Equations 
11.08 and 11.31 which are unaltered on spherical 
representation, will also have the same value on a 
more general surface, provided, of course, that the 
metric of that surface is used in (w, cp) coordinates. 



CHAPTER 14 

lsozenithal Differentiation 

DEFINITION 

1. Chapters 11 and 13 dealt only with integral 
relationships between two surfaces having a com­
mon spherical representation. In the case of iso­
zenithal projection of N-surfaces, this meant that 
the two N-surfaces could be separated by any finite 
distance measured along the isozenithals. For 
example, the scale factor multiplying an element 
of length on the unstarred surface would be 

( 
k2+t2 )1/2 

k*2+t*2 ' 

whatever the separation of the two surfaces. How­
ever, such formulas are not often of much practical 
use because we do not know the c urvature param­
eters of both surfaces. We may know the curvature 
parameters on one surface and may have to derive 
them on another by means of a Taylor series; the 
same applies to any other metrical quantities de­
fined o~ measured on one of the s urfaces. For this 
purpose, we need to know the derivatives of these 
quantities along the isozenithals -or what amounts 
to the same thing, their ordinary partial derivatives 
with respect to N -because the other two coordi­
nates (w, </>) will be constant during the change. 

2. In this chapter, we shall obtain such deriva­
tives for most of the metrical quantities of the 
surfaces. The geodetic applications, such as projec­
tion from points on the topographic surface to the 
geoid, are not likely to be carried over considerable 
distances along the isozenithals; for this reason , 
we shall find first derivatives only. Higher deriva­
tives could be obtained in much the same way, 
but would naturally be far more complicated. 
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3. Any quant1t1es in the common s phe ri cal 
re presentation of the N-surfaces would, of course, 
be unchanged during the process, and their iso­
zenithal derivatives are accordingly zero. For 
example, we have at once, from the definition of 
the representation or from Equation 11.01, 

a (v,.)JaN= o, 
provided the space coordinat es are Cartesian. 

DIFFERENTIATION OF THE 
FUNDAMENTAL FORMS 

4. We have already seen in Equations 12.143 and 
12.144 that three of the five Mainardi-Codazzi 
equations of a system of N-s urfaces can be written 
in the form of isozenithal derivatives of the second 
fundamental form 

14.01 

obafj 

aN 

=-(l) + bYfibafjo (l) - Caf3 
11 a(3 ll y 11 

in which the overbarred Christoffel symbols are 
taken in the metric of the sphe rical representation; 
the only nonzero values from Equations 12.142 are 

14.02 I\= sin <P cos <P ; 

We shall find that the isozenithal derivatives of most 
other metric quantities can be expressed in te rms of 
oba13/aN, and thus stem from the Codazzi equations. 

5. We begin with the me tric tensor of an N-surface 
whose components are seen from Equations 12.069 
to be the same as the (1 , 2) component s of the space 
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metric tensor in (w, <f>, N) coordinates where the 
surface coordinates are (w, ¢).We then have 

daa13/CJN = dga13/CJN 

= ga/33 +f~3g;.13+ f E3 gar· 

Because all components of the covariant derivative 
of the metric tensor are zero and because f~3 
1s zero in these coordinates, this reduces to 

aaa13/aN= f~3 a13y+ fJ3 aa'Y 

14.03 = bY0a13y(d bas/aN) + bY0aaY(ab13s/aN), 

using Equation 12.127. 

6. From the ordinary expression for the derivative 
of a determinant, we have also 

a (ln a) /aN = aal3 ( aaa13/aN) 

= 2bai3 (<Jb a13/CJN) 

= 2a (ln b )/aN. 

But the specific curvature of the N-s urface from 
Equation 7.18 is 

K=b/a; 

substituting the logarithmic differential of this, we 
have finally 

14.04 a(ln a)/aN = 2a(ln b)/aN =- 2a(ln K)/aN. 

We can verify this result by noting from Equation 
12.070 that 

Kb= K2a = cos 2 ¢, 

which is constant along an isozenithal. 
As in Equation 9.01, an element of surface area is 

dS=~ dwd<f>; 

because the coordinates w, <P are constant along the 
isozenithals, we have 

14.05 
a ( dS) _ 

aN 

using Equation 14.04. 

a (ln K) IS 
aN ( ' 

This shows that l~dS is constant under isozenithal 
differentiation, as we should expect from § 13-15. 

7. By differentiating the identit y 

aaea._.,13 = oJ' 
we find without difficulty that 

aaaH/aN = - aay al36a aw,/aN 

14.06 

and, to complete the picture in regard to the 
second fundamental form, we have 

14.07 
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8. The third fundamental form is easy because 
all it s components are, at most. functions of latitude 
only, and are constant along the isozenithals so that 
we have 

14.08 dCaf3 = O = (Jcai3 . 
aN aN 

9. We shall also require derivatives of the surface 
permutation symbols 

Using Equation 14.04, we have at once 

14.09 

14.10 

dEa13/aN =- Ea{3iJ (ln K) /aN 

CJEal3/aN=+ Eal3a(ln K) /aN. 

10. Note that KEa/3 and Eal3/f( behave as constants 
uncle~ isozenithal differentiation: because the 
specific curvature of a sphere is unity, the fo llow­
ing relations hold true in spherical representation, 

14.11 

where the overbars refer to the metric of the sphere. 

DIFFERENTIATION OF SURFACE 
CHRISTOFFEL SYMBOLS 

11. If we are working in flat space, the most 
direct way of obtaining derivatives of the Christoffel 
symbols is to equate to zero certain components 
of the Riemann-Christoffel space tensor. We have, 
for instance, 

14.12 a ra _j_ ra - [111 ra + f<T ra aN /3'Y-(JxY /33 /3Y 1113 133 <TY 

where we have dropped from the summation those 
symbols which are zero in (w, ¢, N) coordinates. 
All the symbols in this expression are space sym­
bols; we need to replace those containing only 
Greek indices Ly surface symbols, denoted by an 
overbar, from the relation in Equation 12.131 so that 

we have 

14.13 

To differentiate this expression, we use 

a (va)/aN= v~ -n3vr 

because vff = 0. Using Equations 12.124 and 12.127, 
we have 

From this equation and Equations 14.13 and 14.12, 
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we then have 

But we have already seen from Equations 12.127 
and 12.144 that f$3 is a surface. tensor, and the 
right-hand side of this last equation is its surface 
covariant derivative with respect to xY. We may 
accordingly write the last equation as 

14.14 

12. This remarkable result shows that although 
the surface Chrfstoffel symbols are not themselves 
surface tensors, their isozenithal derivatives are 
surface tensors. In the final result, we have dropped 
the overbar because there is no longer any confusion 
with the corresponding space symbols, but we must 
remember that we are differentiating the surface 
symbol in Equation 14.14. 
It is evident that Equation 14.14 is symmetrical in 
(/3 , y) so that we have 

14.15 (f~3}y=(fy3)13. 

DIFFERENTIATION OF b afly 

13. We interpolate now, because it follows directly 
from the last section, a result which will be requir~d 
later. We have seen in Equation 11.31 that the 
quantities 

r~y + ba8b13Ys 

have the same values at corresponding points on a 
surface and in its spherical representation, which 
imply that this expression is constant under iso­
zenithal differentiation. Using Equations 14.14 
and 14.07, we have 

- b13sY (a bas )- bas (abas) 
aN aN y 

-b bapb8a abpa +ball iJb13Y8 = 0 
13Ys aN aN · 

The third term is 

ab8'T aba.8 
+ b1mbaPbpa aN = b1m aN , 

which cancels with the first term because brns is 
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symmetrical in any twu indices; we have finally, 
with some rearrangement of indices, 

14.16 dba(3Y _ (abi>a) 
aN - ba,,b13" aN y 

in which the final index denotes surface covariant 
differentiation. 

DIFFERENTIATION OF VECTORS 
DEFINED IN SPACE 

14. We take a unit surface vector fr in azimuth a 
which is defined in sµace, such as the meridian 
direction or a principal direction of the N-surface 
through the point under consideration. The usual 
perpendicular surface vector j" in azimuth (a-trr) 

is defined as perpendicular to Jr, and must therefore 
remain perpendicular to /r after differentiation. 
Because the space vector equations 

/,. = A.,. sin a+µ,,. cos a 

jr=- A..r cos a+ µ,r sin a 

are to remain true after the process. we may differ­
e ntiate them covariantly along the isozenithal, that 
is, with respect to N. Remembering from Equation 
12.098 that Ar3 = µ,r3 = 0, we then have 

lr3 =- jr(aa/aN) 

14.17 j,.3 = lr(da/aN) 

with similar contravariant equations. The change in 
azimuth in these equations refers to changes in the 
vectors as defined in space; it does not refer to the 
change of direction which would be obtained by 
projecting the two ends of the vector down the isu­
zenithals. We shall consider this case in § 14-25. 

15. We could expand Equations 14.17 with r= f3 
and substitute Equations 12.124, 12.127, and 
12.128 for the Christoffel symbols. thus deriving 
expressions for the differentials of the comµunents. 
However, in this case, we are able to use covariant 
differentiation; we shall .find it simpler to do so as a 
means of obtaining changes in the normal curvatures 
k (of Ir) and k* (of jr). together with the change in 
the geodes ic torsion t (of Ir). We have, for example. 

Vrsfrj8 =- t; 

differentiating this covariantl y along the isozenithal 
gives, with Equations 14.17, 

Vrs:~frp-v,.sj,.j8(aa/a N) + v,.sfr/s(aa/aN) =-at/aN. 

In (w, </>, N) coordinates and using Equations 12.159, 
the first term is (aba.13 /aN) /aj/3 so that we have 

14.18 
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in much the same way, we have 

14.19 

14.20 

(aba13/aN) faff3 =- 2t( aa/aN) - ak/aN 

(aba13/aN)jaj~ = + 2t (ao:/aN) -ak*/aN. 

16. Before substituting for aba13/aN from the 
Mainardi-Codazzi Equation 14.01, we need to work 
on the middle term of the latter, that is, on 

b"8ba13a(l/ n)y = (1/ n)ba13av8 , 

using Equation 12.082. We have 

14.21 

ba13afa jf3 = ( ba13fa jf3)a - ba13fgjf3 - ba13fa j~ 

= at/ax8 + (k- k*) (a-la+ a-* ja) 

= at/ax8+(k-k*)(wa sin <P-o:a) 

in which a-, a-* are the geodesic curvatures of fa, jl3, 
respectively; in deriving the equation, we have used 
Equations 4.11, 7.08, and 12.064. Similarly, we have 

14.22 ba13afall3 = ak/ax8 -2t(a-la +a-* ja) 

14.23 ba13ajajf3 = ak*/ax8 + 2t(a-la+ a-*ja). 

17. Now, if F is any scalar or component of a 
tensor, we have 

14.24 

(aF/ax8 )v8 = (aF/axr)vr- (aF/aN)v3 

= (aF/as)-n(aF/aN) 

in which ds is the arc element in the direction of the 
normal; so then we have from Equation 14.21, using 
Equation 12.032, 

b"8ba13afajf3 (l/n )y = (l/n) ba13afajf3v8 

= (l/n) (at/as - nat/aN) 

+ (l/n) (k- k*) 

x (YI tan <P- ao:/as + nao:/aN). 

Substituting in Equations 14.01 and 14.18 and using 
Equation 7.14, we have finally 

at/as = n ( l/n )a13fajl3 + 2Ht 

14.25 - (k-k* ) (yI tan <P-ao:/as); 

similarly from Equations 14.22 and 14.23, we have 

ak/as = n(l/n)a13faff3+ (k2 +t2 ) 

14.26 

14.27 

+ 2t (YI tan <P- ao:/as) 

ak*/as = n ( l/n) a{3jajf3 + (k* 2 + t 2 ) 

-2t(yI tan <P-ao:/as). 

In all three expressions, the covariant derivative 

(1 /n )af3 is taken with respect to the surface metric. 
Adding the last two equations gives 

14.28 a(2H)/as = nl1(l/n) + (4H2 -2K) 
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in which 11(1/n) is the surface Laplacian. Multiply­
ing the first equation by (- 2t), the second by k*, 
and the third by k, using Equation 8.02 and adding, 
we have 

14.29 

Multiplying the first equation by (-4Ht), the sec9nd­
by (k* 2 + t 2 ), and the third by (k2 + t 2

), using 
Equation 8.04 and adding, we have 

14.30 a (2H/K)/as =- ncaf3(l/n)a13 -2. 

ISOZENITHAL AND NORMAL 
DIFFERENTIATION 

18. The last six equations, giving variations along 
the normals, are somewhat simpler than the corre­
sponding variations along the isozenithals. 
We can, however, relate normal and isozenithal 
differentiation by Equation 14.24 or by means of the 
following formula. If F is any scalar or particular 
component of a tensor, defined in space and there­
fore also on the N-surfaces, we have 

aF/as = Frvr 

=F3v3+ Fava 

=n(aF/aN) +yI sec ¢(aF/aw)+y2 (aF/a¢). 

14.31 

Or, if we use Equation 12.082, we have 

14.32 

In applying these formulas, it is important to realize 
that the N-surfaces must be the same for both oper­
ations. If we use Equation 14.31, then the (w, ¢) 
coordinates must also be the same; we are compar­
ing the variation in F along two different lines (the 
isozenithal and the normal) in the same (w, ¢, N) 
system. If we use the second Equation 14.32, the 
N-surfaces must still be the same; but the surface 
coordinates need not be the same because the last 
term is a surface invariant, unless F is a com­
ponent of a surface tensor, in which case we must 
use the same surface coordinates. 
On this basis, for example, we have from Equation 
14.28 

14.33 

a (2H)/aN=l1(l/n) + (l/n) (4H2 -2K) 

-baf3(2H)a(l/n)13. 
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DIFFERENTIATION OF THE 
CURVATURE PARAMETERS 

19. If we take l"', jf3 in Equations 14.18, e tc ., to 
be the parallel and meridian directions A°', µP, 
which are to remain the parallel a nd meridian direc­
tions after diffe rentiation, the n a is and remains 
either zero or hr; Equations 14.18 through 14.23 
become 

14.34 

14.35 

ati/aN =-(abu:13/aN) A."'µ.f3 

akt1aN =-(aba13/aN) A."' A. f3 

ak2/aN =-(aba13/aN)µ, "'µ, 13 

ba130A"' µ,f3=()ti/ax8 +(k1-k'2)wo sin</> 

ba130A"''Af3=akt1ax8 -2t1ws sin</> 

ba{3o fJ.."'µ,f3= dk'.!/()x8 + 2t1Wf, s in</> , 

giving the variations of the curvature parameters 
along the isozenithal and red uc ing, as in the last 
section, to the following variation s along the normals, 

att1as=n(l/n)u:13'A"'µ,f3+2Ht1 -y1(k1 -k2) tan</> 

a kif as= n(l/n)a13'A"'A.f3 + (kj +ti)+ 2y1 ti tan</> 

ak2/as = n(l/n)a13µ,"'µ,f3 + (k~ + tf)-2y1l1 tan </>. 

14.36 

The equations for the invariant s 2H, K, 2H/K are, 
of course, the same as Equations 14.28 through 
14.30. 

20. We have seen that aba13/aN is a surface tensor 
so that we can express it a s a sum of products of 
surface vectors. From Equations 14.34, we have at 
once 

-aba13/aN= (akt1aN)'AaA.13+ ( at,/aN) ('Aaµ, 13 + µ,a'A. 13) 

14.37 + (ak2/aN)µ, aµ, 13 . 

Accordingly, for example, we have 

a(2H)/aN = - a"'f3( aba13/aN) 

=~(l/n)-b0f3 (2H) a (l/n)13 

14.38 + (l/n)(4H 2 -2K) , 

using Equation 14.01 which requires the Laplacian 
to be taken in the surface me tric. This agrees with 
Equation 14.33. 

21. The remaining two parameters 'Yi. '}'2 are best 
differentiated from 

306-962 0-69-8 

Y1 =(In n),N. 

Y2 =(In 11 ),.µ,r, 
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from which we have at once , be cause M = µ, ~ = 0, 

ay1 /a N = (In n )a:i'A"' 

14.39 

Alte rna tively, we may take the covariant de rivati ve 
of Equation 12.021, 

to de rive 

ay tf aN = v,.,,;1A,.v8 = Vr:i .• 'Arvs; 

using the fact that v,.3 = 0, this formula reduces 
with the help of Equation 12.016 to 

14.40 

a nd similarly to 

14.41 ay'2/aN =- q sv8
• 

We could have obtained the same result s by ordinary 
diffe rentiation of the (1 , 2) components of vr in 
Equation 12.034. 

DIFFERENTIATION OF THE 
PRINCIPAL CURVATURES 

22. If/"', jf3 in Equations 14.18, etc. , are tange nt 
to the lines of curvat ure u"' , vf3 , the n we have t = O 
throughout ; Equations 14.18 through 14.23 become 

14.42 

14.43 

(K1 - K:?) (dA/aN )= Wb a13/aN )u"' vf3 

dK1 /aN = - (a ba13/aN)u"' uf3 

dK2 /aN =- (aba13/aN)v"' vf3 

ba13s11 "' 11f3 = (K1 - K :? ) (w0 sin <J> -As) 

bu13011"'11f3 = dK1/dx8 

buf35V"' vf3 = dK2/ax8 , 

leadin g to the following variations along the normals 

14.44 

14.45 

14.46 

(K1 - K2)(y1 tan <J>-aA/as) = n(l/n)a13u"' vf3 

dKi/ as= n(l/n )a13U°' 11f3 +KT 

dKz/ds = n(l/n )a13u"' vf3 + K~ 
in which the covariant de rivatives are take n in 
the s urface me tric. Equations 14.43 could have been 
obtained by contracting Equation 8.16 and by us ing 
Equa tion 12.064. 

23. The s urface tensor aba13/aN can be expressed 
as 

aba13/aN = - (aKi/aN) llallf3 

+ (K1-K2)(aA /aN )(llaV13+Vall 13 ) 

14.47 - (d K'2 /aN )vav13 ; 
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the equations for the invariants can be obtained 
directly from this as 

14.48 

a (2H)JaN = -a"'f3(abaf3faN) 

a(ln K)JaN=-b"'f3(abaf3/aN) 

a (2H/K) JaN = c"'f3 (abaf3faN). 

PROJECTION OF SURFACE VECTORS 

24. In the last few sections, we have considered 
vectors and the parameters associated with them, 
which can be considered as point functions in that 
the vectors are uniquely defined at all points of all 
the N-surfaces within a region of space; we have 
arranged for the vectors to retain their definition 
after isozenithal differentiation. For example, the 
principal directions are, in general, uniquely defined 
at points in space by the form of the N-surfaces, 
that is, by the form of the scalar point-function N 
and its derivatives. We have found expressions for 
the change in azimuth and curvature in the principal 
directions on the assumption that they remain 
principal directions during the change. 

25. We now consider surface vectors which are 
not so defined; we shall obtain expressions for the 
changes associated with these vectors as they are 
projected an infinitesimal distance down the iso­
zenithals. The two ends of a vector subjected to this 
process each move down isozenithals to a neighbor­
ing N-surface, the surface coordinates (w, <f>) of both 
ends remaining unchanged. The length of the vector 
will change as a rule, but we shall find it convenient 
to correct for this and to find expressions connecting 
unit vectors in the projected directions. 

26. We must be careful not to differentiate such 
expressions as 

l = ba{3fajf3, 

containing two related vectors, because this would 
tend to bold the relation during the change with the 
result that neither would, in general, be projected 
in the sense we are considering. We should differ­
entiate expressions containing only the one vector 
which we wish to project, together with point func­
tions. For example, we could recast the preceding 
formula with the help of Equations 2.32 as 

14.49 

before differentiating. We can, of course, restore the 
related (perpendicular) vector jf3 after differentiation. 

27. The process will involve ordinary partial 
differentiation with respect to N of various compo-
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nents of tensor functions. We could use covariant 
differentiation only if it were possible to write the 
formula in terms of space components. For ex­
ample, covariant differentiation of Gaf3 with respect 
to N is meaningless, but we can replace Gaf3 in 
these coordinates by gaf3 and can take the covariant 
derivative gaf33, as indeed we did in deriving Equa­
tion 14.03. We must, of course, use one sort of 
differentiation throughout an operation. 

28. Because the spherical representation is 
unchanged by this form of projection, we can take 
any formula connecting elements on an N-surface 
and on the unit sphere, and then can differentiate 
with the spherical elements fixed. We have had an 
example of this in § 14-3. As another example, 
we found in Equation 11.08 that if the space co­
ordinates are Cartesian and the surface coordinates 
are the same for both surfaces, then 

b"'f3x~ 

is unaltered on spherical representation. Differen­
tiating with respect to N. we have 

(ab"'f3/aN)x~ + baf3 (ax~/aN) = 0 

from which we have 

14.50 

ax~JaN =- baf3(abf3Y/CJN)x!Y 

= bf3Y(CJbaf3faN)x; 

= f1:rL 

using Equation 12.127. 
Again, if the space coordinates are Cartesian, we 
know from Equation 11. 02 that v~ is unaltered on 
spherical representation, and therefore we have 

14.51 av~/aN=O. 

We can also write 

V~f3 = d V~/()xf3 - f,r{3 Vy 

in space Cart.esian coordinates because the space 
Christoffel symbols are then zero. Differentiating 
this and using Equation 14.14, we have 

14.52 

Length 

29. If os is the length of a small N-surface vector. 
the corresponding length in the spherical represen­
tation (scale factor m) is from Equation 11.li 

os= (k2 +t2
) 1!2os =mos 

in which k, tare the normal curvature and geodesic 
torsion in the direction of the vector. Differentiating 
this isozenithally, os remaining fixed. we have 
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a (In OS) -
aN 

14 .53 

a (ln ffl ) 
aN 

a {ln (k:!+ t2 ) 11:! } 
aN 

30. An a lt e rnative ex pression may be ob tained as 
follows. If the e le ment os corres ponds to a di ffer­
ence of s urfact> coordinates oxa in the direc tion of 
the uni t vecto r /", we have 

os:! = au13oxaoxf3; 

differenti ati ng: thi s, we have 

14.54 

a (In OS) - I d0 af3 axa ax/3 
aN 2 aN -a; a-; 

=.} d<l af3 /<> //3 
- aN 

= /abf3Y /y(cJ ba13/cJN ) 

using Equation s 14.03 and 12.127. 

31. We have seen in E quations 14.48 that 

-a (In K) /aN= baf3 ( aba13/aN) = n:i. 
using the cont raction of Equation 12.127. We may 
writ e fur l her 

- a (ln K) /aN= fl.3o<y= fl,3(/a/y + j aj y), 

if ja is the us ual s urface vector perpendi cular tu /0 

and if we re me mber that f t;3 is a s urface tensor. If 
we add this last res ult to 

14.55 

obtainab le fro m Equations 14.53 and 14.54, we have 

14.56 

But if 111 * is the scale fa ctor in the j a-direct ion , we 
have also 

14.57 

and su 

14.58 a (ln mm */K) /aN= O. 

But thi s las t relat ion is true only to a fi rs t order. W e 
cannot d iffe renti a te it again or assert that (mm */K) 
is cons tant over a finit e le ngth of the isozenithal 
because the t wo directions do not , in general, re ­
main perpendi cular when projected down the 
isozenit ha l. 

Contravariant Compone nts 

32. If we use the same surface coordinates, fo r 
instance (w , ¢ ), fo r the N-surfaces and the s phere, 
we have fo und in Equati on 11. 12. rela ting the co n-
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travariant compone nt s of a unit surface vector a nd 
the corres ponding unit vec tor in the s pheriC'a l rep­
resentation, that 

Differentiating this, we have at once 

14.59 

a/0 /aN = /0 ((1 In m/aN) 

= /a{a In ( /;:! + t:!) ll:!/aN} 

= - f~3 /Y /13 /a 

in which /11 is th e scale fac tor of th e re present at ion, 
and we have used Equations 14.53 and 14.54. 

Azimuth 

33. The s pace co mpone nt s of a uni t su rface vector 
/ ,.i n azimuth a and of it s perpe ndic ular j'· in azim uth 
(a-f7T) are gi ve n by 

/ r = A.,. sin a+ µ, '· cos a 

j'·=- A. ,. cos a+ µ, ,. sin a . 

If the s pace coordin ates are Cart esian , the n all 
compone nts of A. ,., µ,,. a re fun ctions of (w , <Pl only, 
and a re the re fo re co ns tant under isozenithal di f­
fe renti a tion so tha t we have 

al,./aN= (A.,. cos a- µ, ,. s in a) (aa/aN) 

14.60 =-j'·(aa/aN) . 

34. We now diffe re nti ate the equation 

/,. = 1°x/;,, 

using Equ ations 14.59 and 14.50 , and fin d that 

- j'"(da/ai\')= /'"((J ln m/aN) + fba l"x.Y. 

\1ultiplication by /,. gives Equation 14.55 aga in . and 
mu lt ipli cation by j,. gives 

14.61 

Note that t hi s is not the sa me as Equations 14.17. 
The change in azimuth in the pe rpendicular d irec­
tion j'" is similarly 

14.62 

and 

14.63 

Note that th is is a point fun ction whi ch is the same 
for all d irections a t a point. Co nseque ntly. the 
cha nge in mea n azimuth of a pa ir of perpendicular 
direct ions is the same fo r a ll pa irs. 
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Covariant Components 

35. If we differentiate the equation 

in which the space coordinates are Cartesian, 
in the same way we have 

14.64 

ala./aN =-jr(aa/aN)x~+ r;r3 x~lr 

=-ja.(aa/aN) + n3/y 

in which we can substitute Equations 14.61 and 
12.127 and ultimately Equation 14.01 to show the 
result in terms of (l/n) and surface tensors. How­
ever, we shall usually be content to leave the 
results in terms of the Christoffel symbols f{33 

or in a form which can readily be translated into 
these symbols. 

Curvatures 

36. The simplest way of differentiating the curva­
tures in the direction fa. is to differentiate Equa­
tions 13.02 and 13.03 in which a, the azimuth 
of the spherical representation of fa, is held fixed. 
We have at once 

14.65 

14.66 

ak/aN = k{a(ln m)/aN} - t(aa/aN) 

at/aN= t{a (In m)/aN} + k(aa/aN) 

in which we can as usual substitute Equations 14.55 
and 14.61. We have also an alternative expression 
for the variation in azimuth from these equations, 

14.67 
aa k2 a (t/k) 
aN= m2 ----;;N"" 

37. It may be emphasized again that the ex­
pressions give the changes in k, t, etc., between 
a direction on an N-surface and the projected 
direction on the next surface. Suppose, for ex­
ample, that we start with a principal direction 
(t= 0). Equations 14.65 and 14.66 then give the 
change in normal curvature and geodesic torsion 
resulting from proj ection of the principal direc­
tion down the isozenithals onto the neighboring 
surface. If the projected direction is to remain a 
principal direction, then we must also have 
at/aN=O, in which case we have aa/aN= O from 
Equation 14.67. From Equation 14.61, we then 
have 

r;r3ua.vy= 0 

m which ua, va. are as usual the principal direc-
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tions. With the help of Equations 12.127 and 
8.03, we can show that this is equivalent to 

14.68 
as the condition for the principal directions to 
project as principal directions. It is clear from 
Equation 14.01 that this condition implies a spe· 
cial relationship between n and surface tenson 
which would restrict the form of N. We mus1 
conclude therefore that principal directions, ir 
general, do not project isozenithally as principa: 
directions. 

38. To obtain the vanat10n in geodesic curva· 
ture of isozenithally projected curves, we can 
differentiate Equation 13.10 in the form 

ii- (l/m)a-= (l/m) (a-'a) 13/f3, 

holding the spherical elements <T, a constant 
The result, after some simplification, is 

14.69 aa- a (In m) 
aN=a- aN 

in which we should substitute Equation 14.55 and 
the differential of Equation 14.61 or 14.67. Tc 
verify this, the reader is invited to obtain thE 
same result without spherical representation 
but with greater labor, by differentiating 

a-=-fa.13Ea.y{yff3. 

Covariant Derivatives 

39. To find the variation in the surface covarian 
derivatives of isozenithally projected curves, w• 
can similarly differentiate Equation 13.12. Alter 
natively, we can differentiate Equation 12.063 i1 
the form 

la.13 =- Ea.yfY(w13 sin cp-a13), 

the result in either case being 

14.70 ala.13_
1 

a{ln (m/K)} . aza 
aN - a.13 aN - la ax!3aN· 

The reader may find it instructive to obtain thii 
same result by straight differentiation of the ordi 
nary formula for a covariant derivative, corre 
sponding to Equation 3.08 in two dimensions 
using Equations 14.14 and 14.64. 

40. We have seen in Equations 12.127 and 12.14~ 
that fX3 is a surface tensor; therefore, aa/aN ir 
Equation 14.61 is a surface invariant. We concludt 
from Equation 14. 70 that ala.13/aN is a surfact 
tensor; Equation 14. 70 is a tensor equation, true ir 
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any surf ace coordinates to the extent that these 
coordinates can be transformed while retaining 
N fixed. 

41. If F is a scalar, defined in space and there­
fore over any N-surface, we can find the isozenithal 
variation of its second surface covariant deriva­
tive F0 13 by differentiating either Equation I3.I3 or 

IOI 

the defining equation 

a2F 
F a/3 = axaaxl3 - f &13 F y . 

The result in either case is 

14.71 





CHAPTER 15 

Normal Coordinate Systems 

GENERAL 

l. In the (w, <J> , N ) system , the (w , <J>) s urface 
coordin ates are not, in ge neral, constant along 
the normals to the N-s urfaces so that the nor mals 
are not the N-coordinate li nes . The gradie nt s 
of (w , <J>), co ns ide red as space vec tors, are not 
contained within the N-s urfaces as is evide nt 
from Equations 12.046 and 12.047. We s hall nuw 
consider how tu overco me these complications by 
adoptin g s urface coo rdin ates. which are de fin ed 
to be constant a lon g a normal, so that the normals 
are the N-courdinate lines . T he geometry of the 
system will be simpler and can oft en he used to 
derive quic kly result s in the fo rm of invariants or 
tensor equations which are true i1~ an y coordi­
nat es. However , the s urface coordinates are not 
directl y measura ble throughout a region of space; 
the syste m is accordingly of direct prac ti cal use 
only when we are int erested in the immediate 
neighborh ood of one particul ar surface . 

2. As usual, we start with a scalar N, single­
valued , continuous, and differentiable through­
out some region of space, and ma ke it one coordi­
nate of ·the syste m. The fa mil y of N-surfaces, 
over each of whic h N is a constant , is accord­
ingly one fa mil y of coordina te s urfaces . The 
gradient of N is 

15.01 N,.= nv,. 

in which v,. are unit tangent s to the normals or the 
orthogonal trajectories of the N-s urfaces. 
We have seen in § 10-19 that a scale factor of 
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n will transform the space conformall y to a curved 
space in which the normals become a family of 
geodesics and the N-surfaces become a fami ly 
of geodesic parallels. An element of length along 
the geodesic normals will be dN: it is well known 1 

that the metric of the curved space can then be 
expressed in the quasi-Pythagorean form 

(a,{3 = 1.2) 

in wh ic h the dxa are the other two coordinates. 
We transform this expression back to the original 
space wit h scale factor (l /n) and have as the metric 
of the original space 

15.02 

in which we have retained the same coordinates xa, 
whatever t hey may be. This merely demonstrates 
the possibilit y of a metric in this form; we have 
now to exami ne it and to find a ll we can about 
the xa. 

THE METRIC TENSOR 

3. We can write the metric tensor in the abbre­
viated form 

15.03 

the determin ant of which is 

15.04 g= (l /n 2 )a, 

1 See, for in stance, Eisen hart (1926). Riemannian Geometry, 57. 
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leading to the associated tensor 

15.05 

as we may easily verify from the definition in§ 2-19. 

4. The cosine of the angle between the gradients 
of x 1 and N is proportional to 

grsx~Ns = g13 = 0. 

Consequently, the gradient of x 1 is perpendicular 
to the gradient of N, that is, tovr, and must be there­
fore a surface vector. Similarly, the gradient of 
x 2 is a surface vector. Both x°'-coordinates are thus 
constant along the normals, which must therefore 
be the N-coordinate lines. 

5. In much the same way, we can prove from the 
absence of ga3-components in the metric tensor 
that the x°'-coordinate lines are perpendicular to 
the N-coordinate line, and must therefore lie in 
the N-surfaces. 

6. As usual, we take the x°' as surface coordinates 
and as two of the space coordinates so that 

15.06 

7. One possible way, and indeed so far as we 
know the only way, of defining the x°'-coordinates 
further is as follows. Through a point P in space, 
we draw a line or trajectory which is normal to all 
the N-surfaces. The intersection of this line with a 
particular N-surface, which we shall call the base 
surface, is Q. The coordinates of Q on the base 
surface are taken as the x°'-coordinates of P. Evi­
dently, all points on the same normal have the same 
x°', and the x°' can be used as surface coordinates 
on the other N-surfaces. In this way, we can meet 
all the preceding requirements of a metric in the 
form of Equation 15.02. We shall assume that co­
ordinates have been chosen in this manner, but we 
shall leave open for the present the particular choice 
of coordinates on the base surface. 

8. It should be noted that we have defined the 
x°'-coordinates as functions of position only on the 
base surface. We can transform them in two di­
mensions on the base surface, in which case their 
values will be settled at any point in space. We can 
also transform the x°'-coordinates at any point in 
space by taking the N-surface through the point 
as base surface. We cannot, in general, choose 
latitude and longitude, defined in § 12- 10, as co­
ordinates in this system because they are not 
constant along the normals, unless the normals are 
straight. This would be a special case with which 
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we shall deal in Chapter 17. We could, however. 
choose latitude and longitude on one particulai 
base surface, even if the normals are not straight. 

9. Because we have not so far specified the actual 
surface coordinates, even on the base surface, we: 
cannot specify the surface metric tensor aaf3· Nm 
can we determine the second and third fundamental 
forms baf3, Caf3 of the N-surfaces as we did in the: 
(w, cp, N) system where all three coordinates wen 
completely specified in space. These three formE 
must vary between surfaces and must therefore: 
be dependent on N. We shall derive expressiom 
later for this which will enable us to calculate the: 
Uaf3, baf3, and Caf3 on any surface from the cor· 
responding components on the base surface. 

COMPONENTS OF THE NORMAL 
AND OF SURFACE VECTORS 

10. From the basic gradient equation for N 
that is, 

we can find the covariant components of the unil 
normal at once because, whatever the (1, 2) coordi 
nates, N does not change when differentiated witl 
respect to them. We then write 

15.07 Vr = (0, 0, l/n). 

The (1, 2) contravariant components must also bf 
zero because the (1, 2) coordi11ates do not chang., 
along the normal. Also, we have vrvr = 1 becaus" 
Vr is a unit vector so that we can write 

15.08 vr = (0, 0, n). 

11. We shall also require expressions for th~ 
surface tensor derivative of the unit normal. Wein 
garten's formula in Equation 6.17 becomes\ 

15.09 

so that we have 

15.10 v~ = 0; 

using Equation 8.09. 

12. Because any surface vector lr is perpendicula 
to Vr, we may write 

lrvr=O and [rvr=O; 

expanding these formulas from Equations 15.0 
and 15.08, we see at once that both the covarian 
and contravariant 3-components of any surfac 
vector are zero in this system. 
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THE CHRISTOFFEL SYMBOLS 

13. Because gaf3 = aaf3 and the xa·coordinates 
are the same on the surface and in space, It IS 
evident that the Christoffel symbols of the first 
kind, 

[a,8, y], 

are the same whether they are computed from the 
space metric or the s urface metri c. In regard to 
the Christoffel symbols of the seco nd kind con­
taining no 3-index, we consider the space symbols 

f J{3 = g"'Y[a,8, r] = gY0[a,8, 0] = Q yll[a,8, 0] = C'fo 

taken in relation to the surface metric . In deriving 
this result, we have used g 3Y=0 and gY0 = aY0 . 

Consequently, all Christoffel symbols containing 
no 3-index are the same whether the y refer to the 
space or to the surface metric, and we have no 
need to differentiate between the two. Their actual 
values , as in the case of the metric te nsor from 
which they are derived , will depe nd on what co­
ordinates are adopted for the base surface. Once 
the Christoffel symbols are settled for the base 
surface, we should be able to find the m at other 
points in space; we shall later derive formulas for 
this. 

14. Symbols containing a 3-index can be obtained 
by expanding Equations 15.10. We have 

0 = av 3/ax a + flavr = an/axa + nfla 

and 

- a aYb{3Y = ava/axf3 + f~{3 Vr = nf:fu. 

Because the covariant derivatives of all com­
ponents of the metric tensor are zero, we have 

ga3{3 = 0 = aga3/a xf3 - f:fog(1/' - r :;{3g,.3 

= - r r{3 (l ay - r i{3g33 

= (l/TZ )a yllb{3oaaY - f g{3 (1/n 2), 

using one of the preceding results and ga3 = 0, 
so that we have 

ri{3 = nba{3. 

In the same way from i!fa33, we obtain f ]3 ; from 
f(a33, we obtain f f3 • Collecting result s, we can lis t 
all the symbols containing one or more 3-indices as 

r la = - (In n )a ; f ]3 =-a(ln n )/aN. 

15.11 
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15. In the las t symbol, if ds IS the arc ele ment 
along the normal, we have 

15.12 a ( 1) a 
aN= -;; as 

because the other two coo rdinates are constant 
along the normal. This relation is, of course, true 
only in thi s particular coordinate system. To avoid 
confusion with result s in Chapter 14 whe re a/aN im­
plied differentiation along the isozenithal and not 
along the normal, we shall usually express the re­
sult s of normal differe ntiation in the form a /a s. 

VARIATION OF THE METRIC TENSOR 
ALONG THE NORMAL 

16. In the las t section, we have not used the fact 
that the covariant deriva ti ves of all compone nt s of 
the me tric te nso r are zero. T o complete the picture 
in regard to derivatives co ntaining one or more 
3-indices, we need to evaluate gaf3:i which a lone 
will provide a fresh result, although the others 
furnish useful checks. We have 

gaf33 = 0 = agaf3/aN-f:;3 grf3- fr gar {33 

so that 

15.13 

= aaaf3fa N - f J3 af3Y - f~3aaY 

= aa 0 {3/a N + (l/n )a Y0baollf3Y+ (lf n )a Y0bf3oGaY 

= aaaf3fa N + 2(1/n )baf3 

Given the second fundamental form of the base 
surface, we can accordingly extend all compone nt s 
of the surface metric tensor along a normal by a 
Taylor expansion- at any rat e to a first orde r. We 
shall show later how to obtain the higher derivatives. 

17. By expanding g~~3 similarly or by differentiat ­
ing 

along the normal, we find that 

15.14 

Using Equations 8.07 a nd 8.09, the last equation 
can be written in the alternative form 

15.15 
aa af3 
--=4Ha cxf3 -2Kb af3 . 

as 
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18. By the ordipary rules for differentiating a 
determinant, we have also 

15.16 a (ln a) = a o:f3 a a o:f3 = _ 4H. 
as as 

19. We can now differentiate the permutation 
symbols 

Eo:f3 = eo:f3Va; 

to have 

aEo:f3 =- 2HE f3 as 0: 

15.17 a.E°'f3 = + 2HE°'f3 
as ' 

which should be compared with the results in 
Equations 14.09 and 14.10 for differentiation along 
the isozenithals. 

SP:<\CE DERIVATIVES 
OF THE NORMAL 

20. In the (w, <f>, N) system, we found that the 
covariant derivatives of the meridian, parallel, and 
normal vectors were most useful. In this system, 
we have not yet defined any surface vectors in 
relation to the surrounding space, but we can now 
find the covariant derivatives of the normal by sub­
stitution of the preceding results in the defining 
formula 

We find that 

15.18 

Vrs = avr/axs - (l/n )ns. 

Vo:f3=-bo:f3, 

as it should, because this result in Equation 6.19 
depended only on making the surface coordinates 
x°' two of the space coordinates. 
Also, we have 

15.19 

Vo:3 = - (l/n )o: 
V30: = 0 
V33 = 0. 

By substitution in Equation 11.26, we have in these 
coordinates 

15.20 

15.21 

THE MAINARDI-CODAZZI EQUATIONS 

21. In the (w, <f>, N) system, we obtained all the 
Mainardi-Codazzi equations by considering the 
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first covariant derivatives of three vectors in Hat 
space. In this system, we have defined only one 
vector field, the normal; its first derivatives given 
in the last section do not include any condition that 
the space must be flat. We can, however, apply the 
alternative condition that the second covariant 
derivatives of an arbitrary vector must be symmetri­
cal in the last two indices in flat space, as in Equa­
tion 5.01. In this case, we have 

15.22 Vrst= Vrts· 

At this stage, we use this formula as a necessary 
condition without asserting that it is sufficient to 
use only one vector field. 

22. We consider first the components containing 
no 3-index, 

Vo:f3Y =a Vo:f3f axY - f~yVrf3 - f {3yVo:r 

=-abo:f3/axY+ fgybo(3+ f~bo:o+ f~(l/n)o: 

=-bo:f3Y-bf3Y(ln n)o:. 

15.23 

We interchange (/3, y) and subtract m order to 
satisfy Equation 15.22 so that 

15.24 

which are the most general forms of the Codazzi 
equations for the N-surfaces in Equation 6.21. 

23. Next, we evaluate 

Vo:f33 = avaf31 aN - r~3Vrf3 - f}33Vo:r 

=-abo:f3f aN + f&3 bYf3 + fJ3 bo:Y+ f~f3(l/n )o: 

=-aba8/aN- ( l/n )aY0baabyf3- (l/n )aY0b8abo:Y 

- (ln n)f3(lfnL 

=-aba8/aN-2ca8/n - (ln 11) 8 (1/n)o: 

and also 

Vo:3(3=-a 2 (lLn )/aX°'axf3- r~f3V,.3 -qf3Vo:r 

=- a2(1/11 )ax°'axf3 + rxf3(l/11 h+ qf3(l/11 )o: 

+ fJf3bo:Y 

=- (l/n)o:f3-Co:f3fn- (ln 11) 8 (1/11)0: 

in which the overbar implies that the covarian 
derivative has been taken with respect to the sur 
face metric. Applying Equation 15.22, we hav 
finally 

15.25 abo:f3= n (l) -co:f3, 
as 11 0:(3 

which should be compared with the correspondin 
Codazzi equations for the (w, </>, N) system i 
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Equation 12.144. This gives us, in general, three 
independe nt equations, making a total of five with 
the Codazzi equations for the N-surfaces in Equation 
15.24. As shown in the (w, cf>, N) syste m, five is all 
we can expect in the case of a family of coordinate 
surfaces derived from a given sca lar N. Indeed, we 
can derive no fresh relations from Equat ion 15.22 
for any other values of (r, s, t). We conclude there­
fore that the relation in Equation 15.22 is suffic ient 
to ensure that the space is flat. We could directly 
ensure that the space is flat by equating to zero all 
the Riemann-Christoffel symbols of Equation 5.03 
for the metric 

ds 2 = aa13dx°'dxf3 + ( 1/ n 2 ) dN2
; 

or, what amounts to the same thing in three dimen­
sions, we could equate to zero the six independent 
components of the contracted Ricci tensor of 
Equation 5.12. This gives us six equations , but we 
find that only five are independent in this metri c 

1 and that they are the same as the five equations 
obtained far more simply above. 

NORMAL DIFFERENTIATION 

The Fundamental Forms 

24. We have already shown how to differentiate 
ao:/3 and bo:/3 along the normals and incidentally how 
to obt ain the second derivative of ao:/3· To carry th e 
expansion furth e r, we need to find an expression 
for aco:13/as in terms of the fundamental forms of the 
base surface and of n. If we differentiate the ordi­
nary formula 

Co:fJ = aY15 bo:Yb1315 

and use Equations 15.14 and 15.25, we have 

aco:13/as = 2aYPaBabpabo:yb1315- aY15Co:Yb1315- aY15 bo:YC{Jf, 

+ naY15 b1315 (I /n)o:Y + naY15 bo:Y ( 1/11)1315. 

If we make use of aY15 bo:B = bY15ca15 from Equation 8.09 
and interchange some summation indices, we find 
that the first three terms on the right cancel and we 
have fin ally 

15.26 aaCo:fJ = naY15bo:Y (l) + 110Y15 b13y (l) . 
s n /Ji> n o:B 

25. By differentiating 

b°'Ybo:13= OJ, 
we have 

15.27 
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simi larl y, we have 

15.28 ac"/3 (~) (-i--) --=- 11/J°'Yc/Jfi - - nbf3Ycafi - ' 
as n Yi> 11 Yo 

which completes the differentiation of all the fun­
damental forms. 

26. The differentials of the surface invariants are 
now easily found. Using Equation 6.27, we have 

a(lnK)_a(lnb) a(lna) 
as as as 

15.29 = nbaf3(!) + 2H. 
n a{3 

Also, we have 

as 

15.30 

as 

= bo:{3 aao:f3 + a°'f3a bo:{3 
as as 

= 2a°'f3Caf3 + 11fl(1/11) - a°'f3Co:f3 

= nfl(l/n) + ( 4H2 - 2K) 

in which the overbar implies that the Laplacian 
of (l/11) is taken with respec t to the surface me tric. 
In addition, we have 

a(2H/K) a(b°'f3aa13 ) 

as as 

15.3 l = - nc°'f3(l) -2. 
11 o:{3 

27. These last three invariant equations are, 
of course, true in any surface coordinates, and can 
be evaluated, if we wish, by substituting (w, cf>) 

values of a°'f3, b°'f3, c°'f3, and (1/11)0:{3· In fact, we have 
already obtained them from (w, </>, N) coordinates 
as Equations 14.28, 14.29, and 14.30. 

The Christoff el Symbols 

28. Using Equation 15.13 for the normal deriva­
tive of the surface metric tensor, we can differ­
entiat e the equation which defines the surface 
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Christoff el symbols, that is, 

Gall f~y = (f3y, 0] 

= t (aa135 + aay5 - aa/3Y). 
axY ax/3 axil 

Alternatively, as we did in the (w, cp, N) system, 
we can equate the 

R~3Y 

components of the Riemann-Christoffel tensor of 
the flat space to zero and can use expressions ap­
propriate to this (normal) system of coordinates 
for the Christoffel symbols. In either case, we ob­
tain after some manipulation 

15.32 

ar~y 
- ,-=- a"5b13Y1> + a"5b135(ln n)y 

as 

The more compact expression obtained in Equa­
tion 14.14 for (w, cp, N) coordinates does not, how­
ever, hold in normal coordinates. 

The ba{Jy 

29. Nor can we obtain 

a (ba/3Y )fas 

in these coordinates by the shortcut used in (w, cp, 
N) because points along the normals, as distinct 
from the isozenithals, do not have the same.spher­
ical representation. We can, however, differentiate 
the defining equation 

b _a(ba13)_fllb -fllb. 
a/3Y- axY aY ll/3 /3Y Ila, 

after some manipulation and use of the identity 

Caf3Y= a5Eba1>Yb/3E + a5Eballb/3eY, 

obtained by covariant differentiation of Equations 
6.18, we find that 

15.33 

a ( ba/3Y) I as= n ( 1/ n) a/3Y - Caf3 ( ln n) y 

-c13y(ln n)a-CYa(ln n)13 

+ alle (ln n) e ( baYb1>13 + b13yb1>a) 

in which the overbar denotes covariant differentia­
tion with respect to the surface metric. 

30. If we interchange f3 and y and subtract the 
result from Equation 15.33, the left-hand side be­
comes zero by virtue of the Codazzi equations, and 
we have 

n(l/n) af3Y- n (l/n )aY/3 =a& (ln n )e (ba13by5- baYb131>). 
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At first sight, this shows a relation between n and 
surface tensors which is required in order to ensure 
that the Codazzi equations are satisfied on all the 
N-surfaces. Howe.ver, we can see from Equations 
5.22 and 6.26 that it is an identity true not only for 
n, but also for any scalar. 

31. From Equation 15.33, we can derive 

aa/3 aba/3Y = n a{~} - ( 4H2-2K) (ln n)y 
as axY 

aba13y (1) , ba/3 --= nba/3 - - 2H (ln n) y 
as 11 a/3Y 

aba13y (1) caf3--=nc"/3 - -2(ln n)y, 
as .n a/3Y 

15.34 

which can be verified by differentiating Equations 
8.20 and by using formulas already given in this 
chapter. 

Other Point Functions 

32. There are no equations for the differentials 
of the point functions 

X r • 
a' V r . 

a' V~/3 

in these coordinates corresponding to Equations 
11.08, 14.50, 14.51, and 14.52 because the vr are not 
constant along the normals, even in Cartesian 
space coordinates. If required, differentials of these 
quantities should be obtained in normal space 
coordinates by differentiating Equations 15.06, 
15.10, 15.20, and 15.21, using formulas which have 
now been given. 
The differentials of any other functions which are 
defined in space, such as 

Yi = VrsArv, 

can be obtained by covariant differentiation alon 
the normal and by evaluation either in these coordi­
nates or in (w, cp, N) because the result will be an 
invariant true in any coordinates. 

Differentiation of Vectors Defined 
in Space 

33. We take as usual a pair of unit orthogonal 
surface vectors fr, j'" (Ir, j'", vr right-handed) which 
are defined in space as vector functions of position. 
They could, for example, be the meridian and paral­
lel directions defined in the usual way from the 
normal to the N-surface and from the Cartesian 
vectors; but in this case, the latitude and longitude 
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would be fun ctions of position and not coordinates, 
except poss ibly on the base surface. The two vec­
tors could also be the unit tangents to the lines of 
curvature of the N-surfaces, which similarly are 
uniquely defin ed at a point and , in consequence, 
constitute a vector field in space. 

34. If a, k, t are the azimuth, normal curvature, 
and geodesic torsion in the direction /r and if k* is 
the normal c urvature in the direction j", then all 
these quantities are point functions; Equations 
14.25 through 14.27 hold equally well for changes in 
these functions along the normals , even though they 
were obtained in (w, <J>, N) coordinates. The only 
tensor functions in these equations are surface 
invariants which have the same value in any surf ace 
coordinates. We assume, of course, that the N­
surfaces and the Cartesian vectors are the same in 
both cases, as we can do without any loss of 
generality. 

35. In the same way, the formulas of Equations 
14.36 apply as they stand in this system and give 
the normal variation of the curvature parameters 
ki, k2, lt of the meridians and parallels; Equations 
14.44 through 14.46 give the normal variation of the 
principal curvatures and the azimuth of the prin­
cipal directions. 

36. We can obtain these results by a different 
route and, at the same time , can obtain some other 
formulas which we shall require later. We assume 
that the N-surfaces are the same in both the (w, <J>, 
N) system and in this normal system of coordinates, 
and that the Cartesian vectors of the two systems 
are the same. In that case, the meridian and parallel 
vectors µr , A_r at any point in space are the same, 
although they will not, of course, have the same 
components. The vector equation 

µ,.8 V8 =- '}'t tan </> A.,. - )'2V,., 

obtainable from Equations 12.015 and 12.034 in 
(w, </>, N) coordinates, is true in any coordinates. 
If we expand it in normal coordinates, we find that 
the equation for r= 3 is an identity; we are left then 
with 

aµ,a 
~=-yt tan</> A.a+ nfXaµY 

= - '}'t tan </> A.a - ba13µ,f3 

=- (Yt tan </>+tt)A.a-k2µ,a, 

which gives us the ordinary differential of the 
meridian vector along the normal. The meridian 
vector remains the meridian vector and is not 
projected down the normals to the next N-surface. 
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In the sa me way and collecting the las t equation , 
we have 

15.35 

aµ,a/as = - ()'t tan <J>-ti)A.a+ k2µ,a 

o µ,"/as = - ( Yt tan </> + ti) A.a - k2µ,u 

a>..a/as = ('}'t tan </>+ti)µ,'-'+ktA.a 

a A.al as = ( )'1 tan </> - f I)µ" - kt Aa. 

We can now differentiate the equation 

kt = ba13A.aA_f3 , 

using Equation 15.25 and the preceding formulas , 
a nd c an obtain the second equation of Equations 
14.36. The other two equations of Equations 14.36 
follow similarly. 

37. In general, if /,. (in azimuth a) and j,. (in azi­
muth a-!7T) are any pair of orthogonal unit sur· 
face vectors. we have 

I,. = A.,. s in a+µ,,. cos a 
jr=-A.,. cos a+µ,,. s in a, 

which are defined in space and have to preserve 
their ide ntity under normal differentiation; or, if 
!,. is such a vector and if j,. is defined perpe ndic ular 
to it, the n we may writ e 

/,.8 v8= A,.8 v8 sin a+ µ,1·sV cos a- jr(da/ds) 
= j,.( )'1 tan <1>- aa/as) - v,.( )'1 s in a+)':! cos a), 

using Equations 12.014 and 12.015. Proceeding as 
for Equations 15.35, we find that 

15.36 
ala/as=- kin+ j a (yl tan </>- t -aa/ds) 
a/a/as= k/a + ja(y, tan </> + t - aa/as) 

in which k , t are the normal curvature and geodesic 
torsion in the /a-dire ction. These two equations 
cover all four equations of Equations 15.35 as the 
special case aa/ as= 0. 

38. For the principal directions (t = 0), ua (in 
azimuth A, principal curvature Kt), and va (i n 
azimuth A --!1T, principal curvature K:!l. we have 
at once 

15.37 

aua/ds = -KtUa+va()'1 tan <J>-aA/as) 
aua/as=+Ktua+va(y1 tan <J>-aA/as) 
()va/()s=- K:! Va - Ua ('}'1 tan </>-CJA/CJs) 

ava/as=+ K',!LP - ua(y, tan <1>- aA/as). 

From these equations, we can derive Equations 
14.44 through 14.46 by normal differe ntiation of 

Kt = baf3Uauf3 

K:! = bn13ift1f3 
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NORMAL PROJECTION OF SURF ACE 
VECTORS 

39. We have now to consider, just as we did in 
isozenithal projection, the effect of projecting a 
surface vector from one N-surface to another down 
the normals. In this case, we shall not be able to 
derive any assistance from the spherical represen­
tation , unless the normals happen to be straight, 
because projected figures will not have the same 
spherical representation. Some of the formulas are, 
nevertheless, simpler. We shall not be able to obtain 
closed integral formulas any more than we could 
in isozenithal projection, and we shall again derive 
the first-order changes only. Changes of a higher 
order can be obtained when required by successive 
differentiation and substitution in a Taylor series. 

Length 

40. A first-order element of length 8/ on an N­
surface is given by 

( 81) 2 = acx138xcx8xf3 

in which 8xcx are changes in the surface coordinates 
over the element. Because the surface coordinates 
remain constant along the normals in this system, 
we may differentiate and use Equation 15.13 to 
obtain 

15.38 

a (In 8/) 
as bcx/3 (8~cx) (8~:) 

=- k 

in the limit when 81 becomes infinitesimal. Of 
course, k is the normal curvature of the N-surface 
in the direc tion of the length e lement. 

41. An element of area on an N -surface is given 
by 

85 = Va:8xcx8xf3, 

which can be differentiated with the help of Equa­
tion 15.16 to give 

15.39 a (In 85) 
as 

Con1ponents 

-2H. 

42. The change in surface coordinates over a 
s mall length 81 of a unit surface vector lex is given by 

8xcx= lcx8/; 

differentiating this with the aid of Equation 15.38, 
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we have 
O= 8l(alcx/as-klcx). 

Because 81 is not zero , we have 

15.40 
a/ex 
-=kfcx. 
as 

43. In regard to the covariant components, the 
simplest course m these coordinates is to differ­
entiat e 

and to obtain 

15.41 

ala 
as= - 2bcx13 f !3 + kacx13 f !3 

=-2(kfcx+tjcx) +kfcx 

=-/.-fcx-2tjcx 

in which t is the geodesic torsion of the surface in 
the direction lex, an-djcx is as usual a unit surface vec­
tor perpendic~lar to la. It should be noted that 
jcx will not , in general, project as a perpendicular 
vector. We cannot therefore differentiate Equation 
15.41 again and use a formula corresponding to 
Equation 15.41 for the differential of jcx because 
to do so would require jcx to be defined as perpen­
dicular to la, not only on one surface, but on pro­
jection to the next surface. As in the case of iso­
zenithal projection, we need to recast Equation 
15.41 in the form 

15.42 afcx =- kl + 2tE 13/!3 as ex ex 

before differentiating again. In this way, we re­
tain jcx as an auxiliary perpendicular vector, b ut do 
not project it. 

Azimuth 

44. To obtain the change in azimuth a of the 
vector //3 on projection, we can differentiate 

cos a = l/3µ,13 

in which µ,13 is the meridian direction. We must not, 
however, project the meridian direction by using 
Equation 15.41 , but must ensure that it remains the 
meridian direction by using Equations 15.35. With 
that proviso, we have 

- sin a(aa/as) = k cos a - (y1 tan <P+ t1) sin a 

-k2 cos a, 

which, with the help of the second equation of E qua­
tions 12.060, reduces to 

15.43 aa/as=t+ y 1 tan <P 
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where as usual t is the geodesic torsion m the 
direct ion l a.. 
This result may be obtained in a variety of other 
ways, for example, by differentiating 

sin a= a13Yff3A.Y. 

45. If we project a principal direction (t = 0 iii 
Equation 15.43), the projected direction is not 
necessarily a principal direction of the new N 
surface. If it is, then we may write 

aA/as=y1 tan<!> 

in which A is the azimuth of a principal direction 
defined in space, that is, the azimuth of a principal 
direction not on one particular N-surface only, but 
on the neighboring N-surfaces as well. In that case, 
we see from Equation 14.44 that 

which is a restriction on the form of the N-surfaces 
! in order that their principal directions may project 

into principal directions. We shall see in the next 
chapter that this result has an important place in 
the theory of triply orthogonal coordinate systems. 

Curvatures 

46. Differentiation of 

k= ba.13/a.f/3 

leads directly to 

ak/ as= n ( 1/ fl) a.f3fa.ff3 - c a.{3fa.ff3 + 2kba.13fa.ff3 

15.44 =11(l/fl)a.13fa.ff3+ (k 2-t 2 ), 

using Equations 15.25, 15.40, and 7.14. 

47. In order to differentiate 

t = ba.13ja.ff3, 

we must differentiate j a., not as a direction which 
is to be projected, but as an auxiliary vector per­
pendicular to f 13 as 

= 2Hja. + Ea./3(kf13 + 2tj13) 

15.45 = k*ja.+2tfa., 

using Equations 15.17 and 15.41 and denoting the 
normal curvature in the direc tion of ja. by k*. It can 
be seen that if we had projected j a. and used Equa­
tion 15.40, we should have the first term only, and 
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the rPsult would be in error unless fa. is a principal 
direc tion (t = 0). Using Equation 7.14, we now have 

at/as= 11 ( 1/11) a.13ja.tf3-2Ht + k*t + 2kt +kt 

15.46 = n ( 1/ fl) a.f3j a. [f3+ 2kt. 

Covariant Derivatives 

48. As in the correspondin g case of isozenithal 
projection, we now consider, but without any loss 
of generality, that Lu is the unit tangent to afamify 
of curves defined in some way over a region of a 
particular N-surface. This enables us to cons id er I he 
azimuth a as a differentiable function of position. 
We write the covariant derivative in the form used 
in isozenithal proj ec tion (see § 14-38 ) as 

15.47 

Although this equation was obtained in (w, cj>, N) 
coordinates. it is, nevertheless, a surface tensor 
equation true in any coordinates, provided we treat 
w, <!> as scalar functions of position and not as coor­
dinates. Because we are now dealing with the same 
N-surfaces and with the same Cartesian axes. it is 
ev ident that w, cj> , as originally defined in the (w, 
<f>, N) sys tem. will have the same values; we can 
use Equations 12.032 and 12.031 and write 

aw/as = Yi sec <!> : 

49. We first different iate the term within paren· 
theses in Equation 15.47 and note that second 
derivatives. with respect to xf3 and N, commute. 
Also in these coordinates, WP have 

a a 
-=11-
as aN 

so that we have, for example, 

awf3 = II _..!!_(law)= II _..!!_ (YI sec <I>) 
as axf3 II as axf3 11 • 

Using Equation 1.5.43. we then have 

15.48 

11 s in <!>~(Yi sec <I>) 
ax II 

_ 11 _..!!_ (t + Yi tan <f>) 
axf3 11 

+ Y2 C(>S <I> Wf3 

= -yi</>{3 + Y2 cos </> Wf3 

+t (ln fl) fJ-tf3 

on expansion. Using Equations 12.061. 12.062. and 
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8.02, we can rewrite the first two terms as 

-yi<f>f:J + ( Y2 cos</> )wf:J = lf:J(ln 11 )y(tlY-1.j"Y) 

+ j{:J(ln 11),,(f.: * lY- fjY) 

= A'. b,;6 (ln 11),,{l.sj13-j.sl13} 

= /~b116 (ln 11 ),,E.s(:J 

15.49 = Q{:J, 

for instance, which shows that these two terms are 
a point function and that the only way a particular 
direction enters Equation 15.48 is through the geo­
desic torsion. Using Equation 8.0L we can also 
express the last relation as 

15.50 

50. We can now differentiate Equation 15.4 7 
without difficulty and find that 

15.51 

alaf:J =- 2Hlaf:J + klaf:J + ja{ Qf:J + t (ln n )f:J- t{:J} 
as 

In addition to the expressions given previously 
for Q13, we also find after some manipulation that 

15.52 

It is instructive to obtain the same result, rather 
more laboriously. by direct differentiation of the 
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defining equation 

laf:J = ala/iJx#-f~f:Jl,,, 

using formulas which have already been given 

51. If la is the surface gradient of a scalar f 
defined in space, then, as in § 14-40, we find 

a F af:J ( 1 a F) ~ { -a-= n --a +f 11 ba{:J11-ba11 0nn)f:J 
S 11 S a{3 

15.53 

where F 11 = a 116F.s and covariant derivatives are taker 
with respect to the surface metric. 

Geodesic Curvature 

52. To find the change in the geodesic curvatur1 
<T of la on projection. we differentiate the Equatio1 
12.065, 

which again is true in any surface coordinates fo 
the same N-surfaces. Using Equation 15.48 and th 
first line of Equation 15.49, we find 

d<r/iJs=kcr+(ln 11),,(tlY-f.j11)+t(ln 11)f:Jlf3-tf:Jlf3 

=kcr+2t(ln n)f:Jl#-k(ln n)f:Jjf3-tf:Jlf3. 

15.54 



CHAPTER 16 

Triply Orthogonal Systems 

GENERAL 

l. It is evident that the geometry of a normal 
coordinate system is simpler, than the geometry of 
the general (w, </>, N) system. As we shall see, the 
latter system has- the advantage that all three co­
ordinates are directly measurable quantities in 
many geodetic applications, whereas two of them 
in the normal system must be inferred from their 
values on a particular N-surface. Nevertheless, the 
normal system is of considerable theoretical value 
because it enables us to derive certain general 
results more simply than in other systems. We shall 
now inquire whether it is possible to achieve still 
greater simplification by adopting orthogonal sur­
face coordinates in a normal system, in which case 
all three coordinate lines would be mutually per­
pendicular and, in addition, would have the same 
direction as the gradients of the scalar coordinates. 

THE DARBOUX EQUATION 

2. A small displacement on a surface can be 
written as ox°' where x°' are the surface coordinates 
because this displacement amounts to a small 
change in the coordinates x°' over the line con­
sidered. If it is a displacement along a coordinate 
line, then a is either 1 or 2, but we prefer to keep 
the notation general and still write it as ox°'. The 
displacement ox°' can be considered a small contra­
variant surface vector. 
Now consider two small displacements ox°', oxl3 
along the surface coordinate lines and choose 
orthogona1 surface coordinates on the base surface 
so that, on the base surface, we have 

306-962 0-69-9 
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16.01 

If the coordinate lines are to remain orthogonal on 
the next N-surface, infinitesimally close to the base 
surface, then there must be no change in this re­
lation as we proceed from one surface to the other. 
In other words, the differential of Equation 16.01 
along the normal arc element ds must be zero. 
During this change, the ox °', ox/3 remain the same 
because, by definition , the surface coordinates 
are constant along the normals in a normal coordi­
nate system. Accordingly, we may write 

( aaa13/as )ox°'ox/3 = 0; 

from Equation 15.13, thi s is equivalent to 

16.02 

In this equation, we can replace ox°'' ox/3 by the 
unit vectors u °', vf3 in the coordinate directions 
simply by dividing by the lengths or mag11itudes of 
the two displacements so that 

ba13u°'1Jf3=0, 

which shows that the geodesic torsion in the co­
ordinate directions must be zero and therefore the 
coordinate lines on the base surface must be the 
lines of curvature. This is a well known, necessary 
condition, originally due to Dupin, for triply orthog­
onal systems. It is not , however, sufficient to ensure 
orthogonality throughout a finit e region of space. 
For this to be possible, the coordinate lines must re­
main lines of curvature on the surface next to the 
base surface. The situation on this next surface will 
then be the same as on the base surface; we can 
repeat the process to build up the entire field. In 
other words, the differential of Equation 16.02 along 
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the normals must be zero; using Equation 15.25, 
we must have 

n(l/n ),,f38x"8_~f3 - c,,f38x"8xf3 = 0. 

But because the displacements 8x", 8xf3 are in the 
principal directions, the second term is zero by 
Equation 7.25 so that we have finally 

16.03 (l/n )uf3ll"uf3 = 0. 

We can choose any one of the N-surfaces as the 
base surface so that this condition must apply to 
all of them. Moreover, it is evident from Equation 
8.26 that the condition is equivalent to 

16.04 

in space. s imply because (l/n) is a scalar. The form 
of the scalar N sett les not only n at any .point in 
space, but also the principal directions of the N­
surfaces. Accordingly, the condition of Equation 
16.04 restricts the form of N , which must arise from 
a solution of Equation 16.04 in order to b e one co­
ordinat e of a triply orthogonal system. 

3. The Equation 16.03 or 16.04 is equivalent to 
what is usually known as the Darboux equation in 
classical differential geometry; it is given by such 
writ e rs as Bianchi and Forsyt h in several more 
complicated forms. Forsyth 1 gives a Cartesian 
version of the Darboux equation , which is equivalent 
to the invariant form of Equation 16.04, although 
he does not derive it in the same way. 

4. Heferring to Equation 14.44, we find that 
Equation 16.03 is equivalent to 

(K1 -K2) (y1tan<f>-aA/as)=0. 

Unless Kt= K2,' in which c ase the N-surfaces are 
spheres whose lines of curvature are indefinit e, 
the Darboux equation can accordingly be expressed 
as 

16.05 a A/as = Yi tan </>. 

5. In the case of a field symmetrical about the 
Cartesian Cr-axis, we have seen in §12-48 that the 
meridians are principal directions (A = 0 every­
where) and Yi = 0 so that each side of this last 
equation is zero. Accordingly, the N-surfaces in 
such a sym metrical case are certainly possible 
triple orthogonals. but the Equation 16.05 the n is 
uversatisfied; we may conclude that some non­
symmetrical surfaces are also possible triple 
ort hogonals. O ne s uch case is a family of confocal 
triaxial ellipsoids as is well known. 

1 Forsy th (reprint of 1920), Lectures on the Differential Geometry 
of Cunies and S urfaces, original ed. of 1912. 437. 
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SOLUTIONS OF THE DARBOUX 
EQUATION 

6. Because u". vf3 must be the coordinate direc· 
]ions in a triply orthogonal coordinate system. 
Equation 16.03 can be written as 

m the surface metric; this can be expanded m 

16.06 ft a(l /n)+P a(l/n)_ 
12 axl 12 ax2 

This is a second-order linear partial differentia 
equation in the two independent variables x 1 anc 
x 2

, known usually in the theory of differentia 
equations as Laplace's equation (not to be qmfusec 
with the Laplace equation used in potential theory) 

7. Equation 16.06 is also known as Laplace'~ 

equation in classical differential geometry 2 when 
it arises because three particular solutions of th~ 
equation are the Cartesian space coordinate~ 
(x, y, z). We can very easily show, for example 
that x satisfies Equation 16.03 by using Equatior 
6.16 when we have 

(x ) ,,f3u"vf3 = v 1baf3ll"uf3= 0 

m which v 1 is the x-Cartesian component of th~ 
unit normal to the surface. In the same way, thfl 
equation is satisfied by y and z. 

8. We can also show that Equation 16.06 i~ 
satisfied by r 2 = g,.8 pr p 8 in which r is the radiu 
vector and pr is the position vector of a curren 
point on the surface. By surface covariant di 
ferentiation, we have 

and so we have 

( r 2 ) ,,13 u "vf3 = 0, 

provided only that u" , vf3 are the principal directions 

9. Moreover, because any function of N is cons tan 
under surface covariant diffe rentiation , we can sa 
at once that Equation 16.03 or 16.04 is satisfied b 

16.07 a + bx+ cy+ dz + er 2 

in which a, b, c, d, e are arbitrary functions of N 
This is a very general solution of the equation, bu 

2 Ibid. , 69. 
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still not the most general solution which would 
require two arbitrary function s, not of N only but 
of all three coordinates. Thi s result, first obtained 
by Darboux, is also derived by Forsyth.3 Anyone 
who doubt s the value of the te nsor calculus in such 
problems s hould compare the classical derivations 
with the derivation given here. 

3/bid., 447. 

llS 

10. It may help the reader to fiud bis way through 
the considerable classical lit erature on the subject 
if be realizes that the s urface tensor equation 

F af3U a ll f3 = 0, 

in which F is a scalar and the two vectors are the 
principal directions, is ca ll ed Laplace's equa tion 
when F is x , y, or z and is called the Darboux 
equal ion when F is ( 1/ n). 





CHAPTER 17 

The ( w, cp, h) Coordinate System 

GENERAL DESCRIPTION 
OF THE SYSTEM 

1. We have so far considered special coordinate 
systems in which a given family of N-surfaces are 
coordinate surfaces without applying any restriction 
on the form of the scalar N, other than continuity 
and differentiability. We now choose N to make the 
function n - the magnitude of the gradient of N - a 
constant which, without any real loss of generality , 
we can make unity. The form of the N-surfaces is 
then no longer as one chooses, but, as we shall 
see, one of the surfaces can st ill be chosen arbi­
trarily. This coordinate system is accordingly of 
value when we are concerned with space in the 
immediate vicinity of a given surface, which can 
be chosen to provide a close approximation to actual 
physical conditions. The geometry of the system is 
much simpler than that of the more general sys ­
tems so far considered, and by suitable c hoice of 
surface can be made even more simple. We can 
also use the system to derive easi ly some valuable 
properties of surfaces in general. 

2. In most current geodetic applications of this 
system, one of the surfaces is chosen to be a sphe­
roid whose minor axis lies in the Cartesian Cr-di­
rection and whose dimensions are chosen to make 
it a good approximatiou to an equipotential surface 
of the gravitational field. In s uch a system, it is 
possible to calculate finit e distances and direc ­
tions by means of closed formulas and so to linear­
ize the observation equations for measures which 
are necessarily made in the less regular gravitational 
field. The problem usually involves a transformation 

.of one N-system into another; a spheroidal (w, (j), h) 
system (known as the geodetic system) into a 
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(w, </>, N) system (known as the astronomical sys­
te m) in which the N-surfaces are gravitational 
equipote ntial or leve l surfaces modified by the 
rotation of the Earth. 

3. In the present chapter, however. we shall 
derive general formulas which do not involve th e 
choice of a s pheroid as a special case. The result s 
can then be used for other applications , such as the 
choice of the geoid as a surface in this coordinate 
sys tem. Modification of these more general result s 
to the special choice of a spheroid as base surface 
is a very simple matter which will be treat e d in 
the next chapter. 

4. The basic gradient equation for the coordinate 
N with n = 1 becomes 

17.01 Nr=v,., 

which can be differentiated covariantly as 

17.02 Nrs= llrs-

showing that the tensor llrs, like N,.s, must be 
sym metrical. The vector curvature of the normals 
is then 

17.03 

because Vs is a unit vector. See Equation 3.19. 
Consequently, we find from §4-2 that the normals 
are space geodesics, that is, straight lines in flat 
space. If h is a le ngth measured along the normal , 
we have from Equation 17.01 

aN/ah =N,.vr= 1 

so that we can take N as h - measured from one 
particular N-surface which we shall call the base 
surface. It is evident that equal lengths of th e 
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straight normals are intercepted by two particular 
N-surfaces which are, for this reason, known as 
parallel surfaces. 

5. Because n = 1, it follows at once from Equations 
12.097 that the isozenithals are the same as the 
normals. The (w, <J>, N) and the normal coordinate 
systems become the same; we can derive the 
properties of this special system from either the 
(w, ¢, N) or the normal system , whichever is easier, 
simply by making 11 = 1 and N = h. Because latitude 
and longitude, as defined in the (w, ¢, N) system, 
will be constant along the isozenithal-normals, 
we can use them as coordinates-not only on the 
base surface, but also in space. 

6. It is evident that the Darboux equation of 
Equation 16.04 is satisfied if 11 is a constant so 
that we could choose triply orthogonal coordinates. 
In general, however, we could not use in that case 
latitude and longitude. We would have to refer the 
base surface to its lines of curvature and to define 
the resulting coordinates as constant along the 
normals, just as we did in the normal system. 
We have already seen from a 12 in Equations 
12.069 that the w- and ¢-coordinate lines are not 
orthogonal unless t1 = 0, corresponding to the 
axially symmetrical system discussed in § 12-48. 
In that case, but not otherwise, the w- and ¢-lines 
also would be the lines of curvature, and we could 
take latitude and longitude, together with h , as 
triply orthogo-nal coordinates. 

7. For the present, however, we shall retain a 
general nonsymmetrical form for the base surface; 
unless otherwise stated, we shall assume that the 
surface coordinates are latitude and longitude. We 
can then use all the surface formulas in the (w, <J>, N) 
system, that is, any formula not containing Nor n . 
In fact, the whole system becomes a special case 
of the (w, ¢, N) system or the normal system with 
n=l, N=h, and ds = dh. However, we shall find 
that some useful integral relationships can also be 
obtained in this special system which are not 
available in the general (w, ¢, N) system. 

THE FUNDAMENTAL FORMS 

8. The space metric in these coordinates, ob­
tained by making n = 1 in the normal syste m of 
Equations 15.03 and 15.05 , is 

17.04 

with the associated tensor 

17.05 
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It is evident that a°'f3 and aaf3 are also components oJ 
the h-surface metric, if as usual we make tht: 
surface coordinates two of the space coordinates 
This will be done throughout this chapter in whid 
also, as stated previously, the surface coordinate~ 
will be latitude and longitude. 

9. The components of the metric tensor wiU 
depend on h. As in the normal system Equatiou 
15.13, we have 

17.06 

from either Equation 15.25 or 14.01, we have 

17.07 aba13liJh=-caf3· 

The third fundamental form, as in Equation 14.08. 
is constant along the isozenithal-normal so that wt: 
have 

17.08 dCaf3liJh=0. 

10. If overbars refer to the base surface where 
h = 0, we have accordingly the following integral 
relations, 

17.09 

17.10 

17.11 

aa13 = aa13- 2hba13 + h2caf3 

baf3 = baf3 - hcaf3 

enabling us to find all three fundamental forms at 
any point in space from values at the foot of the 
normal on the base surface -that is, from values at 
points on the base surface having the same latitude 
and longitude as the point in space. 

11. The components of the three surface form 
in terms of the three curvature parameters (k1 
k2, t1) of the h-surfaces are as given in the (w, ¢ , N) 
system , namely, 

a11=(k~+ti) cos2 <PIK2 

a12=-2Ht1 cos <PIK2 

a22 = (kj + tnf K2 

b11 = k2 cos2 <Pl K 

b12=-t1 cos <PIK 
b22= ki!K 

17.12 Ca13=(cos2 </>, 0, 1): 

12. If we denote the corresponding component 
on the base surface b y overbars and substitute i 
Equation 17.10, we have 

17.13 

k2I K = k2 I K - h 

ti/K = Ti. IK 

ki/K = Ii!K - h, 

which e nable us to find the three curvature param 
eters at any point in space, given their value 
on the base surface. Multiplying the first and thir 
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equations and subtracting the square of the second, 
we have 

17.14 l/K = l/K-(2H/K)h + h2 

or 

17.15 

using the principal curvatures Kt, Kz. Also by adding 
the first and third equations of Equations 17.13, 
we have 

17.16 2H/K = 2H/K-2h , 

which relate the curvature invariants of the 
h-surfaces. 

13. We can also find without difficulty that 

17.17 

17.18 

17.19 

aaf3/!(2 = aaf3/K2-2h7Jaf3/K+ 1i2zaf3 

baf3 I K = baf3 I K - h caf3 

, from the contravariant components 

a 11 = (ki + ti) sec2 </> 

a 12 = 2Hti sec</> 

b11 = k1 sec2 </> 

b12 =t i sec <f> 

b22 = k2 a22 = (.q +ti) 

17.20 caf3= (sec2 <f>, 0, 1). 

14. In regard to the determinants of the three 
forms, we have from Equations 12.070, 12.076, 
and 12.084 

cos2 <f> = K2a = Kb =c, 

and because </> is constant along a normal in these 
coordinates, we have 

a b2 K2 
-==-=-· 17.21 

15. Because we can take any one of the h-surfaces 
as base surface, we can interchange the overbars 
in any of the preceding formulas, provided we also 
change the sign of h. For example, 

a.af3/"f(2 = aaf3/K2 + 2hbaf3/K + h2caf3 

gives us the base metric tensor in terms of the three 
forms of the h-surface. This device is a useful c heck 
even when not required to generate new formulas. 

16. We can differentiate any of these integral 
formulas along the normal. For example, Equation 
17.14 becomes 

-(l/K)(a In K/ah)=-2R!K+2h ; 
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in the neighborhood of the base surface h = 0, this is 

a(ln K)/ah=2H. 

But because we may take any surface of the family 
as base surface, we can drop the overbars and write 

17.22 a(Jn K)/ah = 2H. 

THE BASE VECTORS 

17. Components of the base vectors are given at 
once by making n = 1 in the (w , <f> , N) formulas, 
such as in Equations 12.037, 

17.23 

17.24 

17.25 

17.26 

17.27 

17.28 

A.,.=(-k1 sec <f>,-ti, 0) 

µ,. =(-t1 sec</>, -k2, 0) 

vr= (0, 0 , 1) 

KA.,.= (- k2 cos</>, +ti , 0) 

Kµ,.=(+ti cos <f>, -k1, 0) 

v,.= (0, 0, 1). 

Because any surface vector can be expressed in 
terms of A.,., µ,., it follows that the 3-components, 
covariant and contravariant, of all surface vectors 
are zero. The surface components are the first two­
space components. 
We have also from Equations 12.046 and 12.047 

17.29 

17.30 

(cos <f>)w,.=-ki'A.,.- t1µ,. 

<f>,.=- tiA.,.-kzµ,.. 

18. In regard to the derivatives of the base vectors, 
we have, a s in Equations 12.022, 12.023, 12.024, and 
12.074, 

Aaf3 = µaW f3 sin </> 

µa{J =- AaW[3 sin </> 

17.31 Vaf3 =- baf3=(cos </>)AaWf3+µa<f>f3 , 

whether the components of Aaf3, µaf3 are taken in 
the space metric or in the surface metric. The only 
nonze ro components containing a 3-index are from 
Equations 12.014, etc., 

17.32 A 31 =-cos</> ; µ 32=- l. 

19. As in (w , <f> , N) , all three base vectors remain 
parallel if translated along an isozenithal-nonnal. 

20. Second derivatives of the base vectors ca n be 
found at once from Equations 12.159 and 12.160 or 
by direct calculation. For instance, we have 

Aa[J:l = A a3{3 =sin </> µ ab1
YC[3Y 

17.33 Va33 = 0. 
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THE PRINCIPAL DIRECTIONS AND 
CURVATURES 

21. It follows at once from Equations 17.13 that 

ti/(k1 - kz) = l1/(k1 - k2 ), 

and therefore from Equation 12.051 we have 

A=A 
so that the azimuth of a principal direction remains 
the same at all points along a normal. We could 
accordingly take the principal directions at a point 
as the meridian and parallel directions in a tern· 
porary coordinate system, in which case Equations 
17.13 would apply to the principal curvatures Ki, 

Kz as 

17.34 

or 

17.35 

Kz/K = ·RjK-h 

K1/K = K.i{K-h 

(l/K1) = (l/K1)- h 

(1/ Kz) = (l/'R.2)- h. 

(The geodesic torsions are, of course, zero for the 
principal directions.) These last two equations 
reduce to a statement that the principal radii of 
curvature at points on the same normal differ by h. 
We must remember, however, that in the case of 
surfaces which are convex to the outward-drawn 
normal, such as we normally encounter in geodesy, 
the radii of curvature are negative, whereas h is 
positive along the outward-drawn normal. 

22. Another way of viewing this matter is to con­
sider the surface-normals at neighboring points 
along a line of curvature. We know that the normals 
then intersect in the center of curvature. Also, 
corresponding points on different h-surfaces will 
have the same straight normals. Consequently, 
the center of curvature will be the same at corre­
sponding points on the lines of curvature of all the 
lz-surfaces, which proves the previously mentioned 
statement about the principal radii of curvature. 
We can also say that the total angle swept out by 
the surface-normal along a line of curvature is the 
same between corresponding points on all the 
h-surfaces. 

THE CHRISTOFFEL SYMBOLS 

23. Recause vY= 0 in these coordinates, we can 
see at once from Equation 12.131 that 

r~/3 
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is the same for both the space and surface metrics, 
just as it is in normal coordinates. 

24. Again, by making n = 1 in the (w, ¢, N) 
formulas, we find that the only nonzero symbols 
containing a 3-index are 

r~13 = ba.13 

17.36 

LAPLACIANS OF THE COORDINATES 

25. Because N = h and n = 1, we have at once 
from Equation 12.100 

17.37 D.h=-2H; 

from Equations 12.104 and 12.105, we have 

17.38 (cos ¢).:iw=2(sin ¢)'\l(w, <P)-(2H)a.A.a 

17.39 

with 

17.40 

17.41 

Li¢ =-(sin <P cos ¢)\l(w)- (2H)aµ,a 

\l(w, ¢)=a 12 =2Ht1 sec <P 

V'(w)= a11 = (ki+ ti) sec2 ¢, 

using Equations 17.20. 
It should be noted that the space Laplacians in 
Equations 17.38 and 17.39 are the same as the 
surface Laplacians, obtained in (w, ¢, N) coordinates 
as Equations 12.118 and 12.120. Although we have 
defined the coordinates (w, ¢) in the same way for 
both systems, they do not have the same values 
at any point in space because the two normals do 
not have the same direction. Consequently, the 
space Laplacians are different in the two systems. 
We can, however, choose any one of the N-s urfaces 
as base surface in the (w, ¢, h) system; and on that 
surface, (w, <P) will be the same. Consequently, the 
surf ace Laplacians will be the same in the two 
systems. 

26. The general Equation 8.29, for converting th 
surface Laplacian of a scalar to the space Laplacian 
becomes in these coordinates 

17.42 - aF a"!F 
LiF = LiF-2H ah+ ah?. 

in which the surface Laplacian is denoted by a 
overbar. This equation shows again that the spac 
and surface Laplacians of the coordinates (w, <P 
are the same in this system. 
Using Equation 17.22, we may express Equatio 
17.42 in the alternative form 

17.43 LiF=LiF+K - -- · - a ~1 aF) 
ah Kah 
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CHANGE OF SCALE AND AZIMUTH 
IN NORMAL PROJECTION 

27. Projection from one h-surface tu the base 
surface down the isozenithal-normals requires the 
surface coordinates (w, </>) to be the same for a 
point and it s projection. W e consider a displace­
ment on the current s urface given by a change 
dxa in s urface coordinat es over an ele me nt of le ngth 
ds in the direction of a unit vector [a; the corre­
sponding quantities , projec ted on the base s urface, 
are denoted by overbars. Accordingly, we have 

fads = dxa = dia =/ad.~. 

If now we multiply the three Equations 17.09, 17.10, 
and 17.11 by (dxadxf3), we have at once 

17.44 

( ds/ds) 2 = 1 - 2hk + h 2 (k2+12) 

(ds/ds) 2k= I-h(k'! + i'!) 

in which T:, i are the normal curva ture and geodesic 
torsion of the base surface in the projected direc­
tion. The las t of these formula s applies to isozenithal 
projection in the general coordinates (w, <J>, N) and 
could be obtained from the formula for spherical 
representation, but the other two formulas are 
peculiar to the (w, </> , h) syste m. 

28. Following Equations 13.04 and 13.05, we c an 
also relat e azimuths on the two surfaces as follows, 

(ds/ds) (k cos a+ t sin a) =-a<J>/as 

= ( k cos a + t sin a) 

(ds/ds)(k sin a-t cos a) = - cos </> aw/as-

11.45 = (k s in ti-t- cos a); 

if the change in azimuth on projection is 

Lla= (ti-a) , 

we have the equivalent equations 

(ds/ds)k = (k cos Lla + t sin Lla) 

17.46 (ds/ds)t = (-k sin Lla+ t cos Lla). 

The only solution of the first of these equations 
which will also satisfy the firs t two equations of 
Equations 17.44 is 

(ds/ds) sin Lla =-ht­

17.47 (ds/ds) cos Lla = (1-hk), 

in which case the second equation of Equations 
17.46 reduces to 

17.48 ( ds/ds) 2 t = l. 
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Combined with the third eq ua tion of Equations 
17.44, thi s s hows that 

17.49 

is unaltered on projection ; we can verify this fact 
by differentiation , using formulas given in th e 
Summary of Formulas. 

29. In all the preceding equations, we can inter­
change the overbars; the interchange is eq uiva le nt 
to taking the unbarred s urface as the base surface, 
provided we also change the s ign of h and da. For 
example, from Equations 17.47, we have 

17.50 
-hl 

tan Lla = (1-hk) 
- ht 

(l+hk)' 

from Equations 17 .44, we have 

17.51 

This device, applied to the firs t equation of Equa­
tions 17.47, e nables us to ve rify Equation 17.48. 

THE h-DIFFERENTIATION 

30. Some formula s for differentiating the com po­
nents of surface tensors, etc., along the straight 
normals have been given in previous sect ions of 
this c hapte r. Many more can be obtained from the 
co llected formulas in the Summary of Formulas for 
C hapte rs 14 and 15 , whichever is eas ie r , s imply 
by substituting n = 1, N = h, ds = dh. This fact 
results in drastic simplification. For example, 
from Equations 14.14, 17.07, and 8.09, we have 

-(-)/ f'/jy =- (baf>Cf3f,)y = - (aa5b131i}y = - aaf>b/31'.Y ; a 1 

17.52 

from Equations 14. 16 and 14.07, we have 

17.53 

showing that bu/3Y has the same component s at all 
points along a s traight normal. 

31. Again , from Equation 14.71 or 15.53, we have 
for the s urface covariant de rivati ves of a scala r F 

17.54 aF"13 _ (aF) yo 
Ah - ah u/3 +a Fiibu/3Y· 

This last equation contrac ts to 

17.55 AFut3 - ( aF ) -aa/3 --= Ll - + \1(2H F) 
ah ah ' 
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in which the overbars indicate surface invariants. 
Using Equation 15.15, we then have after a little 
manipulation 

a(::)=~ G~) + V(2H' F): + 4H ~F- 2Kbaf3Faf3· 

17.56 

32. In some cases, we could obtain such results 
quickly and directly in (w, </>, h) coordinates, but 
by deriving in this way, we have them as a byproduct 
of work already done in the more complicated co­
ordinate systems. 
Collected formulas obtained from those given in 
the Summary of Formulas for Chapters 14 and 15 are 
also included in the Summary of Formulas for this 
chapter under h-differentiation without further 
proof, together with some integral formulas which 
have either been obtained previously or can be veri· 
fied easily. There are no corresponding integral for­
mulas in the (w, <f>, N) or normal coordinate systems. 

EXAMPLES OF h-DIFFERENTIATION 

33. The process of differentiating a surface tensor 
equation along the normals is equiv.alent to assert­
ing that a similar formula holds true between the 
projected quantities on the neighboring h-surface. 
We do not restrict the form of a surface by using 
it as a base surface in a (w, </>, h) system, provided 
that adjacent normals do not intersect within the 
region of space considered; if they do, the (w, </>) 
coordinates of the point of intersection then would 
not be single valued. We can usually avoid this , at 
any rate over some finite area of the surface, by 
choosing the positive h-direction in the direction 
of divergent normals. 

34. Consequently, any surface tensor equation 
which is true on any regular surface can be differ­
entiated along the normals by means of the formula~ 
given in the Summary of Formulas under h-differen­
tiation. The result, possibly with the help of the origi­
nal equation , will either be an identity-in which 
case the original equation is verified- or will be 
some new relation between surface tensors or in­
variants. If any limits are imposed in the original 
equation, such as a closed contour , then it is 
assumed that these limits are projected onto the 
neighboring h-surface. 

35. As an illustration of the process, we shall 
consider the two-dimensional tensor form of Stokes' 
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theorem in Equation 9.04, 

le Iv.Tads = L Eaf3 f13adS, 

in which la is an arbitrary unit surface vector fielc 
defined on and within the contour and Ta is the uni 
tangent vector to the contour. We note first, witl 
the help of formulas given in the Summary oJ 
Formulas under h-differentiation, that we have 

a (Eaf3dS) /ah= 2HEaf3dS- 2HEaf3dS = 0 

so that (E af3d5) is constant under normal differ 
entiation. So (Tads) also is constant because it i~ 
equal to a change in surface coordinates along tht 
contours. Consequently, we have at once 

le (kla+ 2tja)Tads= L Eaf3{k*l13a + j13(a1/axf3) }dS 

in which k, t refer to the /a-direction and k* to tht 
perpendicular j a-field. Next, we transform each ol 
the contour integrals to area integrals. For example 
we have 

L klaTads = L Eaf3(k/13) adS 

= L {kEaf3 f13a + Eaf3/13(ak/axa) }dS. 

The final area integrand, after some manipulation 
with Equations 2.32, 4.11 , etc. , becomes 

17.57 (j (k-k*) + 2ta-* + t13l13 - k13j13 

in which a-, a- * are the geodesic curvatures of fa, / 
and t13, k13 are the differentials oft, k with respect t 
the x/3-coordinate. Because fa is a surface ve~to 
fi eld, t and k are point functions which can b 
differentiated in any direction. The area over whic 
this integral is taken is quite arbitrary, apd becaus 
the result is identically zero, then the integrand o 
Equation 17.57 must be zero. At first , this does no 
look likely, but reference to Equations 14.22 an 
14.21 will show that the integrand is equivalent t 

-ba13y/a/f3jY+ ba/3Yfaj/3/Y , 

which vanishes because of the Codazzi Equatio 
6.21, 

36. The equation 

17.58 a-(k-k*)+2ta-*+t13 /l3 -k13j!3=0 

for an arbitrary orthogonal mesh fa, ja together wit 
the corresponding equation for the ja-direction 

17.59 u*(k* - k) + 2ta--t13jl3+ k%ff3= 0 
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are accordingly equivalent to the Codazzi equations 
of a surface. In deriving Equation 17.59 from Equa­
tion 17.58 for the ja-curves, for which the geodesic 
curvature and torsion are <T* and minus t and the 
normal curvature is k*, we must remember that the 
new ja-direction is minus fa. In this direction of the 
/a-curves, the geodesic curvature is minus <T, but 
the normal curvature is + k. 

37. For the lines of curvature (ua, ti'), t = 0 and 
Equations 17 .58 and 17 .59 reduce to 

17.60 

(Ki - K2)<T= (Ki)ava 

(Kt - K2)<T* = (Kz)aua, 

which have been already given in Equations 8.22 
as special forms of the Codazzi equations. 

38. As another example, consider the two­
dimensional divergence theorem in the form of 
Equation 9.12, 

17.61 

in which F is an arbitrary scalar defined on and in 
the immediate neighborhood of the surface. As 
before, to ensure that the unit surface vector nor­
mal to the contour stays that way after differentia­
tion instead of becoming the projected direction, 
we have written it in the form ( Ef3af13) where 113 is the 
unit vector tangent to the contour. After normal 
differentiation , the contour integrand becomes 

(aF/ah) aEaf3 /13 + 2HFaEaf3/13 

-FaEaf3(k/13 + 2tj13) -FaEaf3/13k 

and the area integrand becomes 

D..(aF/ah) + \J(2H, F) +2HAF-2Kbaf3Faf3· 

The first contour integral cancels the first area 
integral by the divergence theorem for the scalar 
(aF/ah). The second contour integral , transformed 
to an area integral , becomes 

the integrand of which is 

\J(2H,F) +2HAF. 

This last formula cancels the second and third 
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terms of the main area integrand: we are left wi th 

L Kbaf3Fa13dS = L FaEa{3 (kl13 + tj13) ds 

= L. (-kFa}a+ tFafa)ds 

17.62 =-L Kbaf3Fa}13ds, 

using Equations 7 .12 and 8.02. 

To verify this, we could differentiate again , using 
the second form of the contour integral, which 
does not contain j13 explicitly, and remembering 
that (KdS) is constant under normal differentiation. 
The result is an identity. 
We cannot take the third form of the contour integral 
and transform this by the divergence and Stokes' 
theorems because k, t refer to the boundary curve 
only and are not defined over the area. We coul( 
however, transform the second contour integral 
by Stokes' theorem. Or, we can transform the last 
form of the contour integral by the divergence 
theorem to an area integral whose integrand is 

Because a 1315 is constant under covariant differentia­
tion, this last expression is 

Combining this last equation with the original 
Equation 17.62 for an arbitrary area, we mu st have 

and because F is arbitrary. this means that 

17.63 

Or. using Equation 8.01, we have 

l EayEf3°by15) {3 = 0 = EayEf3°bYof3, 

which is so because bYof3 is symmetrical in (o, /3) by 
virtue of the Codazzi equations of the surface. 
Again , we have verified the process and ha ve 
checked a number of other results on the way. The 
form of the Codazzi equations in Equation 17.63 
is somet imes useful and, although easy to verify, 
might otherwise have escaped notice. 
If we differentiate Equation 8.02 covariantly. use 
Equation 4.11, and substitute in Equation 17.63 , we 
obtain the Codazzi equations in the form of Equa­
tions 17.58 and 17.59. 
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THE POSITION VECTOR 

39. If pr is the position vector at a point in space 
and pr is the position vector of the projected point 
on the base surface, then 

17.64 

is evidently true in Cartesian coordinates or be­
tween parallel vectors at a single point in space. 
Equation 12.169, written for the projected point on 
the base surface, is 

17.65 

in which p is the perpendicular from the origin onto 
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the tangent plane to the base surface at the projected 
point. The base vectors ~r, i]f, ;;r are parallel to 
>-._r, µ./, vr (see § 17-19) so that we may drop the 
overbars on these vectors in Cartesian coordinates. 
Substituting in Equation 17.64, we have 

pr= (sec</> aPf aw)>-..r+ (ap/iJ<f>)µ,r+ (jJ + h)vr, 

17.66 

an equation between vectors at the same point ir, 
space which, although derived in Cartesian coordi 
nates, is true in any coordinates. 
Contracting Equation 17.64 ' with vr=iir, we havf' 
also 

17.67 p=p+h. 



CHAPTER 18 

Symmetrical ( w, cp, h) Systems 

DEFINITION 

l. We shall now introduce a mm1mum simpli­
fication into the general (w, <f>, h) system by making 
the parameter l1 zero at all points of the base sur­
face, in which case it is clear from Equations 17.13 
that l1 will be zero at all points in the region of space 
covered by the coordinate system. As we have seen 
in § 12-48, the meridian and parallel traces on 
any lz-surface are then the latitude- and longitude­
coordinate lines which are accordingly orthogonal; 
it is clear from § 17-6 that the (w, <f>, h) system is 
triply orthogonal. The w, </> coordinate lines are 
lines of curvature, and the parameters ki, k2 are 
the principal curvatures Ki, K2 of the lz-surfaces. In 
addition to being the </>-coordinate lines, the merid­
ian traces are lz-surface geodesics and plane curves 
(see § 12-48). 

2. Later, we shall introduce an extra condition, 
requiring the lz-surfaces to be surfaces of revolution 
about a Cr-axis passing through the Cartesian origin. 
This does not affect the differential geometry of 
the field; the condition arises through the choice 
of constants of integration of the Codazzi equations. 

PRINCIPAL RADII OF CURVATURE 

3. We shall find it simpler at this stage to intro­
duce the principal radii of curvature Ri, R2 in the 
parallel and meridian directions in place of the 
principal curvatures K1 = k1 and K2 = k2 • The closed 
surfaces, which mostly concern us, will have 
negative curvature in the usual conventions because 
the centers of curvature will lie in the opposite 
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direction to the outward-drawn normal. Accordingly, 
we make R 1, R2 positive by writing 

R1 = - l/k1 =- l/K1 

18.01 R2 =-l/k2=- l/K.2, 

in which case we have from Equations 17.13 

R1 =R1+h 

18.02 

These equations enable us to express the radii of 
curvature of the lz-surfaces at any point in space in 
terms of their values on the base surface at a point 
having the same latitude and longitude. See also 
§ 17-22. 

COLLECTED FORMULAS 

4. Most of the formulas for this coordinate 
system can be obtained simply by making l1=0 in 
the formulas of Chapter 17 or by making l1=0, 
n=l, N=h, y1=y2 = 0 in the formulas of Chapter 
12. Nevertheless, we shall list for easy reference 
certain formulas relating to this system and shall 
give a reference on the right to the original formula. 

The Fundamental Forms 

5. Components of the metric tensor and of the 
three fundamental forms are given by 

18.03 grs = (aa13, 1) 

17.04; 17.05 

18.04 aa13= { (R1 + h) 2 cos2 </>, 0, (R2 + h):?} 
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l8.05 

18.06 

18.07 

18.08 

18.09 

b,,13={-(R1+h) cos2 </>, 0, -(R2 + h)} 

17.12 

c,,13= {cos2 </>, 0, l} 

a"13 = {sec2 </>/(R1 +h) 2
, 0, l/(R2 +h) 2 } 

b"/3= {- sec2 </>/(R1 + h), 0, - l/(R2+ h)} 

17.20 

c"/3= {sec2 <f>, 0, l} . 

The Base Vectors 

6. Components of the base vectors and principal 
directions are 

J...r= ur= {sec </>f(R1 + h) , 0, O} 

µf=vr = {O , l/(R2+h), O} 

18.10 vr= {O , 0, l} 17.23, etc. 

18.11 

Ar = u,.={(R1+h) cos </> , 0, O} 

/J-r= vr = {O , (R2 + h) , O} 

vr= {O, 0, l}. 

T he surface com ponent s of J...r , µr , Ar . IJ-r are the 
same as the first two space compone nt s. 

7. For the gradients of the coordinates, we have 

18.12 

18.13 

(cos <f>)wr= Ar/(R1 +h) 

</>r = µ,./(R2 + h). 

17.29 

17.30 

8. A unit vector fr in azimuth a and zenith dis­
tance f3 is 

11·= /...'" sin a sin f3 + µr cos a sin f3 + v1
• cos {3: 

its components are 

tr= { sec </> sin a sin f3 cos ': sin f3 cos } 
(R1+h) ' (R2+hl' f3 

lr = { (R1 + h)cos </>sin a sin {3. 

18.14 (R2 + h) cos a sin {3 , cos {3}. 

Derivatives of Base Vectors 

9. T he only nonzero component s are 

18.15 

18.16 

A:n =-cos </> 

17.31 

fJ-11 =- (R1+h) sin</> cos</>: µ;i2=-l 

17.32 
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18.17 V11 = (R1 + h) cos2 </> : 

The components A21 , fJ-11 have the same values i 
the surface and space metrics. 

Surf ace Curvatures 

10. Normal curvature and geodesic torsion 1 

azimuth a are 

18.18 

18.19 

-k=l/R 

=sin2 a/(R1+h)+cos2 a/(R2+h) 

12.04 1 

12.05l 

The meridians µr or v1
• are geodesics. 12. 06 

Geodesic curvature of the parallels Ar or u 1• is 

18.20 12.06' 

Geodesic curvature in azimuth a, arc element di i 

18.21 a- = tan </>sin a/(R1+h)-aa/al. 

12.06~ 

Codazzi Equations 

11. The Codazzi equations for all the h-surfac., 
reduce to these two, 

18.22 
aR.1 - -
fie/> = (R1 -R2) tan </> 12.13 

18.23 aR.2=o 
fiu.J ' 

12.13 

because h cancels on substitution in Equatio 
12.134 and 12.135, and we can accordingly drop t 
overbars. The remaining Codazzi equations of t 
s pace are 

18.24 12.14 

which are satisfied by expressing the fundament 
forms as in Equations 18.05 and 18.06. 

12. Over a particular surface, Equation 18.2 
shows that R2 is a function of latitude only. Th 
implies that all the meridians of the surface, whic 
we have seen are plane curves, must be supe 
imposable in much the same way as two circl 
of the same radius can be superimposed. Th 
condition is met if we take the h-surfaces as surfac 
of revolution about the Cr-axis passing through t 
Cartesian origin; it will be sufficient for our purpos 
to do so, although this restriction is not require 
by the differential relations. If the h-surfac 
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are surfaces of revolution , then the parallels are 
circles of radius R1 cos </> (§ 12-49); R1 over a 
particular surface is also a fun ction of latitude 
only. 
Again, this condition is not necessary to satisfy 
the differential relations. The other Codazzi Equa­
tion 18.22 would be satis fi ed if 

R1 = g(<f>) +sec</> j(w) 

where g (<f>) is some fun ction of latitude and j(w) 
is an arbitrary function of longitude. If the Ii-sur­
faces are of revolution, then the arbitrary function 
of longitude res ulting from the integration of the 
Codazzi Equation 18.22 is zero. The integral of 
this equation is then 

18.25 R1 cos <f>=-J R2 sin</> d<f>. 

The Position Vector 

13. In Equation 12.169, we found an equation for 
the position vector in terms of the perpendicular p 
from the Cartesian origin to the tangent plane of 
an N-surfaGe. If the N-s urfaces . are of revolution 
about the Cr-axis through the Cartesian origin, 
then from conside rations of symmetry, we have 

<Jp/<Jw = O; 

thus we obtain from Equation 12.172 

18.26 x sin w=y cos W· 

In this case . we find from § 12-49 that the radius 
' of the parallel is 

18.27 

so that from Equations 18.26 and 18.27 we can write 

x = RI cos </> cos w 

18.28 y= R1 cos</> sin w. 

14. As we proceed northward along a meridian 
over the closed surface, we have 

18.29 dz=- {cot <f>)d(Ri cos </>). 

Using Equation 18.25 or integrating by parts, we 
can then express the z-coordinate with a suitable 
choice of limits in any of the three following forms, 

z =I R 2 cos </> d<f> 

=-R1 cos</> cot</>- J R1 cos </> cosec2 </> d<f> 

= R1 sin</>-J (R1 -R2) sec</> d<f>· 

18.30 
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Substituting these forms and Equations 18.28 in 
12.170 and 12.171, we have 

p=R1cos2 <f> + sin</> J R'!.cos<f> d<f> 

=-sin</> J R 1 cos <f> cosec2 </> d<f> 

18.31 =R1-sin<f> J (R1-R2) sec</> d<f> 

dp/d<f>=-R1 sin</> cos</>+ cos</> J R2 cos</> d<f> 

=- R1 cot <f>- cos </> J R 1 cos <f> cosec2 </> d<f> 

=-cos</> J (R1 - R2) sec</> d<f>. 

18.32 

15. The last four sets of equations apply to any 
surface of revolution and therefore to the Ii-sur­
faces of any axially symmetrical sys tem. If we 
d istinguish these equations by overbars on R 1, 
R2, a nd p, they apply to the base surface in a sym­
metrical ( w, <f>, h) system. The position vector of 
any point in space in this system is then given by 
Equation 17 .66 as 

18.33 

Christoffel Symbols 

16. The only nonzero symbols are 

q1=(R1+h) sin<f>cos<f>/(R2+h) 

fl2=-(R2+h) tan<f>/(Ri+h) 

18.34 f J2 = a ln (:~ + h >, 12. 12 9 

all in the surface or space metric, and 

18.35 

rr1 =- (R1 + h) cos2 </> 

rl2 =- (R2+h) 

fl3 = l/ (R1 +h) 

fi3 = 1/ (R2 + h). 

Higher D erivatives of Base Vectors 

17.36 

17. Second derivatives of the base vectors can 
be found direct from Equations 18.15, 18.16, 18.17, 
together with the Christoffel symbols in Equations 
18.34 and 18.35, or by substitution in previous 
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formulas. For example, we have 

18.36 i\213=-(R2+h) sin <f>/(R1 +h), 

with all other i\a133 zero; we have 

18.37 f.l113 = sin <f> cos <f>, 

with all other f.la/33 zero; and we have 

18.38 

18.39 

18.40 

Va133=-ca13 

Aa33 = /.la33 = Va33 = 0 

VaflY = - ba{lY 

12.159 

12.159 

12.159 

12.160 

12.161 

18.41 + (R1 -R2) sin<!> cos <f>(o:,a~+ o~oh)o~. 

8.16 

Laplacians of the Coordinates 

18. As in Equation 17 .37, we have 

18.42 l:!t.h=-2H; 

also in the symmetrical (w, <f>, h) system, we have 

'V(w, <f>)=O 18.43 

18.44 (cos2 <f>)'V(w) = l/(R1 +h) 2
, 

17.40 

17.41 

leading to 

18.45 l:!t.w=O 17.38 

because both principal curvatures and thus (2H) 
are independent of w, and therefore constant rn 
the i\r-direction. We have also 

l:!t.<f>=-tan <f>/(R1+h) 2 -(2H)af.la 

l8.46 
tan <f> 

(R1+h)(R2+h) 
1 dR2 

(R2 + h) 3 d<f> . 

17.39 

The second (alternative) expression may be ob­
tained either by manipulating the first, or direct 
from the defining equation 

l:!t.<f> =- grsns, 

using components of the metric tensor and the 
Christoffel symbols already given. 
The surface and space Laplacians of w and <f> are 
the same. 

SURFACE GEODESICS 

19. If a is the azimuth of its spherical repre­
sentation, the differential equation of any curve on 
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any surface is obtained at once from Equations 13.0L 
and 13.05 as 

18.47 

_ k1 sin a+t1 cos a 
tan a= . 

kz cos a+ t1 srn a 

k sin a - t cos a 

k cos a+ t sin a 

If the curve is a geodesic of the surface, we havt 
also from § 12-4 7 

18.48 da = sin <f> dw 

along the curve so that 

18.49 

.+. aa k1 sin a+t1 cos a 
cot'¥-=------­

a<f> kz cos a + t1 sin a 

k sin a - t cos a 

k cos a+ t sin a 

If ki, k2, t1 are specified as functions of w, <f> anc 
if we then assume that the curve belongs to some 
family of geodesics defined over some region o 
the surface, we can integrate this equatio1 
numerically. 

20. In the case we are considering (t1=0 
k1, k2 functions of <f> only), the equation become~ 
the ordinary differential equation 

cot a da= (R2/Ri) tan<f> d<f> 

=- { (R1 -R2)/Ri} tan <f> d<f>+ tan <f> d<f> 

= - ( 1/ R i) '( dR ii d<f>) d<f> +tan <f> d<f>, 

using the Codazzi Equation 18.22. 

This integrates to 

18.50 R1 cos <f> sin a= constant 

or 

18.51 (R1 + h) cos <f> sin a= constant 

as the general equation of geodesics on an axiall 
symmetrical h-surface. It is a generalization 
the result usually known as Clairaut's theorem i 
classical geodesy. 

21. The normal projection of a geodesic, even i 
an axially symmetrical system, is not, in gener 
a geodesic on any other h-surface. For this to b 
true, it is clear from Equation 15.54 that the ge 
desic torsion would have to be constant along th 
curve. 

22. The general equation of a surface geodesi 
whose unit tangent is la is, from Equation 4.0 

18.52 

If we evaluate this equation rn the symmetric 
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( w, <fl, h) system of this chapter and use the Chris­
toffel symbols given in the last section, we can show 
that the equation for a= 1 leads to the Clairaut 
Equation 18.51, while the equation for a= 2 reduces 
to 

with ds as the arc element of the curve, which is 
equivalent to Equation 18.48. The Clairaut equation 
is accordingly a complete first integral of both 
Equations 18.52. 

THE SPHEROIDAL BASE 

23. We now suppose, as a special case, that the 
base surface of a symmetrical ( w, <fl, h) system is a 
spheroid so that the meridian section is an ellipse 
of semimajor axis a and eccentricity e. The semi­
minor axis b is the Cartesian z-axis; we define the 
complementary eccentricity e as 

18.53 e = b/a =+ (l -e2
) 
1'2. 

24. The principal radii of curvature in and per­
pendicular to the meridian (variously known in the 
literature as M, N or p, v, respectively) are well 
known as 

R2(= M = p) = ai 2 (l -e2 sin2 <P ) -3/z 

18.54 = e2R.11a2 

18.55 R1(=N=v)=a(l-e2 sin2 ¢) - 112 , 

which are compatible with Equation 18.22. Indeed, 

306-692 0-69-10 
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we could have de fined Rz as Equation 18.54, or any 
other required function of ¢ , and have determined 
R1 from Equation 18.25. 

25. From any of the Equations 18.30, 18.31, and 
18.32, we now find 

18.56 

18.57 

18.58 

z=7?R., sin <P 
i5 = a 2/R1 

dp/d<P=- e 2R1 siu <P cos ¢ . 

26. By evaluating Equation 17.64 in Cart esian 
coordinates and using Equations 18.28, we can 
express the Cartesian coordinates of any point m 
space as 

x= x+h cos <P cos w= (R1 +h) cos <P cos w 
y= ji+h cos <P sin w = (R1+h) cos <P sin w 
z=z+h sin <P = (e 2R1+h) sin¢, 

18.59 

while from Equation 18.33, the position vector IS 

p,.=-(e2R1 sin <P cos¢)µ./+ (a2/R 1 +h)vr. 

18.60 

These last two equations e nable us to express the 
whole field in terms of one of the principal radii of 
curvature of the base surface. We can use any of 
the formulas of Chapter 17 by making t1 = 0 , 

k1 = - l/R1 , k2 =- l/Rz and by using the spheroidal 
values of R1, R2 from Equations 18.54 and 18.55; 
or , we can use any of the formulas of this chapter 
simply by using the appropriate values of R1 (or Rz). 





CHAPTER 19 

Transformations Between N-Systems 

GENERAL REMARKS 

1. Transformations between coordinate sys­
tems arise in geodesy mainly from the practical 
necessity to linearize computations. The general 

. (w, cp , N) system, in which N is interpreted as 
the gravitational potential and the effect of the 
Earth's rotation is included, is most useful for theo­
retical investigations and is closely related to most 
systems of measurement; for example , the vr in 
this system are then the directions of the astro­
nomical zenith or plumbline and so enter directly 
into astronomical observations and into the measure­
ment of horizontal and vertical angles. Neverthe­
less, we have little numerical knowledge as yet 
of the curvature parameters in this system; ulti­
mately, if they become known in sufficient detail, 
the curvature parameters will probably be too 
irregular to provide a practical basis for calcula­
tion over finite distances. It is usual the refore 
to work in the simpler (w, cp, h) system (N = h) 
with a regular base surface and to transform the 
observations accordingly. Moreover, we usually 
make the base surface a spheroid, which is a close 
approximation to an actual equipotential surface, 
so as to ensure that first-order transformation -
leading to linear observational equations - shall 
be sufficient. 

2. An alternative would be to use a regular 
(w, cp , N) system, representing a standard gravi­
tational field in which one of the equipotential 
N-surfaces is a spheroid- approximating closely 
to a selected equipotential surface in nature. 
Calculations over finite distances in such a sys­
tem, although possible, are not as simple as in the 
(w, cp, h) system. For certain purposes, we need 
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a standard or model gravitational field, but the re 
seems to be no advantage in making all of the 
field's equipotentials the coordinate surfaces of 
the · geometric system. Instead, we can calculate 
the standard gravitational elements at positions 
given in (w, cp, h) coordinates, an operation which 
again amounts to coordinate transformation. 

3. We shall continue to assume, as we have 
done throughout this book, that the N-systems 
share a common Cartesian system whose C'"­
axis is parallel to the physical axis of rotation of 
the Earth at a particular epoch; we shall derive 
conditions which ensure this arrangement. It 
may be thought that an unnecessary and an arbi­
trary restriction thereby is introduced, but this is 
not so. We cannot transform from one system to 
another without completely relating the two in 
some way; the adoption of a third system, common 
to the two, introduces no more conditions than are 
necessary and sufficient for this purpose. The 
adoption of a common Cartesian system can also 
be used to ensure that the space remains flat 
during the transformation. 

4. In addition to specifying the n 's (the magni­
tudes of the scalar gradients N,.), we shall relate the 
base vectors in the two systems. We do thi s by 
means of vector equations , true in either coordinate 
system. The same vector equations will then hold 
between parallel vectors at other points in space 
because, in that case, the equat ions will be true in 
Cartesian coordinates at the new point- and thus 
in any coordinates at the new point. The same e qua­
tions will accordingly serve to relate the base 
vectors and other vectors associated with them , 
either 
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(a) at the· same point in space after a coordinate 
transformation, or, 

(b) at a different point in space in the same 
coordinate system, in which case the relation will 
hold true between parallel vectors. 
The changes in coordinates in case (a) will usually 
be small in practice; whereas, in case (b), they may 
be large. To take advantage of both possibilities, 
we shall accordingly derive quite general trans­
formation formulas not confined to first-order 
changes. Quantities in the second N-system (or at 
the second point in space in the same N-system) 
will be denoted by overbars. 

DIRECTIONS 

5. We shall first deal with transformation of 
directions; for this purpose, it will be convenient 
to define a few auxiliary angles on the spherical 
diagram in figure 15. A radius vector of the sphere 

T 

Figure 15. 

is drawn parallel to a direction in space (such as one 
of the normals vr); the point P where the radius cuts 
the sphere can accordingly be said to represent the 
direction (vr). The normal at the other point in 
space or in the other coordinate system is repre­
sented by P. The Q represents a fixed direction Lr 
during transformation or a parallel direction at the 
overbarred point. The C represents the common 
Cartesian axis so that the latitudes </>, ¢ and the 
difference in longitude ow= ( w - w) are as shown 
in the diagram. The great circle PP or arc-length 
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<T= arc cos (vrvr) is simply an auxiliary, and so are 
the angles a*, a*. The azimuths (a, a) and zenith 
distances ((3, ~) of the fixed direction Q (or of the 
parallel directions Q) are as shown. 

6. The PP' and PP' are quadrants so that the 
vectors represented by P', P' are N-surface vectors 
in the plane containing the normal and Cr; these 
vec_!:ors are accordingly by definition µf, ji/. The 
P'P' defines another auxiliary angle T. The remain 
ing base vectors >._r, Ar (not shown in the diagram: 
are, respectively, the poles (to the right in tht: 
diagram) of great circles PCP' and PCP'. 

7. The following formulas, collected for eas) 
reference, are obtainable from scalar and vect01 
products or by ordinary spherical trigonometr~ 

from the triangles CPP, CP'P', 

cos <T = sin </> sin (i> + cos </> cos (i> cos ow 
19.01 

cos T =cos </> cos (i> +sin </> sin (i> cos ow 
19.02 

19.03 

19.04 

19.05 

19.06 

19.07 

19.08 

19.09 

=sin a* sin a*+ cos a* cos a* cos a' 

cos ow= cos a* cos a* 
+sin a* sin a* cos <T 

sin </> sin ow= - sin a* cos a* 
+cos a* sin a* cos <T 

sin:/> sin ow= cos a* sin a* 
- sin a* cos a* cos <T 

sin <T cos a*= cos </> sin (i> 

- sin </> cos <i> cos ow 

sin <T cos a*=-- sin </> cos <i> 

+ cos </> sin (i> cos ow 

sin <T sin a* = cos </> sin ow 

sin <T sin a*= cos (i> sin ow 

cos¢ cos a*=- sin</> sin <T 

19.10 +cos</> cos <T cos a* 

cos </> cos a*= sin <f> sin <T 

19.11 +cos <i> cos <T cos a* 

cos ¢ cos ow= cos </> cos <T 

19.12 - sin</> sin <T cos a* 
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19.13 

19.14 

19.15 

cos cJ> cos aw= cos ¢ cos a 

+sin ¢ sin a cos a* 

cot a* sin ow= cos cJ> tan¢ 

- sin cJ> cos aw 

cot a* s in ow=- cos ¢ tan cJ> 

+sin ¢ cos aw, 

together with the foilowing differential relations , 

sin a da* =sin a* cus a dcJ> +cos ¢ cos a* d(ow) 

19.16 - cus cJ> sec ¢ s in a* d;f> 

sin a da* =sin a* sec cJ> cos ¢ dcJ> 

19.1 7 +cos cJ> cos a*d(8w) - s in a* cos a d;f> 

da = - cos a* dcJ> 

19.18 + cos cJ> sin a* d(ow) + cos a* d'¢ . 

Several of the preceding formulas may be obtained 
or verified by changing the symbolism between 
the two e nds of the line or between the two co­
ordinate sys tems , that is , by interchanging the 
overbars and by changing the signs of 8w and a. 

BASE VECTORS 

8. We can obtain scalar products of the base 
vectors from the spherical diagram in figure 15. 
For example, Ar~r is the cosine of the angle between 
the great circles PCP' and PCP', that is , cos aw. 
Again , v,.A.r is the sine of the perpendicular from P 
to the great circle PCP' , that is, sin a* sin a or 
sin ow cos "(b. Proceeding in thi s way, we obtain one 
set of base vectors in terms of the other set as 

sin <P sin ow 
- c~s <P s in ~w) (A,.) 
- sm er cos a* µ./ · 

cos er vr 

COS T 

s in er cos a* 

19.19 

9. Next, we shall derive this same result in terms 
of the rotation matrices of § 12-15. Writing 

19.20 <I>=(~ si~ cJ> 
0 - cos cJ> 

co~ c/>) 
sin cJ> 
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c srnw cos w 

D 19.21 fi = -c~s w -smw 

0 

19.22 Q=<l>fi, 

all of whic h are orthogo nal matrices, together with 
th~ tra nspose 

19.23 

and us ing Equations 12.012 and 12.013, we have at 
once 

19.24 

{~,., ji,. , ii,.}= Q{A,., Br, C,.} 

= QQT{f...r, µ.,. , v,.} 

in which the braces signify as usual a column 
"vector" in the matrix sense . This vector equation 
holds true fo r each of the components of the base 
vectors, covariant or contravariant, in any one 
coord inate system. Compari ng this res ult with 
Equation 19.19, we have 

( 

cos ow s in <P s in ow 
QQ7 = - sin _"ef> s in ow cos T 

cos <P sin ow s in er cos a * 

- cos <P sin ow) 
- si n er cos a* : 

cos er 

19.25 
we can e asily verify this equation by multiplying 
out the Q-matrices. Fur easy reference, we add the 
full expression for Q, 

co~ cJ>). 
s in cJ> 

AZIMUTHS AND ZENITH DISTANCES 

10. The arbitrary unit vector l ,. in figure 15 can 
be expressed in the fo llowin2" alt e rnative forms 

t r= A" sin a sin ,B + µ. ,.cos a s in ,B + vr cos ,B 

= ~ r s in a si n,B + µ,r cos a sin,B + iir cos ,8: 
using these forms to cont ract the vector Equation 
19.24, we have 

{sin ti s in ,B , cos a sin ,B , cos ,B } 
19.27 = QQT{sin a sin ,B , cos a sin ,B , cos ,B}. 

O nly two of these three equations for ti. ,B are 
independent because each term is equivalent to 
the co mponent of a unit vector so that an ide ntit y 
would result from squaring and addi ng the equa­
tions . 
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11. Equation 19.27 gives the azimuth and zenith 
distance of a vector in the transformed (barred) 
coordinates. The equations also relate the azimuths 
and zenith distances of two parallel vectors in the 
same coordinate system at two different points in 
space so that it is immaterial whether the changes 
result from coordinate transformation or from 
parallel transport- or both. 

12. In particular, Equation 19.27 can refer to 
the straight line joining two points in space in any 
(w, ¢, N) coordinate system. The equation would 
enable us to determine any two of the seven quan­
tities a, {3, a, "{3, ¢, "¢, ow from the other five. For 
example, if a, {3, a, "{3, <P are measured or given , 
we can determine "¢ and ow and so can build up 
a latitude and azimuth traverse without measuring 
any more latitudes, although error would be likely 
to accumulate through the effect of residual (un­
corrected) atmospheric refraction on {3 , "{3. At the 
other extreme, if a, a, ¢, "¢,ow are meas ured, then 
we could determine {3 , j3 and so could evaluate the 
refraction. Whatever we do, we must take account 
of the fact that these seven quantities are related. 

ORIENTATION CONDITIONS 

13. If we transform from one N-system to an­
other, the seven quantities in the last section 
cannot be independently chosen, but they must 
satisfy two conditions - equivalent to the two 
independent equations in Equation 19.27-to 
ensure parallelism of the Cartesian axes. 
The most common case in practice arises when the 
changes in (w, <P) coordinates are small. If we write 
¢=<P+o<P as we have already written w=w+ow, 
then it is easy to show to a first order that Equation 
19.25 or 19.26 gives 

QQT= I+(- sin°¢ ow 

cos <Pow 
19.28 

sin <Pow 
0 

o<P 

- cos ¢8w) 

-o<P 
0 

where I as usual is the unit matrix, and Equation 
19.27 then reduces to the following two independent 
equations, connect ing the first-order changes in 
latitude, longitude, azimuth, and zenith distance , 

00'. =- sin <Pow+ cot f3 (sin a o<P- cos a cos <Pow) 

of3 = -cos <P sin a ow- cos a 0¢. 

19.29 
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14. If f3 is nearly 90° so that the line is almosl 
horizontal, the first equation reduces to 

19.30 oa = sin <P ow, 

which is inde pendent of the direction chosen as a 
fixed line in the two coordinate systems and i~ 
simply a difference in the azimuths of all nearl) 
horizontal lines e manating from the same point. 
This is the so-called Laplace equation of classical 
geodesy, which alone is used in the hope of preserv· 
ing orientation of the Cartesian axes. But even if 
f3 = 90° is on all observed lines emanating from a 
point, this fact does nothing to satisfy the second 
condition of Equations 19.29, which does not 
depend on f3 at all and cannot therefore be satisfied 
by choosing favorable values of {3. Satisfaction of 
the equations of Equations 19.29 for a particula1 
(a, {3) ensures that the Cartesian components of 
the corresponding direction are the same in both 
coordinate systems; but this fact is not sufficienl 
to ensure parallelism of the Cartesian axes because 
it would still be possible to rotate either system 
about the (a, {3) direction without any effect on it~ 
Cartesian components. To ensure parallelism of the 
Cartesian axes, we need to satisfy both Equatiom 
19 .29 for two different directions. 

15. It is clear therefore that the simple Laplace 
azimuth Equation 19.30 does not preserve orienta· 
tion at a single point during a change of N -coordi· 
nate sys tems , such as the change from an astro· 
nomical (w, ¢, N) system to a standard gravitationa 
fi eld or to a geodetic (w, ¢, h) system. It is some 
times claimed that the repeated application o 
Equation 19.30 at different points connected h_ 
triangulation would not only ensure correct initia 
orie ntation , but would also preserve orientatio 
throughout the network, even though the secon 
necessary condition in Equation 19.29 is ignore 
everywhere. No doubt, it would be sufficient t 
satisfy one of the conditions of Equations 19.2 
at two or more widely separated points instea 
of both at one point, provided the points are rigid} 
connected by error-free triangulation; but it i 
difficult to see how this procedure can initiate an 
preserve correct orientation as well as serve t 
adjust the interve ning triangulation. The mos 
that can reasonably be said is that if the on 
condition of Equation 19.30 is applied at a numbe 
of points during the adjustment of a triangulation 
the condition will tend to be satisfied at intermediat 
points; but that fact does not imply that the adjuste 
triangulation is also properly oriented everywhere 
It should be said, however, that, until recently 
no other course has been open to the triangulator 
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Owing to the effect of atmospheric refraction on 
zenith distances, the triangulator could not satisfy 
both conditions of Equations 19.29 to the same 
degree of accuracy; the satisfaction of one condition 
may have some beneficial effect. 

THE R AND S MATRICES 

16. We now introduce the matrices of (w, cp , N) 
components of the base vectors from §12-27 and 
§12-33' 

(

x_1 x_2 x_a) (-k1 sec cp 
R = µ,1 µ,z µ,a = - t 1 sec cp 

v 1 
11

2 v 3 Yi sec c/> 
19.31 

(

A.1 A.2 A.a) 
s = J-lt /-l2 J-l3 

Vt V2 V3 

( 

kz cos cp/K 

= ti cos cp/K 

0 

sec c/> a(l/n)/aw) 
d (l/nj /acp · 

(l/n) 
19.32 

Because the base vectors are unit orthogonal vectors 
so that , for example, A_rA_r=l, A_rµ,r=O, etc. , we 
have al so 

19.33 

in which I as usual is the unit matrix; thus, we have 

19.34 

R - 1= ST 

s - 1=RT. 

17. We also define 

R=(~ 1 , •• • )=(-k1 sec {b, ... ) 

and S similarly as the corresponding matrices in 
the (w , (b , N) system, that is, the matrices of the 
(w, 4) , N) components of the base vectors of th e 
barred system. It should be noted from Equation 
19.24 that 

does not give R; it gives the (w , cp , N) component s 
of the base vectors of the barred system. To trans­
form these components to (w , {i> , N) components, 
we use the vector transformation formula of 
Equation 1.18, equivalent to postmultiplying by 
the trans pose of the transformation matrix of Equa-
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tion 19.37 in § 19-21. To ve rify thi s, we have 

R = QQTR(RTQQTS)'I' = QQTRSTQQTR = fi , 

using Equation 19.33 and the fac t that the Q 's 
are orthogonal matrices. 

18. If one uf the syste ms is a symmetric (w, c/>. h ) 
syste m , the corres ponding R a nd S matrices beco me 
di ago nal; this introduces a co nside rable s implifica­
tion into all matrix equ ations conta ining R a nd S. 
The necessary modifications can be made at ight , 
us ing the res ult s of C hapt er 18. 

TENSOR TRANSFORMATION 
MATRICES 

19. To transform vectors and tensor s between 
Cartes ian and (w , cp , N ) coordina te syste ms . we 
need the partial differenti als ax/aw , AN/ay, etc. 
These are all compone nts of the Cartesian vectors 
A r, e tc . , in the (w, cp , N ) syste m. For example. we 
have from Equations 12.009 

Ar = (ax/aw, ax/Ac/> , fix/aN), 

while the contravariant compone nt s give 

A r= (flw/ax, ac/>fAx, aN/ax ). 

If we use Equation 12.013 and substitute the 
(w, cp, N) components of th e base vectors, we then 
have the complete matrix of tran sformati on fac tors 
as 

The .Jacobian of the transforma tion is 

20. In the same way, the inverse transformation is 

(

aw/ax 

aw/a y 

aw/az 
19.36 

a<f>/ax 

acp/ay 

a<1>1a z 

aN/ax) (A 1 AZ A3) 
aN/a y = B1 B2 B3 = QTR 

aN/az C 1 C2 C3 

with the Jacobian (nK sec c/> ). 

21. To transform between (w, </> , N) syste ms, we 
have, for example, 

aw=aw ax +awa y +aw~ 
aw ax aw ay aw az aw 
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so that 

(
a~/aw 

<J<f>/ aw 

oN/aw 

aw/a</> aw/aN) 
a~/a<f> a~/aN = (Q7R)TQ7S 

aN/a</> aN/aN 
19.37 =RTQQTS. 

PARALLEL TRANSPORT OF VECTORS 

22. To obtain the (w, </>, N) components of parallel 
vectors W, [r) at two different points in space (one 
point overbarred), we can use the vector equation 
at the barred point 

[r=Ar(Asl3 ) +Br(Bsl8 ) +Cr(Csl8 ), 

which expresses the equality of Cartesian compo­
nents at the two points. We have 

19.38 

= (Q7R)TQ7S{l1, [2, l3} 

= ft TQQ TS { l1, l2' l3} 

=ft TQQ T {sin a sin /3, cos a sin /3, cos /3} 

if a, /3 are the azimuth and zenith distance of [r. 

This equation is easily verified from Equation 19.27. 
The covariant components are similarly given by 

{Ii, l2, la}= S TQQTR {Li, l2, la} 

19.39 = STQQT{sin a sin /3, cos a sin /3, cos /3}. 

THE DEFLECTION VECTOR 

23. We define the deflection vector ~r as the 
change in the vr on transformation between N­
systems so that we have 

19.40 

In the usual geodetic application, the overbarred 
vector will refer to the astronomical (w, <f>, N) 
system with N interpreted as the geopotential, 
that is, the gravitational potential with allowance 
for the Earth's rotation. The unbarred vector will 
refer to the geodetic system, usually an (w, <f>, h) 
system with a spheroidal base. 

24. The definition does not require the change 
of coordinates to be small. For example, if Lr is a 
unit vector which remains fixed during the trans-
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formation, such as the direction between two ground 
stations, then the component of deflection in that 
direction is 

19.41 

where "{3, /3 are the astronomical and geodetic zenith 
distances, respectively. This relation is rigorously 
true even for large deflections. 

25. The definition does, however, agree with 
the usual first-order conventions in classical 
geodesy. For small changes in coordinates, we have 
at once from Equations 19.24 and 19.28 

19.42 ~ r = V r - V r = (COS </> 8w) Ar+ (18,</>) µ., r 

in which 8</> = 1>- </> is the astronomical minus the 
geodetic latitude; similarly, 8w = w - w is the 
astronomical minus the geodetic longitude of the 
point under consideration. To a first order, the 
meridian and parallel components of the deflection 
vector are accordingly 8</> and cos </> 8w as in the 
classical conception. 

26. We can express the deflection vector rigor­
ously from Equations 19.24 and 19.25 as 

~r= (cos 1> sin 8w)A.r 

19.43 +(sin er cos a*)µ,r -2 sin2 (cr/2)vr, 

which holds true also for the change in the v 
between two widely separated points, if we us 
Cartesian coordinates or if we interpret vr in th 
usual way as a parallel vector at the unbarred point 

CHANGE IN COORDINATES 

27. Another way of viewing this question is 
consider the differences in the coordinates them 
selves, 

8w=w-w 

8</> = </>- </> 
8N=N-N, 

as a measure of "deflection," with an appropriat 
choice of unit for the N's. This method is some 
times useful in considering changes in the "defle 
tions" between two points in the field; and for thi 
purpose, we require their gradients. 
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28. Using Equation 19.31, Equations 12.046, 
12.04 7, and 12.001 can be put in the matrix form 

{wr, </;r, Nr} =RT{~r , ,Lr, iir} 

= R TQQ T {>1.r, J.Lr, Vr} 

= R TQQTS { Wr, </>r, Nr} 

19.44 

in which we have used Equations 19.24 and 19.34 
so that 

29. In evaluating Equation 19.45 for small aw, 
acp, we can use Equation 19.28; but there is no 
guarantee that the changes in the curvatures m 
the R or S matrices will also be small. 

30. If we complete the three vector equations 
in Equation 19.45 and contract in turn with 'Ar, 
µ,r, vr, then, if elements of length in the direction 
of the base vectors are d'A, dµ,, dv, we have 

a(aw) a (aw) a (aw) 
{)'A aµ, av 

M= ill!l>l ill!l>l ~ =RTQQT-RT, 
aA. aµ, av 

a(aN) a (aN) a (aN) 
aA. aµ, av 

19.46 

givmg components of the "deflections" In the 
directions of the base vectors. 

31. By transposing the equation 

M=RTQQT-RT, 
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we have 

19.47 

which gives us a relation between the R's; from 
this, we have a relation between the parameters 
ki, k2, ti, yi, Y2 and the components of the 
"deflections." 

32. We may also require the components of the 
"deflections" in the direction of a unit vector 

fr= A_r sin a sin /3 + µ,r cos a sin/3 + vr cos /3 

in azimuth a, zenith distance /3, and arc element dl. 
Contracting Equation 19.45 with tr, we have at once 

{
a (aw) a ( a<P) a ( aN) } 

al ' al ' al 

= ( R TQQ r - RT){ sin a sin /3 , cos a sin f3, cos /3} · 

19.48 

33. It is clear from Equation 19.44 that 

QTS{wr, </>r , Nr} =QrS{wr, </;r, Nr} 

is an invariant which has the same value in any 
(w, cp, N) system; it is useful to inquire what this 
invariant may be. Using Equation 19.35, we have 

= {x,., y,., z,.} 

19.49 ={Ar. Br , Cr}, 

using Equations 12.009. The invariant Is accord­
ingly the common Cartesian system. 
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CHAPTER 20 

The Newtonian Gravitational Field 

SUMMARY OF MECHANICAL 
PRINCIPLES 

1. In this chapter, we shall show that the geometry 
of the Newtonian gravitational fi eld can be treated 
as a special case of a (w, <f>, N) coordinate system 
in which N Is the potential , the N-surfaces are 
equipotentials, and the form of N is restricted by 
the Newtonian law of gravitation. 

The Central Field 

2. In a gravitational field set up by a single 
particle of mass m, the force of attraction on 
another particle of unit mass at a distance r from 
the first particle is, by Newton's law, 

Gm/r2 

in which G is the gravitational constant. The direc­
tion of the force is toward the massive particle 
along the line joining the two particles. The particle 
of unit mass is usually known as a test particle 
because the notion of such a particle serves to 
materialize the gravitational force and so helps 
us to explore the field; there must be at least two 
particles in the fi eld for Newtonian gravitation to 
have any meaning. 

3. The potential is usually defined physically as 
the negative of the work done by the force of attrac­
tion on a test particle of unit mass in moving 
the test particle from an infinite distance to the 
distance r from the massive particle or the positive 
work which must somehow be done against the 
force of attraction to remove the test particle to an 
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infinite distance. The potential in a field set up by a 
single particle of mass m is accordingly 

20.01 - -X(-dr)=--, fr Gm Gm 
"" r2 r 

which is opposite in sign to the usual geodetic 
convention. We shall, however, use the physical 
convention , which accords better with mathematical 
conventions. The work done by the force of attrac­
tion in moving the test particle from infinity is 
considered to be stored as available energy, known 
as potential energy, which is accordingly the nega­
tive of the potential. 

4. The equipotential surfaces in a central field 
set up by a single massive particle are evidently 
spheres centered on the attracting particle; the 
outward-drawn unit normal to the equipotential 
surfaces is the gradient of r, that is, rs . If we take 
N as the potential, then by covariant differentiation 
of Equation 20.01 , we have 

20.02 

in which n, the " distance function" of the family 
of N-surfaces obtained from Equation 12.001 , is 
see n to be the magnitude of the attracting force 
whose direction is - Vs. Differentiating Equation 
20.02 again, we have 

2Gm Gm 
Nsi=--3- Tsr1+-2 Tst 

r r 

2Gm Gm 
=--

3
- Vsv1+-

2 
Vst· 

r r 

If we contract this equation with the metric tensor 
gst and use Equation 7.19, together with the fact 
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that the mean curvature H of the spherical N­
surfaces is (-1/r), we find that the potential satisfies 
the Laplace equation 

20.03 

which, expanded in Cartesian coordinates, 1s 

20.04 aw aw aw 
ax2 + ay2 + az2 =O. 

It is an essential part of the Newtonian system 
that the space should be flat and unbounded be­
cause the expressions of force and potential 
require r to be a finite radial distance measured 
in a straight line; the field must extend to infinity 
to satisfy Equation 20.01. Accordingly, we can use 
simple Euclidean geometry and can choose Car­
tesian coordinates. 

5. If Fs is the force vector of magnitude Gm/r2 

and direction - rs or - Vs, then Equation 20.02 is 
equivalent to 

20.05 

which means that the force vector is the negative 
gradient of the potential. Accordingly, the field is 
completely specified if we know the scalar potential 
N at each point of the field; we shall find that this 
statement applies also to more complicated fields. 

Superposition of Fields 

6. In dealing with the geometrical properties of 
more complicated fields, we shall continue to 
use the symbols N and n, respectively, for the 
potential and the magnitude of the gravitational 
force -in place of the more usual symbols V (or W) 
and g-because this will enable us to use all of 
the more general formulas of Part II as they stand. 
However, we shall also use V (or W) and gin ex­
pressing final results or when the physical properties 
of the field predominate. 

7. We can generalize the simple central field set 
up by a single massive particle to the more compli­
cated field set up by any number of massive particles 
in an attracting body of finite dimensions Ly 
invoking the principle of superposition, which 
simply states that the total effect on the test particle 
will be the sum of the effects arising from each 
individual massive particle. The total potential 
will be the sum of the individual potentials 

:L-Gm/r; 

the total potential will satisfy the Laplace equation 
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because each term in the summation satisfies the 
invariant form of the Laplace Equation 20.03, 
regardless of the coordinate system. We do not, 
for example, require the origin of Cartesian coor­
dinates to be at an attracting particfe as in § 20-4; 
the origin could be at the test particle or anywhere 
else, and the Laplacian property would still hold 
true. 

8. The forces of attraction, unlike the scalar 
potentials, have direction as well as magnitude and 
would have to be added vectorially. But it is evident 
that the vector Equation 20.05 still holds true (and 
holds in any coordinates) between the gradient of 
the total potential and the vector sum - or result­
ant - of the individual force vectors, even though 
the potential no longer has the simple form - Gm/ r 
and the magnitude n of the resultant force is no 
longer Gm/r~. The direction Vr of the gradient of 
the potential N is no longer the radial direction 
from a Cartesian origin, but is the unit normal to 
the equipotential surface or N-surface passing 
through the test particle, as in Equation 1.21. 
If the attracting body is the Earth, Vr is the direction 
of the zenith at the test particle or at the point 
under consideration, and - Vs is the direction of 
the plumbline or the direction of the resultant force. 

The Effect of Rotation 

9. All the previously mentioned conclusions apply 
to the attraction of a static body. The Earth, how­
ever, rotates, which means that particles attached 
to it, or resting on it, are subject to centrifugal 
force acting generally against the gravitational 
attraction. Because the effects of the two forces 
are, for the most part, indistinguishable, it is usual 
to combine them into a single force called "gravity." 
The scalar whose gradient is equivalent to the re­
sultant force of gravity, including the centrifugal 
force, is known as the geopotential. 

10. We shall consider the rotation of the Earth 
in more detail in § 21-55 through § 21-59; for the 
present, it will be sufficient to assume rotation with 
uniform angular velocity w about a physical axis 
which we shall suppose is fixed in the Earth. The 
direction of this physical axis is not fixed in relation 
to the stars, Lut that does not at present concern 
us. It will be shown in § 21-56 that the center of 
mass, which we shall choose as Cartesian origin. 
must lie on the physical axis of rotation, which we 
shall choose as z-axis of coordinates. unit vector 
C,.. The other Cartesian vectors A,., B,. (fig. 16) are 
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Figure 16. 

fixed in space, not in the Earth, in the sense that 
they do not rotate with the Earth. The linear velocity 
vector of a point P at a di stance d from the z-axis 
is then 

20.06 wd(B,. cos wt -A.,. s in wt) 

in which t is the time which has e lapsed since the 
point P crossed the xz-plane. The acceleration vector 
is the intrinsic time derivative of the velocity vector, 
that is , 

-w2d (Br sin wt+ Ar cos wt) =- w2 (xAr+ yB,.) 

=- w2 (xx,. + yyr) 

20.07 

We can consider this expression to be the force, 
acting on a test particle of unit mass required to 
maintain the particle on the Earth's surface. The 
force is directed inward and must co me from the 
force of attraction whose inward sense is 

-nv,. =-Nr. 

If we assume that the residual force is derived from 
a geopotential M with the same conventions as 
for N, then we must have 

-Alr=-Nr+ ! w2(x2+y2)r. 

Integrating this equation, subject to the condition 
that there is no rotational effect on the axi s 
(x=y=O), we have 

Al = N- t w2(x2 + y 2) 

20.08 

The geopotential at P of a particle of mass m at 
the origin is, for example, 

-Gm/r- ~ w2<12. 

The Laplacian of Equation 20.08 is 

20.09 t:..M=-2w 2 

306-962 0-69-1 l 
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because f:..N=O so that the geopot en tial is not a 
harmo nic function whose Laplacian would be zero. 
We may note, however, that the Laplacian of the 
geopotential, in addition to being independent of 
the coordinate system, is also independent of the 
location of the ro tation axis. 

11. Reverting to the original notation, we can say 
that the basic gradient equation 

represents the Newtonian gravitational field of 
the ro tating Earth if N is the geopotential, as defined 
in §20-9, if n is "gravity," and if Vr is the outward­
drawn normal to the N-surfaces, that is , the level 
surfaces of the combined attraction and rotation. 
The unit normal Vr is accordingly the direction of 
the as tronomical zenith as revealed by instrume ntal 
sp irit levels. The remaining coordinates (w, <f>) 
of a (w , <f>, N) system are the astronomical longitude 
and latitude in relation to the physical axis of 
rotation, which we have assumed is fix ed in the 
Earth, and in relation to an initial meridian plane 
defi ned by the physical axis and by the zenith at 
some fixed point on the Earth's surface. The New­
tonian law of gravity is expressed by the condition 

t:..N =-2w 2, 

and this alone distinguishes the system from any 
other (w, <f> , N) system. Subject to this condition, 
the general geometry of a (w, <f>, N) system, as 
developed in Part II, applies in its entirety. 

12. In the basic geometry of the (w, <f> , N) system, 
we cons ider the Cartesian axes A,., Br to be fixed 
in relation to all points be longing to the sys tem, 
that is, fixed in the Earth and ro tating with the Earth. 
We can derive from figure 16 the fo llowing relations 
between the A,., B,. axes, revolving like the point P, 
and the inertial Ar, B,. axes, which are fix ed in space, 

A ,. =A,. cos wt+ B,. sin wt 

20.10 B,.= -Ar sin wt+ B,. cos wt. 

In these equations, t is the time which has elapsed 
s ince the two sets of axes coincided. So far as the 
condition 

t:..N=-2w2 

is concerned, it does not matter whether we consider 
the point P as moving in re lation to the fixed axes 
A,., Br or the axes A,., Br as moving in relation to 
Ar, B,. because the condition is invariant and is 
therefore unaffected by the choice of coordi nate 
sys tem. We could say that substitution of the geo-
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potential for the static attraction has had the effect 
of reducing the whole system to rest. 

13. If we are dealing with an object such as an 
artificial satellite, which is hot attached to the 
rotating Earth, then, in the absence of any other 
impressed force, the only force acting on the 
satellite would be the gradient of the attraction 
potential -Vr, and the Newtonian condition would 
be ~V = 0. In accordance with Newton's second 
law, the equations of motion of a satellite of unit 
mass relative to fixed axes Ar, Br, Cr would be 

20.11 azpr=Ovr=-V ot2 ot r, 

the left-hand member of which is the acceleration 
vector - that is, the second intrinsic ti me derivative 
of the position vector Pr· The second member of 
Equation 20.11 is the intrinsic time derivative of the 
velocity vector of the satellite re lative to the fixed 
axes Ar, Br, Cr. The attraction potential at a fixed 
point in space would not be constant, but would 
generally vary with time as the unsymmetrical 
field rotates with the Earth. The coordmates of 
terrestrial observation stations or tracking stations 
would also change with time. 

14. If we refer the motion of the satellite to 
rotating axes, Ar, Br, Cr fixed in the Earth, the 
equations of motion will include three forces: 
The force of attraction - Vr; the centrifugal or 
centripetal force in Equation 20.07 which, being the 
gradient of a scalar, can be combined with - Vr as 
the force of "gravity" arising from the geopotenti al; 
and the Coriolis force which is twice the vector 
product of the angular rotation vector (ws = wCs) and 
the apparent velocity vector Vr of the satellite rela­
tive to the moving axes Ar, Br, Cr. We have 

20.12 
0
;; =-Wr-2Ers1(wCs)il 

in which W is the geopotential. To off set the extra 
complication in the equations of motion, the geo­
potential would be a function of coordinates in the 
(Ar, Br, Cr) system only and would not vary with 
time. The coordinates of tracking stations in the 
same system would also be independent of time. 
The equations of satellite motion referred to rotating 
axes are considered more fully in Chapter 28. 

THE POISSON EQUATION 

15. If the tes t particle or the point P at whic h the 
potential is required were to coincide with a massive 
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particle, then the potential arising from the massive 
particle would be infinite and could no longer be 
added to the potential set up by other particles. 
Therefore, all the preceding argument would break 
down. In particular, we could not say that the La­
placian of the total potential at points inside or on 
matter is zero. The difficulty can be overcome by 
some limiting process involving the temporary 
removal of matter to form a cavity whose dimensions 
are finally reduced indefinitely. However, we shaU 
approach the problem by a different route more in 
line with modern geodetic applications. This route 
indicates more clearly what assumptions are being 
made. 

16. We consider first the field set up by a singlf 
particle of mass m at a point 0 (fig. 17) and suppose 

0 
s 

Figure 17. 

that 0 is surrounded by an arbitrary closed surfacf 
S. At a point on the surface whose position vecto1 
from 0 is Ps, the force vector is 

Fs = (-C111/r2) (es /r) , 

directed toward 0. We shall apply the divergencf 
theorem (§ 9-13) to this vector. If vs is the outward 
drawn unit normal to the closed surface, then thf 
surface integral in the divergence theorem will hf 

J FrvrdS =-J (Cm/r2 ) cos y dS 

=-J Cmd0=-47TCm 

where dO is the ele me nt of solid angle subtendec 
at 0 by the element of surface area dS. If the ele 
mentary cone (dO) is extended and cuts the surfacf 
again, it would have to do so twice more as we car 
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see from figure 17; the corresponding extra con­
tributions to the surface integral would cancel so 
that the fo rm of the surface is immaterial as long 
as it is closed. If the mass m is outside the surface, 
then the elementary cone would cut the surface 
twice (or an even number of times); again, the con­
tributions to the integral would cancel, although 
the force Fr on the surface arising from this external 
mass would not be zero. Applying the principle 
of superposition to all the masses inside and out­
side the surface, we can accordingly say that 

20.13 

In this result, due to Gauss, Fr is the vector sum of 
all forces at a point on the surface arising from all 
masses inside and outside the surface S; M is the 
sum of all masses inside the surface. If, instead of a 
number of discrete masses, we have a continuous 
distribution of matter, we can write 

M= J pdv 

where p is the density of a volume element dv and 
the integral is taken over the whole volume enclose d 
by the surface S. Transforming the first member 
of Equation 20.13 by the divergence theorem and 
using Equation 20.05, we have 

J gr5Frsdv=-J tl.Ndv =-47TG J pdv 

or 

J (tl.N-4TTGp)dv= O. 

But the initial closed surface S (and therefore its 
enclosed volume) is quite arbitrary, so the inte­
grand of this last integral must be zero at all points 
of the volume; we then have 

20.14 tl.N = 4TTGp 

in which p is the density at the point where the La­
placian of the potential is taken. In deriving this 
result, which is known as P oisson 's equation, we 
use only the inverse square law of fo rce and the 
principle of s uperposition and make no other 
assumptions at all. 

17. Also, we verify that at any point m empty 
space (p = 0), we have 

tl.N=O. 

The potential at points attached to a body rotating 
with constant angular velocity w about the z-axis 
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was modified in Equation 20.08 by subtracting 

tw2 (x2 + :f) 
from the static potential; we must do the same for 
points within the rotating body. The full Poisson 
equation modified for rotation is accordingly 

20.15 tl.M = 4nGp - 2w2 

in which M represents the geopotential. 

18. If we cross from a region of empty space into 
a region occupied by matter, the potential must 
satisfy Laplace's equation on one side of the s ur­
face - separating the two regions - and Poisson' s 
equation on the other side. We conclude that so me 
of the second derivatives of the potential at least 
are discontinuous across such a surface. A similar 
conclusion applies to a surface within the attracting 
body, if the density is discontinuous across the 
surface. In that case, we can form Equation 20.15 
for two poi nts close to and on opposite sides of the 
surface and subtract; the discontinuities in the 
second derivatives are then equal to 4nGp where p 
is the difference in density across the surface. 

The Newtonian System - General Remarks 

19. The Newtonian system has received massive 
support from observations on the outer planets in 
the solar system, which indicates that the inverse 
square law at least is true to within the precision 
of modern observations. The system does not ac­
count for the observed advance in the perihelion 
of Mercury, the nearest planet to the Sun. How­
ever, this discrepancy has been accounted for by 
high-velocity relativistic effects, which are not at 
present (1968) measurable and are unlikely ever to 
be significant in the case of near-Earth satellites. 
In short, the system has been amply verified in the 
case of a few near-spherical attracting bodies whose 
dimensions are small compared with their distances 
apart, in which case the principle of superposition 
is involved to a limited extent only. But it has 
never been demonstrated to the degree of accuracy 
now attainable that this principle of superposition 
applies close to, or actually on, a large unsym­
metrical mass such as the Earth. An opportunity to 
do so may arise in reconciling results from satellites 
with those from ground observations. There are 
already indications, through the consistency ob­
tained in results from satellites at different heights, 
that the effect of any departure from the principle 
becomes inappreciable at satellite distances from 
the Earth. 
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GEOMETRY OF THE FIELD 

20. It is clear from Equations 20.05 and 12.001 
that the field can be represented by the coordinate 
system of Chapter 12. In this coordinate system, 
N is the potential, the N-surfaces are equipotentials, 
n is the magnitude of the resultant force, and Vr is 
the unit normal to the N-surfaces -the negative 
direction of the res ult ant force - and the unit 
tangent to the lines of force. The unit normal Vr 

is also the apparent vertical and defines the (w, </>) 
coordinates, that is, the longitude and latitude of 
the apparent vertical in relation to Cartesian axes 
fixed in the Earth in accordance with Equations 
12.003, 12.004, and 12.005. The Cartesian z-axis 
coincides with, or is at least parallel to. the axis 
of rotation. 

21. The Newtonian law of gravity is necessarily 
and sufficiently expressed by making b.N 

(a) zero in a static field at points not occupied by 
matter; or 

(b) - -2w2 in a field rotating with constant angular 
velocity w; or 

(c) 47TGp at points in a static field occupied by 
matter of density p, G being the gravitational con­
stant; or 

(d) (41TGp- 2w2) in the rotating field at points 
occupied by matter. 
Subject to whichever of these restrictions is ap­
propriate in a particular region of space and with 
the connotation of symbols given in the preceding 
section, all the geometrical relations in Chapters 12 
and 13 apply to the gravitational field ; these relations 
give us at once, for example, the curvature proper­
ties of the equipotential surfaces and of the lines of 
force , together with the properties of lines traced 
on the equipotential surfaces and in space. There 
is no need to repeat all the formulas of Chapters 12 
and 13; indeed, it will be found that most of the 
formulas do not contain b.N, and so do not need any 
modification at all. 

22. We shall be concerned mostly with a rotating 
field in regions of space not occupied by matter, 
in which case the formula 

20.16 b.N=-2w2 

will apply. The only formulas in Chapters 12 and 
13 which contain b.N are Equations 12.100, 12.104, 
12. 105, 12.106, 12.112, 12.113, and 12.115. Assum­
ing that w and therefore b.N are constant, these 
equations reduce to 

20.17 

20.18 

-2w2 = (an/as)-2Hn 

b.w=2 tan</> \l(w, <f>)-2\l(w, ln n) 

20.19 

20.20 

20.21 

20.22 
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b.<f> =-sin</> cos</> \l(w)- 2\l(<f>, Inn) 

(l/n)b.n = cos2 </> \l(w)+ \7(</>) 

= K~+ K~+ (yi+y~) 

cos <f>\l(w, ln n)=k2y1 -t1y2-2w2yi/n 

\l(<f>, In n) = kiy2 - tiY1 - 2w2y2/n. 

However, the last five of these equations, although 
useful, are not independent, but can all be derived 
from Equation 20.17 with the help of other relations 
given in Chapter 12. For example, by differentiating 
the logarithmic form of Equation 20.17, that is, 

20.23 a(ln n)/as =(In n)rvr= 2H -2w2/n 

in the parallel direction A_s, we obtain after some 
manipulation 

ayi/as =(2H)aN'-+ 4w2yi/n 

20.24 

which can be shown to be equivalent to Equation 
20.18, using nothing but relations given in Chapte1 
12. In the same way, by differentiating Equation 
20.23 in the meridian direction µs , we find that 

ay2/as = (2H)aµa + 4w2y2/n 

20.25 

which can be proved equivalent to Equation 20.19. 
Differentiation in the normal direction vr leads to 
Equation 20.20, although we do not obtain any rela· 
tion in this case which has not already been given 
in Chapter 12. The remaining Equations 20.21 and 
20.22 follow directly from Equation 20.17 withou1 
differentiation. Equation 20.17 or 20.23 is usuall) 
known as Bruns' equation if n is interpreted a~ 
gravity at a point in a rotating field and if H is the 
mean curvature of the equipotential surface passin~ 
through the same point. 

23. We conclude that no independent geometrical 
relations other than Equation 20.17 have been 
introduced by applying the law of gravity, and that 
Equations 20.16 and 20.17 must therefore be equiva­
lent. Indeed, we can write 

-2w2 = b.N = (nv,.) r= nrvr+ nv~= (an/as) -2Hn 

20.26 

in which we have used Equation 7.19. We can say 
that either Equation 20.16 or 20.17 is a sufficient 
expression of the law of gravity. We may note that 
Equation 20.17 gives us an expression for the 
variation of gravity along the lines of force; the law 
of gravity tells us nothing in general about the 
variation of gravity over an equipotential surface, 
although we may be able to deduce this geometri­
cally in special cases. 
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24. For example, if the equipotential surfaces are 
all concentri c spheres of radius r(H = -1/r) , the 
gravitational equation becomes 

an+2n=-2w?. 
rir r 

or 

a(nr2) =-2w2r2 
ar , 

which can be int egrated to 

nr2=- %w2r1 +f( w, <1>) 

or 

and can be integrated again to 

N=-tw2r2-f(w, <J>)/r+ g(w, cj> ). 

But N is constant over the spheres and must there­
fore be a function of r only so that the arbitrary 
functions f(w, <J>) , g(w, <J>) are a t most constants. 
Gravity (n) is accordingly constant over an equi­
potential surface, as it would be in the case of a 
nonrotating fi eld with spherical equipotential s, 
although the magnitude of gravity is different in the 
rotating fi eld. 

25. If we know the form of one equipot ential 
surface and the variation of gravity over that surface, 
we can build the whole field along either the nor­
mals or the isozenithals. If we work along the iso­
zenithals , we shall need to recas t the gravitational 
equation, with the help of Equation 14.32, into 
the form 

a (l/n) =-2H (!)2 

+ 2w2 (!)3 
-baf3 (!) (!) · 

aN n n n a n 13 

20.27 

Next, we differentiate the Codazzi equations in the 
form of Equation 12.143 with respec t to N, using 
the fact that all the coefficients in Equation 12.143 
are constant during the differentiation. Substitution 
of the gravitational equation in the result of this last 
operation gives us the second isoze nithal derivative 
of baf3 in terms solely of surface functions or surface 
derivatives of ( l/n) , which are presumed known or 
calculable on the starting surface. Repetition of the 
process gives us higher isozenithal derivatives of 
bo:f3 in the neighborhood of the starting surface and 
leads to a Taylor expansion for bo:f3 along the 
isozenithals. 
The other fundamental forms and metrical proper­
ties of the equipotential surfaces can be expanded 
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similarly from formulas for isozenithal differentia­
tion given in Chapter 14. For example, we could 
obtain success ive differentials of 1J o:f3 from Equation 
14.07 and the n of a o:f3 from Equation 14.03. The 
formulas soon become very co mplicated in the 
case of a ge neral starti ng surface, but in practice, 
it would not be necessary to carry the process very 
far. The first differentials ca n be obtained from the 
Codazzi Equation 12.143 simply by knowing the 
variation of gravi ty over the starting surface; the 
law of gravi ty enters only in the second and higher 
differentials. 

26. We could similarly expand the elements of 
the s tarting surface along the normals instead of 
along the isozenithals. In that case, we should 
work in the normal coordinates of Chapter 15. The 
Codazzi Equations 15.25 now contain covariant 
derivatives which would have to be differe ntiated 
by Equation 15.53; the Caf3 are no longer constants, 
but would have to be differentiated by Equation 
15.26. Otherwise, the procedure is much the same 
as expansion along the isoze nithals, remembering 
that in these coordinates 

~=!~. 
aN n as' 

differe nti als wi th respect to N, nut with respect to s, 
commut e with differentials with respect tu the 
surface coordinates. 

FLUX OF GRAVITATIONAL FORCE 

27. The common normals, or orthogonal trajec­
tories, of the equipotential surfaces are also known 
as lines of force because the tange nt to such a line 
indicates the direction of the resultant force in 
accordance with the generali zed form of Equation 
20.05. A volume of small cross-sectional area 85, 
bounded by lines of force, is called a tube of force. 
The cross-sectional areas of a tube of force, where 
the tube crosses different equipotential surfaces, 
are evidently related by the normal projection sys­
tem of § 15-39; and from Equation 15.39, we have 

20.28 
a(!n 85) 

2H 
as 

in which as usual ds is an element of length along 
the normal and H is the mean curvature of the equi­
potential surface. Subs titution of this last equation 
in the gravitational Equation 2D.26 gives 

a{ln (n8S)} dN 

as n 
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or 

20.29 a(~:s) =(tiN)oS. 

We now introduce a quantity known as the flux of 
force across the area oS, and define this quantity as 

FrvroS 

in which Fr is the force vector and vr is the unit 
normal to the element of area oS. In the case we are 
now considering, the generalized form of Equat ion 
20.05 shows that the flux is 

f=-noS: 

we can rewrite Equation 20.29 as 

20.30 af/as =-(tiN)oS. 

In this equation, the positive direction of as is that of 
Vs in Equation 20.05, that is, against the direction 
of the force. Consequently, the rate of change of 
flux along a tube of force in the direction of the force 
is+ (ti.N) oS in which tiN takes one of the Newtonian 
values given in § 20-2L depending on whether the 
field is rotating and on whether the tube contain s 
matter in the small area under consideration. All 
of the preceding is simply an alternative statement 
of the Newtonian law of gravity. In particular, we 
may note that the flux is constant along a tube not 
containing matter in a static fie ld: because this is 
true for any number of adjacent tubes, there is no 
need for the tube to be of small cross-sectional area. 
Again, if the tube does not contain matter in a sta tic 
field, the cross-sectional area of the tube is inversely 
proportional to the magnitude or intensity n of the 
force. 

28. Another and more usual way of considering 
the flux is to apply the divergence theorem to a 
finite length of a tube of force between equipotential 
surfaces. From Equation 9.16, we have 

20.31 LFrvroS=-L fl.NdV 

in which vr is now the unit normal to the surface of 
the tube. The contributions of the sides of the tube 
to the surface integral are zero because vr at points 
on the sides is perpendicular to the force vector; we 
are left with the contributions of the ends. Now 
suppose that one end of the tube is held fixed and 
that the other end is extended a short lengt h ds , 
ending on another equipotenti al surface. The 
resulting increase in the area integral is evidently 

a(noS) ds=af ds, 
as as 
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and the increase in the volume integral is 

- ( fl.N ) oSds. 

Because the divergence theore m still holds tru 
for the extended tube, we may equate these tw 
increases to have 

(af/as )ds =- (fl.N) oSds ; 

and because ds , although small, is arbitrary, we hav 

af/as= - (fl. N) oS, 

which is the same as Equation 20.30, obtained solel 
by differe ntial methods . 

MEASUREMENT OF THE 
PARAMETERS 

29. We have seen in Chapter 12 how the geometr 
of the field depends on the curvature parameter 
(ki, k2, ti, y 1 , '}'2) and on (ln n )rv r , which are direct] 
related to the six components of the symmetri 
Marussi tensor Nrs by Equations 12.162. The law c 
gravity expressed by Equation 20.23, which ca 
be written as 

20.32 

provides one relation between the six parameten 
the question naturally arises whether we can obtai 
other relations by direc t measurement. One poss 
bility is the Eotvos torsion balance , which consis~ 
essentially of two masses A, B (fig. 18) suspende 

c 

r 
D B 

m 

A 
m 

Figure 18. 

at different levels from a horizontal bar. The b 
itself is suspended by a wire whose torsion, arisin 
from the unequal effects of gravity on the tw 
masses , can be accurately measured. 
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30. We suppose that the line AB is of length 2/ in 
azimuth a and zenith di stance f3 and that the two 
masses (m) are equal. The unit vector in the direc­
tion AB is from Equation 12.007 

/r = ;.._r sin a sin f3 + µ/ cos a s in f3 + v1
• cos {3. 

20.33 

. A unit equipoten tial surface vector perpendicular 
· to the plane of fr and vr is , with the usual right­
. handed conven tion , 

' 20.34 j"=-A.r cos a+µ.'" sin a. 

I If N is the geopote ntial at B, the force on B is 
1 - mNr: the turning moment of this force abou t CD is 

- mN,.p· X DB =- (ml sin {3) Nrj". 

Similarly, the turning moment about CD m the 
same sense arising from the force on A is 

+ ( ml sin {3) N,.j" 

in which N is the geopotential al A, so that the 
resultant torque is 

(ml sin /3) (Nr - N,.)j"=- (2nz/2 sin {3) N,.,~j"/8 

20.35 

because (N,. - Nr) c an be considered the intrinsic 
change in Nr in the direction (-/r) over a distance 
(2/). Expanding Equation 20.35 with Equations 20.33 
and 20.34 and usin g Equations 12.162, we have 
finally the resultant torque as 

-(2m/2 sin2 {3)n{(k1-kl) sin a cos a 

+t1(cos2a- sin2 a) 

20.36 - Yi cos a cot f3 + y2 sin a cot f3}. 

31. Measurement m several azimuths will 
accordingly dete rmine (k1 - k2), t1, Yi , Y2 and some 
instrume ntal constants, but will not separate k 1 

and k2. To do thi s, we need an additional form of 
measure ment. As one possibilit y, Marussi in 194 7 
suggested measurement of the torsion about the 
horizonta l axis j'", but no instrument has yet (1968) 
been construc ted on these lines. In principle, 
Maruss i's suggestion is equivalent to the classical 
method of an inclined balance. The Haalck hori­
zontal pendulum is s till another possibility which 
has not yet materialized as a field instrume nt. The 
only practicable method at present seems to be a 
direct measure of the vertical gradient of gravity 
with a gravimeter, leading to evaluation of (k1 + k2) 

from Equation 20.32, but this has not so far produced 
results comparable in accuracy with the torsion 
balance. No doubt , the problem will not remain 
unsolved much longer. 
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~2. An alt e rnative expression for the torque can 
be obta ined from Equations 20. 35 and 12.017 as 

- (2m/ 2 si n /3) (n svr + nv,.8 )/18 

20.37 =- (2mnl 2 sin /3) (Vrs j rf s) 

because vr and jr are pe rpe ndicular. By using Equa­
tions 7.08, 10.29, and 20.34, we can express the 
torque as 

20.38 

20.39 

= (2mn/2 sin /3){ t s in {3 - (In n )rjr cos f3} 

= (2mnl2 sin f3){t sin {3+y1 cos a cos f3 

- y2 sin a cos /3} 

in whi ch t is thP, geodesic torsion of the equipotenti al 
surface in the azimuth of the line joining the masses. 
W e can eliminate the term containing t , leaving 
onl y the horizontal gradient s of gravit y y 1, Y2 to be 
dete rmined , by adding an observation in azimuth 
(!7T+a). 

33. Eotvos himself introduced a double tors ion 
balance with parallel beams and hanging weights 
at opposite ends, while modern instruments have 
incorporated photographic recording and aut omatic 
azimuth-change . Howeve r, the principles re main 
the same. 

34. The tors ion balance has been used extensively 
in geophysic al pros pecting to determine diffe rences 
in gravity from measured (yi, Y2) and s tandard 
values of the vert ical gradient , but the in strument 
has been superseded for thi s purpose by sensitive 
gravimeters which are easier to use. Geodesists, 
other than Eiitviis himself who experiment ed on the 
Hungarian plains, have never used the tors ion 
balance extensively because the ins trume nt is 
extre mely sensitive to the attraction of masses in 
the immediate neighborhood, and is accordingly not 
considered to give suffic iently represe ntati ve values 
for the localit y. Recent work 1 2 on the int erpolation 
of deflections of the verti cal with the torsion b al­
ance has, for example, involved all-round leveling 
of the si tes within 100 meters of the ins trume nt. 
In addition, due precautions have to be taken to 
exc lude the effect of such temporary masses as 
wandering catt le: the e ffe ct of the observer's m ass 
is us ually eliminat ed by photographic recording 
and aut omatic operation. 

1 Mueller (1963), "Geodesy and the Torsion Balance,'' Pro­
ceedings of th e American Society of Civil Engineers. Jou rn al of 
th e Surveying and Mapping Division, v. 89. no. SU3. 123-155. 

2 Mueller (1966), "Interpolation of De fl ections of the Vertical 
by Means of a Torsion Balance,' ' Bulletin Geodesique, new series, 
no. 80, 171- 174. 





CHAPTER 21 

The Potential in Spherical 

Harmonics 

GENERALIZED HARMONIC 
FUNCTIONS 

1. Suppose that H is any continuous , differ­
entiable scalar function of position and that the 
nth-order tensor 

21.001 Hrs/ .. . (11) 

is formed by n successive covariant differentiations 
of H; the notation indicating that there are n-indices 
r, s, t .... The tensor equation 

Hrts ... (11) =Hrs/ ... (11), 

in which any two indices have bee n interchanged, is 
clearly true in Cartesian coordinates when the 
covariant derivatives become ordinary commutable 
derivatives, and is therefore true in any coordinate 
system in flat space. The nth-order tensor Equation 
21.001 is accordingly symmetrical in any two indices 
and has therefore 

t(n+l)(n + 2) 

distinct components at most. 

2. Next , suppose that H is a harmonic fun ction. 
The Laplacian of the tensor Equation 21.001 is then 

gikHrsr . .. (11)jk= (gikHjk)rst ... (11)=0 

so that all components of the tensor Equation 21.001 
are harmonic functions. 

3. We may similarly write 

21.002 
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The contracted tensor in this equation is of order 
(n - 2) and has at most 

t{ ( n - 2) + 1} { ( n - 2 ) + 2} = in ( n - 1 ) 

di s tinct components. When H is harmonic, there 
are accordingly 

tn(n-1) 

relations, such as Equation 21.002, between the 
components of the original tensor in Equation 
21.001, which can therefore have 

t(n + 1) (11+2) -tn (n -1) = (2n + 1) 

independent components at most. 

4. We now form an invariant 

21.003 A rst · · · (ll)Hrsr . . . ( 11 ) 

in which the contracting tensor is constant under 
covariant differentiation ; that is, all components 
of the contracting te nsor are absolute constants 
in Cartesian coordinates, and are the transforms of 
Cartesian constants in other coordinate sys te ms. 
The resulting summation will contain at most 
(2n + 1) independent harmonic fun ctions, so that 
the contracting tensor should be chose n to introduce 
no more than (2n + 1) Cart esian constants, and may 
therefore be chosen in the form 

21.004 CL,.M-~N1 ••• Q< 11 )H,._,, ... <11 ) 

in which C is an arbitrary constant and the u· are 
n arbitrary fixed unit vectors, each contributing two 
inde pe ndent constant Cartesian compone nts . This 
last result , as an invariant, is true in any coordinate 
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system provided the vectors v· are fixed- that IS, 

provided their covariant derivatives are zero. 

5. If the elements of length in the direction of the 
fixed vectors Lr, Ms are dl, dni, etc., we can rewrite 
Equation 21.004 as 

CM8N 1 • • • Q(u)(H rlr)s1 ... (11) 

=CMW' Q(lil (flH) • fl l st . . . \ 11- 1 ) 

d d d 
dn dm dl (H), 21.005 

which shows that the same result would be obtained 
by successive differentiation of H along each of the 
arbitrary fixed vectors in turn. 

6. We have now succeeded in generating (211 + 1) 
independent harmonic functions from a single 
initial function H , all of the same order n. The result 
of adding these functions with (211 + 1) arbitrary 
constants is to provide a more generalized harmonic 
function; we can obviously express a still more 
general harmonic function K by adding similar 
groups of higher and lower order as 

21.006 K ="' A rsf ••• ( 11) H f ( ) ,L.. rs ... n , 
n 

with corresponding expressions for the alternative 
forms, Equations 21.004 and 21.005, of the constants. 
We can extend this result into an infinite series, 
provided H and the components of the contracting 
tensors are chosen to make the resulting series 
convergent. The question then arises whether any 
harmonic function K can be expressed in terms of 
another harmonic function H . This is true in the 
special case where H = l/r and where the coordi­
nate system is Cartesian, in which case we shall see 
that the derivatives of H are solid spherical har­
monics; we could r easonably suppose, without 
formal proof, that it would be true in the more 
general case when fewer restrictions are applied. 

7. If K in Equation 21.006 is to be a Newtonian 
potential, then we can reasonably expect that the 
le ading, or absolute, undifferentiated term in Equa­
tion 21.006 would be of the form (l/r) because this 
is the simplest form of Newtonian potential. In 
that case, H would be (l/r). This fact was first 
noticed by James Clerk Maxwell,1 who showed that 
11-differentiations of l/r, as in Equation 21.005, 
generated all the nth-degree spherical harmonics. 
We shall derive this result more simply for a New-

1 \,1axwell (1881), A Treatise on Electricity and Magnetism, 
2d ed., v. I, 179-214. 

Mathematical Geodes) 

tonian gravitational potential, and at the same tim( 
shall provide a physical interpretation of the con 
tracting tensors in Equation 21.006. 

8. We shall find that a convergent series for th! 
Newtonian potential in the form of Equatior 
21.006 with H = l/r may not always be possible; W! 
are led to consider an alternative expansion n 
homogeneous polynomials in the tensor form 

in which pr is the position vector, whose Cartesiar 
components are (x, y, z), and Brst ... is a contractini 
tensor symmetrical in any two indices and witl 
constant Cartesian components. We notice that th! 
covariant derivative of the position vector is giver 
by the Kronecker delta (§ 1-21), that is. 

p': k = 8[. 

m Cartesian coordinates: and because this resul 
is a tensor equation, it is true in any coordinates 
Covariant differentiation of Equation 21.007 the1 
gives 

= L nBkst ... (nlP
8
P

1 

and the second derivative is 

lk1=2:n(n-l)B1,11 ••• (u)p1 
••• p( 11

-
2

> 

so that the Laplacian is given by 

21.008 

Accordingly, if } is to be harmonic for all co 
ponent s of the position vectors at all points of som 
finite domain, then we must have 

21.009 

for the coefficients of each polynomial in Equatio 
21.007 of degree two and higher. As in § 21-3, thes 
harmonic conditions, together with the symmetri 
cality in any two indices, restrict the number o 
independent polynomials of the nth-degree i 
Equation 21.007 to (211 + 1). We have then merel 
to substitute spherical polar coordinates for th 
(x, y, z) Cartesian components of the position vector 
in Equation 21.007 to obtain after some manipul 
tion an expansion in spherical harmonics. It i 
well known that all the nth-degree spheric 
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harmonics can be represented in this way by homo­
geneous polynomials of the nth-degree. 

THE NEWTONIAN POTENTIAL 
AT DISTANT POINTS 

9. We shall now find the Newtonian potential 
at a point P (fig. 19) in e mpty space (often described 

p 

convergence 

Figure 19. 

as " free air") out side an attracting body of irregular 
shape a nd irregular mass distribution such as the 
Earth. Two cases are of parti cular importance: 

(a) When P is farther from the origin 0 of the 
coordinat e sys tem than all points of the attracting 
body, and 

(b) when P is ne arer to the origin than some or 
all points of the attracting body. 
We s hall deal with the firs t case now, and the 
second case later. 

IO. W e shall suppose firs t that the attracting body 
consists of discrete particles, and s hall then show 
that results in the same form would be obtained 
for a continuous distribution of matter. 

l l. The potential at P, arising from an e le mentary 
particle of mass rrz at Q (omitting for the present the 
gravitational constant C) , is 

- m/PQ=- m(r2-2rr cos -y+ r2) - 11:i 

=-~ {1+~cosy+ ... (~)" P11(cosy) . .. } 

21.010 

by definition of the Legendre fun ctions or zonal 
harmonics P,,(cos y). This series, like the geometric 
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power series whic h dominates it , is abso lut ely a nd 
uniformly convergent if r > r: a nd , in tha t case , we 
may add to it te rm-by-term the s imilar series repre­
se nting the contribution to the pot enti al at /> 
which arises from the other particles of the att rac t­
ing body. If r > r for a ll partic les of the body, it is 
e vident that P must lie out sid e a sphere ce nte red on 
the origin which jus t contains all the particles: and 
we s h a ll accordingly call thi s the sphere of conver­
gence for this case. Otherwise, so me parti cles may 
se t up divergent series which ca nnot be added 
te rm-by-term to the other series. In special cases, 
the final series might be convergent inside the 
s phere , which jus t encloses all the matte r, because 
the ele ment ary divergent series cancels in the s um 
or is otherwise ins ignificant, but thi s wou ld have 
to be proved by considerin g the convergence of the 
final series. In an y case, we have not said that the 
final series is necessaril y dive rge nt on or ins ide 
the sphere of converge nce, but only that it is cer­
tainly convergent outside this sphere. Because 
r is the same for all particles , the total poten ti al 
Vat P, after replacing the gravitational constant C, 
would then be given by 

_!::_=M+"l.mr cos ii + 
G r r2 . 

....; rr1r 11 P (cos y-) 
- II + 

rll + I • 

21.0ll 

in which M is the total mass of the att racting body 
and the summat ions are carried out over a ll 
particles . 

The Potential in Maxwell's Form 

12. We s hall firs t recast Equation 21.011 in the 
te nsor form in vo lvi ng successive diffe re ntia ls of 
(l/r) , and shall rela te the coeffi c ient s in thi s expan­
s ion to the mass dis tribution. Later, we shall ob ta in 
the more usual expansion in spherical harmoni cs 
re lated to a fix ed Cartesian coordinate sys te m. For 
some purposes, one form is more convenient than 
the other , and we need both . 

13. If we take OQ (fig. 19) as a te mporary ax is 
of z and use the well-known fo rmula :i 

0 11 (l) (-)11 n! _ 
(Jz" -;. =~Pu (cos y), 

we find from Equation 21.01 l that the nth -degree 
term in the pote ntial arising from a single particle rn 

2 Hobson (1931), Th e Th eory of S pherical and Ellipsoida l 
Harmonics, 15-16. 

r 
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IS 

Because the unit vector iis toward the particle and 
in the direction of the temporary z-axis is constant 
during differentiation at P of (l/r), we can rewrite 
this last expression in the tensor form 

(-)llfffl)'ll (l) fiSfilfill • • • fi(11)' 

n. r s111 • •• (11) 

which is no longer dependent on a particular co­
ordinate system involving a single particle, so that 
we can sum this expression over all particles. We 
have also 

if .xs are rectangular Cartesian coordinates of the 
particle min any fixed system with origin 0, so that 
the nth-degree term in the total potential at P is 
finally 

-- Jstu ... (11) -(-)11 (1) 
n! r stu . . . (11) 

where 

21.012 

This last expression is evidently a tensor because 
it is formed by the multiplication and addition of 
of position vectors x8 • We shall call this tensor the 
nth-order inertia tensor because its value depends 
solely on the mass distribution within the attracting 
body and on the position within the body of the point 
0 chosen as origin. We can similarly define inertia 
tensors of the first, second, third, etc., orders as 

21.013 

21.014 

21.015 

Js=:L mx8 

r1=:Lmx8x1 

in which, of course, the summation is carried out 
over all particles. The inertia tensor of zero order 
is simply the total mass (M) of the body 

21.016 

With these conventions, we can finally rewrite 
Equation 21.011 as 

v x (-)
11 

( 1) --= 2: -,- 18111 • •• (11) _ 

G ll = O n. r st11 ••• (11)· 

21.017 
It is understood that when n = 0, the inertia tensor 
is M and (l/r) is undifferentiated: in addition, as 
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usual n! is interpreted as unity when n = 0. The 
expression 

(;)Sil/ .. . (11) 

signifies the nth-covariant derivative of (l/r) suc· 
cessively with respect to the coordinates x8 , x1• 

:x:" . . . . In Cartesian coordinates, the covarian 
derivatives become, of course, ordinary derivatives. 
and are then combined with the Cartesian form 
(Equation 21.012) of the inertia tensors. 

14. So far, the inertia tensors have been definec 
only at, and in relation to, a particular origin 
although we shall later derive expressions for thei1 
components at a different origin where (l/r) and iH 
derivatives would also be different. When the inertic: 
tensors are contracted with other tensors, as ir 
Equation 21.017, we should use values of the con 
tracting tensors at the origin, or else express th~ 
contracting tensors as sums and products of vecton 
and use parallel vectors through the origin. w~ 
should also use values of the metric tensor at th~ 
origin in conjunction with the inertia tensors. Ne 
difficulty arises if we use Cartesian coordinate~ 

because the components of parallel vectors and oJ 
the metric tensor are then the same at all point~ 
in space. 

Continuous Distribution of Matter 

15. We can consider that the attracting bod 
consists of a continuous distribution of matter o 
density p per unit volume instead of a system o 
discrete particles. In that case, we have only t 
write 

21.018 m=pdv 

for the mass contained in an element of volume d 
and replace the summation sign by a volume o 
triple integral taken over the whole body, so that 
for example, we have 

21.019 Jrs1 ... (11)=f pfYp8[/ ... p<11)dv 
I' 

in which pr is the position vector of the element o 
volume - that is, in Cartesian coordinates 

pr=xr. 

The density p can, of course, vary from point 
point, but because it is supposed to have a definit 
value at a point, the density can be considered 
function of position, that is, of (x, y, z). The densit 
need not, however, be a continuous function in th' 
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mathematical sense because we could integrate 
over subvolumes bounded by discontinuities and 
add the res ult s~ this result will be clear if we 
consider the original distribution of an aggregate 
of particles, which need not have been all of the 
same mass and indeed could have been separated 
by e mpty s pace. In so me cases. we shall find it more 
convenient to deal with a syste m of particles, and 
in othe r cases with a continuous dis tribution. There 
is, however , no essential diffe rence be tween the 
two cases, which are quit e s imply related by use of 
Equation 21.018 and by integration instead of 
summation, whethe r we are dealing with ine rtia 
tensors or with any other formul as in this c hapter 
that relate to the mass di stribution. 

Successive Derivatives of (l/r) 

16. In order to use the basic Equation 21.017 for 
the potential , we shall require fo rmulas for the 
successive derivatives of (l/r) which are intimately 
connected with the unit position vector Vs of the 
point P where the formula gives the potential 
(fig. 19). The vector Vs is in fact the gradient of 
the radius vector r, so that we have 

21.020 Vs= rs 

and 

21.021 

giving the first derivatives of (l/r). 

17. Thro ughout this chapter , (w , </> ) will be the 
longitude and latitude of the radius vector OP , that 
is, the geocentric longitude and latitude. unless 
othe rwise st ated. W e can accordingly conside r Vs 
to be the unit normal to the r-surfaces (s pheres) in 
a s ymmetri cal (w, </> , r) coordinate sys te m. Fro m 
Equations 18.12 and 18.13, we the n have 

(cos </>) Ws = As/ r 

</>s=µ,s/r; 

and from Equations 12.016 and 2.08, we have 

Vst = (As At+ JLsJLt) Ir 

21.022 = (gs1-vsv1)/r , 

so that the second covariant derivative of (l/r) is 
from Equation 21.021 

(l/r)st = (2/r1)VsVt - (l/r2)Vst 

21.023 
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The third de rivative , using the las t two equations, is 

(l/r )s111 = (-3/r4 ) (3vsv1-gst)v11 

+ ( l/r) (3g~uVt + 3g111Vs - 6VsV1V11) 

21.024 

proceeding in thi s manner, we find without d ifh­
c ult y th at the nth-de riv ati ve is given by 

( - )
11 (1/r )pqrst ... ( 11 Jr

11 + 1 

1 · 3 · 5 . .. (2n - 1) 

21.025 

in which the symbol 

{gpqVrVsVt ... V(n )} 

(2n - 1) 

{gpqgrsVt .. . V(11 )} 

+ ....:,.(::..:...2n...:..::-'--l .,-)(.,.,,,2-n ---::37-) 

implies that the indices are permuted cycl ically 
in all different ways, allowing for the symme try 
of the metric tensor gpq , and the results are summed 
as in Equation 21.024. At each successive term in 
the expansion, we drop two "v 's" which we rep lace 
by one "g. " The fin al term contains one "v" if n is 
odd , but othe rwise all "g's ." 

18. Equation 21.025 can also be obtained by suc­
cessive covariant diffe rentiation of the identity 

x2 + y2 + z2 = r 2' 

remembering that all components of the ten sors 
Xpq .. . , YJJq . . . , Zpq . .. are zero in an y coordinate sys­
te m because all the com ponent s are zero in Car­
tesian coordina tes. For example, we have 

xx1,+ yyp+ zz1,= pp= rv11= - r=1( l/r )1,, 

which is equivalent to Equation 21.021. Also, we 
have 

XqXp + YqYJJ + ZqZp = gpq = 3r4 ( l/r) /J ( l/r )q
1

- r=3( l /r ) /1q, 

which is equivalent to Equation 21.023, and 

0 = - 12 r5 
( 1 / r) /J ( 1 / r ) q ( 1 / r) s + 3 r4 { ( 1 / r ) pq ( 1/r ) 8 

+ (l/r )qs (l/r) 11 + (l/r )s11 (l/r) q} - r3 (l /r) JJqs , 

which is equivalent to Equation 2 1.024. 

19. The number of terms in the symbol 

is n ( n - l) /2 , obtained by taking two indices at a 
time from n , regardless of order. The same opera-
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tion , applied to the remaining (n-2) indices m 
each term, gives 

{ (n - 2) (n - 3)/2} X n(n - 1)/2 

as the number of terms in the second symbol 

{gpqgrsVt ... V(11)}. 

But half of these terms are the same as the other 
half, for example, 

so that finally the number of dis similar terms in the 
second symbol is 

n(n - 1) (n-2)(n-3)/(2 · 4), 

and in the thi rd symbol is 

n(n - l)(n-2) (n - 3) (n - 4)(n-5)/(2 · 4 · 6), 

and so on . 

20. We shall usually contract Equation 21.025 
with an nth-order contravariant tensor which is 
symmetric in any two indices. Each term in a par­
ticular braces symbol will make the same contri­
bution to the res ulting invariant , so that in such 
cases we can rewrite Equation 21.025 as 

(- ) 11 (1/r )pqrst ... (u)r
11 + 1 

1 ·3· 5 ... (2n-l) 

= l 1pVqVrVsVt . .. V(u ) 

n(n-1) 
2 (2n- l) gpqVrVsVt . .. V(11) 

n(n-1) (n-2) (n-3) 
+ 2 ·4(2n-1)(2n-3) g,,qgrsVt · · · V(u ) 

21.026 

21. As some verification of this last formula , we 
take the latitude and longitude of the direction OP 
as (¢ , w) with respect to rectangular Cartesian axes 
and take 0 as origin. Then the Cartesian compo­
nents of the unit vector vp are as usual 

(cos ¢ cos w , cos¢ sin w, sin¢) , 

and we have also 

g,,q = l(p = q) gpq = 0 (p =P q). 

S ubstitution in Equation 21.026 and use of the 
usual expansion for Pu (x ) in powers of x then give 
us at once 

(1) () 11 (1) (-)un! . - = - - = 
1 

P11( s rn ¢). 
r 33:1 .•. (11 ) <Jz 11 r r11 + 

21.027 
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This equation recovers our starting point in § 21-13 
In the same way , we have 

(1) au (1) 
-;. Ill ... (11 ) = ax11 -;. 

21.028 

'l) a
11 (1) 

(-;. 222 . , • ( 11 ) = a Y 11 -;. 

21.029 

(-)11n ! 
i i+ l Pn(cos ¢cos w) 

r 

(-)11n ! 
n+ 1 • P11 (cos ¢ sin w). 

r 

Corresponding formulas for mixed derivatives are 
however , less simple as we shall see. 

22. Equation 21.026 is a purely geometrical rela 
tion . If we multiply by r11 and note that rvp =pp , th( 
position vector of P whose distance from the origir 
is r in the direction vp, and if we also contract witl 
an arbitrary constant tensor Apqr · · · (n) symmetri< 
in any two indices, then the first term on the righ 
becomes a homogeneous polynomial of the nth 
degree 

21.030 fn(x , y, z) =Apqr · · · <nlpppqpr . .. P<nl 

The Laplacian of this last equation, as we have 
already seen in Equation 21.008, is 

f:lj;1 =n(n-l)APQr ... (l1)gpqpr ... P<n - 2); 

again taking the Laplacian , we have 

l:l 2/11 = n ( n - 1) ( n - 2) ( n - 3) 

X Apqrst · · · (l1) gpqgrsPt · · · P<n- 4) 

so that the right-hand side of Equation 21.026 ca 
be written as 

[ l-2(2::~ 1) 

+ 2 · 4(2n~
4

~; (2n-3) - · · .]f11 (x, y , z) 

while the left-hand side is 

(-)"Apqrst ... (nl(l/r)pqrst ... (u)T211 + 1 

1 · 3 ... (2n- l) 

We can also write 

A pqrst . . . (11) ( l/r) t ( ) = j; (,E_ ,E_ l_) (.!) pqrs 0 0

• II II ax' ay' az T 

in which j;, is the same function of the operato 
a /ax, etc., asj;,(x, y, z) is of the Cartesian coord 
nates of P in Equation 21.030. The final result is 
classical theorem of very general application du 
to Hobson,3 

3 Hobson, op. cit. supra note 2, 127- 129. 
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(-)n,-2n+1 (a a a)(l) 
l · 3 ... (2n-l)f,' ax' ay' az -; 

= [1 r2D. + r4D,.2 
2(2n-l) 2· 4 (2n-1)(2n-3) 

21.031 - ... Jf,,(x, y, z). 

23. Hobson's formula is frequentl y useful as a 
means of expressing the successive derivatives of 
(l/r) in spherical harmonics. Suppose, fo r example, 
we want to express (l/r)112 , then the corresponding 

. polynomial is 

!and we have 

! - r1 (!) - 2 - (.!) 2 
1 · 3 · 5· r 112- XY sr y 

so that finally 

= ( r3/5) (5 cos3 <P cos2 w sin w 

- cos <P sin w) 

= (r3/5){ cos <P sin w(5 cos2 <P- 1) 

- 5 cos3 <P sin3w} 

= (r3/5){t cos <P sin w(l - 5 sin2 ¢) 

+ ~ cos3 <P sin 3w} 

=(r3/5){-iPH sin<p) sin w 

+ f2P~(sin ¢) sin 3w} 

r4(l/r)u 2 =tP~(sin¢) sin w- t P Hsin¢) sin 3w. 

21.032 

We can be certain that the result must be in terms 
of harmonic functions . The process is assisted if 
we first convert powers of the sine or cosine of the 
longitude into multiple angles. 

The Potential in Spherical Harmonics 

24. If we return to the basic Equation 21.011 
and fi gure 19, we see that the coeffi cient of (l/r'i+1), 
that is , 

is a fun ction of the position of the mass point Q in 
relation to a te mporarily ' fixed direc tion OP and of 
the distribution of mass, and so must be expressible 
in terms of the inertia tensors for a particular origin. 
We now seek to express this function alternatively 
in terms of spherical harmonics. 
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25. If the latitude and longitude of the mass point 
are overbarred and of the point / 1 are unbarred, 
we have 

cos y =sin <P sin ¢ + cos <P cos ¢ cos ( w - w) 

21.033 

and by the ordinary addition formul a 

P,, (cos y ) = P 11 (s in <f>) P11 (sin ¢) 
111

=
11 [(n - m)' -

+ 2 L (n + m);P:;1(s in ¢) P:;' (s in ¢) 
111 = 1 ' 

21 .03 4 x {cos mw cos mw + sin mw sin mw} J . 
We can accordingly rewrite Equation 21.011 to 
give the potential in the form 

v :x: II - z;= L L P;;' (sin ¢){C11111 cos mw 
11 = 0 111 = 0 

21.035 + S ' }/ II + I 11111 sin mw r 

in which the term inde pendent of longitude is 

21.036 C110P::( sin <P) = C,,oP,,( sin </>) , 

provided that 

C110 = LT1ii~np11( sin ¢) 

_ ""' __ 
11 

(n - m)! 111 . -
C,,111- 2L,;mr (n+m )! P ,, (sm ¢)cos m.w 

21.037 S 2""' __ 11(n-m)!p111( . :i. ) . -
11111 = L.;mr ( + )' 11 sin 'f' sin mw n m. 

in whic h m can be any intege r between unit y and 
n inclusive, and (n - m)! is interpre ted as unit y if 
m= n. The summation in these expressions is not, 
however , taken over these values of mas in Equation 
21.034, but is ta ken over a ll mass points in the 
attracting body. Accordingly, the C's and S's are 
constant s fo r a partic ular body and de pend only 
on the mass distribution. Like the inerti a tensors. 
to which we shall relate the m lat er . the C's and 
S's can be calculat ed if we know or postulate the 
mass di stribution. Conversely. a knowledge of the 
C's and S's or of the components of the inerti a 
tensors, obtained by observation or measure me nt , 
will provide information about the mass distr ib u­
tion , although the C's and S's and the inertia tensors 
do not determine the mass distribution unique ly. 

26. If a is a constant , such as the radius of a 
sphere centered on the origin and enclosing all 
the matter, we can multipl y Equation 21.035 by 
a 11 without affectin g the convergence of the series. 
provided we also divide the C's and S's by 0 11 • T his 
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device will also ensure the convergence of the 
series in Equations 21.037, and of the correspond­
ing integrals in the case of continuous distributions. 
The size of the C's and S's will depend largely on 
m, and to render them more readily comparable, 
it is usual to adopt normalized functions instead; 
one such scheme, due to Kaula;1 is to use the 
following overbarred coefficients 

Cno = Cno/ (2n + 1) 1/2 

( C
11111 ) [ ( n + m) ! J 1/

2 
( C

11111 ) 

S11111 = 2(2n+l)(n-m)! S11111 

21.038 m~O, 

which in effect reduce the coefficients to about the 
same comparable size as their root mean square 
values over a sphere. The dimensions of the 
constants need some consideration. The dimensions 
of the potential, defined as work done on a particle 
of unit mass, are UT- 2 • From the formula Gm/r 
for the potential, the dimensions of the gravitational 
constant G are L3M - 1T - 2 and the dimensions of 
V/G are L- 1M. Consequently, the dimensions of 
the C11111, S 11111 in Equation 21.035 must be L11M, 
~hich is verified by Equations 21.037. If, however, 
we multiply Equation 21.035 by G and alter the 
constants accordingly, the dimensions of the 
constants would be L 11 +1 (L'YJ'- 2). 

Relations Between the Constants 

27. It will be clear from Equation 21.026 that the 
nth-degree term in the inertial form of the potential, 
Equation 21.017, consists of l/r11 +1 multiplied by 
quantities which are independent of r; similarly, 
so does the nth-degree term of the spherical har­
monic form of the potential, Equation 21.035. Both 
forms of the potential must hold for all values of r 
outside the sphere of convergence; we may accord­
ingly equate the nth-degree terms in the two Equa­
tions 21.017 and 21.035. That is not to say, however, 
that individual terms within the nth-degree are 
equal; only the sums of these individual terms, com­
prising the whole of the nth-degree terms, are the 
same. We conclude that the C's and S's in Equa· 
tions 21.037 are expressible in terms of inertia 
tensors of the same nth-degree. 

28. The simplest way of expressing this result 
is to expand the C's and S's as Cartesian polynomials 

4 Kaula (1959), '"Statistical and Harmonic Analysis of Gravity," 
Journal of Geophysical Research, v. 64, 2410. 
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from the usual formulas 

P ( . A.)_ 1 · 3 · 5 . . . (2 n - 1) 
11 sin'+-' 1 n. 

21.039 

X [sl
·nn A. n(n -1) . (11 - 2).:i:. 

'+-' 2(2n-I)sm '+' 

+ n(n -1) (n -2) (n -3) sin' 11 _4l</) 
2 · 4(2n - 1) (2n - 3) 

- ... J 
P m( . .:i:.)= (2n)! cos 111 </) 

11 Sin'+-' ! 211 n.(n-m)! 

[ 
(n - m) (n - m -1) 

X sin'n - m)</) - sin<n-m- 2 l</) 
2(2n -1) 

+ (n-m) (n -m-1) (n-m-2) (n-m-3 
2 · 4(2n - 1) (2n - 3) 

X sin\11-111-4)</) - ... J 
21.040 

- , - m(m -1) (111 '') - • ., - + cos mw = cos11 w -
2 

! cos -- w sm- w . 

21.041 

sin mw= m cos<m - l)(jj sin w 
m(m-l)(m-2) <m - 3l _ . 3 -+ 

3
! cos w sm w . 

21.042 

and to substitute the relations 

x=r cos 4> cos w 
y= r cos </) sin w 
z=r sin</) 

.x2 + y-2 + :z2 = f2. 

For example, we have 

C33 = 2 L fiif3 x ( 1/6 !) 

(
6! cos3 ¢) [l][ 3 - 3 - .. , -1 X 233 ! cos· w- cos w s1w w 

=>b:L m(x 3 -3xj2) 

=}4 (/111 - 3/122 ). 

29. In this way, we find that the complete se 
of relations for the second and third orders a 

c20 = f33-~(111+122) 

C21 =/13 

S21 =/23 

C22 =!(/I I - /2'L) 

21.043 S22=H12 
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and 

21.044 

Cao= pi:i:l -~ (111 3 + ]223) 

C:ii =J1:1:1_t(l111+1122) 

S31 =J'2:i:i_t(l 112 +Jm·) 

C:i2 =tam - p23) 

S:i2=!JI23 

C:1:1=214 (1111-31122) 

S:n = 214 (31112 -1222). 

30. To find more general relations , we rewrit e 
the last two equations of Equations 21.037 in th e 
complex form 

. (n-m)!L . - . 
C +ls =2 int<n -- mJP 111 (s111A.)(re1w)111 

11111 11111 (n+m)! 11 '+' 

21.045 

(2n)! " - (- + ·-)111[ ;;(11 - 111) .L.JmX LY Z 2< 11 - 0n !(n + m)! 

(n -m) (n - m-1) ,_2-z:.. 11 _ 111 _ 2 J 

2(211 - l) 

+ (n-m)(n-m-l)(n-m-2)(n-m-3) 
2 · 4(2n-1)(2n-3) 

x ;=4z<11- 111 - 4) _. . . J 

on substituting Equation 21.040. The result is a 
combination of components of th e nth-order inertia 
tensor which can be written down at once afte r 
expanding (.X + iy) m. Terms containing r2 will appear 
as 

g,.sfl"S/JQk . .. (II)= JI l}JQ .. . (II)+ f'22JJQ . . . (11) + p:lpq .. . (II), 

and terms containing r will appe ar as 

g,.~111Jrsluk . .. (11), 

and so on. For example, we have 

C + ·s _ 8! ~-(-+·-)[-:i 3·2_.,_J -11 l -11-
8

. 4 !
5

!.L.Jmx iy z·-
2 . 7 r-z 

= i{J1333_ 4(J1113 + prn + fl313) 

+ iJ2333 --¥-i(/1123 + ]'2'2'13 + J=l32:l)} 

leading to 

C-11 = J=l313 -i(JI l !3 + F!.1 3) 

21.046 s-11 = p32:1 _~(11123 + p223). 

Apart from the factor of 2 in Equations 21.037, the 
zonal terms C110 can also be obtained from the 
general Equation 21.045 simply by making m= 0. 

306-962 0-69-12 
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Othe rwise, we can use Equation 21.039 and wri te 

c
110 
=" m 1 · 3 · 5 (2 n - 1) [z" 

.LJ n ! 

21.047 n(n - l ) -2 =' 11 - 2J 

2 (211 - 1) r .c + · . .]-
31. We have seen in § 21-4 tha t the numbe r of 

inde pe nde nt te rms of the nth-degree is (2n + l ) at 
mos t, a nd the re are indeed (2n+ 1) of the C 11 111 and 
S 11111 - The ine rtia tensor of the nth-degree, never­
theless, has i (n + l) (n + 2) di s tinct compone nt s, and 
we might expect to fin d 

-!(n+ 1) (n+ 2)-(2n + l)=!n(n - 1) 

relations between these co mponent s . The re are no 
s uc h relations. The explana tion is that the num ber 
of inde pendent func tions 

(l/r),.s1 . . . (11 ) 

is restrict ed by the Laplace equation to (2n + l ); 
the numbe r of compnnent s of the ine rti a te nsor is 
not so restrict ed. F or example, the Laplace equa tion 
in Cartesian coordinates applied to te rms of the 
second degree is 

(l/r)11 + (l/rbz + (l/rh:i = 0, 

and we can write the s um of the corresponding terms 
in the potential as 

/ 11 (1/ r)i 1 + !22(1/ rb + p:io; rh:i 

= (111 - J=l3) (l/r)11 + (122 - p :i) (l/r )z'J.. 

Con sequently, we shall obtain the same . res ult for 
the s um of the second-de gree te rms in the pote nti al 
if we take as coefficie nt s 

(Jll) = /11 _ J=l3 

(122 ) = ]22 - ]33 

(1:1:1 )=0 

(11 2) = /1 2 

(J'!.:l)= ]23 

(11 3) = /1 3. 

We d o not reduce the numbe r of component s of 
the ine rtia tensor by thi s de vice, but we do reduce 
the numbe r of separate te rms to the requi s it e five. 
The s ame de rivation applies to the nth-orde r terms 
where the ! n(n -1) relations 

(l/ r)11111 .. . (11) + (l/rb 1u . .. (II)+ (l/r):rn111 . .. (11) = 0 

are introdueed by diffe rentiating the Laplace 
equation (n -2) tim es. As we shall see late r , the 
number of compone nt s of the inertia te nsor can 
be reduced by a suita ble choice of coordina te axes, 
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but in that case, the number of C's and S's is also 
reduced. 

32. For these reasons, it is not possible to express 
each component of the inertia tensor explicitly in 
terms of the C's and S's. We can see from Equa­
tions 21.037 that the C's and S's are linear combina­
tions of harmonic functions; therefore, an y linear 
combination of these terms must also be a har­
monic function. Each component of the inertia 
tensor is, however, a homogeneous polynomial by 
definition in Equation 21.012, and not all poly­
nomials are harmonic functions. The most we can 
do is to express certain combinations of the com­
ponents of an nth-order inertia tensor, which happen 
to be harmonic functions, in terms of Cno, Cnm, and 
Snm· This procedure will reduce the number of 
independent relations to (2n + 1) . 

33. For example, the third-degree polynomial 
( y3 - 3yz2) is harmonic and can therefore be ex­
pressed in terms of solid spherical harmonics as 

(y3-3yz2) = r3 (cos3 </> sin3 w 

- 3 cos </> sin2 </> sin w) 

=-r'3{efciP~ (sin </>)sin 3w 

+!PJ (sin</>) sin w} ; 

multiplying this equation by the mass of the particle 
at (x, y, z) and summing with the aid of Equations 
21.037, we have 

/ 222 - 3/233 = - 6S33 - 3S31· 

Proceeding in this way for the other six basic third­
degree harmonic polynomials 

(xy2-xz2
), (yz2-yx2), (zx2

- zy2), 

(x3-3xy2), (z3-3zx2), xyz, 

we have for the complete third-order set 

p22 - /133 =-6C33- C31 

21.048 

/ 233 - / 112 =-6S33 + S31 

1113 _ 1223 = 4c23 

1111 - 31122 = 24C33 

/ 222 - 3/233 = - 6S33 - 3S31 

/333 - 3/113 = C 30 - 6C 32 

/123 = 2S32, 

agreeing with the reverse set in Equations 21.044. 
The harmonic polynomials are suggested by Equa­
tions 21.044. For example, 

c 32 =HI113 _ f223) 

shows that (x 2z -y2z) is harmonic, and we obtain 
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two others by permuting x, y, z. In the same way, 

C33 = 2\(1111-31122) 

shows that {x3 - 3xy2) is harmonic with two others 
by permutation, and finally 

S32=!fl23 

gives the remaining basic harmonic as xyz. The 
remaining harmonics in Equations 21.044 are linear 
combinations of the basic set of seven. For example, 

c 30 = J333-i{l113+1223) 

shows that 

z3-i(x2z+ y2z) 

is harmonic, but this can be expressed as 

{ z3 - 3zx2 ) + i ( zx2 - zy2) . 

34 For the sake of completeness, we give the 
reverse second-order set as 

21.049 

/ 11 - / 22 = 4C22 

/ 22 - / 33 = - C20 - 2C22 

/12 = 2S22 

/13 = C21 

/ 23 = S21-

Again, the basic harmonics are suggested by Equa­
tions 21.043 as (x 2 -y2) and xy with permutations. 

Invariance 

35. If we define the Newtonian potential at a 
point as the negative of the work done by the force 
of attraction in moving a particle from an infinite 
distance to the point P, then it is clear that the 
potential depends only on the position of P in rela­
tion to the attracting body, not on the choice of 
a particular coordinate system. In other words, 
the potential must be a scalar invariant. We arrive 
at the same conclusion if we define the potential 
as a scalar whose gradient is the resultant force of 
attraction; the attraction vector at P must also be 
independent of the coordinate system, although 
its components will, of course, depend on the co­
ordinate system. Again, we can define the potential 
as a scalar whose Laplacian is zero outside matter 
and which behaves like (l/r) at great distances 
from the attracting body; we have seen that the 
Laplacian is invariant, and if it is required to have 
a defined (zero) value-independent of the coordi­
nate system - at all points in free space, then the 
original scaiar potential must also be an invariant. 
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-That fs not to say, however, that every mathematical 
expression for the potential is necessarily invariant; 
we should test the expression for invariance and 
so ensure that it is a valid representation of the 
physical definitions. For example, we have added 
the principle of superposition to the physical 
definition of the potential which arises from a 
particle in deriving Equation 21.011, and if this 
were to result in noninvariance, then the principle 
could not possibly be true. Some of the mathe­
matical processes could also introduce nonin­
variance, especially when we work in a particular 
coordinate system. Accordingly, we shall now test 
the basic Equation 21.017 for invariance. 

36. From the tensor form of the potential in 
Equation 21.017, we can see at once that each group 
of terms of the same order is invariant under co­
ordinate transformations which do not change the 
Cartesian origin because, in that case, (l/ r) does 
not change and the inertia tensors remain the same 
even though their components change. Accordingly , 
Equation 21.017 is invariant for rotations of the 
coordinate axes. 

37. Next , we consider the effect on the potential 
at P (fig. 20) of shifting the origin from 0 to Oo. The 

p 

Figure 20. 

position vector of Oo in the old system is p:; in a 
direction making an angle yo with OP, and the mag­
nitude OOo of the change is ro. Quantities related 
to the new system are denoted by overbars, for 
example, OoP = f; an overbarred inertia tensor 
signifies that its values are to be taken at the point 
Oo. We must show that we have 

x (-)11 (1) L--/Slll . . . (11) -
11=0 n! r .s111 ... (11) 

21.050 x (-)11- (1) =L--1s111 . .. <11> _ 
11 = 0 n! j' Siii, .. (11) 
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for arbitrary values of the vec tor p[;. 

38. As in Equation 21.010, we have 

F= r{ l - 2(ro/r) cos y 0 + (r0 /r )2 } 112 

1 1 { ro -::=- 1 +- P(co s Yo) 
r r r 

21.051 (ro)
111 

+ . . . --; Pm(cos Yo) +· .. }. 
provided that ro < r. We have also to e nsure that 
P lies outside the new s phere of co nvergence 
(fig. 19), centered on Oo, so that both series in 
Equation 21.050 may be convergent. Because terms 
of the same order in either series are invarian t 
for rotations of the coordinate axes, we can take 
OOo as the old z-axis without any loss of ge ne ralit y. 
We then follow § 21-13 and rewrit e Equations 
21.051 as 

~=.!-roi_(.!)+ . . . (-)111r[,11~ (.!) .. . 
r r az r m ! az Ill r 

21.052 

in which the derivatives refer to virtual di splace­
ments of the point P. This expression is similar, 
apart from signs, to a Taylor expansion for (l/f) 
along 000 • However, it should not be confused with 
a Taylor expansion, which would require (l/r ) 
to be defined along OOo and would require values 
of the derivatives at 0. If the unit vector along the 
z-axis, 000 , is uP, then we have 

ro i_ (.!) = r0uP (.!) = pg(.!) ; az r r /I r p 

and because p~ and uP are fix ed during displace· 
men ts of P, we may similarly writ e 

a
111 (1) (1) rlf---;;; - = pgpg . .. p~n> -

az r r /IQ ... (111 ) 

so that Equation 21.052 may be rewritt en in te nsor 
form as 

1 1 "' (-)111 
-::=-+ "" - P"P& · r r ~ m! 0 

111 = 1 

21.053 

(1) P(lll) -
• • 0 

r 11q ... (111) 

in which the mth-order term has m vectors, pg, 
and m successive covariant derivatives of (l/r ). 
These covariant derivatives still refer to displace­
ments of P with 0, 0 0 fix ed. W e can accordinj;!;ly 
differentiate Equation 21.053 furth er for displace-



164 

men ts of P, with PC a fixed vector, and obtain 

Gtll ... (n)=Gtl .. . (11) 

"" (- )"' + ~ -pPpQ 
L.J m' o o 

111 = 1 • 
(1) P(lll) -

• • • 0 
r 1,q ... (111)s111 .. • (11). 

21.054 

39. W e have now to e valuate the inertia tensors 
at Oo. If pr , jY are the position vectors from 0 and 
Oo , respectively, to a particle of mass m, then we 
have 

-+-
in whic h p~ is, a s before , the vector OOo. The second-
orde r ine rtia tensor at Oo is the n 

21.055 

]st =Lmpsjy 

=2":m (ps - pg) (pl - pb) 

= Jsl - pi)/1 - p/JS + MpBpb 

in which M is the total mass . If lat e r we contract 
with a covariant symmetric t ensor such as (l/r)si, 
the n thi s last expression may be writte n as 

21.056 ]st= / st _ 2pfJI + M pJpb. 

I n the same way, the nth-order inertia tensor 1s 

/st11 . .. ( 11) = Lm (p·' - Pi\) (pl - pb) (p11- pli) 

21.057 ... (p< 11 >-p~I)) , 

a nd if this last equation is to be contracted with a 
covariant te nsor symmetric al in any two indices, 
it can be writt e n as 

]stu .. . (11 ) = ptu . .. (11) _ npf/;11 . .. (11-1) 

+in(n - l)p~pl/u .. . (11-2> 

2 1.058 ••• (--) 11Mpfiplip~ ... p~1 >. 

40. Multiplication and contraction of the two 
Equations 21.054 and 21.058 now show that we have 

]stu ... (11) (~) = / sill . .. (11) (.!) + . . 
T stu ... (n) Tstu ... (n) ., 

21.059 

the remaining te rms on the right all contain the 
a rbitrary vector p~. The term containing one vec­
tor p{{ is 

_ [' t11 . .. (11)Pb(!) _ n/111 . . . (11 - l)pJ(_!) , 
r µs111 ... (11) \r sill . .. (11) 
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which becomes on exchanging dummy indices 

- p" ~ [1s111 . .. (11) (.!) 
O ax/J T Sill ... (11) 

+ nf1u . .. <11 -n (!) J 
r tu . .. (11) 

21.060 =p{I a~JJ [(~~II {(~)(11)-(ft_JJ 
where - (V/G)(l1) signifies the nth-term in the ex­
pansion of Equation 21.017. If the term in Equation 
~l.060 is to be invariant for arbitrary pfI, then the 
term within brackets in the last expression must be 
constant or zero, which, in general, is not the case. If, 
however, we multiply Equation 21.059 by (-r/n ! and 
sum from n = 0 to n = oo, then the term containing 
p~ becomes zero, provided that - (V/G)x is zero 
as it must be because the series for - ( V/G) is 
convergent. The potential given by Equation 21.017 
is then invariant, at least to a first order, although 
each term or group of terms is not invariant. In 
the same way, the term in Equation 21.059 contain-
ing two vectors is 

JJ q _L [~ {.! (f) - (f_) + .! (~) }] 
PoPo axPaxq (-) 11 2 

G <11> G <11 - 1> 2 G <n - 2> ' 

21.061 

which again becomes zero if, and only if, we mul 
tiply by (- )11/n! and sum. The same resu"lt is olJ 
tained for terms of higher degree, and we conclud 
therefore that the potential as given by Equatio· 
21.017 is invariant although each sum of terms 
the same order is not invariant under change o 
origin as is the case for rotations. We may note als 
that the proof depends on summing the complet 
series; if we omit any numerically significant ter 
the truncated series would not necessarily be i 
variant. We conclude also that the expression 
the potential in spherical harmonics is invaria 
to the same extent because groups of terms of th 
same degree in (l/r) are equivalent in the tw 
expressions. 

The First-Order Inertia Tensor 

41. W e have seen in Equation 21.016 that th 
inertia tensor of zero order is the total (scala 
mass (M) of the attracting body, and we shall no 
investigate some properties of the higher orde 
inertia tensors. 

42. If xg are the Cartesian coordinates of th 
center. of mass of the body, then by definition of th 
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center of mass, we have from Equation 21.013 

21.062A 

or, in terms of position vectors, 

21.0628 /s= LJizpS= Mpfi. 

If the origin 0 of Cartesian coordinates is at the 
center of mass, then p~ is a null vec tor and all 
compone nts of the first -orde r inertia tensor are 
zero. In that case, the first-order terms (n = l), 

- fs(l/r) s, 

in the Equation 21.017 for the potential are all zero. 
Conversely, if all these three te rms are absent in 
the expression for the potential, then all components 
of pf, must be zero because the derivati ves of (l /r) 
are not , in general, zero. In that case, the origin of 
the coordinate system is at the cen ter of mass. 

The Second-Order Inertia Tensor 

43. We shall next consider some properties of 
the second-order inertia tensor 

21.063 

and of the corresponding terms in the pote ntial. 
We shall also relate this te nsor to the moments and 
products of inertia as usually defined. 

44. Returning to figure 19, we note first that the 
invariant grsf rs , evaluated in Cartesian coordinates 
(grs is the same at the origin as at all other points), 
IS 

21.064 I= grsfrs =L11igr.~{/p5 =L mr2 

and is also 

Jrsvrv.~ =Lmf>rp5VrVs =Lmr2 cos2 y. 
Therefore, the moment of inertia about the axis 
OP (unft vector v,.) as usually defined is 

fop =L1h(QR)2 = Lmr2 sin2 y = Jrs(grs - VrVs) 

21. 065 = /r5(ArAs+ f.Lrf.ls) 

where A,., f.Lr are any orthogonal unit vectors per· 
pendicular to Vr , and we have used Equation 2.08. 
It follows that the sum of the mome nts of inertia 
about any three mutually orthogonal axes throu gh 
the origin is 

Jrs(>. .. rA.s + f.lrf.ls) + Jrs(f.Lrf.ls + V,·Vs) 

+ Jrs(V,.Vs + ArAs) = 2grs frs = 2/, 

which IS another way of considering the invariant 
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/ . 5 If the la titude and longitude of Vr, with the direc­
tion OP , are (</>, w) , we can at once expand Equa­
tion 21.065 as 

I of' = I - /1 1 cns2 </> cos2 w - /22 cos2 </> s in2 w 

- /33 sin2 <f> - 2/ 12 cos2 </> sin w cos w 

- 2/13 s in </> cos</> cos w 

- 2P3 sin </> cos </> sin w. 

21.066 

45. The off-diagonal components of the inertia 
te nsor 

21.067 

/13= Lnixi 

f23= L"'5ri 
are usually know n as products of iriertia.6 

46. The moment of ine rtia about an axis depends 
on the posi tion and direction of the axis. In deriving 
Equations 21.065 and 21.066, we have in fact 
assumed that the axis passes through the origin 
because we have used values of the inertia tensor 
appropriate to the origin. If we transfer the origin 
to the cent er of mass, whose position vector is pt), 
and use Equation 21.055 with fl = M Ph· we have for 
the moment of inertia about a paralle l axis through 

5 The re is some confusion in the lit erature as to the defini tio n 
of the "i nertia te nsor. " O ur second-order inertia te nsor is the 
sa me as McConnell 's inert ia tensor (see '\IcConnell (Blac kie ed. 
of 1931, corrected 1936), Applica tions of the Absolute Differential 
Calculus, or (Dover ed . of 1957), Applications of Tensor Analysis, 
233). On the other hand , what Goldstein calls the inerti a t ensor 
(see Golds tein (1950), Classical Mechanics. 149) is equiv ale nt 
in our nota ti on to 

(fg's- [ rs ), 

which, as we can see from Equation 21.065. gives the mom ent of 
inerti a abo ut an axis whose unit vec tor is Vr by direc t contraction 
with VrV8 • If Wr is the angular veloc ity vector, then the angu lar 
momentum vector in our notati on is 

(/ grs - [ r•)Wr, 

relativ e to an origin at the center of mass; the kinet ic energy of 
rotation is 

Accordingly. the Golds te in conve ntion suit s these dynamical 
operations s lightly better, but the McConnell convent ion is 
almost ma ndatory for our present purposes , parti cul arly in con· 
nec tion with the higher order tensors. 

6 Goldste in's definition of products of inertia (Goldstein. 
op. cit. supra note 5, 145) is the negative of ours because of 
the difference in definiti on of the inertia te nsor. The Goldstein 
conve ntion is. however, unusual. 



166 

the center of mass 
Jrs(grs- VrVs) = Jrs(grs- VrVs) -Mpijp~(grs- VrVs) 

21.068 =/op-Md2 

where dis the perpendicular distance of the center 
of mass from the original axis OP, a result that is 
well known. Because M d2 is positive, it follows that 
the moment of inertia about an axis through the 
center of mass is less than the moment of inertia 
abo ut any parallel axis. 

47. In much the same way as we investigated 
the maximum and minimum curvatures of a surface 
in § 7-14, we now consider the directions of axes 
about which the moments of inertia are a maximum 
or a minimum, or at least have stationary values. 
To obtain these directions, we differentiate Equation 
21.065 for a change in the unit vector Vr, keeping 
the origin and therefore I and Jrs fixed. The condition 
for fo p to have a stationary value about the axis Vr 
then is 

JrsArvs= 0 

m which Ar is a unit vector perpendicular to Vs. 
But if the moment of inerti a is to be stationary about 
the axis Vs, regardless of the direction in which we 
shift Vs, then Ar must be an arbitrary unit vector 
perpendicular to Vs. We may express Ar by means of 
a single parameter () in relation to two fixed vectors 
Ar, J.lr, both perpendicular to Vs, as 

Ar= A.r cos O+ J.lr sin() 

so that the stationary condition becomes 

JrsArVs cos O+JrsJ.lrVs sin O=O 

for all values of O; this condition requires both 

JrsArVs = 0 

21.069 Jrs J.lrVs = 0. 

48. If the moment of inertia about Ar is also to be 
stationary, we must have also 

JrsVrAs·= 0 

21.070 

the first of which is automatically satisfied by the 
previous condition JrsArVs = 0 because Jrs is sym­
metrical. From Equations 21.069 and 21.070, we 
then have 

JrsArJ.ls = 0 

JrsVrJ.ls = 0, 

which show that the moment of inertia about the 
third axis µ,,. is also stationary. The three perpen­
dicular axes about which the moments of inertia 
are stationary are known as principal axes of inertia, 

Mathematical Geodesy 

and the corresponding moments are principal 
moments of inertia. If the principal axes are taken 
as rectangular Cartesian coordinate axes, then the 
condition Equations 21.069 and 21.070 are equiva­
lent to stating that the products of inertia are zero, 
that is, 

21.071 

112 =Lii1xy=O 

I 23 =Li11yz=o 

113 =L111xz= o. 

In other words, the matrix Jrs has been diagonalized 
by taking the principal axes as coordinate lines. 
We know that a symmetric tensor Jrs in three dimen· 
sions can always be diagonalized, and we may there­
fore reasonably infer the general existence of 
principal axes of inertia. There are in fact three 
principal axes passing through any point. If the 
z-axis is a principal axis, but the other two coordi­
nate axes are not, then we still have from Equations 
21.069 

21.072 

conversely, if these two equations are satisfied, 
then the z-axis is a principal axis of inertia. 

49. We have seen in §21-45 that the moment of 
inertia about an axis through the center of mass 
is less than about any parallel axis; we shall now 
consider this question further. We can see from 
Equation 21.055 that the change in the inertia tensor 
for a small displacement dr in the direction of a 
unit vector >-._s is 

d/SI . 
-=-A_Sfl-A_ll' 
dr ' 

which is zero at the center of mass because all 
components of /I are zero at that point; therefore, all 
components of the second-order ine rtia tensor are 
stationary at the center of mass. At the center of 
mass, we have also from Equation 21.055 

d2Jsl = MA.sA_I 
dr2 

' 

which is essentially positive when s = t , making 
these components a minimum, but which can be 
negative in certain directions for the nondiagonal 
components s =F- t. Next, we take the principal 
axes of inertia at the center of mass as coordinate 
axes Ar, Br , Cr so that we have 

181AsBt = /S1AsC1=181BsC1=0 

at the center of mass. These relations must also 
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hold at points near the ce nte r of mass because the 
inertia te nsor is stationary and A,., B,. , C,. are con­
stant vectors. We conclude that for small displace­
ments from the center of mass , the principal axes 
of ine rtia remain parallel to the ir directions at the 
center of mass. Moreover, there are now no non­
diagonal components at or near the ce nte r of mass; 
we conclude that the remaining three co mponent s 
of the ine rtia te nsor are all a minimum at the cente r 
of mass , compared with their values at ne ighboring 
points. 

50. We shall now express the second-order term 
in the pote ntial Equation 21.017 in terms of mome nts 
of ine rtia. Using Equation 21.023, we have 

u~1 ( 1/ r) st= [st (3VsVt - gst) I ( 2,.:i) 

=- l~t(3g,t -3Vsvt-2gst )/ (2r) 

21.073 = (2/-3/up)/(2r3) 

from Equation 21.065. The OP is the radius vector 
from the origin to the point P at which the potential 
is take n, and /op is the moment of inertia of the at­
tracting body about OP as axi s. The same result 
can be obtained less simply by using the second­
degree te rm in spherical harmonics in Equation 
21.035 and by substituting Equations 21.043 and 
21.066. 

51. Equation 21.073 is a generalization of a formula 
due to MacCullagh. The equation is usually ob­
tained in the special case whe n the origin is at the 
center of mass; but it will be clear from our method 
of derivation , which does not introduce the center 
of mass, that the same result is true for any origin, 
provide d the moment s of inertia are taken with 
res pec t to axes passing through that origin. 

52. Next, we shall s uppose that the z-ax is is a 
princ ipal axis of inertia without requiring the othe r 
coordinate axes also to be princ ipal axes , and we 
shall consider what difference this makes to the 
second-order term in the pot ential. We have at 
once from Equations 21.072 and 21.043 

/ 13=C21 =O 

21.074 /:l3=S21 =O. 

Expressed in spherical harmonics from Equation 
21.035 , for example, the second-degree term multi­
plied by r!1 is reduced to 

C:ioPAsin <t>)+C22P~(sin ¢) cos 2w 

21.075 +S2:P~( sin <f>) sin 2w: 

we can readily verify this result from Equations 
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21.066 and 21.043. T he C21- and S:wterms a re 
s imply miss ing, and this is tru t> for any origin. 

53. If all three coordina te axes are principal axes 
of ine r:tia , then, in addition, we have from Equa­
tions 21.071and21.043 

/ 12 = 2522 = O; 

the second-degree term in the pote nti al (multipllNI 
by r 3 ) further reduces to 

21.076 C20P 2 (sin <t>) +C22P~ (sin <f>) cos 2w. 

In this case, if A, B, C are the three principal mo­
ments of ine rtia , we have from Equation 21.065 

21.077 

A = I .r =I - /1 I = [2'2 + [33 

B =I y =I - [22 = fl3 + /1 I 

C=lz = /-P:l=/11 +122 

I =t(A+B+C); 

the refore, from Equations 21.043 we have 

C'!.o= (1-C)- tc =t(A+B)-C 

21.078 C22=HI-A-I+B) =HB-A), 

and the second-degree term can be writt e n as 

{i(A+B)-C}P2 (sin <t>) 

21.079 + t(B-A)P~ (si n <f>) cos 2w. 

54. If the body itself and the distribution of mass 
in it are symme trical about the z-axis, the n 
/ 11 = L ffi:i 2

, which is equivalent to the moment of 

ine rtia about the yz-plane, is obviously the same 
wherever we take the y-axis; the same applies to 
/

22 = L ffiy 2
• We could interchange the x- and y-axes 

without effect on / 11 and /22, a nd we conclude that 
in this symme trical case 

/11 =/22. 

If, in addition , the z-axis is a principal axis, then it 
is ev ide nt from Equations 21.077 that 

A=B. 

The mome nt of inerti a is the same about any ax is 
in the xy-plane, and any pair of perpendicular axes 
in the xy- plane a re principal axes of ine rtia. In thi s 
case, we have also from Equations 21.078 

C2o=A- C 

C22= 0 , 

and the second-degree term in the potential (mul­
tiplied by r 3) reduces further to the single zonal 
harmonic 

21.080 (A -C)P2 (s in <t>L 
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which is the form generally used for the attraction 
of planets on their sat ellit es when the satellites are 
distant enough for the planet to be considered ro­
tationally symmetrical and for the higher order 
terms in the potential to be neglected. These as­
sumptions are, of course, too drastic in the case 
of near-Earth satellit es and for the general expres­
sion of the Earth's gravitational field to the degree 
of accuracy now attainable. 

ROTATION OF THE EARTH 

55. It can be shown that the rotation of a rigid 
body is stable about a principal axis of greatest 
moment of inertia; if the motion is slightly disturbed, 
the axis of rotation will describe a cone about the 
principal axis.i The same is true of an e las tic body. 
except that the period of disturbed oscillation will 
be different. 8 In the case of the Earth, the pe riod of 
this oscillation (the E ulerian free nutation or the 
Chandler wobble) can be computed theoretically 
at about 14 months; this oscillation is confirmed by 
measurements of variation of latitude over long 
periods. The amplitude, which has similarly been 
observed, depends on the nature and duration of the 
disturbance and on damping effect s, but does not 
seem to exceed one- or two-tenths of a second of 
arc. In addition, there are s mall annual variations 
of about the same magnitude caus ed by shifts of 
mass resulting, for example, from seasonal weather 
changes. !I The conclusion seem s to be that the 
instantaneous axis of rotation coincides with a 
principal axis (of greatest inertia) to within a few 
tenths of a second of arc. It may e ventually be 
possible to provide worthwhile corrections for this 
variation from data provided by the Inte rnational 
Polar Motion Service (prior to 1962, known as the 
International Latitude Service), but meanwhile the 
effect seems to be negligible for our present pur­
poses. We have seen that the whole group of te rms 
of the same degree in the potential is invariant 
under rotations of the coordinate system; the only 
effect of s uch errors in orientation (these errors 
are, in any case, small) is to change the magnitude 
of some term s at the expense of others of the same 
degree. 

56. We can easily show that the cent er of mass 

7 Routh (Dover ed. of 1955), The Advanced Part of a Treatise 
on th e Dynamics of a Sys tem of Rigid Bodies, original 6th ed. of 
1905, 86- 130 (especially § 155. 101- 102). 

8 Jeffr ,ys (1959), The Earth; It s Origin, History, and Physical 
Constitution, 4th ed., 211- 229 (especially§ 7.04, 216-218). 

n For a complete disc uss ion of this entire question, see Munk 
and Mac Donald (1960), The Rotation of th e Earth, A Geophysical 
Discussion. 
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must lie on the axis of rotation of a freely rotating 
body. If we take the axis of rotation as z-axis, then 
we have seen in § 20-10 that the Cartesian com­
ponents of centrifugal force on a particle of mass 
in at (x , y, i) for uniform angular velocity w would be 

(mw 2x, mw2y, O). 

Because the rotation is free, there is no force acting 
on the axis to balance any resultant of these centrif­
ugal force s, and we must therefore have 

s ummed over all masses . We find from Equation 
21.061 that the center of mass must lie on the axis 
of rotation. 

57. In § 19-13, we considered means of setting 
up a coordinate syste m whose z-axis is parallel to 
the axis of rotation. This can be done, and it is of 
fundamental importance that it should be done, 
although all major survey systems are not oriented 
in this way as yet. Satellite triangulation using stellar 
photography automatically ensures and preserves 
s uc h an orientation for a worldwide coordinate 
system, but we have no geometrical means of setting 
up a coordinate system whose z-axis coincides with 
the axis of rotation. If the z-axis is parallel to the 
axis of rotation but does not coincide with it, then 
the first-degree terms are not absent in the harmonic 
series for the potential because the center of mass 
does not lie on the z-axis and is not therefore the 
origin of coordinates. We have seen, nevertheless 
in § 21-48 that if the z-axis is reasonably close to 
the axis of rotation, then it is also a principal axis 
of inertia within the limit s of the Chandler wobble 
and seasonal variations. In accordance with 
§ 21-51, therefore the C21- and S21-terms must 
be omitted from the potential series even though 
first-degree terms are present. 

58. If the z-axis coincides with the axis of rotation 
then all three first-degree terms and the C21- an 
S21-terms must be omitted from the potential series 
Conversely, if we set up a series in which thes 
terms are omitted, then § 21 - 41 and § 21-4 7 
together with the dynamical considerations i 
§ 21-54, allow us to assert that the z-axis and th 
axis of rotation coincide. If we use this form of th 
potential series in the equations of motion of 
satellite, we must ensure that the tracking station 
are located in the same coordinate system. If th 
coordinates of the tracking stations are in th 
"parallel" system of § 21-57, then we must includ 
ongm corrections in the observation equation 
which, provided the observations are sufficient! 
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widespread, will accordingly determine the position 
of the center of mass in the tracking system. In 
short, angular measurements, which must include 
astronomical observations, will enable us to set 
up the z-axis parallel to the axis of rotation. Coin­
cidence of the two axes, through location of the 
center of mass, can be assured only by global 
measures of gravity or potential. 

59. We have seen in Equation 20.08 that the 
total potential or geopotential is obtained by 
adding 

-t.w2 (x2 + y2) 

to the attraction potential, that is, to 

MG 
r 

to allow for the centrifugal force on points attached 
to the rotating Earth. In deriving this result , we 
assumed that we have x = y = 0 on the axis of 
rotation-or, in other words, that the z-axis coincides 
with the axis of rotation - so that the rotation term 
in the form -!w2(x2+y2) is valid only in such a 
coordinate system. If the attraction potential is 
expressed as a harmonic series with no first-order 
terms and no C21, 521 terms, then this condition is 
satisfied; the rotation term in the form -!w2(x2 + y2)' 
is the correct form to use with such a series. 

THE NEWTONIAN POTENTIAL 
AT NEAR POINTS 

60. W e have now to consider the case, illustrated 
in figure 21, when the point Pat which the potential 

0 

Figure 21. 
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is requireJ is 11 ea rer to the ong111 of coord iu a tes 
than any point of the attrac ting body. We sha ll for 
the present choose an origin 0 outside the body. 

61. As before, the potential at P arising from a n 
e le me ntary particle of mass m at Q (omitting for the 
present the gravitational cons tant G) is 

- 111/PQ =- rn (r2 -2rf cosy+ r 2 ) - 1/ 2 

rn { r =--=- 1 +-:: cos y r r 

21.081 ( r )" +. . . f P11( cosy). .. J. 
This serif's is absolut e ly and uniformly convergent 
if r < r; for this to hold true for all particles in the 
body, P mu st lie within a sphere of convergence 
cente re d on the origin and jus t touc hing th e a t­
tracting body at S. In that case, we may aJd series 
corresponding to Equation 21.0Sl for all particles 
and obtain the pote ntial V arising from the whole 
body in the form 

v - m mr cos y mr" -
--G- 2:-=+ L -2 • • • +"" -11 +1 P11(cos y) ... r r L..ir 

21.082 

We notice at once that the firs t te rm is- Vo/G where 
Vo is the total potential at the origin, and we pro­
ceed to evaluat e the remaining term s . For the 
second term, we have 

-in which ps is the position vector OP of P , a nd the 
coeffic ie nt of ps (when multipli e d by G) is evid ently 
the resultant vector force exerted by the whole 
body on a particle of unit mass at the origin 0. The 
whole term is accordingly r multiplied by the re­
solved part of thi s total force in the direc tion OP. 
Alternatively, we can writ e this second term in 
the form 

-W.~ )op 8 /G 

in which (Vs)o is the gradient of the pote ntial at 0. 

62. Now the pote ntial at the point 0 a ri s ing from 
1n is - Gn1/r. If we cons ider for the moment that 
Q is fixed and 0 variable, we can take cova ri ant 
de rivatives of this ele ment of potential at 0 as 

- (Gm/r) s111 ... =-Gni(l/rLru .. .. 

and we can add these ele mentary tensors to have 

21.083 (Vs111 .. Jo=-2:Gm(l/r) s111 . . . · 
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It is understood that the covariant derivatives of 
(l/f) refer to virtual displacements of 0 relative to 
a temporary fixed origin Q, and in that case Equation 
21.025 applies with overbars. For example, consider­
ing the second covariant derivatives and using 
Equation 21.023, we have 

21.084 - Wst )o/G= 2,m(3vsVt -gs1)/r3 

and 

( Vst )op8 p1/G = 2,m (3vsiit - gst) r2 v 8v 1/r3 

= "2,mr2 (3 cos:! y- l)/f3 

= 2"2,mr2P2( cos ')i)/r3 

so that the third term in the series of Equation 
21.082 is 

-i(Vst)op 8 p1/G; 

proceeding in this manner, we may verify that 
Equation 21.082 can be rewritten in the form 

· Vp= Vo+ (Vs)op 8 +t(Vst)op 8 p1+ . . 

21.085 _!_ s t (n) + ! (Vst . .. (11))op p ... p +. 
n. 

But this is simply the Taylor expansion of the 
potential function over a distance r in the direction 
OP. Equation 21.085 is convergent within the same 
domain as the equivalent series in Equation 21.082 , 
and we conclude that the potential can be expressed 
by means of a convergent Taylor series within the 
sphere of convergence specified in connection 
with figure 21. 

Expression in Spher1ca1 Harmonics 

63. Return ing to Equation 21.082 and using the 
Addition theorem Equation 21.034 for the Legendre 
functions, we find as before that the potential can 
be expressed in the form 

21.086 + [S11111] sin mw} , 

provided that 

[Cno] = L -(::: l)P11(sin cp) 
r 

ni (n - m) l Ill • - -

[C11111] =2"' -( ll( )'Pn(sm¢)cosmw 
L.,,r 11 + n+m. 

- "" m (n - m) ! Ill • - • -

[S 11111] -2L.,, r<n +O(n+m)!Pn (sm¢) sm mw 

21.087 
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in which the summations are carried out over all 
particles m(¢, w) in the attracting body. To dis­
tinguish these coefficients from those obtained in 
Equations 21.037, we have enclosed the coefficients 
of Equations 21.086 and 21.087 in brackets. 

64. If a is a constant, such as the radius of the 
sphere of convergence, we can divide Equation 
21.086 by an, provided that we multiply the C's 
and S's by an. This device ensures the convergence 
of the series in Equations 21.087 and of the cor­
responding integrals in the case of continuous dis­
tributions. The coefficients can be normalized in 
accordance with Equations 21.038. 

65. To express the C's and S's in terms of the 
coefficients of the Taylor series (Equation 21.085), 
that is , in terms of successive differentials of the 
potential at the origin, we use Equation 21.083 
and convert the differentials of (l/r) to spherical 
harmonics as explained in §21-22. For example, 
using Equation 21.032 , we have 

- (V112)0/G= L iiz(l/f)112 

= 2, ~ {t Pj(sin cp) sin w 

-t P~(sin cp) sin 3w} 

21.088 

The zonal coefficients can be found aL unce trom 
Equation 21.027 as 

- (V333 ... (11 ))o/G = L m (l/rh33 ... (11) 

- (-)1'n! - . -- L f(n + O mP11(sm <P) 

21.089 = (-)11 n l[C110]. 

66. Proceeding in this way, we find that 

- Vo/G= [Coo] 

- (Vi)o/G=- [C11] 

- (V2) 0/G=- [Sid 

21.090 - (V:i)o/G=- [C10] 

- (Vi1)0/G=- [C20] +6[C22] 

- (V22)0/G=- [C20]-6[C22] 

- Wi:i)o/G= 2[C20] 

- (V12 ) o/ G = 6 [ S22 ] 

- (V13)0/G=3[C:n] 

21.091 - (V23)0/G= 3 [S2i] 



The Potential in Spherical Harmonics 

- (V111)0/G=9[C:ll]-90[C:i:d 

- ( V2:!1 )o/G = 3 [ C:lt] + 90[ C:i:i] 

- (V:i:ll )o/G =- 12 [ C:ll] 

- (V112 )o/G = 3 [S:ll] - 90[S:i:i] 

- (Vm)u/G=9[S:11] +90[S:i:i] 

- ( Vm )o/G =- 12[5:11] 

- ( Vm )o/G = 3 [ C:w] - 30[ C:12 ] 

- ( Vm )o/G = 3 [ C:io] + 30[ C:12] 

- ( V:1:1:1 ) o/ G = - 6 [ C:io] 

21.092 - W12:i)o/C =-30[S:12]. 

Only five of the second-order terms and seven of 
the third-order terms are inde pendent because of 
the relation s provided by the Laplace equation and 
its derivatives 

( Vi I ) () + ( Vi:! ) () + ( Vi:i ) 01 = 0 

(V11r)o+ (V22r)o+ (Vi:ir)o = O (r= 1, 2, 3). 

67. The reverse formulas can be found by ex­
pressing the C's and S's as (necessarily harmonic) 
homogen eous polynomials and by substituting the 
homogeneous polynomial as j(x, y, z) in Hobson 's 
formula (Equation 21.031) in which all the La­
placian terms will be zero. For example, we have 

[Cd= 6
1
0 L ~ P~(sin (/J) cos 2w 

r 

l"ih. A. ":i,( .,_ . .,_ ) =:r L.J f~ sm 'f' cos-'+' cos- w- sm- w 

The second- and third-order reversals are easy 
enough to obtain directly from Equations 21.091 
and 21.092, and so are not written down, but this 
more general met hod may be necessary for the 
higher orders. A general formula has been given 
in Equation 21.089 for the zonal terms, and we can 
readily obtain a general formula for the tesseral 
terms on the same lines as Equation 21.045, using 
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(2n)! " iii (-+ ·-)111 

211 - 1n!(n+m)!L.Jr<211 +0 x iy 

[ 
(n - m )(n - m - 1) x z(ll-m) .z<n-111 - 2) 

2(2n - 1) 

+ .. .J. 
After expanding (x + ij)111 , we can subs titut e for 
each polynomial 

" m (")-p - q-r L.J f(2n +1) i X Y Z (p+q+r=n) 

the corresponding term derived from Hobson 's 
formula (Equation 21.031), that is, 

. (-)" 
(i) 1 . 3 ... (2n- l) (V111 ... <v1222 ... (q):i:i:i ... (r ))o/C, 

and finally separate the real and imaginary parts. 

68. Powers of f cancel in relating the two sets uf 
constants, just as they did in relating the l's with 
the C's and S's in the formulas for the potential at 
distant points. We cannot , however , relat e the con­
s tants in the two formulas for the potential at near 
and distant points, even if both series were con­
vergent over the same region, because the f's ap­
pear in different places and vary <luring summation 
over the entire mass. A comparison of Equations 
21.037 and 21.087, in which the C's and S's have 
different meanings , will make this statement c lear. 

Invariance 

69. It is evident from the tensor form of Equation 
21.085 that each group of terms 

1 ( v \ ' I . p< 11) f SI •.. (11)/llp·p • • 
fl • 

is invariant under rotation of the coordinate axes, 
provided the origin does not c hange. If the origin 
changes and the point P remains within the new 
s phere of convergence, then the new Taylor expan­
sion from the new origin remain s convergent. 
The values of (V,1 ... <11 1) at the new origin and the 
position vector of P will become differe nt tensors 
so that the group of te rms is no longer invariant on 
c hange of origin. However, we can show, a lmost 
exactly as in the section on invariance of the pot en­
tial at distant points (§ 21-35), that the sum of all 
terms in the new series remains the same, pro~ided 
the term of infinite order in the original series is 
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zero, which must be so if the series is convergent. 
The situation on invariance is accordingly exactly 
the same as for the potential at distant points. 

ANALYTIC CONTINUATION 

70. We have seen that Equation 21.017 or its 
spherical harmonic equivalent may be divergent 
at points inside a sphere centered on the origin, 
which just encloses all the matter, and so may not 
tepresent the potential at most points on the Earth's 
surface. This would mean that values of the co­
efficients C11111, etc., obtained from observations on 
artificial satellites- the most convenient and ac­
curate method for evaluating at least the lower 
harmonics- could nut properly be used in conjunc­
tion with observations on the ground. We might 
expect tu overcome the difficulty by using Equation 
21.017 to evaluate all the successive differentials 
of the potential at a point P outside the sphere of 
convergence of Equation 21.017 (fig. 22). These 

Figure 22. 

successive differentials of the potential are then 
substituted in the Taylor series (Equation 21.085), 
which we have seen is the same by groups of terms 
of the same degree as the series derived from the 
law of Newtonian attraction. This latter series is 
convergent within a sphere centered on P which 
just touches the attracting body at S, and the equiv­
alent Taylor series is accordingly convergent within 
the same sphere PS. The whole process is equivalent 
to the standard operation of analytic continuation 
within this sphere. 

71. Symbolically, the process leads to the follow­
ing expression for the potential at a point T (fig. 22), 
within the sphere of convergence PS, whose posi-
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~ 

tion vector PT relative to P as origin is pP, 

Vr "' "' 1 (- )11 (1) --=LL--- [stu .•. (11)_ 

G m=O l1=0 m! n! r stu ... (11)pqr ... (m) 

21.093 

In this formula, inertia tensors are taken with 
respect to the origin 0 from which Equation 21.017 
for the potential at P was evaluated; all the (m + n) 
derivatives of (l/r) refer to changes in (I/OP) for 
virtual displacements of P ur for changes in the 
coordinates of P, with 0 fixed. 

72. Equation 21.093 can be written as an infinite 
matrix 

M(l/r) 

M(l/r)ppP -fs(l/r)sppP +ffs'(l/r)stppJJ 

fM(l/r)pqpPpQ -t/8(1/r)spqpPpQ +tfs1(l/r)stpqpPpQ 

21.094 

in which the inertia tensor of zero order is the total 
mass M. The first row summed represents the po­
tential at P. The second row summed is the first 
derivative of the potential at P contracted with 
the fixed bounded vector pP, and so on. The fact 
that the series in Equation 21.093 is convergent 
implies that the matrix is convergent if the rows 
are summed first. On the other hand, if we sum the 
columns first (and this process is not necessarily 
valid), then it can be shown that the final result 
would be 

21.095 _Vr=~ (-)
11 

/st11 ••. (11) (-1) 
G l1=0 n! OT stu ... (11) 

in which the derivatives are now evaluated at T. 
But this last Equation 21.095 is the same as Equa­
tion 21.017 evaluated at T; if Equation 21.095 cor­
rectly represents the potential at T. then Equation 
21.017 must be convergent at T even though T 
lies inside the sphere of convergence of Equation 
21.017 (fig. 19). The convergence of Equation 21.017 
at T accordingly depends on whether interchanging 
the order of summation in Equation 21.093 is valid. 
The necessary and sufficient conditions for the 
interchange to be valid do not yet appear to have 
been established rigorously, but the question may 
be considered in general terms by taking Equation 
21.093 for a point K on PT (fig. 22), which lies out­
side the sphere of convergence of Equation 21.017. 
In that case, Equation 21.017 certainly represents 
the potential at K, and the summation interchange 
in Equation 21.093 is valid at K. But the two con-
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tinuation se ries (Equation 21.093) for K and for 
T-both of which are conve rge nt - mus t also have 
the same prope rti es of absolute and uniform con­
ve rge nce because the coefficients of the vec tors are 
the pot ential at P and de rivatives of the pote ntial 
at P, and are therefore the same for both series. 
The only diffe rence betwee n the two series is the 
magnitude, not the direction , of the contracting 
vector pV; thi s does not affect the convergence of 
e ither series. Accordingly, if the necessary and suf­
fi c ie nt conditions for the summation interchange 
de pe nd solely on converge nce prope rti es, the n these 
conditions w(mld see m to be sati sfied at T as we ll 
as at K. However, this de monstration is a long way 
from a formal proof, and the re is another factor 
which we shall now consider. 

73. Proof of convergence of Equation 21.093, 
obtained in § 21-62, de pends on absence nf matt er 
within the s phere PS. This proof would not neces­
sarily be valid if there is an alt e rnative distribution 
of matt er , which is neare r to P than the actual 
distribution and gives the same potential and deriv­
atives of the potential at Pas the actual distribution. 
According to Kellogg,rn there is always such an 
alternative distribution which could invalidate the 
whole process of analyti cal continuation in thi s 
case. The question has been cons idered from a 
different angle by Moritz, 11 who concludes that the 
se ries is dive rgent , but his de monstration is also 
a long way from a formal proof. Mure researc h is 
needed on this controversial question of con­
vergence, which cannot yet be considered as 
definit ely settled. In particular , it may be that the 
series at points on the topographic surface, although 
dive rgent, can be trunc ated at a certain number 
of terms to give a bett er answer than a formally 
conve rgent se ries would give for the same number 
of terms. 

THE POTENTIAL AT INTERNAL 
POINTS 

74. For some purposes , it is desirable to have 
formulas for the potential at point s inside the Earth , 
developed from the same geo metri cal de finition 
of a Newtonian pote ntial , although the physical 
meaning of the result may be doubted. We have no 
means of inserting a test particle or of making any 
measure ments at such points~ therefore, we have 

10 Kellogg (1929), Foundations of Poten tial Th eory, 197. 
11 Morit z (1961), "Uber die Kunve rg:enz der Kuge lfunktion­

sentwic klun g: fiir <las Aussenraumpotential an der Erdobe r­
fliiche," Osterreichischen Zeitschriftfur Vermessungswesen, v. 49, 
no. L l -5. 
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nu experime nt al verificatio n of the law of Newtonian 
attrac ti on so close to th t- attracting matt e r. 

75. We draw a sphe re, ce ntered on the origin 0, 
which passes through the point P (fig. 23) where we 

0 

Figure 23. 

require the potential. There will be matter outs ide 
thi s sphere, whe re we shall add a subscript £, as 
well as inside, where we shall add a subscript/. The 
contribution to the potential at P ari s ing from the 
internal matter can be expressed as a convergent 
se ries in the form of Equation 21.035 in which the 
summations or integrations in the C's and S ' s a re 
carried out over all the internal matter. We write 
the resulting coe ffic ient s as 

(C110)1, (C11111)1, (S11111)1. 

The contribution to the potential at P arising from 
the external matter can be expressed as a con­
vergent series in the form of Equation 21.086 in 
which the s ummations or int egrations in the C's 
and S's are now carried out over all the external 
matte r. We write the resulting coeffi c ients as 

[C110Jr; , [C,,111] r: , [S11111Jr; 

in which the brac ke ts indi cate that Equations 21.087 
are to be used. 
The potential at P is then 

v '.lC II - -

-G= ~ ~ P1
;: (sin</>) {Cnm cos mw +Snm s in mw} 

11 = 0 m = O 

where we have 

21.096 C11111 = ( C11111) drC. 11 + 1>+ r 11 [C11111]r: 

and a similar formula for S11111· 

76. We can rewrit e this last formula as 

C11111= (C11111) 1+r:/r 11 +1>- (C11111)1:..fr 11 + 1)+ r 11 [C11111]1:.· 

21.097 



174 

in which (C11111)1 +E are the result of summing or inte­
grating over the e ntire mass in Equations 21.037. 
The ( C11111) t +E are also the coeffici ent s of a spherical 
harmonic series which would be obtained by obser­
vation on distant points such a·s artificial satellit es. 
We may consider the remaining terms in Equation 
21.097, that is. 

21.098 

as a correction 12 which must be added to the first 
term, obtained from satellites, in order to give the 
corresponding coefficient in the potential at the 
internal point. If we proceed in this manner, we do 
not need to know or to assume the mass distribution 
or densities at points inside the sphere passing 
through P in figure 23. 

77. In deriving the preceding formulas, we have 
assumed that both series for the internal and ex­
ternal contributions to the potential at P are con­
vergent actually on their respective spheres of 
convergence, an assumption which is not neces­
sarily true. Moreover, the contribution to the 
potential at P becomes infinite for masses infinitesi­
mally close to P, and we have no right to add the 
corresponding elementary series to the others . We 
can overcome this difficulty by the usual device of 
supposing that a thin spherical shell of matter of 
radii (r+ E) and (r- E) is removed. We can then show 
that the contribution of the removed matter to 
(C11 111)/,-'. 11 + 0 and r 11 [C11111 ] for all n is negligible when E 

is reduced indefinitely. 

ALTERNATIVE EXPRESSION OF THE 
EXTERNAL POTENTIAL 

78. We have seen that all the harmonics of the 
external potential can be obtained by repeated 
differentiation of the primitive (l/r), that is, the 
potential of degree zero among the resulting har­
monics. Another form of the primitive potential 
is, however, indicated in a formula by Hobson ia 

21.099 
P !l'(sin ¢) 

,.t,11 + 1) 
( - )" ~ [! {r - z} 111

/2 J ' 
(n-m)!dz 11 r r+z 

12 Equivalent formulas for the correction have been obtained 
in 1966 by A. H. Cook (see Cook (1967) " The Determination of 
the External Gravity Field of the Earth From Observations of 
Art ificial Satellites," The Geophysical Journal of th e Royal 
Astron omical Society, v. 13, 297-312) and by F. Foster Morrison 
(Va lidity of th e Expansion fo r th e Potential Near the Surface of 
the Earth, paper not yet published). The latter paper was read 
at the 6th Western National Meeting of the American Geo­
physical Un ion, Los Angeles, Calif. , September 7, 1966. 

1
'
1 Hobson. op. cit. supra note 2, 106- 107. Note. however. that 

Hobson 's P::' is (- )m times our P::'. which is the more usual 
conven tion. 
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which degenerates to Equation 21.027 for m = 0 
and has the advantage that it can generate all the 
required harmonics by differentiation with respect 
to z only. We may note that any function of the 
longitude w is constant under differentiation with 
respect to" z because tan w = y/x, so that we have 

PW(sin <P) (cos mw) 
,.t,n+I) sin mw 

21.100 _ (-)
11 ~[_!{r-z}m/2(c?smw)]· 

(n-m)! dz" r r+z sm mw 

This last formula shows that the Newtonian attrac­
tion potential, which we have seen is expressible 
as a sum of the Legendre fun ctions on the left 
(Equation 21.035) , is equally well expressed by a 
sum of the derivatives on the right. The resulting 
series will converge in the same way as the spherical 
harmonic series; the two series are in fact equiva­
lent term-by-term. 

79. At this stage, we introduce the spherical 
isometric latitude tfi, defined by the following ex­
pressions which are easily shown to be equivalent 

e"'= cosh tjJ+ sinh t/J= sec <P+ tan <P= tan (hr+t<P) 

_ 1 +sin <P -(1 + sin <P) 1
1
2 

cos <P 1 - sin <P 
21.101 

We can also verify by diffe re ntiation that 

21.102 t/J= lo<b sec <P d<P, 

from which the isometric latitude or Mercator lati­
tude derives it s name in the theory of map projec­
tions. Equation 21.100 can now easily be cast into 
the form 

PW (sin</>) eiww= (-)" ~ [(.!)e - m(o/J -l w~ 
,.t,11 + 0 (n-m)! dz" r J 

21.103 

in which we can change the sign of w independent! 
of the latitude functions to have also 

PW (sin p) -imw 
,.t,11 + 0 e (-)

11 ~ [(.!) e-m(o/J+iw)J· 
(n-m)! dZ 11 r 

21.104 

80. The appearance of the complex variabl 
(t/J + iw) in these equations suggests an analog 
with the theory of orthomorphic or conformal ma 
projections , which anses in the following way. Th 
Laplace equation 

. d2V 
grsv =---grs-grsfk vk.=O rs dXrdxs rs 
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in sphe rica l polar coordinates can easily be wri tt e n 
from formula s in Chapt er 18 by subs tituting 
(R 1 + h) = (R2 + h) = r. The metric tensor is give n 
by Equations 18.03, etc., the C hristoffe l symbol s 
are given by Equations 18.34, e tc ., and the final 
equation expands to 

sec2 p a2V +-1 a2V + a2V -~ aV +~av= 0 
r2 aw2 r2 o</J2 ar2 r2 a<j:J r ar ' 

which for r cons tant reduces to 

a ( av) c:J2V 
cos <P a<j:J cos <P a<P + aw2 = 0 

or 

21.105 

Equation 21.105 is a we ll-known equation, satisfied 
by e ither coordinate (.X, y) of any conformal pro­
jection of the sphere or by the complex variable 
(x+ iy). The general solution of Equation 21.105-
that is, all solutions of the Laplace equation not 
containing r-is well known to be 

21.106 V= f (tf;+ iw) +g(tf;- iw) 

in which f, g are arbitrary fun c tions. Instead of 
l/ r , we could take 

21.107 Vo=.!. { f ( tf; + iw) + g ( tf; - iw) } , 
r 

which is easily verified to be harmonic, as the 
primitive potential; we differentiat e thi s expression 
success ively by any or all of (x, y, z) to obtain more 
general harmonic function s. We should , ne verthe­
less , have to choose f and g to cont ain a parameter 
(such as m i~ Equation 21.103), one value of which 
would reduce the fun c tion s f and g to constants so 
that Equation 21.107 can cont ain the primitive 
Newtonian potential (l/r). This alte rnati ve form of 
the primitive potential is sometimes 1 ~ given as 

21.107A Vo=(.!.) F (x+ iy) + (.!.) G (x-iy) 
r r+ z r r+ z ' 

which is eas ily s hown to be equivalent to Equa­
tion 21.107. 

The (~, Y/, z) System 

81. In manipulating these alternative forms of the 
potential , it is sometimes advisable to transform 

14 See, for example, Bateman (Dover ed. of 1944), Partial 
Differential Equations of Mathematical Ph ysics , original ed. of 
1932, 357. 

the coordinates to (g, Y/, z) where 

g = x + iy= r cos <Pe ;.,, 

Y/ = x-iy= r cos cpe - i"'. 

The fo llowing relations a re eas il y verifit><l , 

r2= gY/ + z2 

21.108 

21.109 

21.110 

a( tf;+ iw) 
ag 

eiw= (g/Y/) 1/2 

e"'= (r+z)/(gY/) 1!2 

e"1+iw= (r+z)/Y/ =g/ (r-z) 

e"1- iw= (r+z)/g = Y//(r -z) 

~-i IL 
ag - 2 r 

ar _I g 
- -2-
aY/ r 

ar z 
az r 

l e - (1/J + iwl . 

2r ' 
a(tf;-iw) 

ag 
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l e<l/J - iwl 
2r 

a(tf;+ iw) 
aY/ 

_ _!_ e(l/J + iw) • 
2r ' 

a (tf; - iw) 
aY/ 

l - (1/J - iwl 
2r e 

o( tf;+ iw) 
()z 

21.111 

21.112 

l . 
' r 

a(tf;-iw) 
()z 

2 j_=j_-i j_ 
ag ax ay 

2 j_=j_+ i l_. 
aTJ ax ay 

l 
r 

82. The me tric in these coordinates is 

21.113 

ds 2 = dx2 + dy2 + dz2 

= (dx+ idy) (dx-idy) + dz2 

= dgdY/ + dz2 

su that the only non zero components of the me tric 
tensor are 

lgl=--!-; 

g l '2 =2 ; g l3 =l. 

All C hri s toffel symbols are zero, and the Lapla cian 
is accordingly 

21.114 
a2 a2 

~ = 4 agaY/ + az2' 

whic h shows that an y fun ction of g only. or of Y/ 
only, is harmonic. This property introduces some 
s implification in the use of Hobson 's formula (Equa-
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tion 21.031) in these variables because any function 
of g or Y/ can be tre ated as q constant on the right­
hand side of this equation. A corresponding sim­
plification is also introduced into Equations 21.025 
and 21.026, which are tensor equations true in these 
or in any other coordinates, because there are only 
two nonzero components of the metric tensor. Using 
Equations 21.111 , etc., we can also show that t/J , w 
and any functi on of (t/J + iw) or (tjJ- iw) are harmonic, 
as is clear from Equation 21.106. 

83. Using the relations in § 21-81, we can obtain 
the following formulas 

21.115 2 i_ (.! e-m(l/J-iw)) =-i.. (.! e-(m-1)(1/J-iw)) 
ag r az r 

21.116 2 i_ (.! e- m(l/J+iw)) =i.. (.! e-(m+l)(l/J+iw)) 
ag r az r 

21.117 2 l..._ (! e- m(l/J-iw)) =i.. (.! e- (m+l)(l/J- iw)) 
aY/ r az r 

21.118 2 l..._ (.! e-m(l/J+iw)) =-~ (.! e-<m-1)(1/J+iw)) 
aY/ r az r 

which enable us to differentiate Equations 21.103 
and 21.104 with respect to g and YJ, to switch into 
a higher differential with respect to z, and then 
to move into a Legendre polynomial of higher 
degree. For example, we have 

----'-(--"-) _n+_1 _ _ a_n_+_1 (_! e-<m-1)(1/J- iw)) 
(n-m)!azn+l r ' 

and by rewriting Equation 21.103 for the (n+ l)th­
degree and (m - l)th-order, we have also 

PW+/(sin </>) imw e 
r<11 +2) 

- -- - e- (m- 1)(1/J- iw) . ( -) 11+1 an+l (1 ) 
- (n-m+2)!az11+1 r ' 

therefore , together with three other similarly 
derived equations, we have finally 

2 i_ {PW(sin </>) eimw} 
ag ,.(n+l) 

= ( _ + 2 ) ( _ + l) P:r+l(sin </>) i(m- l)w 
n m n m ,-<n+2) e 

21.119 

2 i_ {PW(sin p) e-imw} 
ag ,-<n+l) 

PW-N(sin p) - Hm+l)w 
,-<n+2) e 

21.120 
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2 l..._ {PW( sin </>) e - imw} 
aY/ ,-<n+l) 

=( - +2)( - +l) PW+/(sin</>) - i(m- l)w n m n m ,-<n+2) e 

21.121 

2 l..._ {PW(sin </>) imw} =- PW-N(sin </>) i(m+l)w aY/ ,-<n+l) e ,-<n+2) e • 

21.122 

Formulas corresponding to Equations 21.119 and 
21.122 have been given by Bateman,15 and the other 
two formulas can be obtained from them by chang­
ing the signs of w and y. If we separate real and 
imaginary parts, it will be found that Equations 
21.119 and 21.121 are equivalent as are Equations 
21.120 and 21.122 also. 
By differentiating Equations 21.103 and 21.104 with 
respect to z, we have in much the same way 

i_JPlr(sin </>) ±imw}=- ( _ + l)PW+1(sin </>) ±imw azl ,-<n+l) e " m ,-<n+2) e . 

21.123 
We shall require these equations for later use in 
order to express the gravitational force. They 
could, of course, be obtained by direct diff erentia­
tion with some considerable manipulation. 

MAXWELL'S THEORY OF POLES 

84. We have seen in § 21-4 that any given nth­
degree spherical harmonic can be expressed as 

21.124 C!YMqNr ... (l/r)pqr ... (n) 

where LP, etc., are n unit vectors and C is a scalar. 
The unit vectors are known as the axes of the har­
monic; parallels to the unit vectors through the 
origin cut the sphere of radius r in the poles of the 
harmonic. If we know the poles, then the harmonic 
is obtained by simply contracting Equation 21.025 
with C!YMq ... ; the result will contain the cosines 
(!Yvp) of the angles between the axes (!Y) and the 
unit position vector (vp) of the point where the har­
monic is to be evaluated, as well as the cosines 
(gpqfYMq) of the angles between pairs of axes. This 
is equivalent to Maxwell's own result. 16 For example, 
the third-degree harmonic at P with poles L, M, N is 

r4!YMqNr(l/r)pqr=3(cos LM cos NP 

+cos MN cos LP 

+cos LN cos MP 

-5 cos LP cos MP cos NP). 
15 Bateman, op. -cit. supra note 14, ex. 2, 361. 
16 Hobson, op. cit. supra note 2, 131. 
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85. The axes are known 17 for the Legendre har­
monics of degree n and order m, 

P:?(sin </J) (cos mw)· 
1-< 11 +1> sin mw 

There are (11 - m) axes coincident with the axis 
of z, and the remaining m-axes are equally spaced 
in the xy-plane at intervals of 7T/m. If Ar, Br, er are 
as usual the (x , y , z) coordinate axes, the n the axes of 

PW(sin p) 
,-<n+o cos mw 

are 

(a) CPCQCr . . . c<n- m) and 

(b) (m odd) Ai{Ak cos (7T/m)+ Bk sin (7T/M)} ... 

(c) (m even) 

21.125 

The axes of 

{A( ) (m - 1)7T 
Ill cos-'----'-­

m 

+ B<m> . (m - 1 )7T} Sin , 
m 

or 

{Ai cos .!!.._+Bi sin .!!.._} 
2m 2m 

X {Ak cos 
3

7T +Bk sin 
3

7T} · · . 
2m 2m 

... {A<m> cos (2m - 1)7T 
2m 

+B<111 > sin · 
(2m- l )7T} 

2m 

PW(sin </J) . 
,-< 11 +0 sm mw 

are the same with (m odd) and (m even) interchanged, 
that is , 

21.126 

(m even) (a)+ (b) 

(m odd) (a)+ ( c). 

The scalar C in Equation 21.124 is 

. (- )112111- 1 
cos mw, sm mw) (-)<m-1)/2 

(n - m)! 
(m odd: 

(-)112111-1 
(m even: cos mw) (-)111/2 

(n - m)! 
. (- )112111- 1 

(m even: sm ,, ) (-)<111- 2)/2. 
iw (n-m)! 

21.127 

11 Ibid. , 132-135. An interesting derivation is also given by 
-Hilbert and Courant (I nterscience ed. of 1953), Methods of 

Mathematical Physics, original ed. of 1924, v. I , 510--521. 

306-962 0-69-13 

The axes of the zonal harmonic 

P11(sin p) 
,-<11+1) 
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can be seen from Equation 21.027 tu be all er, and 
the scalar is (-)'1/11!. 

86. The determination of the n poles or axes 
of a general harmoni c of the nth-degree with arbi­
trary coefficie nts C11111, 511111 for the Lege ndre har­
monics is a matter of considerable difficulty, and 
the authorities seem to be content with proving 
the existence of a unique solution if all the poles 
are to be real. 18 The standard method convert s the 
spherical harmonic to a homogeneous polynomial 
f,,(x, y, z), as explained in § 21- 27 and § 21-29. 
The polynomial, which is, of course, a harmonic 
fun ction, is then s ubstituted in Equation 21.031 
to give 

(-)'
1
1.(

211
+0 (a a a)(l) 

1 . 3 ... (2n-1i1 ax· ay' az -;: =f,,(x, y, z)· 

21.128 

If fi11 - 2i(x, y, z) is an arbitrary homogeneous 
polynomial of degree (n - 2), we note that 

(x2+y2+z2).f( 11 _ 2 i(x, y, z) 

can be added to the right-hand s ide of Equation 
21.128 without affecting the left s ide because the 
resulting additional term on the left would be in 
the form of 

(~+~+~)fin 2) (_E_, _E_, _E__)(!) 
ax2 ay2 az2 - ax ay az r ' 

which is zero by virtue of the Laplace equation 

-+-+- - - O· ( 
a2 a2 a2 ) (1) 

ax2 ay2 az2 r -

The next step is to factorize 

21.129 f,, (x, y, z) + (x2+y2+z2)fi11 - dx, y, z) 

into 

(a1x+b1y+c1z)(a2x+b2y+c22) ... , 

in which case the left-hand side of Equation 21.128 
can be put into the form 

(~) 
= CLP/UQ. (l) 

. • r PQ · .. (11) 

18 Hobson, op. cit. supra note 2, 135-136. 
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where (ai, bi, ci) are proportional to the Cartesian 
components of the axis LP, e tc. The scalar C is 
the product of all the moduli (ar +bi+ ci)1f2 • The 
difficulty lies in factorizing Equation 21.129 when 
each separate term in the expression has an 
arbitrary coefficient. 

87. It is somet imes better to work in terms of the 
inertia tensors, which should be easier to break 
down into vectors. For example, we can see at 
once from Equation 21.062 that the single axis 
of the first-degree harmonics is in the direction of 
the center of mass (distant ro from the origin), 
and the scalar is Mr0 • In regard to the second­
degree harmonics, we can, without any loss of gen­
erality , take the principal axes of inertia as co· 
ordinate axes (Ar, Br, Cr), in which case we have 
seen in Equations 21.071 and 21.077 that the in­
ertia tensor can be written as 

where A, B, C are the principal moments of in­
ertia and i= HA+ B + C). The total second-degree 
potential is then given by 

!J"'l( l/r)pq = H (/ -A )APAQ 

21.130 

this result 1s unaffected if we add any multiple 
of 

to the inertia tensor because 

(APAQ + BPBQ + cPCq) ( l /r) pq = 0 

by virtue of the Laplace equation. We can use this 
fact to eliminate one term from Equation 21.130, 
but if the re main<ler is to be split into real factors, 
the two remaining terms must be opposite in s ign. 
lf C > B >A, we accordingly subtract 

from Equation 21.130 and have 

!Jwi(l /r)1,q=t{(B-A)A"Aq - ( C- B)cPCq} ( l/r)pq. 

21.131 
This last equation factorizes to 

!{(B-A )1 f2A p +(C-B)1f20}{(B-A)1 f2Aq 
- ( C- B) 1!2Cq} (l/r) pq 

so that the two axes are parallel to 

21.132 (B-A) 112AP± (C-B) 112cP, 

which can be verified from results previously 
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given- such as Equations 21.023, 21.073, and 21.066. 
This result (Equation 21.132) does not require 
the principal axes of inertia to be the coordinate 
axes. The expression for the potential in Equation 
21.131 is an invariant which has the same value 
in any coordinate system having the same origin. 
If the attracting body is symmetrical about the C­
axis , we have seen in§ 21-53 that A=B, so that 
both axes coincide with CP. 

88. If the mass distribution is known, then all 
component s of all the inertia tensors can be cal­
culated, but only in this sense is there any depend­
ence be tween inertia te nsors of different order. 
The only known " recursion" formula connecting 
the inertia te nsors is a differential relation for 
change of origin obtainable from Equation 21.057, 
the symmetric form of which is Equation 21.058. 
We could, nevertheless, use the methods of§ 21-87 
to find the axes of the higher order tensors. Pro­
ceeding as in § 21-46. we might look for three 
preferred orthogonal directions , which would not 
necessarily be the principal axes of inertia related 
to the second-order tensor but would contract the 
te nsor to zero as in Equation 21.069. The expres­
sion of the pote ntial in terms of these preferred 
vectors, and of certain components associated 
with these preferre d vectors, corresponding to 
Equation 21.130, would then contain fewer terms: 
these te rms could be still further reduced by adding 
multiples of diffe rentials of the Laplace equa­
tion , s uch as 

(A 1As X 1 + B"Bs X< +crcs X 1) (l/r),-sr =O 

in which X1 is an arbitrary vector, until finally 
the result can be split into linear factors, of which 
there would be n in the case of the nth-order 
tensor. We can be assured that such a result 
exists, if only we can find it, and the result con· 
taining real axes would be unique. Further re· 
search is neede d on this question, which might 
also result in more knowledge of the nature and 
properties of the inertia te nsors. 

89. An apparent advantage of expressing the 
potential in the polar form of Equation 21.124 
instead of in Legendre harmonics is that we ob­
tain ex pressions of the same form by diffe re n­
tiation . For example, the component of the grav­
itational force, arising from the pote ntial in Equa­
tion 21. 124, in the direction of a fixe d unit vector 
'A1

" is 
ClJ'MqNi· ... Aw . . . (l/r) 1iqr ... u• ... (11+1), 

21.133 
which is e vidently a harmonic of degree (n + 1) 

_J 



The Potential in Spherical Harmonics 

with the same scalar C and the same axes as th e 
corresponding nth-degree term in the potential 
plus the additional axis A.'c. This facility is, how­
ever, mainly of theore ti ca l use as indicating the 
nature of the harmonics in the gravitational force 
because of the difficulty in locating the poles of 
the general harmonics in the potential. Much the 
same theoretical advantage is obtained by using 
the inertial form of the potential in Equation 
21.017, as we have done in invest igat ing invariance 
and analytic continuation. For practical purposes, 
however, we require formulas in Legendre har­
monics a t least for the first differentials. 

REPRESENTATION OF GRAVITY 

90. Atte mpts, which have been made to express 
gravity (g) in Legendre harmonics , have not met wi th 
much success because g is not a harmonic function. 
Like most other functions, g can be expressed over 
a sphere in surface spherical harmonics of the 
geocentric latitude and longitude. For that matter, 
g can be expressed in spherical harmonics of the 
latitude ~nd longitude of the normal to any surface, 
as we can see at o nce if we consider the spherical 
representation of the surface in § 13-16. For ex­
ample, we can express g over an equipotenti al 
surface in terms of spherical harmoni cs of the 
astronomical latitude and longitude. We cannot 
express g as a series of solid harmonic functions 
of any sort. However, we can express the component 
of the gravitational force in a ny fixed direction, 
s uch as a Cartesian coordinate axis, in so lid har­
moni cs; and if we do so in three fixed directions, we 
s hall have expressions whic h give us the direction 
as well as the magnitude of the gravitational force . 

91. Addition and subtraction of Equations 21.119 
and 21.120 and use of Equations 21.112 , followed 
by separation into real and imagi nary parts, give 

2 ~ {Pfi'( sin </>) (cos mw )} 
ax r<u +I) sin mw 

_ ( n - m + 2) ( n - m + 1 ) P ::'+-/ ( sin </> ) 
r<11 +2> 

X ( c~s (m-1 )w) 
sm (m- l)w 

P;:'++/ (sin</>) ( c~s (m+ 1 )w) 
r< 11 + 2 > sm (m+ 1 )w 
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2 ~ { P,~11 
(sin </>) ( cos mw)} 

ay r<u+I) s in mw 

( n - m + 2) ( n - m + 1 ) P ::'+-/ ( sin </>) 
r!11 + 2> 

x(-sin (m -l)w) 
cos (m-l)w 

21.134 +P::1++1
1( sin <f>) (- sin \m+l)w) 

r< 11 + 21 cos (m+ l)w ' 

wh ic h are to be multipli ed by the appropriat e 
co nstants C,, 111 , S11111 in the potent ia l formula and 
summed to give the diffe rentials of the total potential 
(-V/G). But if (w, °(j>) are the astronomica l longitude 
and la titude, we have 

21.135 

:x (-f) 
aay ( -f) 

we can write finally 

2 l.136 

where 

g cos <!> cos w 
G 

g cos <P cos w 
G 

g cos"¢ sin w 
G 

x /1+ 
1 P::'+1 (sin </>) 

L L r<11 + 2) 
11 = 0 111 = 0 

X (C111 + 1J. ,,, cos mw 

+S<u +1J, 111 sin mw) 

C(11 +1),o=tn(n +l)C111 

C<11 +1l. 1 =-C,,o+! n (n- l)C,, 2 

5(11 +0. 1 =! n(n- l )S,,2 

{ Cu1 +1i. m =-: C,, , 1111 - 1> 

+ z (n-m+ 1) (n -m)Cu,( 111 + 1) 

5<n+n. 111 =-ts,, , 1111 - 1> 

+ t (n-m+l)(n-m)S11 ,(111 +0} 

(m=2 , 3, ... (n-1)) 

Cc11 + 1). 11 =-t C11, (11- 11 

5<11 +1>. /1 =-ts,,, <u- o 

C(11 + 1), (11 + 0=- ~ C,,, /1 

5(11 +tl, (u +I) =-t Sn , 11° 

21.137 
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In deriving this result , the Legendre functions 
on the right of Equations 21.134 for m=O contain 

(n+ 1) (n+ 2)P1-;-~ 1 (sin</>), 

which must be transformed to 

-P,1, +1 (sin</>) 

in accordance with the usual formula. Alternative ly , 
we could obtain the term m = 0 in Equations 21.134 
by direct differentiation as 

2 i_ (P11(sin </>) ) --
2 

P,~ + 1 ( sin </>) ax r (I' +I) - ___ r_(_ll_+-2) __ _ 
cos w 

92. ln the same way, we have 

g cos¢ sin w 
G 

"' n+I PW+1 (sin p) 2: 2: r(/1 +2) 
11=0 m=O 

X (C(l1+1), 111 cos mw 

21.138 +5(11+0 , 111 sin mw) 

where 

C(11 +1>. o =!n (n + 1 )5111 

C(11 +1) , 1 =!n (n -1 )5112 

5(11+0 , 1 =-C110 -!n(n-l)C112 

{ C(11+1), 111 =!5~.<m~> 
+2(n m+l)(n-m)511,(111+1) 

5<11+0. 111=-:C11,(111- 1J } 

-2(n- m+ 1) (n- m)C11 , (111+1) 

(m=2, 3, (n-1)) 

C(11+1) , 11 =!511, (11 - 1) 

S(11 +1). II =-!C11, (11-1) 

C(11+l) , (11 +1) =!511, II 

S (l1 +1),(11+1)=-!C11, 11 · 

21.139 

93. Derived in the same way from Equation 
21.123, the third compone nt of the gravitational 
force is 

A ( v) 
Az G 

21.140 

where 

g s in¢ 

G 
"' 11 + i P::'+ I (s in </>) 

= 2: 2: r(11 +2) 
11 =0 111 =0 

X (C(11 +1). 111 cos mw+5(11 +1). 111 sin mw) 

21.141 
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C(l1 +1),111=-(n-m+l)C11111 

S<11 +1). 111=- (n-m+ 1)511111· 

Equations 21.136, 21.138, and 21.140 give the com­
ponents of the gravitational force in the positive 
direction of the coordinate axes, that is, outward. 
whereas the positive direction of the gravitational 
force according to Equation 20.05 is inward. We 
s hould therefore change the sign of g in order to 
obtain values in accordance with our normal con­
ventions. Also, the equations apply only to an 
external pote ntial in the form 

"' " p111( sin<f>) L L "r<" +iJ (C11111 cos mw+511111 s in mw) , 
11 =0 111 =0 

although corresponding formulas for potential in 
the interior form 

x II 

L L r 11P::1(sin </>) (C11111 cos mw+511111 sin mw) 
11 =11 111 =0 

can be found. 

Rotating Field 

94. If the fi eld is rotating about the z-axis with 
angular ve loc it y w and if ( ¢ , w) are to refer to the 
direction of the total gravitational force, then 
instead of (-V/G) in Equations 21.135 and 21.140, 
we should have 

-VIG+ t w2 (x 2 + y2 )/G. 

To the right-hand side of Equation 21.136 we 
should add 

21.142 
w2x w2rP\( sin </>) cos w 

G G 

and to the right-hand side of Equation 21.138 we 
s hould add 

21.143 
w2y w2rPJ( sin </>) sm w 

G G 

Equation 21.140 is unaffected. 

CURVATURES OF THE FIELD 

95. The second Carte sian differentials of the 
pote ntial in s pherical harmonics are easily found 
by a second application of Equations 21.137, 21. 139, 
and 21.141. Each differentiation results in harmonics 
which are one degree higher and may contain 
tesse ral harmonics of greater or lesser order. Fo 
thi s reason, it is desirable to list the zonal an 
first-order tesseral harmonics separately instea 
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of attempting tu includ e th e m in a gen eral formula; in the case of the second differ e ntials, we s hall, for the 
sam e reason, list the fir s t- and second-orde r harmonics separate ly. There is no need. however . to li s t se pa­
rately the harmonics of highest order, such as C<11 +1J.1i, C<11 +1J,(11+1J in Equations 21.137. because these har­
monics can be derive d from the general formula for C<11 +iJ . 111 ; we mus t remembe r that the order of a harmoni c 
cannot exceed its degree so that the term containing C11, <111 +1J must be omitte<l if (m + 1) exceeds r1. In any 
case, th e coefficient !(n - m + l)(n - m) becomes zero form= n or m = n + 1. W e s hall find that simi lar con­
siderations apply to th e second differentials. 

96. The second Cartesian differentials of th e potential are, of course, harmonic functions which can be 

written, for example, in the form 

_i[_ (!:.)- x n + '2 P;;'H(sin p) = = . 
(ix'2 G - L L r"' +3i (C(11 +'2J. "' cos mw + S(11 +2J, 111 S ill mw ). 

11 =0 111 =0 

If thi s result is obtained by Jiffe r e ntiating Equation 21.136, then Equations 21.137 te ll us that 

C<11 +2i.111=-±C(11+1), <111 - o+ f( n -m + 2) (n - m + 1 )C(11 +1J, (111 +1h 

and s ubs tituting Equations 21.137 for th e coefficients of the fir s t differential with re spect to x. we hav e for 
m >2, 

21.144 

C(11+2J, 111=±C11 , (111 - :!J-±(n - m+ 2) (n - m+ 1 )C11111 

+ ! (n - m + 2) (n -m + l){ -±C11111 +!(n - m) (n - m - l)C,,. <111 +2J} 

=±C11,(111- '2J-±(11 -m+ l)(n - m+2)C11111 

+±(n -m-1) (n -m) (11- m+ 1) (n -m+ 2)C11 ,(m +'2J· 

If m were 1 or 2, we should have subs titut e d inst ead th e zonal or fir s t-order harmonics given earlier in Equa­
tions 21.137. A complete li s t of all the harmonics in all s ix second differentials are given as follows: 

a'2 ( v) 
ilx'2 G . 

21.145 

<F ( v) 
ay2 G . 

21.146 

C(11+'2J, o =-!(11+1)(n+2)C11o+±(n -1)n(11+1) (n + 2)C112 

C(11 +'2J. 1 =-in(11 + l)C111 + ±( n -2) (n- l)11(n + l)C11:1 

S(lw!), 1 = -±11(11 + 1 )5111 + ±(n - 2) (11 - 1 )11(n + 1 )511:1 

S<11+2J. 2 = -± n (n -1 )5112 + ±(n -3) (n -2) (n -1 )nS114 

C(11+'2 J.111 =±C11, (111 - '2)-±(n-m+ l)(n-m+2)C,,111+±(n-m-l)(n - m )(n-m+ l)(n-m+2)C11 . (111 +:!J 

S(11 +'2J, 111=±S11. (111 - '2J -f(n-m+ l)(n-m+2)511111+±(n-m- l)(11-m)(11-m+ l)(n-m + 2)S 11 . <111 +'2J 

(m > 2) 

C(11+:!l. o=-±(n + 1)(n+2)C110-±(n -1)11(11 + 1) (n + 2)C,,2 

C(11+'2J. 1 =-± n (n + 1 )C111 -±(n - 2) (n -1)n(n+1 )C,,:1 

S(11+'2J. 1=-in(n+1 )5,,1 - ±(n -2) (n -1)11(11+1 )5 11:1 

C<11 +n 2 =-fC,,o -fn(n - l)C112 -±(n -3) (11 -2) (11- l )nC11-t 

S(11+'2). 2 =-in (n-1 )S11'2-±(n -3) (11-2) (n -1)115,,-t 

C<11 +'2J,111=-±C11,(111-2)-f(11-m+ l)(n-m+2)C11111 -±(11-m-l)(11-m )( n -m+ 1 )(11-m + 2)C11 . (lll +'2 J 

S<11 +:!). 111=-±S11. (111-2)-i(n-m+ 1 )(n-m+2)S11111-±(n-m- l )(n-m )(n-m+ 1) (n-m+2)S,,, (lll +:!J 

(m > 2) 
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C(11 +n o = (n + 1) (n + 2)C11u 

C<11 +2i. 1=n(11 +1 )C111 

5< 11 +2i. 1=n(n+1 )5111 

C<11 +2i. 2 = n(11 -1 )C112 

-

5(11+'2 l. '2 = n(11 -1 )511:! 

C( 11 +2i. 111 = (n -m+ 1) (11-m+2)C.1111 

5( 11 +'2) .111= (n -m+ 1) (11 -m+2lS11111 

21.147 (m > 2) 

C(11 +:!l, 0=±(!1 -1)n(n+1) (11+2)5112 

c(ll+:!l. I =-±n(n + 1)5111 +foi -2) (n - l)n(n + 1)511:i 

S(li+2 ). 1 =-±n(n + 1 )C11 1 -±(11 - 2) (n -1)11(11+1 )C11:1 

C(11 +'2 l, 2=±(n -3) (n -2) (n-1 )n511~ 

S( 11 +2J , 2 = !C1111- -.l-( n -3) (11 -2) (n - l)nC11~ 

C(l1+2).111= -±511,(111 - 2i+±(11 -m-1) (n -m) (n -m + 1) (n -m+ 2)511, (111 +21 

S <11 +2 i, 111 =±C11 , (111 - 2i -±(n - m-1) (n -m) (n -m + 1) (n -m +2)C11,(111+2i 

21.148 (m > 2) 

C(11 +2i.11=-!11(11+1) (11 +2lS11 1 

C< 11 +2 i. 1 = - ! (n - l)n(11 + 1)5112 

5< 11 +2i. 1 = (n + l)C11o+ ! (n -1 )11(n+ l)C112 

5( 11 +'2l. 2 =!n C.11 + !(n -2) (n -1 )11C11:1 

c(l1+'2). 111=-t(11-m+2611, (111 - 1i-!(11 -m) (n -m+ 1) (II -m+ 2)511 , (111 +1) 

5<11 +2 i. 111=!(11 -m+2)C11, (111 - 1)+ ! (11 -m) (11-m+1) (n-m +2)C11, (111 +1i 

21.149 (m>2) 
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():.! ( ~ 
ilzfJx ct C(11 +:.!), o=-!n(n + 1) (n + 2)C111 

C(11 +:.!). 1 = (n + 1 lC110-!(n -1)n(n+1 lC112 

S(1w2). 1 =-!(11 -1)11(n+1 )5112 

C(l1+2), "' = Hn - m + 2)C11, (111 - 1) - ! (n - m) (n - m + 1) (11 - m + 2)C11 , (111 + 1i 

5(11 +2). 111 = -!(11 - m + 2)511, (111 - 1)-!(n - m) (11 - m + 1) (n - m+ 2)511 , (111 +1) 

21.150 (m >2) . 

The Laplace equation 

A
2 (v) A

2 (v) a2 (v) 
- Ax 2 c - a y2 G - (I z2 c = 0 

is s ati sfied by each harmonic of the same degree and orde r; also. th e mixed de ri vati ves CJ 2 /ilxay or i12 /riyox 
give the same result, although the firs t differe ntial is not the same in both cases. 

97. Second differentials of the geopotential W are give n by 

21.151 a2 (w) a2 (v) w2 
- ay2 (,' = - ay2 c +z 

from Equation 20.08. There is no diffe rence be tween the othe r second diffe renti als of Wand V. 

98. We have finally the six C art esian compone nt s of the Marussi tensor Wrs, which can be contracted 
with th e base vectors A_r , µ.." , vr of the equipotential surfaces to give us the s ix c urvature paramete rs of the 
field, as in Equations 12.162. The Cartesian compon ent s of the base vec tors are gi ve n by Equations 12.008 
in which ¢, w are the latitude and longitude of the line of force, obtainable togethe r with gravit y g from 
Equations 21.136, 21.138. and 21.140. To avoid confusion with the geocentri c la titude and lon gitude in th e 
spherical harmonics, we shall ove rbar the latitude and Ion git ude of th e line of fo rce -that is, th e as tronomical 
latitude and longitude-from Equations 12.008. For example, the median c urvature k2 is given by 

t:._ = - --;- µ rµ s "k2 (w) 
c (, I'S 

. z A. ., - a2 (w) =- Sill '+' cos- w - -
ax 2 c 

- (I :.! (w) - sin 2 ¢ sin2 w- --;-ay2 (, 

-cos2 ,J,.- -- a2 (W) 
'+' az2 (,' 

2 . 2A. . - - a2 (w) 
- S ll1 '+' S IJl W COS W a.ra)· (,' 

+ 2 . :+. :+. . _ a 2 (w) sm '+' cos '+' sm w - - -C 
a-'·az , 

21.152 + 2 . :+. :+. _ a 2 (w) sm '+' cos '+' cos w -- -C , azax 
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with similar equations which can be written at 
once for the other parameters. 

DETERMINATION OF THE POTENTIAL 
IN SPHERICAL HARMONICS 

99. The advantage of usi_ng Equations 21.136, 
21.138'-and 21.140 for g cos cp cos w, g cos ;j, sin w, 
g sin cp, compared with expressions for g, is that 
these equations are spherical harmonic series in 
the usual form and are linear in the Cnm, Smn of 
the potential. Accordingly, we may use these three 
equations as linear observation equations to 
determine the Cnm, Snm to the limit of computer 
capacity froll:!_ sufficient and widespread measure­
ments of g, cp, w; time will be saved in the com­
putation of the coefficients of the Cr1111 , Smn from the 
positi<!_ns of the observing stations. In these equa­
tion, <P and w are astronomical latitude and longi­
tude, but it would not usually be necessary to 
make astronomical measurements at every gravity 
station in an intensive local survey; it would be 
sufficient to apply regional deflections to geodetic 
values. The lower harmonics could not be deter­
mined in this way from regional surveys, but are 
already well determined from satellites. The 
satellite values should be substituted in the equa­
tions, leaving the higher harmonics to be determined 
from regional surveys. 

100. The same considerations apply to Equation 
21.152 and to similar expressions for the other 
curvature parameters. These equations are also 
linear in the coefficients Crwi. Snm of the potential 
and could be used as observation equations in 
conjunction with Equations 21.136, 21.138. and 
21.140. The curvature parameters, other than the 
vertical gradient of gravity, can already be meas­
ured to a high degree of accuracy and might be 
of value in the determination of the higher har­
monics in local or regional surveys. This has not 
yet been done, and further research is required 
to explore the practical possibilities. 

MAGNETIC ANALOGY 

101. If we take a small magnet QQ' (fig. 24) of 
pole strength p situated inside the Earth, then in 
accordance with the usual geophysical convention, 
the negative pole will be at Q nearest the north 
and the posi~ direction of the axis (unit vector 
U) will be QQ'. The magnetic potential at an 
external point P, writing µ, = p X QQ' for the mag-
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north 

p 

Figure 24. 

nitude of the magnetic moment, will be 

-fJf-+fl!.=-~ (~ _ !) =-cµ, (!) L8 
r r QQ r r r s 

21.153 

in the limit when QQ' ~ 0, and the magnet becomes 
a dipole. In this expression, c is a constant depend­
ing on the units employed. The differentiation of 
(l/r) refers to displacement of Q relative to a fixed 
origin at P so that the gradient of r is in the direction 
-+' 
PQ. The magnetic potential at P can then be 
written as 

cµ, cµ, 
2 rsU=-2 cosy. 
r r 

102. In deriving this formula, we have assumed 
unit permeability of the medium between the dipole 
and P. We are not proposing to determine the actual 
external magnetic field of a dipole buried in the 
Earth; all we want to do is to set up a mathematical 
model analogous to the gravitational field, and in 
doing so we can make any stated assumptions, such 
as a completely permeable medium. The reason 
for this assumption is that we shall later super­
impose the fields of dipoles in different locations, 
and the analogy would break down if the per­
meability changed. 

103. Instead of the dipole, we shall now suppose 
that we have a particle of mass m at Q. The gravita­
tional potential at P will be (-Gm/r), and the 
component of force at P in a direction parallel to 
QQ' will be 

- (-Gm/r) 8L8 

~which the gradient of r is now in the direction 
QP because the differentiation must be carried 
out by displacement of P relative to a fixed origin 
at Q. The component of force at P parallel to QQ' 
is accordingly 

Gm Gm 
--., r 8L8 =--., COS y, 

r- r-
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whic h is exac tly the same as the pote ntial of the 
dipole if we mak e cµ. = Gm. S ubjec t to this relation 
and to the assumption of unit permeability, the 
component of the gravita tional force in a given 
direction is the s ame as the potential of a dipole 
s ituated at the mass point and oriented in the 
same direction. 

104. If we set up dipoles at all other mass points 
with the same proportion of mass to magnitude of 
magnetic mome nt and with the same orientation, 
the total magnetic potential a t P will be the same 
as the compone nt in the same direction of the 
tot al gravitational force exerted by the whole 
body a t P. Moreover, the same conclusion will 
evid ently apply to a continuous dipole distribution 
and to a continuous mass distribution, provided 
the dipoles are oriented in the same direction. 
Finally, we could se t up a t each mass point a cluster 
of three dipoles of equa l mome nt , orie nted in the 
direction of the coordina te axes, and so obtain all 
three co mponent s of the gravit ational force. The 
scalar magnetic potential of such an arrangeme nt 
could not, however, represe nt the vector gravita­
tional force fi eld, and there would be no physical 
correspondence. 

105. Nevertheless, the correspondence between 
magnetic potential and the component of gravit a­
tional fo rce in a fix ed direction of magnetization 
is es tabli shed , and a similar correspondence clearly 
exists between successive differentials of these 
scalar quantities in fix ed direc tions - such as the 
coordina te axes. Thus, component s of magne tic 
force correspond generally to second differential s 
of the gravitational potential so that magnetometer 
and torsion balance measurements corres pond. 
This is not to say tha t the ac tual magne tic field 
of the Earth can be used to derive the gravi tationa l 
fi eld, or vice versa, but merely that methods applied 
to the one fi eld can often be applied to the other. 
Torsion balance interpre tation fo rmulas are , for 
example, used in the calcul ation of magnetic 
anomalies. 1!' We might also expec t that frequencies 
in harmonic analysis of the magneti c fi e ld would 
generally be one higher than the harmonics of the 
gravitational field in relation to the noise level, 
a lthough the amplitudes might differ widely. 

Multipole Representation 

106. We note that the magne ti c potential in 
Equation 21.153 of a dipole situated at the origin 

rn Heiland (1940), Geophysical Exploration , 393. 
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is proportional to the first-degree terms in the polar 
form of the grav ita tional potentia l !Equation 
21. 124). We s hall now s how that the higher d egree 
te rms can be represented by multipoles at the origin. 
We reverse the direc tion of the axis of the original 
dipole at Qin figure 24, transfer it to figure 25, a nd 
add another dipole at R in the direc tion of the unit 
vector M 1

• This second dipole has the same mag­
ne tic mome nt in magnitude (µ..) and direction (L ' ) 
as the original dipole at Q. Tlie magnetic pote ntial 
at P, aris ing from the whole arrange me nt , is the n 

- cµ.(l/i\L8 + cµ..( l/r )sL s. 

We now define a quantit y v= µ.. X QR in mu ch 
the same way as we have defined µ.. = p X QQ', 
and suppose that v remains finite (because µ.. in­
creases) when QR is decreased ind efinit ely. The 
limiting arrangement is known as a quadrupole 

p 

Q 

Figure 25. 

of moment v, and it s pot ential at p is 

_ _!;J!._ {(~) - (_!_) }Ls= - cv (_!_) £8M r. 
QR r s r s r st 

If L s, M 1 are the axes and (cv) is the scalar of the 
second harmonics of the gravi tat ional potential 
(- V/G ), then the latter is represented by the po­
te ntial of the quadrupole. In the same way, we can 
set up another quadrupole at a point S in the di-

rection QS =Nu. The limiting potential of this 
arrange ment , when QS decreases indefinit e ly while 
v X QS remain s finit e, will be proportional to 

(l/r)s1 11L 8M 1N 11 , 

tha t is, to the third harmonics of the gravitational 
field if L 8

, M 1
, N 11 are chosen as the axes of these 

harmonics, and so on. 

107. The multipole analogy is mostly of theoret­
ical use for indicat ing possible applications of 
e lec tromagnetic me thods in the gravitational field, 
and vice versa. For example, l\Iaxwell introduced 
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his theory of poles in connection with electro­
magneti c problems, but we have, nevertheless, 
found hi s theory of use, not only in it self, but also 
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because it has suggested representation of the 
gravitational field in the inertial form of Equation 
21.017. 



CHAPTER 22 

The Potential in Spheroidal 

Harmonics 

THE COORDINATE SYSTEM 

1. In this chapter, we shall first develop a special 
coordinate system; the N-surfaces of this system 
are all oblate spheroids formed by rotating a family 
of confocal ellipses about their common minor 
axis, which we shall choose as the Cartesian 
er-axis. Later, we shall obtain by standard methods 
a general solution in these coordinates of the 
Laplace equation which can represent a general 
attraction potential, and we shall investigate the 
corresponding mass distribution. 

2. There are currently two main gravimetric 
uses of this spheroidal coordinate system: The 
expression of the potential in spheroidal coordinates 
has less restrictive properties of formal convergence 
than the corresponding expression in spherical 
harmonics, and leads also to an exact formulation 
of the standard gravitational field to be considered 
in Chapter 23. The coordinate system itself and the 
properties of the meridian ellipse on which it is 
based, nevertheless, have other uses, and the 
system will be considered in more detail than is 
necessary for the immediate gravimetric purposes. 

THE MERIDIAN ELLIPSE 

3. Any meridian plane containing the axis of 
rotation cuts each spheroid of the family in an 
ellipse as shown in figure 26. We begin by collecting, 
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without proof, some well-known properties of this 
ellipse. We denote the equatorial radius or semi­
major axis CA =CA' by a, and the polar radius or 
semiminor axis CP=.CP' by b. The two foci S, S' 
are located on the major axis at CS= CS'= ae where 
e is the eccentricity of the ellipse. If 0 is any point 
on the ellipse, then we have 

22.01 SO+S'0=2a 

so that S'P=SP=a. It is usual in classical geodesy 
to define a complementary eccentricity as b/a or 
(l -e2 ) 1i2 , and yet another eccentricity as ae/b. 
Instead, we shall introduce the auxiliary angle 
a= S' PC, in which case the three eccentricities 
become sin a, cos a, and tan a, respectively. 

4. A circle on A'A as diameter is known as the 
auxiliary circle. We can consider the ellipse as 
formed from this circle by shortening all ordinates 
parallel to the minor axis in the ratio b/ a so that 
we have 

22.02 ON/O'N=b/a=cos a. 

The tangents to the ellipse and to the auxiliary 
circle meet on the major axis at T. The angle 
O'CT is known as the reduced latitude u. 

5. The normal OCH to the ellipse at 0 makes an 
angle <P with the major axis, which is evidently the 
latitude of the spheroidal normal as usually defined 
throughout this book. We shall call this latitude 
the spheroidal latitude and shall use the same 
symbol for it as we used in Chapters 12 and 21 
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T 

Figure 26. 

for different but similar quantities. The context 
serves to avoid confusion. The spheroidal longitude 
is, in the same way, denoted by w and is the angle 
between the meridian plane of figure 26 and the 
meridian plane through an origin such as Green­
wich, with the same conventions as in § 12- 7. We 
have not yet identified the spheroid with an equi­
potential surface, in which case the spheroidal 
latitude would be also the latitude of the line of 
force at points on the spheroid: or, with the base 
surface of the coordinate system of § 18-23 used 
for the description of geodetic positions, in which 
case the spheroidal latitude would be the geodetic 
latitude of points in space. For the present , we are 
dealing with the spheroid solely in its ordinary 
mathematical sense as an e llipsoid of revolution. 

6. It can be shown that the normal bisects the 
angle SOS ' , and the half-angle f3 is given by 

22.03 sin f3 = sin a sin cf> 

or 

tan f3 =tan a sin u. 

From the fact that the tangents at 0, O' intersect 
at T on the major axis, we infer that 

22.04 tan u =cos a tan cf>, 

leading to other formulas connecting the reduced 
and spheroidal latitudes as follows, 

sin u = cos a sec f3 sin </> 

22.05 = cos a sin <f>/(1- sin 2 a sin 2 <f>) 1i2 

cos u = sec f3 cos </> 

22.06 =cos <f>/(1- sin 2 a sin 2 <f>) 1i2 

22.07 (l-sin2 asin 2 </>)(l-sin 2 a cos 2 u)=cos2 a 

2 2 .08 (1- sin2 a cos 2 u)1i2 = cos a sec f3. 

7. In this chapter, we shall denote the principal 
radii of curvature of the spheroid by p (the radius 
of curvature of the plane elliptic meridian) and 
v (the principal radius of curvature perpendicular 
to the meridian). We found in § 12-49 that the 
radius of curvature of the parallel of latitude is 
-1/ (k 1 sec cf>), which in this case is v cos </> and is 
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evidentl y OM in figure 26, for any s urface uf 
revolution. Consequently , we have v = OH m 
fi gure 26 and 

22.09 v cos <f> = a cos u=OM=CN 

so that we have 

22.10 

v = a cos u sec </> = a sec f3 

=a sec a/ (I+ tan :! a cos:! <f>) I / '2 

=a/(l-sin:! a sin:! <f>) 1f'2 

=a sec a(l- sin:! a cos 2 u)l /'2 

= a'2/(a 2 cos:!</>+ b'2 sin :! <f>) 1f'2. 

If dm is an ele ment of length of the meridian 
ellipse, then by projec ting s mall corres ponding 
arcs of the auxiliary circle (a , du) and of the ellipse 
(dm ) on the major axis. we have 

s in</> dm = p sin</> d<f> =a sin u du: 

by differentiating Equation 22.04, we have 

22.11 

so that 

22.12 

sec :! u du= cos a sec:! </> d<f> 

p =a cos:! a seca f3 

=a sec a/ (1 + tan 2 a cos 2 </>pl:! 

=a cos:! a/(l-sin:! a sin 2 <f>P'2 

=a sec a(l- sin :! a cos:! uPl2 , 

toge ther with the following differential relations 
which are often useful, 

22.13 

22.14 

22.15 

22.16 

22.17 

22.18 

df3/ d<f> =sin a cos u 

df3/du=tan a cos 2 f3 cos u 

d(ln p)/d<f> =3 sin a tan a sin u cos u 

d(v cos </> )/d<f> =- p sin </> 

d(v sin</>) /d<f> = p sec:! a cos </> 

dv / d<f> = ( v - p) tan </>. 

The last equation is equivalent to the sole Codazzi 
equation of the spheroid as derived in Equation 
18.22. 

8. The principal curvatures k1 , k2 are -1/v and 
-1/p so that the curvature invariants are 

K = l/(pv) 

22.19 2H = -(1/p + l/v). 

9. In the case of the Kepler ellipse used in or­
bital geometry, the origin of rectangular coordi-
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nates (q1 , q2) is take n as a focus S (fig. 26), a nd the 
angle TSO is known as the true anomaly f. T he 
reduced latitude u is known as the eccentric anom­
aly E. By re lating rec tangular coordinates in the 
two systems-origin Sand origin C-we have a t once 

q1 =OS sin/= b sin E = a(l -e 2) 1/:? s in E 

q2 = OS cos /= (a cos E-ae) = a(cos E-e): 

22.20 

by squaring and adding,_ we have 

r= OS= a (l -ecosE). 

From the last two equations. we have 

(1- e:!) 
(1 + e cos/)= (l E) -e cos 

so that 

22.21 
a(l -e'2) 

r= OS= a(l -e cos£)= (l + 11 · 
e COS j J 

These equations are sometimes useful in branches 
of geodesy other than satellite geodesy. 

10. The three-dimensional Cartesian coordinates 
of 0-considered as a point on th e meridian 
ellipse whose longitude is w-with respect to the 
us ual axes are 

22.22 

x = CN cos w =a cos u cos w 

= (ae) cosec a cos u cos w 

y= CN sin w =a cos u sin w 

·= (ae) cosec a cos u sin w 

z= ON= (b/a)O'N= b sin u= (ae) cut a si n u. 

from which we may ob tain the radius vector CO as 

r= (ae )( cos:! u + cot '2 a )1/'2 

= (a e )(cos u + i cot a )1f'2(cos u - i cot a )112 • 

22.23 

The tangent of the geocentric latitude OCS 1s 
give n by 

22.24 

SPHEROIDAL COORDINATES 

11. It is evident that a is a constant over t he one 
spheroid we have been considering, and would be 
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a different constant over any other spheroid. We 
now consider a family of confocal spheroids for 
which CS= CS'= ae (fig. 26) is the same for all, 
so that (ae) is an absolute constant in space. It is 
then clear from Equations 22.22 that , instead of 
(x, y, z), we could equally well take (w, u, a) as 
space coordinates, in which case the confocal 
spheroids will be the constant a coordinate surfaces. 
The other two space coordinates, which as usual 
we shall also use as surface coordinates on the 
spheroids, will be the longitude and reduced latitude 
with reference to the particular spheroid passing 
through the point in space under consideration . 

12. By differentiating Equations 22.22, we find 
after some manipulation that the metric of the 
space in the coordinates (w, u , a) is 

ds 2 = dx 2 + dy2 + dz 2 

= (a 2 cos 2 u)dw2 + (v 2 cos 2 a)du2 

22.25 + (v 2 cot 2 a)da2 : 

the only nonzero components of the associated 
metric tensor are 

g 11 = l/(a 2 cos 2 u): 

22.26 

T he coordinate system is accordingly triply orthogo­
nal, and the surface coordinates (w, u) are constant 
along the spheroidal normals. Consequently, the 
coordinate system is a normal system with a 
spheroidal base, and all formulas of Chapter 15 
apply with N =a and with the spheroidal latitude 
</> converted to the reduced latitude u by means 
of the formulas given in the last section. We can , 
however, retain the spheroidal latitude and the 
principal radii of curvature, etc., as functions, 
which are defined in relation to the spheroid pass ing 
through a point in space, as long as we remember 
that they are now functions of the two variables 
(u, a). 

13. We shall require the differentials of some of 
the spheroidal quantities -in particular a and v­
along the normals before we can substitute in the 
formulas of Chapter 15. The basic gradient Equa­
tio n 15.01 is now 

22.27 ar= nvr 

where n has its usual geometric significance and 
v ,. is the unit outward-drawn normal to the spheroids , 
not to be confused with the gradient, which we 
shall not require, of the radius of curvature v. If 
ds is an element of length along the outward-drawn 
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normal , we have 

da= nds, 

while differentiations along the normal and with 
respect to a are related by 

22.28 

From Equations 15.03 and 22.25, we have at once 

22.29 tan a n=---· 
v 

We have taken the negative sign for n , which 
appears in the metric only as l/n 2, in order to 
make the positive direction of the a-coordinate 
outward in spite of the fact that a decreases 
numerically outward, and so we preserve the 
right-handed system used throughout this book 
in the order (w, u, a)= (1, 2, 3). This device enables 
us to use all formulas in Chapter 15 as they stand. 

14. By differentiating 

sin a= (ae )/a 

with, of course, (ae) constant, we have 

22.30 
a (In a) 

aa cot a; 
a (In a). 1 

as v 

in which a is the semimajor axis of the coordinate 
spheroid, not to be confused wiih the determinant 
of the surface metric . By differentiating Equations 
22.03 and 22.04 with u constant and simplifying, 
we have also 

22.31 

22.32 

a{3 =sec a cos f3 sin </> aa 

a¢= tan a sin</> cos ¢; aa 
then by differentiating other relations m the last 
section, we have 

22.33 

22.34 

a In (v cos <f>) a In (a cos zl) 
aa aa 

a Inv . 
--=-cot a+ tan a sm2 </> aa 

cot a 

22.35 a~~ P =-cot a- 2 tan a+ 3 tan a sin2 ¢. 

By differentiating the metric tensor in accordance 
with Equation 15.13, we have the components of 
the second fundamental form of the spheroids as 

22.36 ba/3 = (- v cos 2 ¢, 0, - a 2/v). 
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From Equation 7.20, we have after some manipula­
tion 

22.37 

15. The nonzero Christoffel symbols contammg 
a 3-index follow at once from Equations 15.11 as 

f.1:1=-cot a 

r:Ja =- a:!/(v:! sin a cos a)=- l/(np) 

f d:i = - sec a s in</> cos</> 

r;\ =tan a cos '2 </> 

rf2 =(a 2 tan a)/v 2 

r.:~ =-ii ln n = ..!:_ ii ln n=- cot a- a
2 

·
33 ila n ils v 2 sin a cos a 

==-! f..!:.+..!:.)=2H 
n \p v n 

1, 3 __ alnn_. . ,.1.,. ,.1.,. 

3., - :i - sm a tan a sm 'P cos 'P. 
- uU 

22.38 

The remaining space symbols, which are the same 
as the surface symbols , are ob tained directly from 
the s urface metric as 

rf1 =sec a sin</> cos</> 

. . a ln n a ln v r 2 =sin a tan a sin ,.1.,. cos ,.1.,. =---=--
22 'P 'P au au . 

22.39 

16. The components of the surface tensor 

are required in many of the formulas of Chapter 15 
to co mpute variation along the normals . We can 
easily obtain these components either from the 
Codazzi Equation 15.25 or by direct covariant dif­
ferentiation, using the values of the Christoffel 
symbols given in Equations 22.38 and 22.39, as 

n(l/nb = tani a cos 2<J>(l - sin2 a sin 2 </>) 

22.40 =tan '2 a cos '2 f3 cos 2</>. 

THE POTENTIAL IN SPHEROIDAL 
COORDINATES 

191 

17. We can readily ex pand the Laplacian of a 
scalar V, 

flV = grsV,.8 , 

in spheroidal coordinates either by using Equation 
3.18 or by expanding the covariant de rivative and 
using values of the Christoffe l symbols given in 
Equations 22.38 and 22.39. The result in ei ther 
case is 

a2 V 
(v2 cos2 </> )flV =­aw2 

22.41 

+ sec2 a cos2 </>sec u _Q_ {c•>S u a~ au auf 
a2V + tan2 a cos2 </> -aa2 

in which we must make flV=O, if V is to be harmonic 
and so to represent a Newtonian potential. For rea­
sons which will become apparent lat er, we c hange 
the independent variables in the resulting partial 
differential equation to 

22.42 

p =sin u 

q= i cot a 

so that we have 

a a 
-=cos u -au ap 
a . 

2 
a 

-=-i cosec a-; aa aq 
the differential equat ion becomes then 

0=-+ sec2 a cos2 </> - (l-p2 ) -a2
V a { av} 

aw2 ap ap 

- sec2 a cos2 </> - ( 1 - q2 ) - • a { av} 
aq aq 

We propose to obtain solutions analogous to the 
expression for the attraction potential in spherical 
harmonics, that 1s, in the so-called "normal" form 

22.43 V= f.lPQ 

in which n, P, Q are, respectively, functions of 
w, p , q only. If we subs titute Equation 22.43 in the 
differential equation and divide by f.lPQ, we have 

O= _!_ d
2
f.l + sec

2 a cos
2 </> ..!:!__ { (l-p2 ) dP} 

n dw 2 p dp dp 

22.44 sec
2 

a cos
2 </> cl {o - 2 ) dQ}· 

Q dq q dq 
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The last two terms in this equation are independent 
of longitude w and the first term is a function of w 
only, so that if the equation is to hold for all values 
of w, we must have 

22.45 
1 rPn ---=-m2 n dw2 

in which m is an arbitrary constant. If A and B are 
constants of integration, the general solution of 
Equation 22.45 is 

22.46 D=A cos mw+B sin mw. 

Combining Equations 22.44 and 22.45, we have 

_!_A_ { ( l - p 2 ) dP} _ _!_A_ { (1- q2 ) dQ} 
p dp dp Q dq dq 

= m2 cos2 a sec2 cp 
= m2(1-sin2 a cos2 u) sec2 u 

m2 m2 

using Equations 22.06, 22.07, and 22.42. The vari­
ables in this last equation are now completely 
separated, and we can write 

~ ~ { (1- p2) :;} (1 :~2) 

= b :q { (1- q2) ~~}- (1 :2q2) 

=-n(n+l) 

in which n is an arbitrary constant because the first 
member is at most a function of p only, and because 
the second member is at most a function of q only; 
the two members cannot be the same for all values 
of p and q unless they are constant. The P and Q 

. must now satisfy similar ordinary differential 
equations of the form 

.!]_ {o-x2
) dy} + {11(n+1) 

dx dx 
m2 } 

(l-x2) y=O; 

if C, D, E, F are constants of integration, the 
general solutions 1 are 

22.47 

P=CPW(p) +DQW(p) 

Q=EP~;1 (q) + FQW(q) 

where PW, QW are the associated Legendre functions 
of the first and second kinds. The expansions of the 
QW's in the usual forms, which we shall often need 

1 Hobson (1931), The Theory of Spherical and Ellipsoidal 
Harmonics, 89. 
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to use, are 

2nn!n! { 1 +(n+l)(n+2) 1 
(2n+l)! qn+l 2(2n+3) qn+3 

+(n+l)(n+2)(n+3)(n+4) 1 
2 · 4 · (2n+3)(2n+5) qn+5 .. ·} 

22.48 

and 

Qm( ) = (-)m 21111 !(n + m) ! ( 1- q2) m/2 {--l-
11 q (2n + 1) ! qn+m+l 

+ (n+m+l)(n+m+2) _l_ 
2(2n+3) qn+m+3 

+ (n+m+l)(n+m+2)(n+m+3)(n+m+4) 

2·4· (2n+3)(2n+5) 

22.49 x-- . 1 } qn+m+5 + · · · ' 
these series are convergent only if we have 
lql > 1. Consequently, it is advisable to include 
QW(q)=QW(i cot a) in our solution only when we 
have cot a> 1, that is, when we have b > ae for 
the coordinate spheroid through the point under 
consideration.2 For the same reason, we cannot 
include QW(sin u) if we require u to be zero. For the 
external potential (at great distances from the 
Cartesian origin), we take D = E = 0 in the general 
solution, Equations 22.4 7, to give the potential in 
the form 

V x n -z= L L 0::1(i cot a)PW(sin u)(Anm cos mw 
11=0 11! = 0 

+B11111 sin mw) 
22.50 

in which we have amalgamated the constants in 
Equations 22.47 with those in Equation 22.46, and 
we have included the gravitational constant C. 
Equation 22.50 corresponds to Equation 21.035, 
which we know to be sufficiently general. On the 
other hand, if we require an expression for the 
internal potential which has to be valid at and near 

2 No matter how we express QW(i cot a), we cannot include it 
in the potential if cot a is small. If we differentiate this function 
in the direction of the normal to a coordinate spheroid and use 
Equations 22.28 and 22.29, we have 

aQW(i cot a) 

as 
n +I . 

Q;:'(z cot a) 
v 

i ( n - m + I) tan a Q . ) 
~'+ 1 (z cot a 

v 

which becomes infinite for cot a = 0, that is, for points on the 
limiting "spheroid" formed by rotating the interfocal line. The 
function will not therefore serve as part of a Newtonian potential 
in such a region. 
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the Cartesian origin , we must make D = F = 0 m 
Equations 22.47 to give 

v '° II -c;= L L PW(i cot a)PW(sin u)( [A11111] cos mw 
11 = 0 111 = 0 [ 8 J 

22.51 
+ 11111 sin mw) , 

which corresponds to Equation 21.086. All quanti­
ties in these last two equations are dime nsionless 
except V, A11m· 811111 ; we conclude that the dime nsions 
of A 11111 . 811111 are the same as those of V/G, that 1s, 
L- IAJ. 

18. The first three Legendre functions of the 
second kind in our notation are 

Oo(i co t a)=- ia 

0 1(i cot a)=a cot a-1 

02 (i cot a) =!i(a+3a cot2 a-3 Ct)t a); 

22.52 

the remainder can b e found from the recurswn 
formula 

(n + 1)011+1 - (2n + l)i cot a 011 + n011- 1=0. 

22.53 

To derive the associated fun ctions , we use Ferrers' 
de finition, eve n though the argument is imaginary, 
so that we have 

O'"( . )- 111 d111011(i cot a). 
11 i cot a - co sec a d( . ) 111 1 cot a 

22.54 

19. In mos t of the literature on sphero idal har­
monics, the third conrdinate is YJ where we have 

s inh YJ =cot a 

with other relations which ca n easily be derived 
from Equation 21.101. This alternative, however, 
loses the advantage of the s imple geometrical 
interpretation of a given by figure 26. 

THE MASS DISTRIBUTION 

20. To relate the A11111, 811111 in the general formula 
for the potential to the ma ss di stribution , we require 
an expression in spheroidal coordinates for the 
elementary potential at (w , u, a) arising from a single 
particle of mass m at (w , ii , a): in short, we require 
an expression for the rec iprocal of the distance 
between the two points. We shall deal with the case 
illustrated by figure 19, Chapter 21 , to find the ex-

306-962 0-69-14 
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tcrnal pot ential when the origin is ins ide the body, 
a nd for thi s purpose Equation 22.50 is appropriate . 
The case illustrated by figure 21, Chapter 2] , can 
he dealt with s imilarly by using Equation 22. 51. 

21. The reciprocal of the distance (1/ro) be tween 
two points in spheroida l coord in ates is it se lf a 
potential function, and mu st the refore be expres­
s ible in the form of Eq uation 22.50 in whic h the 
cons tants A 11111 , 811111 will be functions of the coordi ­
nates of the overbarred point. Moreover . if we int e r­
change the overbars , we can expect the formula to 
change to the form of Equat ion 22.51. By taking a 
temporary origin for longi tude at the barred point. 
we see that the longitude te rm must take the furm 

A ""' cos m(w-w)+811111 s in m (w-w): 

a nd because the field is symmetrical in longitude 
so that l/ro does not change if the s ign s of both w 
a nd w are changed , the 811111 mus t be zero . These 
considera tions are satisfi ed by the form 

_!_= i _± 0::1(i cot a)PW(i cot a)P::'(sin u)P::1(s in u) 
'

0 11 =0 111 =0 

XA 11111 cos m (w -w). 

and in fact the fin al formula , due to Heine, is 

ae = i f (2n + 1) [011(i cot a)P 11U cot a)P11 (s in u) 
ru 11 =0 

" ((n-m)!)2 

X P11(sin i1)+22:( - )"' ( + )' 
111 =1 n nz . 

x 0;;1(i cot a)P;;1(i cot a)P;:1(sin u) 

22.55 x P;:1(s in u)cos m(w - w)l 
A rigorous proof is given by Hobson.a 

22. If we multiply Equation 22.55 by the mass 
r11 of the particle a t the overbarre<l point and sum 
over the whole mass of the attracting body. we find 
tha t the constants in Eq uat ion 22.50 are give n by 

A °""' i( 2n + 1) _ P . _)P . _) 110 = Li m 11(1 cot a 11(s11111 
ae 

(A""') -°""' 2i(2n + 1) _ 111 ((11- m)!)2 
- p 111(. - ) - Li ( ) 1 m " i co t a 

811111 ae (n + m). 

22.56 . ( cos nzw) X P 111 (sm il) II ~ • -sm mw 

:i Hobson, op. cit. supra note I. 430. Hobson 's conventions fo r 
the assoc iated Legendre fun ctions are different , but ma ke no 
difference in this case. Hobson omit s the overall fa c tor i necessary 
to give real values of ro. 
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in which m can be any integer between unity and n 
inclusive, and (n - m)! is to be interpreted as unity 
if we have m = n. These equations correspond to 
Equations 21.037 in spherical harmonics. As in 
§ 21-15, we can replace m by pdv where p is the 
density at the overbarred point and dv is an element 
of volume. The summation is then replaced, in the 
case of a continuous distribution of matter, by a 
volume integral taken over the whole attracting 
body. 

CONVERGENCE 

23. The series in Equation 22.55 converges 4 if 
we have a > a. which implies that the overbarred 
mass point must lie within the coordinate spheroid 
passing through the unbarred point (w, u, a) where 
the potential is sought. If this condition is to apply 
to all mass points, then the point where the potential 
is sought must lie outside the coordinate spheroid 
which just encloses all the matter. Moreover, the 
spheroid enclosing all the matter must have b > ae 
so that we have cot a > 1, if the external potential 
is to be expressed by Equation 22.50. In that case, 
all the individual particle series can be multiplied 
by the particle mass and added term-by-term, and 
the resulting series for the total potential will con­
verge. As in§ 21-11, we cannot say, however, that 
convergence of all the individual particle series is 
necessary, although it is certainly sufficient. 

24. The sphere of convergence of § 21-11 and 
figure 19, Chapter 21, is accordingly replaced by a 
spheroid of convergence if we express the potential 
in spheroidal coordinates, and the conditions are 
otherwise exactly the same. In the case of the actual 
Earth, it is possible to choose a coordinate spheroid 
which just encloses all the matter and is generally 
much nearer to the topographic surface than any 
sphere that also encloses all the matter. Accordingly, 
we can say that the expression of the potential of 
the Earth in spheroidal harmonics can be made 
certainly convergent much nearer to the topographic 
surface than the potential expressed in spherical 
harmonics. 

RELATIONS BETWEEN SPHERICAL 
AND SPHEROIDAL COEFFICIENTS 

25. For the same mass distribution, Equations 
21.035 and 22.50 for the potential in spherical and 
spheroidal harmonics, respectively, must give the 
same answer at all points in space where both series 
are convergent. Accordingly, there must be some 

"Ibid. , 430. 
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relation between the C11111. 511111 and the A11111, Bnm· 
To obtain this relation, we make use of a formula, 
due to Blades,5 which, in our present notation and 
with a slight modification arising from changing 
the sign z and therefore of u also, is 

_l_ f 1T Pn (x cos t + y sin t - iz) (c?s mt) dt 
21T -1T ae sm mt 

(n-m)! ) p . )P (. ) (cos mw) -'-----"--- ( - 11 +111 W(z cot a W sm u . · (n+ m)! · sm mw 
22.57 

The corresponding formula 6 for the spherical har­
monics of the geocentric latitude (cf>) and longitude 
(w), as used throughout Chapter 21, is 

1 f 1T (cos mt)dt -
2 

(x cos t + y sin t - iz)11 • 

1T - 1T sin mt 

22.58 n ! ·cm- 11) npm( . A.) (cos mw)· 
( + )1 i r 11 sin 'P . 
n m. sin mw 

The spherical and spheroidal longitudes (w) are the 
same in these last two equations because both 
systems are symmetrical about the same axis-the 
axis of rotation of the Earth-and have the same 
Cartesian axes. We consider that (w, cf>, r) and 
(w, u , a) represent the same point where a mass 
rn is situated. We can expand 

Pn (x cos t + y sin t - iz) 
ae 

in Equation 22.57 in powers of 

(x cos t + y sin t - iz), 

and substitute Equation 22.58. The result is mul­
tiplied by m, summed over the whole attracting 
body, and Equations 21.037 and 22.56 for the co­
efficients C11111. 5nm and A 11 111, Bnm are substituted. 
The final result after some simplification is 

22.59 

1 · 3 · 5 ... (2n + 1) ·cm+n+o [-1- (C11111) 
(n + m)! i (ae) 11 +1 511111 

+ (11-m)(n-111- l) __ l_ (Cc11 -2), 111) 
2·(211-l) (ae) 11

-
1 Sc11-2J,111 

+ (n-m)(n- m- l)(n-m-2)(n-m-3) 
2 . 4(211 - 1)(211 - 3) 

x-1_3 (Ccn-4),m)+ ... ]· 
(ae) 11

- 5cn-4), m 

s Whittaker and Watson (reprint of 1963), A Course of Modern 
Analysis, 4th ed. of 1927, 403. A simple proof of the formula 
with the usual difference in conventions is given by Hobson, 
op. cit. supra note 1, 423. 

6 Whittaker and Watson. op. cit. supra note 5, 392. In this case, 
a change in the sign of z is not required. 
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The same formula gives the zonal coefficients A 110 

in terms of C110, Cc11- 2>. o .. . simply by making m= O. 

26. The reverse formula for C11111, 511111 in terms of 
A 11111 , 8 11 111 is obtained by expanding 

(
x cost+ y sin t-iz) 11 

ae 

in Equation 22.58 in terms of the Legendre functions 

P 
11 

(x cos t + y sin t - iz) 
ae 

P (
x cos t + y sin t - iz) 

11 - 2 ' ae 

etc. , for substitution in Equation 22.57. The result 
after simplification is 

i<111+11+1> (C11111) 
\511111 

(ae) 11+1(n- m) ! [(n + m) ! (A11111) 
1·3·5 ... (2n+l) (n - m)! 811111 

+2n+l (n+m-2)! (Ac11- 2),111) 
2 (n - m -2) ! 8(11 - 2), 111 

+(2n+l)(2n-l) (n+m-4)! (A<n- 4),m) 
2 · 4 ( n - m - 4) ! 8c11 - 4), 111 

+ (2n + 1) (2n- l) (2n-3) (n + m -6) ! (Ac 11 - 1n, 11) 

2·4·6 (n-m-6)! 8c11 - 6), 111 

22.60 +. · l 
The same formula gives the zonal coefficients C,,o 
simply by making m = 0. 
Equations 22.59 and 22.60 enable us , for example, 
to transform rapidly an expression for the potential 
in an area where this express ion is certainly con­
vergent. The corresponding expression in spheroidal 
harmonics is then certainly convergent almost to 
the topographic surface. 

27. We are now able to relat e the spheroidal 
A,,111, 811m to components of the inertia tensors 
by means of formulas given for the C1111, 511111 in 
§ 21-28 through § 21-34, and, in particular, to 
the total mass, to the center of mass, and to the 
mome nts of inertia of the attracting body. 

Zero-Order Inertia Tensor 

28. From Equations 21.016, 21.037, and 22.60, we 
have the inertia tensor of zero order as the total 
mass M where 

22.61 M =Coo = - i ( ae )Aoo, 

which shows that the coefficie nt A00 is imaginary. 

29. The leading term (m = 0, n = 0) in Equation 
22.50 for the potential is 
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22.62 A uuQu(i cot a )=- ia A 00 = Ma/ (ae), 

whic h is not the same as the leading te rm in the 
spherical harmonic expression (Mfr). Howeve r, the 
two terms become nearly the same at great d is­
tances from the attrac ting body where the co­
ordinate spheroids beco me nearly spheres of radius 
rand a - (ae)/r. 

First-Order Inertia T e n sor 

30. From Equations 21.06), 21.037 , and 22.60, 
the Cart esian coordinat es of the ce nter of mass are 

22.63 

Con seque ntly , if the origin of spheroidal coordi­
nat es -that is, the common center uf the coordin ate 
spheroids -is at the ce nt er of mass, then we have 

A11 = 811 =A 10 = 0, 

a nd all the first-d egree harmonics are abse nt from 
the expression of the pot e ntial in spheroidal har­
monics. Conve rsely, if these harmoni cs a re mi ss ing, 
the origin is a t the cent er of mass as shown in 
§ 21-42. 

Second-Orde r Ine rtia Tensor 

31. From Equations 21.043 and 22.60, we have 

C2o = P 3 - t (/ 11 + / 22 )=! i(ad1(! A20+ Aoo ) 

C21 =/13=! (aer1A2 1 

521 =123=! (aer 18 21 

22.64 

from which we can draw mu ch the sa me conclu­
sions as in § 21-52 and § 21-53. For example. if 
the z-axis -the minor axis of the coordinate sphe­
roids-is a princ ipal axis of ine rti a, the n we have 

A21 = 8 21= 0. 

If all three Cart esian axes are principal axes. then , 
in addition, we have 

8 22= 0: 

certain relations between the three principal 
mome nts of inertia are the n give n by Equa tions 
21.078 and 22.64. If the dis tribution of mass is 
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symmetrical about thez-axis, then we have 

A22=0. 

The same conclusions , as we re_ drawn in § 21-57 
and § 21-58 regarding the omission of certain 
terms in the spherical harmonic expression of the 
potential, apply similarly to the express ion in 
spheroidal harmonics. 

THE POTENTIAL AT NEAR 
AND INTERNAL POINTS 

32. If the point P at which the potential is re­
quired is nearer to the origin of coordinates than 
any point of the attracting body, we consider that P 
is at the overbarred point in Equation 22.55 and 
the particle of mass m is situate d at the unbarred 
point. In that case, the series will remain con­
vergent because a is still greater than a. we 
must a lso- take the potential in the form of Equa­
tion 22.51, in which we now suppose that the 
coordinates (w, u, a) are overbarred. Proceeding 
as in § 22-22, we then find that 

[A ] ~ i (2n + 1) _ Q (. _ )P ( . _) no = L..J m 11 L cot a 11 sin u 
ae 

( 
[A11111 ] ) =L:2i (2n +l ) (-) 111 ((n-m);) 2ni 
[B 11111] ae (n+m). 

22.65 x QW(i cot a)PW(sin u) (c~s m~) 
sin mw 

in which we have finally overbarred the mass 
point to correspond with Equations 22.56, so 
that Equation 22.51 may be use d as it stands for 
the potential. As usual, the s ummations are taken 
over the whole mass of the attracting body and 
can be replaced by volume integrals in the case of 
continuous density distributions. The equations 
for the potential and the mass distribution cor ­
respond to Equations 21.086 and 21.087 in spheri­
cal harmonics. We may not e that the only differ­
ence from the formulas for the potential at distant 
points in Equations 22.56 consists of an inter­
change between Legendre functions of the first 
and second kinds in much the same way as the 
corresponding difference in spherical harmonics 
consists of an interchange between r11 and l/r11 + 1 • 

33. The spheroidal harmonics 

PW(i cot a)PW(sin u) (c.os mw) 
sin mw 
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in Equation 22.51, for the potential at points near 
the origin, can be transformed to spherical har­
monics in the form 

11P 111 ( . A.) (cos mw) r 11 sin 'P . 
sin mw 

by the method of § 22-25, without assuming that 
the mass distribution remains the same. This 
transformation illustrates the fact that the po­
tential given by either Equation 22.50 or 22.51, 
or by either of the corresponding series in spheri­
cal harmonics , does not uniquely settle the mass 
distribution: the same external or internal poten­
tial c an arise from a variety of mass distributions. 
To settle the mass distribution, we require knowl­
edge of the potential at all points throughout 
s pace which cannot be provided by a single series 
divergent in some are as. 

34. In the same way, it must be possible to trans­
form the spheroidal harmonics 

QW(i cota)PW(smu) . . . (cos mw) 
sin mw 

in Equation 22.50, for the potential at distant points, 
to spherical harmonics in the form 

1 . (cos mw) -- PW(sm cp) . · r11+ 1 sin mw 
We have so far achieved this transformation only 
by assuming the same mass distribution. It is more 
difficult to effect the transformation without mak­
ing any assumption about the mass distribution, 
although Jeffery 7 has given a formula correspond­
ing to Blades' Equation 22.57 which could be used 
for the purpose . However. there is no need in any 
c urrent geodetic application to suppose that the 
mass distribution changes during the transforma­
tion. 

DIFFERENTIAL FORM 
OF THE POTENTIAL 

35. It is evident from Equation 22.41 that a is 
a harmonic function. Also, we have seen in § 22-29 
that a behaves like (ae)/r at great distances and 
is accordingly proportional to the Newtonian po­
tential of some finite mass distribution. Accord­
ingly, we infer from § 21-6 and § 21-7 that 

v x 
--= ~jrst ... (11l(a) . . ( ) G L..J ,,,, .. . II 

11 =0 
22.66 

7 Whittaker and Watson, op. cit. supra note 5, 403, and Hob­
son, op. cit. supra note 1, 424. 
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represents the Newtonian pot ential of a general 
mass di stribution , provided the J' s are arbitrary 
and are cons tant under covari ant diffe re ntiation. 
Equati~n 22.66 corresponds to Maxwell's form 
of the pote ntial as expressed in Equation 21.017. 

36. We have seen in § 21-27 that the s um of 
a ll te rms of the same degree is the same whether 
the pote ntial is expressed in general s pherica l 
harmonics or in Maxwell' s form. For example, 
the three fir st diffe rential s of (l/r) are the firs t­
degree spherical harmonics . There is no s uch 
simple relation between even the first differen­
tial s of (a) and firs t-degree s pheroidal harmonics . 
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For example, it can he s hown tha t we have 
JC 

(ae)aa/()z= 'L (2n+l)Q11(i cot a)P,,(s in u) 
11 ~ 11 

22.67 (11 odd onl y). 

whic h is a s pheroidal harmonic alt hough not sole ly 
of the firs t degree. The other differenti als mu st 
s imilarl y be express ib le in spheroidal harmonics 
because they arc harmonic fu nctions, but the ex­
pressions become progressive ly more co mplicated. 
Eq ua tion 22.66 is not the refore of much use for 
de riving spheroid a l harmonic properties of the 
pot e ntial , but the express ion of the potentia l in 
thi s compact form can be of use in theore tical 
investigation s. 





CHAPTER 23 

The Standard Gravity Field 

FIELD MODELS 

1. T o fac ilitate calculation of directions and 
distances between widely separated points in the 
gravity field, we require a mathe matical model of 
the fi eld which shall be near enough to the actual 
field for us to form first-orde r or linear observa­
tion equations. In much the same way, it is useful 
to have a model or s tandard fie ld in which it is 
easy to comput e the pot ential and derivatives of 
the potential, so that we can confine our att ention 
to the small departures from the model encoun­
tered in actual measurem ent. Departures from the 
mathematical model are known as anomalies, 
disturban ces, and deflections: the smaller we can 
make these departures, without sac rificing the 
simplicity and regularity of the mathe matical model , 
the be tter. The model field is oft e n ca lled the nor­
mal field in the literature: however , the word 
"standard" describes the situation at least as well, 
and the word " normal" is already overworked in 
a book which also deals with the differential geom­
etry of families of surfaces whose normals define 
a vector field. Standard gravity is usually denoted 
by y in the literature; we s hall use this convention 
later whe n actual gravity appears in the same 
formula s. In this chapter, we s hall be dealing en­
tirely with s tandard gravity: we shall use the ordi­
nary symbol "g" to avoid confus ion with the 
curvature parameters y1 , y2 , which appear late r 
in the chapter. Standard potential is usually 
denoted by U in the literature, either for the at­
traction potential or the geopotential, and we 
shall follow this convention in later chapters when 
the actual potential is used in the same formula: 
in this chapter, there is no ambiguity in continuing 
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to use V or W fur the potential of the particular 
standard field. 

SYMMETRICAL MODELS 

2. A n obvious s implification of the general ex­
pression for the potential would be to suppose that 
the fi e ld is symm etrical about the z-axis of rotation , 
thereby making a ll the tesseral harmonics anoma­
lous. In that case, the model potenti al is inde pe ndent 
of longitude and is given in spherical harmunics as 

23
.
01 

_W = ~ C110P11( sin </>) +!w2 (x:!+y2
) 

C £..J r 11 + 1 C 11 =0 

in which, as always in sphe rical harmonic expres­
sions in this book, <P is the geocentric latitude or 
latitude of the radius vector. Moreover , the longitude 
of the line of forc e in the mode l (w in Equations 
21.136 and 21.138) is the same as the geocentric 
longitude . There will be no zonal harmoni cs in 
Equations 21.136 and 21.138, and the only tesseral 
ha rmonic s will be of the firs t order so that Equations 
21.136 and 21.138, corrected for rotation. reduce to 
the single equation 

- ~ cc II 0 p ( • ,J,.) - 2 PI ( • ,/,.) gcos <f>= £..J r" +z ,\ +1 s111'!-' -w r 1 s1 n'I-'. 
11 =0 

23.02 

The re will be no tesse ral harmonics in Equation 
21.140, whic h is unaffected by rotation and becomes 

23.03 . - ~ ( n + 1 ) cc 110 p ( • ,J,.) 
g S lll <f>= £..J r" + '2 11 + 1 Sll1 '!-' • 

11 =0 

As noted in § 21-93, Equations 21.136. 21.138, and 
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21.140 give the outward components of the gravita­
tional force, which is, nevertheless, positive inward. 
We have accordingly introduced an overall change 
of sign in Equations 23.02 and 23.03 in order that 
g may be positive. 

3. Alternative gravity formulas can be given in 
terms of (;j;-<f> ), which might be termed the deflec­
tion in latitude with respect to a central field, by 
combining the last two equations. After some 
manipulation involving well-known properties of 
the Legendre functions, we have 

23.04 

g sin (({>-<f>) =- ~ GC+11

9° P,\(sin </>) 
L.. r" -11 = 1 

+ w2 r sin </> cos</> 

g cos (A.-A.) = ~ (n+ l)GC110 p ( . A.) 
'f' 'f' L.J ru +z 11 SIB 'f' 

11=0 

23.05 -w2 r cos2 <f>. 

At any point where the direction of the line of force 
is radial, the first of these equations is zero and the 
second gives g direct. For example, this situation 
would occur at the poles in a symmetrical field. In 
that case, the first equation is identically zero be­
cause we have P,Hl) = 0, and the second could be 
obtained by radial differentiation of the potential 
in Equation 23.01. 

4. A further simplification would be to make the 
model also symmetrical about the equatorial plane, 
in which case the C110 in Equations 23.01, 23.02, 
23.03, 23.04, and 23.05 would become zero for n odd. 
After omitting all the tesseral harmonics and the 
zonal harmonics of odd degree, we might as well 
omit all the zonal harmonics beyond the fourth or 
even the second degree. However, the most con­
venient coordinate system for geometrical purposes 
is a (w, <f>, h) system with a spheroidal base. We 
must be able to relate the geometric and gravimetric 
systems and, the simplest way of doing this is to 
make the base spheroid of the geometrical system 
the same as an equipotential surface of the gravi­
metric system. We shall accordingly investigate this 
type of model next, instead of an arbitrarily trun­
cated spherical harmonic model. 

THE SPHEROIDAL MODEL 

5. The model most often used for gravimetric 
purposes consists of an axially sym metrical field in 
which one equipotential surface is an oblate sphe­
roid. This spheroidal equipotential of the model 
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field is choben as nearly as possible to fit the geoid, 
that is , the actual equipotential surface nearest to 
Mean Sea Level. The minor axis of the spheroid is 
oriented parallel to the axis of rotation of the 
Earth. Ideally, the minor axis should coincide with 
the axis of rotation, and the center of the spheroid 
should coincide with the center of mass of the 
Earth so as to provide also a unique worldwide 
geometric reference system, as discussed in § 21-57 
and § 21-58. 

6. The model field rotates with the same angular 
velocity w as the actual Earth. Whenever we need 
to consider the mass distribution which gives rise 
to the model or standard potential, we suppose that 
the total mass in the model is the same as the total 
mass M of the actual Earth, although the mass can­
not, of course, be distributed in the same way. 

7. The problem of developing such a model 
field would already have been solved if the field 
were static. We have seen in § 22-33 that the sphe­
roidal coordinate a is proportional to a Newtonian 
potential and is constant over each of the coordi­
nate spheroids, one of which can be chosen to 
approximate the geoid. The potential would be 
given by Equation 22.62 as 

23.06 
V Ma 
G ae 

and gravity by Equations 22.28 and 22.29 as 

GM tan a 
g= (ae)v 23.07 

so that gv would be constant over any one equi­
potential surface. 

8. However, we are not concerned with a static 
field: the case we have to consider is a field rotating 
with uniform angular velocity w. In that case, 
it is still possible to arrange for the geopotential 
to be constant over one of the coordinate surfaces 
of a spheroidal coordinate system. The other co­
ordinate spheroids will not , however, be equipoten­
tial surfaces. 

THE STANDARD POTENTIAL IN 
SPHEROIDAL HARMONICS 

9. The geopotential W in a field rotating with 
constant angular velocity w is obtained from Equa­
tions 20.08 and 22.22 as 
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=-V+! w2a 2 cos 2 u 

23.08 =- V +-! w 2 a 2 -t w2a 2P 2 (sin u ), 

assuming that the axis of rotation coincides with 
the minor axes of the coordinate spheroids. If we 
assume also that the standard or model field is 
axially symmetric so that the potential is inde­
pendent of longitude, then we have m = 0 in Equa­
tion 22.50 for the attraction potential V, and we have 

00 

- W= L GA110011(i cot a)P11(sin u )+-! w 2a 2 

n=O 

23.09 

The geopotential on one particular coordinate 
spheroid, for which we have a= ao, a= ao , is 

-Wo=GAooQo(i cot ao)+t w2aij 

+GA 10Q1(i cot au)P1(sin u) 

+ { GA20Q2(i cot ao)-t w2a7i}P2(sin u) 

+ GA30Q3(i cot ao)P3(sin u) 

+ ... ; 

if the geopotential is to be a constant over this 
spheroid for all values of u, we must have 

-Wo=GAooQo(i cot ao)+t w2aij 

A10=0 

GA20QAi cot ao)=t w 2aij 

23.10 Ano=O (n > 2). 

The first of these results, combined with Equation 
22.62, gives the potential on the base spheroid 
(a= ao) in terms of the dimensions of that spheroid 
and the total mass M as 

23.11 -Wo=GMao/(ao sin ao)+t w2aij. 

It is usually supposed that the total mass is con­
tained within the base spheroid, so that the potential 
on and outside the base spheroid may be repre­
sented by a convergent series in Equation 23.09, 
in accordance wi th §22-23. If this series was not 
convergent, we could not have proceeded beyond 
Equation 23.09. 

10. From Equations 23.10, we have also 

GA20=-!w2a5/Q2(i cot ao) 

23.12 
3 cot ao-ao(l + 3 cot2 ao)' 
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using Equations 22.52. The coefficient iA20 can 
accordingly be computed definitely for a particular 
base spheroid . Finally, the geopotential c an be 
written in the spheroidal coordinates (u, a) as 

-W=GMa/(ae) +GA20Q2(i cot a)P2(sin u) 

23.13 +{tw2a 2-tw2a 2P2(sin u)} 

in which (ae) =a0 sin ao is an absolute constant, 
while we have 

23.14 a= ao sin ao cosec a. 

The term within braces in Equation 23.13 arises 
from rotation, and is equally well expressed by 

!w2 (x2 + y2). 

We may note that if we have w = 0, the potential is 
the same as we obtained for the static case in 
Equation 23.06. 

THE STANDARD POTENTIAL IN 
SPHERICAL HARMONICS 

11. For the same mass distribution, whatever that 
may be, the spherical and spheroidal coefficients 
are related by Equation 22.60, which in the sym­
metrical case (m=O) takes the form 

1 · 3 · 5 . . . ( 2n + 1 ) 

[ 
2n+ 1 

X A no +-
2
- A(n - 2), o 

23.15 
+ (2n+ 1) (2n-l) A 

2. 4 (11 - 4) , 0 + . · 1 
Because the only nonzero spheroidal coefficients 
are A20 and Aoo, the C,10 are zero if n is odd, as we 
should expect from the equatorial symmetry of the 
model. We can rewrite the last equation, after 
considering the terms of lowest degree in the A's, as 

23.16 
(-)<11/2)+1(ae)11+1 [ · niAzo] 

C,10 ( n + 1 ) iA oo + ( n + 3 ) 

in which n is to have only even values. To reflect 
this restriction to even values , we may write 
(2n - 2) for n so that 

_ (-) 11 (ae) 211 - 1 [ · (2n-2)iA2o] 
C(211-2),o- (2n-l) iAoo+ (2n+l) 

23.17 

in which the range of n is from unity to infinity. 
The geopotential , including the rotation term, can 
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now be written in the form 

_ W = f (-) 11 (2n + l)iAoo+ (2n -2)iA20 

G n = I (2n-1)(2n+l) 

23.18 
(ae)211 - 1 . !w2(x2+ y2) 

X 211 _ 1 P211 - 2(sm <b) + (' 
r J 

in which </> is the geocentric latitude. For substitu­
tion in this equation, we have A20 from Equation 
23.12 and 

23.19 Aoo = iMJ (ae) 

from Equation 22.61. 

12. We can check this result· by considering the 
potential along the z-axis where figure 26, Chapter 
22, shows that we have cot a = z/ ( ae) and sin u = 1. 
In that case, we have from Equation 23.13 

_W = M tan - 1 (ae)+A2002 (~), 
G ae z ae 

which can-easily be expanded as 

_ W = f (-) 11 (2n + 1) iAoo + (2n - 2) iA 20 (ae)2n - 1. 
(,' n = I (2n- l) (2n + 1) z 

From this last formula, the expansion in spherical 
harmonics, given in Equation 23.18, follows after 
restoring the rotation term. 

STANDARD GRAVITY ON THE 
EQUIPOTENTIAL SPHEROID 

13. From Equations 20.05, 22.28, and 22.29, the 
magnitude of the component of gravity in the direc­
tion of the inward-drawn normal to a coordinate 
spheroid will be 

tan a aw 
{{n == - -v- aa (u constant) 

where a and v are evaluated with respect to the 
coordinate spheroid in question. Differentiating 
Equation 23.13 and using Equations 22.30, we have 

23.20 g11 = tan a {J + LP2( sin u)} 
1J 

where}, Lare constant over the coordinate spheroid 
and are given by 

} = GMJ(ae) -iw2a 2 cot a 

l =- iGA20 cosec a QJ ( i cot a) + iw2a 2 cot a 

23.21 

in which we have introduced the Legendre func­
tions defined by Equation 22.54. At the pole of the 
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coordinate spheroid, we have v = a 2 / b and sin u = 1 
so that 

23.22 gµ= (b tan a/a2 ){l+l}. 

On the equator of the coordinate spheroid, we have 
v =a and sin u = 0 so that 

23.23 g,,= (tan a/a){J-il}. 

Considerations of symmetry show that the normal 
component of gravity at the poles and on the equator 
is the same as the total gravity at such points. 

Somigliana's Formula 

14. From the last two equations, we have 

(gp/b) sin2 u+ (g, ./a) cos2 u= (tan a/a2
) 

x{J+LP2 (sin u)} 

= g11v/ a 2 

on substituting Equation 23.20. Using Equations 
22.05, 22.06, and 22.10, this last equation is easily 
put into the form 

23.24 
_ age cos2 </> + bg1, sin2 </> 

g" - ( a 2 cos2 </> +b2 sin2 cf>) I/ :! 

in which </> is the latitude of the normal to the 
coordinate spheroid; a, b are the semiaxes of the 
coordinate spheroid; an<i g,., g1, are the values of 
gravity on the equator and at the poles of the 
coordinate spheroid. The formula, due originally to 
Somigliana, gives the component of gravity normal 
to the coordinate spheroid in latitude cf>. If the 
coordinate spheroid is the base equipotential sur­
face of the standard field, then g,, is the total force 
of gravity, but the formula is of more general 
application and gives one component of gravity 
normal to the coordinate spheroid at any point in 
space. 

Clairaut's Formula 

15. \Vith some manipulation and use of Equation 
23.12, we may rewrite L in Equations 23.21 as 

3L (w2 cot a){ a2Q2U cot ao)- a~Qh cot a)} 

2 02 (i cot O'o) 

iw 2 aJQ, (i cos a) 

Oz (i cot ao) 
23.25 

Frum Equations 23.22 and 23.23, we have also 

23.26 
g1, ge tan a 3l 
---=--X-· 
b a a 2 2 ' 
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on the base (equipote ntial) spheroid (~=au), this is 

g /I g,. w2Q, (i cot au) 
b a (i cotao)Q2(i cotau) 

23.27 

whic h, if we use the expansion in Equation 22.48 , 
reduces to 

gp _ ge _ 5w2 
( 1 + 9 . 2 16 -t b a -

2 
35 tan a 11 - z-:rs- ta n ao + ... ). 

23.28 

If we omit the s mall te rms in tan a o, thi s equation 
reduces to the classical Clairaut e quation. It should 
be noted that Equation 23.28 applies only on the 
equipote ntial spheroid. The corresponding equation 
at other points in space is Equa tion 23.26 with 
Equa tion 23.25. 

Pize tti' s Formula 

16. From the metric in s ph eroidal coordinates in 
Equa tion 22.25, an element of area dS of a coordi­
nate s pheroid is 

dS =av cos a cos u du dw =av cos a d( sin u)dw . 

Integrating Equation 23.20 over the s ph eroid , we 
have 

f g11dS= f ae{l + LP-i ( sin u)}d( sin u)dw 
s s 

23.29 = 47Tae}. 

Next. we e liminate L be tween Equations 23.22 and 
23.23 in much the s ame way as we eliminated} .to 
obt ain Clairaut's formula. We have 

3} tan a 3ae} 41Tae} 
a2 a2b v 

23.30 

where v is th e volume of the coordinate s pheroid . 
Also, from Equations 23.21, we have 

23.31 41Tae}=47TGM - 2w 2v 

so that 

23.32 

This las t equation applies to any of the coordina te 
spheroids, provided g 11 is the component of gravit y 
in the direction of the inward-drawn normal to the 
spheroid. Fro m Equation 20.05, we have 

where ds is an element of length along the outward­
drawn normal and W is the potential given by Equa-
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tio n 23. 13. T he d ive rge nce theore m of Equ a tion 
9.17 gives 

l Jaw J g11dS = -_- dS = D. W dV = 47TCM - 2w 2v , 
s s ds 1· 

using Equ ation 20.15. In thi s equ ation , M is the total 
mass contained within the coordinate spheroi<l ove r 
whose s urface we have int egrated. T he la s t two 
me mbers of Equa tion 23.32 are co mpatib le the re­
fo re if, a nd only if, the coordinate s phero id we have 
bee n considering cont ains all the mass. [n t hat 
case, we c an rewrit e Equa tion 23.32 as 

23.33 

in which p is the ave rage density ohta ined by di­
viding the tota l mass by the volume of the coord i­
nate s phe roid. T his res ult is due to P ize tti : it holds 
true , not onl y for the equipote ntial s phero id , bu t 
also fo r any coord inate s pheroid enclosing a ll the 
mass. 

Ge neral R e marks o n Gravity 

17. If we know the di mensions of the equi poten­
tial spheroid , then ge and gp are direc tly related 
by the Clairaut Equation 23.28 ; we need to know 
only one of these q ua ntities, fo r example , ge. T he 
Somigliana Equation 23 .24 then gives us gravity at 
any point of the equipotential spheroid in te rms of 
thi s one constant ge, which is directly related to the 
average density or total mass by means of the 
P izetti Equation 23.33. Provided w is known, the 
three Equations 23.28, 23.24, and 23.33 accordingly 
allow us to express grav ity on the eq uipote ntial 
spheroid- of known a and b-in terms of a s ingle 
constant: e ither the total mass, or gravit y on the 
equator, or gravity at any point. Several approxi­
mate formulas are give n in th e literature , all of 
which can be derived from these three exact equa­
tion s; the degree of approxim ation involved appears 
in the derivation. The exact equations are not , 
however, more diffic ult to co mpute. Some form ulas 
are give n in te rms of the fla ttening of the spheroid , 
f= (a -b )/a ; of the gra vita tional flatt ening, 
(gp- ge ) /ge : and of the ratio of centrifugal force on 
the equator to standard gravity on the equator, 
q= w2a /ge. For example, the Somigliana Equation 
23.24 can e asily be expa nded in the fo rm 

23.34 g=ge(l+ B2 sin 2 </> + 8 4 sin2 2</> + .. . ). 

If we omit tan 4 a 0 and higher powers in Equ ation 
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23.28, the coefficients become 

B2 =-f + ~ q- ~ ~ qf+ i4sq2 

23.35 B4= l /2- i qf, 

omitting .f3, qf2 , and higher powers. 

18. The international gra vity formula , adopted 
in 1930, is in the fo rm of Eq uation 23.34. However, 
ge and B2 do not have their theore tical valu es for a 
spheroid of given dimensions, enclosing a given 
mass, but were obtained empirically from gravity 
measurements. The B 4-term was obt ained theo­
re tically, but is not in line with modern ideas of the 
flatte ning. The 1966 international values of the 
constants were 

2 3.36 

ge= 978.049 c m./sec.2 

B2= 0.0052884 

B-1= -0.0000059 . 

Valu es recommended by the International Associa­
tion of Geodesy in 1967, and also by the Interna­
tional Astronomical Union , are 

ge =978.031 cm./sec.2 

B2 = 0.0053024 

B-1 =- 0. 0000059. 

19. In the same way, there are many classical 
formulas express ing the coeffi cients of the second­
and fo urth-spherical harmonics of the s tandard 
potenti al in terms of e or f and q (which usually 
appears as m) to various degrees of accuracy; the 
usual line of development is to add second- and 
thi rd-order terms to Clairaut 's firs t-order result . 
However, it is as easy, if nol easier, to comput e the 
coeffic ients of the second, four th , or any harmonic 
from the exact formula given as Equation 23.18. 

STANDARD GRAVITY IN SPACE 

20. Because the standard geo potenlial is inde­
pendent of longitude, th ere is no component of 
gravity in the direction of the pa rallels of latitude 
of the coordina te spheroids. To find the meridian 
component , we note that the metric in Equation 
22.25 gives an ele ment of length along the meridian 
of the coordinate spheroid as 

(v cos a)du. 

Accordingly, the magnitude of the northward com­
pone nt of grav it y in the direc tion of the meridian is 
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1 aw 
v cos a au 

3 sin u cos u [GA Q ( " ) 1 - ·> '' ] 20 2 i cot a -3(1ra- , 
v cos a 

23.37 

which is zero (as it should be) on the equipotential 
spheroid , where the le rms in brackets become zero 
by Equation 23.12. The meridian component is also 
zero at the poles and on the equators of the coordi­
nate spheroids where u is ·hr or zero. 

21. AL other points in space, we can combine 
normal gravity g 11 , given by the Somigliana Equa­
tion 23.24, with the meridian component gm, given 
by Equation 23.37 , to gi ve both the magnitude 
and direction of the total gravitational force. If 
<P is the latitude of the spheroidal normal, then the 
latitude of the line of forc e is 

23.38 <P- tan - 1 (g 111/g11) ; 

and the magnitude of the total force is 

23.39 g= (g n, + g~) 112. 

STANDARD GRAVITY IN SPHERICAL 
HARMONICS 

22. It is necessary for some purposes and con­
venient fo r othe rs to have standard gravit y ex­
pressed in s pherical harmonics . Because the field 
is axially symmetric, Equations 23.02 and 23.03 
apply; and because the field is equatorially sym­
metric, the n-odd te rms are ze ro . Accordingly, we 
write (211 - 2) for n and s ubstitut e for the C's from 
Equation 23.17 to obtain 

O' :i. = ~ ( '(-) 11 (2n + l)iAoo+ (2n-2)iA 20 
t-> cos ~ ,-f=1 _, (2n-1) (211+l) 

23.40 
(a e )211 - 1 t . _ ,, 

X P211 _ 1 (sm <P)-w-r cos <P 
r211 

u . .A: = ~ ( ' (-) 11 (211 + 1) iAoo + (211 - 2) iA20 
o sm ~ ,-f=1 _, (2n + 1) 

(ae )211 - 1 
X 2 P 211 - 1(sin ¢) r II 

23.41 

in whic h <P is the geocentric latitude and <P is the 
latitude of the line of force. 

23. Fro m Equations 23.04 and 23.05, we have 
similarly 
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_ x (2n + l)iAoo + (2n - 2)iA:w 
g sin(</>-</>)= L G(-)" +t (2n -1) (2h + 1) . 

11 = 2 

(ae)211 - 1 
X .,,, PJ11 _2 (sin</>) 

r-

23.42 + w2 r sin cf> cos cf> 

- _ ~ _ 
/1 

(2n + l)iAoo + (2n -2)iA20 
gcos(cf>-</>)- LJ G() (2n+l) 

11 = 1 

23.43 
(ae)211 - 1 . _ ., ., 

X .,,, P 211 _2(srncf>)-w-rcos-cf>. 
r-

The difference in the two latitudes (¢- </>) can be 
considered the "deflection" in latitude of the 
standard field relative to a centrally symmetrical 
aravitational field. There is, of course, no cor-
"" responding deflection in longitude. 

24. On the equator of the base spheroid, for ex­
ample, we have ¢=cf>= 0, and either Equation 
23.40 or 23.43 reduces to 

__ 
2 
-~ G(2n+l)iAoo+(2n-2)iA 20 (ae)2 11

-
1 

ge--wa LJ (2n+l) a2" 
11 = ! 

23.44 
1·3·5 (2n-3) 

X -2-· -4-. _6 ___ (2-n---2)' 

CURVATURES OF THE FIELD 

25. The curvature parameters of the field can be 
evaluated in any coordinate system from Equations 
12.162 by contracting the Marussi tensor, in this 
case W,.8 where W is the standard geopotential. 
However, evaluation of the parameters in spheroidal 
coordinates is not simple, even though the potential 
in spheroidal coordinates includes only two terms. 
The covariant derivatives of the potential are found 
by successive differentiation of Equation 23.13 
and by use of the Christoffel symbols in Equations 
22.38 and 22.39. The covariant derivatives are then 
contracted with the base vectors of the equipotential 
surfaces, which can be found from the matrix 
equation 

-sin ~<f;-<f>)\ 
cos (</>-</>)') 

23.45 
(

1/ ( v cos </>) 0 

X O l/(v cos a) 

0 0 
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where J> is the latitud e of the line of force obtained 
from Equations 23.40 and 23.41 , cf> is the la titude 
of the normal to the coordinate spheroid , and the 
other quantities v, a also refer to the coordinate 
spheroid. 

Curvatures in Spherical Harmonics 

26. An alternative method is to evaluate the 
Marussi invariant s of Equations 12.162 in the fi xed 
Cartesian system, as explained in general in§ 21- 95 
through § 21-98. Component s of the tensor Nrs or 
W,.8 become ordinary differentials of the geo poten­
tial with respect to Cartesian coordinates : these 
components are easily obtained from Equ ations 
21.145 through 21.150. 

27. In the case we are considering, the only 
nonzero harmonic coeffic ients in the attraction 
pote ntial V are C,, 0 , and the only nonzero harmonic 
coefficients in the first differential s are obtained 
from Equations 21.137 , 21.139, and 21.141 as 

-:x (f): C(11 +t), t =-C,,o 

-:y (f ): 
23.46 -:z (f ): C(11 +1). o=- (n + l )C110-

The only nonzero harmonic coefficients in the 
second differentials are given by Equations 21.145 
through 21.150 as 

_ _£__ (~)-ax2 G . 
= 1 c C(11 +2i . o=- 2 (n+l)(n+2) 110 

a2 ( v) ay2 G . C(li +2 ), o =- ! (n + l)(n + 2)C110 

= 1 
C<11 +2 >. 2 =- 2 C,,o 

a2 ( v) 
az 2 G . C( 11 +2) , o= (n + 1) (n + 2)C,,o 

a
2 

( v) axay G . 

a2 ( v) 
ayaz G · 

S(11 +2). 1 = (n + l )C110 

a
2 

( v) azax G . C(11 +'2 ). 1 = (n + 1 )C110-

23.47 
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28. Allowing for the rotation term m the geo­
potential from Equations 21.151 and substituting 
in Equations 21.152 for w=w, we have 

gk2 =A+ G ~ ;,;~1 3 {BP11 +2 (sin</>) 
11 =0 

23.48 

where 

23.49 

+ CP,: +2 (sin <f>)+ DP~ + 2 (sin</>)} 

A= &J'2 sin:!(/> 

B = (n + l)(n + 2)(cos'2 (/>- ! sin 2 (/>) 

C =- (n + 1) sin 2¢ 

and the C110 are given by Equation 23.16. To re­
flect the fact that the only nonzero values of C110 
occur when n is even, we can substitute (2n -2) 
for n in Equation 23.48 and in the coefficients 
B, C, and can use Equation 23.17 for the C<'211 - 2),o· 
As always in spherical harmonic expressions, <f> 
is the geocentric latitude in Equation 23.48 and 
<f> is the latitude of the line of force, computed, 
together with g, from Equations 23.40 and 23.41. 

29. The remaining nonzero parameters are given 
by formulas similar to Equation 23.48, but with the 
following coefficients 

for gk1: A =w2 

23.50 

23.51 

for ag. 
as· 

B=-t(n+ 1) (n+2) 

C=O 

D -_l_ 
- 2 

A =tw2 sin 2¢ 

B=-!(n+ 1) (n+2) sin 2</> 

C=- (n+ 1) cos 2¢ 

D = -!sin 2</> 

A =-w2 cos2 (fi 

B =- (n + l)(n + 2) (sin2 (fi-t cos2 (fi) 

C = - ( n + 1 ) sin 2</> 

23.52 D=-t cos2 </). 

From Equation 12.021, the curvature of the lines of 
force is Y2 because we have Y1 = 0 in this case. 
Equations 23.52, giving the variation in gravity 
along the lines of force, provide a rigorous form of 
the "free air" or height correction to the value of 
gravity on the equipotential spheroid. At points 
close to the equipotential spheroid, the correction 
would be given with sufficient accuracy by Equation 
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20.17, which in this case reduces to 

23.53 ~!=-g (~+~)-2c;;2 
at points near the spheroidal equipotential; the cor­
rection is often still further simplified by taking 
p and v as a mean radius of the Earth. 

30. As a check, we find that the law of gravity in 
the form of Equation 20.17, that is, 

ag/as- g(k1 + k2) =-2w'2, 

is satisfied by each harmonic in Equation 23.48 
formed for each of the appropriate parameters. 
The remaining parameters t1, y1 are found to be 
zero, a!'S they should be in the symmetrical field 
we are considering. We can also use these results 
to determine gravity at points where the curvature 
is known. For example, on the equator of the 
equipotential spheroid, k1 = -1/a, and we then have 

-~ =w2 +G ~ a~1:i3 {- hn+ 1) (n+ 2)P11 +2(0) 
11=0 

- ~ P~ + 2(0)} 

=w2 +G ~ (-) <n+ 2>12 C110x1·3·5 .... (n+l) 
.L.i a 11 +3 2·4·6 n 11 =0 

with n even. Because n is even, we can rewrite 
this equation with (2n - 2) instead of n as 

ge_-·'+GLx () C<211 - 2J.o 1·3·5 .... (2n-l) ---w- - 11 x--------
a n=I a'2 11 +1 2·4· 6 ... (2n-2)' 

which agrees with Equation 23.44 if C(211-2). o is 
substituted from Equation 23.17. 

31. Another interesting comparison arises from 
the fact that - l/k1 for any surface of revolution is 
the length of the normal intercepted by the axis 
of rotation. Consequently, - (l/k1) cos(/> for the 
equipotential surface is the perpendicular distance 
between the point under consideration and the axis 
of rotation: this distance is r cos</> where </> is the 
geocentric latitude. Substitution in Equation 23.48 
for gk1 and use of Equations 23.50 give 

gcos <f>=-w'2 rcos <f> 

~ c 110 1 ,./,. p ( . ,./,.) +G .L.i--.,[2 (n+ l)(n+2)cos '+' 11 +2 sm '+' 
n = Orn +-

+ t cos</> P,~+ 2 (sin</>)] 

-- - 2 ,./,.+G L:x: C110 p1 ( . ,./,.) 
- W r COS '+' ·> 11 +I Sill '+' , rn+_ 

11 =0 
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applying so me well-known properties of the Leg­
endre fun ctions. If we write (2n - 2) for n and sub­
stitute for C(2n - 2>. o from Equation 23.17, this las t 
result becomes Equation 23.40. 

32. This method of determining the curvature 
parameters is rigorous and can be applied at any 
distance from the equipot ential spheroid to any 
required degree of accuracy. Howe ver , for many 
purposes, it will be sufficient to use first-order 
formulas close to the spheroidal equipotential; 
we s hall now investigate this third method, due 
originally to Marussi. 

Curvatures in the Neighborhood 
of the Equipotential Spheroid 

33. The curvature parameters at points in the 
neighborhood of the equipotential s pheroid can 
also be found by Taylor expansions along the 
normals or isozenithals. 1 For exa mple, in this sym­
metrical case, we have from Equations 12.075 
and 12.143, with Nor Was the standard geopotentiar, 

_a_(_!_)= sec2 <P ab11 =tan <P rl(l/g) _..!. 
aw k1 aN a<P g 

a (l)_ab:!:!_ a:!(l/g) 1 
aw k2 - aN -- a<P:! -g; 

or, if the principal radii of curvature of the equi­
potential surface are v, p, we have 

23.54 

~=-tan <P a(l/g) +..!. 
aw a<P g 

~= ()'2(1/g) +.! 
aw a<1> 2 g' 

which can be evaluated on the base s pheroid from 
Equation 23.24 or 23.34. The expansions to a first 
order along the isozenithals follow from the initial 
spheroidal values of p, v. 

34. We can expand along the normals by using 
Equation 14.32, which in this case becomes 

1 See also Marussi (1950), "Sulla variazione con l'altezza <lei 
raggi di curvatura principali nella teoria di Somigliana," Bol­
lettino di Geodesia e Scienze Affini, v. 9, 3-9. Marussi does not use 
the physical convention for the sign of the potential. 
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i!_= gj}__- b22 fl(i n g) _!!_ 
as aN rl<P a<J> 

23.55 
a l a(ln g) a 

=gaw+-p~a<P· 

35. The vanat10n along the normal of the othe r 
nonzero parameter Y2 can most easily be found by 
direct substitution in Equation 20.25: in this case, 
that equation becomes, for points on the equipote n­
tial spheroid, 

23.56 

with 

~ = _ _l _i}__ ( _l + .! ) + 4w 2Y:! + Y2 
as p a<P p v g v 

a (In g) 
pa<P 

where <Pis the latitude of the normal to the spheroid. 

THE GRAVITY FIELD IN GEODETIC 
COORDINATES 

36. If we are given the position of a point m 

geodetic coordinates (~, ~. h) and if we require 
the potential or it s derivatives at the point. the 
simples t procedure is to convert the geodetic to 
geocentric coordinates and the n to use spherical 
harmonic expressions for the potential or its deriva­
tives. The geodetic and Cartesian coordinates are 
related by Equations 18.59, which in our present 
notation become 

23.57 

x= (v+h) cos:f,cosw 

y= ( v + h) cos ~ sin ;;=; 

z = ( v cos 2 a + h ) s in <P 

where v, a refer to the base spheroid of the geo­
detic sys tem. The geodetic and geocentric longi­
tudes are the same; if <f>, r are the geocentric 
latitude and radiu s vec tor, we have 

r cos <P = ( v + h) cos -;j, 

23.58 rsin <P= (v cos 2 a +h) sin (/J. 

The same procedure applies to both a general 
field and the standard field; the only difference 
is in the formulas for the potential and its deriva­
tives, whether for those formulas given in Chapter 
21 or for those given in this chapter. 





CHAPTER 24 

Atmospheric Refraction 

GENERAL REMARKS 

1. Almost all geodetic measurements of direction 
and distance are necessarily made through the 
Earth's atmosphere, which refracts the line of 
observation into a complicated space curve. The 
universal practice is to remove the effect of refrac­
tion by applying corrections to the observations, 
the effect of which is to replace the curved line of 
observation by the straight chord joining the end 
points of the line. In following this procedure, we 
shall begin with a rigorous treatment, which may 
become necessary in future developments, and then 
introduce progressive approximations that are 
justified by our present inability to measure com­
pletely the refractive index and its gradient, even 
at the two end points. 
Atmospheric refraction is particularly important 
in the three-dimensional methods used throughout 
this book, although no method of reducing the 
observations can overcome uncertainty in the 
refraction; three-dimensional methods are no better 
and no worse in this respect than any other. Ac­
cordingly, we shall treat the subject fully and, in 
addition to the rigorous theoretical treatment, we 
shall give some account of the empirical methods 
in current use. 

2. The geometrical corrections depend on the 
curvature and torsion of the refracted ray, which 
in turn depend on the first and second covariant 
derivatives of the index of refraction. The first 
approximation will accordingly be to choose a 
geodetic model atmosphere, which, in most cases, 
allows us to ignore the torsion of the ray and fixes 
the direction of the gradient of the index, leaving us 

306-962 0-69-15 

with the problem of measuring the magnitude of the 
gradient. The index of refraction itself can be found 
from measurements of temperature, pressure, and 
humidity, but in the present state-of-the-art some 
further assumptions are necessary to establish the 
magnitude of the gradient of the index. However, 
the meteorologists may before long be able to 
supply, in addition to such fi eld measurements as 
may be possible, a sufficiently accurate model of 
the actual atmosphere at the time and in the lo­
cality of the observations. In that case, the method 
of reduction may switch to numerical integration of 
the rigorous equations of the ray. Moritz,1 for ex­
ample, proposes a direct solution of the eikonal 
Equation 24.05. In addition, programs are well 
advanced to measure by two-wavelength techniques 
the total effect of refraction over the observed line 
at the time of observation; the theoretical basis of 
these methods also will be examined in this chapter. 

THE LAWS OF REFRACTION 

3. The basic physical law for studying the propa­
gation of light or other electromagnetic waves in a 
refracting medium is known as Fermat's principle 
which states that light , for example. will follow that 
path between two fixed points involving the least 
traveltime t. Moreover. the refractive indexµ, of the 
medium is related to the velocity u of light in the 
medium by the equation 

24.01 µ, = c/v 

1 Moritz (1967), "Application uf the Conformal Theory of 
Refraction," Proceedings of th e International Symposium 
Figure of the Earth and Refraction, Vienna, Austria, .l\Iarch 
14- 17, 1967. 323-334. 
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in which c is the constant velocity of light in a 
vacuum . Accordingly, if ds is an element of length 
along the path, we have 

24.02 µds= (c/v)ds=cdt. 

The optical path length or eikonal is defined as 
(ct) and denoted by S so that we have 

24.03 S=ct= J µds. 

This integral has to be a minimum along the actual 
path, compared with any other path joining two 
fixed terminals. The integral in Equation 24.03 is 
take n along the actual path. 

4. We may also consider a family of light rays 
emitted in all directions from a point source at the 
same instant. After a given time t, the light will 
arrive at a surface known as a geometrical wave 
front; for different values oft, we shall have a family 
of surfaces S =ct= constant. The integral 

will pave the same value over the actual path 
between the source and a given S-surface. 

5. We suppose that the medium is isotropic, but 
not necessarily homogeneous, so that µ is a point 
function, having a definite value at each point of 
the space considered. In that case, we can transform 
the space conformally to a curved space with scale 
factor µ as in § 10-19. Because of the minimum 
principle in Equation 24.03, the rays become geo-
desics of the curved space and S becomes the 
length of any of these geodesics between the source 
and the transform of the S-surface. The geometrical 
wave fronts accordingly transform to geodesic 
parallels, and the rays are normal to the wave fronts 
in both the transformed and untransformed spaces 
because of the conformal properties of the trans­
formation. As in § 10-20, we can say that the basic 
gradient equation 

24.04 

holds true in the untransformed space. In this 
equation, Lr is the unit tangent to a light ray, or the 
unit normal to the wave front. Equation 24.04 is 
fundamental in geometrical optics, and can be 
reconciled with wave theory even though it has been 
derived geometrically. Born and Wolf, for example, 
derive the equation for short wavelengths both 
from the Maxwell equations and from the electro­
magnetic wave equations, and then use the equation 
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to prove Fermat's principle.2 The expression of the 
space in Equation 24.04 by means of a single scalar 
S and the direction of its gradient, which we have 
seen in Chapter 12 can be made the basis of a gen­
eral coordinate system, is equivalent to Fermat's 
principle and to other physical laws based on a simi­
lar minimum or variational principle, simply by 
giving the symbols an appropriate connotation. 

6. Contraction of Equation 24.04 with grsSs=µgrsfs 
gives 

24.05 

This equation is generally known as the eikonal 
equation. 

7. Instead of a point source, we could equally well 
have considered a family of rays perpendicular 
to any given surface, whose transform could initiate 
a family of geodesic parallels in the curved con­
formal space. In either case, the gradient Equation 
24.04 holds true, and we have already developed 
completely the geometry of the rays and of the wave 
fronts in Chapters 12, 13, and 14. To use any of the 
results in these chapters, all we need do is to change 
the notation from (N, n, vr) to (S , µ,Lr). 

8. In particular, Equation 12.020 tells us at once 
that the principal normal to a ray is an S-surface 
vector, the principal curvature of the ray is the arc 
rate of change of (ln µ) in the direction of the princi­
pal normal, and there is no change of On µ) in the 
direction of the binormal. These results agree with 
§ 10- 15. If the principal normal, bi normal , and 
curvature of the ray are mr , nr, x, we have 

On µ)rmr=x 

24.06 On µ)rnr = 0. 

DIFFERENTIAL EQUATION 
OF THE REFRACTED RAY 

9. We can eliminate the scalar S from Equation 
24.04 by covariant differentiation along the ray. 
Using the fact that Srs =Ssr, we have 

(µLr) sfs = Srsfs = Ssrfs = (µl s) rfs = µr+ µlsrfs. 

The last term is zero by Equation 3.19 because 
ls is a unit vector, so that the intrinsic derivative of 
(µLr) along the ray is 

24.07 o(µlr)_ 
~-µr 

2 Born and Wolf (1964), Principles of Optics; Electromagnetic 
Th eory of Propagation, Interference and Diffraction of light, 
2d rev. ed. , l10- l15, 128. 
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in which /.l..r is the gradient of the refractive index. 
This equation is equivalent to either Equation 24.03 
or 24.04. For example, if we expand the intrinsic 
derivative, we have 

(µ..sl 8 )l,.+ µ..lrsl8 = /.l..r· 

This equation contains the same information as 
Equations 24.06, obtained by transforming the basic 
gradient Equation 24.04 which we have seen is 
equivalent to Fermat's principle . 

THE SPHERICALLY SYMMETRICAL 
MEDIUM 

10. An important particular solution of Equa­
tion 24.07 is obtained by considering the variation 
along the ray of the vector product 

Erst (µ..l s)Pt 

in which Pr is the position vector. We have 

o(Erslµ..fspt) . o(µ..fs) 
OS E1sl ~Pt+ Erstµ..fsPtkfk 

24.08 

if we remember that Ptk is the metric tensor go.·. 
The last term is the vector product of two parallel 
vectors and is therefore zero. For the same reason , 
the preceding term also is zero if /.l..s is parallel to 
the position vector, that is, ifµ.. is a function of the 
radius vector r only. But the left side of the equa­
tion is a tensor, all of whose components are now 
shown to be zero. We can say therefore that if 
µ.. is a function of r only, we have 

24.09 o(Erstµ..fspi) 0 
OS 

in Cartesian coordinates. The Christoff el symbols 
are zero, and the equation can be immediately 
integrated along the ray to show that 

24.10 

is constant along the ray where f3 is the angle be­
tween the ray and the radius vector whose length 
is r. The vector qr is a unit vector perpendicular 
to both lr and Pr so that qr is perpendicular to the 
plane- containing lr and pr-which passes through 
the origin. Because qr is a constant vector, this 
plane must remain fixed, and the ray must be a 
plane curve lying wholly within the plane con­
taining the source, the origin, and the initial direc­
tion of the ray. The origin must be the center of 
symmetry for µ.., which could not otherwise be a 
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function of r only; the refra ctive index µ.. can , 
however, be any continuous fun ction of r. Th e con­
stant fL·surf aces are spheres centered on the ori gi n. 
It is clear also from Equation 24.10 that along any 
ray in this medium we have 

24.11 µ..r sin f3 =constant. 

GEOMETRY OF FLAT CURVES 

11. A refracted ray in the actual atmosphe re will 
approximate to a straight line, and is best treated 
as a Taylor expansion from one end. Quantities at 
the other end of the line will be denoted by over­
bars. If F is any continuous, differentiable scalar 
and ifs is the arc length of the ray from the unbarred 
end, then the Taylor expansion is 

F=F+(aF) +i(a
2F) 2+1.(a

3F) 3+ as s 2 as2 s 6 as3 s 

24.12 

If the unit tangent, normal, and binormal of the 
ray are fr, mr, nr, if the curvature and torsion of the 
ray are x, T, and if we use the Frenet Equations 4.06, 
we have 

24.13 

aF/as=Frlr 

a2F/as2 = (Frl,.) sl8 =F,.slrfs+ xF,.mr 

a3F/as3 = Frsrlrfsft + 3xF rsmrfs 

+(ax/as)Frm,. + xFr(rn,.-xl,.). 

These successive differentials are evaluated at the 
unbarred end of the line. 

12. Next, we suppose that F is any one of the 
Cartesian coordinates (x, y , z). All components of 
the tensors Frs. Frsr, etc., are then zero in Car­
tesian coordinates, and are therefore zero in any 
coordinate system. The invariant F,.mr becomes, for 
example Xrm,.=A,.mr, which is the x-component of 
the vector mr. If pr is the position vector, Equations 
24.12 and 24.13 in Cartesian coordinates become 

24.14 

which as a vector equation is true at the unbarred 
point in any coordinates if we consider a parallel to 
pr through the unbarred point. Also, the equation 
is true for any curve which is sufficiently flat 
(x, T small) for the Taylor series to be convergent. 
It should be noted that x, T , (ax/as) and all the 
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vectors except 15r have their values at the unbarred 
point. 

13. The difference of the two position vectors 
15r and pr is the chord vector whose magnitude and 
unit vector will be denoted by (s), kr so that we have 

(j)r - pr)/ S = { ( S) IS} kr 

= /r(l-h2s2) 

+ mr{txs +-!( ax1as)s2} 

24.15 + nr(ixTs2)' 

correct tu a second order in the small quantities 
x, T. Taking the modulus of this last vector equation 
to the same degree of accuracy, we have 

{ (s) Is }2 = l -tx2s2 +tx2s2 = 1- /2x2s2 

24.16 (s )Is= 1- 2\x2s2 

so that the correction to the arc length s to obtain 
the chord length ( s) is 

24.17 

14. The angle o between the chord and the 
principal normal is given by 

hl cos o=h{x+t ax s} 
s as 

24.18 

omitting second derivatives of the curvature, if x3 is 
the curvature at a point one-third the way along the 
ray. Equation 24.17 shows that the factor (s) Is can 
be dropped without affecting the result to a second 
order. The simple "one-third" rule in this subject 
seems to have been introduced first by de Graaff­
Hunter. Equation 24.14 shows clearly that it holds 
true, for both plane and twisted curves, as far as 
the third-order terms in s3 in the Taylor expansion 
along the line; this is the highest degree of accuracy 
we can attain without introducing second derivatives 
of the curvature. The validity of the Taylor expan­
sion depends on the existence of successive deriva­
tives of X· For example, Equation 24.18 would not 
give the correct answer at a point well outside the 
effective atmosphere (x=O; axlas=O) over a line 
extending to the surface of the Earth. 

15. Dufour :i obtains a differe nt formula for the 
angle (-hr - o) between the chord and the tangent 
at the starting point of a plane curve. In our present 
notation, his formula is 

a Dufour (1952). "Etud e Generale de la Correction Angulaire 
Finie (Reduction a la Corde) Pour une Courbe Quelconque 
Tracee sur le Plan ou sur la Sphere," Bulletin Geodesique, 
new se ries, no. 25, 359-374. 
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24.19 -hr-o= (~J {(s )-s} xds. 

The integral is taken over the whole curve from the 
unbarred to the overbarred end, and the chord 
length (s) is considered a constant during the 
integration. It will be shown in § 25-16 that, if F is 
any scalar, the expansion 

24.20 (F-F )=t s(F' + F' )+ /2s 2(F"-F") 

is correct to a fourth order where the superscripts 
refer to successive derivatives of F with respect to 
the arc length s. If we take F as the indefinite 
integral 

(! J { (s )- s } xds 

and substitute in Equation 24.20, Dufour's formula 
becomes 

_217T-0=1-sx+_!_s2{ ax+ x _X.} 2 1 2 as (s) (s) . 

To compare this with Equation 24.18, we shall have 
to introduce the approximations 

- ax 
x=x+as(s) 

coso=t 7T-o 

when Dufour's formula becomes the same as 
Equation 24.18 with the factor (s )Is dropped. The 
approximations involve only terms of the third 
order in s:i. Accordingly, we may say that to a sec­
ond order the two formulas are equivalent, and 
ei ther may be used as more convenient. There is 
no reason to suppose that Dufour's formula is any 
more accurate than the simple "one-third" rule, 
which holds true for twisted as well as plane 
curves. 

16. The angle E between the chord and the bi­
normal is given by 

24.21 { (s)ls} cos E=hTs2 

in which the factor {(s)ls} can be ignored. But 
sx and ST are of the same order as the radian 
measure of the angles swept out in the whole 
course of the ray by the normal and the binormal, 
respectively; in the case of a flat curve, sx and ST 

are small quantities so that o and E must be nearly 
90°. Compared with cos o, which is a first-order 
quantity, cos E is a second-order quantity and can 
often be ignored. 
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ARC-TO-CHORD CORRECTIONS 

17. The basic physical law of refrac tion as ex­
pressed by Equations 24.06 does not direc tl y 
introduce the torsion, which must, nevertheless, 
be express ible in te rms of de rivatives of (ln µ,) and 
in the direc tion of the ray if the law is to be suffici f' nt 
to settle the course of the ray. To inves tigat e thi s 
matter furth e r, we set up a (w, <fl , N) coordinate 
system in which we have N = ln µ, , as we can do if 
the fi eld is to be defin ed uniquely at all points by 
(ln µ,) and it s derivatives. In thi s syste m, the bi­
nurmal n,. to any ray must be an N-s urface vecto r 
to sati sfy Equations 24.06, and is therefore pe r­
pendicular to both the ray fr and to the N-s urface 
normal v'". Any other vector pe rpe ndicular to the 
binormal, such as the principal normal m,. , must 
accordingly lie in the plane off 1' a nd vr. If a, f3 are 
the azimuth and zenith distance of the ra y in this 
coordinate syste m , the azimuth and zenith di s tance 
of the principal normal will be a, f3+ -! 1T; we can 
write the n 

24.22 

fr= A_r sin a sin f3 + µ, 1
• cos a sin f3 

+v,. cos f3 

m,. = A_r sin a cos f3 +µ,,. cos a cos f3 

- v' s in f3 
nr=-;..r cos a+µ,,. sin a 

in which the base vectors A.,.,µ,,., vr have the ir usual 
significance in a (w, <fl, N) coordinat e syste m. 

18. To determine the tors ion of the ray, we con­
trac t the third of the Fre ne t equations in Equations 
4.06 with v,. to obtain 

T= n, .• v''/'~ cosec f3 
=- Vrsnrfs cosec {3 , using Equation 3.20 

= (k2-k1) s in a cos a-t 1(cos2 a-sin2 a) 

+(y1 cos a-y2 sin a) cot f3 

24.23 

in which the parameters have their usual s ign ifi­
cance in a (w, <fl , N) system, and we have subs ti­
tut ed Equations 24.22 , 12.016, 12.046, etc. We may 
note from Equation 12.050 that the first two term s 
in Equation 24.23 are the geodesic torsion pf the 
µ,= cons tant surface in the azimuth of the ray. ln 
the third term, (-y1 cos a+ Y2 sin a) is the com­
ponent -in the direction of the binormal-of the 
vector curvature of the normal to the µ,=con stant 
surface. We can therefore rewrite Equation 24.23 
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in the alt ernati ve form 

24.24 T= t - Vrsn,.v' cot {3. 

T he basic gradient equation of the coordinate 
sys tem is 

24.25 (ln µ, ),.=- qv ,. 

in whi ch q , corres ponding ton in a gerwral (w, <fl, N) 
syste m , is the magnitude of the gradient vector 
(ln µ,), .. We can therefore express the curvature of 
the ray in the form 

24.26 X = On µ,),.m,. = q s in {3· 

Jf we specify the initial direction of the ray, the 
(ln µ, ) field se ttles the initial curvature a nd tor­
s ion of the ray and will e nable us to trace the course 
of the ray throughout. 

19. If we differentiate On µ,),.n" = 0 co variant ly 
along the ray and use the third of the Frenet equa­
ti ons in Equations 4.06, we have 

24.27 

as an alt ernati ve expressio n for the torsion. 

20. If (a), (/3) are the azimuth a nd zen ith dis­
tance of the chord in the (w, <fl , In µ, ) syste m, we 
can combine Equations 24.15 and 24.22 to give 

{(s)/s} sin(a) sin({3) =A sin asinf3 

+ B sin a cos {3- C cos a 

{ (s )/s} cos (a) si n (/3 )=A cos a sin f3 

+ B cos a cos f3 + C s in a 

24.28 { (s )/s} cos (/3 )=A cos {3-B sin f3 

in which 

C=i XTS
2 

24.29 (s )/s = 1- 2
1
4 x2s 2 

where x :1 is the curvature at a point one-thi rd the 
way along the ray. An alternative expression ob­
tain ed from the firs t two e quations of Equations 
24.28 is 

24.30 tan{(a)-a}= 
c 

A sin{3+B cosf3' 

which gives us a direct arc-to-chord correc tion for 
azimuth. If we can neglec t C, there is no azimuth 
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correction, and the arc-to-chord correction fur 
zenith distance would be given by 

24.31 { (s)/s} sin { (/3)-/3} =B. 

Otherwise, we can compute the zenith distance 
correction from the third equation of Equations 
24.28. 

THE GEODETIC MODEL 
ATMOSPHERE 

21. Investigation of the form of the refracted 
ray could be carried without any difficulty to terms 
of higher order on the same lines, but we should 
then be involved with higher differentials of the 
curvature and torsion which we have no hope of 
measuring. Moreover, the (ln µ,) pattern may 
change rapidly with time. For these reasons, we 
require an atmospheric model, which makes as 
few assumptions as possible and leaves room for 
such measurements as we can make, such as 
measurements of temperature, pressure, and 
humidity at the two ends of the line. 

22. One possible assumption is that the model 
atmosphere is in static equilibrium, which might 
be approximately so in settled weather conditions 
during the afternoon. This would mean that the 
isopycnics -or surfaces of equal density-which 
are nearly the same as the surfaces of equal re­
fractive index, are gravitational equipotentials; 
the gradient of (ln µ,) is accordingly in the direc­
tion of the astronomical nadir. In that case, v,. 
in Equation 24.25 is the unit normal to tlw equi­
potential surfaces; the torsion of the ray can be 
calculated from Equation 24.24, which now con­
tains nothing but gravitational parameters and 
the astronomical azimuth and zenith di stance of 
the ray. Equations 24.28 and 24.29 give arc-to­
chord corrections as corrections to the observed 
astronomical azimuth and zenith distance of the ray, 
provided that we also assume or can measure q, 
the magnitude of the gradient of (In µ,), for sub­
stitution in Equation 24.26. 

23. However, the present state of measureme nt 
of the gravitational parameters and of q hardly 
justifies the use of an exact gravitational model. 
which itself rests on the unreal assumption of static 
equilibrium. We shall accordingly use a simpler 
model in which the isopycnics are h-surfaces 
in the geodetic (w, ¢, h) coordinate system, so 
that the gradient of (In µ,) is everywhere in the 
direction of the geodetic nadir. The normals to the 
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h-surfaces in this system are straight so that the 
zenith directions are unrefracted. We do not as 
yet make any assumptions about the magnitude q 
of the gradient of (ln µ,). The only assumption we 
have made so far relates to the direction of the gra­
dient of (ln µ,), which will not usually differ from an 
exact gravitational model by more than a few mm­
utes of arc. 

ARC-TO-CHORD CORRECTIONS­
GEODETIC MODEL 

24. If the refractive index is to be considered 
constant over the geodetic h-surfaces, then it 
follows from Equation 24.24 that the torsion T of 
the refracted ray is simply the geodesic torsion 
of the h-surface through the point under considera­
tion in the geodetic azimuth a of the ray. From 
Equation 18.19, we have 

24.32 T 
(p - v) sin a cos a 

(p+h) (v+h) 

in which we have written p, v for the principal 
curvatures of the base spheroid in the meridian 
and parallel directions, respectively. We shall 
know, or can infer, the curvature x of the ray from 
measurements to be described later, and we shall 
also know, at least roughly, the lengths of the ray. 
We can therefore compute the quantities A, B, C, 
(s)/s from Equations 24.29. Next, we compute the 
arc-to-chord azimuth correctior.. from Equation 
24.30, using the zenith distance f3 of the ray at the 
end where we are correcting the azimuth. If the 
azimuth correction is significant, we determine 
the zenith distance of the chord from the third 
equation of Equations 24.28. If the azimuth correc­
tion is not significant, and it will seldom be sig­
nificant, we obtain the arc-to-chord zenith distance 
correction from Equation 24.31. Finally, the geo­
metrical arc-to-chord distance correction is obtained 
from Equation 24.17 as 

To the degree of accuracy we are working, this 
last correction should be the same if computed 
from simultaneous observations for the curvature 
at either end of the line; if not, the two corrections 
can be meaned. This is not to say, however, that 
the curvature x is assumed the same at both ends. 

25. The system can be simplified if we make some 
further assumptions. For example, we can assume 
that T can be neglected compared with x; this 
assumption can easily be justified for a whole 
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series of observations by rough computation of T 

from Equation 24.32 co mpared with an average 
value of X· The ray is then a plane curve; th ere 
is no azimuth correction. Equation 24.21 shows 
that the chord is perpendicular to the binormal. 
The arc-to-chord correction for zenith distance /lf3 , 
known as the angle of refractz'.on , is obtained from 
Equation 24.31, dropping the factor (s)/s, as 

24.33 ll{3=!sxa 

where x:~ is the curvature at a point one-third the 
way along the ray. 

26. If we make the furth er assumption that x 
is the same at all points of the ray, then the angle 
of refraction is the same . at both e nds of the ray 
and is given by 

24.34 llf3 =! sx, 

as we should expect, because the ray is now a 
circular arc and sx is the angle in radian measure, 
subtended at the center of the circle by the ray. 
The ratio of x, assumed constant over the ray, to 
a mean curvature of the Earth , expressed as the 
reciprocal of a constant radius R , is defined as the 
coefficient of refraction 4 f so that we have 

24.35 f=xR. 

Howeve r, this notion is merely a matter of nome ncla­
ture and does not introduce any new approximation. 
If x is constant over the ray, so is f Indeed, it is 
frequently assumed that f is a constant for all rays 
at a given time, and even for all rays at all times 
within the afternoon period of minimum refraction. 
For optical wavelengths,/ varies at different times 
and places between about 0.10 and 0.15 ; for micro­
waves, f is more likely to be 0.25 , depending much 
more on the humidity. 

27. If we merely assume that x (or f) is constant 
along a particular line and that simultaneous meas­
urements are made of zenith distances {3 , i3, then 
Equation 25.39 shows that, to a fourth order, the 
error in height difference arising from refraction is 

/ 2 s:!x(sin/3-sinf3) ~ /2saxcosf3(ksinf3+x) 

24.36 

where k is the normal curvature of the h-surface 
in the azimuth of the line, and we have anticipated 

4 In the literature of surveying, the coefficient of refraction is 
usually denoted by k, which in this book is mainly used for the 
normal curvature of a surface. Sometimes the coe ffi cie nt is 
defined as taR. 
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fro m Equations 24.40 that 

24.37 df3/ds= (k sin f3+x ). 

For most rays between terrestrial stations, /3 is 
nearly 90° and the effect of refraction in Equation 
24.36 can be entirely neglected. In fact , the assump­
tion of uniform curvature, combined with simul­
taneous reciprocal measurement of zenith distances 
at the two e nds of the line, provides surprisingly 
accurat e results, especially during the afternoon 
period of minimum refraction. We can, moreover, 
use the rec iprocal observat ions of f3 and i3 to 
determine x (or/). We have 

/3-{3~s(df3/ds) =s(ksinf3+x ). 

If we assume that f3 is nearly 90° and write k = - 1/ R 
where R 1s a mean radius of the Earth , we have 

i3-f3 = (s /R) (f-l) 

24.38 f= 1 + (R/s) (i3-f3 ) 

in which i3, f3 are, of course, in radian measure. 
The sum of the measured vertical angles at the two 
ends of the line (elevations posi tive) equal s (i3- {3). 

28. For the methods of adjustment to be de­
scribed in later c hapters, only arc- to-chord correc­
tion s (as described in this c hapter) s hould be 
applied, toget her with the veloc it y correction in 
elec tronic di stance measurement (considered in 
the following section). We do not require any other 
corrections, such as "reductions to sea level" or 
to any supposed equiv ale nt curve on the base 
spheroid. 

VELOCITY CORRECTION 

29. All e lectro nic distance measureme nt sys­
tem s in curren t use measure the time taken by 
either light waves or microwaves to trave l in air 
over the distance to be measured and back. If t is 
one-half this measured time, then we have from 
Equation 24.03 

ct= J: µd s 

in which c is the constant ve loci ty of propagation in 
a vacuum and the integral is taken over the ac tual 
path from the e mitting point P to the distant 
point P. 

30. If we return to Equation 24.20 and substi­
tute for F the indefinit e integral 

J µd s, 
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then (F- F) is the definite integral 

J:JLdS . 

Also, we have F' = jL , F' = JL and 

F" = a IL = JL{ln JL )rl r = JL{ln JL )rv,. cos /3 as 
= - JL(ln JL )rm 1• cot f3 = - JLX cot f3 

in which we have used Equations 24.22 and 24.06 
and the fact that there is no change in the refrac­
tive index in the 'A'"- and /Lr-directions, which lie 
in the constant h-surface and therefore in the con­
stant JL-surface of the geodetic model. In the last 
equation, f3 is the geodetic zenith distance of the 
refracted ray and x is the curvature of the ray. We 
have finally 

24.39 ct =ts(µ, + JL )+ / 2 s2 (P,X_ cot "13- JLX cot f3 ). 

This equation is very easily solved for s from a pre­
liminary value, obtained by dividing ct by the mean 
index. The preliminary value is then used to eval­
uate the second-order term, which under various 
disguises is usually known as the "second velocity 
correction" or as the "velocity compone nt of the 
curvature correction. " 

31. For example, we have 

COS {3 = Vrfr 

- sin {3(d{3/ ds )= Vrsfrfs+ Vrl~fs 

24.40 =-k sin2 {3 -x sin/3 

in which k is the normal curvature of the h-surface, 
so that to a first order, we have 

(cot [3- cot f3) =- s cosec2 f3 (d/3/ ds) 

=- s (k co sec f3 + x cosec2 {3). 

If, in evaluating this small correction, we consider 
that we have JL = fl= 1 and that xis constant along 
the line, then the velocity correction, considered 
as an additive correction to the preliminary value 
of s, is 

/ 2 s3 X (k co sec /3 + X cosec2 /3). 

If there is no considerable difference in height 
over the line, cosec f3 is nearly unity; if we confuse 
- 1/ k with a mean radius R of the Earth and write 
J = xR for the coeffici ent of refraction, the cor­
rection becomes finally 

24.41 
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which is the form given by Saastamoinen 5 or 
Hopcke.6 The correction can further be combined 
with the geometrical curvature correction (Equa­
tion 24.1 7) as 

24.41A 

Saastamoinen 7 combines this result with a further 
chord correction to sea level, which we do not 
require. 

32. In microwave measurements, It Is usual to 
assume J = 0.25. For precise Geodimeter measure­
ments, Saastamoinen recommends evaluating the 
coefficient of refraction by Equations 24.38 from 
reciprocal zenith distances or from vertical angles 
measured at the same time as the Geodimeter 
observations. But if any such special measurements 
are to be made, the reciprocal zenith distances 
{3, 180° -/3 can enter the precise Equation 24.39 
without any of the mass assumptions made in 
deriving Equations 24.40 or 24.41. For substitution 
in the precise formula, JL and jL will be known from 
temperature and pressure measurements at the 
two ends. The end curvatures are obtained by differ­
entiation, as we shall see, and will depend on lapse 
rates of temperature and humidity. 

THE EQUATION OF STATE 

33. We have next to consider how the refrac­
tive index and its gradient may be measured or 
otherwise determined in order that the curvature 
of the ray may be deduced and substituted in 
formulas for the arc-to-chord and velocity correc­
tions. This is always necessary in the case of 
electronic distance measurements, and may be 
necessary in the case of zenith distance measure­
ments when there is a considerable difference in 
height over the line and the assumption of con­
stant curvature no longer holds. For this purpose, 
we shall require certain physical laws affecting 
the behavior of gases; these laws are collected 
here for easy reference. 

34. At low pressures p and high temperatures Ton 
the Kelvin (°K.) or absolute scale, p and T are 
related to the density p of a gas by the perfect, 

5 Saastamoinen (1964), "Curvature Correction in Electronic 
Distance Measurements," Bulletin Geodesique, new series, 
no. 73, 265- 269. 

6 Hopcke (1964), Ober die Bahnkriimmung Elektromagnetischer 
Wellen und Iluen Einfluss auf die Streckenmessungen," 
Zeitschrift fiir Vermessungswesen, no. 89, 183-200. 

7 Saastamoinen, Loe. cit. supra note 5. 
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or idea] , gas law as 

24.42 p= cpT 

in which c IS a constant for a particular gas. 

35. Another required physical law, which is 
very nearly in agreement with the latest ideas on 
the s ubj ect if µ, is .nearly unity , is that the refrac­
tivit y, define d as (µ,-1) , is proportional to the 
density p of the medium for a particular wavelength 
of radiation so that we have 

24.43 (µ,- 1)/ p = constant, 

although the value of the "constant" will depend 
to some extent on the wavelength, as we shall see 
later. 

36. Because of the difficulty of measuring den­
Sities in the fi e ld, we n eed to replace p by other 
quantities, such as the pressure and temperature, 
which can more easily be measured. If there is 
to be no vertical movement of the atmosphere, 
and this, of course, is an assumption, then the 
change in pressure (dp) between the top and bot­
tom of a column of air of unit cross-sectional area 
must equal the weight of air in the column so that 
we have 

24.44 dp=-pgdh 

in which dh IS the height of the column and g is 
gravity. 

Equations for Moist Air 

37. We shall see later that dry air behaves very 
nearly as a perfect gas, whose equation of stat e 
is Equation 24.42, in which the gas constant IS 

24.45 c= 2.8704 X 106c.g. s. units. 8 

If we suppose that moist air also behaves as a per­
fect gas and that both dry and moist air obey 
Dalton's law of partial pressures, then the equation 
of state for moist air H is 

24.46 p = (\-::~E) cpT 

in which p , T, p are the pressure , absolute te m­
perature, and density of the moist air, and where 

c is the gas constant for dry air, 
E=0.62197 is the ratio 10 of the molecular weight 

of water vapor to that of dry air, and 

8 Smithsonian Institution (1951), Smithsonian Meteorological 
Tables, 6th rev. ed., 280. 

fl Ibid., 295. 
10 Ibid., 332. 
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r is the m1xmg ratio (gra ms of water vapor per 
gram of dry air). 

38. In terms of the vapor pressure 11 e, we have 

e r 
p= r+E: 

Equation 24.46, after we eliminate r, becomes 

24.47 
cpT cpT 

p 
1- 0.37803(e/ p) 1- (1-E)( e/p) 

39. If it is necessary to consider departures of 
moist air, and of the dry air in a mixture, from a 
perfect gas, the Smithsonian Meteorologica l Tables 12 

provide the necessary modifications to the formulas 
and tables, but this refin ement is not necessary in 
current geodetic practice. 

Integration of Equation of State 

40. Combining Equations 24.44 and 24.47, we 
have 

24.48 
dp 

p 

{ 1- 0.37803 (e/p) }gdh 

cT 

which gives, on approximate integration between 
limits denoted by subscript s 1 to 2, 

ln ~)=;;111 {l-0.37803(e/p)111}(h2 - h 1 ) 

24.49 

where the subscript m refers to a mean value over 
the interval. For routine use, the natural logarithm 
is converted to base 10 by means of the relation 

log10 ~J = 0.43429 ln ~J 

41. Equation 24.49 is usually known as the hyp­
sometric formula, which is normally used to obtain 
a difference in height from simultaneous m easure­
m ents of p , e, and T at the two ends of a line and 
by substitution of a mean of the two end values 
for (e/p)111 and T111. Mean gravity g111 is obtained 
sufficiently and accurately by application of the 
free-air he ight correction to the international 
gravity formula at an initially estimated half way 
point. Saastamoinen 13 proposes the use of the 

11 lbid., 347. 
12 Ibid., 295-317. 
13 Saastamoinen (1965), "On the Determination of the Refrac­

tive Index of Electromagnetic Waves in Mountainous Terrain ," 
Survey R eview, no. 135, 11-13. 
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hypsometric formu la to obtain, from a large known 
difference of height in mountainous co untry, a value 
of Tm, which he claims is better than the mean of 
measured temperatures at the two ends. This value 
of Tm is used to obtain a mean value of the index of 
refraction over the line from Equations 24.54 and 
24.57 for use in the reduction of precise Geodimeter 
measurements. In the case of optical wavelengths, 
uncertainty in e and { e/ p) m is of little importance. 

42. An alternative integral of Equation 24.48 in 
terms of the temperature lapse rate 

l =-dT/dh 

is frequently useful in the form 

~) ~ (~) lni;j; ={l-0.37803{e/p) 111} clmln Ti· 

24.50 

A knowledge of the actual mean lapse rate is of 
particular importance in the case of lines covering 
a considerable difference in altitude, and thus a 
considerable range of temperature and pressure. 1-1 

This formula should give a better answer than 

even when the difference in height lz is accurately 
known. 

INDEX OF REFRACTION-OPTICAL 
WAVELENGTHS 

43. The refractivity for a gas, defined as (µ - 1), 
depends not only on the density and composition 
of the gas, but also on the wavelength of the light. 
The dependence on the wavelength 'A is expressed 
by an experimentally determined dispersion for­
mula, which is naturally subject to continual 
minor improvements, such as those rece ntly sum­
marized by Edlen. 15 The formula adopted by the 
International Association of Geodesy in 1960 
is in the Cauchy form of 

(µs - 1) X 107 = 2876. 04 + 16. 288A. - :! + 0.136A. - -1 

24.51 

in which A. is the wavelength in microns (10- 6 

meters) of monochromatic light in a vacuum. 
The constants in the formula are due to Barrell and 

14 See, for example, Rai nsford (1955). "Trigo nometric Heights 
and Refrac tion," Empire Survey Review, no. 98. 164--177. 

15 Edlen (1966), "The Refrac tive Index of Air,'' Metrologia, 
v. 2, 71-80. 
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Sears .16 The formula applies to "standard air" at 
a temperature of 0 °C., with a pressure of 760 mm., 
Hg., and with a carbon dioxide content of 0.03 per­
cent. More recent determinations , which are usu­
ally expressed in terms of the wave number (de­
fined as the reciprocal of the wavelength in microns) 
and in a different form, suggest that the Barrell 
and Sears result is correct to better than one part 
in 107. 

44. The Barrell and Sears formula gives the re­
fractivity in terms of the wavelength of monochro­
matic light. However , the measurement of dis­
tances in such instruments as the Geodimeter 
implies the use of a group of waves of slightly 
different wavelengths, which have slightly differ­
ent velocities of propagation in a refracting medium. 
In such cases, it is appropriate to use a group 
velocity, compounded from the individual waves, 
or, what is equivalent, a group index of refraction 
given by the formula 17 

24.52 (
dµ s) µr;= µ s- di: A 

so that we have 

(µr;- 1) X 107=2876.04+ {3X 16.288)A.- 2 

24.53 + (5 x 0.136)A_- -I 

from Equation 24.51. This formula should be used 
in preference to Equation 24.51 , even for lasers 
in a refracting medium. If a true monochromatic 
source ever becomes available , the formula should 
still be used if the light is modulated. 

45. Measure ments are not , of course, made in a 
"standard atmosphere," and we have to allow for 
the effec t of different temperatures and pressures 
and for a different composition of the air, particu­
larly the inclusion of water vapor. The formula 18 

16 Barrell and Sears (1939), "The Refraction and Dispersion of 
Air for the Visible Spectrum ," Philosophical Transactions of 
th e Royal Society of London, Series A, v. 238, 1-64. The con­
stant s in the international formula, Equation 24.51, have been 
derived by substituting t = 0°C. and p = 760 mm. , in Barrell and 
Sears' Equation (7.7), 52. 

11 See Born and Wolf, op. cit. supra note 2, 19-21. 
18 International Association of Geodesy (1963). Report of I.A .G. 

Special Study Group No . 19 on Electronic Distance Measurement 
1960- 1963 , 2-3 . This is the second report of the SSG19; the 
first report, delivered at the 1960 Xllth General Assembly in 
Helsinki , Finland, has been incorporated in the proceedings of 
that Assembly (Secretariat of the International Association of 
Geodesy (1962), Travaux de !'Association Internationale de 
Geodesie, Tome 21, 62-64). The finally adopted formulas are 
given in Resolution 9 of the 1963 Xlllth General Assembly in 
Berkeley. Calif. (see Secretary General of the International 
Union of Geodesy and Geophysics (1965). Comptes R endus de 
la Xll/e Assemblee Generates de l'U.G.G.l. , 159- 160). 
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adopted by the International Association of Geodesy 
in 1960 is a slightly simplified version of a formula 
due to Barrell and Sears 19 and is 

24.54 (µ,- 1) 

where 

(µ,r;-1) ( P) 
(1 +at) 760 

55 x l0- !1e 

(1 +at) 

µ,=ac tual refractive index, 
µ,r; = group refractive index calculat ed from 

Equation 24.53, 
t=te mperature of the air in °C., 
p= total atmospheri c pressure in mm. , Hg. , 
e =partial pressure of water vapor content in 

mm., Hg., 
a= temperature coeffi cient of refractivity of air 

(or the coefficient of thermal expansion). 
(0.003661). 

46. The full 1938 Barrell and Sears formula 
in the notation and unit s of the International 
Association of Geodesy formula, Equations 24.51 
and 24.54, is 

(µ,-1)10 6 = [ 0.378125+0.0021414.\- 2 

+ 0.00001793.\- 4 ] 

p{ 1 + ( 1.049-0.0157t )p X 10- 6} 

X (1 +at) 

24.55 - [0.0624-0.000680.\- 2
] X (1: at). 

Barrell and Sears themselves suggest simpli­
ficati on of the vapor pressure (last) term to the 
form given in the international formula, except 
that their recommended value of the constant 
is 55.6 instead of 55. The constants in the disper­
sion formula-the content of the first bracket s ­
become the same as in the international formula 
for p= 760mm., t= 0, and e= 0. After making this 
adjustment, the international formula drops the 
term (l.049-0.0157t)p X 10- 6 , which indicates a 
slight departure of dry air from the ideal gas law 
Equation 24.42. Dry air in the international for­
mula , as thus modified, obeys the ideal gas law, 
provided Equation 24.43 takes the form 

(µ, - 1) ~ c(µ,c -1) 

p 760a ' 24.56 

which, together with Equation 24.53, exhibits 
the dependence on the wavelength of the "con­
stant" in Equation 24.43. In deriving this result , 
we have used the fact that 

24.57 (1 +at)=aT 

19 Barrell and Sears, op. cit. supra note 16, Equation (7. 7), 52. 
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where T is in °K. According to the latest determi­
nation , 0 K. equal °C. plus 273.16, whi ch exactly 
fit this last formula if a = 0.003661. Equation 24.57 
can be said to defi ne the Kelvin scale. 

INDEX OF REFRACTION -
MICROWAVES 

47. Although a number of slightly simpler for­
mulas have been extensively used for the refrac­
tion of radio waves e mployed in such instruments 
as the Tellurometer, the formula adopted by the 
International Association of Geodesy in 1960 is 
due to Essen and Froome20 and is 

103 49 86.26 ( 5748) 
(µ, - 1) x 106=-T-· - (p-e) + - T- 1 +---y- e 

24.58 

where 
T = temperature in °K. (0 C. plus 273.16) , 
p = atmospheric pressure in mm., Hg. , 
e= partial pressure of water vapor in mm. , Hg. 

48. In place of the first term on the right, the 
original Essen and Froome formula contains the 
two terms 

103.49 177.4 
- T-p1+-T-p2 

in which p 1 , Jh are, respectively, the partial pres­
sures of dry air and carbon dioxide, so that the 
international formula assumes no carbo n d ioxide 
co ntent. In view of the very small proportion of car­
bon dioxide generally prese nt in the at mosphere, 
Essen and Froome the mselves co nsider that the 
effect can be neglected. We can therefore make p~ 
zero , and subs titute (p - e) for Pi if p is the total 
me asured pressure . 

49. Interestin gly, the first term in the Essen and 
Froo me formula is s imply an expression of the ideal 
gas law for dry air, if the density is assumed to be 
proportional to (µ,- 1) and if the electrically deter­
mined experime ntal value of 288.15 X IQ- 6 is sub­
stituted for (µ,- 1) at 0° C., wi th a pressure of one 
atmosphere. The formula also re fl ec ts the fac t that 
water vapor behaves as an ideal gas at any one tem­
perature. The effect of water vapor on the refraction 
of microwaves is much greater than on thf' refraction 

20 Essen and Froome (1951), " The Refractive Indices and Di­
electric Constants of Air and its Principal Constituents at 24,000 
Mc/s," Proceedings of the Ph ysical Society of London, Series 
B, v. 64, 862- 875. 
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of optical waves, and the vapor pressure needs to 
be measured about as accurately as the total 
pressure. 

50. Although short by radio standards , the micro­
waves in common use for distance measurement are 
much longer than optical wavelengths. The effect 
of different wavelengths in a dispersion formula, 
which, on theoretical grounds, could not differ much 
from Equation 24.51, would be very small: there is 
no sensible effect of group velocity. It is interesting 
to note that the dispersion Equation 24.51 for a 
wavelength of 1.25 cm., which is too long to have any 
appreciable effect, gives (µ,-1) =0.00028760 for 
standard air. The experimentally determined figure 
of Essen and Froome is 0.00028815. Essen and 
Froome performed their measurements at a fre­
quency of 24,000 Mc/s. [MHzJ (wavelength 1.25 cm.), 
and they estimated that their results held true for 
all wavelengths above 7 mm. 

MEASUREMENT OF REFRACTIVE 
INDEX 

51. Determination of µ, from Equation 24.54 or 
24.58 depends on measurements of temperature, 
pressure, and humidity , which can normally be 
made only at the two ends of the line. Sufficiently 
accurate measures of pressure and humidity can be 
made without difficulty, even if this is not always 
done in current practice. Humidity is usually ob­
tained from wet-and-dry-bulb temperatures, from 
which the vapor pressure can be derived from for­
mulas and tables given in the Smithsonian Meteoro­
logical Tables. 21 Sometimes data may be in the form 
of relative humidity, considered equal to 

lOOe/eu' 

where ew is the saturation vapor pressure over water 
at the dry-bulb temperature. 22 

52. The accurate measurement of air tempera­
ture requires fairly elaborate precautions 23 which 
are not always employed. Angus-Leppan 2 ~ has 
found that radiation intensity, as measured by 
"black-bulb" thermometers placed on the ground 
at the observing station, is a more reliable indicator 

21 Smithsonian1 In stitution, op. cit. supra note 8, 365- 369. 
22 lbid., 350-359. 
23 See Angus-Leppan (1961), "A Study of Refraction in the 

Lower Atmosphere," Empire Survey Review, no. 120, 62-69; 
no. 121. l 07- 119; and no. 122, 166- 177. In addition to experi­
mental results , these three papers provide a useful summary of 
the subj ect. 

2{ Ibid. 
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of refraction than air temperature measured by 
ordinary thermometers: but more work is required 
before the appropriate modifications can be made to 

· Equations 24.54 and 24.58, which in their present 
form require the actual air temperature. 

CURVATURE 

53. The curvature of the ray is found by simply 
differentiating Equation 24.54 or 24.58 and using 
Equation 24.26. For example, if we differentiate 
Equation 24.54 with respect to geodetic height h in 
the geodetic model atmosphere, we have 

sin f3 dµ, x=----
µ, dh 

sin f3 [ dt µ,c;-1 dp 
µ,(l +at) (µ,-l)a dh -~ dh 

24.59 + 55 X 10 - 11 de] 
dh ' 

with a similar equation for microwaves from Equa­
tion 24.58. We can substitute 

24.60 

from Equations 24.44 and 24.42 on the assumption 
that the moist air behaves as a perfect gas. The 
determination of curvature then depends on a knowl­
edge of the lapse rates -dt/dh, -de/dh, which we 
shall consider more fully in the next section. 

Approximate Formula - Optical Waves 

54. An approximate formula for curvature of 
optical paths, based on the assumption that we have 
e = 0, is often used. In that case, Equations 24.59 
and 24.60 reduce to 

24.61 x (µ,-1) sin f3 [dT +tI.] 
µ,T dh c 

in which T is the absolute temperature; here, 
we have used Equations 24.57 and 24.54 for e=O. 
In most cases, we shall already have computed µ,, 
and there will be no need to introduce any more 
approximations. Bomford 25 derives a formula in 
this form without using the international Equation 
24.54 forµ,. However, we have seen in § 24-46 that 
the internati"onal formula for e = 0 is simply an 
expression with appropriate constants of the perfect 

25 Bomford (1962), Geodesy, 2d ed., 212. 
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gas law, which Bomford does use, so that Bomford's 
result must be equivalent to Equation 24.61 with 
some further assumptions. We can combine Equa­
tions 24.61 and 24.54 for e = 0 as 

24.62 X 
(µ,r; - 1) sin f3 ]!__ [dT ~] 

760µ,a T2 dh + c ' 

which should be equivalent to Bomford's 

24.63 p [dT ] x= 16.5 T2 dh +0.0334 

where pis in millibars, Tis in °K., his in meters, and 
x is in seconds per meter. To reconcile the two 
formulas, we can use the definition 

1 millibar=0.750062 mm., Hg. (standard).~6 

Bomford makes the additional assumption that 
f3 = 90° and also makes reasonable assumptions for 
µ,(; , µ, , and g. Such assumptions are not necessary 
if we use Equation 24.61 in which c is the gas con­
stant for dry air (2.8704 X 106 in c .g.s. units). We 
can use any realistic value for g, such as the inter­
national formula with a free-air height correction. 

55. The question arises whether neglect of 
humidity in these approximate formulas is justified 
or whether it has been too readily assumed that , 
because humidity has little effect on the refractive 
index for optical waves, the effec t is equally small 
on the curvature-that is, on the first differential 
of the index. As an example, we take e as the satura­
tion vapor pressure over water at 15° C., which is 
about 13 mm. , Hg.; p is 760 mm. , Hg.; and (/-lr; - 1) 
is 0.00028. The humidity term in Equation 24.54 is 
then about 0.25 percent of the pressure term and 
can certainly be neglected. For substitution in the 
curvature Equation 24.59, we calculate de/dh from 
Equation 24.64 as - 1/210 mm. of pressure per 
meter of height. The omitted humidity term within 
the brackets of Equation 24.61 is then 

55 x 10- 9 760T 
210 x 0.00028p' 

which is about (-0.25 X 10- 3) 0 K. per meter. If 
the temperature lapse rate is 0.0055 °K. per met er 
which is an average figure, the omitted humidit; 
term is accordingly equivalent to an error of about 
5 percent in the temperature lapse rate. At present , 
we are unlikely to know the lapse rate within 5 per­
cent, but humidity may become more significant 
in the future. 

26 Smithsonian Institution, op. cit. supra note 8. 13. 
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LAPSE RATES 

56. We have seen that the curvature and thus 
the arc-to-chord and velocity corrections depend 
on the vertical gradients of temperature and vapor 
pressure. Sufficiently representative values of these 
quantities cannot at present be obtained by direct 
measure ment near the ground. We shall now fill 
in the present s tat e of our knowledge of these 
quantities . 

Humiftity 

57. All that seems to be known at present about 
the lapse rate of vapor pressure (- de/dh) is an 
e mpirical formula by Hann,27 determined in 1915 as 

e/eo = 10- h/6300 

where e is the vapor pressure at a height of h­
meters above sea level and eo is the vapor pressure 
a t sea level. Differen tiating logarithmically, we have 

24.64 
de 
dh 

Temperature 

e 

6300 x 0. 43429 

58. Some idea of the possible values of the tern· 
perature lapse rate can be obtained from Equation 
24.63. If we have dT/dh=-0.0334 °C. per meter, 
then the ray is straight. If dT/dh has an even crreater 

• b 

negative value than that figure, the ray will curve 
upward; we know from the common observation of 
mirage conditions, which do not by any means occur 
only in deserts, that this condition is possible close 
to superheated ground. Also, we know that tempera­
ture inversions are frequent, especially on clear 
nights, and, in that case, dT/dh would be positive 
and the ray would be very strongly curved. We can­
not expect to obtain accurate results by assuming 
that dT/dh is constant at all times and at all places. 
Accordingly, we shall cons ider first whether the 
lapse rate can be assumed constant at certain times 
such as the afternoon period of minimum refraction: 

The Adiabatic Lapse Rate 

59. Much consideration has been given to the 
lapse rate associated with the adiabatic expans ion 
of air.28 The theory assumes that a given volume of 

21 Ibid. , 204. 
28 For example , de Graaff-Hunter (1913), "Formulae for Atmos· 

pheric Refraction and Their Application to Terrestrial Refraction 
and Geodesy," Suroey of India Professional Paper No. 14, 1-1 14. 
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air 1s heated mainly by radiation from the ground, 
not by direct solar radiation, and then rises, without 
acquiring or losing any more heat, to an equilibrium 
height where its temperature is settled by the out­
side pressure. We may expect the process to be 
complete duri ng the afternoon, that is, around the 
period of observed minimum refraction. 

60. Absolute temperature ( T) and pressure (p) 
in an adiabatic expansion of dry air are re lated to 
some initial temperature (To) and pressure (po) by 
the equation 29 

24.65 To/T= (pof P ) 0 

where () is the ratio of the gas constant for dry air to 
the specific heat of dry air at constant pressure. We 
can take () as 2/7. If we differentiate this equation 
logarithmically with respect to height and use Equa­
tions 24.44 and 24.42, we have 

1 dT _ 2 1 dp _ 2 1 g r dh --r; dh -- -ry--;; 
so that the adiabatic lapse rate, in a very suitable 
form for substitution in Equation 24.61, is given by 

dT _ 2 g 
dh -- 1 --;;· 

Using the value for g/c in Equation 24.63, the lapse 
rate (-dT/dh) is very nearly 0.01° C . per meter. 
Unfortunately, this is almost double what is usually 
found during the period of minimum refraction from 
reciprocal vertical angle measurements. The reason 
for this condition may be that there is some delay in 
reaching adiabatic equilibrium, if indeed it is ever 
reached. Also, the adiabatic assumption may be 
invalidated by acquisition of latent heat through 
condensation. Whatever the reason, this value of 
the lapse rate is no longer used. 

Other Constant Lapse Rates 

61. Either of the two standard atmospheres in 
common use 30 employs a lapse rate of 0.0065° C. 
per meter, which seems too high to fit geodetic 
observations at minimum refraction. For such pur­
poses, a rate of 0.0055° C. is usually assumed, but 
there are considerable departures from this figure 
at different seasons and heights, especially near 
the ground. Attempts to measure the local lapse 
rate at a ground station by taking temperatures 
over a known height difference have seldom given 

29 Smithson ian Institution , op. cit. supra note 8, 308. 
30 Ibid., 265- 268. 
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satisfactory results, partly because of the difficulty 
of accurately measuring the small difference of 
air temperatures without elaborate precautions 
and partly because such local measurements would 
not be sufficiently representative of the air actually 
traversed by the ray. 

Rece nt Work 

62. Because the assumption of a constant tem­
perature lapse rate appears too drastic , even at 
restricted times , various attempts have been made 
to find formulas, other than the simple adiabatic 
formula, for the variation of temperature with height 
(h) and time (t). One such formula,31 based on eddy 
conductivity K of the atmosphere, is 

T = T0 -lh + Ae- bh sin (qt-bh) 

b2 =q/(2K) 

in which l is a mean lapse rate and e- bh is an ex­
ponential damping factor. Other formulas contain­
ing more harmonics have been proposed on much 
the same basis. Unfortunately, the eddy con­
ductivity K, which was expected to be constant, 
is known now to be even more erratic than the 
lapse rate. 

63. More recently, Levallois and de Masson 
d'Autume 32 have proposed a formula in the form 

T= To- lh + e-bhf(t-h/V) + <f>(t) 

in which Vis a velocity of upward transfer of heat; 
these geodesists obtained the form of the periodic 
functions and the constants from large numbers 
of meteorological observations covering a consid­
erable range of altitude and time. 

64. Angus-Leppan 33 finds that formulas of the 
same type fit the observations within a restricted 
range of heights in other localities, but the con­
stants vary considerably with locality; the practical 
use of the method seems to be restricted until more 
work has been done in a particular area. 

65. Meanwhile, the more developed meteor­
ological services could no doubt provide a reason­
able estimate of lapse rate at given heights and 
times within a particular locality-for example, by 

3 1 Sutton (1949), Atmospheric Turbulence, 1st ed., 33, 40. 
32 Levallois and de Masson d'Autume (1953), "Etude sur la 

Refraction Geodesique et le Nivellement Barometrique," 
lnstitut Geographique National, 1- 112. 

33 Angus-Leppan, loc. cit. supra note 23. 
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interpolation from radiosonde records - particularly 
where the observed rays cover a considerable range 
in height; undoubtedly, such facilities will increase. 
For rays between points at about the same height , 
it is very doubtful if our present knowledge has 
progressed much beyond the simple assumption 
of constant curvature over the path, and the deter­
mination of that curvature from rec iprocal vertical 
angles. The lapse rate, used in conjunc tion with 
Equation 24.61, is mainly required for rays covering 
a considerable difference of height when the 
assumption of constant curvature is no longer valid; 
but for that purpose, we require representative 
values of the lapse rate at the two ends of the ray. 
If this information is not available, then the simple 
assumption of constant curvature would have to 
be made also in this case. 

ASTRONOMICAL REFRACTION 

66. W e have so far considered terrestrial ob­
servations where measurement s of temperature, 
pressure, and humidity can be made at the ends 
of the line and used to sample the actual refractive 
index. The gradient of the index, necessary to 
establish the curvature of the ray, cannot in the 
present state-of-the-art be directly measured, and 
we have to re ly on more-or-less plausible atmos­
pherical models to provide the necessary lapse 
rates. In the case of observations to stars or satel­
lites, the ray passes through the effective atmos­
phere, and it becomes necessary to develop a more 
complete atmospheric model based on measure­
ments at one end only of the ray. 

67. In all investigations of astronomical re­
fraction so far made, a spherically symmetrical 
model is assumed leading to Equation 24.11; the 
various investigations which have been made differ 
only in the assumed radial variation of the index 
of refraction, or of density, or of temperature, and 
in the methods used for the further integration of 
Equation 24.11. A good historical summary is given 
by Newcomb.34 The latest investigation, using a 
discontinuous radial variation of temperature in 
line with modern meteorology, is due to Garfinkel,35 

but even so the values of the atmospheric param-

34 Newcomb (Dover ed. of 1960), A Compendium of Spherical 
Astronomy With its Applications to the Determination and Re­
duction of Positions of the Fixed Stars, original ed. of 1906, 
173-224. 

35 Garfinkel (1944), "An Investigation in the Theory of As­
tronomical Refraction," The Astronomical Journal, v. 50, 169--179. 
Also, Garfinkel (1967), "Astronomical Refraction in a Polytropic 
Atmosphere," The Astronomical Journal , v. 72, 235-254. 
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e te rs are s ubject to continual revision as more data 
become available. 

68. In the spherically symmetrical case. we 
have from Equation 24.11 

J.Loro s in /30 
µ,r 24.66 sin f3 

where f3 is the angle bttwee n the ray and the radius 
vector, and the zero subscripts refer to the ground 
station. Because the gradient of On µ,) is radial and 
because the ray is a plane curve, the c urvature is 

24.67 

we have the variation of refraction along the ray as 

24.68 a(ln µ,)/a s=(ln µ,),./,. =- {'V (ln µ,)} 112 cos /3 . 

The total angle of refrac tion is 

J J (a(ln µ,)) xds = - tan /3 _a_s_ ds 

24.69 J
I {( µ,r )2 }-1/2 

= - µo µ,oro sin /30 - l d(ln µ, ) 

on subst itution of the last three equations. In the 
case of astronomical refraction , the limits of inte­
gra tion are between the ground s tation and the end 
of the effective atmosphere, that is , be tween µ,o 
and 1. The assumed model atmosphere gives µ, as 
a fun ction of r, directly or indirectly, and the final 
inte gration can always be carried out numerically 
no matter how complicated the model. 

69. An important case arises in sate llit e tri­
a ngulation when the satellite (S in fig. 27) is photo­
graphed against a background of s tars. The apparent 
direction of the satellite from the ground s ta tion 
P is PS'. If the satellit e is outside the e ffective 
atmosphere, the outward continuation ST' of the 
ray to the satellite is straight , and a parallel PT to 
ST' gives the total astronomical refraction as S' PT. 
To simplify the argume nt, we can assume that T' 
is a s tar whose true direction is PT. If the sate llite 
is assumed to have the same direc tion as the s tar, 
its true position would lie on PT, whereas in fact, 
the true position is at S. Accordingly , the zenith 
distance of the satellite, as calculated from the true 
position of the background star T', must be cor­
rec ted by the angle er. 

70. If we assume that the satellite is at the e f­
fective limit of the atmosphere so that SP is c urved 
and ST' is s traight , then Equation 24.33 a pplies, 
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T' 

p 

Figure 27. 

and we have 

24.70 

where X2 is the curvature of the ray at two-thirds 
the way along PS. The total atmospheric refrac­
tion is 

24.71 

where Xi is the curvature of the ray at one-third 
the way along PS at which point the air is much 
denser. The correction angle <r is accordingly much 
less than the astronomical refraction. We can 
obtain <r direct from Equation 24.70, if we first 
calculate the radius vector from the center C of 
an assumed spherical Earth to the "two-thirds" 
point of PS, and then use appropriate model values 
in Equations 24.66 and 24.67. However, we have 
assumed that the satellite is at the effective limit 
of the atmosphere; a further correction, to be ob­
tained from the geometry of the figure, would be 
required if the satellite is well outside the effec­
tive atmosphere at some point on ST'. 

71. As an alternative, we can calculate the total 

atmospheric refraction and use Equation 24.71 
to obtain <r. In that case, we should calculate X1 
at one-third the distance to the limit of the eff ectiv 
atmosphere in the direction PS, even if the satellite 
lies well outside this limit. In effect, as we have 
seen in § 24-15, Dufour 36 uses this method to 
establish quite simple formulas both for the at­
mospheric refraction and for the satellite correc­
tion, using an exponential atmospheric model. 

72. Hellmut Schmiel 37 obtains an extremely 
simple formula that can be translated into our 
present notation in radian measure as 

24.72 

where 

<r = 2.33 tan /30 X W 
(SP) cos /30 

36 Dufour (1964), "Choix de Formules de la Refraction At 
mospherique Pour Jes Observations par Chambres Balistiques, 
Bulletin Geodesique, new series, no. 73, 217-229. 

37 Schmid (1963), "The Influence of Atmospheric Refractio 
on Directions Measured to and from a Satellite," GIMRAD 
Research Note No. JO, 1-17. 
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in which p in mm., Hg. and T in °K. are the pressure 
and temperature at the ground station. In deriving 
this formula, Schmid finds that <r is insensitive to 
changes in both the astronomical refraction and 
the distance to the satellite, unless /30 is larger than 
would be tolerated in practice. 

MEASUREMENT OF REFRACTION 

Distance Measurement 

73. Bender and Owens 38 have described the 
use of a two-wavelength method for eliminating the 
effect of refraction in electronic distance measure· 
ments with optical wavelengths. The theory of the 
method is simple. From Equation 24.03 , the one­
way 39 optical path length is given by 

S =ct= J µds 

m which µ, is the actual refractive index from 
Equation 24.54, using a standard group index J-lr; 
where applicable, and the integral is taken over 
the actual path. The measured time of travel is t , 
so that we may consider S as the measured dis­
tance, if the velocity of light in a vacuum C is used 
in conjunction with the measured time . The geo­
metrical path length is, however, 

so that 

represents a correction which must be subtracted 
from the measured distance S to obtain the geo­
metrical distance, both distances being measured 
along the curved path. If measurements are made 
with two wavelengths denoted by subscripts R 
and B, we have two equations 

6_R = J(J-lR - 1) ds 

6.s= f µs- l)ds, 

38 Bender and Owens (1965), "Correction of Optical Distance 
Measurements for the Fluctuating Atmospheric Index of Refrac­
tion," Journal of Geophysical Research, v. 70, 2461-2462. See 
also, Owens (1967) , "Recent Progress in Optical Distance 
Measurements: Lasers and Atmospheric Dispersion," Proceed· 
ings of the International Symposium Figure of the Earth and 
Refraction, Vienna, Austria, March 14-17, 1967, 153- 161. 

39 The measured time in such instruments as the Geodimeter 
refers to the two-way path, and would have to be halved. 

306-962 0-69-16 
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which can be subtracted to give 

24.73 6.B-6.R = JA( µR - l)ds , 

where 

A = ( J-lB - J-lR) I ( J-lR - l ) . 

Bender and Owens quote Erickson as having shown 
experimentally that A is independent of atmos­
pheric density and is only weakly dependent on 
atmospheric composition, so that A may be evalu­
ated for the particular wavelengths and for approxi­
mate actual atmospheric conditions in the Barrell 
and Sears Equations 24.53 and 24.54. The A is 
then considered constant during the path integration 
so that we have 

24.74 

The difference (6.s - 6.R) is measured; 6.R is calcu­
lated from Equation 24. 74 and subtracted from the 
measured distance with wavelength R to give the 
geome trical path length. 

74. The assumption that A is only weakly de­
pendent on atmospheric composition , particularly 
the water vapor content, is justified by Barrell and 
Sears as well as by Erickson, but only in the case 
of optical wavelengths. The effect of water vapor 
on microwaves can be seen from the Essen and 
Froome formula to be much greater. Nevertheless, 
Thompson and Wood 40 have shown that , to the 
accuracy now being sought , the neglect of water 
vapor pressure can be serious, even in the case of 
optical wavelengths, and should be corrected. 
Moreover, the correction can be seen from the 
full Barrell and Sears formula, Equation 24.55, to 
be partly dependent on the wavelength and s hould 
therefore be evaluated from this full formula for 
two-wavelength techniques. Thompson 41 has also 
suggested measurement at three wavelengths (two 
optical and one microwave) to account more com­
pletely for the water vapor effe ct. 

75. The method corrects only for the effect of 

40 Thompson, M. C., Jr., and Wood, L. E. (1967). " The Use of 
Atmospheric Dispersion for the Refractive Index Corre ction of 
Optical Distance Measurements," Electromagnetic Distance 
Measurement, 165-172. A symposium held in Oxford, England. 
under the auspices of IAG Special Study Group No. 19. Sep­
tember 6-11, 1965. 

41 Thompson, 1\1. C., Jr. (1967), "A Radio-Opti cal Dispersion 
Technique for Higher-Order Correction of Optical Distance 
Measurements," Proceedings of th e Intern ational Symposium 
Figure of the Earth and Refraction, Vienna, Austria, March 
14-17, 1967, 161- 163. 
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refra ction on the velocity of light. A correction for 
the curvature of the geometrical path must be ap­
plied separately to derive the chord distance. 

Angle of Refraction 

76. It is possible to measure the difference in 
angles of refraction for two known wavelengths 
and thus to determine the angle of refraction for 
any other wavelength. The method seems to have 
been proposed originally by Nabauer some decades 
ago, but is now becoming a practical possibility 
through the introduction, mainly by Tengstriim,-t:! 
of modern interferometer measure ments. 

77. A general formula for the dependence of 
the refractive index on atmospheric conditions is 

24.75 

where A is a function of temperature and pressure 
and B is a function of temperature and water vapor 
pressure. The Barrell and Sears formula is, for 
example, in this form with values of A and B given 
by Equation 24.54. If m is an element of length along 
the normal to the ray, the curvature is then given by 

x 
(/M; - 1) (dA/dm) + (dB/dm). 

1 +A (µ,r; - 1) + B ' 

the total angle of refrac tion swept out by the tangent 
to the ray is 

24.76 11{3 = (µ,r ; -1 )P + Q 

where 

P=J (dA/dm) ds 
1 +A ( µ, r; - 1 ) + B 

J 
(dB/dm) 

Q = 1 +A ( µ,r; - 1 ) + B ds' 

integrated over the whole length of the ray. The 
denominator of the integrands is µ, , which differs 
very little from unity, and is assumed not to change 
significantly when the standard refractive index 
µ,r; is changed for a different wavelength in accord­
ance with Equation 24.53. The other terms of the 
integrands are atmospheric parameters, which are 
justifiably assumed constant because the measure­
ments at different wavelengths are made s imul-

42 Tengstriim (1967). "Elimination of Refraction at Vertical 
Angle Measurements, Using Lasers of Different Wavelengths," 
Proceedings of the International Symposium Figure of the Earth 
and Refraction , Vienna, Austria. March 14--17, 1967 , 292-303. 
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taneously and because the two paths cannot be 
very different. Accordingly, for two different wave­
lengths denoted by sub script s R and 8, we shall 
have two equations 

24.77 

(11{3)H= (µ,(;H- l)P+ Q 

( 11{3 ) B = ( /LC."B - 1 ) p + Q 

in which J.Lr;u, J.Lr;B are obtained for the actual wave­
lengths from either Equation 24.51 or 24.53, de­
pending on whether a phase or group velocity is 
ap propriate in the circumstances of measurement. 
By subtraction , we have 

24.78 

which determines P if (11{3)H- (11{3)H is known by 
simultaneous measurements at both ends of the 
line . We cannot. however, determine the humidity 
term Q, the effect of which is fortunately small in 
the case of optical wavelengths and must either 
be ignored or estimated. A similar situation must 
arise in the Bender-Owens proposal, probably in 
the ass umption that A of Equation 24.73 is constant. 

78. For any other wavelength, such as a mean 
wavelength of daylight or of a luminous beacon, we 
can obtain the total angle of refraction from an 
equation similar to Equation 24. 76. The result will 
be between one and two orders of magnitude large 
than the difference (11{3)H- (11{3)H, which must 
accordingly be measured to a very high degree o 
accuracy. 

79. T engstriim proposes to obtain the separate 
angles of refrac tion at eac h end, instead of the tota 
angle of refraction, by a slight extension of the 
method. He considers that the tangent to the ra 
mus t be parallel to the chord at one intermediat 
point at least , which is certainly the case if the ra 
is assumed to be a continuous plane curve: he form, 
Equation 24. 76 between the nearest such point 
and the observing station 0. The two integrals 
and Q must now be taken over the path OR, an 
11{3 will be the angle of refraction at 0. If it is as 
sumed that the point R is the same for both wave 
lengths, which is no more drastic than the earlie 
assumption that the two paths are approximatel) 
the same. then two equations s imilar to Equati01 
24. 77 can be formed, the integral P can be elimi 
nated, and the integral Q can be estimated fro 
conditions nearer to the observing station 0. Th 
angle of refraction at 0 for any wavelength is in thi, 
way determined solely from measurements at 0 



CHAPTER 25 

The Line of Observation 

GENERAL REMARKS 

1. Apart from the effects of atmospheric refrac­
tion, geode tic me asure ment s of angles, distances , 
and directions are invariably made along straight 
lines in three-dimensional flat space. For example, 
the path in electronic di stance measurement s, which 
have replaced direc t measure ment s by lnvar tapes 
or wires , is necess arily curved sli ghtl y by refraction , 
but the uni versal practi ce is to red uce the measure­
ment to the s traight -line dis tance on the best avail­
able refraction dat a before us ing the resulting 
straight-line di stance fo r the determination of 
positions . In the same way, a n optical instrument , 
which is used for the measure me nt of angles or 
directions. such as a theodolite, is necessarily 
sighted along the tangent to an optical path curved 
by refrac tion. Here again , it is necessary to correct 
the measurement to the straight -chord direc tion 
before proceeding furthe r or else to ignore the 
effects of re fraction altogether. The fin al result s 
will be viti ated b y the extent to which refrac tion 
has been ignored or imperfe ctly corrected. There 
is no pref erred method of co mputation which will 
overcome thi s defect, although unfo unded claims 
are still occasionally made that classical or two­
dimensional methods have an ad vant age in this 
respect . 

2. For example, it is usual in c lassical geodesy 
to assume that the tangent to the re fracted ray lies 
in the plane of normal section , that is . the plane 
cont aining the spheroidal normal of the geode tic 
coordinate system at the observing station and the 
position of the station sight ed. But thi s plane also 
cont ains the straight line joining the two stations, 
and so fa r as subsequent methods of reduction 

2'1:7 

util iz ing only s uc h planes are concerned , the line 
of observation might have been assumed to be 
straight. This fact is e ven more obvious whe n we 
co nsider that the two planes of normal sec tion at 
the t wo stations are , in general, not the same, a nd 
the only line commo n to the m is tht" straight line 
in s pace joining the two stations . The re mainin g 
operations of classical geodesy- corrections of 
obser ved directions for "geoidal t ilt " and elevation 
of the station sighted, replacement of the two 
curves of normal sect ion by a s phe roidal geodes ic. 
and solution of geodesic tr ia ngles on the s pheroid 
of refere nce - are purely geometr ical. Exactly the 
sa me positions on the s pheroid of reference would 
be o bt ained more simply a nd directly by cons ider­
ing t he line of observation to be a straight line in 
three-dimensional space. 

3. The effect of refraction on the de terminati on 
of rela ti ve elevations is , of course, much greater ; 
as we have seen in C hapter 24, more dras tic as­
sumptions have to be made until it becomes pos­
sible to make more com plete measure ments of 
refraction effec ts . For this reason, calculations fo r 
differences in height are made separately in class ical 
geod esy in the belief that positions on the reference 
spheroid would be vi ti ate <:! in a three-dimensional 
com put ation. T his question will become clearer 
whe n we come to the adj us tment of space networks 
in C ha pt er 26. Meanwhile, it is s uffic ie nt to say that 
a s imilar se paration can be effec ted . if req uired. 
in a three-dime nsional adj ustme nt by us ing ap­
propriate coordinates . 

GENERAL EQUATIONS OF THE LINE 

4. We have seen in § 4-2 that the contravariant 
equation of a geodesic in three-dimen sional s pace. 
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that is, of a straight line in three-dimensional flat 
space, is 

25.01 

or 

25.02 
atr 
-+Pl8!1=0 as sf 

(r=l,2,3) 

where [r is the unit tangent to the line. These three 
equations can be integrated, numerically or other­
wise, in any coordinate system for which the 
Christoffel symbols are given to provide the three 
contravariant components of the unit tangent, 
which can be further integrated to provide the 
changes in coordinates along the line. 

5. In Cartesian coordinates, for example, the 
Christoffel symbols are all zero, and Equation 25.02 
tells us that all three Cartesian components of the 
unit tangent are constant along the line so that 
changes in coordinates are proportional to the 
length s of the line. The constant components of 
the unit tangent are the direction cosines of the 
line (a, b, c): the changes in Cartesian coordinates 
are given by 

x-x=sa 

y-y=sb 

25.03 z- z=sc, 

or, expressed in terms of the pos1t10n vectors pr, 
f/ at the two ends of the line as 

25.04 j/- pr= sfr, 

a vector equation which holds true in any coordi­
nates - provided it is applied to parallel vectors 
at the same point in space. 

6. The fact that a solution of the problem exists 
in Cartesian coordinates shows that a first integral 
in any coordinates of the tensor Equation 25.01 
can be obtained simply by transforming the Car­
tesian tangent vector (a, b, c). If Cartesian coordi­
nates and components are overbarred, then the 
.covariant components of the ·unit tangent in a 
general (w, <f>, N) coordinate system are given by 

!,. = (axs/axr)[5 

= ax,.+ by,.+ cz,. 

= A,.( - a sin w + b cos w) 

+ µ,.( - a sin <P cos w- b sin <P sin w + c cos <f>) 

+v,.( +a cos <P cos w+b cos <P sin w+c sin</>). 

25.05 
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using Equations 12.009. If the azimuth and zenith 
distance of the line in relation to the N-surf ace 
normal are a, {3, we then have from Equation 12.007 

sin a sin f3 = - a sin w + b cos w 

cos a sin f3 = - a sin <P cos w - b sin <P sin w 

+ c cos <P 

cos f3 =+a cos <P cos w + b cos <P sin w 

25.06 + c sin <P 

in which a, b. c can be considered as constants of 
integration. Only two of these equations are inde­
pendent because lr is a unit vector and a2+b2+c2 =l. 
We obtain an identity by squaring and adding the 
three equations. 

7. The (w, </>, N) components of the unit tangent 
are now given by substitution of the appropriate 
components of the base vectors A,., A,.. etc .. from 
Equations 12.037, 12.041, etc .. in Equation 25.05. 
We have 

(sec ¢)/1 =-(UK) sin a sin f3 

+ ( t1/ K) cos a sin f3 
!'2 = ( t1/ K) sin a sin f3 

25.07 

and 

25.08 

- (ki/K) cos a sin f3 
a(l/n) . . 

f 3 = -----;;;;;- Se C </> Sll1 O' S 111 {3 

a(l/n) . cos /3 
+ ~ COS O' Sll1 {3 +-n-

(cos <f>)/1 =-k1 sin a sin f3 

- ti cos a sin f3 + )'1 cos f3 
12=-t, sin a sin f3 

- k:! cos a sin f3 + /''2 cos f3 
13 = n cos f3 

in which, of course, a, f3 have the values given by 
Equations 25.06. An alternative expression for the 
third covariant component is obtained from Equa­
tions 12.097 as 

25.09 

in which j3 is the zenith distance of the isozenithal 
kr and cos <T = l,.kr. 

8. In terms of the Q-matrix of Equation 19.26 
WP can rewrite Equations 25.06 in the form 

{sin a sin f3, cos a sin {3, cos f3} = Q{ a, b, c}, 

25.10 
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which implies that 

QT{ s in a sin (3, cos a sin (3 , cos {3} ={a, b, c} 

25.11 

is constant along the lin e and verifies Equation 
19.27. The las t matrix equation expanded fo r 
reference 1s 

25.12 

a=-sin w s in a si n f3 
- s in </> cos w cos a s in f3 
+cos </> cos w cos f3 

b=cos w s in a s in f3 
- sin </> s in w cos a sin f3 
+ cos </> s in w cos f3 

c =cos </> cos a s in f3 +sin </> cos (3 . 

THE LINE IN GEODETIC 
COORDINATES 

9. Using Equations 25.03, we can also write 

{s sin a sin (3 , s cos a sin (3 , s cos {3} 

25.13 = Q{Cx-x), (jf - y), (z-z)}, 

which e na bles us to calc ul a te azimuth , zenith dis ­
tance, a nd le ngth of the line if we are give n the 
latitude and longitude of one e nd of the line and the 
Cartesian coordinat es of both ends. This equation 
holds true in any (w, <f>, N) coordinate syste m , pro­
vided a, (3 , w, <f> all refer to the same syste m. We 
cannot , however, proceed furth e r unless we know 
the rel at ionship be tween the Cartesia n and (w, <f>, N) 
coordinates. that is, unless we specify the particular 
(w , </> , N) syste m . The simplest results will be ob­
tained if we ca n express (x. y, z) directly in terms of 
(w, </>, N) because. in that case, Equation 25.13 
would lead to closed formulas for (s, a , {3) in terms 
of (w, </>, N ). To provide suc h form ulas, we should 
integrate Equations 12.009, hav in g firs t substituted 
the compone nt s of the base vectors from Equations 
12.041, etc . , and thi s would hardly be poss ible in 
the case of a gen eral (w, <f>, N) system. However. 
reference to Equation 17.64 shows that we can do 
so in a (w, </>. h) syste m, provided the equation of 
the base surface is expressible in the Gaussian form 
of Equation 6.03. We could the n rewrite Equation 
17.64 in C artesian coordinates as 

25.14 

x=xo(w, </>)+h cos </> cos w 

y = Yo( w, </>) + h cos </> sin w 

z = zo(w , </>) + h sin </>, 
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s ubstitute in Equation 25.13, and so obtain closed 
for mulas for s, a, (3 . In Equations 2.5.14, Xo, yo, zo are 
the CartPs ia n coordinat es at the foot of the normal 
to the base s urface (h = 0), and are function s of 
(w, </>)only. 

10. Greater si m plicity can be achieved if we 
use a symmetrical (w, </>, h) sys te m , as disc ussed in 
C hapt er 18, lead ing to the Cartesian Equations 
18.28 a nd 18.30. St ill greater s implicity resu lt s 
fro m the use of a spheroid as base s urface because 
Equation 18.30 is the n integrable and the Cart esian 
coordinates are given explic itly by Equations 18.59. 
To avoid confus ion with the overbars, whic h in this 
c ha pt er we shall reserve for quantiti es at the far 
e nd of the line, we rewrite Equations 18.59 in terms 
of v -the principal radius of c urvatu re of the base 
s pheroid perpe ndi cu lar to the merid ian - as 

x = ( v + h) cos </> cos w 

y= (v+ h ) cos </> s in w 

z=(e:!v+ lz )sin <f>=(v+ h)s in c:f>-e:>.v s in</> 

25.15 

in which e is the ecce ntri ci t y of the base s pheroid 
and e:>. = (1 - e:>.) . Lati tude and longitude (</>, w) in 
these formulas refer to the s t raight normals to the 
base spheroid. It is apparen t from the firs t two 
equations of Equations 25. 15, or fro m Equations 
18.28 in the case of a more genera l symmetrical 
syst e m , that v is also the length of the normal. 
intercepted between the base surface and the z-axis 
of sym metry. We shall in the future refer to the 
(w, <f>, h) system. d e fined by Equation s 25.15, as the 
~eodet ic cuordinate system. 

11. In the geodetic syste m, p (the radius of 
curvature of the meridian) a nd v are principa l radii 
of c urvature of the base s pheroid because the 
para me ter ti is zero in a symmetrical sys te m . and 
the principal radii of an h-surface are giv e n by 
Equations 18.02 and 18.01 as 

25.16 

(11+h) =- l/k1 

(p+h) =- 1/k:>. 

(v + h )(p + h) = l/K. 

In a ny (w. <f>, h ) system, we also have n = 1 so that 
compone nts of the unit vector of the s t raight li ne 
in the geodeti c sys te m are obtai ned from Equations 
25.07 and 25.08 as 

25.17 

lr ={(v+ h) cos</> sin a s inf3 . 

(p + h ) cos a sin (3 , cos {3} 

fr={ sin a s in f3 sec</> cos a sin f3 ,_ } 
(" + h ) ' (p + h) . co, f3 
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in which a, f3 have the values given by Equations 
25.06. These results agree with Equations 18.14. 

Reverse Problem 

12. Substitution of Equations 25.15 in Equation 
25.13 gives 

{s sin a sin {3, s cos a sin {3, s cos {3} 

=Q{x, y, i}-Q{x, y, z} 

= (v+h)Q{cos ¢cos w, cos¢ sin w, sin¢} 

-e2v sin ¢Q{O, 0, l} 

- ( v + h) Q{ cos <P cos w, cos <P sin w, sin <P} 

+e2v sin <jJQ{O, 0, l} 

= (v+h){sin u sin a *, sin u cos a *, cos u} 

- (v+h){O, 0, l} 

-e2 (v sin ¢-v sin <jJ){O, cos </J, sin </J}, 

25.18 

using the auxiliary angles defined in the same nota­
tion in Equations 19.01, etc. These equations solve 
what is usually known as the "reverse problem" by 
enabling us to compute (s, a, /3) directly from the 
geodetic coordinates of the two ends of the line. 
If preferred, we could, of course, have computed 
Cartesian coordinates of the two ends from Equa­
tions 25.15 for substitution in Equation 25.13. 

13. The azimuth and zenith distance at the far 
or barred end of the line (produced) are very easily 
obtairted by interchanging overbars and changing 
the sign of s and u so that we have 

{s sin a sin~, s cos a sin~, s cos M 
=Q{x, y, i}-Q{x, y, z} 

=(v+h){sin u sin a* , sin u cos a*,-cos u} 

+(v+h){O, 0, I} 

-e2(v sin ¢-v sin <jJ){O, cos¢, sin¢}. 

25.19 

In partic:ular, we notice that we have 

s sin a sin "j3=(v+h)sin u sin a* 

=(v+ h)cos <P sin (w-w), 

and from Equation 25.18, we have 

so that 

25.20 

s sin a sin f3 =(ii+ h)sin u sin a * 

=(ii+ h) cos ¢ sin (w-w) 

(v+h)cos <P sin a sin f3 
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has the same value at the two ends of the line, and 
is therefore constant along the line. It is of some 
interest to compare this last equation with the gen­
eralized Clairaut Equation 18.51 for geodesics on 
the h-surfaces, which in this notation is 

(v+h) cos <fJ sin a= constant. 

This relation between the straight line in space and 
the surface geodesic could be used as a link with 
classical methods. Also, we may note from Equa­
tions 25.17 that 

(v + h)cos <fJ sin a sin f3 
is the covariant component f 1 of the line in the 
geodetic system. The fact that this component is 
constant along the line may be verified from the 
covariant form of Equation 25.01, using the Chris­
toffel symbols in Equations 18.34 and 18.35. 

Direct Problem 

14. lf we are given s, w, </J, h, a, (3 and we re· 
quire w, ¢, fl, a, /3-which is usually known as 
the "direct" problem-then we can rewrite Equa­
tion 25.13 as 

{x, y, z}={x, y, z} 

25.21 

+ QT{s sin a sin {3, s cos a sin {3, s cos /3} 

= {x, y, z}+s{a, b, c}, 

which enables us to compute x, y. z directly. Fro 
Equations 25.15, we then have at once 

25.22 tan w=y/x, 

but some process of iteration is necessary to deter 
mine¢, h from 

(v+ h)cos ¢ = (.x2 + y-2)1 12 

and 

25.23 

starting with an approximate value 

tan ¢ = i/ { e2(_i2 + y2)1 /2}. 

Azimuth and zenith distance then follow from Equa 
tion 19.27. Chovitz 1 has shown that iteration wil 
not always converge if we have e2 Z':: !, but this cas 
does not arise in the present context. 

15. Alternatively, we can use one of the differ 

1 Chovltz (1967), On the Use of Iterative Procedures in Geodeti 
Applications (unpublished manuscript). The paper was rea 
at the 48th Annual Meeting of the American Geophysical Union 
Washington, D.C., April 17, 1967. 
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ential methods de veloped in the next two chapters. 
From Equations 27.19 and 27.20, we have , for 
example, 

{(v+h) cos <f> dw , (p+h)d"¢ ,dh} 

25.24 = A{ds , sd/311 , - s sin f3 dao} 

in which the ove rbars refer to the far e nd of the line 
and ds, df3o , dao are corrections to length, zenith 
distance, and azimuth at the near end of the line 
associated with changes dw , d(f>, dh in the coordi­
nates of the far end. The matrix A is obtained from 
the azimuth a and from the zenith dis tance [3 of the 
line produced at the far end as 

25.25 

- ( sin a sin [3 sin a cos [3 
A= cos a s~n [3 cos a co~ [3 

cos f3 - sin f3 

- ~os_ a) 
sm a · 

0 

To apply this me thod , we s t art with assumed ap­
proximate coordinates w, <{> , li at the far end , and 
compute s, a , {3, a, [3 from Equations 25.18 and 
25.19. W e are given " observed" values of s, a , {3 , 
and we substitute observed minus computed values 
as ds, dao , df3o in Equation 25.24, which directly 
gives corrections dw, d<f> , dh to the initial approxi­
mate values . The whole process is then re peated as 
necess ary to obtain result s of the desired accuracy. 

TAYLOR EXPANSION 
ALONG THE LINE 

16. Subject to the usual conditions of differen­
tiability and convergence , which we shall assume 
are satis fied by intuitive phys ical considerations in 
the cases we are going to di sc uss, or at least are 
justified by results, we c an expand a scalar fun ction 
of position F along a line of finit e length s as 

(F-F) =sF' + -!s2F" +is3F'" + 2
1
4s4F"" 

25.26 

in which the overbar refers to the value of the 
function at the far end of the line, and the super­
scripts mean successive de rivatives with respect 
to s. Quantities without overbars, F and its succes­
sive derivatives, are supposed to be evaluated a t the 
near end of the line . If the derivatives are me asured 
in the same sen se of the line at the far end, that is, 
in the direc tion of the line produced, then the corre­
sponding expansion from the far end of the line is 
obtained by interchanging overbars and changing 
the sign of s as 

(F-F) =sF' -h2f'" +h3F"' - ..,f.rs4F"" + 
25.27 

ln the mea n , we have 

25.28 

(F- F ) =h (F ' + F') +ts2 (F" - F") 

+ /2sa ( F , " + F, " ) 
+ }ss41(F"" - F'"') + 
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The derivatives can be considered as func tions uf 
position , de fin ed at all points along the line , and c an 
similarly be expanded as 

(F' - F') = sF " + !s2F'" +isaF"" + 
=sf" -ts2F" ' + is3F " " -

so that we have 

O= s (F " -F") + is2 (F "' + F'") 

25.29 + isa(F'" ' - F"" ) + . .. ; 
while by direct expansion , as in Equ ation 25.28, 
we have 

25.30 

O= (F " - F") + h(F" ' + F" ' ) 

+ ts2 (F""-F '" ') + .. .. 

Multiplying Equa tions 25.29 and 25.30 by -ts and 

1
1
2s2

, respectively, and adding to Equation 25.28, 
we can eliminate the third- and fo urth-order term s 
and can say that 

25.31 (F - F) = !s(F' + F' ) + /2s2 (F"-F") 

is correct to a fo urth order. We could , of course, 
have eliminated the second-order term ins tead of 
the third to the same degree of accuracy, bu t did 
not do so becau se it will usually be possible to 
measure the second order, but not the third-order 
terms. Also, we could have eliminated the third- and 
tifth-order terms instead of the third and fo urth , 
but this wo uld h ave no effect on the second-order 
term. We could contin ue the process by addi ng 
equations similar to £quations 25.29 and 25.30, 
startin g with fourth-order terms, and so could 
e liminate more terms of st ill higher order, but this 
also would have no effec t on the second-order term s. 
We may conclude that Equation 25.31 gives us the 
best possible second-order a pproximation in cases 
wher e we have values of the derivatives at both 
ends of the line. 

EXPANSION OF THE GRAVITATIONAL 
POTENTIAL 

17. For the sake of greater generality, we shall 
ass ume in this case that the line is curved and that 
it s binormal is an equi pote nti al° surface vector . In 
the c ase of a refracted ray , this relation is equivalent 
to the assumption that the isopycnics are level 
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equipotential surfaces. The principal normal (mr) 
to the curved line then lies in the plane of normal 
section, as shown in figure 28, where we have also 

qr 

Figure 28. 

shown a unit equipotential surface vector qr in the 
same azimuth as the line fr. We then have 

fr = qr sin {3+vrcosf3 

mr =qr cos {3- vr sin {3. 

The first differential of the potential along the line is 

aN/as = Nrfr = nvrfr = n cos {3 

in which we identify N with the geopotential and n 
with gravity. The second differential is 

a2N /as 2 = (Nrfr)sfs 

= Nrsfrfs+ NrW8 

= (nsVr + nVrs)frfs + XllVrnzr 

in which X is the principal curvature of the line so 
that we have 

(l/n)a2N/CJs 2 = (ln n)sfs cos f3 

25.32 

+ Vr8 (qr sin /3) (q 8 sin /3 + v8 cos /3) 

- x sin f3 

= - k sin2 f3 - X sin /3 
+ 2(ln n )8q8 sin /3 cos /3 
+ (ln n)8v 8 cos2 f3 

where k is the normal curvature of the equipoten­
tial surface in the azimuth of the line and where the 
zenith distance f3 of the line is measured from the 
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plumbline to the refracted ray. While k is always 
negative,2 x is usually positive, so that curvature 
and refraction have opposite effects in the deter­
mination of the second-order terms of the potential. 
The final Taylor expansion is 

(N- N)/n = s cos f3 +!s2{-k sin2 {3-x sin f3 

+ 2(ln n)8q8 sin f3 cos f3 

25.33 + (ln n)sv8cos2 /3}. 

18. We have seen in § 20-31 that (ln n)sv8, the 
vertical gradient of gravity, is not at present meas­
urable to a high degree of accuracy. However, from 
Equation 20.17, we have 

25.34 (ln n)sv8 = 2H- 2w2/n, 

which shows that the vertical gradient is of the 
same order as the normal curvatures of the equi­
potential surface. The zenith distance f3 will nor­
mally be near hr, so that the last term on the right 
of Equation 25.32 will usually be small compared 
with the first term. Even so, we should require a 
knowledge of the vertical gradient in order to deter­
mine k from torsion balance measurements. Subject 
to these considerations, everything in Equation 
25.33, except the refraction curvatures, can be 
measured at both ends of the line; by substitution 
in Equation 25.31, we can determine either the 
difference in potential or a relation between the 
refraction curvatures. It is noteworthy that the 
effect of refraction cancels if nx sin f3 is the same at 
both ends of the line. Because n sin f3 is usually 
nearly the same at the two ends, this fact means 
that to a fourth order in the expansion of the poten­
tial, the effect of refraction depends solely on the 
difference in curvature of the ray at the two ends. 

19. The difference of potential to a first order is 

25.35 N-N=!s(n cos {3+ii cos [3). 
If gravity n at the two ends is assumed to be the 
same, then we have 

25.36 
N-N -
--=!s(cos {3+ cos {3); 

n 

this equation is the difference in "height" which 
would be obtained by the ordinary surveying proces 
of calculating "trigonometric heights" from re­
ciprocal vertical angles measured from the plumb­
line. This process accordingly gives heights related 
to the first-order difference of potential, comparable 
with results which would be obtained from spiri 

2 Otherwise, two adjacent plumblines could intersect in air a 
points which would have double values of astronomic latitud 
and longitude. This is contrary to experience. 
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leveling, within the limit s of approximation and of 
the observing procedure. This first-order result is 
unaffect ed by refraction, which is a second-order 
effect, provided that {3, {3 refer to the same ray, 
that is, to observations taken at the same time. 

EXPANSION OF GEODETIC HEIGHTS 

20. Equations 25.32 and 25.33, before the intro­
duction of Equation 25.34, hold true in any (w, <f>, N) 
system. In the geodetic (w, </>, h) system, we have 
n = l so that 

ah/as= cos f3 

25.37 az h k . ., /3 . /3 as 2 =- SIW -xsm 

in which f3 is now the zenith distance of the refracted 
line from the geodetic (spheroidal) normal and k is 
the normal curvature of the h-surface in the azimuth 
of the lir.e. From Equation 18.18, we have 

25.38 -k= sin
2 

a + cos
2 

a. 
(v+h) (p+h) 

21. Including the effect of refraction, the differ­
ence in geodetic heights is given by Equation 25.31 
as 

25.39 

h - h =is (cos [3 + cos f3) 

+-hs2 (k sin2 ,B+x sin ,8 
- k sin2 {3- x sin /3) , 

correct to a fourth order. It should be noted that 
{3, ,8 must be measured simultaneously because the 
changing refraction would alter the curvature of the 
line be tween observations; the formula has been 
derived on the assumption that {3, {3 refer to a single 
state of the line. In accordance with the convention 
adopted throughout this book, /3 is the zenith 
distance of the line produced. The observed zenith 
distance at the overbarred end will be (180° -[3). 

22. As in the case of the potential, we find that 
the effect of refraction c ancels if x sin f3 is the same 
at the two ends of the line. Apart from the effect s 
of refraction, the formula obtained from Equation 
25.31 for the difference in geodetic height s is ex­
tremely accurate. For example, over a line 80 
kilometers long in the worst azimuth, the error in 
height is no more than 3 mm. in 2,700 meters, that 
is, about one part in a million, compared with exact 
calculation from formulas given earlier in this chap­
ter. The second-order terms in this example amount 
to 138 mm. 

EXPANSION OF LATITUDE 
AND LONGITUDE 
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23. Geodetic latitude and longitude may be 
expanded along the line in much the same way as 
geode tic height s. For example, the expansion of 
longitude in radian measure to a second-order along 
a straight line is 

25.40 

in which we have 

25.41 

and 

25.42 

/1 =aw= sin a sin /3 
as (v+h)cos </> 

_sin a sin {3(sin <f> cos a sin {3-cos <f> cos f3) 
- (v + hF cos2 </> 

using values of the Chri stoffel symbols given in 
Equations 18.34 and 18.35. Calculation of the ter­
minal coordinates in thi s way seldom is justified 
in comparison with the exact methods given in 
§ 25- 14 and § 2.5-15, but the first-order expansions 
are sometimes useful to give preliminary values. 
Equations 25.41 and 25.42 are, of course, evaluated 
at the unbarred end of the line. 

ASTRO-GEODETIC LEVELING 
24. In this section, we shall e nclose quantities 

related to the astronomical syste m in parentheses, 
while quantities not in parentheses are related to 
the geodetic system. Quantities at the far e nd of a 
line, whose unit vector is /r and length is s, will 
as usual be overbarred. In § 19-23, we defined 
the vector deflection as 

~r = (vr) -vr 

and showed that , to a first order, this definition is 
equivalent to the classical first-order notions of 
defle ction. The compone nt of de flection in the di­
rection /r is accordingly 

~ = ~rfr = ( cos /3) -cos {3. 

At the far e nd of the line, the component is 

5.=5.rfr= (cos [3) -cos {3 

so that, using Equations 25.36 and 25.39, we have 

is(~+~) =is{( cos /3) + (cos ,8)} 

25.43 

-h{cos f3+ cos ,8} 
= ( l /n) {N-N}- {h - h} 

= ris e in " trigonometric heights" minus 
the rise in geodetic height along the 
line, all to a first order. 
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25. The components of deflection ~ are obtained 
to a first order from Equation 19.42 as 

~ = ~rf r = (cos <P ow) sin a sin f3 

25.44 + (0¢) cos a sin f3 

in which ow, for example, is the astronomic minus 
the geodetic longitude. The astronomic coordinate 
is directly measured, and the geodetic coordinate is 
carried forward by calculation along the sides of a 
triangulation or traverse. Starting from known or 
assumed values of (N/n - h), we can accordingly 
derive values of (N/ii-h) at all other points. If N 
is the potential relative to the potential of the geoid, 
then N/n is roughly the depth of the geoid below the 
observing station, and (N/n - h) is roughly the local 
separation of geoid and spheroid. The approxima­
tions involved are, however, equivalent to the 
assumption that the deflections are the same at a 
point on the topographic surface as the deflections 
would be if measurable at a point "vertically" 
below on the geoid or spheroid. This assumption 
would require the actual plumblines to have the 
same curvature as the geodetic normals. At points 
not much above the geoid (or spheroid) in gravita­
tionally undisturbed country, the approximation 
might be justified; but in other circumstances, the 
accumulation of error could be serious, and the 
results should be accepted with reservation until 
such time as they can be checked by other methods. 

DEFLECTIONS BY TORSION 
BALANCE MEASUREMENTS 

26. We have seen that deflections of the vertical, 
relating the normals to the third coordinate surfaces 
of two (w, ¢, N) systems, usually the astronomic 
system and a geodetic (w, ¢, h) system with a 
spheroidal base, can be obtained by direct astro­
nomical measurement of latitude and longitude (or 
azimuth) and by comparison with the geodetic 
coordinates extended from an origin by triangulation 
or traverse. The results are, of course, affected by 
accumulation of error in the triangulation or trav­
erse. Relative deflections can also be obtained, or 
at least interpolated, from measurement of zenith 
distances, but the results in this case may be vitiated 
by uncertainty in atmospheric refraction. The two 
methods may be combined in the adjustment of a 
space network, as we shall see in Chapter 26. 

27. A third method is to integrate gravity anom­
alies over large areas surrounding the point where 
the deflection is required. For accurate results, 
gravity measurements should be made over the 
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entire globe; even so, the results would be vitiated 
by smoothing the actual measures of gravity. 

28. A fourth method, which we shall now con­
sider, uses the torsion balance as originally pro­
posed by Eotvi)s-the inventor of the balance-and 
since used by Mueller and a few others. Some of 
the disadvantages of this method. mentioned in 
§ 20-34, restrict its use to rather flat terrain where 
the deflections are of least interest and where 
simplified formulas are justifiable. With a view to 
the possibility of a more extended future use of 
the instrument or of a much improved modern 
gravity sensor, we shall consider the basic theory 
rigorously so that the nature of any approximations 
made may be fully understood. 

29. We shall adopt exactly the same notation 
as in the spherical figure 15. Chapter 19. The nor­
mals to the equipotential surfaces at the two observ­
ing stations P, P will be vr and V; the fixed vector 
fr, represented in the spherical diagram by Q, will 
be the unit vector of the straight line PP. In addi­
tion. we shall require a unit vector mr normal to 
the plane containing vr and fr, that is, perpendicular 
to the plane of normal section at P. This vector 
m 1

• is shown in the spherical figure 29 as the pole 
of the great circle PQ. ln the same way, the unit 
vector ;nr is perpendicular to the plane of normal 
section at P and is shown as the pole of the great 
circle PQ in figure 29. The angle between the two 
planes of normal section is shown as A in figure 29. 
All other quantities shown in fig:ue 15, Chapter 19, 
wi11 be required and are connected by Equations 
19.01 through 19.18. 

30. We shall now consider the integral 
-

25.45 J
I' 

Vrs(mr cosec {3- m,. cosec f3)l8ds 
/' 

along the line PP. The reason for considering an 
integral in this form will appear later. ln this 
integral, Vr is the normal to the equipotential 
surface at tbe current point and ds is an element of 
length of PP so that we have 

fsds= dx8 • 

The vector in parentheses is evidently constant 
during the integration, so that we have the value 
of the integral as 

-
[" JP {v,.(m,. cosec ~ - ;nr cosec {3) }sdx~ 

25.46 

= [vr(m,. cosec {3- ;nr cosec /3) ]f; 
= sin 0 cosec ~ + sin (J cosec f3 

= 2 sin A 
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Figure 29. 

where(), 0 are as shown in figure 29. 

31. The next step is to obtain an approximate 
value of the integral in Equation 25.45-in terms of 
the gravitational parameters at the two ends of the 
line-by evaluating the integrand at P and P and 
by meaning the results on the assumption that the 
integrand varies uniformly along the line. Less 
approximate methods of integration , such as the 
use of Equation 25.31 with F equal to the indefinite 
integral of Equation 25.45, would require measure­
ment of the gradients of the gravitational parameters 
which is not at present possible. For our immediate 
purpose, it will be easier to evaluate the integrand 
in the alternative form 

(co sec {3 co sec {3) ~rs erpq ( Vµ + jj/I) I q/s, 

obtaine d by using the relations 

ePQvp/ q =(sin {3) rnr 

erpq/Jlvq= (sin {3)rnr. 

The value of the integrand at P is accordingly 

( cosec f3 co sec j3) VrsErpq ( v1, + jj/I) I q/s 

in which vv is taken as translated to P by parallel 
displacement whose components are accordingly 
given by Equation 19.19, so that we have 

(vp + v1,) = (cos ;j, sin ow) Ap +(sin u cos a * )µp 

+ (l +cos u)v/I 

=(sin u sin a*) Av+ (sin u cos a * )µv 

+ (l + COS <J) Vp, 
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using Equation 19.09. We have also 

lq = Aq sin a sin {3+ J.Lq cos a sin {3+ Vq cos {3. 

Some labor may be saved by evaluating 

epq( v/J + vv) lq 

first and ignoring terms in vr because we have 

Vrsvr= 0. 

The curvature parameters are introduced from 
Equations 12.016, 12.046, and 12.047 as 

25.47 

k1 =- VrsArAs 

kz =- VrsJ.LrJ.Ls 

l1 =- VrsArµ,s=- VrsJ.LrAs 

Yi = VrsArvs 

Y2 = VrsJ.LrVs; 

we have finally for the value of the integrand at P, 

IP = + k1 sin /3 cosec "/3 {sin a cos a ( 1 +cos u) 

- sin a cot /3 sin u cos a*} 

- kz sin /3 cosec {3 {sin a cos a ( 1 + cos u) 

- cos a cot /3 sin u sin a*} 

+t1 sin /3 cosec {3 {(cos2 a-sin2 a)(l+cos u) 

- cot /3 sin u cos (a+ a*)} 

- y1 cos /3 cosec {3 {cos a(l +cos u) 

- cot /3 sin u cos a*} 

+ y2 cos /3 cosec {3 {sin a (1 + cos u) 

25.48 - cot /3 sin u sin a*}. 

The value of the integrand at P is very easily ob­
tained by interchanging overbars in this formula 
and changing the sign of u so that we have 

/j; = k1 sin {3 cosec /3 {sin a cos a (1 +cos (j) 

+sin a cot {3 sin (j cos a*}' 

etc. 

From Equation 25.46, we then have 

25.49 

where s is the le ngth PP of the line. The sole as­
sumpt ion made in the derivation of this result is 
that the integrand varies uniformly along the line . 
Otherwise, all the formulas are exact and, in addi­
tion to the five parameters, require five of the seven 
observable quantities </>, ¢, ow, a, {3 , a, ~ from 
which all other required quantities can be calcu­
lated from Equations 19.01 , e tc. , in accordance 
with § 1~12. 
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32. In practice, /3 will be somewhere near 90° 
and sin u will be s mall so that the second terms 
within the braces of Equation 25.48 will be very 
small compared with the firs t terms, and we may 
usually write 

/,, ===- si n f3 cosec (3 (1 +cos u) 

X {(k1 -k2) sin a cos a+t1(cos2 a-sin2 a) 

25.50 -y1 cos a cot {3 + y2 sin a cot {3}· 

In this form, the c urvature parameters (k1 - k2) , 
l1, y1, y2 may be obtained from torsion balance 
measure ments. In fact, reference to Equation 20.36 
will show that the expression within braces could be 
obtained by a single torsion balance reading if it 
were possible to set the line joining the weights 
in the azimuth and zenith di stance of PP. Similar 
results for measure ments at P are obtained by 
interchanging overbars in Equation 25.50, if we 
remember that. in accordance with our usual 
convention, a, (3 refer to the line PP produced 
through P, and not to the back direction PP. 

33. A further approximation may often be made 
m cases where /3 and "i3 are nearly hr by writing 

25.51 + ti( cos2 a- sin2 a)}· 

Moreover , in these approximate formulas, it will 
usually be sufficie nt to evaluate a, {3, u , s from 
geodeti c coordinates without making astronomical 
observations. From Equation 12.050, we can see 
that /,, in thi s last result is directly proportional 
to the geodesic torsion of the equipot ential surface 
in the azimuth of the line . 

34. If the equipotential surfaces were spheres, 
then PP and the normals at P and P would be 
coplanar, so that /r, vr, i/ in figure 29 would lie 
on the same great circle and A. would be zero. The 
magnitude of A. , obtained from Equation 25.49, is 
accordingly an indication of the departure of the 
field from spherical symmetry. 

35. So far, we have been working entirely in 
astronomical coordinates, but the formulas apply 
equally well in any other (w, </> , N) coordinate sys­
te m , provided we substitute appropriate values of 
the curvature parameters . We shall normally work 
in the geodetic (w, <f>, h) system with a spheroidal 
base, as discussed in § 18- 20. In that case, we can 
evaluate the integrand /p from whichever equation 
of Equation 25.48, 25.50, or 25.51 is appropriate 
simply by substituting k1 =- l/v, k2 =- l/p, l1=0, 
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y, = Y2 = 0. The azimuths and zenith distances, e tc., 
should now properly be computed from the geodetic 
coordinates of P and P, but in practice, the co­
efficients of the curvature parameters will be suf­
ficiently accurate if computed in either system of 
coordinates. We can similarly evaluate I 1' in geo­
detic coordinates; by substitution in Equation 25.49, 
we have a geodetic value for A which we shall write 
as Ar;. We shall write AA for the value of A, obtained 
in the astronomical sys tem from torsion balance 
measures of the gravitational parameters. The 
geodetic value Ar; is the angle be tween two planes, 
one containing the line PP and the geodetic normal 
at P and the other containing PP and the geodetic 
normal at P; we have, of course, assumed through­
out that the positions of P and P remain fixed in 
space, whatever coordinate sys te m is used to 
describe these positions. 

36. We can now obtain a firs t-order relation 
between (A. A - Ac) and the de fl ections at P and P. 
For thi s purpose, we consider changes d<j> , dw 
in the latitude and longitude of P in the triangle 
CPQ of figure 15, Chapter 19. W e have seen in 
§ l<J---4 that d<j>, dw can arise from either a change 
in the coordinate system or a chan ge in the posi­
tion of P. In thi s case, we cons ide r that d<j> , dw 
arise from a change in the coordinate system , with 
P and P fix ed, so that the vector /r( Q) as well as 
the axis of rotation er are fixed. In the s pherical 
triangle PCQ , we have 

sin Q= cos¢ sin a cosec CQ. 

Logarithmic differentiation of thi s equation with 
CQ fix ed gives 

cot Q dQ =-tan¢ d<j> + cot a da 

= dw(co t a sin <j>- cot a cos a cot f3 cos ¢) 

+ d<j>( cos a cot {3- t an¢) 

on substitution of Equations 19.29. Division by 

cot Q =co sec a sin f3 tan <j>- cot a cos f3 
gives us finally 

dQ=(cos a cosec f3 cos <j>)dw-(sin a cosec {3)d<j> . 
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If we s tart with geode ti c coordinat es wr;, <f>r;, the 
changes dw , d<j> to the as t ro nomical sys tem w.1, 
¢A are (w;1-wc), (<j>A-<f>c) and 

dQ = (WA - wr;) cos a cosec f3 cos¢ 

- (<j> _., - <j>r;) sin a cosec f3 , 

with a similar equation 

dQ = (ilJ . .t - wr:) cos a cosec '{3 cos (i> 

- ((i>A - <br:) sin a CoSeC f3 
aris ing from a change in the coordin ates of P. 
In this equation, a, f3 refer as usual to PP pro­
duced, and (WA - we), (¢A - ¢ c l are the de fl ections 
at P. The difference is 

dQ-dQ= QA ~Qr;- (Q,,-Qr;) 

= (Q"A-QA) - (Qr;-Qr;) 

= A.-1-A.1; 

so that we have finall y 

(AA - Ar;) =- cos a cosec '{3 cos (i> (w4 - w<.) 

+sin a cosec f3 (¢A - ¢ c ) 

+ cos a cosec f3 cos ¢ (w.1 - wr;) 

25.52 - s in a co sec f3 ( 1> 1 - <j>r;). 

This s ingle relation. whic h is in the nature of an 
observation equation, does not. of course. de ter­
mine the four de fl ections at both ends of the line. 
Observations at the three vertices of a tri angle 
would give us three equations connecting six un ­
known defle ctions. A fo urth point would add two 
more equations and two extra unkno wns, while 
a crossed quadrilateral wo uld provide six eq uat ions 
for eight unknowns . In theory , a strong ne twork 
would eventually provide s uffi cient and eve n 
redundant equations to determine the defl ections 
at all points . Nevertheless, the main application of 
the method is likely to be the interpolation of de­
flec tions be tween known values. which co uld 
be s ubstituted in the obse rvation equations, s uch as 
Equation 25.52, before solution. 





CHAPTER 26 

Internal Adjustment of Networks 

GENERAL REMARKS 

1. In this chapter, we shall consider the forma­
tion of differential observation equations for most 
of the usual systems of geodetic measurement, 
including, in some cases, the derivation of finite for­
mulas that may be necessary to provide computed 
values. Differentiation of such formulas leads to 
the ·observation equations. Instrumentation and 
observation procedures will be considered only to 
the very limited extent necessary to understand 
the nature of the resulting measurements insofar 
as this affects the formation of the observation 
equations. We shall not deal with the formation 
and solution of normal equations from the obser­
vation equations; these matters are not peculiar to 
geodesy and are best studied in the standard litera­
ture. The old distinction betwee n adjustment by 
observation and condition equations is ignored; any 
fixed condition can always be turned into an obser­
vation equation by differentiation and given a very 
large weight in the solution. The order in which 
various systems are treated and the amount of space 
devoted to each system have nothing to do with 
relative importance, but have been decided partly 
by history and mainly by simplicity and continuity 
of explanation. Line-crossing techniques are given 
last, for example, because they introduce a mini­
mum principle not required in any of the other 
systems. Lunar methods are discussed after stellar 
triangulation and satellite triangulation, not because 
lunar methods are later and more sophisticated, 
but simply because they require less explana­
tion in that order. In every case, only enough 
detail is given to provide a full understanding of 
the method in the general context of this book. 
Satellite triangulation, for example, which grows 
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m sophistication every week, will eventually need 
to be presented in a separate book when the rate 
of growth slows down enough for a detailed de­
scription to remain in date long enough to justify 
publication in print. 

THE TRIANGLE IN SPACE 

2. If we are given the geodetic coordinates 
(w, <f>, h) of a Point 1 (fig. 30) and have also the 

3 

Figure 30. 

geodetic azimuth, zenith distance, and distance 
(a12, /312, s12) of Point 2 from Point 1, we can com­
pute (w, ¢ , h, &12, /312) at Point 2 from formulas 
given in this chapter. If we are also given (a13, /313) 
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at Point 1 and (a23, /323) at Point 2, then the posi­
tion of Point 3 can be found by int ersect ion , but in 
order to compute the position of Point 3, we have to 
solve the triangle 123 for the t_wo sides (s1 3 , sd. 
We can always do this by computing the angles 
312 and 123 from azi muths and zeni th distances, by 
deducing the third angle 231, and then by applying 
the rule of sines. For example, we have 

cos 312 = cos /312 cos {31 3 

26.01 

We are here dealing with computations in geodetic 
coord inates; the a's and f3' s are referred to the 
geodetic or spheroidal normal and are assumed to 
be free of error. Later in this chapter, we shall relate 
the geodetic quantities to , .~stual measurements, 
necessari ly referred to the astronomical ze nith and 
subjected to atmospheric refraction a nd observa­
tional error; but for the present, we are merely 
discussing operations in the geodetic coordinat e 
system on the assumption that we are given a con­
sistent set of quantit ies in that system. In that case, 
the two lines in space, 13 and 23, will intersect in 
a unique Point 3, whose position will be the same 
whether it is computed from Point 1 nr from Point 2. 

3. Alternatively, we obtain direct express ions 
for the sides (s 13, s23) in a convenient matrix form. 
The basic vector equation of the triangle 1s 

26.02 

which expresses the condition that there shall be 
no change in the Cartesian coordinat es of the Point 1 
on proceeding around the triangle. As a relation 
between vectors, Equation 26.02 is true in any 
coordinates , provided that paralle ls tu the vectors 
are considered at a single point in space. If we 
substitute the Cartesian components of the three 
vectors in Equation 26.02 and use Equat ion 25.11, 
we have 

s12QT{sin 0'12 sin /312, cos 0'12 sin /31 2. cos /312} 

+ s23QT{sin a23 si n f323, COS a23 sin {323, COS i323} 

- s13QT{sin 0'13 si n /31 3, cos 0'13 sin /31 3, cos f31:i} = O 

26.03 

in which overbarred quantities refe r to Point 2 and 
all other quantities refer to Point 1. We thus have 
two independent equations to determine s 13 and 
s23. We can eliminate s 1:1 and so directly determine 
S23 if we first prernultiply Equation 26.03 by Q and 
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then by (cos a1 3, - si n 0'13, 0), which gives us 

s 12 (cos 0'13, - sin 0'13, 0) 

X {sin 0'12 sin {312. cos 0'12 s in /312 , cos /312} 

26.04 

This e ntire operation is equivalent to contraction 
of Equation 26.02 with mr . a unit h- surface vector 
a t Point 1 perpendicular to /\3. so that we have 

m,. = A.,. cos 0'13 - µ,,. sin 0'13. 

In the same way, if we premultiply Equation 26.03 
by Q and the n by (cos a23. - sin a23, 0), we have 

S12 (COS a23, - sin a;i3, 0) 

X QQT{sin 0'12 sin /312 , cos 0'12 sin /312. cos /312} 

26.05 

The matrix QQT 1s given by Equation 19.25, with 
a uxiliary angles as in Equations 19.01, etc., and 
contains onl y latitudes and longitudes of Points 2 
(overbarred) and 1. 

4. The triangle can also be solved by the differ­
e ntial method givt>n in ~ 25-15 from initial approxi­
mate values of the geodetic coordinat es of Point 3, 
hut in this case. the correction to le ngth ds would 
be unknown . Thus, for th t> line 13. we have thrt>e 
equations connect ing four unknowns: three cor­
rections to the coordinat t>s of Point 3 and on t> 
correctio11 to the le ngth 13. The line 23 adds 
three equation s a rid only ont> more unknown: 
the correction to the length 23. Accordingly, 
we have six equations conn t>c ting five unknowns , 
a nd tlw problem is soluhlt> with a comple t t> check 
if tht> data a re consistent. If th t> data are inco n­
sis te nt or refer to a diffe re nt coordinate syste m. 
we must trt>a t th f' triangle as part of a net work 
by mt> tlwds desc rib ed in the following sections. 

VARIATION OF POSITION 

5. We shall now consider first-order changes in 
the compone nts of the straight-line unit vector 
[

1
• arising from changes dx ,., di,. in th t> coordinates 

of th e two ends of the lin t>. If we suppost> that Wf' 
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are working in Cartesian coordinat es, the n we 
have from Equation 25.04 

26.06 

which can Le diffe rentiated as 

26.07 

We kn ow from Equation 3.19 that the differential 
of a unit vector, which remains a unit vector after 
the change is a s mall vector perpendicular to the 
original vector so that d(Lr) is perpendicular !u 
Lr; if we co ntract Equation 26.07 with Lr (or Lr , 
which has the same Cartesian co mpone nts at the 
far end of the line), we have 

26.08 

g1vmg us the change in the le ngth of the line aris­
ing from dxr and dxr. But dx 1

·, dxr are small vec­
tors at the two e nds of the line, and thi s las t equa­
tion is accordingly an invariant equation which 
is true in any coordinates, even though we de rived 
the equation in Cartesian coordinates. We can 
substitute the changes in any coordinates for dxr, 
dxr, provided that we substitute the covariant com­
ponents of l~, Lr m the same coordinate system. 

6. Elimination of ds between Equations 26.07 
and 26.08 gives 

26.09 

sd (l") = dx/· - dxr - Osdis - l.<dx~) /r 

= (dis- dxs}( 8.~· - frl s } 

using Equation 2.07 and denoting by mr, nr any 
perpendicular vectors which form a right-handed 
orthogonal triad with l 1

". If m8 , ns are parallel vec­
tors at th e overbarred end of the line, we can re­
write thi s last eq uation as 

sd(lr) = (msdxs-msdxs}mr+ (n sdxs-nsdxs}nr, 

26.10 

which again shows that d(lr) is perpendicular to 
fr because it is in the plane of mr and nr. Moreover, 

. Equation 26.10 is a vector equation with invariant 
coefficients, holding true in any coordinate system. 

VARIATION OF POSITION IN 
GEODETIC COORDINATES 

7. If the azimuth and zenith distance of fr are 
a, {3, we have from Equation 12.007 

L1·= Ar sin a sin f3 +µ.."cos a sin f3 + 1/ cos {3. 
26.11 

306-962 0-69-17 
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Differentiation of thi s equation for c hanges in 
w, </J , a, f3 and use of Equations 12.008 or 12.014, 
e tc . , give 

d(l'") =(µ.."sin <P dw- v,. cos <P dw) sin a sin f3 

-(A. 1
" sin </J dw+ vrd<P) cos a sin f3 

+(A.,. cos <P dw + µ.'"d</J) cos f3 

+ m 1'd{3- n,. sin f3 da 
26.12 

in which we have writt en 

mr= A. 1
" sin a cos f3 + µ.'" cos a cos {3- v1

• sin f3 

nr=-A.,. cos a+µ.." sm a 
26.13 

so that the azimuth and zenith distance of mr are 
(a, ·hr+ /3) and of n,. are (~1T +a, !1T). It is evident 
that (Lr, m 1

·, n'") form a right-handed orthogonal 
triad and that mr, nr can accordingly be used in 
Equation 26.10. Also, it must be possible to ex press 
d(l 1

") in Equation 26.12 completely in term s of 
m,., n 1

• because d(l 1
"), being perpendicular to l 1

", 

must li e in the plane of m 1
• and nr. Indeed, we find 

after some manipulation 

d(l'")= m 1"{d{3+cos <P si n a dw+co s a d<P} 

+ nr{ -sin f3 da+(sin </J sin f3 

- cos <P cos a cos {3)dw 

26.14 +sin a cos f3 d<P}. 

Equating coefficients of m,. and n,. in thi s last eq ua­
tion with the corresponding coe fficients in Equation 
26.10, we have 

sdf3 = nisdis- m .• dxs - s cos <P sin a dw - s cos a d</J 

26.15 

s s in f3 da=-nsdif+nsdxs 

+ s(sin <P s in {3- cos <P cos a cos {3)dw 

26.16 + s sin a cos f3 d</J, 

giving the changes in azimuth and zenith distance 
at the unbarred end of the line that arise from 
c hanges of dw, d</J, dh and dw, d(j'J, dh. at th e two 
ends, provided that we use the (w, </J, h) compo­
nent s of ms and ns as given by Equations 26.] 3 and 
provided m8 , ns are the (w, </J, h) components of 
parallel vectors at the overbarred end of the line . 
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8. From Equations 19.32 and 26.13, we have 

{m1, m2, m3}=ST{sin a cosf3, cos a cos /3, 

-sin/3}. 

{n1, n2, n3}=ST{-cos a, sin a, O}: 

26.17 

and from Equation 19.39, we have 

{m1' m2, m3} = STQQT{sin a cos {3, cos a cos {3, 

- sin /3} 

{ii1, ii2, ii3}=STQQT{-cos a, sin a, O}· 

26.18 

These equations hold true in any (w , cp , N ) system. 
In the geodet i c sys tem , s ubstitution of 
-k1=l/(v+h ) , -k2=l /(p+h) , t1=0, n=l 
in Equations 19.31 and 19.32 and us e of Equa ­
tions 19.34 give 

(

sec cp/ (~v + h) 0 0 ) 
R=(ST) - 1= l/(p+h) 0 

0 1 

26.19 (

(v+h) coscp 0 
S= 0 (p+h) 

0 0 

so that we may write 

t v + h~ 1cos cJ> ' (p 7-h )' m3
} 

= {sin a cos {3 ,cos a cos {3 , - sin /3} 

tv+h~ 1 
cos cJ>' (p~h)' n3

} 

26.20 ={-cos a, sin a, O} 

and 

tv+ h~ 1 cos <1>' (p~ h)' m3
} 

= QQT{sin a cos {3, cos a cos {3, - sin /3} 

Lv+ h~1 
cos cJ> ' (p~ Ii) ' ii

3
} 

=QQT{-cos a, sin a, O}· 

26.21 

The matrix QQT, set forth in Equation 19.25. 
depends solely on the te rminal latitudes and 
longitudes. 
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9. Some checks may be applied at this stage. 
Because the right-hand sides of Equations 26.21 
consist of orthogonal matrices and a unit vector, 
we can premultiply each side by its transpose ann 
obtain 

26.22 

with a similar equation for the components of 
iir , together with comparable equations without the 
overbars for the components of mr and nr. In 
Equations 26.15 and 26.16. we may note that an 
alteration in the origin of longitudes could have no 
effect on these equations because of the longitudinal 
symmetry of the geodetic coordinate system. The 
longitude terms must accordingly reduce to some 
multiple of (dw- dw), or , in other words, the co­
efficients of dw and dw must be equal in Equations 
26.15 and 26.16. Extracting the dw, dw terms from 
these equations, we have 

iii1 = m1 + s cos cJ> sin a 

ii1 = n1 + s (sin cJ> sin {3- cos cJ> cos a cos {3), 

26.23 

which can be verified algebraically from Equations 
19.27, 25.18, and 25.21. For reasons which will 
appear in the next section, we do not, however, 
use these relations to simplify Equations 26.15 
and 26.16 at this time. 

OBSERVATION EQUATIONS IN 
GEODETIC COORDINATES 

Horizontal and Vertical Angles 

10. We start with approximate geodetic posi­
tions (w, cp, h), computed roughly from formulas 
given in Chapter 25. In the case of a triangulation, 
we may first have to compute the unmeasured side­
lengths from Equations 26.04 and 26.05. If the posi­
tion of a point is computed from more than one 
other point. the mean can be accepted. The approx­
imate coordinates are then used to compute 
accurately s, a, {3 , a, "iJ from Equations 25.18 and 
and 25.19, and thus to compute the components of 
the vectors mr, nr, iiir, fir from Equations 26.20 and 
26.21. If we could measure geodetic azimuths and 
zenith distances, Equation~ 26.15 and 26.16 would 
become the observation equations by substituting 
"observed minus computed" values for da and df3, 



Internal Adjustment of Networks 

and could be solved in the us ual way to provide 
corrections dxs, dxs to the initial geodeti c coordi­
nates. However, observations for azimuth and zenith 
distance are necessarily made in relation to the 
physical plumbline or astronomical zenith, and we 
must , in addition, correct· the geodetic a, f3 by 
adding Equations 19.29 to effect a transfo rmation 
to the as tronomical system. In Equations 19.29, 
aw , a¢ will accordingly be the astronomical minus 
the corrected geodetic coordinates. with longitude 
positive eastward and latitude positive northward 
as in fi gure 12, Chapter 12. In Equations 26.15 and 
26.16, dw, d<J> will be the corrected minus the 
initially computed geodetic coordinates . Conse­
quently, (aw+dw), (a<J>+d</>) will be the astro­
nomical minus the initially co mput ed geodetic 
coordinates. 

11. Two further corrections are necessary. If 
no astronomical azimuth has been measured. an 
initial direction for the astronomical meridian must 
be assumed, and we must add a station correction 
!:la to the assumed astronomical azimuth (or sub­
tract !:la from the calculated azimuth). To reduce 
the observed zenith distance to the straight line 
on which Equation 26.15 is based, we must also add 
the angle of refraction D.{3 to the observed zenith 
distance (or s ubtrac t D.{3 from the cakulated zenith 
distance). 

12. Application of Equations 19.29 and the cor­
rections !:la, D.{3 to Equations 26.15 and 26.16 give 
us the following observation equations, 

(Observed Minus Computed) Zenith Distance 

=- D.{3 + m1dw/s + m2d</>/s + m3dh/s 

- m1dw/s- m2d</>/s- m3dh/s 

- (dw+aw) cos</> sin a-(d¢+a¢) cos a 

26.24 

(Observed Minus Computed) Azimuth 

=-!:la- fi1dw (cosec {3)/s-ii2d</> (cosec {3)/s 

- n3dh (cosec {3)/s 

26.25 

+ n1dw (cosec {3)/s+ n2d</> (cosec {3)/s 

+ n3dh ( cosec /3) / s 

+ ( dw +aw )(sin </> - cos </> cos a cot /3) 
+ ( d<J> +a¢) sin a cot {3. 
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Reverse Equations 

13. If measurements have been made at the othe r 
e nd of the line, as will almost always be the case , 
we must form observation equations for the reverse 
direction for which the vectors mr, nr, m,. , fi r a re 
not the same. The same equations, neverthe less, 
hold true if we reme mber that the initial azimuth 
and zenith distance are now (180° +a) and (180°- '/3) 
and will already have been computed. If we re tain 
the same overbarred notation for what is now the 
initial point, the matrix QQT remains unalt e red ; 
the vector components at the new initial point are 
given by Equations 26.20 as 

{ 
ffz1 ffz2 } 

(;; + h) cos </>' (p + h)' m3 

={sin a cos "{3. cos a cos "{3 , - s in "{3} 

Lv+h~1 
cos¢' (f>~h)' "

3
} 

26.26 = {cos a, -sin a, O}, 

while the components at the new far point are give n 
by Equations 26.21 as 

Lv+ ~) cos</>' (;~ h)' m3
} 

= QQT{sin a COS "{3, COS a COS "{3 , - sin "f3} 

Lv+ h~ 1 
cos¢' (p~ h) ' n3

} 

= QQT{ cos a, - sin a, O} 
26.27 

in which we may substitute for QQT the transpose 
of the original matrix QQT. The advantage of pro­
ceeding in thi s manner is that the vectors for the 
reverse direction are easy to compute and refer to 
the same points as for the forward direction. We 
must make the same substitutions for azimuth and 
zenith distance in the remaining terms and re me m­
ber that the initial point is now overbarred. The 
full observation equations for the reverse direction 
are then 

(Observed Minus Comput ed) Zenith Dis ta nce 

26.28 

=- D.{3- m1dw/s- m2d</>/ s- ni3dh/s 

+ m1dw/s+ mzdcp/s+ m3dh/s 

+ ( dw +aw) cos <!> sin a 
+ (d</>+ ~)cos a 



244 

(Observed Minus Computed) Azimuth 

=-~a + n1dw (cosec {3)/s+ n2d<f> (cosec {3)/s 

+ ti3dh (cosec {3)/s 

- n1dw (co sec {3) /s- nzd<f> (cosec {3) /s 

- n3dh (cosec {3) /s 

+ (dw+ow) (sin </> -cos <f> cos a cot {3) 

+ (d<f>+ o<f>) sin a cot {3 
26.29 

in which the components of ffir, mr , fir, nr are now 
given by Equations 26.26 and 26.27. The angle of 
refraction ~' the station correction to azimuths 
Lla, and the deflections ow , o<f> at the barred point 
are new unknowns which are not related to ~/3, 
~a, ow, o<f>. 

General Considerations Affecting 
the Angular Equations 

14. If an astronomical longitude has been meas­
ured, then (dw +ow), which is the astronomical 
minus the initial approximate geodetic longitude, 
is known. The corresponding terms in the observa­
tion equations can be computed and added to the 
absolute terms. This procedure does not ignore the 
possibility of random error in the measured astro­
nomical longitude, which would appear in the 
residuals. If an astronomical longitude has not been 
measured, it may be advisable to assume one from 
the general values of deflections in the area. In 
that case, the corresponding terms in the observa­
tion equations can be computed with the assumed 
value and added to the absolute terms. We should, 
however, retain terms - dw1 cos 1> sin a and 
dw1 (sin <j>- cos 1> cos a cot {3) in which dw1 is a 
correction to the assumed astrono mical longitude 
to be found from the solution. Exactly the sam e pro­
cedure should be followed for the (d<f> + o<f>) terms. 

15. Apart from numerical considerations , no 
reason exists why (dw+ow), (d<j>+o<j>) should not 
be considered as independent unknowns and 
evaluated by the solution, even though the terms 
contain the independent unknowns dw, d<j>. Such 
a combination of unknowns does not invalidate any 
principle of least squares .1 We can finally deter­
mine the deflections ow, o<f> by subtracting dw, d<j>. 
The adjustment will not, however, be very strong 
unless frequent astronomical measures are made. 

1 See Thompson, E. H. (1962), "The Theory of the Method of 
Least Squares," The Photogrammetric Record, v. 4, 61. 
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16. If astronomical azimuth is measured, then the 
~a-term is dropped, and any random error in the 
measurement appears in the residuals. This pro­
cedure reduces the number of unknowns in the 
azimuth equations to the same extent as a meas­
urement of astronomical latitude or longitude, and 
suggests that, except for the purpose of fixing an 
origin , astronomical longitudes could be replaced 
by astronomical azimuths, which are much easier 
to measure precisely. 

17. When it becomes possible to measure the 
angle of refraction, ~/3 can similarly be added to 
the absolute term. Meanwhile, we cannot treat the 
angle of refraction ~/3 as completely unknown at 
both ends of all lines if the {3-equations are to make 
any contribution to the solution. Some assumptions 
must be made. For example, we have seen in Chap­
ter 24 that, unless the two stations are at very dif­
ferent heights, the angle of refraction can reasonably 
be assumed to be the same at the two ends of the 
line. In that case, ~/3 could be eliminated by sub­
tracting the observation equation for the reverse 
direction of the line from the equation for the 
forward direction before solution. This method 
would have advantages when reciprocal observa­
tions have been made at both ends of the line at 
the same time. 

18. Another possibility is to express ~/3 as some 
function of the length s of the line and to assume 
that the constants in the expression are the same 
for all lines observed from the same station at 
about the same time. The solution would then 
determine the constants, provided there are not too 
many of them. The simplest assumption, which can 
give quite good results, is that ~/3 is directly pro­
portional to s or to some fixed power of s: in that 
case, there will be only one constant per station to 
determine. Zenith distances should be observed 
along all rays in rapid succession, b_ut the results 
could be meaned with similar sets taken at a 
different time. 

19. Owing to uncertainty in the refraction, the 
{3-equations should properly be given less weight. 
Howeve r, interaction between the a- and {3-equa­
tions in normal terrestrial triangulation is so 
limited that weighting has little effect; indeed, the 
two sets of equations might be solved separately. 
The coefficients of dw, d<j>, dw, d<f> in the {3-equations 
are all small so that these terms could be omitted 
in a first solution. The main function of the /3-
equations, controlled by frequent astronomical 
observations, is to interpolate deflections and to 
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de termine dh , dll. The coeffic ie nt s of these un ­
knowns in the a-equations are , however, s mall so 
that fairly large errors in these coeffici e nt s would 
have little effect un the dete rmination of dw, d<f>. 
dw , def> from the a-equation s. The one exception 
is the te rm (dw +ow) sin <f> in the azimuth e qua­
tion; it can be inferred from Equation 19.30 that 
uncertainty in thi s te rm would mainly affect the 
dete rmination of b.a. 

20. In the case of lines radiating from the origin, 
dw, d<f>, dh are all zero, and astronomical longitude, 
latitude, and azimuth should be meas ured so that 
the ow , o<f>, b.a terms can be evaluated. (If astro­
nomical values are accepted as the initial geodetic 
elements, then ow , o<f>, b.a would all be zero.) The 
effect of this procedure on at least two lines will 
be to e ns ure proper orientation of the geodetic 
coordin ate syste m by sati sfyin g Equations 19.29. 
The inclusion of frequent astronomical observa­
tions will similarly preserve orie ntation of the 
geodetic system. 

Lengths 

21. The observation equation in geodeti c coordi­
nates for a measured dis tance be tween s tations is 
given at once by substituting Equations 25.17 and 
25.20 in Equation 26.08 as 

(Obse rved Minus Computed) Distance 

= (v+ h) cos <f> sin a sin {3(dw-dw) 

+ (jJ + h) cos a sin {3 d;/J + cos /3 dli 
- (p + h) cos a sin f3 d<f>- cos f3 dh. 

26.30 

The equation should be divided by a cons tant of 
the same order as the average side-length in the 
network so that the equation may have roughly the 
same dimensions as the a- and /3-equations. The 
length and angular equations may, of course, be 
weighted differently if the re is reason to do so. 
Present (1968) experie nce s uggests that e lectronic 
distan ce measurement s are generally of about the 
same order of accuracy as the best angular measure­
ments and that relative weighting is unnecessary. 

22. The only correction required in electronic 
distan ce measurements is for refra ction; the cor­
rection reduces the actual measure ment to the 
straight air-line distance betwee n the two stations. 
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Spirit Lt•ve ls 

23. If the two ends of the line are con nec ted by 
spirit levels, it is poss ible to cons truct a firs t-ordPr 
observa tion equation to reflect the meas uremen t 
and to include the equa tion in the genera l adjus t­
me nt of the ne twork. The observ ing procedure 
virtually fre es the spirit leve ling from the effects 
of a tmospheric refrac tion a nd ma kes the inclusion 
of s uc h observation eq uations in the ne two rk ad­
justme nt of considerable value. 

24. The right-hand side of the {3-Equations 26.24 
and 26.28 without th e refraction terms b.{3, b.{3 
ca n be considered as a correc tion to the co mput ed 
s traight-line geodetic ze nith distance, ari sing from 
c hanges in the e nd coordinates and from the 
c ha nge from the geodetic to the as tronomical 
zenith . Consequently, the "observed" ze nith dis­
tance in these eq uations, apart from observa tional 
error , is the zenith di stance of the straight line 
measured from the as tronomical zenith. T u a first 
order, Equation 25.36 relates these "observed" 
zenith distances (/3) , (i3) to the rise h 1 in spirit 
levels from the unbarred to the barred end of the 
line, except that the zen ith distance at the barred 
pojnt in Equa tion 25.36 refers to the line produced. 
In our present not ation, Equat ion 25.36 becomes 

h, =h{ cos (/3) + cos [180°- (/3)]} 

~! s{ (/3) - (/3)} 

because the two zen ith di s tances are nearl y 90°. If 
we subtract Equation 26.24 for the forward direc­
tion from Equation 26.28 for the reverse direction, 
the left-hand side uf the resulting equation will be 

2h
1 

(c~ mputed ze nith) ( c:i mputed ze nith) 
-+ dis tance a t - d istance at · 

s unbarred end barred end 

26.31 

The computed zen ith di stance a t the barred end 
will be 180°- /3 where {3 will have been computed 
from the initial approxima te geode tic coord inates 
by Equation 25.19. The right-hand side of t he fin al 
observa tion equation is s imila rl y de rived as Equa­
tion 26.28 minus Equation 26.24 without th e b.{3, b.{3 
te rm s. 

25. We have used only a firs t-order formu la for 
the difference in potential (or spirit leve ls), whereas 
the spirit levels will usually have been measured to 
a high degree of acc uracy whic h we have not used. 
H_9wever, the e ffec t on a ll the unknowns except dh, 
dh will be small , and we s hould ex pec t to eva lua te 
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dh, dfi within the limits only of the first-order as­
sumption and not to the degree of accuracy of pre­
cise spirit leveling. If the required data are available, 
we could first remove the second-order terms from 
the measured spirit levels by using Equations 25.33, 
in which the x-term should be omitted because, in 
this case, we are expanding the potential along the 
straight line. In many cases, it would be sufficient to 
use geodetic curvatures and standard gravity in 
the evaluation of the second-order terms. If allow­
ance is made for the second-order terms in this way, 
the adjustment should provide better values of the 
geodetic heights. 

Initial Values 

26. Before the observation equations can be 
formed, we must have approximate values for the 
geodetic coordinates of all points in the network. 
These approximate values can be obtained from 
formulas given in Chapter 25. Alternatively, we 
can start with very rough positions, obtained from 
maps or triangulation charts, and solve some of the 
observation equations themselves for c.orrections 
to the initial positions. For this purpose, we could 
ignore minor terms, such as deflections in the 
azimuth equations, and substitute as best we can 
for the angle of refraction and for deflections in the 
zenith-distance equations. 

OBSERVATION EQUATIONS IN 
CARTESIAN COORDINATES 

27. The invariant terms in the observation Equa­
tions 26.24, 26.25, and 26.30 and the equation for 
spirit levels, that is, 

iiz rd if, m rdxr , n rdxr. nrdxr, lrdxr. I rdxr , 

can, of course, be evaluated in any coordinate sys­
tem; all that is needed is to evaluate the compo­
nents of the vectors in the proposed system. In 
this case, the unknowns di/, dxr will be corrections 
to the end coordinates, not in the geodetic system 
(w, </>, h), but in the system which has been used to 
evaluate the vector components. If, for example, 
we evaluate these invariant terms in Cartesian co­
ordinates, the parallel vectors /i., r1ir, iir will have 
the same components as /,. , mr , n,., and the invai;iant 
terms in Equation 26.24, for example, become 

m1(dx-dx)/s, m2(dy -dy)/s, m3(dz-dz)/s. 

This does not mean, however, that we have reduced 
the number of unknowns which will appear in dif-
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ferent combinations in the observation equations 
for adjacent lines. Nevertheless, with the exception 
of the length Equation 26.08, we cannot express in 
Cartesian coordinates all the observation equations 
so far discussed because azimuth, zenith distance, 
and the astronomical latitude and longitude cannot 
be expressed simply and solely in Cartesian co­
ordinates. We have to find the geodetic coordinates 
of points, even to express the Cartesian components 
of the vectors, and we have finally to convert the 
Cartesian results to the geodetic system. Thus, the 
only overall advantage of working in Cartesian 
coordinates in the cases so far considered seems to 
be that the more elementary Cartesian system is 
easier to understand than a curvilinear system. 
This conclusion applies only to observation equa­
tions so far discussed for use in connection with 
horizontal and vertical angular measurements, 
distances, levels, and astronomical measures. 
Other forms of measurement, as we shall see, may 
indicate different coordinate systems. 

28. When required, the Cartesian components of 
the vectors l,., m,., n,. are very easily found from 
Equations 12.013 and 19.22, that is, from 

26.32 {A,., Br, Cr} =QT{A.r, µ,., v,.}. 

The Cartesian components (a, b, c) of!,. in azimuth 
a, zenith distance f3 are found by contracting this 
last equation with / 1

• as 

{a, b, c}=QT{sin a sin {3, cos a sin {3, cos f3}, 

26.33 

which agrees with Equations 25.11 and 25.12. The 
Cartesian components of m,. in azimuth a, zenith 
distance (i1T + {3) are given by 

26.34 QT{sin a cos f3, cos a cos f3, -sin {3}; 

the Cartesian components of n,. in azimuth (i7T+ a), 
zenith distance i1T are given by 

26.35 QT{- cos a, sin a, O}. 

FLARE TRIANGULATION 

29. So far, we have considered only observations 
made at intervisible ground stations, whereas 
observations from ground stations that are not 
intervisible to elevated beacons that cannot be 
occupied have received much attention in recent 
years. The object is to increase the distance be­
tween ground stations so as to provide a more open 
network quickly or to bridge wide water gaps. One 
such system, used, for example, by W. E. Browne 



Internal A djustment of Networks 

to bridge the S trait s of Florida, is to make simul­
taneous observations from ground stations to 
parachut e flares dropped from aircraft. 

30. Whenever observations to the flare consist of 
horizontal and verti cal angular measureme nts in 
relation to the astronomical zenith , the observation 
Equations 26. 24 and 26.25 can be used as given. In 
thi s case, we start with an app roximate pos ition fo r 
the flare as well as for the ground stations which 
we are required to fi x; we fo rm two observation 
equations for each line, cont aining corrections to 
the coordinates of the flare a nd of the ground station 
as well as the astronomical and refraction correc­
tions. There are, of course, no corrections to the 
coordinates of known ground stations in these equa­
tions. For simultaneous 2 observation of one position 
of one flare from three known ground stations and 
one unknown ground station, we have, for example, 
eight equations be tween six unknowns, assuming 
that full as tronomical observations have been made 
at all ground stations and that valid corrections 
have been made for refra ction. Theoretically, we 
have enough equations to fix the unknown station , 
and the equations might prove to be sufficient in 
practice if the stations covered a considerable 
range in altitude . However , it is usual to observe 
seve ral flares in widely separated positions from the 
same ground stations, including several unknown 
stations , and also to make several observations to 
the same flare as it fall s, treating the position of the 
flare as unknown for every such additional observa­
tion. In this way, we can form enough observation 
equations to dispense with astronomical measures , 
if necessary. The determination of geodetic heights 
from vertical angles is weaker tha n from recip rocal 
observations between ground stations because only 
one end of each line can be occupied. However , if 
the flares are dropped roughly midway between 
the known and unknown ground stations, residual 
errors of refraction tend to cancel as between the 
heights of ground stations, although the (unwanted) 
flare heights are seriously affected. Additional ob­
servation equations can , of course, be formed and 
used in the adjustment for observations be tween 
such ground stations as may be inte rvisible. 

STELLAR TRIANGULATION 

31. Simultaneous photography from two or more 
ground stations of a luminous beacon- a rocket 

2 The observations are synchronized by radio s ignals. In some 
systems, the c ircle readings are photographed by small cameras 
operated by the radio s ignals , and all the observer need do is 
to keep the fl are continuously intersec ted. 
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fl ash or a fl are dropped from an aircraft - against 
a background of s tars was first proposed and ex­
tensively used by Vaisala in Finland about 1946. 
In principle, the direction to the beacon is inter­
pola ted by measurements on the photographic plat e 
from the known right ascensions and declinations 
of the background stars; a single photograph can 
be cons ide red an observation for the right ascen­
sion and declination of the beacon. A s imultaneous 
observation from a second ground station gives the 
orientation of the plane cont aining the beacon and 
the two ground stations. Two such planes for two 
different positions of the beacon intersec t in the 
line joining the two ground stations, whose direc tion 
is accordingly determined in the right ascension­
declination system. T his direction is, of course, 
"absolute" in the sense that it does not depend 
on the local direction of the plumbline, which would 
be the case if horizontal and vertical angles were 
measured. 

32. To develop the theory in more detail, we shall 
use the same Earth-fi xed, right-handed orthogonal 
triad of unit Cartes ian vectors A r, Br, er as set up 
in § 12- 8 and § 12-10 to define latitude and longi­
tude. As usual, er is parallel to the Earth's axis of 
rotation , the plane Ar, er determ ines the origin of 
longitude or hour a ngle , a nd Br completes the right­
handed triad Ar, Br, er. We define the declination 
(D ) of a unit space vector Lr as the angle between 
U and the plane Ar, Br - positive north . This defini­
tion follows the usual astro nomical convention. 
The origin-hour angle (H) of the vector U is defined 
as the angle between the planes Ar, er and Lr , er -
positive in the direction of a positive right-handed 
rota tion about er, that is , positive eastward from 
Ar toward W . This de finition reverses the sign of 
the usual astro nomical convention for the hour 
angle , which is positive westward, but enables us 
to adhere to normal mathematical conventions as 
nsed throughout thi s book , and to relate declination 
and origin-hour angle di rectly to latit ude and longi­
tude (which also is positive east). It will then be 
apparent that Equatio ns 12.003, 12.004, and 12.005 
hold equally well fo r decl ination D and origin-hour 
angle H in re lation to the vector Lr, which can 
accordingly be expressed as 

U = (cos D cos H )Ar+(cos D sin H)W+(sin D)Gr. 

26.36 

The origin-hour angle H is the right ascension of 
the direction U minus the local s idereal time at the 
origin, both expressed in angular measure. The 
local sidereal time at the origin is the Greenwich 
side real time plus the as tronomical longitude of 
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the origin relative to Greenwich, measured as always 
positive eastward. 

33. The right ascension and declination from a 
ground station to the beacon at a given time, 
obtained from plate measurements, give H, D for 
substitution in Equation 26.36. (We shall defer a 
description of the process until we deal with the 
modern techniques of satellit e triangulation in 
§ 26-43.) A s imultaneous observat ion from another 
ground station provides a si milar equation for the 
unit vector Lr from the second station to the beacon. 
We know that the unit vector joi~ing the ground 
stations is coplanar with U and U, a fact which 
gives us one relation between the hour angle and 
declination of the line joining the ground stat ions. 
Repetition of the whole process from the same 
two ground stations to another position of the 
beacon will then determine H, D for the line 
joining the ground stations. 

34. The situat ion is illustrated by the sp herical 
diagram, figure 31, in which the unit vectors to the 

Fii:;ure 31. 

beacon a re represented by u·, Li· and a unit vector 
perpendicular to the plane of U, Lr is Q,., the pole 

of the great circle L'D. The unit vector of the line 
joining the ground stations is shown as o·, neces­
sarily on the great c ircle L'L,. because the three 
vectors are coplanar. The hour angle and declina­
tion of Q,. a re obtained from the triangle L''-pole-Q,. 
in figure 31, and the n Equation 26.36 gives 

Q,. = A,.(sin H cos a- sin D cos H sin a) 

+B,.(-cos If cos a-s in D sin If sin a) 

+C,. (cos D s in a) 

26.37 
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in which the quantities within parentheses are the 
Cartesian component s of Q,. and must therefore have 
the same values at all points of the great circle 
L'Lrci·. We can, of course, compute a from the ele­
me nts H, D, R, D of figure 31 so that these com­
ponents (l , m , n) are known. If (H), (D) are the 
origin-hour angle and declination of o·, the line 
joining the ground stations, we then have 

sin (H) cos (a) - sin (D) cos (H) sin (a)= l 

-cos (H) cos (a) - sin (D) s in (H) sin (a)= m 

26.38 cos (D) sin (a)= n, 

two equations of which are independent. From the 
second position of the beacon, when (a) becomes 
(a*), we have similarly two independent equations 
connecting (H), (D) , and (a*) which are easily 
solved to de te rmine (H) , (D), (a), and (a*). 
The difference (a)-(a*) is the angle between 
the planes containing the ground stations and one 
angle eac h of the beacon positions. The magnitude 
of this "angle of cut " is a measure of the geometrical 
acc uracy of the result. 

35. We could compute (H), (D) in this manner 
for each pair of simultaneous observations to the 
beacon and use the result s as observed values in 
a system of observation equations. However, 
(H) and (D) are a long way from the actual obser­
vations, which are measures of rectangular coordi­
nates on the photographic plates. Moreover, it 
would be difficult to e nsure a proper weighting of 
such de rived "observations," especially when 
s imultaneous observations are made from more 
than two ground sta tions or when it is difficult 
to select pairs of observations with a good "angle 
of cut" without using the same observation twice. 
For these reasons, it will usually be better to form 
observation equations for each observed direc tion 
to the beacon; we shall now do this. 

Observation Equations for Directions 

36. If H, D are the origin-hour angle and declina­
tion to the beacon-unit vector Lr -we define two 
auxiliary unit vectors /lJr (origin-hour angle H, 
declination D-!77) and Nr (origin-hour angle 
If +!1T, declination ze ro) as 

.lJr = (sin D cos H)Ar+(sin D sin H)W-(cos D)Gr 

26.39 

26.40 y r =- (sin If )Ar+ (cos H)W. 

The triad U, Mr, Nr is right-handed in that order. 
Because the Cartesian vectors Ar, B,., er are fixed, 
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we can then differentiate Equation 26.36 to have 

26.41 d(U) = -MrdD + (cos D)NrdH. 

Substituting in Equation 26.10, where the triad 
fr, mr, nr is any right-handed unit orthogonal set, 
and equating coefficients of Mr, Nr give us the 
observation equations 

26.42 

26.43 

sdD=-Msdxs+Msdxs 

(s cos D) dH = NscfXs - N~cfxs 

in which dxs, dxs are, respectively, corrections to 
initial approximate coordinates of the ground 
station and of the beacon, whose declination and 
origin-hour angle are D, H in the direction frorri the 
unbarred (ground) to the overbarred (beacon) end 
of the line. The components of the auxiliary vectors 
Ms, Ns (and of the parallel vectors Ms, Ns at the 
beacon end of the line) are computed from Equations 
26.39 and 26.40 in the same coordinate system as 
dxs, dxs. On the left-hand side of the observation 
equations, s is the length of the line computed from 
the approximate end coordinates and dD, for 
example, is the measured declination minus the 
declination computed from the approximate end 
coordinates. 

37. The observation equations must necessarily 
contain corrections to the initial approximate posi­
tion of the beacon, which we do not usually require. 
These unwanted corrections can, however, be elimi­
nated at some suitable stage- either before or 
during the formation of the normal equations. 

Time Correction 

38. In relating the photographic image of the 
beacon to the stars, we are in effect observing the 
right ascension of the beacon in the system of the 
star catalog. The observed origin-hour angle is then 
obtained by subtracting, from the right ascension 
of the satellite, the local sidereal time at the origin 
of the instant when the beacon was photographed, 
while the computed origin-hour angle is obtained 
from the approximate end coordinates of the line. 
If, however, we do not know the precise local 
sidereal time of the observation, then we must 
assume an approximate value t0 , which must be 
corrected to (to+ dt). This assumption amounts 
to adding a time correction dt, expressed in radian 
measure like dx/s, to the right-hand side of Equa­
tion 26.43 and to evaluating this extra unknown 
together with the corrections to the end coordinates 
of the line in the solution of the observation equa­
tions. The time correction dt would, however, be 
the same for all stations engaged in the simul-
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taneous observation of the beacon because it is a 
correction to the assumed local sidereal time of 
the observation at the origin, which is common to 
all stations. This correction could also be the clock 
correc tion to one particular (master) station clock 
used to define to. An additional c lock correction 
would have to be included for every other station 
clock which has not been synchronized to the 
master clock. 

Observation Equations in Cartesian 
Coordinates 

39. In this case, there is evidently some ad­
vantage of working in Cartesian coordinates. From 
Equation 26.36, we have at once the difference in 
Cartesian coordinates of the two end s of the line 
referred to the axes Ar, Br, Cr, 

26.44 

x - x = s cos D cos H 

y- y = s cos D sin H 

z-z=s sin D. 

The Cartesian components of the auxiliary vec­
tors from Equations 26.39 and 26.40 are 

Mr= Mr= (sin D cos H, sin D s in H ,-cos D) 

Nr= filr=(-sin H, cos H,O) 

26.45 

so that the observation equations become 

(Observed Minus Computed) Declination 

=-sin D cos H (dx-dx)/s 

-sin D sin H (dy-dy)/s 

+cos D (dz-dz)/s 

26.46 

(Observed Minus Computed) Origin-Hour Angle 

=-sec D sin H (dx-dx)/s 

+sec D cos H (dy-dy)/s. 

26.47 

Equations 26.44 are used to obtain computed values 
of s, H, D from initial approximate values of the 
end Cartesian coordinates. Either these values of 
H, D or the observed values may be used for the 
coefficients on the right of the observation equations. 

40. Approximate positions of the ground stations 
will usually be more accurately known than the 
position of the beacon. In that case, we could form 
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Equations 26.44 for the other ground station, solve 
with Equations 26.44 to determine the two dis­
tances to the beacon, and thus obtain the approxi­
mate position of the beacon from the observed 
values of hour angles and declinations. Once we 
have decided on the approximate positions, we 
must, of course, use them in Equations 26.44 to 
obtain accurate "computed" values of D and H. A 
similar procedure can be followed if the observation 
equations are formed in geodetic or geocentric 
coordinates. 

Observation Equations in Other 
Coordinate Systems 

41. The observation equations can be solved to 
give corrections to geodetic coordinates instead 
of Cartesian coordinates by substituting the geodetic 
components of the auxiliary vectors in the observa­
tion Equations 26.42 and 26.43. From Equation 
26.39, we have 

Ms= (sin D cos H, sin D sin H, -cos D){As, Bs, Cs}, 

which, by using Equation 19.35, can be written as 

(M,, M2, M3)= (sin D cos H, sin D sin H, - cos D) 

26.48 

an equation holding true in any (w, ¢, N) coordinate 
system, provided the appropriate S-matrix is used 
from Equation 19.32. In geodetic coordinates, the 
S -matrix is 

( (v+h~)cos<f> 0 0) 
(p~h) ~ ' 

while QT is obtained from Equation 19.26. Ex­
pansion of Equation 26.48 then gives 

M 1 = ( v + h) cos <P sin D sin (H - w) 

M2 =- (p + h) {sin <P sin D cos (H - w) 

+cos <P cos D} 

Ma= cos <P sin D cos (H-w)- sin <P cos D. 
26.49 

At the beacon, the components of the parallel vector 
Ms, for which D, H are the same, are given by 

(M,, M2 , Ma)= (sin D cos H, sin D sin H,- cos D) 

26.50 

this equation expands to give the same result as 
Equations 26.49, provided v, p, h, <P, w are over­
barred. This fact means simply that the approxi-
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mate values of these five quantities at the beacon 
must he substituted in Equations 26.49. In the 
same way, we have 

26.51 (N1, N2, N3)= (-sin H, cos H, O)QTS, 

which expands to 

26.52 

Ni= (v+ h) cos <P cos (H-w) 

N2 = (p + h) sin <P sin (H - w) 

N3-=-cos <P sin (H-w). 

Components of Rs are obtained by substitution of 
the approximate values of v, p, h, ¢, w at the 
beacon in Equations 26.52. 

42. The observation equations can also be written 
in geocentric coordinates, which are more closely 
related to the observed right ascensions and dec­
linations. In that case, the N-surfaces are spheres 
of radius r centered on the origin, and latitude and 
longitude refer not to the astronomical or geodetic 
zenith, but to the radius vector. Because Equations 
26.48 and 26.51 hold .true in any (w, ¢, N) system, 
we have merely to substituter for (v+ h) or (p+ h) 
in Equations 26.49 and 26.52 and interpret (w, </>) 
as the geocentric longitude and latitude. If com­
putation is to be done directly from Equations 26.48, 
etc., in matrix form, the appropriate S-matrix is now 

c~s~ ~ ~ } 
and QT is given by Equation 19.26 for the geocen­
tric latitude and longitude. 

SATELLITE TRIANGULATION­
DIRECTIONS 

43. Although there are other means of fixing 
positions by observations on near-Earth artificial 
satellites, we shall understand the term "satellite 
triangulation" to mean stellar triangulation using 
the satellite as a beacon, which either emits flashes 
on command or reflects sunlight. In the latter case 
of a passive balloonlike satellite, accurate timing 
is necessary and can be obtained to ensure that 
observations from two or more ground camera 
stations are automatically synchronized. If the 
same "instantaneous" flash or series of flashes is 
observed by several ground stations, the event still 
has to be timed, but less accurate timing is neces­
sary because the stars, which are required to de­
termine the orientation of the camera, move more 
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slowly than the satellite: synchronization of the 
observation to the satellite is achieved by the flashes 
the mselves. Although some tracking cameras are 
sidereally mounted so that the stars appear as point 
images while a continuously illuminated satellite 
appears as a trail, we shall consider only the case 
of rigidly fixed cameras so that both the stars and 
a continuously illuminat ed satellit e form trails on 
the photographic plate. The trails are "chopped" 
by shutter closures at accurately recorded times 
when the image of the s tar or satellite is con­
sidered to be at the break in the trail. Before the 
operation, the camera is set in altitude and azimuth 
from predicted orbital data so that the satellite 
trail will pass close to the center of the plate . The 
star trails are chopped in a distinctive manner be­
fore and after the satellite pass, and be tween passes. 
Measurement of the plate coord inat es of the breaks 
in the star trails det e rmines the orientation of the 
camera and of the photographic plate as well as a 
number of calibration parameters, and gives assur­
ance that the camera has not moved between star 
calibrations. Finally, the known orientation and 
calibration enable the direction to the satellite to 
be comput ed from plate coordinates of breaks in 
the satellit e trail. Variations in procedure do not 
seriously affect the method of reducing the ob­
servations now to be given in barest outline. For 
example, the only difference in the case of a fla sh­
ing satellit e is that measurements are made to 
point images and not to trail breaks. There are 
considerably fewer images to measure with a flash­
ing satellit e; whereas, a continuously illuminated 
satellite can be chopped all the way across the 
plate until it ceases to be illuminated by the Sun. 

Choice of Coordinate Systems 

44. The first step is to determine the direction of 
the camera axis in a specified Cartesian coordinate 
system. There are three main possibilities: 

(a) An inertial system whose z-axis is parallel to 
the axis of rotation of the Earth and whose xz-plane 
defines the origin of right ascensions. 

(b) An Earth-fixed system, as used so far through­
out this book, whose z-axis is parallel to the axis of 
rotation of the Earth and whose xz-plane defines the 
origin of astronomical longitudes. The base vectors 
in this system in our usual notation are Ar, B1

', C1
', 

as de fin ed in Chapter 12; we shall denote coordi­
nates in this system by (X, Y, Z). The relation 
between this system and the inertial system are 
described in § 26-32. 

(c) A " local" (X, Y, Z) system in which the geo-
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centric latitude and longitude of the Z-direction 
are (¢, w) and the origin in the (X, Y, Z) Earth­
fixed system is (Xo, Yo, Zu). The Y-direction will be 
northward in the plane co ntaining the Z-direction 
and the axis of rotation. The X-direction will be 
eas tward in accordance with our normal right­
handed conventions. The coordinate axes are 
accordingly (.\'', µf , v,.) in a spherically symmetric 
(w, ¢, N) syste m; by contracting Equation 12.013 
with a position vector from the new origin, we have 

26.53 

0 

s in <P 
cos <P 

=N{X, Y, i}. 

-~~s <P) (~ 
Siil cP \i) 

ln thi s application , (Xo, Yo, Zo) is the camera sta­
tion and ( w, <P) are approximately the geocentric 
coordinates of the camera station in the (X, Y, Z) 
system. However, both (Xo, Yo, Zo) and (w, ¢) are 
independent. We can consider that (w, <P) ar~ 
two fixed parameters whose values are chosen to be 
approximately the geocentric coordinates of the 
camera station in order to facilitate the application 
of corrections for as tronomical refraction. As we 
have seen in Chapter 24, these fixed parameters are 
presently based on a spherically symmetric model 
atmosphere. Indeed, this coordinate system is 
introduced solely for the purpose of evaluating and 
applyi ng refraction correct ions. 

45. The direction of the camera axis and the orien­
tation of the plate can be determined in any of these 
three systems, provided the star directions are 
transformed to the same system. If we use the iner­
tial system, updated places derived from the star 
catalogs can be used after correction for precession, 
nutation, annual and diurnal aberration, and astro­
nomical refraction; the camera orientation will be 
in terms of right ascension and declination, as also 
will be the direction to the satellit e. In this case, we 
shall have to transform to an Earth-fixed system 
before combining results from different stations at 
different times. 

46. If we use the Earth-fixed system for ca mera 
calibration, we shall h ave to convert right ascen­
sions to origin-hour angles by subtracting the local 
sidereal time at the origin, which means that we 
must be in a position to apply clock corrections 
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before we start, although the observation equations 
could be modified to include time corrections similar 
to those given in § 26-38. Alternatively, we could 
set up a temporary Earth-fixed system with an ap­
proximate sidereal time and apply a final correction 
by means of a longitude rotation of the coordinate 
system into the definitive Earth-fixed system. The 
final correction could be applied in conjunction with 
rotations for polar movement, which will be dis­
cussed in § 26-62. The camera orientation and 
direction to the satellite will be determined in terms 
of declination and origin-hour angle. There will be 
no need to transform to any other system for the 
network adjustment. 

47. If we use the "local" system, we must, in 
addition, transform the declinations D and origin­
hour angles H of the stars to azimuths a and zenith 
distances f3 in the local system by means of the 
relation 

26.54 
( 

sin a sin /3) tos D cos H) 
cos a sin f3 = NT cos D. sin H , 

cos f3 sm D 

which is easily obtained from Equation 26.53. We 
shall then obtain the camera orientation and direc­
tion to the satellite in terms of azimuth and zenith 
distance, and shall transform to the fixed-Earth 
system for the network adjustment by means of 
the inverse of Equation 26.54. As explained in 
§ 26-44(c), we must use the same approximate 
values of the geocentric coordinates (w, </>) of the 
camera station in the matrix N for both direct and 
inverse transformations. 

48. The local system is perhaps most often used 
for the star calibration. As a means of wider illus­
tration, we shall, nevertheless, start with the Earth­
fixed system and transform only the updated places 
of the stars to the local system in order to evaluate 
and to apply refraction corrections, while still 
determining the camera orientation and direction 
to the satellite in the Earth-fixed system. This 
system would require less modification if a different 
method of refraction correction is introduced later; 
but in any case, once any of the systems is fully 
understood, it is a simple matter to derive the equa­
tions for any other system. 
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The Basic Photogrammetric Equations 

49. If He, De are the origin-hour angle and declina­
tion of the camera axis, it will be clear from Equation 
12.012 that 

(

1 0 
0 sin De 
0 - cos De 

0 )(-sin He cos He 
cos De - cos He - sin He 
sin De 0 0 

gives the Cartesian coordinates of the point (X, Y, Z) 
in a system whose z-axis is the camera axis and 
whose y-axis lies in the plane of the z-axis and the 
original Cr-axis. On the photographic plate in the 
Northern Hemisphere, the y-axis joins the principal 
point (where the camera axis cuts the plate) to the 
photographic image of the celestial North Pole. 
The x- or y-axes, from which measurements are 
made on the plate, are, however, given by fixed 
fiducial marks in the camera; to effect a final rota­
tion to this plate system, we introduce a positive 
rotation K, known as the swing, about the camera 
axis by premultiplication with the matrix 

(

COS K 

-s~n K 

sm K 

COS K 

0 

Also, we change the X, Y, Z ongm to the camera 
station (Xo, Yo, Zo) by replacing the vector {X, Y, Z} 
with {(X-Xo), (Y-Yo), (Z-Zo)}. In the result, 
we shall have coordinates of the original object 
point (X, Y, Z) in the new system, and we have next 
to find the corresponding coordinates of the photo­
graphic image. If~ is the distance from the camera 
to the object point and if d is the distance from the 
internal perspective center to the photographic 
image of the point, then we must reduce the 
transformed coordinates of the object point in the 
ratio d/ ~ to obtain the coordinates of the image 
point. Finally, we can change the origin of plate 
coordinates so that coordinates relative to the 
camera axis become { (x - xo), (y-yo), /} where 
(x0 , y0 ) are the plate coordinates of the principal 
point in the new system. In an undistorted perspec­
tive, the camera axis - supposedly perpendicular 
to the plate - cuts the plate in the principal point. 
The principal distance f is the length of the per­
pendicular between the internal perspective center 
and the principal point. The final transformation is 
expressed as 

26.55 
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where the rotation matrix is given by 

(

COS K 

M = -s~n K 

sm K 

COS K 

0 

0 
sin De 

-cos De 

0 )(-sin He 
COS De - COS He 
sin De 0 

26.56 

and 

cos He 
-sin He 

0 

(d)2 (x-xo)2+ (y-yo) 2 +F 
°Li = (X-Xo) 2 + (Y-Yo) 2 + (Z-Zo) 2 • 

~) 

This equation gives (x, y, f) in the same general 
sense as (X, Y, Z) for small rotations so that x, y 
are considered to be measured on a positive print 
covering the object space. If we measure coordi­
nates on the original negative -emulsion side up-in 
relation to the same fidu cial mark as the positive 
x-direction, then we would measure (x, -y) and 
should change the sign of y before inse rtion in Equa­
tion 26.53. This rule , of course , assumes normal 
right-handed coordinate conventions. 

50. An alternative form of Equation 26.55 is useful 
in the present applic ation. If we write the expanded 
rotation matrix as 

c m12 

"'") 26.57 M= m21 m22 nz.,3 

m:11 m:12 m:i3 

and eliminate d/ ~, we have 

x-xo 

f 
y-yo 

f 
26.58 

m11(X - Xo) + mdY - Yo)+ m13(Z - Zo) 
m:n(X - Xo) + m:iz(Y - Yo)+ mdZ - Zo) 

m21(X-Xo)+ mzz(Y-Yo)+ mdZ-Zo) 
m:n(X-Xo) + m:l'!.(Y-Yo)+ m:13(Z-Zo) 

Equations 26.58 are equivale nt to the original equa­
tions, only two of which are independent, because 
the scale factor d/~ has the e ffect of reducing the 
vectors in Equation 26.55 to unit vectors, while all 
the rotation matrices are orthogonal. 

51. Equation 26.55 or Equations 26.58 are usually 
known as the projective equations of photogram­
metry or as the conditions of collinearity. In deriv­
ing these_equations as coordinate transformations, 
we have, indeed, assumed collinearity of the image 
and object points and of the perspective center, so 
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that either se t of equations represents an undis­
torted perspecti ve. Many diffe rent conventions for 
the rotation angles and coordinate systems are used 
in photogrammetric literature, including some left­
handed sys te ms, but the formulas can be reconciled 
with the normal mathe matical conventions used 
throughout thi s book by revers ing the signs of some 
coordinates and the directions of some rotations: 
in whatever order the rotations are made, the final 
matrix M, connecting the same two coordinate 
syste ms, must be the same. 

Calibration 

52. The process of ob taining the orientation of 
the camera and certain camera constants is very 
similar to the me thod of camera calibration from 
stars described, with a full bibliography, in the 
Manual of Photogrammetry. 3 

53. If the object photographed is a star of declina-
tion D and origin-hour angle H, we can write 

(

X-Xo) (r cos D cos HJ 
Y - Yo = r cos ~ sin H 

Z-Zo r sm D 

in which r is very large, but is cancelled 
Equation 26.55 for s tars is accordingly 

(

x - xo) ( cos D cos HJ 
~ y- y,, = M cos ~ sin H , 

f smD 

26.59 

by~-

with the alternative form from Equations 26.58 of 

x- xo m11 cos D cos H+m12 cos D sin H+m13 sin D 
f m:n cos D cos H + m:i2 cos D sin H + m;i3 sin D 

y -yo m21 cos D cos H+m22 cos D sin H+mz:i sin D 
-f-= m31 cos D cos H+m:i2 cos D sin H+m 33 sin D 

26.60 

54. Theoretically, these equations are soluble for 
K , De, He , Xo, Yo, f from three stars, but even then 
the solution would not be simple because the equa­
tions are not linear in the unknowns. In practice, 
we require the use of more than three stars to 
achieve precise results , and we shall have to in­
crease the number of unknowns to allow fo r the fact 
that we are not dealing with an undistorted perspec-

3 American Society of Photogrammetry (1966), Manual of 
Photogrammetry, 3d ed., v. 1, 180- 194. 
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tive. Accordingly, the next step is to form differential 
observation equations in the usual way by partial 
differentiation of Equations 26.60 with respect to all 
six unknowns and the measured (x, y). In the 
result, dx, for example, will be the measured 
x minus the computed x, obtained by substituting 
preliminary values of the unknowns in the first 
equation of Equations 26.60. We are then able to 
solve a large number of such observation equations, 
formed for a large number of stars and appropriately 
weighted, by the usual least-square processes to 
provide corrections dK, dDe, etc., to the preliminary 
values of the unknowns. 

55. We can also add other unknown parameters 
to the observation equations before solution by 
expressing their effect on the measured (x, y). For 
example, considerations of symmetry indicate that 
the radial lens distortion can be expressed as 

!::..r = k1r3 + kzr5 + k3r7 

in which !::..r is the outward displacement from a true 
perspective position, r is the radius vector from the 
principal point, and k1, kz, k3 are unknown param­
eters to be derived from the calibration. From 
similar triangles, we have 

(x-xo) (y-yo) 

The component !::..x of the distortion must, for 
example, be subtracted from the measured x to give 
the value of x which would be measured on an un­
distorted photograph. But the observed x in the 
observation equation is measured on a true undis­
torted perspective. Accordingly, if we insert the 
actual measured x in the observation equation, we 
must subtract 

!::..x = (x - xo) (k1r2 + kzr4 + k3r"') 

from the (observed minus computed) x in the origi­
nal equation, and similarly must do the same for y. 
This relation adds three unknowns to each observa­
tion equation. 

56. In addition to the use of three parameters to 
determine the radial lens distortion, it is usual in 
current practice to introduce parameters to allow 
for 

(a) nonperpendicularity of the coordinate axes 
and other sources of error in the plate-measuring 
instrument: 

(b) difference in scale in the x- and y-directions 
arising from emulsion creep, which is equivalent to 
the determination of two principal distances; and 

(c) lens deviation or decentering, nonradial dis­
tortion (involving five extra parameters), and cor-
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rection for nonperpendicularity of the optical axis 
and the plate. 

Residual Atmospheric Refraction 

57. We have not yet included any correction to 
the apparent places of the stars for astronomical 
refraction. One possibility is to convert the apparent 
places from hour angle and declination to approxi­
mate azimuth and zenith distance by Equation 
26.54, using approximate values ¢, w of the geo­
centric latitude and longitude of the camera station. 
The zenith distances are then corrected for refrac­
tion from tables, and the corrected star positions 
are converted back to hour angle and declination, 
using the same values of¢, w, before insertion into 
Equations 26.60 where H, D would then be held 
constant during differentiation. Errors in the 
assumed values of ¢, w, affecting only the refrac­
tion correction through the corresponding error in 
zenith distance, are of little consequence. However, 
it is usual in current practice to determine residual 
refraction parameters-in much the same way as 
lens distortion and other parameters - from the 
solution of the calibration observation equations. 
For this purpose, we simply combine Equations 
26.54 and 26.59 to give 

~ (~=~::)=MN (:~: : ::: :) 
f cos f3 

26.61 

in which the rotation matrix is now 

(

n11 

MN= n21 

n:i1 

::: :::)' 
n:i2 n:i3 

whose components are obtained from Equations 
26.56 and 26.53 and contain K, De. He, w, ¢. Equa­
tions 26.60 become 

x-xo n11 sin a sin {3+n12 cos a sin {3+n1:i cos f3 
f = n:ll sin a sin f3 + n:i2 cos a sin f3 + n:i:i cos f3 

y- Yo_ n21 sin a sin f3 + n22 cos a sin f3 + n23 cos /3 
f- n:ll sin a sin f3 + n:i2 cos a sin f3 + n:i3 cos f3 
26.62 

ln forming the observation equations by differen 
tiation, we hold w, ¢, a fixed and equate df3 to th 
expression for the refraction correction. If we insert 
apparent zenith distances into Equations 26.6 
to derive the computed (x, y), df3 will be the (tru 
minus apparent) zenith distance, which is the sam 
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as the normal convention for refraction. The sign 
of df3 is of little importance, however, because a 
wrong sign would simply result in reversed signs 
for the parameters in the refrac tion equation, which 
we shall now consider. 

58. The expre ssion for astronomical refraction, 
introduced by Hellmut Schmid, is 

T1i2W[K1 tan te+ K'!. tan=1 te 
+ K:i tan-~ te + k~ tan 7 te] 

where the refraction is in seconds of arc, and 

T= t/273.16, 

t =observed temperature at camera station 
in °C., 

W =Pol (760T2), 

Po= observed pressure at camera station 
in mm. , Hg. , 

tan ()= 0.1147618T1i'2 tan {3 , 

{3= apparent zenith distance . 

The formula is to some extent empirical, but does 
follow Garfinkel's theory (§ 24-67) by using a modi­
fied zenith distance in the classical expansion in 
powers of the tangent. In fact, the formula fits 
Garfinkel's model very accurately for zenith 
distances of less than 75°. In using the formula for 
satellite triangulation, the four parameters K1, K'!., 
K:i. K~ are determined at each calibration from the 
observation equations. 

Direction to Satellite 

59. The camera calibration provides data for 
correcting the (x, y) coordinates of each satellite 
image through the now-known parameters for vari­
ous distortions, etc., listed in § 26-55 and § 26-56, 
and for atmospheric refraction. Also, a correction 
should be applied for differential aberration, that is, 
for the traveltime of light to the camera station from 
the satellite in relation to the stars. In addition, the 
parallax correction (Equation 24. 72) for differential 
refraction has to be applied in a sense opposite to 
the astronomical refraction. Finally , a correction is 
applied for phase angle, arising from unsymmetrical 
illumination of a passive satellite by the Sun. 

60. In current (1968) U.S. Coast and Geodetic 
Survey practice on the worldwide satellite triangu­
lation, the next step is to reduce all the satellite 
images, which are exposed (or chopped) at equal 
intervals of time on each pass, to a single equivalent 
or "fictitious" image. Other organizations naturally 
use somewhat different procedures, especially 
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whe n there are fewer images, but the principles are 
much the sam e. The reduc tion to a single "fic ti­
tious" image is done by fitting the correc ted x- and 
y-coordinates of the images separately to poly­
nomial fun ctions of time, usually of the fifth order. 
A time is then selected for all simultaneous obser­
vations of the satellite involving two or more plates, 
so that the satellit e image at that time would have 
been formed as near as possible to the center of 
each plate. The actual (x, y) of the satellite at this 
selected time is then co mputed from the polynomial , 
after applying clock corrections and after adding 
the time that light takes to travel from the satellite 
to the camera. The result is equivalent to a single 
meaned position of the satellite, simultaneously 
observed from two or more ground stations, at a 
given time. 

Net Adjustment 

61. The origin-hour angle H and declination D of 
the satellite at this mean position may now be 
computed from the inve rse of Equation 26.59, 
that is, 

(~: : ~ ~~~ Z)=MT (~;=;~~j~) 
sin D f/d 

26.63 

where we have d2 = (x-x0 )
2 + (y-yo) 2 +f2, using, 

of course, the calibrated values of K, He, De, Xo, 
yo, f lf the differe nce in scale for x and y is signifi­
cant, (x- xo) and (y-yo) could first be corrected 
to a m ean/ 

62. We have so far worked in coordinate systems, 
oriented with respect to the actual "instantaneous" 
pole or rotation at the time of observation. If polar 
move ments, as discussed in § 21-55, are found to 
be significant, the coordinate system could be 
c hanged at this s tage by applying the appropriate 
rotation matrices to the left-hand side of Equation 
26.63, or by applying the transpose of these rotation 
matrices to the right-hand side, with consequent 
modification of MT. 

63. Explicit formulas in terms of the components 
of the original matrix M of Equation 26.57 are 

t H 
m 1 '!.(x - Xo) + m'!.2(y- Yo)+ m:dfl an =~~~~~~~~~~~~~ 
m11(x-xo)+ m21 (y-yo)+ m31(fl 

D . HX mdx-xo)+mdy-yo)+m:dfl tan =sm 
m12(x- Xo)+ mdy-yo) + m:12(fl 

_ H X m13(X - Xo) + m23(y- yo)+ m33(j) -cos . 
m11(x- Xo) + m21(y-yo) + m31(fl 

26.64 
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64. Observation equations for the ne twork can 
now be formed exactly as, for example, in § 26-36 
a nd combined with duly weighted equations for 
such measured distances, etc., as are to be include d 
in the adjustment of the network. 

65. An alternative method is to form observation 
equations for the net adjustment by differentiating 
Equations 26.58 with respect to x, y, X, Y, Z, 
Xo, Yo, Zo, holding all other quantities fixed by the 
calibration and thus deriving corrections to initial 
approximate positions of the satellit e (X, Y, Z) and 
of the ground station (Xn, Yo, Zo). Corrections to 
the satellite position are not, of course, required for 
triangulation purposes and can be e liminated during 
the solution. 

66. The choice between the two methods does not 
involve any question of principle; we are e ntitl ed to 
consider that (H, D) are observed as much as the 
averaged (x, y). A decision will, no doubt, rest on 
what programs are available; if, for example, pro· 
grams designed primarily for photogrammetric 
purposes are available, the choice will probably fall 
on the second method. 

SATELLITE TRIANGULATION ­
DISTANCES 

Observation Equations 

67. If electronic distance measureme nt s are made 
to the satellite from ground stations, the observation 
Equation 26.08 can be used in any coordinates; we 
have sim ply to assume initial coordinates for the 
satellite and for the ground station, and then use 
these coordinates to compute compone nt s of the 
unit vector joining the two ends of the line in the 
same system. In Cartesian coordinates, for example, 
if quantities at the satellite are overbarred, we have 

(Observed Minus Computed) Distance 

26.65 

= (dx-dx) (x-x)/s+ (dy-dy) (y-y)/s 

+ (dz - dz) ( z - z) Is. 

68. To derive the observation equations in any 
(w, cp, N) system, we have, for a unit vector in azi· 
muth a, ze nith distance {3 , 

Ir = Ar sin a sin {3 + /J-r cos a s in /3+ v,. cos f3 
so that, using Equations 25.13 a nd 19.32, we can 
write 

s{li, 12, 13} = ST{s sin a sin {3, s cos a sin {3, s cos /3} 

26.66 = STQ [ {x, y, z} - {x, y, z}]; 
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by interchanging the uverbars and by reversini 
the sign of s, we have for the components at the 
satellite 

26.67 

In any (w, cp, N) coordinates, Q is obtained fron 
Equation 19.26. In geodetic coordinates, we sub 
s titut e Equations 25.15 for (x, y, z) or use Equation: 
25.18 and 25.19. The S-matrix is given by 

(

(v+h)cos cp 0 0) 
S=ST= 0 (p+ h) 0 . 

0 0 1 

69. In geocentric coordinates, which are ofte1 
the most suitable in dealing with satellites , we hav1 

x=r cos cp cos w 

y= r cos cp sin w 

z=r sin cp; 
the S-matrix is given by 

s~s'~(°~s ¢ 

0 

r 

0 

70. In some syste ms , s uch as SECOR, only di r-o 
tance measure me nts are made and must be mad 
simultaneously from a numbe r of ground station 
Fur example, if simultaneou ~ me asureme nts ar 
made from four ground stations and the pos itio 
uf three ground stations are known, we have unl 
four observation equations and six unknowns. 
observations are ma de from the same ground st 
tions to another, wide ly diffe re nt position of th 
satellite, we add four equations and only thre 
unknown s.,.... that is, corrections to the secon 
position of the sate llite - so that the proble m l 

fixing the position of the unknown ground statio 
becomes soluble from three satellite positions. I 
practice, many observations are made over a Ion 
period to many satellite positions. 

Net Adjustment 

71. Observation equations for dis tances can b 
combined with observation equations for direction, 
only if simultaneous measureme nts are made to th 
same position of the satellite. However, it is po, 
s ible to form normal e quations separately for th 
direction and distance measurements. The two set 
of normal equations could be appropriately weighte 
and solved toge ther, but the extent to which such 
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combined adjus tment could be done without vitiat­
ing the more accurate measurements would re­
quire statistical study in each case. 

72. If distances are measured in conjunction with 
directions, the sa me coordinate system would have 
to be used for both sets of observation equations. If 
distances are measured separately, there would be 
some advantage in using the simpler Cartesian form 
of the observation equations. Simultaneous meas­
urement of both distance and direction would give 
the comple te vector to the satellite and, by sub­
traction, would give the complete vector be twee n 
ground stations, which could be treated as an obser­
vation without de riving corrections to the satellite 
position. Each such ground vector would provide 
two observation equations for direction and one 
obse rvation equation for distance. 

LUNAR OBSERVATIONS 

73. We can fix positions on the Earth by photo­
graphing the Moon against a background of stars, 
in much the same way as by photography of any 
other Earth satellit e. One difficulty is that th e stars 
and the Moon require different exposures, but this 
difficulty has been successfully overcome by the 
Markowitz moon-camera, designed for and widely 
used during and following the Inte rnational Geo­
physical Year 1957-58. The camera is equatorially 
mounted to hold the exposure of the stellar back­
ground. Moonlight is reduced by a parallel-plate 
filter which can be rotated, in much the same way 
as the parallel-plate micrometer of a precise 
surveying level, to hold the photographic image of 
the Moon fixed in relation to the stars. The time of an 
observation is considered to occur when the rotating 
filter introduces no relative displace me nt betwee n 
the Moon and the stars. Another difficulty arises 
from irregularities in the Moon's limb; these irregu­
larities have always limited the accuracy of geodetic 
observations, such as the determination of longitude 
from lunar occultations of stars. Improved knowl­
edge of the topography of the Moon may before long 
enable us to correct these irregularities; meanwhile, 
the Markowitz system reduces the effect of these 
irregularities by obtaining the right ascension (or 
hour angle) and declination of the Moon's ce nte r 
from photographic measurement of a large number 
of stars. Apart from the fact that the Moon costs 
nothing to launch, a considerable advantage of 
the system is that the elements of the Moon's orbit 
are accurat ely known ; this advantage makes simul­
taneous observation unnecessary, although the 
observation must be accurate ly timed. Photography 

306-962 0-69-18 
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of the Moon in at least two different positions from 
the same station will fix the position of that station 
in a ll three coordinates, relative to the center of 
mass of the Earth. At this time (1968), the results 
will be of lower accuracy than those obtainable 
from artificial satellites, but thi s fact may not he 
always true. 

74. T he Ephemeris 4 gives the right ascension of 
the Moon. We shall reduce the right ascension to 
origin-hour angle by subtracting the local sidereal 
time at the origin, which may, of course , be one of 
the points we propose tu fix. The origin-hour angle 
will be the lon gitude w in a geocentric system whose 
zero of longi tude is the plane parallel to the axis 
of rotation of the Earth and paralle l to the astro ­
nomical zenith at the origin. The listed declination 
of the Moon will be the same as its geocentric lati­
tude <;;. In addition, the Ephemeris gives us the 
para llax rr of the Moon's cent e r: the parallax he ing 
related to the radius vector f from the ce nter of 
mass of the Earth by the for mula 

26.68 f= d cosec 1T 

in whic h d 1s an assumed equatorial radius of the 
Earth. 

75. As usual, we start with initial approximate 
values of (w, <;;, r) for the Moon at the time of 
observation and also of (w, cp, r) for the ground 
station in the same geocentric (spherical polar) 
coordinate system. The origin of longitudes w is 
the plane containi ng the axis of rotation and the 
ast rono mical zenith at the station selected as origin. 
The approximate values (w, ¢, f) are used to find 
comput ed values H, D, s of the origin-hour angle, 
declination, and le ngth of the line joining the ground 
station to the Moon's center from the equations 

s cos D cos H = r cos ¢ cos w - r cos <P cos w 

s cos D sin H = r cos ¢ sin w - r cos <P sin w 

26.69 s sin D = r sin ¢ - r sin ¢, 

obtained by projecting the line on the three Car­
tesian axes. S ubtraction of these computed values of 
H, D from the values obtained by measurement of 
the photographic plate gives us the dD, di/ of the 
observation Equations 26.42 and 26.43 in which we 

mu st use the geoce ntri c components of the auxiliary 

1 St>t', for examplt', U.S. Nava l Observatory (1966), The Ameri­
rnn Ephemeris mu/ .Yautical A Ima nae for th e Year 1968. 11r Hoyal 
C reenwi«h Obst>rvatory (1966), Th e Astron omical Eflhemeris. 
Ht>ginning with the e dit ions for 1960. lw th puhlil'ations are u11i ­
fit>d, hut issued se parate ly as a joint publication by tli e l lnitt>d 
Kingdom and the Unit ed States. 
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vectors, as given by Equations 26.49 and 26.52, with 
r= (v+h) = (p+h). The final observation equa­
tions will be in the form 

(Observed Minus Computed) Declination 
of the Line Joining the Ground Station to 
the Moon's Center 

26.70 

= - M, dw/s - M 2d<f>/ s - M:1dr/ s 

+ M ,dw/s + M2d</>/s + M:1dr/s 

(Observed Minus Computed) Right Ascension 
(or Origin-Hour Angle) of the Same Line 

= N, sec Ddw/s 

+ N2 sec Dd<f>/ s + N:i sec Ddr/ s 

-N, sec Ddw/s 

- N2 sec Dd<f>/s- Ni sec Ddr/s. 

26.71 

It is assumed that the local sidereal time at the 
origin for the instant of observation is accurately 
known so that in this case there is no need to in­
clude a time correction in the second observation 
equation. 

76. If the position of the Moon really were ac­
curately known at the instant of observation, we 
could put dw, d<f>, dr equal to zero in these equa­
tions. Unfortunately, we cannot be sure that the 
Universal Time of the observation is exactly the 
same as the Ephemeris Time used as an argument 
in the Lunar Ephemeris; there is a difference, which 
varies slowly , between the two times. The simplest 
way to overcome the diffic ulty is to envisage a 
correction dt to the time of observation, to find 
dw/dt, etc., from the tabular differences, and to 
replace dw, etc., in the observation equations by 
(dw/dt) dt. This procedure reduces the number of 
unknowns by two. The four unknowns dt, dw, d<f>, 
dr can be determined from observations to two 
widely separated positions of the Moon, provided 
dt can be taken as the same for both. In practice, 
the Moon will be photographed in many positions 
from several ground stations; it may also be pos­
sible to derive corrections to the orbital e le ments , 
or to the posit ion of the Moon's cente r , by expressing 
dw, etc., in terms of these eleme nts. 

77. Anot her difficulty arises from the indefinite­
ness of the constant d in Equation 26.68. However, 
we can take d as unity, thereby reducing the scale 
of the whole model so that we finally determine the 

Mathematical Geodesy 

radius vector of a ground station as r/ d. We must 
also start with an approximate value of r/d, then s 
in Equations 26.69 becomes s/d. A measured ter­
restrial distance between ground stations would 
then serve to scale the model and to determine the 
constant d. 

LINE-CROSSING TECHNIQUES 

78. As a final example of the formation of differ­
ential observation equations, we shall consider such 
systems as hiran where slant radar ranges are 
measured from two ground stations (S,, S2) to an 
aircraft (A) flying a straight-and-level course across 
the line joining the two ground stations, which are 
usually not intervisible. Continuous measurements 
are made during the crossing; the minimum sum 
of the two ranges, corrected for refraction, is used 
to determine the distance between the two ground 
stations. It is assumed in the usual method of 
reduction that the minimum position occurs when 
the plane S 1AS2 is vertical at A. The limitations of 
this assumption can be seen at once by considering 
the aircraft course as tangential to a prolate spheroid 
whose foci are Si, S2. The sum (S,P+ PSJ is the 
same for any point P on this spheroid and is less 
than for any point Q on the straight aircraft course 
external to the spheroid, so that the minimum posi­
tion occurs at the point of contact of the course 
with the spheroid. The usual assumption is accord­
ingly justified only if (a) the aircraft course is per­
pendicular to S 1S2 (this situation is usually not the 
case), or (b) the aircraft crosses in the midway 
position. The problem can, however, be solved 
simply and rigorously in three dimensions with­
out making any such assumptions. 

79. We shall denote values of quantities at the 
aircraft position A by an over bar, and at the ground 
station S2 by a double ove rbar. The coordinates of 
Si, A, S2 are then xr, .xr, xr. Unit vectors in the 
directions S 1A, AS2 are pr , qr, and the unit aircraft 
course vector is ar. Parallel vectors at the three 
points are denoted by appropriate overbars; for 
example, parallels to the course vector at Si, A, S2, 
respectively, are ar, a/, a/. The slant ranges S,A, 
AS2, correc ted for refraction, are u, v. 

80. Equation 26.08 for the variation of the two 
slant ranges is then 

26.72 

26.73 

du= p,.dxr - p,.dxr 

dv = (j,.d'X,r- q,.d.xr. 



Internal Adjustment of Networks 

To establi sh the minimum position, we first assume 
that Si. S2 are fixed and that the aircraft alone moves 
by dx/, while dxr, dxr are zero. At the minimum posi­
tion , we have also du+ dv = 0 so that the minimum 
condition is 

26.74 

But dxr is proportional to the contravariant course 
vector ar, which r educes the minimum condition to 

26.75 

where P and Q are the angles that the airc raft 
course makes with S1A and AS2, respectively. The 
equality of these angles is the correct minimum 
condition. 

81. Next , we suppose that the aircraft course 
ar re mains fixed , and we see k corrections dxr, 
di/, dx/ to initial approximate positions of S1, A, S2. 
The correction positions of the three points must 
satisfy the minimum condition, Equation 26. 75. 
The c hanges in cos P, cos Q arising from dxr, 
dir, dxr are given by 

u X {final (cos P) minus initi al (cos P)} 

= ud( cos P) = ud(arpr) = uard(pr) 

=ar(dxr -dxr)-(cos P)du 

where we have used Equation 26.07 and 

v X {final (cos Q) minus initial (cos Q)} 

= vd(cos Q) = vd(a,.qr) = vard(qr) 

=ar(dxr-dxr)-(cos Q)dv. 

Subtraction of these two equations, after equating 
the final values of cos P and cos Q to sati sfy the 
minimum condition , gives 

initial (cos Q) minus initial (cos P) 

26.76 1 - 1- du P dv Q -- UrlXr __ COS +-COS 
v u v 

in which cos P, cos Q are initial values computed 
from the initial approximate coordina tes and du 
(or dv) is the observed minus the computed value of 
u (or v). The P, Q, u , v and the compone nts of the 
vectors need to be accurately computed even though 
the aircraft course is only roughly known. Equations 
26.76, 26.72, and 26.73 can be used either as con­
dition equations or as observ ation equations in 
conjunction with any other measure ments which 
may have been made to connect 51, Sz. If one e nd 

259 

of the line is fixed, for example 51 , then we have 
dxr = 0, a nd the equat ions are somewhat simplified. 

82. Although the equations are true in any co­
ord inate system, provided components of the vectors 
in the same system are used, it will be usual to 
work in geodetic coord inates. Azimuths, zenith 
distances, and distances between the initial approx­
imate positions of the ground stations and the air­
c raft are computed from Equations 25.18. We can 
then expand Equations 26. 72 and 26. 73 exactly as 
in Equation 26.30. If the azimuth of the level air­
c raft course is A, then we have 

a1 =(ii+ h) cos ;{> sin A 
az = (p + h) cos A 
a3=0, 

and components of the parallel vectors a,., ar are 
found as ofte n before from Equation 19.39. Lastly, 
if a, /3 are the azi muth and zenith distance from 
S1 to A and if a, i3 refer as usual to the same direc­
tion at A in the same sense, then we have 

cos P= jTar= sin A sin a sin "i3 +cos A cos a sin "i3 
26.77 =sin "i3 cos (A - a), 

with a similar equation for cos Q. 

83. If the on ly measure ments connecti ng the 
grou nd stations are aircraft crossings, it will be 
imposs ible to determine corrections to geodetic 

heights, and the te rms containing dh' dli' dh must 
be dropped. In a simple trilateration, for example, 
where a third ground point is to be fix ed from two 
known points, there would be only the three Equa­
tions 26. 72, 26. 73, and 26. 76 for each of the two 
sides; these s ix equat ions could do no more than 
determine corrections to the latitudes and longi­
tudes of the third point and of the two aircraft posi­
tions. Even though we do not require the aircraft 
positions, corrections to them must, of course, be 
le ft in the equations. The result is not very sensitive 
to he ight changes, but the omission of the dh -terms 
must to some extent affect the determination of 
latitude and longitude; thi s omission must be ac­
count ed as a weakness of the met hod. 

84. If the initial approximate positions are within 
15 seconds of the truth , and thi s degree of approxi­
mation can usually be arranged by rough spherical 
computation and by placing the aircraft along the 
line in simple proportion to the measured ranges, 
then a s ingle solution provides results correct to 
about 2 feet. In a test case of a si ngl e trilateral, 



260 

deliberately rough initial values of latitude and 
longitude of the unknown ground station proved 
to be, respectively, 8 minutes and 5 minutes adrift, 
and the initial aircraft position was 3 minutes adrift. 
The first solution averaged about 14 seconds adrift, 
the largest difference being 4 7 seconds in the longi­
tude of the unknown ground station. The second 
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solution gave results within 0.025 second of correc 
values. Movements of the aircraft are not very sensi 
tive. Equation 26. 76 is soon satisfied; when tha 
situation occurs, the corrections to the aircraf 
position have the same coefficients in the remainin1 
equations because of Equation 26. 74, and thus car 
be eliminated. 



CHAPTER 27 

External Adjustment of Networks 

CHANGE OF SPHEROID 

1. If we retain the same origin a nd the same 
Cartes ian vec tors, it is ev ide nt that the (x, y, z) 
coordinates of all points in space will be unchanged. 
To derive the changes in geodetic coordinates result­
ing from c hanges da , de in the major axis and in the 
eccentricity of the base spheroid , we will need to 
differe ntiate Equations 25.15 for dx = dy= dz = 0. 
Because we have tan w = y/x, there will be no change 
in longitude, and so we will need to differentiate only 

(x 2 + y 2 )1f2 = (v + h) cos </> and 

27.01 z = (e2v + h) sin <f>, 

with x, y, z constant. In the last equation , e is the 
complementary eccentricity give n by e2 = 1 - e2 • 

2. From Equations 18.55 and 18.54, we have 

iJv/aa = v/a 

av/de= (e/e2 )p sin2 <f>; 

from Equations 22.16, 22.17, and 22.18, we have 

iJ(v cos <f>)/iJ<f> =- p sin <f> 

()(v sin </> )/ iJ<f> = p cos </>/ e2 

iJv/ cl</>= (v - p) tan <f>. 

Diffe rentiation of Equations 27.01 the n gives 

(p + h) sin <f> d<f>- cos <f> dh 

27.02 =(v/a) cos <f> da +(e/e2 )p sin2 <f> cos <f> de 

and 

O={e2(v-p) tan <f> sin <f>+ e2v cos <J>+h cos <f>}d<f> 

+sin</> dh + (v/a)e2 sin <f> da 

+{ep sin3 <J>-2ev sin <f>}de. 
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The last equation, wi th the help of Equations 18.54 
and 18.55, simplifies to 

(p + h) cos </> d<f> +sin </> dh 

=-(v/a)e2 sin <f> da+(e/e2 ) (p cos2 <J>+ve2 ) sin <f> de; 

27.03 

Equations 27.02 and 27.03 are readi ly solved to give 
finally 

dw = O 

(p+h)d<f> =(e2v/a) sin <f> cos <f> da 

+ (e/e2 )(p + ve2
) sin </> cos </> de 

27.04 dh =- (a /v )da+ev sin2 <f> de. 

If preferred, we can include the flattening 

f= (a-b)/a= (1-e) 

instead of the eccentricity by using the re lation 

df= (e/e)de. 

CHANGE OF ORIGIN 

3. Next, we introduce a c hange (dXo, dYo, dZo) 
in the Cartesian origin , involving a corresponding 
translation of the base spheroid in the geodetic 
coordinate system. The effect will be the same if 
we keep the Cartesian ori gin and the spheroid fix ed 
and if we alter the Cartesian coordinates of each 
point in space by (-dX.o, - dYo, -dZo). The cor­
responding changes in the geodetic coordinates 
could then be found by differentiating Equations 
25.15, with a, e fixed, and by solving the resulting 
three equations for dw. d<f> , dh. However, we can in 
this case obtain directly the c hanges in geodetic 
.coordinates from res ult s already given. 
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4. We have, for example, 

aw aw aw 
dw=-- dXo-- dYo-- dZo ax ay az 

=-A 1dXo-B 1dYo-C1dZo 

where A1, B1, C1 are the I-components of the Car­
tesian vectors in geodetic coordinates; similarly, 
we have 

d<f> =-A2dXo - B2dYo- C2dZo 

dh =-A3dXo- B3dYo - C3dZo. 

Using the notation of Equation 19.36, we then have 

{dw, d<f>, dh } =- (QTR)T{dX0 , dYo, dZo} 

27.05 =-RTQ{dX0 , dY0 , dZ0 }, 

an equation which would be true in any (w, <f>, N ) 
system, with the appropriate values of the matrices 
from Equations 19.26 and 19.31. In geodetic co­
ordinates, we have 

RT~R~(l/ {(v+~ cos</>} l/(p:+h) ~} 
expansion of Equation 27.05 gives 

(v+h) cos <P dw=(sin w)dXo-(cos w)dYo 

27.06 

(p + h)d<f> =(sin <P cos w)dXo+(sin <P sin w)dYo 

- (cos <f>)dZo 

dh =-(cos <P cos w)dXo 

-(cos <P sin w)dYo- (sin <f>)dZo. 

If there is both a change of spheroid and a change 
of origin, these first-order results should be added to 
Equations 27.04. We may write Equations 27.06 
in matrix form as 

{(v+h) cos <P dw, (p+h)d<f>, dh} 

27.07 =-Q{dXo, dYo, dZo} 

where Q is given by Equation 19.26. If the new 
spheroid is to be parallel to the old at the origin, 
then we have dw = d<f> = 0 in the observation Equa­
tion 27.07 for the origin. 

CHANGES OF CARTESIAN AXES 

5. It has been assumed throughout this book that 
all (w, <f>, N) systems -in particular, the astronom­
ical and geodetic systems - share the same Car­
tesian axes, which in the geodetic applications are 
physically related to the axis of rotation of the Earth 
and to the astronomical meridian at a fixed datum 
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or ongm. The conditions to ensure common 
Cartesian axes at the origin of a survey have been 
investigated in § 19-13 through § 19-15; this 
situation will be continuously preserved if frequent 
astronomical observations are made throughout a 
network which has been adjusted by using the 
observation equations developed in § 26-12. If 
this procedure has been followed, there should be 
no need to consider reorientation of the Cartesian 
axes. Unfortunately, many surveys of considerable 
extent have not followed this rigorous procedure. 
At most, a few Laplace azimuths have been used in 
the adjustment; as we have seen in § 19-14 and 
§ 19-15 , this procedure is not sufficient to ensure 
correct orientation. Whenever it becomes necessary 
to join two such surveys or to adjust them into a 
correctly oriented system, we should include orien­
tation parameters to allow for a change of Cartesian 
axes and for a corresponding change in the orienta· 
tion of the base spheroid of the geodetic coordinate 
system. 

6. Large rotations of the coordinate axes must be 
made in a prescribed order to provide unique 
results, although the many ways of prescribing the 
order can lead to some confusion. For our purposes. 
it would be advantageous to adopt the most common 
definition of Euler's angles because these angles 
are used in celestial mechanics and in satellite 
geodesy. 1 Unfortunately, two of the three Euler 
angles are indistinguishable in the case of small 
rotations which concern us in the present appli · 
cation. On the other hand, small rotations can be 
made in any order and compounded as vectors so 
that we have no need to specify the order. Never· 
theless, we prescribe an order required for large 
rotations so that the results may be used for othe1 
applications. 

7. We begin with one set of Cartesian axe 
(Ar, Br , er) and derive others (Ar , J3r, l>) by 
right-handed rotations, which are positive if clock­
wise, when looking outward from the origin along 
the positive direction of the axis of rotation, as 
follows: 

First, a rotation of w1 about the x-axis, Ar, 
Second, a rotation of Wz about the new y-axis, and 
Third, a rotation of W3 about the new z-axis. 

The combined effect of these three independent 
rotations is described by the following product 
matrix, which premultiplies the initial vectors 
(Ar, Br, Cr) or the initial Cartesian coordinate 
vector (x, y, z) to obtain the final vectors (Ar, jjr, Cr) 
or (.i, y, z). The product matrix is 

1 See Kaula (1966), Theory of Satellite Geodesy, 17-18. 
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27.08 
(

cos w3 

M = - si~ W3 

sin W :i 

COS W3 

0 

0 

sino w1), 

COS W1 

CUS W1 

-smw1 

which expands to 

27.09 
( 

cos w2 co~ w3 (cos w1 s in W3 +sin w1 s in w2 cos W3) 

- cos w2 sm w3 (cos w1 cos W3 - s in w1 sin w2 s in W3) 

sin w2 - sin W1 cos w2 

(sin w1 s in W3 - cos w1 s in w2 cos w3) ) 

(s in w1 cos W3 +cos w1 sin w2 sin W:1) . 

COS W1 COS W2 

For small rotations, the expanded matrix reduces to 

27.10 

It may be noted that M is an orthogonal matrix 
because it s three component matrices are orthogo­
nal, so that the inverse transformation is given by 
the transpose MT. The approximate matrix N is 
not orthogonal, but the inverse will, nevertheless, 
be given by NT, which is the ap proximate form of 
MT. Because of the antisymme tri c properties of N, 
the transpose NT is equivalent to rotations (-w1 , 

-Wi, -w3) which restore the original situation. 

8. Next , we have to find the changes in the 
geodetic coordinates of a point (w, <f>, h) resulting 
from these rotations. If the new Cartesian coordi­
nates of the point are (i, y, z), we have 

{ x, y, z} = N { x, y, z} ; 

the change in Cartesian coordinat es is given by 

{dx, dy, dz} = N{x, y, z}-l{x, y, z} 

27.11 =No{x, y, z} 

where I is the identity matrix and 

( 

0 W 3 

No= -w3 0 

W2 -w1 

-w2) 
W1 • 

0 
27.12 

But , from Equation 27.07 in which the changes of 
coordinates of the point are {-dXo, -dYo, -dZ0 }, 

we have 

{(v+h) cos <f> dw, (p+h)d<f>, dh} = Q{dx, dy, dz} 

27.13 = QN0 {x, y, z}. 

Expanding and substituting for the Cartesian 
coordinates from Equations 25.15, we have aft e r 

some simplification 

(v+h) cos <f> dw = -w:i(v+h) cos <f> 

27.14 

+ (w1 cos w+w2 sin w) 

X ( e2v + h) sin <f> 

(p+h)d<f>= (w2 cos w-w1 s in w) 

X (h+a 2 /v) 

dh = (w2 cos w-w1 s in w) 

X ( e2v sin <f> cos <f> ), 

which are in a suitable form to add to Equations 
27.04 and 27.06 in those cases where there are 
changes in the shape and s ize of the base spheroid, 
in the Cartesian origin, and in the orien tation of't he 
Cartesian axes. 

9. An interesting alt ernative way of de riving the 
same result is to s tart with the equation 

{A,. , B,. , C,.} = N{A,., B,., C,.} 

or with the equation 

{ (A,.-A,.), (B,.-B,.), (C,.-C,.)} = N0{A,. , B,. , C,.} 

= NoQT{A.,., µ, ,.. v,.} 

from Equations 12.013 and 19.23. If we contrac t this 
last equation with a position vector pr and use 
Equation 12.169, we have 

{ dx . dy, dz} = N0QT {(sec <f> )(<Jp/flw ), <Jp/fl<f>. p} 

in which p is the perpendic ular from the origin to 
the tangent plane to the N-surface (or Ii-surface in 
geodetic coordinates) through the point under con­
s ideration. Using Equation 27.07, we have 

{(v+h) cos <f> dw , (p+h)d<f>. dh} 

27.15 =QNoQT{(sec <f>)(flp /dw), <Jp/fl<f>, p} 

in which QN0QT cont ains only the three rotation 
angles and the latitude and longitude, while the 
las t vector contains the spheroidal elements. From 
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Equations 12.170, etc., in geodetic coordinates, 
we have 

27.16 

p = (v + h) cos2 </> + ( e2v + h) sin2 </> 

= (h + a 2/v) 

ap/a<t>=-e2v sin</> cos</> 

ap/aw = o. 
Equation 27 .15 then directly expands to Equations 
27.14. 

CHANGE OF SCALE 
AND ORIENTATION 

10. We have now dealt with all possible c hanges 
in the basic geodetic coordinate system and with 
the effect of such changes on the coordinates of all 
points in a network. In addition to the initial choice 
of a discordant system of geodetic coordinates, 
the network itself may have systematic errors of 
scale and orientation for which an allowance should 
be made before we adjust the network to adjacent 
work or into the fixed system of a worldwide tri­
angulation. Any discrepancies in the coordinates 
of common point s should then be due to random 
error, which can be reduced in a subsequent adjust­
ment by least squares, provided we have e nough 
common points. 

11. Most of the systematic error in scale of a 
network could be eliminated by altering the size 
of the base spheroid in the geodetic coordinate 
system, that is, by evaluating the parameter da in 
observation equat ions which include Equations 
27.04. However, this procedure would vitiate the 
height dimension and would result in some inac­
curacy even in a two-dimensional adjustment which 
ignores geodetic heights, especially if the network 
covers a considerable area. The size of the base 
spheroid will almost always be known, and the 
effect of a change da to another spheroid of known 
size can be evaluated and removed by means of 
Equations 27.04 before the formation of the obser­
vation equations. In much the same way, the effect 
of a systematic orie ntation error in the network 
could be concealed by evaluating false values of the 
rotation parameters wi, w2 , W3, but this procedure 
would be even more unsound. We shall accordingly 
investigate separately the effect of systematic error 
of scale and orie ntation within the network by hold­
ing the origin fixed, or by holding some central 
point of the network fixed if there is no origin. We 
shall choose as parameters (a) a proportional 
scale change ds/s, where s is the straight-line dis-
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tance of the point under consideration from the 
origin, and (b) changes da0 , df3;i in the azimuth and 
zenith distance at the origin of the straight line to 
the point under consideration. The parameters 
ds/s, dao, df3o will, of course, be given the same 
values for all lines radiating from the origin. The 
straight-line distances, azimuths, and zenith dis­
tances of all points from the origin are first computed 
from Equation 25.18 in which the unbarred point is 
the origin, and are used in the coefficients of the 
observation equations that we shall now form. 

12. We could simply differentiate Equation 25.18, 
with the unbarred origin and therefore the matrix Q 
fixed; we could then obtain three equations con­
necting ds/s, da = dao, d/3 = df30 with changes 
dw, d<f>, dh in the geo<;fetic coordinates of the point 
under consideration. These_ thr~e equations could 
then be solved to give dw, d<f>, dh explicitly in terms 
of the parameters ds/s, da0 , df30 • However, we shall 
find it more instructive to proceed from first 
principles and to derive the results in matrix form. 

13. We make dxr, dw, d<f> all zero in Equations 
26.07 and 26.14 and obtain 

fr(ds/s) +mrd{30 -nr sin f3 dao=dif/s. 

27.17 

In this equation, di/ are corrections to the Car­
tesian coordinates of the point under consideration 
arising from changes da0 , df3o in the azimuth a 
and zenith distance f3 of fr. The auxiliary vectors 
mr, nr are defined by Equations 26.13; we must 
use the Cartesian components of all vectors in 
Equation 27 .17, which is a vector equation only in 
Cartesian coordinates because of the derivation 
of Equation 27 .17 from Equation 26.06. If we form 
the orthogonal matrix 

A= (:~ns: ::~ : :~ns : ::: : 

cos f3 - sin f3 

-~os a) 
Sill a 

0 

27.18 

and if we refer to Equations 26.33, 26.34, and 26.35, 
we find that the matrix of Cartesian components of 
fr , mr, nr is 

QTA 

where Q is as usual given by Equation 19.26. Ac­
cordingly, the left-hand side of Equation 27.17 can 
be written in matrix form as 

QTA{ds/s, df3o, - sin /3 dao}; 

from Equation 27.07 in which we must substitute 
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dx for - dX0 , e tc., the right-hand s ide is 

QT{(ii+h) cos?> dw, (p+h)d?>, dh} /s 

so that we have finally 

{(ii+h) cos ?>dw, (p+h)d1>,dh} 

27.19 = sQQTA{ds/s, df3o, -sin {3 dao} . 

The overbars in this last equation refer to the point 
under consideration , while the unbarred quantities 
and da0 , d{30 refer to the origin. The matrix QQT is · 
given by Equation 19.25; by using Equation 19.27 
for each of the three vectors [r , mr, n,., we can write 

27.20 

where A is the same matrix as A but formed from 
the azimuth and zenith distance at the overbarred 
point, that is , at the point under consideration. If 0 is 
the origin, we must as us ual form this matrix by 
using the azimuth and zenith dis tance at P of the 
line OP produced, which could have been computed 
just as easily from Equation 25.19 as the azimuth 
and zenith distance at 0. The parameters da0 , 

d{30 still refer to the origin, but once the parameters 
are known, they can be substituted in the same 
equation to give the changes in coordinates of other 
points whic h have not been used in the adjustment, 
regardless of their actual meaning. We can ac­
cordingly drop the overbars and rewrit e Equation 
27.19 as 

{(v+h) cos cj>dw, (p+h)d<J> , dh} 

27.21 = sA{ds/s , d{30 , - sin {3 da0 }, 

provided we form the matrix A from the azimuth a 

and zenith distance {3 at the point P under considera­
tion of the line OP produced. In this final form, the 
equation is suitable for combining with the equa­
tions for changes in the geodetic coordinate system. 

EXTENSION TO ASTRONOMICAL 
COORDINATES 

14. Most of the preceding analysis applies equally 
well to a general (w, <J>, N ) syste m, including the 
astronomical system in whic h N is the geopotential, 
provided we use the more ge neral R-matrices given 
in Equation 19.31. The derivation of Equation 27.05, 
for example, s hows that for chan ges (dx , dy, dz) in 
the Cartesian coordinates of a point, we have 

27.22 {dw, d<J>, dN} = RTQ{dx , dy , dz} 

where 

(

-k1 sec <1> 

RT= -/1 

0 

Yi sec ¢) 
'Y2 ' 

II 
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and Q is given by Equation 19.26. Equation 27.22 
gives, for example, the cha nges in (w, <J>, N) co­
ordinates for an origin shift of ( dX1i, dY0 , dZ 0 ) by 
s imply substituting dx=-dX0 , etc. 

15. Th e c hange in (w , ¢ , N) coordinates, arising 
from operation of the ro tation matrix No (Equation 
27.12) on the Cartesian axes, is obtained from Equa­
tio ns 27.11 as 

27.23 {dw , d<J> , dN} = RTQN0 {x, y, z}. 

To apply this result, we must know the Cart es ian 
coordinates of the point; in the case of a general 
(¢, w, N) system, the re are no such integral for­
mulas as Equations 25.15. However, the Cartes ian 
coordinates appear only in the coeffi cien ts of the 
first-order rotations w1 , w2, W:i, and approximate 
values would suffice. 

16. The result of changes in the scale and orie nta­
tion of the network corresponding to Equation 27.21 
1s similarly given by 

{dw, d<J>, dN} =sR TA {ds /s, df3o , - sin {3 da0}. 

27.24 

To apply this equation in the as tronomic al system, 
we need to know the length s and the astronomical 
azimuth and zenith distance at the point P under 
conside ration of the line OP produced, where 0 is 
the origin. Approximate values, such as geodetic 
values, would suffice, corrected if possible for the 
de flection at P. 

17. There is, of course, no corresponding equation 
to re flect changes da, de in the base-spheroid 
parameters, which arise so lely from the special 
choice of a (w, ¢ , h) system. We make such a spe­
cial choice in the case of a general (w , ¢, N) sys­
te m by ide ntifying N, for example, with the geo­
potential, which settl es all the components of the 
R-matrices at the ir ac tual physical values. To apply 
the system, we accordingly need values of gravity 
and of the curvature parameters at all points of the 
network. 

ADJUSTMENT PROCEDURE 

18. The total change in the geodetic coordinates 
(dw, d<J>, dh) arising from application of the four 
sets of parameters (da, de), (dX0 , dY0 , dZ0 ), 

(w1 , w 2, W3), and (ds/s, df3o, dao) in Equations 27.04, 
27.06, 27.14, and 27.21 can be obtained by adding 
these equations. This procedure assumes that the 
parame te rs are indepe ndent and that second-order 
effects can be e ithe r neglected or removed by some 
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process of iteration, although in some cases, the 
parameters, especially the rotations, will be strongly 
correlated (see § 27-27). In the result, we have three 
equations for each point containing 11 parameters. 
In most cases, the two spheroids will be known so 
that the (da, de) terms can be computed and re­
moved from the equations. For the remainder of 
this section, we shall assume that this procedure 
has been followed and that we are left with three 
equations for each point containing nine parameters. 

19. We shall consider the case of two adjacent 
networks which are to be adjusted into sympathy 
through common points. If one network (overbarred) 
is held fixed, we substitute 

dw=w-w, 

etc., for the difference in coordinates of each com­
mon point and solve for the parameters to correct 
the unbarred system. All the coefficient matrices 
are computed in the unbarred system. We need 
at least three common points for a solution; if 
there are more points, the equations can be treated 
as observation equations and appropriately weighted 
in a least-squares adjustment. For a stable solution, 
the common points must, of course, be widely 
separated. 

20. If neither network is to be held fixed, we sup­
pose that the final values of the coordinates will 
be w*, etc. We can then form equations in each net­
work, whose absolute terms are w* - w and w* - w , 
and subtract these equations in pairs to eliminate 
w*. We are left with three equations for each com· 
mon point containing 18 independent parameters, 
and we shall need at least six common points. An 
extension of the same procedure would enable us 
to connect several networks. 

21. We have supposed that all three geodetic 
coordinates of each common point are known in 
both adjacent systems. Unfortunately, geodetic 
heights will seldom be known. Vertical angles, con­
trolled by freque nt astronomical observations as 
proposed in Chapter 26, have not been measured 
in several major triangulations because of the 
(excessive) fear of the effects of atmospheric re­
fraction and in the expectation that the stations 
would be connected by lines of spirit levels. How­
ever, for economic reasons, spirit leveling has for 
the most part been confined to roads, and triangula­
tion stations si ted on hills still have no accurate 
heights. Where accurate vertical angles have been 
measured, there are usually too few astronomical ob­
servations to provide adequate geodetic heights , and 
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the vertical angles have been reduced as indicated 
in § 25-19 to provide a first-order approximation to 
spirit levels. 

22. If spirit levels, or an approximation to spirit 
levels , are available for the common points, the 
best proc edure would be to replace the dh-equations 
by dN-equations, formed as in § 27-14, using geo­
detic values of (w, cp) in the coefficients and the best 
possible values of the gravitational parameters in 
the R-matrix. An additional parameter may be 
required to allow for difference of level datums in 
the networks. The unknown parameters are other­
wise the same in the dN-equations , which can 
accordingly be used in conjunction with the dw, 
dcp geodetic equations. 

23. If no adequate heights are available in any 
defined system for the common points, no valid 
adjustment is possible; the points of the network 
are, in fact, located in three-dimensional space, 
and we cannot expect to achieve a rational answer 
by arbitrarily stripping a dimension, even though 
such procedures have been common in classical 
geodesy. The most we can do is to drop the dh­
equations and to solve for the unknown parameters 
from the dw, dcp equations only, using the best 
available values -for h in the coefficienfs. In that 
case, we should need at least 50 percent more com­
mon points, and even so we could not expect to 
derive valid values for some of the parameters. 
For example, dXo, dYo, dZ0 would probably be ficti­
tious because we should not have taken any definite 
steps toward positioning the spheroids. It would 
be better to defer the adjustment altogether until 
adequate observations have been made. 

FIGURE OF THE EARTH 

24. In modern language, the old problem of deter­
mining a "Figure of the Earth" becomes the prob­
lem of finding a geodetic coordinate system which 
best fit s the astronomical system. The problem is 
very easily solved if we substitute the astronomical 
minus the geodetic longitude (or latitude) for dw 
(or dcp) in the observation equations of this chapter 
and retain the parameters da, de of Equations 27.04. 
All the points used in the adjustment should be in 
the same network, although the network may have 
been formed by joining adjacent networks as pro­
posed in the last section. In addition to da, de, 
other paramete rs may be included in the adjust­
ment, depending on the kind of network we are 
using. 
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25. The parameters (dXo, dYo, dZo) should nor­
mally be included in order to locate the origin of 
the final system as near as possible at the center of 
figure; we should be unable to locate the origin at 
the center of mass by any geometrical adjustment. 
However, if we know the positions of some of the 
stations of the network in relation to the center of 
mass, whether by lunar observations as described 
in Chapter 26 or by dynamic observations to arti­
ficial satellites, we can relate the origin derived 
from the geometrical adjustment to the center of 
mass and so can shift the origin to the center of 
mass. For example, if the geocentric coordinates 
of a point in relation to the center of mass as origin 
are (w, ;/>, r) and if the geodetic coordinates of the 
same point are (w, </>, h), then 

27.25 

dx = (v + h) cos </> cos w - r cos ;/> cos w 

dy=(v+h) cos</> sin w-r cos;/> sin w 
dz=(e 2v+h) sin <J>-r sin;/> 

give the coordinates of the center of mass from the 
origin of the geodetic system. Mean values of the 
shift from a number of points should ultimately 
provide a close result. As always, we require the 
geocentric and geodetic systems to share the same 
Cartesian axes. If we know dx, dy, dz from Equa­
tions 27.25, then we can substitute dx= dXo, etc., 
in the observation equations and so can derive a 
geodetic system whose origin is the center of mass. 

26. The Cartesian rotations (w1 , w~, w:i) should 
be included in the observation equations if we have 
any reason to suspect the initial orientation of the 
network. These rotations should not be included in 
a passive satellite triangulation network where 
every line, apart from observational error, has been 
correctly oriented. 

267 

27. Scale and orientation paramete rs (ds/s , df3o, 
da0 ) could be included, but would lie confuse<l with 
da and (w1, w~, w:i) unless the ne twork is of great 
extent. These parameters should not be includ ed 
in a worldwide satellite triangulation ne twork which 
has been closed and int ernally adjusted, but should 
be included in the adjustment of an existing triangu­
lation to satellite control. 

28. We have so far cons idered only the observa­
tion equations fur latitude and longitude in deter­
mining a Figure of the Earth. The question arises 
whether we also can include equations for the third 
dimension. If we know the geopotential at points of 
the network, whether by spirit leve ling or by other 
means, we can find a point whose geodetic coordi­
nates are (w, <J>, Ti) where the standard potential has 
the same value. If h is the geodetic height of the 
network point, we could write (h - h) for dh in an 
observational equation. Inclusion of this equation 
in the adjustment would result in values of the 
parameters which would minimize (Ti - h) as well 
as the astronomical minus the geodetic latitude and 
longitude. The adjustment would thus bring the 
standard gravitational field into closer accord with 
actuality. 

29. There are, of course, certain advantages in 
adopting a geodetic system close to the astronomical 
system. It is convenient to confuse the two systems 
within allowable limits of error for such purposes 
as small-scale mapping: it is essential that first­
order transformations between the two systems 
should be sufficiently accurate for even the most 
refined geodetic work. However, there are serious 
practical and economic disadvantages in changing 
the geodetic system too often. The next justifiable 
occasion to make the change may well be on com­
pletion of the worldwide satellite triangulation. 





CHAPTER 28 

Dynamic Satellite Geodesy 

GENERAL REMARKS 

1. The static use of artificial satellites as elevated 
beacons has been described in § 26-43 through 
§ 26-72. In addition, it is possible to derive muc h 
geodetic information by observing and analyzing 
the motion of the satellite in orb it. The lower har­
monics of the gravitational field can be obtained 
more accurately from satellites than by any other 
method , until it becomes possihle to cover the entire 
globe with gravity observations to a high degree of 
accuracy and with uniform density: correc tion s to 
the positions of tracking stations may be obtained 
in a worldwide reference system, supplementing 
direct geometrical fixation by satellite triangulation: 
and the origin of the reference system can be 
located at the center of mass of the Earth, which is 
impossible by any other method until gravity surveys 
are comple ted over the entire globe. But to obtain 
all thi s information, as well as the changing ele ments 
of the satellit e orbits from a growing number of 
satellites, necessarily involves some complexity. 

2. Methods initially were taken from the astrono­
mers - who did not have quite the same problem of 
a close satellit e of an unsymmetrical rotating parent 
body-with the result that considerable extensions 
and modifications have been found necessary. As in 
astronomical calculations, analytical methods, 
which must, nevertheless, be s tudied to gain any 
understanding of the proble m, are giving way to 
numerical and statistical methods, using larger 
computers on more sophisticated programs. Against 
this bac kground of rapid development and of grow­
ing complexity, the most explanation which can be 
provided in one chapter is a fairly detailed account 
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of the basic equations and elementary theory, fol­
lowed by notes in bare outline on current methods 
of solution. 

EQUATIONS OF MOTION­
INERTIAL AXES 

3. Newton's second law of motion for a particle 
of mass m is usually expressed in Cartesian coordi­
nates as 

28.001 
d 2x d(mvJ,) 

111 dt 2 - dt F.r 

with two similar equations for the other coordinates 
y and z. In these equations, the derivatives are with 
respect to time t , which is assumed to be independ­
ent of the space coord inates: vJ" F.r are, respec­
tively , the x-components of the velocity (dx/dt) and 
of the applied force. If the equations are to hold in 
the sa me Cartesian system over some finite region 
of space, then that space must be flat(§ 5-2) . .More­
over, if the Cartesian equations of motion are to 
express a law of nature, these equations mu st be 
invariant with respect to manmade coordinate 
transformations; it can be shown that the equat ions 
are invariant , provided the mass does not c hange 
e ithe r with time or with the coordinate system and 
provided the two sets of Cartesian axes are fixed or, 
a t most, are moving relative to each other wit h a 
cons tant velocity of translation. The equations do 
not hold true in any coordinate system if one set 
of axes is accelerating (or rotating) with respect to 
the other set. 

4. A coordinate or reference system which is 
eithe r fixed or moving with a cons tant velocity of 
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translation is known as an inertial system; we can 
say that Equation 28.001 holds true only in such a 
system. The inertial system which most concerns 
us in satellite geodesy has the z-axis parallel to, and 
in the northward direction of, the Earth's axis of ro­
tation; the x-axis is parallel to the plane of the Earth's 
orbit around the Sun-the plane of the ecliptic-in 
the direction of the vernal equinox. We must also 
specify a time or epoch and must correct our obser­
vations accordingly because the axis of rotation and 
the ecliptic vary slightly in time, mainly as a result 
of lunar and planetary perturbations. Even then, we 
cannot say that we have a true inertial system. A 
recent description of the astronomical determination 
of an inertial frame of reference has been given by 
Wayman. 1 Nevertheless, it has been said that the 
only valid definition of an inertial system is one 
which would make Newton's laws true, and because 
these laws are not true on the cosmic scale, there is 
no such thing as an inertial system. However, for 
our present purposes, the concept is a good approxi­
mation. We shall also assume that the origin of the 
inertial system is the center of mass of the Earth, 
in which case as we have seen in § 21-42 that first­
degree harmonics must necessarily be absent from 
the expression of the Earth's potential in spherical 
harmonics derived from the Cartesian inertial 
system. 

5. To express Equation 28.001 in a general coordi­
nate system x,., we must first generalize the velocity 
vector. In (overbarred) Cartesian coordinates, the 
contrav ariant velocity vector is di 8

/ dt, expressing 
the time-rate of change of each coordinate. By the 
ordinary transformation law, the velocity vector in 
any other coordinate system (unbarred) is then 

axr axr di 8 dx,. ds dx,. 
vr=- i)S=--=-=- -=vfr 

axs axs dt dt dt ds 28.002 

where v=ds/dt is the linear velocity, ds is the arc 
element of the path of motion or orbit, and fr is the 
unit tangent to the path of motion. The covariant 
velocity vector is obtained by simply lowering the 
indices in the first and last members of Equation 
28.002. In Cartesian coordinates, the velocity vector 
is also the time-rate of change of the position vector 
p'', and we may generalize this statement to 

8 ,. 
28.003 _e_=vfr 

8t 

with a covariant equation obtained by lowering the 
indices, provided that we now take the intrinsic 
derivative (§ 4-1) of the position vector. Because 

1 Wayman (1966), "Determination of the Inertial Frame of 
Reference," The Quarterly Journal of the Royal Astronomical 
Society, v. 7, 138- 156. 
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Equation 28.003 is a tensor equation which is true 
in Cartesian coordinates, it is true in any coordinate 
system. 

6. The equations of motion can now be general­
ized to 

28.004 
()2p,. 8v,. 8(mvl,.) 

m w=m 8t 8t 

where F,. is the applied force vector and (mvl,.) is 
defined as the momentum vector. Equation 28.004 
reduces to Equation 28.001 and to the two similar 
equations in Cartesian coordinates, as a tensor 
equation, Equation 28.004 is therefore true in any 
coordinate system derived from an inertial system. 
If we consider Fr to be the force per unit mass or, 
alternatively, if we consider that we are dealing with 
a particle of unit mass, we may drop the m in the 
last equation and write 

28.005 

which expresses the acceleration vector. If the 
applied force is derived from a scalar potential V, 
we have 

F,.=-V,. 

from the generalization of Equation 20.05; we can 
write 

28.006 

7. The tensor Equation 28.006 can be written in 
yet another form more suitable for expanding the 
equations of motion in a particular coordinate sys­
tem. We have 

-V.=F =8(vlr)=d(vlr)_ p (vl .) dx" 
1 r Dt dt rk s dt 

d(vl,.) 2 l l' - rs v g,''Q q ,.. -df- rl• ' 

= d(vl,.) _ l-(ag,.q + ag,..q 
dt 2 ax'' axr 

= d(vl,.) _ 1. (ag,.q + ag,..q 
dt 2 ax" dx 1

• 
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on interchanging the dummy indices (k, q) in the 
last term and by using Equations 28.002, 3.02, and 
3.01. Finally, we have 

d ( dx•) l ag,...q dx" dx'1 

28.007 - V,.= F,.= dt g,.. dt - z ax" dt dt, 
which enables us to write at once the components 
of force in any coordinate system from the metric 
alone. 

8. For example , suppose that we wish to work in 
the symmetrical (w, <f> , h) coordinate system of 
Chapter 18. By direct substitution of the metric 
given in Equations 18.03 and 18.04, we have 

_av =dd {(R1+h)2cos2 <f>w} 
aw t 

_av =!{{(R2+h)2¢}-ia{(R,+hF cos:! </>} w:! 
a<f> dt 

2 a<f> 

_i a{(R2+hn ,;., 2 
2 <J<f> 'f' 

_av=!!._ {h}-l a{(R,+hF cos2 </>} w2 

ah dt 2 ah 

_ i a{(R2+hF} ,;.,2 
2 ah 'f' 

28.008 
in which we have adopted the us ual convention of 
denoting differentiations with respect to time by 
dots , for example, w = dw/dt. Equations 28.008 
apply to any choice of axially symme trical base sur­
face whose principal radii of curvature Ri. R2 are 
functions of the latitude <f> only. To obtain the equa­
tions in geodetic coordinates with a spheroidal base, 
we have only to use the special values of R.., R. 2 
given by Equations 18.55 and 18.54. We can also 
obtain the equations in spherical polar coordinates 
by choosing a spherical base surface of radius 

ro=R,=R2 

so that we have 

the radius vector of the point under consideration. 
Expansion of Equations 28.008 in this case give 
immediately the well-known formulas 

av d ( ., ., ,,.. . ) --. -=- r- cos- 'f' w 
clw dt 

av d -2. ., • ,,.. 
- a<f> = dt (r-c:f>) + r- sm 'f' cos </> w2 

28.009 
av . 

--a;= r- r cos2 </> w2 
- r<f>2

• 

EQUATIONS OF MOTION­
MOVING AXES 
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9. Next, we shall suppose that the motion of the 
particle or satellite is referred to the usual Car­
tesian axes Ar, Br, Cr, fixed in the Earth but rotating 
around the C,.-axis with constant angular velocity 
w relative to the inertial axes Ar, Br, Cr (Cr=Cr). 
If t is elapsed time since the two sets of axes 
coincid ed, we have from Equations 20.10 

28.010 

A,.=A,. cos wt+ B,. sin wt 

B,.=-A,. sin wt+B,. cos wt 

C,.=C,.. 
Because ordinary and covariant differentiation are 
the same in Cartesian coordinates and because 
A,., B,., C,. are fixed, we have 

dB,.=-wA . . 
dt I ' 

28.011 

10. The position vector of a satellit e at (x, y, z) 

in the moving system is 

p,.=xA,.+yB,. +zCr: 

using Equations 28.011, the absolute velocity vector 
relative to the inertial axes is 

<~,. =xA,.+ jrB,.+ zC,.+ w(xB,.-yA,.), 

the last two terms arising from the motion of the 
axes and the first three terms giving the apparent 
velocity vector v,. relative to the moving axes. In 
the same way, the absolute acceleration vector 
is given by 

d'2 
d~,.= (XA,.+yB,.+iC,.) 

+2w(xB,-jrA,.)-w2 (xAr+YBr). 

We may equate the absolute acceleration to the 
applied force vector per unit mass F,. by Newton's 
second law. The firs t group of terms in parentheses 
on the right is the apparent acceleration relative 
to the moving axes; this group can be expressed in 
te nsor form as f>v,./f>t in which v,. is the appare nt 
velocity vector. The second group of terms can be 
written as the vector product 

2wErvqC11v11 , 

if we remember that covariant and contravariant 
compone nts are the same in rectangular Cartesian 
coo rdinates. The third group of terms is the gradie nt 
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of-fw 2 (x 2 +y2
); this group can be written as 

- f w2 (x2 + y2) r, 

using Equations 12.009. 

We have finally 

28.012 

This last equation is a tensor equation which holds 
true in any coordinate system transformed from the 
moving Ar, Br, Ci· system, if we note that (x 2 + y 2 ) 

is the square of the distance of the satellite from 
the axis of rotation and is therefore an invariant 
under such transformations. Moreover, the vector 
C11 symbolizes any axis of rotation &nd need no 
longer have anything to do with the coordinate 
system. It will be seen that Equation 28.012 differs 
from the Newtonian equations of motion relative 
to inertial axes by the addition of the last two terms 
on the right. The first of these terms is known as 
the Coriolis force (or acceleration); the second 
is known as the centripetal force. However, these 
are fictitious forces arising from the motion of the 
axes, unlike the applied force Fr, the idea being 
that if we "correct" the applied force by the 
Coriolis and centripetal "forces," the ordinary 
Newtonian equations of motion apply to the ap­
parent velocity. Another way of handling the matter 
is to forget that the axes are rotating and to use 
Equation 28.012 instead of Equation 28.005. It may 
be emphasized that the covariant velocity vector 
vr= vl 1• is not the gradient of the scalar velocity v, 
whether in an inertial or moving coordinate system. 
The scalar velocity v has so far been defined only 
as ds/dt along the orbit and can have a gradient 
only along the orbit. At the end of this chapter, 
we shall define the scalar velocity of a family of 
orbits in space, but meanwhile there need be no 
confusion. 

11. If the impressed force Fr is derived from a 
scalar potential V, we have 

Fr=-Vr 

from the generalization of Equation 20.05. Also, if 
W is the geopotential defined in § 20-10, we have 

Wr= Vr--!w 2 (x 2 + y2) r 

from Equation 20.08, so that Equation 28.012 in this 
case can be written as 

28.013 W - ovr + 2 - c11 Q - r-fu WErpq V • 

If the Coriolis force - the last term on the right­
could be written as the gradient of a scalar S, then 
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the equations of motion would take the norma 
Newtonian form with a potential (W + 5). However 
this is generally impossible; the Newtonian equa 
tions of motion simply do not apply to acceleratini 
or moving axes even with a modified potential. 

12. The equations of motion in Cartesian coordi 
nates, referred to the Earth-fixed Ar, Br, Cr system 
are easily obtained by contracting Equation 28.01~ 
successively with Ar, Br, and Cr, which are constan 
vectors in this system so that the x-component o 
the applied force is, for example, 

F.r=FrAr=Ar o;~r +2wErpqArCPvQ-w2xxr~r 

d 2x _ dy __ , 
=--2w --w-x. 

dt 2 dt 

The three equations of motion are then 

.x-2wy=F .r+w2x=-aW/ax 

y-+ 2wx=Fu +w2y=-aW/ay 

28.014 z =-aW/az. 

The last three members of these equations assum 
that the impressed force can be expressed as th 
gradient of a scalar potential - V, in which case 
is the geopotential. 

INERTIAL AXES- FIRST INTEGRAL 

13. It is apparent from Equation 28.002 that th 
magnitude of the velocity vector vr is v because l 
is a unit vector. Accordingly, we have 

v 1·vr= v2 , 

which can be differentiated intrinsically to giv 

28.015 

d(v 2
) . OVr OV

10 

--=v1 -+v.-
dt ot 1 ot 

. OVr . o(grsV
10

) 

=v 1 -+v"---
ot & 

OV1· OVs =vr-+vs-
ot ot 

OVr =2v 1·­

ot' 
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remembering that the m etric tensor g,.s is cons tant 
under covariant or intrinsic differentia tion. 

14. If we take the equations of motion in the form 
of Equation 28.006 as 

28.016 o(vr) --v 
ot - r, 

contract with the contravariant velocity vector 
vr = dx''/dt , and use Equation 28.015, we have 

28.017 vr ov,. = l d(v 2
) =- V. dxr 

Ot z dt I dt • 

The total time differential of V is 

28.018 
dV av dx,. av dx,. av 
-at= axr Tt+ai= v,. dt+at ; 

if V does not contain the time explic itly (aV/at = 0), 
we ca n writ e Equation 28.017 as 

28.019 
d 
- (!v2 + V) =0 
dt ' 

which shows that 

28.020 H*=!v2 + V 

is a constant of the motion and provides a firs t 
int egral of the equations of motion. The potential 
V, as we have seen in § 20-3, can be considered 
a form of energy; whereas (-h;2), remembering that 
we are dealing with a particle of unit mass, is the 
kineti c energy of the particle . We say that ( !v2 + V) 
represent s the total energy of the particle, whic h 
is conserved during the motion. The integral (-h;2 + V) 
is sometimes known in the literature as the vis viva. 

15. If, on the o the r hand , the potential is time­
dependent in the sense that it s expression contains 
the tim e explicitly, then there is generally no simple 
law of conservation of e nergy. In that case, if we 
add Equations 28.017 and 28.018 and integrate, we 
have 

28.021 !v2 + V =J a V dt + constant; 
at 

the integral on the right cannot generally be evalu­
ated unless we can express V completely in terms 
of the single time variable. Equation 28.021 can, in 
some cases, be solved by suc cessive approxima­
tion; as we shall see in § 28-91, the equation can be 
given a definite expression in the case of a uniformly 
rotating, attracting body suc h as the Earth. 

16. The attraction potential of the Earth is not 
symmetrical about the axis of rotation and will 

306-962 0-69-19 

273 

therefore cont a in tesseral harmonics when ex­
pressed in sphe rical harmonics r<>lated to Earth­
fixcd, but rotating, axes A,., B,., C,.. The longitude 
win the spherical harmonics is related to the inertial 
longitude w by the re lation 

28.022 w=w-wt, 

if t is the elapsed time si nce the two sets of axes 
coincided a nd if w is the constant angular velocity 
of rotat ion , as we can see at once from figure 16, 
Chapter 20. To express the pote ntial in spherical 
harmonics related to the inertial system, as we must 
do if we are going to use Newtonian equations of 
motion, we can substitute Equation 28.022, for ex­
ample, in Equation 21.035, whic h would then con­
tain the time explic itly. Another way of considering 
this matte r is to note that the field at a fixed point 
in inertial space will vary with time as the Earth 
rotates; th e potential is time-dependent, whether 
we express the potential in spherical harmonics or 
in any othe r coordinate system derived from the 
inertial syste m. We conclude that Equation 28.021, 
and not Equation 28.020, holds true in this case. 

17. Anothe r law which might assist a solution of 
the e quations of motion is the conservation of angu­
lar momentum. In figure 32, the origin is at S, the 

s 
Figurt> 32. 

satellit e is at 0, and the unit tangent /,.to the orbit 
is as shown in the plane of the paper. The line SQ 
is perpendicular to the tangent; the magnitude of 
the angular momentum or moment of momentum 
fo r unit mass is de fin ed as 

v(SQ)= vr sin {3 , 

which is the magnitude of the vector product 

28.023 

known as the angu lar momentum vector, whose 
direction is perpendicular to the plane of the paper 
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and toward the reader. If we assume that both the 
magnitude and direction of this vector must be 
constant m time to satisfy a conservation law, we 
have 

Obviously, this law cannot be a universal law of 
nature because it depends on the origin S of the 
coordinate system through the position vector Ps· 
To determine the circumstances in which the sup­
posed law can apply, we differentiate intrinsically 
with respect to time, remembering that we have 
8ps/8t= Vs and that the vector product of two paral­
lel or identical vectors is zero. The result, using 
Equation 28.005, is 

28.024 

which implies that the force- or the gradient of the 
potential- must be parallel to the position vector. 
In the case we are considering, this result restricts 
the potential to the elementary form GM Jr: (vr sin /3) 
is then constant. Also, the orbit must lie entirely in 
a plane passing through the origin, that is, the plane 
of the paper in figure 32, because the angular mo­
mentum vec tor is normal to this plane and is a con­
stant vector. There is a clear analogy with the 
situation discussed in § 24-10 for the path of a light 
ray in a spherically symmetrical refracting medium, 
an analogy first noted by Newton 2 himself. 

18. We shall now indicate briefly that the same 
situation would occur if the supposed law required 
the magnitude, but not the direction, of the angular 
momentum vector to be constant in time. In that 
case, we have 

ErstPsVtErpqpPvQ= constant; 

by intrinsic time differentiation, we have after some 
manipulation and use of Equations 2.18, 2.19, and 
2.21 

28.025 

We now set up the usual triad (Ar , µ,. , Vr) of parallel, 
meridian, and normal vectors in a spherical polar 
(w, cp, r) system. The gradient vector of the poten­
tial, like any other vector, can be expressed in 
terms of the triad as 

28.026 

If the azimuth and zenith distance of the orbit in 

2 Quoted by Forsyth (Dover ed. of 1960), Ca lcu lus of Variations, 
original ed. ot 1926, 256- 257. 
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the (w, cp , r) system are a , {3 , we have 

vq=v/q=v(Aq sin a sin {3+µ,q cos a sin {3+vq cos {3) 

and also 
pq= rvq. 

Substitution m Equation 28.025 gives after some 
manipulation 

vr2 sin {3(/ sin a+m cos a) = O, 

which clearly cannot be satisfied for a general orbit 
(a, f3 arbitrary) unless we have I= m = 0, again 
requiring Vq in Equation 28.026 to be parallel to the 
position vector. In this case also, angular momentum 
is conserved only in an elementary potential field 
GM/r. The orbit is then plane, and 

28.027 vr sin f3 =constant 

is an integral of the equations of motion. 

MOVING AXES- FIRST INTEGRALS 

19. In our present problem, the geopotential W 
in Equation 28.013 does not contain the time ex­
plicitly. For example, the attraction potential in 
spherical harmonics given by Equation 21.035 con· 
tains only spherical polar coordinates derived from 
the Earth-fixed A,., Br, Cr system, and the sam 
applies to the expression of the potential in an 
other coordinates derived from the Ar, Br, Cr sys 
te rn . The centripetal part iw2 (x2 + y2

) of the geopo 
tential contains only rectangular coordinates in th 
Ar, Br, Cr system. The total time differential of th 
geopotential is accordingly 

dW =W dxr. 
dt r dt 

lf we contract Equation 28.013 with the velocity vec 
cor vr= dx,./dt, the Coriolis force is eliminated. Usin 
Equation 28.015 and integrating with respect t 
time as in § 28- 14, we have 

28.028 iu2 + W =constant 

as a first integral even though the geopotenti 
contains tesseral harmonics. In this expression, z 

is the magnitude of the apparent velocity relativ 
to the rotating axes fixed in the Earth. We sh al 
consider in § 28-87 and § 28-88 how to transfor 
this result to the inertial system, and so to obtai1 
a first integral of the inertial equations of motion 

20. The rotating system can be considered ai 

inertial system in which the ordinary Newtonia 
equations of motion would apply, if we interpret th 
impressed force as the gradient of the geopotentia 
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plus the Coriolis force. Therefore, we ca nnot 
expect angular momentum to be conserved in the 
rotatini:i; system unless the total force, thus com­
pounded , is directed toward the origin. As we 
found from Equation 28.024, we should reqmre 

-Wr+ 2w€rpqCPvQ= KPr 

in which K is a scalar; this equation cannot poss ibly 
be satis fi ed for general values of Wr and vq, any more 
than Equation 28.024 could be sati s fied by general 
values of the potential. Accordingly, no first integral 
can be derived from a conservative law of angular 
momentum except in special cases. 

THE LAGRANGIAN 

21. In an inertial sys te m, the space coordinates 
are indepe nde nt of time -an essen tial feature of the 
Newtonian sys tem-and are therefore independent 
also of the velocity components. Generally , we can 
associat e any velocity components with any space 
coordinates, although the two sets of variables will , 
of course , be related for a particular orbit. Instead 
of considering our present problem in terms of 
three s pace variables and of their variation with 
time, we can consider the problem in terms of 
seven independent variables (x, y, z, i:, y, i, t ), 
which can be transformed in various ways, and we 
derive solutions of the equations of motion for 
particular orbits in the form of relations between 
these seven variables. A complete solution , for 
example , would consist of x, y, z as functions of time 
from which x, y, i could be obtained by differentia­
tion or, alternatively ,.X, y. i as fun ctions of time from 
which x, y, z could be obtained by integration. 

22. Next , we introduce an expression 

28.029 l *= t(x2 + :f + z2)-V(x, y, z, t). 

known as the Lagrangian, in which (x, y, z, x, y, z, t) 

are considered as independent variables. The first 
term on the right is the kinetic energy, and V is a 
scalar potential. We then have 

!!_ ( al*)=dx=x=-av =al* 
dt a.x dt ax ax ' 

using the Cartesian form of Equation 28.006 for 
the equations of motion in a scalar potential fi eld , 
plus two similar equations for y and z which are 
equivalent to the Newtonian equations of motion. 
These three equations can be put into index form 
as 

28.030 d (al*) al* 
dt aqr = aqr ' 
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whic h is a tensor equation only if the coordinates 
and the transforming factors 

aqr = ()(/ 

aqs tJil 

are independent of time. The equations uf motion 
may be written in this Lagrangian form for the posi­
tions and velocities of any number of particles in a 
general dynamic system. 

THE CANONICAL EQUATIONS 

23. Although a first integral of the inertial equa­
tions of motion in the form of Equation 28.020 will 
not generally exist, there will, nevertheless, be a 
q uantity H*-known as the Hamiltonian-given by 

28.031 

The H* will be constant in time in accordance with 
Equation 28.020, only if the applied force is the 
gradient of a scalar, -V, which does not explici tly 
contain the time. However, in the general c ircum­
stances of our problem, H* can be written m 
Cartes ian coordinates in the form 

containing seven variab les. Differentiation with 
respect to these variables and substitution in the 
Cartesian form of Equation 28.006 give three sets 
of equations of the form 

aH* . dx aH* av dx 
--=x=-. 
ax dt ' ax ax dt' 

which can be written in index notation as 

28.033 
di,. 
dt 

These las t sets of equations are evidently equivalent 
to the Newtonian equations of motion, except that 
we now have six first-order equations connecting 
the six variables xr, ir and the time, instead of three 
second-order equations connecting the xr and the 
time. The symmetrical first-order form of the equa­
tions of motion in Equations 28.033 is known as the 
canonical form. We shall see later that these 
equations can be transformed to ot hers having the 
same form by a s uitable change of variables. 

24. The canonical form of the equations of motion 
has been derived from and is equivalent to the iner­
tial equations. We can derive a similar canonical 
form for the e quations , ref erred to moving (Earth­
fixed) axes from Equations 28.014, only if the 
Coriolis force can be expressed as the gradient of a 
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scalar which could be used to modify the Hamil­
tonian. Generally, this is not possible. Otherwise. 
the most we can do is to transform back to the 
inertial system (xo, Yo, zo) by the relations 

28.034 

x = Xo cos wt+ Yo sin wt 

y=- Xo sin wt+ Yo cos wt 

z=zo 

in which is the time since the two sets of axes 
coincided. We can then write the canonical equa­
tions in the variables (xo, yo, zo, i:o, :Yo, io, t) and can 
transform to other canonical variables, as will be 
explained later. 

THE KEPLER ELLIPSE 

25. If the attracting body were a single particle of 
mass M situated at the origin of inertial coordinates 
or, alternatively, a sphere of uniform density and 
total mass M centered on the origin, then the 
external potential from Equation 20.01 would be 
minus (GM)/r, which in this chapter we shall 
denote as minus µ,/r. In that case, the equations of 
motion of a satellite can be integrated easily and 
completely from the first integrals already obtained. 
The potential is not time-dependent; therefore, 
Equation 28.020 holds true as 

28.035 -!v2 -µ,/r=H* 

with H* the constant energy of the system. The 
angular momentum is also constant from § 28-17, 
and we can write 

28.036 vr sin f3 =N 

in which f3 (fig. 32) is the zenith distance of the orbit 
in a spherical polar coordinate system. Also, we 
know from § 28- 17 that the orbit is a plane curve. 
If ( r, /) (fig. 33) are polar coordinates in this plane 

s A 

Figure 33. 
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and ds is an element of length of the orbit, then for 
any orbit, we have 

28.037 

dr/ ds = cos f3 

rd// ds = sin f3; 

multiplying these equations by the linear velocity 
v=ds/dt, we have 

28.038 

t=v cos f3 

rj =v sin f3 

which, substituted in Equations 28.035 and 28.036, 
give 

r2j=N 

28.039 (t) 2 + (rfl 2 = v2 = 2 (µ,/r+ H *). 

These equations could also have been obtained from 
Equations 28.009 for motion in a plane by substi­
tuting V=-µ,/r, <P=O, w=f and integrating. 

26. Eliminatingjin Equations 28.039, we have 

( 
2µ, N2)1/2 

r= 2H*+-;---;;-

{ (µ,)2 (N µ,)2}112 
= 2H*+ N - -;:-N , 

which is directly integrable to give r as a function 
of time. However, we require the equation of the 
orbit in polar coordinates as a relation between r 
and/, for which purpose we substitute 

The equation can now be integrated as a standard 
form to give 

( 
N µ,) ( µ,2)1 /2 -;.-N = 2H*+ N 2 cos (f-/0 ) 

in which / 0 is a constant of integration. Comparing 
this last equation with Equation 22.21, we see that 
the orbit is an ellipse, one of whose foci S is at the 
origin. If f is measured from the nearest point A 
of the major axis (fig. 26, Chapter 22), known as 
perigee in this subject, then we have /o = 0. The 
semi major axis a and eccentricity e of the ellipse are 
then obtained by comparison with Equation 22.21 
and are given by 

1 .!:!:_ 
a(l-e2 ) N2 

e 1 ( µ,2)1 /2 
a(l-e2)-N 2H*+N2 ' 

from which we have 

28.040 N = Y µ,a(l - e2) 
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28.041 H*=-µ,/2a ; 

,also, from Equation 28.035 we have 

v2 = µ, (~ _!) =·µ,r' 
r a ar 

28.042 

where r' is the radius vector to the other focus. 

27. The constant N is customarily expressed in a 
different way. An element of area swept out by the 
radius vector to the satellite is !rd/, so that the 
first equation of Equations 28.039 expresses the 
fact that the time-rate of change of this area is 
constant, which is Kepler's second law. Moreover, 
if T is the time required to describe the whole orbit 
from perigee to perigee, the total area of the 
ellipse is 

rr . 
7Tab = 7Ta2(1-e2) 112 = Jo !r2fdt =!NT. 

But if n, known as the mean motion, is the mean 
angular velocity of description of the orbit over a 
complete revolution, then we have 

27T 
28.043 n=7; 

combining the last two equations with Equation 
28.040, we have 

28.044 

which expresses Kepler's third law. In terms of n , . 
Equation 28.040 becomes 

28.045 N=Yµ,a(l-e 2 )=na2 (l-e 2
) 112 • 

28. Next, we introduce the eccentric anomaly E, 
which is the same as the reduced latitude u for the 
meridian ellipse of figure 26, Chapter 22. By 
differentiating the purely geometric Equation 22.21 
along the ellipse (a, e fixed) with respect to time, we 
have 

dr =ae sin E dE = ae(l-e
2

) sin f df = r2e sin/ N. 
dt dt (I+ e cos/) 2 dt a (I - e2 ) r2 

28.046 

Using Equations 22.20, 28.045 , and 22.21, the last 
two members of Equation 28.046 reduce to 

28.047 
dE 
dt 

na 
r 

which integrates to 

n 

(l-e cos E)' 

(E-e sin E)=n(t-to) 

where lo is a constant of integration equal to the 
time of passing perigee (E=O). The right-hand side 
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of thi s equation is defined as the mean anomaly M , 
giving the position of the satellite as if it were 
moving at the mean angular velocity n about the 
focus or origin. We have finally 

28.048 (E- e s in E) =n(t-to) =M, 

usually known in the literature as Kepler's equation. 

29. We have now completed the dynamical ex­
amination of the e llipti c orbit, although we also can 
use any of the purely geometrical relations for an 
e llipse, as given in§ 22-3 through§ 22-10, in which 
case the notation may require some translation. 
For example, we shall use /3 in this chapter for the 
"zenith distance" of the orbit, relative to the foca l 
radius vector as the zenith direction, shown in 
figures 32 and 33. This symbol is the complement 
of the angle {3 , shown in figure 26, Chapter 22, and 
used in Chapter 22 as the angle between the normal 
to the ellipse and e ither focal radius vector. We 
shall also use a as the azimuth of the orbit in this 
chapter, whereas a is an e lliptic constant in Chapter 
22. For example, the second equation of Equations 
22.03, translated into our present notation , gives 
the zenith distance of the orbit in the form 

28.049 
e sin E 

cot /3 = (1 - e2)1/2, 

which can also be obtained in the equivalent form 

28.050 
e sin/ 

cot /3 = (1 + e cos/) 
re sin/ 
a(l - e2 ) 

from Equations 28.037 and 28.046-the two forms 
being shown to be equivalent from Equations 22.20 
and 22.21. Equation 22.21 1s repeated for con­
venience as 

28.051 r = a(l - e cos E) 
a(l - e2 ) 

(l+ecos/) 

The rectangular coordinates of the satellite in the 
plane of the Kepler e llipse are repeated from Equa­
tions 22.20 as 

q1 =r cos/=a(cos E-e) 

28 . .052 qz = r sin f = a(l - e2 ) 1l2 sin E. 

We have also from Equations 28.038, 28.046, and 
28.045 

28.053 
µ, 112e sin f _ µ,112 a112e sin E 

at/2(1- e2)1/2 - r v cos /3 

which, together with Equation 28.050, gives 

. N µ,1 f2a 1f2(l- e2)1/2 
v s1n{3=-=------

r r 
28.054 

µ, 112(1 + e cos /). 
0 1/2(1- e2)1 /2 
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Other useful formulas , easily verified, are 

cos E 

28.055 cos f 

cosf+e 
1 +e cos/ 

cos E-e 
l-e cos E 

2_ µ,2(1 + 2e cos/+e2) µ,(l + e cos E) 
v - NZ 

28.056 

The components of velocity in 
to the semimajor axis are 

na sin/ 
v cos(/+ {3) = iJ.1 -

(1- e2)1/2 

. . na(e +cos j) 
V Sill (/+{3) = q2= (l-e2)1/2 

28.057 

r 

and perpendicular 

na2 sin E 
r 

na2(1-e2)1i2 cos E 
r 

p 
(ascending node) 
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30. In the centrally symmetric field we are con 
sidering, the orbital characteristics (a, e, r, v, /, M 
etc.) will evidently be the same whatever tht 
attitude of the orbital plane in a three-dimensiona 
coordinate system. Nevertheless, even in thi! 
special case, we must define the orbital plane if w< 
are to locate the satellite in the inertial system or ir 
any system. To do this, we introduce three angula 
elements fl, i, was shown in the spherical diagram 
figure 34. The inertial system specified in § 28-L 
is shown as X, Y, Z, the origin being lettered S t< 
agree with figure 33 and to indicate that the origi1 
is a focus of the Kepler ellipse. The point Z is th< 
North Pole of the axis of rotation; the great circl1 
XY represents the plane of the Equator. Thi 
satellite is represented at 0 moving in the directio1 
shown in figure 34; the great circle PAO represent! 
the orbital plane intersecting the Equator at P 
which is known as the ascending node for the direc 
tion of motion shown. The descending node is 180 

Figure 34. 
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in longitude away from P, and the line SP is known 
as the line of nodes. The line SA is the direction to 
perigee, already defined as the point on the major 
axis nearest S. The other end of the major axis is 
known as apogee. The angle D =XP is accordingly 
the right ascension of the ascending node or longi­
tude of the ascending node in the inertial system; 
i is the orbital inclination; and w =PA is known as 
the argument of perigee, usually de noted in the lit er­
ature by w , which, however , is required throughout 
this book for various forms of longi tude . W e also 
use the term longitude in the geodeti c sense as 
measured in the equatorial plane, whereas astrono­
mers oft en measure longitude, wholly or partly, in 
the plane of the e cliptic . 

Auxiliary Vectors 

31. We shall require certain unit vectors whi ch 
are shown in both figure 33, representing the plane 
of the ellipse, and figure 34. The unit radius vector 
to the satellite is shown as r5 = p 5/r. The unit tan­
gent to the orbit , represented at /r in figure 34, is 
the direc tion of the radius S /r ; the representative 
point /r mus t lie in the great circle representing the 
orbital plane. The angle bet ween /r and rr , shown as 
{3, is the zenith di s tance of the orbit relative to a 
spherical polar syste m of coordinates. The azimuth 
of the orbit in the same syste m is the spherical 
angle a. Unit vectors tr , mr in the orbital plane 
perpendicular, respectively, torr, /r are as shown in 
both figures 33 and 34. Finally, a unit vector nr 
perpendicular to the orbital plane, shown in both 
figures 33 and 34, is used to comple te ei ther of the 
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right-handed triads (Ir, mr, nr) or (rr , tr , nr) . In 
fi gure 34, nr is the pole of the orbi tal plane. 

32. From figure 33, representing the plane of the 
orbit , we have 

/k = rk cos {3 + tk sin {3 

28.058 

In terms of the usual meridian , parallel , and normal 
vectors (µ,k, A.k, vk) of the sphe ri cal polar coordinate 
syste m , the vectors are easily found to be 

/k = A.k sin a sin {3 + µ,k cos a sin {3 + vk cos {3 

mk= A.k sin a cos {3+µ,k cos a cos {3-v"· sin {3 

nk = - A.k cos a+ µ, k si n a 

r1..· = vk 

tk = A.k sin a+ µ,k cos a. 

28.059 

Inertial Cartesian components are 

(

cos ( lV + f) cos n - sin ( w + f) sin n cos i) 
1.k = cos (w+f) sin n+ sin (w + f) cos n cos i 

s in (w+f) sini 

28.060 

(

-sin (w+ f) cos n- cos (w+ f) sin n cos i) 
tk = -sin (w+f) sin n+ cos (w+f) cos n cos i 

cos (w+ f) sin i 

28.061 

28.062 
( 

sin n sin i ) 
nk = - cos n _sin i 

cos l 

28.063 
(

cos (w+f+{3) cos f! -sin (w+f+{3) sinf! cosi) 
/r = cos (w+f+{3) sinf!+si n (w+f+ {3 ) cosn cos i 

sin (w+ f + {3 ) sin i 

28.064 
(

- sin (w+ f+ {3) cos n - cos (w+ f+ {3) sin n cos i) 
mr= -sin (w+f+{3) sinf!+ cos (w+f+{3) cosn cos i' 

cos (w + f + {3 ) s in i 

as we can easily verify by expressing the scalar products of each vector wi th the Cartesian vectors Jir . fJr, 
er in terms of elements of sphe rical triangles in figure 34. 

33. We can obtain alt ernative fo rmulas m much the same way as we did from § 12- 15 by applying the 
following positive rotations to the inertial (Ak~ fJk. Ck) system: 

(a) First , n about the z-axis, 
(b) Second, i about the new x-axis, and 
(c) Third, (w + f) about the new z-axis . 
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The res ult is n cos (w+~ sin (w+ f) 

VG 
0 

o )C°s n 
sin n 

D(~:) ~: = - sin 6 w + f) cos (w+ f) cos i sin i. - sin n cos n 
0 - Sin i cos i 0 0 

28.065 = K{A\ /Jk, Ck} 

(

cos (w+f) cos fl-sin (w+f) sin fl cos i 

K= -sin (w+f) cos fl-cos (w+f) sin fl cos i 

sin fl sin i 

cos (w+f) sin fl+ sin (w+f) cos fl cos i sin i ~in (w+ n\ 
sin i cos (w+ f) -sin (w+f) sin fl+ cos (w + f) cos fl cos i 

cos i ) -cos fl sin i 

28.066 

Because the component matrices of K and therefore K itself are orthogonal matrices, we can also write 

28.067 

34. By puttingf = 0 in Equation 28.065, we obtain 
a triad of vectors (jr, k< nr) in which f (the x-axis) 
is the unit radius vector to perigee and kr (the y­
axis) is in the orbital plane. We have 

{f, kr, nr}=K1=o{Ar, /Jr, er}; 

contracting this equation with the position vector 
of the satellite, we have 

28.068 

where q1 , q2 are given by Equations 28.052 and 
x, y, z are the inertial coordinates of the satellite. 
The reverse equation is 

28.069 

which enables us to express the inertial coordinates 
in terms of orbital elements. By splitting the third 
rotation (w + f) in Equation 28.065 into two suc­
cessive rotations, we have also 

cos/ sinf 

~) K1- o K= -s~nf cosf 

0 

28.070 =FK1=0· 

35. In deriving Equation 28.065, if the third ro­
tation were (w + f + /3), it is clear from figure 34 
that we should arrive at the triad { fk, mk, nk}. By 
substituting (w+ f+ /3) for (w+ f), we accordingly 
have 

28.071 

and a corresponding inverse. Moreover, by applying 
a fourth rotation of f3 about the z-axis to Equation 

28.065, we have 

("OS fi sin f3 

~)K. 28.072 Kw+f+.B = - s~n /3 cos /3 

0 

36. The velocity vector is given by 

pk= vfk= (v cos /3, v sin /3, O)K{Ak, Bk, Ck}; 

28.073 

the three Cartesian components of the velocit 
vector are given by 

pk(Ak, /Jk, Ck)= (pkAk, pk/Jk, pkCk) = (x, y, i) 

28.074 = (v cos {3, v sin {3, O)K 

in which we can substitute Equations 28.053 an 1 

28.054 and so can obtain the velocity vector and it 
components in terms of the orbital elements. W 
can, of course, transpose the last equation as 

{i, y, i} =KT{ v cos {3, v sin {3, O} 

28.075 

= KJ=0 FT{v cos {3, v sin {3, O} 

=KJ=0{v cos (f+/3), v sin (f+/3), O] 

using the transpose of Equation 28.070. But th 
last vector in this equation evidently gives the com 
ponents of the velocity vector vfk in and perpendicu 
lar to the radius vector to perigee, that is, 

{v cos (f+/3), v sin (f+/3), O}={vfrjr, vlrkr, vlrnr} 

={qi,q2,0}, 

so that finally we have 

28.076 
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Comparison of this result with Equation 28.069 
shows that the matrix K1=0 can be conside red as 
constant during time differentiation, as we should 
expect in a Kepler ellipse because the components 
of the matrix are all constant. This result holds 
true for the osculating ellipse of a perturbed orbit , 
as· we shall see in § 28- 40. 

37. The latitude and longitude of the satellite in a 
spherical polar system, based on the inertial Car­
tesian system, are marked as (</>, w) in figure 34, 
and the following spherical relations will often be 
found useful, 

28.077 

28.078 

cos i = cos <f> sin a 

cos ( w + f) = cos <f> cos ( w - n) 

sin (w+ f) =sin (w-f!) cosec a= sin <f> cosec i 

28.079 

cos a= tan <f> co t (w+ f) =sin <f> sin a co t (w-f!) 

= sin i cos ( w - n) = sin i sec <f> cos ( w + f). 

28.080 

PERTURBED ORBITS 

38. If the mass M of a heavy particle located at 
the origin or if the total mass of a homogeneous 
sphere centered on the origin is the same as the 
total mass of the actual Earth, then for the sym­
metrical potential we have been considering, 

_GM=_!!:. 
r r 

is the first and largest term in the expansion of the 
actual potential expressed by Equation 21.035 in 
spherical harmonics. We can write the actual 
potential as 

28.081 - V= µ,Jr+ R 

so that R represents all the terms which must be 
added to µ,Jr to give the true potential, whether or 
not R is expressed in spherical harmonics. More­
over, R may contain other small gravitational 
potentials contributed by the Sun and the Moon. 
The effect of dissipative and discontinuous forces , 
such as atmospheric drag and solar radiation pres­
sure which cannot be expressed as continuous 
derivatives of a scalar potential, cannot be included 
in R; separate treatment is required. We have seen 
that if R were zero, the orbit would be a Kepler 
ellipse, defined as an unperturbed orbit. Accord­
ingly, R is a measure of the departure of the actual 
perturbed orbit from a Kepler ellipse; we call 
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minus R the perturbing or disturbing potential and 
call the gradient Rk the disturbing force. 

39. If we are given the position, and the magnitude 
and direction of the velocity of a satellite at a given 
time, then it is possible to find a unique Kepler 
orbit in which the satellite would have the same 
position and velocity. The position and direction of 
motion (or direction of the velocit y vector) of the 
sate llite , together with the origin of inertial coordi­
nates, se ttle uniquely the plane of a Kepler orbit. 
Within this plane, we are given the radius vector r, 
the zenith distance /3 relative to the radius vector 
as zenith, and the linear velocity v. These three 
quantities enable us to determine uniquely a, e, and 
f from Equations 28.042, 28.054, and 28.053, and 
so to specify a Kepler ellipse in which the satellite 
would have the same position and velocity, in magni­
tude and direction, as in the actual orbi t ; the true 
anomaly f applied to the direction of the radius 
vector se ttles the direction of the major axis , and 
a, e se ttle the size and shape of the ellipse. Anot her 
way of considering thi s matter is to note that the 
satellite has six degrees of freedom; that is, we can 
choose arbitrarily three position coord inat es and 
three co mponent s of velocity. Having chosen these 
six quantities, we can find six , and no more than six 
Kepler ele ments f! , i, w,f, a, e which are necessary 
and sufficient to establish the same instantaneous 
motion in a Kepler orbit. The Kepler ellipse which 
satisfies these conditions is known as the osculating 
ellipse. (However, this is an incorrect description 
because the two orbits do not have more than two­
point contact.) Instead of the true anomaly f, we 
may choose either the eccentric or the mean anom­
aly (E or M) to describe the position of the satel­
lite within the osculating ellipse. There are some 
advantages in c hoos ing the mean anomaly M. It is 
so metimes stated, although this is not a very 
realistic approach to the problem, that the satellite 
would travel in the osculating ellipse if at any time 
all perturbing forces were removed. 

40. We can say that such relations as Equation 
28.076 are true for a perturbed orbit (although de­
rived for a Kepler orbit), provided osculatin g ele­
ments are used in such equations, because nothing 
more is involved than the ele ment s and velocity 
compone nts which are the same for the actual and 
osculating orbits. The energy (which is - µ, J2a in 
the osculating orbit) is not the same for the two 
orbits; the kineti c energy is the same, but the po­
tential energy differs by the perturbing potential. 
The accelerations are not the same because the 
components of force are not the same. Accordingly, 
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the satellite will depart from a plane osculating 
orbit and will follow a more complicated curve in 
space under the action of the more complicated 
forces. Nevertheless, at any subsequent time, we 
can fit another osculating ellipse to the actual orbit, 
so that we can describe the actual motion by means 
of time differentials of the osculating elements 
rather than by changes in the actual position and 
velocity of the satellite. In the next section, we 
derive expressions for the time differentials of the 
osculating elements, leading to another form of the 
equations of motion. 

VARIATION OF THE ELEMENTS 

41. We shall suppose that the total force Fr per 
unit mass is composed of a central force-directed 
toward the origin or focus of the osculating ellipse 
and of magnitude µ,/ r 2 -together with a disturbing 
force Rr, so that we have 

28.082 
µ, 

Fr=--;apr+ Rr. 

The central force, if acting alone, would maintain 
the satellite in the Kepler ellipse, although Rr may, 
of course, have a central component in addition. 
In cases where the disturbing force is the gradient 
of a scalar, Equation 28.081 differentiated shows 
that Rr is the gradient of the scalar R; but in this 
section, we shall assume Fr and Rr to be forces 
which are not necessarily derived from .a scalar 
potential. 

42. The linear acceleration in the direction of the 
orbit is the component of total force in that direc· 
tion, giving 

28.083 
dv 
-=F fr= 
dt r 

As in Equation 28.003, the velocity vector 1s 
1Y= v fr; from Equation 28.015, we have 

28.084 
d(r2) __ 2r dr o(prpr) 

dt dt ot 2prfY = 2pr ( vfr) 

28.085 

Semimajor Axis 

43. To obtain the time differentials of the ele­
ments, we differentiate any suitable Kepler equation 
without holding any of the elements fixed. For 
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example, if we differentiate Equation 28.042 with 
respect to time, we have 

2v dv =-'21!:. dr +~ da. 
dt r2 dt a 2 dt ' 

Equations 28.083 and 28.085 then give 

28.086 (..1!:....) da - R fr - R . r 2a2 dt - V r - rP . 

As we s hould expect, if there is no perturbing force . 
the semimajor axis a remains constant; whereas, in 
the presence of a perturbing force Rr, this last 
equation gives the rate of change of a between two 
successive osculating ellipses. 

44. From figure 33 or 34, either of which illus· 
trates the osculating ellipse as well as a Keple1 
ellipse, we have 

[r = rr cos f3 +tr sin /3 
so that an alternative equation is 

da=2a
2

{ • f(R r)+a(l- e
2

) (R )} dt N e sm rr r rtr ' 

28.087 

using Equations 28.053, 28.054, and 28.045. 

Angular Momentum 

45. As in § 28-17, we can write the angulai 
momentum vector as 

28.088 

in which nr is the unit vector normal to the plarn 
of the osculating ellipse. Differentiating intrinsicall; 
with respect to time, we have 

dN onr . . .. 
- nr+N-=Erpqp p +Erpqp p. dt Ot p q p q 

The first term on the right is the vector product o 
two parallel vectors and is therefore zero. Thi 
equations of motion can be written in the form 

so that the last equation becomes 

dN onr 
- nr+ N - = Erpqp 1;' 
dt ot pi q 

µ, =--;a Erpqpppq+ePQppRq 

28.089 =ErpqppRq 
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because the vector produc t of two parallel vectors 
again is zero. Because nr is a unit vector, as in 
Equation 3.19, onr/ot must be perpendicular to nr 
and must the refore be coplanar with rr and tr in 
figure 33 so that we can write 

onr 
-=Prr+Qtr. 
ot • 

contracting with rr , we have 

onr l onr 1 opr v 
P=rr - =- Pr-= - - nr-=-- nrfr=O 

ot r Ot r ot r 

because nr and /r are perpendicular. In deriving thi s 
result, we have used the fact that Pr and nr are 
perpendicular so that we have 

Prnr = 0, 

and by intrins ic differentiation , we have 

onr opr 
Prf;{ = -nrfu. 

Substitution in Equation 28.089 and 
contraction with nr and tr yield 

28.090 
dN 
-;[{ = ePQnrppRq = rRqtq, 

successive 

using the formula for a vector product given rn 
Equation 2.24. Also , we have 

NQ = ErpqlrppRq = - rRqnq 

so that 

28.091 

As we found in § 28- 17 , both the magnitude and 
direction of the angular mome ntum vector are con- , 
stant in unperturbed motion (Rq= 0). 

Eccentricity 

46. We are now able to find the variation of the 
eccentricity e by differentiating Equation 28.045 , 
that is, 

N 2 = µa ( 1 - e2 ) • 

Substituting Equations 28.090 and 28.086 m the 
result, we have 

de 1 da dN 
µae dt =2µ(1-e2) dt -N dt 

28.092 

which can be expressed in terms of the perpendicu-
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lar vectors rq, tq as 

de a 112 ( l -e2 ) 1l2 . 

dt = µt /2 { srn f(r'lRq) 

28.093 +(cos/+cos E)(tqR.q)} 

by s ubstituting 

/Q = rq cos {3+ tq s in f3 

and by us ing Equations 28.053, 28.054, and 28.051. 
An express ion in terms of the perpendicular vectors 
/Q, mq can be obtained similarly as 

de (l -e2
) {2 cos E(lqRq) 

dt v l-e cos E 

28.094 

Zenith Dis tance 

47. Although the zenith distance f3 is not one of 
the usual six osculating ele ments, it s variation is 
sometimes useful and is e asily found by differen­
tiating 

N=vrs inf3 

and by using Equations 28.090, 28.083, 28.085, 
and 28.042. We have then 

28.095 vr1;=µsinf3(~-~)+r(mQRq). 

In this last equation, {3 , of course, varies even in 
an unperturbed orbit where its variation is given by 
the first term on the right. 

True Anomaly 

48. Although only one of the anomalies (j, E, 
or M) may be taken as one of the six elements, it 
is convenient to have time derivatives of all three. 
These three time derivations may be obtained by 
straight diffe rentiation of any e lliptic formula con­
taining any other quantities whose time de riva­
tives have already been found. The time de rivative 
of the true anomaly is, for example, easily obtained 
by differentiating Equation 28.051 in the form 

N2 
(1 + e cosf)=­

µr 

and by using Equations 28.093, 28.090, and 28.085. 
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We have after some manipulation the alternative 
expressions 

28.096 

28.097 

df = N + (N cos f)(Rqrq) 
dt r 2 µ e 

N(2- cos2 /-cos E cos f)(Rqtq) 

µe sin/ 

= N + (N cosf)(Rqrq) 
r 2 µ e 

_ (N sinf)(Rqt q) { 1 + r } 
µe a(l - e 2 ) 

N (2 sin/)(Rq/q) 
r2 ev 

(cos E + e )(Rqm q) 
ev 

in which the term 

28.098 
N µ1 /2a1/2(1-e2)1/2 

r 2 a 2 (1 - e cos E )2 
n(l + e cos/)2 

(l - e2'f/2 

is evidently the unperturbed rate of change, as we 
have already found in Equation 28.046. 

Eccentric Anomaly 

49. In the same way, by differentiating 

r=a(l-ecosE) 

and by using Equations 28.085, 28.087, and 28.093, 
we have 

dE na a 112(cosf-e) (Rrrr) 
-=-+ . 

28.099 

28.100 

dt r eµ1 f2 

(a 1t2 sinE)(2 - e2 +e cosf)(Rrtr ) 
eµ1 /2(1-e2 )1/2 

na (2 sin/)(Rr/r) 
r ve (l -e2)1f2 

( 1- e2 )1'2 cos E (Rrmr) 
ve 

in which the term 
na n 

r (1-e cos E) 

is the unperturbed rate , as already found in Equa­
tion 28.047. 

Mean Anomaly 

50. By differentiating the defining equation 

M=E-e sin£ 
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and by using Equations 28.099 and 28.093 o 
Equations 28.100 and 28.092 , we have after som 
manipulation 

dM {(l-e2) cosf-2er/a}(Rrrr) 
- = n + -=------=-----=----___.:___:___:_.:____:__ 

dt nae 

28.101 
{ (1- e2 ) 1l2 sin £(2 + e cos/)} (Rrtr) 

28.102 

28.103 

nae 

{a(l-e2 ) cosf-2er} (Rrrr) 
= n +-----'--__c;__~_.:__.:_ _ __:__ 

eµ1/2a1/2 

=n 

{ (1- e2) sin/} (Rrtr) ( r ) 
a+--eµl/2a1/2 l - e2 

2 sin E(l + e cos/+ e2 ) (Rrlr) 
ev 

(1- e2 )112r cos/ (Rrmr) 

vae 

in which the unperturbed value is the mean motion 

n = µ 1/2a- 3/2 

as defined. 

Inclination 

51. Variation of the orbital inclination i is ob­
tained by contrac ting Equation 28.091 with th€: 
Cartesian vector er. Remembering that the fixed 
vector er is constant under covariant differentia­
tion , we have 

d(cosi) _!_(R Q) re 
dt N qn t r· 

From the spherical triangle e rt rp in figure 34, we 
have 

trer= s in (w+ /+90°) sin i= cos (w+ f) sin i 

so that we have finally 

28.104 
di r 
dt =N(Rqnq) cos (w+ f). 

Right Ascension of the Ascending Node 

52. If we contract Equation 28.091 similarly with 
the fixed Cartesian vector Ar, we have 

and 

o(nrAr) d(sinD.sini) 
ot dt 

VAr= cos n cos (w+ f+ 90°) 

- sin n sin (w+ f + 90°) cos i 

= - cos n sin (w + f) 

- sin n cos (w + f) cos i . 
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Substitution of Equation 28.104 yields 

28.105 dD. r R . f) . dt = N ( qn Q) sm (w + co sec 1, 

showing that the variation of both i and n depe nds 
un the component of force pe rpe ndicular to the 
osculating orbital plane. 

Argument of Perigee 

53. The scalar product of the unit vectors A,. and 
rr=pr/r in figure 34 gives 

Ofr)Arpr = cos n cos (w+ /)- s in n sin (w+ f) cos i. 

Differentiation of this equation with respect to time 
gives on the left side 

/ I cos f3 - /I - I ' cos f3 -
--- .,-A,pr+ -rA,./r = - - --A,.rr 

r- r 

v -
+- A,(r' cos f3 + tr s in/3) 

r 

v sin f3 A-
=--- ,.tr 

r 

v sin f3 . = - -- (- cos n sm ( w + f) 
r 

-sinf! cos (w+ /)cos i). 

and gives on the right s ide 

(-sin n cos (w+ f)- cos n sin (w+ /)cos i)(dD./dt) 

-(cos n s in (w+ j) 

+sin n cos (w+ /)cos i) (dw/dt + df/dt) 

+ sin n sin (w + f) sin i (di/dt ); 

substituting 

di/dt =cot (w +/)sin i (df!/dt) 

from Equations 28.104 and 28.105, we have finally 

28.106 

dw df v sin /3 . dD. 
-+-=----cos1-
dt dt r dt 

N r 
=-;z -N (Rqnq) sin (w+ /) cot i. 

Subtraction of df/dt in Equation 28.096 or 28.097 
gives dw/dt ex plic itly in te rms of three components 
of the di sturbing force. For example , we have 

dw (N cosf)(Rqrq) 

dt J.Le 

(N sin/ )(R 11 tq) ( r ) 
+ J.Le I+a(l-e2 ) 

28.107 
r sin (w+ /)cot i(Rqnq) 

N 
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THE GAUSS EQUATIONS 

54. Time derivatives of the s ix e lements in terms 
of the disturbing force co mponent s Rrrr. Rrtr, 
Rrnr - usually kn own in the literature as R , S. W or 
S, T, W with various s ign conventions -were first 
give n by Gauss. However, it is conve nient to have 
these component s in vector form which can eas il y 
be transformed to the alt ernative and sometimes 
simpler set Rrfr , Rrmr, Rrnr. If we neglect the 
e ffec t of atmospheric ro tation, the drag of the 
atmosphere will be against the direction t r a nd 
will have no component in directions m r. 11 r; ex­
pressions in terms of thi s a lternative set accord­
ingly show at a glance which perturbations are 
least likely to be affected by drag. For example, 
the e ffect on da /dt is total ; perturbation of the semi­
majo r axis is accordingly of more use for studying 
drag than for determining the gra vi ta tional fi e ld . 
On the other hand , di/dt a nd dD. /dt are virtually 
drag-free in a nonrotatin g atmosphere, although 
drag e ffects do appear in second-orde r t erms 
through the other e le ments . In so me derivations , 
the di sturbing force RfJ is restrict ed to the gradient 
of a scalar potential , which is unnecessary and con­
fu sing. It will be clear from the derivation given 
in thi s section that the disturbing force need not 
be conservative and that the equations hold equally 
true for di ss ipative forces or even for suc h dis­
continuous forces as radiation pressure, prov ided 
the equations are integrated be tween points of 
discontinuity. 

55. The six first-order Gauss equations are exact 
a lt e rnatives to the three Newtonian second-order 
diffe rential equations of motion give n earl ier in 
various forms. First int egrals of the Newtonian 
equations of moti1m would give the three compo­
ne nt s of veloc ity; seco nd integrals would give the 
three coordinates of the sate llit e . Solutio n of the 
Gauss equations would give all six osculating e le­
me nts from which co mponent s of velocity and 
coordinates could be calculat ed by the ordinary 
formulas for the Kepler ellipse. 

DERIVATIVES WITH RESPECT 
TO THE ELEMENTS 

56. In cases whe re the force Fr is the gradient 
of a scalar F , we shall require the parti al de rivatives 
uf F with respect to the e le me nts (a, e, i . . ll. ll'. f!). 
The partial derivative ilF/Aa, for example, implies 
that the other fiv e e le ments e, i. ill, w. n are 
cons tant durin g the differentiation. The process 
can in places be s implified if we consider for E 
cons tant ins tead of M; a glance at Equations 28.048 
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and 28.055 shows that we can always do this, 
except when we are evaluating aF/ae. Although 
we shall usually identify F as the negative of a 
scalar potential, whether the actual potential or a 
disturbing potential , the equations obtained in 
this section hold true if F is any scalar whatsoever 
defined in relation to the orbit; this fact will be 
clear from the derivation in each case. We shall 
also require partial derivatives of the velocity vec­
tor; the method of obtaining these derivatives will 
be explained in each case. 

Semimajor Axis 

57. If we suppose that a alone varies and if in 
this case f remains constant, the only possible 
virtual displacement of the satellite is radial and 
proportional to the change da in a; the osculating 
ellipse remains in the same plane and is simply 
enlarged in the ratio da /a. The vector displace­
ment is accordingly 

28.108 

and we have 

28.109 
aF r(Frrr) Frpr 

aa a a 

58. To determine the change in the velocity 
vector between the two osculating ellipses , we have 
by differentiating Equation 28.042 

2v av =-2µ ar +1!:.._=_ 2µ +1!:.._=- v2 
aa r 2 aa a 2 ar a 2 a 

because the enlargement of the osculating ellipse 
implies that we have dr/r= da/a. If the radius vec­
tor to a consecutive point is r, then we have 
dr/F= dr/r. Also, it is clear from similar triangles 
that the direction of the unit tangent l r is unaltered 
by enlargement -of the osculating ellipse. The 
derivative of the velocity vector is then 

apr a(vlr) af r av vf r pr 
- = --=v-+- Lr=--=--. 
aa aa aa aa 2a 2a 

28.110 

In deriving this equation, we have assumed that 
the components of l r have not changed during a 
parallel displacement. Accordingly, the equation 
holds true only in Cartesian coordinates, as will 
also be the case for the other partial derivatives. 
The corresponding equation in terms of the vectors 
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rr, tr is obtained from Equations 28.058, 28.053, 
and 28.054 as 

d/Y a(vfr) µ 112 . 
-=--=--- {(e smE)rr+ (l-e2)1/2 tr}. 
aa aa 2a 112r 

28.111 

Eccentricity 

59. In this case, we must take special precautions 
to e nsure that M, and not for E, is constant while 
e varies. Differentiation of Equation 28.048 with M 
constant relates the changes in e and E by 

28.112 
sin£ de 

dE 
(1-e cos E)" 

The change in the radius vector is then obtained 
by differentiating Equation 28.051 with a constant. 
We have 

dr=-a cosE de +ae sinE dE=-a cos/de 

28.113 

on substituting Equation 28.112, simplifying, and 
using Equations 28.052. The change in the true 
anomaly f is then obtained by differentiating either 
of Equations 28.052, and after some simplification 
is given by 

28.114 ( 
. r sin/ ) 

rdf= a smf+ (l- e2) de. 

The total vector displacement of the satellite, 
which must occur in the plane of the osculating 
ellipse in relation to a fixed major axis because 
n, i, ware constant, is then 

{ ( 
r sin/ ) } -(acosf)rr+ asinf+(l-eZ) tr de; 

'2 8.115 

the required partial derivative is 

~~=- (~ cos/)(Frrr)+(a+l~e2 ) (Frtr) sin/. 

28.116 

60. The partial derivative of the unit tangent 
l r is easily found by differentiating Equation 
28.063 to be 

af r aif+ /3) 
-=mr . 
de de ' 
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by differe ntiating Equation 28.042, we have 

av µ ar µ,a cosf 
v de=- r 2 de= r 2 

111 which we have used Equation 28.113. The 
derivative of the ve locity vector is accordingly 

µ,aco sf /r +aif+/3) r 
vr 2 ae vm . 

From Equations 28.057, we have 

tan if+ /3) =- (1- e 2)112 cot E. 

Differe ntiation and use of Equation 28.112 give 
after some manipulation 

n 2a 4 sin E { e cos E (l - e 2)112 } 
v 2r 2 (l- e 2)1f2+(1 -ecos E) 

a<J+ /3) 
ae 

µ,a sin/{ 1 + re cos E} 
v 2r 2 a(l - e 2 ) 

so that we have finally 

apr o(v/r) 
- --
ae ae 

µ,a { ( re cos E) . } = vr2 (cosf)/r+ l+ a(l-e2) mr smf . 

28.117 

A somewhat simpler expression in te rms of the 
rr, tr vectors can easily be obtained as 

28.118 
dpr N . a;-= r(l-e 2 ) {-rr smf+trcosE} . 

61. It may be noted that these last two vector 
equations hold true in any Cartesian coordinate 
system whose transformation fa ctors are cons tants 
in space and are therefore independent of the ele­
ments e, e tc. For example, in the plane of the 
osculating orbit, the components of the vectors in 
Equation 28.118 are 

rr= (cos f, sin/, 0) 

tr = (-sin/, cos/, 0) 

so that we have 

~-- N sin/ 
ae - r( 1 _ e2 ) { cos f + cos E} 

~- N 
ae - r(l-e2) {- sin2 /+cos E cos/}, 

28.119 

which may be verified by direct differentiation of 
Equations 28.052. 
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Mean Anomaly 

62. If the mean anomaly alone varies , the on ly 
possible virtual displacement of the satellite is 
tange ntial to the (fixed) osculating ellipse. By 
differentiating Equation 28.048 for constant a (and 
therefore n) and for cons tant lo , we have 

dM = ndt = (n/v)ds 

where ds is the magnitude of the displacement. 
The vector displacement is accordingly 

(v/n) /rdM, 

and the partial derivative is 

28.120 
aF v 1 
aM =~ (Frfr) = ~ (Frpr). 

By s ubstituting 

fr = ,-r cos {3+ tr sin /3 

and Equations 28.053 and 28.054, we have the 
alternative equation 

dF 
aM 

28.121 

(ae sin/) (Frrr) a(l +e cos/) (Frtr) 
(l -e2)1/2 + (l-e2)1/2 · 

63. The partial derivative of the velocity vector 
can be found in the same way as for the eccentri ci ty. 
However, in this case, the only possible displace­
me nt is along the fixed osculating ellipse, and we 
may accordingly consider that the virtual motion 
is unperturbed. We have 

~ = d ( v/r) = ! <JP:.= - ~ r = - ~ rr 
aM aM n dt nr1 P nr2 ' 

28.122 

using the unperturbed equat ions of motion with 
Rr = 0 and Pr = F,. in Equatio n 28.082. 

Inclination 

64. In this case, the virtual displacement of the 
sate llit e arises from a ro tation of di about the line 
of nodes, everything else remaining fixed. The vector 
displacement is 

r sin (w+f)nrdi , 

and the partial derivative is 

28.123 
aF 
--:;-:- = r sin ( w + f) (F rll,.). 
Ol 

65. From Equations 28.042 and 28.051 , it is evi-



288 

dent that we have av/ai = O; by differentiating 
Equation 28.063, we have 

a Lr 
ar= sin (w+ f + {3)nr 

so that the derivative of the velocity vector is 

afir a(vlr) 
a--; = -----;;i= v sin (w+ f+ {3)nr 

28.124 
µ,nr 

=N {cos (w+f) +e cos'w}. 

Right Ascension of the Ascending Node 

66. The virtual displacement arises solely from 
a rotation dfl about the inertial er-axis. If the posi­
tion vector of the satellite is pr, the vector dis place­
ment is then 

Erste sPtdfl. 

We can express Cs in terms of the orthogonal triad 
(rs, ts, ns) as 

Cs= sin i sin (w+f)rs 

+sin i cos (w+ /)ts+ (cos i)ns, 

which is easily verified by forming scalar products 
and by using spherical relations obtained at sight 
from figure 34. The vector dis placement is then 

{- r sin i cos (w+ f)nr+ (r cos i)tr}dfl, 

and the partial derivative is 

aF 
-=ErstF Cp1 an r s 

= (r cos i) (Frtr) - r sin i cos (w+ /) (Frnr). 

28.125 

67. The derivative of the velocity vector is 

~- afr 
an-van 

(

- cos ( w + f + /3) sin n - sin ( w + f + /3) cos n cos i) 
= v cos (w+ f+ /3) cos n- s~n (w+ f + /3) sin n cos i 

= (v cos i)m 7 -v sin i cos (w+f+/3)n 7 

a (1 ~ e2 ) {- cos i (1 + e cos f) rr + ( e cos i sin f) t 7 

28.126 +[sin i sin (w+f) +e sin i sin w]n 7
}. 

Argument of Perigee 

68. In this case, the plane and the shape and size 
of the os<;:ulating ellipse remain fixed. The whole 
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ellipse, and with it the position of the satellite, ii 
given a rotation dw about the unit vector n7 per· 
pendicular to the osculating plane. The virtual 
displacement of the satellite is 

Erstnsp1dw= rtrdw, 

and the partial derivative is 

28.127 

69. The derivative of the velocity vector is 

~=v afr =vmr 
aw aw 

µ,1/2 0 1;2 • 
28.128 =-- {- (I-e2 ) 1!2rr+ (e sm E)tr}. 

r 

Relations Between Partial Derivatives 

70. All six partial derivatives of a scalar F with 
respect to the six elements cannot be independent 
because they can all be expressed in terms of the 
three components of the scalar gradient Frrr, 
frtr, Frnr. Accordingly, there must be three rela­
tions between the partial derivatives, obtainable 
by equating alternative expressions for each of the 
three components. For example, after some manipu­
lation, we can express the partial derivatives with 
respect to each (a, e, i) in terms of the partial 
derivatives with respect to (M, w, fl) as 

aF r(I - e2 ) 112 aF 
(ae sin/) aa a aM 

aF 
- (I + e cos/) aw 

. aF aF 
{e(I-e2 ) 112 sm £} -= (e+cos E) -

ae aw 

aF 
+ (I-e2 ) 1!2 (e-cos E)­

aM 

. . ( f) aF aF . aF sm i cot w+ -. =--+cos i -· 
ai an aw 

28.129 

Derivatives of Cartesian Coordinates 

71. We have seen in § 28-56 that F (as used in 
Equations 28.109 through 28.129) may be any scalar. 
For example, if in Equation 28.123 we take F as 
the inertial Cartesian coordinate x, then Fr is the 
Cartesian vector Ar (fig. 34) and Frnr is the Car­
tesian x-component of the vector nr, with similar 
results for the other coordinates (y and z). Com­
bining the three resulting equations, we can say 
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that the following vector equa tion -in which pr is 
the position vector of the satellit e - holds true in 
Cartesian coordinate s, 

apr 
Ti = r sin (w + f)nr. 

In the same way , the complete set of partial deri va­
tives of the position vec tor can be written at once as 

apr pr rrr 

aa a a 

apr =-(a cosf)rr+ (a + -r-) tr sin/ 
ae l -e2 

a r 
~= r sin (w+ f)nr 
ai 

apr ( ae sin f) rr a (I + e cos f) tr 
aM= (l-e2)1/2 + (l- e2) 1/2 

[!:_ 
n 

0 apr ( ") . . ( +f) 28.13 an= r cos l tr- r sm l cos w llr. 

Individual derivatives can, of course, be obtained 
from Equations 28.130 by substituting Cartesian 
components given in Equations 28.060, 28.061 , and 
28.062. For example , we have 

ax r . 
-a =-{cos (w+f) cos n- sm (w+f) sinn cosi}. 

a a 

72. It is convenient at this stage to collect and to 
compare the partial derivatives of the ve locity vector 
with respec t to the elements in terms of the vectors 
rr, tr, nr. From Equations 28.111 through 28.128, 
we have 

a fir µ,1 /2 
::..c::_=--- {(e sin E)rr + (l- e2 )1f2 tr} 
aa 2a 112r 

~- N r · r ae r(l-e2) {-r smf+t cos E} 

~-µ,nr 
ai --;;r {cos (w+f) +e cos w} 

~- N . r an a(l-e2) {-cos i(I+ e cos f)r 

+ ( e cos i sin f) tr 

+ [ sin i s in (w+ J) 

28.131 +e sin i sin w]nr} 

306-962 0-69-20 

289 

from which individual compone nt s may be obtain(' d 
by s ubs tituting Cartesian components given in 
Equations 28.060, 28.061, and 28.062. For example, 
we have 

ax µ, s in n s in i 
ai = N {cos (w+f) +ecos w}. 

73. As in the case of the scalar equations, not a ll 
equations of Equations 28.131 are indepe ndent. We 
can , for example, solve ei ther the first three equa­
tions or the second three equations for the three 
vectors rr , tr, 11 r, and can equat e the result s to ob­
tain three relations between partial derivatives of 
the velocity vector. Corresponding to Equations 
28.130, we have 

anr anr 
(2ae s in j) .:::..i::_= (1- e2)1i2(1 - e2 cos2 E) :::J::._ 

aa aM 

a(I-e2
) ~ 

2r aw 

a. r afir 
{ e(I - e2 ) 112 sin E} QE.= cos E :::J::._ 

ae aw 

a ·r 
+ (1- e2 ) 1/ 2 ( e- cos E) __f!_ 

aM 

[sin i sin (w+ f) + e sin i sin w] o/ji 
= {cos (w+ f) + e cos w} 

28.132 x !!.I!.'___ cos i =-- . (
a. r afir) 
an aw 

74. If we differentiat e with respect to time along 
the osculating ellipse, considered fixed (a, e, i, w, 
n constant) , we have from Equations 28.038, 28.060, 
28.061, and 28.062 

28.133 

df _ v sin f3 _ N 
dt ___ r __ r 2 

drr = df tr 
dt dt 

dtr dj r 

dt=- dt r 

By differentiating in this way the right-hand s ides 
of Equations 28.130, we obtain after a little manipu­
lation the right-hand sides of Equations 28.131. 
except in the case of the a /aa-equation. We co nc lude 
that , with this exception , time derivatives co mmute 
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with partial derivatives with respect to the elements, 
although the reason for this is not immediately 
obvious; we could not have assumed that time dif­
ferences remain the same in a different orbit, formed 
by variation of the elements. However, if s is any 
orbital element other than a, we have 

a ( d) a ( a ) a2 a2 
as dt =as n aM =n asaM=n aMas 

using Equations 28.048 and 28.044; whereas, we 
have 

aaa (1t) = n a:;M+ ~:a~= n a:;M-! ~a~' 
which does not commute but is easily verified from 
Equations 28.130 and 28.131 for components of the 
position vector. 

75. Kaula 3 simply and elegantly obtains results 
which are equivalent to Equations 28.130 and 28.131 
by forming and differentiating coordinate transfor­
mation matrices, such as Equation 28.069. There 
,are, however, advantages in deriving and exhibiting 
these equations in vectors: In some cases, the re­
sults are simpler; the same formulas can be used 
to find the derivatives of quantities other than coor­
dinates and velocity components, such as the deriva­
tives of a disturbing potential, and the geometrical 
meaning of the derivatives is more evident. Both 
methods are likely to be required in future 
developments. 

THE LAGRANGE PLANETARY 
EQUATIONS 

76. If the scalar F in Equations 28.109 through 
28.127 is the negative of the perturbing potential, 
that is, R, we can combine these equations with the 
time derivatives in Equations 28.086 through 28.107 
and write 

28.134 

da 2 aR 
dt na aM 

de (1- e 2) aR (1- e 2) 1i2 aR 
dt na 2e aM na 2e aw 
di cot i aR cosec i aR 
dt N aw N an 

dM _ 2 aR (1 - e2 ) aR 
--n---------
dt na aa na 2e de 

dw N aR cot i aR 
---------

dt µae ae N ai 

df! cosec i aR 
dt N ai 

3 Kaula (1966), Theory of Satellite Geodesy, 67--68. 
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dN aR 
dt aw 

___ t_r __ aR 
ot N sin (w+ f) ai 

df N N aR 
dt = r 2 - µae ae 

ae(l + e cos f) aR 
(1- e 2

) aa 

28.135 +e
2 

sinf aR}· 
(l-e2) aw 

The first six of these first-order equations are th 
Lagrange planetary equations, and are equivaler 
to either the six first-order Gauss equations or th 
three second-order Newtonian equations of motior 

CURVATURE AND TORSION 
OF THE ORBIT 

77. If we expand the equations of motion 
the form of Equation 28.006, we have 

28.136 ( ~~) Lr+ v2 lr8 l8 = Fr. 

Contraction with fr gives the linear acceleratio 

dv 
28.137 -=F fr dt r 

as in Equation 28.083; contraction with n'lf, th 
principal normal to the orbit, gives 

28.138 

in which x is the curvature of the orbit, and w 

have used the Frenet Equations 4.06. It should b 
noted that m r is not necessarily in the plane of th 
"osculating" ellipse, which has only first-ordt: 
contact with the orbit, and that mr does not necei 
sarily coincide with mr in figure 33. Nevertheles! 
mr must lie in the plane of mr and nr because m 
is perpendicular to fr, and we can accordingly writ 

28.139 

so that we have 

28.140 

If iif is the binormal to the orbit, completing th 
right-handed orthogonal triad W, mf, iF), we mm 
have from figure 35 

28.141 iF= nr cosy- mr sin y. 

The two vectors m r, n r are as shown in figure 3 
or 34. 
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Figure 35. 

78. If we contract the basic Equation 28.136 with 
the binormal iF, we have 

28.142 

so that 

28.143 

28.145 

Frn r 
tany=-F r ,.m 

in which we have used Equations 28.140 and 28.082 
for the disturbing force R,.. These equations enable 
us to find bothy and x from the force compo11ents. 
In an unperturbed orbit (Rr=O), we have y=O; 
the radius of curvature is 

1 r(2-r/a) 

X µ, sin/3 si n/3 

=r cosec {3(1 +cos E) = a cosec {3(1- e2 cos 2 E) 

in terms of the Kepler elements. Allowing for 
difference in notation, this last equation is easily 
verified from Equation 22.12 as the radius of 
curvature of an ellipse. 

79. For the perturbed curvature vector, we can 
now rewrite Equation 28.136 as 

v2xm,. =Fr - CFsfs)/ r 

= CFsm 5 )mr+ CFsn 5 )n,. 

28.146 
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80. The tors ion (T) of the orhit involves deri va­
tives of the force. For example, by taking the covari­
ant derivative of Equation 28.142 along the orbit 
and by using the third equation of the F renet 
Equations 4.06, we have 

28.147 

aft e r substituting Equation 28.138. We can a lso 
differe ntiate Equation 28.141 covariantl y along the 
orbit and can substitut e Equation 28.139 to give 

-TT11,. = nrsfs cos y - m,.5 /s sin y - m r(dy/ds ) 

in which ds is the arc e lement (= vdt) of the orbit. 
Contracting this last equation with 1h,. and using 
Equations 28.139 and 3. 19, we have 

28.148 

There are various ways of evaluating the in variant 
on the right. An int eresting method is to use E qua­
tions 28.062 and 28.064 and to evaluate in Cart esian 
coord in ates from 

dn r 
Vil · mrfs = mr-

1s dt 

= -sin (w +f + /3) sin i dl!1 
( t 

di 
- cos (w+ f + /3) dt 

r =-N (Rqnq) cos /3 

by s ubstituting Equations 28.105 and 28.104. Us ing 
Equations 28.145 and 28.054, we have finally 

n,.5 mr/5 = -x sin y cot /3 

28.149 T= (dy/ds)+x sin y cot {3. 

Evaluation of (dy/ds) by differentiating Equation 
28.143 or Equations 28.144 and 28.145 along the 
orbit again introduces derivatives of the force or 
second derivatives of a perturbing potential. T he 
torsion of an unperturbed orbit (y = 0) is, of co urse, 
ze ro. 

THE DELAUNAY VARIABLES 

81. Instead of the e lement s (a , e, i), it is some­
times convenient to use three new variables 

L= Vµ,a 

G = V µ,a(l- e2 ) =N 

H= V µ,a(l-e 2 ) cos i =N cos i'. , 
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first introduced by Delaunay, and still retain the 
other three elements (M, w, 0). Unfortunately, 
every one of these symbols (l, G, H), which are 
standard in the literature, also means something 
else, sometimes in the same chapter of the litera­
ture. It is also usual in this context to use (l, g, h) 
instead of (M, w, n ), the better to exhibit their 
relationship to (l, G, H). To avoid confusion, so 
far as possible, we have used l *, H * for the La­
gran,gian and Hamiltonian. The Delaunay variables 
are not used outside this chapter and are unlikely 
to be confused with, other meanings-of G, g, h,' 
for example - used elsewhere. 

Time Derivatives 

. 82. The time derivatives of the new variables 
are easily obtained by direct .differentiation and by 
_use of the formulas for da/dt, de/dt, di/dt already 
given. We can also relate the results to partial 
derivatives given in § 28-56 through § 28-76, 
remembering that in those sections F is any scalar 
defined in relation to the orbit, such as the dis­
turbing potential R. We have 

dl µ,1!2 da µ, 1!2 2a2 vRrlr aR 
dt= t a1/2 dt = t a1/2-µ: vRrlr =-n-= aM' 

28.150 

using Equations 28.086 and 28.120; we have 

dG dN aR 
28.151 dt=dt= rRqtq= aw' 

using Equations 28.090 and 28.127; and we have 

dH dN di 
- = cos i - - N sin i -
dt dt dt 

= (r cos i)Rqtq- r sin i cos (w+ f)Rqnq 

aR 
28.152 an' 

using Equations 28.090, 28.104, and 28.125. 

83. We can also express the time derivatives of 
(M, w, 0), already obtained, in terms of partial 
derivatives of the disturbing potential R with re­
spect to the new variables (l, G, H). For this pur­
pose, we need partial derivatives of (a, e, i) with 
respect to (l, G, H). We have 

a=L2/µ, 

c2= L2(1-e2) 

28.153 H=G cos i. 
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For partial derivatives with respect to l, we mw 
have H, G constant (as well as M, w, il) so that· i i 
constant and 

2l(l- e2 )dl- 2el2de = 0, 

giving, together with the first equation of Equatior 
28.153, 

aa 2l 
al=-;; 

28.154 

ae (l-e2 ) 

al el 

in the same way, we have 

~=0· ac ' 
ae G ai cot i 
-=--· - --
aG el 2

' ac c 
28.155 

~=0· 
aH ' 

28.156 

~=O· ac ' 

84. Next, we have by the ordinary chain rul 

aR aaaR aeaR ai aR 
al= al aa +al ae-+ al ai 

2l r (1- e2
) { 

=µ:~(Rrrr)+~ -(a cosf)Rrrr 

28.157 + (a+ 1 :_ e2) R,.tr sinf}, 

using Equations 28.154, 28.109, and 28.116; b 
inspection of Equation 28.102, this is 

28.158 

In the same way, we have 

+ r cot i sin (w+ f)(Rrnr)JG} 

dw 
dt' 

28.159 

?sing Equations 28.116, 28.123, and 28.107. Alsc 
we have 

28.160 
aR 
aH 

r sin (w+ f)(Rrnr) 
G sin i 

using Equations 28.123 and 28.105. 

dil 
dt' 
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Canonical Equations 

85. In this section, we have defined R as the 
scalar whose gradient is the disturbing force Rr. 
To ensure correct signs ,. we integrate Equation 
28.082 and obtain 

28. 161 -V= (µ,fr) +R 

where V is the total potential; therefore, R is, for 
1 example, the sum of all the terms in the sphericaf 

harmonic expansion of the potential give n in 
Equation 21.035 which must be added to µJr, 
thus agreeing with Equation 28.981. 

86. The Hamiltonian H* (not to be confused with 
the Delaunay variable H), as defin ed by Equation 
28.031, is 

28.162 H * = !v 2
- (µfr) -R. 

We can substitute Equation 28.042 for v because 
the actual velocity is equal to the velocity in the 
osculating ellipse so that we have 

28.163 
2 

H*= -1!:_-R = -L-R 
2a 2L2 

in which L is the Delaunay variable v;;;,. Also, we 
have 

whereas , the partial differentials of H* with respect 
to the other five Delaunay variables are the same as 
the partials of (- R). By substitution in Equations 
28.150, 28.151 , 28.152 , 28.158, 28.159, and 28.160 
and writing{/, g , h) for (M , w, fl), we have 

dl aH* ·dG aH* dH aH* 
-=--- · - = --- · -
dt al ' dt <Jg ' dt ah 

di aH* dg aH* dh aH* 
dt al ' dt ac ' dt aH 

28.164 

These six equations are in the canonical form of 
Equations 28.033, with {I, g , h) re placing the Car­
tesian coordinates (x, y, z) and with (L, G, H) re­
placing the momenta (i, y, i). The Hamiltonian has 

' the same value, that is, !v2 + V, whether the Hamil­
tonian is expressed in Cartesian or Delaunay 
variables. 
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FIRST INTEGRALS OF THE 
EQUATIONS OF MOTION-FURTHER 
GENERAL CONSIDERATIONS 

87. We shall now consider furth er the Equation 
28.028, that is, 

28.165 !v2 + W =constant , 

which was obtained as a first integral of the equa­
tions of motion rela tive to the uniformly rotati ng 
axes Ar , Br , e r fixed in the Earth. To avoid con­
fu sion , we have overbarred all quantities related 
to this system so that v is the apparent velocity of 
the satellite relative to axes ro tating with constant 
angular velocity w, and 

W= V- !w2d2 

is the geo pote ntial. Also, V is the attraction po te ntial 
a nd d is the distance of the satellite from the axis 
of rot a tion, as obtained in § 20- 10. But the att raction 
pote ntial, as a physical invariant , has the same value 
in both the inertial and rotating syste ms. Also, d has 
the same value if the axis of ro tation is the er-axis 
common to both systems, as we have assumed 
throughout thi s book. Accordingly, the geopotential 
retains the same value on transformation to the 
inertial sys te m; we can dro p the overbars from 
V a nd W. 

88. If pr is the inertial position vector, the appar­
e nt ve locity vector relative to the rotating axes is 

where A_r is the usual unit vector in the direction 
of the parallel of spheri cal polar latitude. T he 
magnitude of the apparent velocity is given by 

v2 = (pr - {wd)A.r) (pr - (wd)A.r) 

= prp,.- 2 (wd)prA.,.+ w2d2 

= v2 -2(wd) vfrA.r+ w2 d2 

= v2 -2(wd) v sin a sin {3+w2d2 , 

using Equations 28.003 and 28.059. S ubstitut ing this 
result in Equation 28.165 , we find that 

!v2 + V - (wd) v sin a sin f3 =consta nt 

ap plies in the inertial syste m. Using the fact that 
we have d = r cos ¢ , together with Equations 28.077 
~nd 28.054, we can also write 

28.166 !v2 + V - wN cos i =constant 

where N as usual is V µ a (I - e2
) . This equation 

must be a first int egral of the inertial equations of 
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motion, equivalent in this case of uniform rotation 
to Equation 28.021. We can also write 

28.167 J 
av _ 
at dt = wN cos i + constant. 

Equation 28.166 can be considered as an expression 
of the law of conservation of energy in this case and 
will, in the future, be referred to as the energy 
integral in our particular problem. It will be noted 
that (N cos i) in the correcting term is the same as 
the Delaunay variable H. 

89. Equation 28.167 leads us to consider the time 
variation of (N cos i) . Using Equations 28.090 and 
28.104, we have 

d(N cos i) 
rRq{ tq cos i - nq sin i cos ( w + J)} 

dt 

28.168 

by substituting Equations 28.059 and 28.077, and 
the last term of Equation 28.080. But (Rq>.._q) is the 
component of disturbing force in the direction of 
the parallel and is zero only if the resultant disturb­
ing force lies in the plane of the meridian, which 
would require the field to be axially symmetric . Also, 
(r cos cf>)Rq>.._q is the moment of this force component 
about the axis of rotation . We conclude that (N cos i) 
is the axial component of the angular momentum 
vector, which can be verified from Equation 28.023 , 
if we take 

N cos i = Erste rPsPt 

d(N cos i) .. 
dt - ErstCrPsPt = ErstCrpsFt= ErstCrpsRt 

28.169 

because the central component of force does not 
contribute to the vector product, and we are there­
fore left with the disturbing force Rt. We have 
finally 

d(N cos i) 
dt - rErstC rrsRt = ( r cos cf>) A._t Rt, 

agreeing with Equation 28.168. 

90. We can now verify Equation 28.167 and thus 
Equation 28.166. If the potential is expressed in the 
fo rm 

- V = 2: r':+i P~1 (cos cf>) ( Cnm cos mw + Snm sin mw) 

in which w is the geodetic longitude and in the 
form 

w=w-wt 
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where w is the inertial longitude and t is elaps('. 
time since the inertial and geodetic meridiar 
coincided, then we have at once 

av _ av _ aR _ 
at=-w aw =w aw =wRq>.._q(r cos cf>) 

because we have -V= µ,fr+ R and therefoi 
aV/aw = - aR/aw. From Equation 28.168, we ha, 

28
_
170 

av _ d(N cos i) 
at=w dt 

which is equivalent to Equation 28.167. 

91. We find therefore that (N cos i) is a consta1 
of the motion , and thus an integral of the equatio1 
of motion , only if the field is axially symmetric, : 
which case (N cos i) is clearly an integral of tl 
equations of motion relative to either the inerti 
or the rotating axes. In the case of an axially syr 
metrical field (tesseral harmonics absent), we ha, 
both 

28.171 

28.172 

tv2 + V= constant 

N cos i =constant; 

whereas, in the case of an unsymmetrical field, v 
have only 

28.173 fv2 + V - wN cos i = constant, 

or, using Equations 28.169, we have 

28.174 tv2 + v - WErstCrPsPt =constant. 

92. An alternative way of looking at the syr 
metrical field is of some interest. If the disturbir 
force is axially symmetric, it can be expressed i 

Rr=ACr+Bpr 

where A, Bare scalars, but not necessarily constant 
In that case, we can see at once from the vect1 
product in Equation 28.125 that we have a Rf an= I 
therefore, we have dH/dt = 0 from Equation 28.1~ 
where H is the Delaunay variable (N cos i). A 
cordingly, we have verified that (N cos i) is 
constant of the motion in an axially symmetric 
field. A canonical variable, such as 0 = h in th 
case which makes the associated variable 
cons~ant in this way, is said to be ignorable. 

INTEGRATION OF THE GAUSS 
EQUATIONS 

93. A standard method of solving differenti. 
equations is to find an exact solution in a speci. 
case which is close to the actual problem; f< 
example, the exact solution of our present proble1 
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for the main term - µJr in the potential is the 
Kepler ellipse. This exact solution results in a num­
ber of arbitrary constants which, in this case, are 
six Kepler elements from the three second-order 
equations of motion or the equivalent six first­
order equations. We then obtain more general 
solutions by writing equations for the (small) 
variations of the constants required to accommodate 
the difference between the exact and actual prob­
lems - in this case, the perturbing potential- and we 
solve these equations by successive approximation. 
Astronomers can claim to have invented this pertur­
bation method for this particular purpose, but it is 
now very generally applied to most of the equation~ 
of mathematical physics, usually in the form of an 
integral equation. A clear introduction to the sub­
ject, supported by further references, has been given 
by the J effreys. 4 

94. The first Gauss Equation 28.086 can be 
written as 

....f!:_ da=R dxr =dR _ aR 
2a2 dt r dt dt at 

m which dR/dt is the total differential of the dis­
turbing potential, containing explicit time. Inte­
grating this equation, we have 

_..f:!:.__ R +f aR dt= constant. 
2a at 

But the velocity in the actual and osculating orbits 
is the same so that Equation 28.042 holds true as 

lv2-f!:.._..f:!:._. 
2 

- r 2a' 

we have also from Equation 28.081 

-V=~+R 
r 

so that 

tv2 +v-J av dt=constant· 
at ' 

or, using Equation 28.167, we have 

tv2 + V -wN cos i =constant, 

which is the same as the energy integral Equation 
28.166. The first Gauss equation is accordingly 
equivalent to the energy integral , and will give us 
no more information. 

95. To illustrate the general method of solution, 
we shall consider Equation 28.105 for the right 
ascension of the ascending node, perturbed by the 

4 Jeffreys and Jeffreys (reprint of 1962), Methods of Mathe­
matical Physics, 3d ed. of 1956, 493- 495. 
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second zonal harmonic of the gravitational fi eld , as 

28.175 R 
µC20P2 (sin </>) 

1-3 
µC20 (3 sin2 <J> - 1) 2r 

where C20 has the meaning assigned in Chapte r 21. 
Using Equations 28.059 in a spherical polar coordi­
nate syste m, we first find the invariant 

R nQ=sin a aR 
q r a<f> 

3µC20 . A- A- • 
= -r4- sm \fJ cos \fJ sm a 

3µC20 . ( +f) . . . = ~ sin w sin i cos i 

by substituting Equations 28.077 and 28.079 so 
that we have 

28.176 

To int egrate this equation, we inust first transform 
to a single variable of the osculating ellipse, either 
t or f, or M, or E; the obvious choice in this case is 
the true anomaly f Using the unperturbed relation 

28.177 
d df d Nd 
dt dt df=72- df 

from Equation 28.098 and substituting the last 
member of Equation 28.051, we have 

df! r2 df! 
- --
df N dt 

28.178 

_3µ.Cw(l+ e cosf) sin2 (w+f) cos i 

N2a (1- e2
) 

3C20 cos i 
2a2(1- e2) 2 {1- cos (2w+ 2f) + e cos f 

-!e cos (2w+3f)-!e cos (2w+f)}· 

To obtain a first-order result, already implicit in the 
use of the unperturbed Equation 28.177, we assume 
that the elements a, e, w, i are unchanged during 
the integration; we then integrate over a complete 
revolution fromfo tofo+ 27T. The resulting first-order 
change ~if! (not to be confused with the Laplacian) 
in the nodal longitude is 

28.179 ~if!= 37TC20 cos i. 
a2(1- e2) 2 

Or, adopting an alternative form of the constant C20 

whereby we have 

28.180 
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in whi.ch ae is a mean radius of the Earth, we have 

37Ta~ cos iJ2 
~if!=- . 

a2(1- e2)2 28.181 

By the same process, we have for the other elements 

~ia=O 

~ 1e=O 

~,i=O 

_ 67Ta-;)2 
~iw- a2(1- e2)2 (1-! sin2 i) 

J (
dM ) 37Ta;.f 2 
--n dt- (1-l sin2 i). 
dt - a 2(1- e2)3/2 

28.182 

The perturbation of the mean anomaly requires 
some explanation. If carried from perigee to 
perigee using Equation 28.043, the integral on the 
left would be the total change in M minus 27T, on 
the same assumption as for the other first-order 
perturbations that a and therefore n are constant 
during the integration; otherwise, the last equation 
is not strictly correct. There is little or no effect on 
the first-order perturbations whether we integrate 
from perigee to perigee or between ascending nodes, 
but the distinction does affect and does complicate 
the second-order perturhations. 

96. First-order or linear perturbations ~if!, etc., 
of the elements caused by each higher harmonic 

' can be calculated in the same way; the results can 
be added to give the final perturbation ~f! as a 
series containing only the first powers. of the gravi­
tational constants Cnm, Smn· If we make enough 
measurements of the perturbations on different 
satellites so as to introduce different values of the 
coefficients of the Cmn, Smn, we can accordingly 
solve the resulting equations for some of the lower 
order C11 m, Snm, assuming that the effect of the higher 

· harmonics on satellites, whose perigee heights are 
large, can be neglected. The process of integration 
over a complete revolution will remove some of the 
higher tesseral harmonics; all the tesseral harmonics 
will he eliminated if observations of the change in 
the elements are averaged over a complete day:. The 
method has, in fact, been used most extensively to 
determine a few of the lower zonal harmonics after 
suitable corrections for lunisolar perturbations, 
atmospheric drag, and radiation pressure-the last 
two of which are small in the case of heavy, compact, 
high-altitude satellites suitable for determination 
of the gravitational field. 

97. It will be found that the coefficients of 12, 
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14, 16, ... are much larger than the coefficients c 
13, 15, ... in the series for ~w and ~f!; the~e pei 
turbations are accordingly used mostly for the detei 
ruination of the even harmonics. The ~e- an 
~i-perturbations are best used for the determinatio 
of the odd harmonics, and can also he used for th 
higher even harmonicsl4, 16, .... The integratio 
of Equation 28.178 over a complete revofotfon ha 
removed the short-period terms, consisting c 
constants multiplied by sines or cosines of angle 
containing multiples of the true anomaly f Th 
resulting first-order perturbations'- averaged ove 
a complete revolution, caused by 1 2, and give 
in Equations 28.181 and 28.182-do not contai 
any periodic terms (because ~i = 0) and are know 
as secular terms, the effect of which increase 
steadily with time. From Equations 28.182, w 
see that the argument of perigee w changes sect 
larly so that perigee will eventually complet 
a whole revolution in the orbit. For this reasor 
terms containing sines and cosines of w, whic 
appear in the perturbations caused by som 
higher harmonics, are kno~n as long-period term! 

98. First-order perturbation by 12 of the argumeri 
of perigee, ~iw in Equations 28.182, becomes zer, 
for an inclination given by sin2 i=! or cos2 i=~ 
Close to this critical inclination, perigee oscillate 
instead of precessing secularly. This case ha 
attracted much attention, but seems to be of irn 
portance in geodetic applications only insofar as th 
critical inclination slightly limits the use of pertm 
bation in perigee. 

99. The Kepler elements are not very suitabl 
for orbits having small inclination or eccentricit 
because then f!, w, M and their perturbations ar 
not well defined. The difficulty, which has bee 
encountered in a different context in § 27-6, ma 
be overcome by using suitable combinations o 
the elements as variables. 

100. As long ago as 1884, Helmert determine' 
12 from the orbit of the Moon, using a formul 
comparable with ~,f! in Equation 28.181, afte 
allowance for the large perturbation of the Moon' 
orbit by the Sun. However, the accuracy of th 
result, which depends on (ae/a) 2 , is much greate 
from nearer artificial satellites even though th 
higher harmonics have more effect. 

Second-Order Perturbations 

101. In common with other perturbation method 
of solving differential equations, integration o 
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the Gauss equations runs into trouble when one 
of the perturbing terms, in this case C20 or h , is 
much larger than the other terms. It is well estab­
lished that C20 is about one thousand times larger 
than any of the other Cnm, 511111; second-order 
perturbations containing C~0 or J ~ have about the 
same magnitude as first-order perturbations caused 
by the other Cnm, S11m· Consequently, we cannot 
hope to obtain values of the other harmonics 
unless we includes Ji-terms and possibly also s uch 
terms as }z}3 , etc. To do this, we must not con­
tinue to assume that elements occurring in the 
coefficients of Equation 28.178, for example, are 
constant during the integration, and we must use 
a perturbed relation instead of Equation 28.177. 
The process will be illustrated by the same example 
as used for the first-order perturbations, that is , 
perturbation of D by the second zonal harmonic. 

102. We begin with Equation 28.176 and consider 
necessary modifications arising from the incon­
stancy of w. We have 

dD={dD} + a(dD/dt) dw 
dt dt aw 

{dD} 6µEzo . . 
= dt - Nr3 sm (w+ f) cos (w+ f) cos i dw 

28.183 

in which the term in braces is the same as we have 
used on the assumption that the ele ments are con­
stant. From Equations 28.175 and 28.059, we have 

r cos a aR 3µC20 • 
Rrt = -r- a<f> = ~ sm </> cos </> cos a 

3µC20 . ( +f) ( +f) . 2 • =-r4- sin w cos w sin i, 

using Equation 28.079 and the last term of Equa­
tions 28.080. Substitution in Equation 28.096 then 
gives an equation of the form 

in which X is a function containing e, sin2 i, and 
trigonometric functions of multiples of w and f , 
To a first order in C20, we can write 
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co mbining this equation with Equation 28.183, we 
have 

dD=c {dH} 
df N dt 

r
2 

6µ,Czu . ( j) f) . d -N Nr3 sm w+ cos (w+ cos i w 

+ r2 3C20X {dD} 
N 2ea2(1 - e2) dt 

in which we have omitted the term containing 
q 0 , leading to a third-order term. Integration around 
a complete revolution will give, for the first te rm 
on the right, 

f ~ {:~} = ~1!1, 
already evaluated in Equation 28.181. The second­
order perturbation to be added to ~1!1 will accord­
ingly be 

~.,n = -J 6µC20 sin (w + f) cos (w + f) cos i 
~ Nr3 

X (!!.. dw)' df 
Ndf 

+ f 2e:2~{~ e2) X ~ { ~} df 

In these integrals, we have to substi tut e Equation 
28.178 and a corresponding equation for dw/ df, 
and the n convert to trigonometric functions of 
multiple angles. During the evaluation of these 
second-order integrals we can consider the ele­
ments constant, just as we. did in the evaluation of 
the first-order integrals to find the first-order per­
turbation ~1!1, so that the integration follows the 
same lines as the inte'gration of Equation 28.178. 

103. In addition, we have to include terms in 
Equation 28.183, s uch as 

a (dD/dt) 
--'--a-e~-'-- de' 

to allow for vanation in the other ele ments; each 
such term would lead to a second-order integral 
containing, for example, de/df These terms have 
to be evaluated, even though the firs t-order pertur­
bation ~ 1 e taken between limits is zero. 

104. First- and second-order perturbations for a 
r:_I':lmber of harmonics have been derived by Merson /' 

5 Merson (1961), "'The Motion of a Satellite in an Axi-sym­
metric Gravitational Field," Geophysical Journal of the Royal 
~Astronomical Society, v. 4, 17-52. 
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Kozai ,i; Zhongolovitch and Pellinen,7 and other s. 
The algebraic equations, even those of the final 
result s, are involved ; the labor required to obtain 
these equations must have been immense. It is 
probable that the method has served it s purpose 
in the evaluation of a few low zonal harmonics and 
that future developments will be more in the direc­
tion of numerical integration. Meanwhile, other 
attempts have been made to avoid the complexity 
introduced by the magnitude of }2. 

INTEGRATION OF THE LAGRANGE 
EQUATIONS 

105. The Lagrange Equations 28.134 require the 
disturbing potential R to be expressed in terms of 
the elements (a, e, i, M, w, !1). This expression has 
been given by Kaula 8 in t he form 

28.184 x Snmpq(w, M, !1, 8) 

where R11111 is the harmonic of order m and degree 
n in the disturbing potential R, and 

[
C J 11-111 even 

S11 111pq= _
1

5
1111 

cos [(n-2p)w 
11111 11 - 111 odd 

+ (n-2p+ q)M + m(D - 8)] 

[s J 
11 - 111 even 

+ 11111 • [( 2 ) sm n- p w 
C11111 11 - 111 odd 

28.185 + (n -2p+ q)M + m(D -8) ]. 

Also, 8 is the sidereal time at the origin of longi­
tude -for example , Greenwich -in the original 
expression for the potential in spherical harmonics. 
The angle (!1 - 8) is accordingly the (Greenwich) 
longitude of the ascending node. The terms F11111p(i) 
and Gnpq(e) are known functions, respectively, of 
the inclination and eccentricity, which appear in the 
literature of classical astronomy, and have been tab­
ulated for a number of harmonics by Kaula. 9 The 
symbol ae is a mean radius of the Earth, the inclusion 
of which requires the Cnm, Snm of Chapter 21 to be 
divided by a~ before substitution in Equation 28.185. 
It is hardly necessary to say that Equations 28.184 

i; Kozai (1959), '"The Motion uf a Close Earth Sa tellit e," Th e 
Astronomica l Journal , v. 64, 367-377. 

7 Zhongolovit ch and Pellinen (1962), "Mean Elements of 
Artifi cial Earth Satellites," Bii'illeten' lnstituta Teoreticheskot 
../.st ro nomii , v. 8, 381- 395. 

8 Kaula, op. cit . supra note 3. 37. 
9 Ibid., 34-35 , 38. 
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and 28.185 are merely indicial equations and haven 
tensor significance any more than the constants Cm 
S nm· Transformation of the ordinary expression of d 
potential in spherical harmonics to the pole of th 
osculating orbital plane is not difficult; the con 
plexity arises almost entirely from the use of M a 
one of the ele ments rather than a purely geometric< 
quantity such as/, but this complexity is necessar 
if we expect to use the canonical Equations 28.161 

106. Because the Lagrange equations , like th 
Gauss equations, are linear , we can substitute di 
ferentials of individual harmonics R11111 on the rig! 
side of these equations and can integrate term-b: 
term. For example, the contribution to d!1/dt of on 
term R11111pq in the double summation of Equatio 
28.184, substituted in the last equation of Equatior 
28.134, is 

28.186 
d!1 ___ 1_ µ,a ; dF11111p G 
d -N . . n+ t d. npqS11111pq, 

t sin i a i 

which can be integrated to find the first-order c 
linear perturbation on much the same assumptior 
as are made for the integration of the Gauss eqm 
tions. In thi s case, we assume that (a, e, i) are co1 
stant during the integration and that w = dw/d 
M=dM/dt , fl=d!1/dt are also constant , whic 
implies that iv, M, fl have either unperturbed c 
average values obtainable from the correspondin 
Lagrange equations. The only variable in Equatio 
28.186 is then S11111pq: we have 

J S11111pqdt 

= J S11111pqd{ (n-2p )w+ (n-2p+ ~)M + m(D.-8) 
(n-2p)iu+ (n-2p+q)M+m(fl-8) 

S11 111pq 

(n-2p)w+ (n - 2p+ q)M+m(fl-8) 

where S11 111pq is the integral of S 11111pq in Equatio 
28.185, with respect to the argument (n - 2p )1 
+ (n - 2p+q)M+m(!1-8). In thi s result , B=w i 
the constant rate of rotation of the Earth. The fine 
contribution to the change in the ele ment is 

_ 1 µ,a~ 
~n" 111 - N----:--:- ---;+J" sm i a 

L (aF11111p/ai)G11pqS11111pq 
X pq (n-2p)zv+(n-2p+q)M +m(fl-B) 

28.187 

In this equation, n is, of course, an index and nc 
the mean motion. 
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107. Firs t-order perturbations are found to be the 
sa me as those obtainable from the Gauss equations. 
The second-order perturbations may be obtained in 
much the same way, allowing for variation in (a, e, 
i, w, M, 0), but are just as co mplicated and just as 
necessary. 

Resonance 

108. If the denominator 

(n -2p)1v+ (n -2p+ q)M + m(!l- iJ) 

of equations, such as Equation 28.187, for the first­
order pe rturbations is near zero, the corresponding 
term in the perturbation will become very large 
and the first-order theory will break down. These 
cases are of considerable importa nce in the orbits 
of geostationary co mmunica tion s sa tellites and in 
the accurate de termination of some higher har­
monics. One case, considered by Kaula, 10 occurs 
when 

1v+M+!l-iJ 

is nearly zero; this situation can happen for certain 
terms in the disturbing fun ction S 111111>q of Equation 
28.185. Another case arises when the ratio of the 
mean motion of the satellit e (M) to the Earth's rota­
tion rate (0) is nearl y equal to 

m/(n -2p + q) 

because, for suc h a term, the denominator will con­
tain only the small perturbations IV, n. The orbit is 
then said tu be commensurable. There is already a 
large and rapid growing literature on the subject by 
such authors as Allan, Anderle, Morando, Wagner, 
and Yionoulis. One of the lates t, which gives reason­
ably full references to earlier work, is a paper by 
Gedeon, Douglas, and Palmiter. 11 

INTEGRATION OF THE CANONICAL 
EQUATIONS 

Contact Transformations 

109. In thi s book, we have so far used only point 
transformations, either to a different se t uf coordi­
nates or to a point in another s pace related by 
one-to-one corres pondence. We now briefly con­
sider contact transformations, whereby both the 
coordinat es of a point and a vec tor associated with 
the point are transformed in such a way that the 

10 Ibid., 49-56. 
11 Gedeon, Douglas, and Palmite r (1967), "Resonance Effects 

on Eccentric Satellite Orbits," The Journal of the Astronautica{ 
Sciences, v. XIV, no. 4, 147-157. 
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canonical form of equations co nnecting the coo rdi­
nat es and co mpone nt s is preserved. The transfor­
mation from the six indepe nde nt variables (x , y, z, 
i, y, t) in Equations 28.033 to th e Delaunay variables 
(L, G, H, I, g, h) in Equations 28.164 is a contact 
transformation. For our prese nt purposes. we need 
to cons ider the position and ve locity of a s ingle 
particle only in three-dime11sional space with six 
independent variables. However, the same methods 
apply to dynamical systems consisting of any num­
ber of particles, each of which will con tribut e three 
coordinates and three co mponents of ve locity or 
momenta. The transformed variables may no longer 
represent position and velocity separately- the 
Delaunay variables do nut - although the trans­
formed variables are sufficient to determine position 
and velocity ei ther directly or by another tran sforma­
tion. Nevertheless, it is usual to call three of the 
variables coordinates and to call the other three 
momenta to fix their position in the canonical equa­
tions with the correct sign. We shall denote coordi­
nat es by qr and momenta by p,. so that the canonical 
eq uations are, as in Equations 28.033, 

28.188 
aH* 

(t=--. 
d/Jr ' 

aH* 
Pr =- aqr 

in which it is assumed that the Hamiltonian H* can 
be expressed as a fun ct ion of J>r , qr and of the time t. 
In writing these equat ions, we have used index 
notatio n and can use the summation convention, 
but the canonical equat ions are generally not tensor 
equations because the variables do not transform 
in the same way. 
The total time differential of the Hamiltonian is 

dH * aH* aH* aH* 
dt= dPr Ji,. + aqr </+at 

in which the first two terms on the right cance l by 
Equations 28.188. If the Hamiltonian does not 
co ntain the time explicitly (aH*/at = 0), the n we 
have dH*/dt = O; the Hamiltonian is a constant nf 
the motion and the refore an integral of the equations 
of mot ion. 

110. A contact tran sformation to new variables 
Qr, P,. will res ult in the canonical equat ions 

. aK* . aK* 
28.189 Qr = -• P -aP,. ' r-- aQr 

in which the new Hamiltonian K* expressed in 
te rms of P,., Qr need not necessarily have the same 
value as H*. It can be shown 12 that the transforma-

12 A full er treatment of the subject for different for ms of the 
transfo rming function is given by Goldstein (1950), Classical 
Mechanics, 237-243. 
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tion equations from Equations 28.188 and 28.189 are 

as 
Pr= aqr ; 

28.190 

K*=H*+ as 
at 

in which the transforming function S may be a 
function of time and is a function of the mixed 
variables qr, Pr, so that we have 

28.191 

There are alternative transformations in which S 
can be a function of other variables, for example 
qr, Qr, but this form in Equations 28.190 and 28.191 
is the most useful for our present purposes. The 
Hamiltonian remains unchanged in value, even 
though expressed in terms of different variables, 
if the transforming function does not explicitly 
contain the time. 

The Hamilton-Jacobi Equation 

lll. Next, we seek a contact transformation which 
will make the new Hamiltonian K* zero so that we 
have 

or, using the transforming equation Pr= aS/aqr, 
we .have 

28.192 H*( r ~ t) + as= 0 q , aqr' at ' 

known as the Hamilton-Jacobi equation. If we can 
solve this last equation for S, the whole problem is 
solved because the new canonical Equations 28.189 
then show that the new Pr, Qr· are arbitrary con­
stants of the motion ar, 13r. The transforming func­
tion in Equation 28.191 can then be written 

S = f(qr, a,., t); 

the transforming Equations 28.190 become 

28.193 Qr = W= aS(qr, ar, t), 
dll'.r 

which enable us to express Pr and qr as functions 
of ar, 13r and t. We can finally choose the arbitrary 
constants a,., 13r to fit given values of Pr, qr at a 
given time, that is, to fit the starting conditions in 
the orbit. The coordinates and momenta Pr, qr are 
then calculable at any later time. 

112. In the form of Equation 28.192, the Hamilton­
Jacobi equation applies to general dynamical prob-
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lems containing any number of coordinates qr. F 
our particular problem of a single particle in thr 
dimensions, we can use Equation 28.032 for t 
Hamiltonian in Cartesian coordinates and write t 
equation as 

V(x. y, z, t) +t { G~r + (~~r + (~~r} + ~~ = o 

or, using Equation 3.13, we have 

28.194 V+l\7S+~~=O. 
But this last equation is a space invariant whiti 
holds true in any space coordinates, provided "' 
can write the potential V in the same coordinah 
and provided the space coordinates in S are ind 
pendent of time -as we are entitled to assume in ar 
Newtonian system. If the associated metric tens1 
of the coordinate system is grs, all we need do is · 
use Equation 3.13 and write 

28.195 

113. If the potential does not contain explic 
time t, the Hamilton-] acobi Equation 28.194 c< 
e;idently be satisfied without any other loss 
generality by 

28.196 

in which W* is a scalar not containing explicit tin 
and a1 is an arbitrary constant; W* is not to I 
confused with the geopotential. The equation th« 
becomes 

28.197 H*=V+!V'W*=a1. 

We can consider W* as the transforming functi< 
(replacing S in § 28-1 ll and § 28-ll2) for a conta 
transformation which makes the new Hamiltoni< 
the same as the old (because aW*/at = 0), ho 
being equal to the constant a,. The new canomc 
Equations 28.189 are then 

p =- aa1 =O 
r a Qr 

which integrates to 

28.198 P,.= a,., 

a set of constants, one of which may be taken 
a1: we have 

Q,.= aa1 = aa1 = ?V 
aP,. aa,. 1

' 

using the Kronecker delta. This last equation 
tegrates to 

28.199 
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in which {3,. are arbitrary constants. All the ne w 
coordinates and momenta are cons tant s except 

QI=t+{31. 

Combining these results with the transforming 
Equations 28.190 and with the transforming func­
tion W* instead of S, we have finally 

28.200 

P,.=a,. 

aW* 
Qr= ort + {3"= --aa,. 
K*=H*=a1. 

This W*-transformation, where W* is time-inde­
pendent and the Hamiltonian is unchanged and a 
constant of the motion, is quite different from the 
S-transformation where the transforming function 
is time-dependent and the ne w Hamiltonian is 
zero. Nevertheless, both Equations 28.194 and 
28.197 are known as the Hamilton-Jacobi equation; 
S is known as Hamilton's principal function and 
W* is known as Hamilton's characteristic function. 

114. The Hamilton-Jacobi equation in the time­
independent form of Equation 28.197 can be 
solved exactly in a few coordinate systems, pro­
vided the equation can be separated into three 
ordinary differential equations, each containing only 
one variable, in much the same way as the Laplace 
equation was solved in spheroidal coordinates in 
§ 22-17. For example, the equation can be solved 
in spherical polar coordinates for the unperturbed 
potential - µ..fr; the transformed coordinates and 
momenta Qr, Pr are then found to be the Delaunay 
variables. Plummer 13 gives a complete solution. 

The Vinti Potential 

ll5. Vinti 14 has shown that the Hamilton-Jacobi 
Equation 28.197, in the case of a time-independent 
potential, is separable in the spheroidal coordinates 
of § 22-10 and § 22-11, provided the potential has 
the form 

bu cot a-bi sin u 
cot2 a+ sin2 u 

13 Plummer (Dover ed. of 1960), An Introductory Treatise on 
Dynamical Astronomy, original ed. of 1918, 142. 

14 Vinti (1959), "New Method of Solution for Unretarded 
Satellite Orbits," Journal of Research of the National Bureau of 
Standards, Section B, v. 63, 105-116; (1961), "Mean Motions in 
Conditionally Periodic Separable Systems," v. 65, 131-135; 
(1961), "Theory of an Accurate Intermediary Orbit for Satellite 
Astronomy," v. 65, 169-201; and (1962), "Intermediary Equa­
torial Orbits of an Artificial Satellite," v. 66, 5- 13. 
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in whi ch bo , b, are arbitrary cons tant s a nd the 
constant (ae) of the spheroidal coordinate sys tcm­
not to be confused with the Kepler ele me nts of a ny 
orbit-is also available as an arbitrary cons tant. 
For equatorial symmetry , the pote ntial does not 
c hange for ± u, and b1 mu st be ze ro. The pote ntial 
is the n 

bu cot a tibo ! ibo 
i cot a- sin u + i cot a+ sin u ' cot2 a+ sin2 u 

which can be expanded to within a scale consta nt 
by Heine's Theore m 15 as 

x 

ibo L (2n+ l)Q,,(i cot a )P,,( sin u) (n e ven). 
11 = 0 

This re sult is transformed to spherical harmonics ­
for the same mass dis tribution, whate ver that may 
be -by Equation 23.1 5 as 

. (a e (ae) 3 
. (aeP . ) 

ibo -:---.-~-P-Asm</>)+-.-.-P-1(sm<f>)- ... . 
ir ir' ir, 

We may choose the harmonic of zero order to be 
- µ..fr as usual if we make 

28.201 bo=-1=._; 
ae 

then , the potential is 

-~{1-(arer P2( sin <P)+(arey P-1( sin </>) - . . .J-
Also , we can make the second zonal harmonic the 
same as in the actual pote ntial of the Earth, if we 
use Equation 28.180 and make 

28.202 (ae) 2 =-C20=+ a~J2, 

which is Vinti 's convention, so that finally the 
potential is 

-t;. {1-(~e)2 J 2P 2(sin </>)+(~·J JW4(sin<f>) 

-( ~·J nP-1( sin </>) + .. l 
28.203 

It is of interest to note that Equation 28.202 leads 
to a real spheroidal coordinate s ys te m only if 12 
(in Vinti' s conve ntion) is positive or if C20 (in our 
conve ntion of Equation 21.035) is negative, but in 
the case of the actual Earth, this condition is me t. 

116. The transforming fun c tion W* is obtained 
from the solution of the Hamilton-Jacobi equation 

15 Whittaker and Watson (reprint of 1962). A Course of Modern 
Analysis, 4th ed. of 1927, 321. 
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by Vinti in the form of elliptic integrals contammg 
the constant momenta <X.r, which appear during the 
process of separation; W* is differentiated with 
respect to these constants to provide the trans­
formed coordinates Q" from Equations 28.200 also 
in the form of elliptic integrals. The constants <X.r, 

{3,. describe the motion completely in much the same 
way as initial values of the Delaunay variables do 
for the potential - µ,/r, although not as simply. Nor 
are the constants <X.r, {3,. as easily related to the 
Kepler elements, although this relation has been 
accomplished by Izsak 16 and Vinti. 17 The solution 
completely takes care of the large second zonal 
harmonic which causes trouble in the integration 
of the Gauss and Lagrange equations, but first­
order perturbation methods are still necessary to 
evaluate the higher harmonics. The higher zonal 
harmonics are evaluated as differences from the 
corresponding harmonics in the Vinti potential. 

The von Zeipel Transformation 

117. Instead of making the transformed Hamil­
tonian zero as in § 28-111, the von Zeipel transfor­
mation of the canonical equations successively 
eliminates the time and the Delaunay angular vari­
ables from the Hamiltonian. In the final transforma­
tion represented by Equations 28.189, for example, 
the aK*/aQr are zero; therefore, the final momenta 
Pr are arbitrary constants. Working backward from 
the now-known Pr and (Jr, we can, at any rate 
theoretically, recover the original Pr, qr in terms of 
arbitrary constants which can be related to the 
starting .conditions. The method has been used to 
account for the lower-order zonal harmonics, and is 
complicated enough in this favorable symmetrical 
case where explicit time and one Delaunay coordi­
nate are absent in the initial Hamiltonian. (We have 
seen in Equation 28.172 that, in this axially sym­
metrical case, the Delaunay variable H = N cos i is 
constant in time; therefore, the Hamiltonian in 
Equations 28.164 cannot contain the Delaunay 
coordinate h = f!.) An outline description, covering 
only the C20- or }2-disturbing potential, is given by 

16 Izsak (1960), "A Theory of Satellite Motion About an Oblate 
Planet. I. A Second-Order Solution of Vinti's Dynamical Prob­
lem," Smithsonian Institution Astrophysical Observatory. Re­
search in Space Science. Special Report No. 52. 

17 Vinti (1961), "The Formulae for an Accurate Intermediary 
Orbit of an Artificial Satellite," The Astronomical Journal, 
v. 66, 514- 516: and (1966), "Invariant Properties of the Spheroidal 
Potential of an Oblate Planet," Journal of Research of the 
National Bureau of Standards, Section B, v. 70, 1-16. 
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Kaula; 18 a fuller description, including the applic 
tion to other zonal harmonics, is given by Brouwer. 

DIFFERENTIAL OBSERVATION 
EQUATIONS-DIRECTION 
AND RANGE 

118. A solution, which is more in line with curre 
geodetic practice, is to assume an approxima 
orbit in much the same way as we start with appro: 
mate positions in a geodetic network adjustme1 
The "computed" value of an observed quantity 
then obtained from this approximate model ai 

enters the observed minus computed side of 
differential observation equation. On the other si1 
of the equation are various terms giving the effe 
on the observed quantity of the application of cc 
rections to the approximate orbital elements. The 
terms are broken down into corrections to the gra· 
tational constants assumed in the approximate orb 
together with a number of parameters in expn 
sions for the drag, etc., which the solution is requin 
to provide. The observation equations at differe 
times to a number of satellites are then solved I 
least squares for the corrections and paramete1 
The method differs only from a normal geodet 
adjustment in that the observations are made 
different times to a moving object, so that the coef 
cients of the corrections will usually contain t 
time of observation. The approximate orbit 
usually a Kepler ellipse perturbed by· the laq 
C20- or 12-gravitational term; this orbit ensures th 
corrections to the gravitational constants will I 
uniformly small. 

119. The most useful observations to artifici 
satellites for geodetic purposes consist of: 

(a) photography of the satellite against a stell 
background with, for example, the Baker-Nw 
tracking cameras or the BC-4 cameras used f 
satellite triangulation, as described in § 26-· 
through § 26-66; 

(b) ranging by radio; or, optical-distance measm 
ment to the satellite using lasers; and 

(c) range-rate measurement by Doppler-tracki1 
systems or by contir~uous range measurement. 
Other methods, such as measurement of horizo 
tal and vertical angles to the satellite at a knm 
time by kinetheodolite, for example, are general 
less accurate, but the appropriate observation equ 

18 Kaula, op. cit. supra note 3, 43-49. 
19 Brouwer (1959), "Solution of the Problem of Artific 

Satellite Theory Without Drag," The Astronomical Journ 
v. 64, 378-397. 
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tions can easily be formed if required by suitable 
modification of equations given in Chapter 26. 

120. The reduction of photographic observations 
has already been fully treated in § 26- 43 through 
§ 26-66, although fewer refinements are usually 
required in orbital analysis. The end result consists 
of observational equations connecting observed 
minus computed plate or film measure ments -or 
deduced right asce nsions and declinations- with 
corrections to the Cartesian coordinates of the 
satellite and of the ground-tracking station, such as 
Equations 26.46 and 26.47. Far range observations , 
we can use Equation 26.65. Although these equa­
tions were drawn up for the Earth-fixed Ar, Br, Cr 
system, the equations apply equally well in the 
inertial 1 r, fJr, er system, provided we replace the 
origin-hour angle H (as defined in § 26-32) by 
(H + 8) where (} is the side real tim e at the origin of 
longitudes in the Earth-fixed system -in other 
words, if we interpret H as right ascension. The 
inertial coordinates of the tracking station change 
as the Earth rotates and are differe nt for each obser­
vation. To de rive corrections to the Earth-fixed 
coordinates dxo, dyo of the tracking station, we must 
replace the ine rtial coordinate s x , y of the tracking 
station in the modified Equation s 26.46, 26.47, and 
26.65 by 

28.204 (x) = (c~ s (} - s in (}) (xo), 
y sm (} cos 8 Yo 

and must replace the inertial differe ntials dx, dy by 

28.205 (~;) = (:~~ ~ ~:~n 8
8

) (~;:} 
We can replace (} by wt in which w is the rotation 
rate of the Earth and t is elapsed time since the 
initial meridians of the Earth-fixed and inertial 
systems coincided. These transformations do not 
alter the Cartesian origin. Accordingly, if first 
harmonics are omitted from the express ion for the 
potential used in forming the obse rvation equations, 
the corrections dxo, dyo to be found by solving the 
observation equations will give the final coordinates 
of the tracking station in relation to the center of 
mass as origin, as we have seen in § 21-42. 

121. We are not interested in obtaining correc­
tions to initial values of the inertial coordinates 
(xr or p 1

") of the satellite, which also would be quite 
. different for each observation. Instead, we seek 
corrections to approximate values of the orbital 
elements (a, e, i, M, w, !1), which would have been 
used to compute xr from Equation 28.069 and so 
to obtain the computed value of the observed direc-
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tion or range. The orbital ele me nts (o the r tha n Ml 
vary much more slowly than the Ca rtesia n coord i­
nates , and can be co nside red co nstant in first-order 
obse rvational equations cove ring obse rva tions ove r 
conside rable periods of time . Accordingly, we re ­
place dx , for example, by 

ax . ax 
dx= aa da + ae de+ . .. 

and use Equations 28.130 for the ax/ aa , e tc. Mo re­
ove r, the correc tions da , e tc . , to the orbital e leme nts 
are themselves composed of: 

(a) C orrections dao to the values assumed fo r 
the approximate orbit. If the approximate orbit 
takes account of cert a in perturbations, such as 
Cw or ) 2, then the osculating ele ments of the ap­
proximate orbit will vary with time. Integration of 
the approximate orbit will give values of the ele ­
ments iio at a partic ular time to. If the time of 
obse rvation t is ve ry diffe re nt , we may ha ve to 
re place the correction da 0 in the observation equa­
tions by 

dao + (aa/at)o(t- to), 

using the Gauss e quations for (aa/at), etc. , at to ; 
0

that is, we have to substitute iio , e tc. , in the Gauss 
equations. 

(b) Corrections arising from the Earth 's gravi­
tational pe rturbations . These may be obtained from 
the integrated Lagrange equations, such as Equa­
tion 28.187 , by partial diffe re ntiation with res pect 
to the C11111, 511111· The result s will contain s ine or 
cosine terms with argume nt s 

(n-2p)w+ (n -2p + q)M + m(fi-8). 

Again , the elements will vary with time if the 
approximat e orbit is not a Kepler ellipse (M will 
do so anyway). Howeve r , if the correcting te rms 
are small, we can write the argume nt as 

(n -2p) (wo+ w~t)+ (n-2p+ q) (Mo+ M~t ) 

+ m{f1o- Bo+{!!- iJ)~t} 

where the zero suffix denotes the initial approximate 
value of the element at to , ~t is the time of the 
observation since to, and zv, M, n are considered 
con stant; C2o or )2 is now well e nough known to be 
include d in the approximate orbit, in whic h case the 
remaining te rms, suc h as 

(aacn ) dC11111 , 
11111 

could then include such higher zonal and tesseral 
harmonics as can be handled by compute r capacit y. 

(c) Other corrections to the elements ari sing from 
atmospheric drag, radiation pressure , and lunisolar 
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perturbations. These corrections will be considered 
very briefly in the following three sections. 

Drag 

122. Correction terms to the Gauss or Lagrange 
equations for a, e, w, and M have been given by 
Sterne 20 and applied by Izsak 21 to an atmospheric 
model in which the density decreases exponen­
tially with height. More realistic high-altitude 
atmospheric models derived from satellite obser­
vations, which among other solar effects show a 
large diurnal bulge toward the Sun with a pro­
nounced lag caused by the Earth's rotation, have 
been described by Jacchia,22 by King-Hele,23 and 
by Priester, Roemer, and Volland. 24 The results 
can be used to provide first-order corrections, 
such as 

D.a=aD.t, 

to the preliminary values ao of the elements. 
However, it has been shown by Kaula 25 that the 
principal effect is a perturbation D.M of the mean 
anomaly which can be described by a few terms of 
a polynomial in time as 

D.M = p ( D.t) 2 + q ( D.t) 3 + . . . . 
Kaula also obtains the drag perturbations D.a, D.e , 
D.w, D.O in terms of the same coefficients p, q, 
which can accordingly be considered as parameters 
or unknowns in the observation equations in much 
the same way as the atmospheric parameters 
Ki, K2, K3 , K4 (§ 26-58) are determined in the 
solution of the observation equations in satellite 
triangulation. 

Radiation Pressure 

123. Solar radiation pressure as a nongravitational 
force can have a considerable effect on the large, 
light, balloonlike satellites used for satellite tri­
angulation, but, in that case, a correction is required 

20 Sterne (1959), "Effect of the Rotation of a Planetary Atmos­
phere Upon the Orbit of a Close Satellite," ARS [American 
Rocket Society] Journal, v. 29, 777- 782. 

21 Izsak (1960), "Periodic Drag Perturbations of Artificial 
Satellites," The Astronomical Journal, v. 65, 355- 357. 

22 Jacchia (1960), "A Variable Atmospheric-Density Model from 
Satellite Accelerations," Journal of Geophysical Research, v. 65, 
2775-2782. 

23 King-Hele (1964), Theory of Satellite Orbits in an Atmosphere. 
24 Priester, Roemer, and Volland (1967), "The Physical Be­

havior of the Upper Atmosphere Deduced from Satellite Drag 
Data," Space Science Reviews, v. 6, 707- 780. 

25 Kaula, op. cit. supra note 3, 57-59. 
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only for orbital prediction. The effect is much le: 
on small, heavy satellites suitable for the dete 
mination of the gravitational field, but, nevertheles 
some allowance must usually be made. The satelli 
is affected only in sunlight; this intermittent effe 
requires in practice some form of numerical int 
gration or harmonic analysis designed to incluc 
discontinuity. The effect can then be integrah 
over the time covered by a batch of observation 
and can be applied as a correction to the ao, eo, etc 
adopted as constant for the b"atch. A comple 
treatment has been given by, among other 
Musen 26 and by Walters, Koskela, and Arsenault. 

Lunisolar Perturbations 

124. We have thus far considered only the attra 
tion exerted by the Earth on the satellite, and v 
have justifiably assumed that the attraction exerh 
by the small satellite on the Earth has no effect c 
the motion of the Earth. However, if we introduce 
massive body such as the Sun into the system, tl 
effect on the motion of the Earth relative to tl 
satellite is by no means negligible. The force 
attraction on the Earth is GMsMEfi'2 where Ms, 11 
are, respectively, the masses of the Sun and tl 
Earth and where i' (fig. 36) is the distance betwet 

Sun 

~ 
ii--

satellite 

Earth --pk 

Figure 36. 

the two bodies. We have assumed, as we can ( 
because of the great distance i', that the Earth ca 
for this purpose, be represented by a point mass 
its center of mass (or a uniform sphere centen 

26 Musen (1960), "The Influence of the Solar Radiation Pr1 
sure on the Motion of an Artificial Satellite," Journal of G, 
physical Research, v. 65, 1391-1396. 

27 Walters, Koskela, and Arsenault (1961), "Solar Radiati 
Pressure Perturbations," Handbook of Astronautical En, 
neering, 8-33, 8-34. 
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on the center of mass of the Earth). The Earth, 
, along with the origin of the "inertial" coordinate 
· system we have used throughout this book, is now 

subjected to an acceleration of GMs/t2 toward the 
Sun; the coordinate system is no longer inertial, 
and the Newtonian equations of motion do not 
apply. However, we can restore the inertial system 
by applying an equal and opposite acceleration to 
all bodies in the system without affecting their 
relative motion. The satellite (of unit mass) is then 

! subject to the following forces or accelerations: 
(a) the attraction F k of the Earth, whatever that 

may be (we do not assume that this force is directed 
toward the center of mass of the Earth); 

(b) the attraction of the Sun GM5 /r 2 toward the 
center of mass of the Sun; and 

(c) an acceleration of GMs/f2
, parallel to the direc­

tion of the Earth from the Sun, required to cancel 
the acceleration of the coordinate system. 
The disturbing force on the satellite is the vector 
sum of (b) and (c), that is, 

28.206 

which is equivalent to a disturbing potential at the 
satellite of 

-GMs G-r):j), 
as we can see at once by taking the negative gradient 
of the latter expression at the satellite with pj fixed. 
Expansion of the disturbing potential, as in Equa­
tion 21.010, gives 

GM, ( r 
--_-· 1 +-:-cos "' 

r r 

~ r ) + ... t" P 11 (cos t/J) .. . -f cos t/l 

GMs ( r2 ) =--_- 1 +-::;- P2 (cos t/J)+. . . · 
r r-

The term not contammg t/J drops out on differen­
tiation of the potential to form the equations of 
motion; the remaining terms of the order (l/r1) are 
small, even though Ms is large. 

125. Perturbation of the satellite by any number 
1 of other bodies, such as the Moon, can be handled 

by adding accelerations in the same way. Because 
the Newtonian equations of motion are linear, we 
can achieve the same result by considering the 
effect of each body in turn. The disturbing potential 
in each case can be expanded in spherical harmon­
ics related to the inertial system, as in Equation 
21.035, and so in terms of the orbital elements of 
the satellite and of the Sun (or Moon) in a double 

306-962 0-69-21 
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series similar to Equation 28.184. The full expansion 
has been given by Kaula.28 The same methods can 
then be used as for perturbations of the satellite 
by terms in the Earth's potential. However, it is now 
more usual to integrate the Cartesian equations of 
motion numerically for each small perturbation, 
using Equation 28.206. 

DIFFERENTIAL OBSERVATION 
EQUATIONS-RANGE RATE 

126. Continuous measure ment of range to the 
satellite provides a measure of range rate. The 
range rate is also related to the Doppler frequency 
of signals emitted by the moving satellite and re­
ceived by a ground station, after correct ion for 
atmospheric refraction and ionospheric refraction 
by a two-wavelength technique, although the large 
number of Doppler observations made on even a 
short orbital arc requires special initial treatment. 
Accordingly, we need a form of observation equa­
tion for the time rate of change of range, which we 
shall denote as P. If the inertial position vectors to 
the satellite and to the tracking station are pr, 

pr, and if the range and unit vector from the tracking 
station to the satellite are s, ur so that we have 

28.207 

then the range rate is the component of relative 
velocity in the direction ur, giving 

28.208 P= (pr-//)u,.. 

Proceeding exactly as in § 26-5 and § 26-6, we find 
that we have 

sdP = (dr),.-dpr) (pr-pr) 

28.209 + (PkPr+ qkqr) (pk-pk)(dp,.-dpr) 

in which pk , qk are any unit vectors forming a 
right-handed orthogonal triad (Uk, Pk, qk) with 
u1,-for example, the mr, nr of § 26- 7 and § 26-8 
evaluated in spherical polar coordinates. The posi­
tion and velocity vectors of the satellite Pr, pk 
are given by Equations 28.130 and 28.131 in terms 
of the orbital elements. Position and velocity vec­
tors of the tracking station are easily obtained in 
terms of Earth-fixed coordinates (xo, yo, zo) from 
Equation 28.204 in the form 

28.210 
(

cos wt - sin wt ~ 
pr = sin

0 
<iJt cos

0 
<iJt ~} p~ 

28 Kaula (1962), "Development of the Lunar and Solar Dis­
turbing Functions for a Close Satellite," The Astronomical 
Journal, v. 67, 300-303. 
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and 

28.211 
(

- sin wt - cos wt 
pr= w co~ Wt - si; Wt 

where t is elapsed time since the inertial and 
Earth-fixed meridians coincided. 

127. Finally, we must express corrections to the 
position and velocity of the satellite in terms of 
corrections to the orbital elements as 

a ,. a ,. 
dp,. = _l!_ da + _l!_ de+ . 

aa ae 

a.,. apr 
dpr=_l!_ da+- de+. 

aa ae 
.. , 

and then substitute Equations 28.130 and 28.131. 
As in the case of the observation equations for 
direction and range, da, etc., are then expressed in 
terms of da0 , dC,,111, dS,,111, etc. Corrections to the 
position and velocity of the tracking station are 
expressed in terms of corrections to the Earth-fixed 
coordinates ptf by differentiating Equations 28.210 
and 28.211 with the time fixed. 

128. As in the case of the observation equations 
for direction and range, the omission of first-degree 
gravitational harmonics will ensure that corrections 
to the position of tracking stations are derived in an 
inertial or Earth-fixed system whose origin is located 
at the center of mass of the Earth. We have seen in 
§ 21-57 that C:21 - and 521-harmonics should also be 
omitted, although for test purposes these harmonics 
are sometimes included and the results are com­
pared with the theoretical zero. The large number 
of Doppler observations, which can be made on 
short arcs, makes this form of measurement par­
ticularly suitable, and indeed essential, for the 
determination of the tesseral harmonics. 

THE VARIATIONAL METHOD 

129. We shall now consider a different approach 
which yields no fresh results, but affords a deeper 
insight into the whole problem. So far, we have 
considered only one orbit, and have defined the 
linear velocity in this orbit alone. Now we consider 
velocity as a scalar in three dimensions, defined in 
some way in a domain surrounding the orbit: this 
we can do by supposing that the orbit is one of a 
family, all of whose members have some charac­
teristic in common. We shall assume a time-inde­
pendent potential V and shall choose the common 
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characteristic of the family to be the same constan 
energy a1 or the Hamiltonian 

28.212 

Because the potential Vis defined in space, so is t 

we can introduce the space gradient v,. of v, which i 
not to be confused with the velocity vector vi 

in one of the orbits. 

130. We can also transform the orbit space cor 
formally with scale factor v to a space in which th 
line element is ds so that we have 

28.213 ds=vds; 

the velocity vector transforms to 

28.214 l,.=vl,. 

in accordance with Equation 10.13, provided we us 
the same coordinate system in both spaces. Thi 
transformation implies that the point correspondin 
to the satellite is traveling in the overbarred cou 
formal space with velocity l,., that is, with constan 
(unit) linear velocity. We might suppose therefor 
that the line corresponding to the orbit is a geodesi 
of the conformal space, just as the free path of 
point moving with uniform velocity in ordinary spac, 
is a straight line. At present, we introduce thi 
geodesic property as a reasonable hypothesis; late 
we shall show that it is equivalent to Newton' 
second law. 

131. It is evident that all members of the family <J 

orbits will transform in the same way to a family o 
geodesics, which will cut orthogonally a family o 
geodesic parallel surfaces generated by assignin: 
different (constant) values to a scalar M*, as ii 
§ 10-19 and § 10-20. Given the family of geodesics 
it is always possible to construct one surface whicl 
cuts the family orthogonally: the other geodesi1 
parallels are then constructed by joining points a 
equal distances along the geodesics from th1 
initial surface. 

132. We can now use any of the results in Chapte 
10. Corresponding to Equation 10.27, the equatiorn 
of the orbits can be written in the vector form 

28.215 M~=vl,.=l,.. 

From this last equation, we have 

aM* =M*[1·= 1 
as r 

so that /11* is the distance between geodesi1 
parallel surfaces (M* =constant) measured alon1 
the geodesics, as we found in § 10-19. We ca1 
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rewrite Equation 28.213 as 

M*= J vds= J v2dt. 

Because the length of a geodesic is , in general, less 
than the length of any other neighboring curve join­
ing two fixed points, we can say that the value of the 
integral 

J vds= J v2
dt 

between two fixed points on an orbit is less if taken 
along the orbit than along any neighboring path 
between the fixed points. This is the classical princi­
ple of least action, which is now seen to be equiva­
lent to the geodesic property in the conformal 
transformation. We can call M*, integrated along a 
section of the orbit, the action. 

133. The acceleration vector is given by intrinsic 
differentiation of Equation 28.215 as 

o(vlr)=M* dxs= M*ls 
ot rs dt v rs . 

Because M* is a scalar, we have M:S = M:,. and also 

8 ( vl,.) ) 
--=vM*ls=v(vl [s=vv +v2l zs ot sr s r r sr 

in which the last term is zero by Equation 3.19, so 
that we have 

28.216 o(vlr) - - 2 -
8[-VVr- (~ )r--Vr 

by using Equation 28.212; this last equation is 
Newton's second law as expressed in Equation 
28.006 (in which, however, Vr is the velocity vector 
and is not the gradient of the linear velocity). Ac­
cordingly, the geodesic principle, the principle of 
least action, and Newton's second law are all three 
equivalent. 

134. Another way of demonstrating the equiva­
lence of the principle of least action and Newton's 
second law is to write 

v2 = ( !v2 + V) + ( !v2 
- V) 

=a1+L* 

where L * is the Lagrangian , defined in Equation 
28.029, and 0'.1 is the constant energy of Equation 
28.212. The principle of least action is accordingly 
equivalent to the assertion that 
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is a m1mmum for the actual orbit , compared with 
any neighboring curve between the same points. 
The Euler-Lagrange equations in the calculus of 
variations, expressing the condition for this integral 
to be a minimum , are the same as the Lagrangian 
equations of motion in Equation 28.030, which we 
have seen are equivalent to the Newtonian e qua­
tions of motion. 

135. Equation 28.216 can also be written as 

8 ( vlr) 
~=vr 

in which Vr is the grad ient of v and s is the arc 
length of the orbit. This last equation is entirely 
analogous to Equation 24.07 for the path of a light 
ray in a medium of refractive index µ,. Instead of 
v in the dynamical problem, we write c/v from Equa­
tion 24.01 in the optical problem. We are not at 
present concerned to reconcile these two problems 
further. 

136. From Equation 28.215, we have 

28.217 \JM*=grsM:Ms*=v2g rsfrls=v 2 

because lr is a unit vector. This result should be 
compared with the eikonal Equation 24.05 in the 
optical analogy. Substituting Equation 28.217 in 
Equation 28.212, we have 

V+t\JM*=a ,; 

this e quation is the Hamilton-Jacobi Equation 28.197 
for a time-independent potential, if we take .M*, with 
any of its various meanings, as the transforming 
function or Hamilton's characteristic function in 
the Hamilton-Jacobi theory. Moreover, in all cases 
where we can solve the Hamilton-Jacobi equat ion 
for M*, we can differentiate the result in any co­
ordinate system, can substitute in Equation 28.215. 
and can obtain components of the velocity vector 
in th e same system as a complete first integral of 
the equations of motion. This approach offers a more 
geometrical alternative to the canonical solution. 

137. Unfortunately, there seems to be no obvious 
way within the fram ework of Riemannian three­
dimensional geometry to extend this conception 
to time-dependent potentials. For example, in the 
geodetic case of a uniformly rotating unsymmetrical 
fie ld , we could replace Equation 28.212 by Equation 
28.174 as a means of defining scalar velocity; but 
this course at once introduces a preferred direction 
as well, that is, the tangent to the orbit, which takes 
the problem out of point transformations into con­
tact transformations. On the other hand, if we 
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replace Equation 28.212 by Equation 28.028, that 
is, by the first integral of the equations of motion 
referred to rotating axes, we are able to define scalar 
velocity in the rotating space without the introduc­
tion of a preferred direction, but this course does 
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not lead to the correct equations of motion referrei 
to rotating axes. The fact remains that the whol1 
conception of least action as we have defined it i. 
Newtonian, and the equations of motion referret 
to accelerated (rotating) axes are not Newtonian. 



CHAPTER 29 

Integration of Gravity Anomalies -

The Poisson-Stokes Approach 

GENERAL REMARKS 

1. ln 1849, Stokes produced his classical paper 1 

on the de termination of the potent ial at points on a 
nearly spheri cal surface by int egrating values of 
gravity or gravit y anomalies over that surface. Much 
work has been done by geodesis ts on the extension 
and appli cation of Stokes ' result to suc h proble ms as 
determining the form of the geoid and the de flection 
of the vertical- with the object of transforming 
astronomical to geodeti c coordi nates - which has 
resulted in a considerable literature where the 
basic equations are not always proved or criti cally 
·examined. As in Chapter 28, we shall accordingly 
concentrate on deriving the basic equations, and 
shall indicate methods of solution in bare outline 
only. Some modern appli cations are based on even 
earlier work by P oisson who determined the poten­
tial in a field external to a sphere from given bound­
ary values of the potential over that sphere. A 
considerable simplification of the subject result s 
from deriving Poisson's and Stokes' integrals by the 
same method , and we shall therefore approach the 
subject in thi s way. 

SURFACE INTEGRALS OF SPHERICAL 
HARMONICS 

2. We shall require and shall collect here for easy 
reference some well-known formulas for the inte ­
grals of products of spherical harmonics over the 
surface of a sphere of unit radius or over the whole 

1 Stokes (1849), "On the Variation of Gravity at the Surface of 
the Earth ," Transactions of the Cambridge Philosophical 
Society , v. 8, 672-695. 
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solid angle subtended at the origin. If df! is an ele ­
ment of solid angle , if d¢, dw are, respectively, 
ele me nts of (geocentric) latit ude and longitude in a 
spherical polar coordi nate system , and if Y is the 
integrand, these two equivalent fo rms of int egra­
tion can be writt en as 

29.01 J y df! = L:: L:~ 1T/Z y cos <P d<Pdw. 

We shall also use the following abbreviations fo r 
spherical harmonics, 

{u;:'} = P;:1 (sin ¢) (C11111 cos mw +S11111 sin mw) 

29.02 

{a;:'} = P;:1 (sin ¢ ) (C11 111 cos mw +S11111 sin mw) , 

29.03 

including the case m = 0 as 

29.04 

l n these expressions, the braces are intende d to 
show that u;:i is not necessaril y a te nsor and that the 
summ ation conve ntion is not applied to the index m 
on the ri ght side of Equations 29.02 and 29.03. 
S ummation will be indicated as, for example, 

x II 

L L { u;:1} or L { u;:'} . 
11=0 111 =0 II , Ill 

3. The following res ults are then easily derivable 
from the standard mathe matical texts, 

J {u::1
} {ag}df! = O if (m , p) are differe nt 

29.05 or if (rz , q) are different. 
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The only nonzero values of the integral are 

J 
217" (n+m)! - -

{ui:z} {u;:1}d0- (2n+ l) (n- m)! (CnmCnm+SnmSnm) 

29.06 (m =I= 0) 

and 

J 
417" -

{u,i} {un}dD = (2n+ l) CnoCno (m =O). 

29.07 

Special cases of these formulas are easily obtained 
by giving the C's and S's particular values, for 
example, 

J [PW(sin ¢)cos mw]2dD= J [P:i11(sin ¢)sin mw]2dD 

217" (n+m)! 
(2n+l) (n-m)! 

29.08 (m =I= 0) 

29.09 J [Pn(sin ¢)]2dD 
(2n + 1) 

4. Another important integral can be obtained 
more directly than in most of the literature. In 
figure 37, P is a fixed point in (geocentric) longitude 

Figure 37. 

and latitude (w, (/>), P is a current point at (w , ¢), 
and the angular distance between the two is given by 

cos l/J =sin <P sin <{>+cos <P cos<[> cos (w-w). 

The expression { uW} is the value at P of a spherical 
harmonic, defined over the whole solid angle, and 
we require the value of the integral 

J {u7z1}Pn(cos l/J)dD. 

Using the expression for { u;:1
} given by Equation 

29.02 and the Addition theorem for Pn(cos l/J) in 
terms of <P, ¢, etc., and taking (¢, w) as constant 
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during the integration , we find without difficulty 
on using Equation 29.08, that we have 

J 
417" 

{ u;:1} P 11(cos l/J)dD= 2n + l P~1(sin (f>)(Cmn cos mw 

+Snm sin mw) 

29.10 
417" 

_2_n_+_l_ {uW} f> 

where {u;:1}? is the value of the spherical harmonic 
at P. This result also holds for m = 0. 

SERIES EXPANSIONS 

5. The summations of some infinite senes con 
taining Legendre functions are required in thi~ 

subject and are easily obtained from the followini 
well-known formula, which is often considered to ht 
the defining equation of the Legendre functions 

1 "" 29.11 L k11P11(cos l/J). 
n=O (1 - 2k cos l/J + k2) 1'

2 

This equation is absolutely and uniformly con 
vergent if k < 1 (see, for example,§ 21-11). Usuall~ 
k is considered a constant, but because the equatio1 
is true for all values of k < 1, we can consider k to bt 
an independent variable-independent, that is , o 
l/J- so that the equation can be differentiated witl 
respect to k. 

6. If we differentiate Equation 29.11 with respec 
to k, multiply the result by 2k, and add to th1 
original equation, we have 

(l -k2) "' 
(l-2k coslf/+k2)3/2-~o (2n+l)knPn(cosl/J), 

29.12 

which can be expressed in the equivalent form 

"' 1 [ (l-k2) 
~2 (2n+l)k

1
z-2P11(coslf/) =k 2 (l- 2k cos lf/+k2)3/ 

-l-3k cos l/J l 
Integration of this equation with respect to J 

between the limits k, 0, using the standard form 
contained in most tables of integrals , gives 

"' (2n +l) 11 _ 1 - [.! 
~2 (n-l) k Pn(cos l/1)- k 

l-6k cos lf/+3k2 

k<l>l/2 

-3 cos l/J ln (2-2k cos lf/+2<1> 1i2)J: 
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in which, for brev ity, we have written 

29.13 <P = (1 - 2k cos tjJ + k2 ) • 

After expansion and some manipulation, the value 
of the expression within brackets fork = 0 is found 
to be 

(5 cos tjJ-3 cos t/J In 4) 

so that we have finally 
x (211 + l) 

S(k, t/J) = L l k 11 + 1f' 11 ( cos t/J) 
11 = 2 (n- ) 

=k-5k2 cos tjJ 

- k (l - 6k cos tjJ + 3k2
) /<P 1i 2 

29.14 - 3k2 cos tjJ In t ( l - k cos tjJ + <P 112 ). 

7. The basic Equation 29. l l, considered as a 
power series in k, can be differentiated term-by­
te rm, and the differentiated series has the same 
radius of convergence k < l. The subsequent opera­
tions of deriving Equation 29.12 do not affect 
convergence, and Equation 29.12 is accordingly 
convergent for k < l. The series in Equation 29.14 
is also convergent for k < l because each term is 
less than the corresponding term in Equation 29.12. 

8. The case k = l requires some proof, which we 
shall not consider, of at least conditional co n­
vergence, except at the point tjJ = 0. Assuming such 
a degree of convergence. Equation 29.14 red uces to 

29.15 

x (2n+l) 
s ( tjJ) = I~ (II - l) P11 (cos tjJ) 

= 1- 5 cos tjJ - (2 - 3 cos tjJ) cosec !t/J 

-3 cos tjJ In (sin !t/J+ s in2 !t/J), 

known in gravimetric geodesy as Stokes' function, 
with the symbol S(tjJ). For a particular value of k, 
which we shall consider in § 29-31, the expression 
in Equation 29.14 is known as Pizzetti's extension 
of Stokes' fun ction. Howeve r, the even more 
general Equation 29.14 is simply an identity, al­
though this identity does have important applications 
in gravimetry. 

9. We shall also require two other expansions 
which can easily be obtained by integration of 
Equation 29.11, using the identity 

(2n+l) 
(n+l) 

2 
(n+ l) 

These expansions, which are similar to Equations 
29.14 and 29.15, are 

- x (2n + l) 
S(k, t/J)= 1~1 (n+l) k11

+
1f'11( cos t/J) 

29.16 = 2k - In (<P
1
i
2

+ k- cos "') 
<P t/2 l - cos tjJ • 

in whic h <Pis given by Equation 29.13 , and 

- x (2n+l) ) s ( tjJ) = L ( f1 + l ) I II (cos tjJ) 
11 = 0 

29.17 = cosec ! t/J - In ( l + cosec tt/J). 

These modified functions are convergent to the 
same exte nt as Equations 29.14 and 29.15. 

INTRODUCTION OF THE STANDARD 
FIELD 

Potential Anomaly 

IO. If the actual potential is Wand if the standard 
potential- usually the potential of the standard 
field described in Chapter 23-is U, the diffe re nce 

29.18 T =W-U 

is known as the potential anomaly. Because the 
actua l and standard fields are supposed to be ro­
tating about the same axis with the same angular 
velocity w. the terms in the geopotentials containing 
w cancel; and it is immaterial whether IF , U are 
both attraction potentials or both geopotentials. 
In e ither case, the potential anomaly Tis harmonic. 
By su itable choice of the standard field , T can be 
made a small quantity more amenable to approxi­
mate solutions. In the lit erature, Tis usually called 
the disturbing potential, which is too easily confused 
with the disturbing or perturbing potential affecting 
satellit e orbits (§ 28-38). 

Curvature and Deflection 

l l. At a point Pin space (fig. 38). the unit normals 
to the actual and standard equipotential surfaces. 

respectively. are vr. vr. The unit vector v,. in figure 
38, which is not necessa rily in the same plane as 
v 1

· , vr, is the unit normal to the coordinate surf ace 
through P. We s hall assume in this section that 

vr refers to the geodetic (w, <f>, h) system in which 
the meridian and parallel vectors will be denoted by 

'µ.'", l r. We shall a lso assume that the standard 
field is as described in Chapter 23 and that the 
equipot ential spheroid coincides with the base 
spheroid of the coordinat e system. From Equation 
19.42, we then have in the notation of figure 38 

29.19 

where ~r is the astronomical minus the geodetic 
deflection vector and ow (o</>) is the astronomical 
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yr 
(actual field) 

c 

(standard field) 

base coordinate surface 

Figure 38. 

minus the geodetic longitude (latitude). In this. 
equation, ow, o<f> are supposed to be s mall , and the 
equation holds true to the first order in these quan­
tities. The first-order meridian and parallel co mpo­
nents of deflection are denoted by g , YJ , as usual 
in the literature. 

12. We shall call the angle K between ;;;rand vrthe 
standard curvature correction because it arises from 
the curvature of the standard line of force when the 
base coordinate surface is a standard equipotential. 
There are several ways of finding K from the geom­
etry of the standard field. One method is to convert 
the geodetic coordinates of P to geocentric coordi­
nates, compute the latitude of the standard line of 
force (vr) at the same time as standard gravity from 
Equations 23.40 and 23.41, and subtract from the 
geodetic latitude of P to obtain the curvature cor­
rection K. With the sign convention of figure 38 , 
we then have 

29.20 

The meridian component of standard gravity y, 
given by gm in Equation 23.37 for a spheroidal fi eld , is 

which is another way of computing K . If the base 
coordinate surface is a standard equipotential, K 

is zero on that surface and is also zero along the 
axes of symmetry of the standard fi e ld. 
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Gradient of the Potential Anomaly 

13. By _differe ntiating the scalar Equation 29.18 
we have 

29.21 

where W, U are now considered to be geopotential 
and g, y are, respectively, actual and standar 
gravity. In this equation, we have used Equatio 
20.05 and the physical definition of the potentia 
(§ 20-3). Equations 29.19 and 29.20 enable us t 
express the gradient of the potential anomaly i 
terms of the geodetic parallel, meridian, and norma 
vectors as 

Tr=(gri)Xr+(gg+y sin K)fl,r+(g-y cos K)Vr. 

29.22 

This equation is exact within the first-order defini 
ti on of (g, Y/ ). At points not too far removed from tht 
Earth's surface, the curvature correction K will ht 
no larger than the deflection components, and tc 
the same degree of accuracy we can write 

29.23 

Equations 29.22 and 29.23 hold true for any (w, <f>, h 

coordinate system, provided that Xr, fl,r, Vr are tht 
parallel, meridian, and normal vectors of the systen 
and provided that the deflections and curvatun 
correction refer to the same system. For example 

in a spherical polar system, Vr is the unit radiw 
vector and Equation 29.19 gives g, Y/ as the meridiar 
and parallel components of the astronomic~! zenitl 
in the spherical polar system. The vector Xr is tht 
same in the spherical polar system as in the geo 

detic syste m , but the meridian vector jJ.,r is not tht 
same; the deflection component Y/ is the same, bu 
(g + K) is not the same; and if K is ignored, as usua 
in the literature, then the meridian deflection g i~ 
not the same. 

Gravity Disturbance 

14. We define the gravity disturbance at the poin 
P as 

29.24 g/) =g- y. 

Equation 29.23 the n shows that we have 

29.25 

that is, the gravity disturbance is the componen1 
of the gradient of the potential anomaly in the direc 
tion of the geodetic normal. In the literature, tht 
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gravity disturbance is usually denoted by 8g, 
which, however , might be confused in this book with 
any incre ment of g. 

15. If the potential anomaly is expressible m 
spherical harmonics as 

T = L {T::'}/rn+1, 
n, m 

then the radial component of the gradient is 

aT (n+ l){T;;1
} 

--;;;:=- L rn+2 • 
n,m 

The geodetic normal can be considered as not far 
removed from the radius vector in the case of the 
Earth, and the gravity disturbance will, in an y case, 
be a small quantity if the standard fi eld has been 
chosen close to the actual fi e ld. Subject to these 
approximations , we can combine the last equation 
with Equation 29.25 and can writ e 

29.26 gD ""=- L (n+ l){T?i1}/r11+2 . 
n, m 

Gravity Anomaly 

16. The actual potential at P (fig. 38) is W,,. 
From formula s give n in Chapter 23 or from tables 
based on these formulas, we ca n find a number of 
points where the standard potential U is equal to 
WP, and we choose such a point B in the direction 
of the geodetic normal vr so that Wp= UB. The 
gravity anomaly is then defined as 

29.27 

and the le ngth BP= ~ is known as the height 
anomaly. The gravity anomaly g,i is usually denoted 
by Ilg, which can, however, be confused in this book 
with a Laplacian. To a first order, we have 

WJ>= TJ>+ Up= Tp + uB + (aU/ah)B~, 
and because Wp= UR, this equation reduces to 

If we ign ore the dis tinction be tween vr and vr , 
which means neglecting the curvature correction , 
we have 

29.28 

usually known as Bruns' equation. Very often this 
equation is approximated furth er by assuming that 
YB= yp, so that at any point in space we have 

I 29,29 

17. Next , we combine Equations 29.24 and 29.25 
to give to firs t-order accuracy 

(ar) (ay) - =g,,-yp = gp- y11 - - , ~ ah p a z R 

= g,i - (ay) ~ = g .1 + (ay) I__ 
ah B · ah /J YR 

We assume furth er that PB is s mall and ignore the 
distinction between P and B in this last equation , 
which becomes then fo r any point in space 

29.30 

Equation 29.30 is usually known in the literature 
as th e " fundam ental equation of physical geodesy." 
All the approximations in thi s formula are covered 
by the single ass umption that the potential anomaly 
T is small. One further approximation is often made. 
If we ignore the cen trifugal part of the standard 
potential, which is then harmonic, and confuse 

IJr with vr (fig. 38), we have from Equation 20.17 

a In y =2H 
ah 

where H is the mean curvature of the standard 
equipotential surface. Moreover, the standard field 
differs little from a spherically symmetri ca l fi eld 
in which we have 2H = - 2/r, so that we can write 

29.31 
aT 2T 

g,i""=-+-· 
<Jr r 

We should obtain the same result from Equation 
29.30 by assuming that the standard field is static 
and spheri cally symmetrical with a potential of 
minus µ,/r. 

18. If T 1s expressed in spherical harmonics as 

T= L {T~:'} Jr11+1 

n , m 

where {T~1 } is given by Equation 29.02. substitution 
in Equation 29.31 gives for each harmoni c 

(n + l){ T;r} + 2{ T;:1
} = 

r11 +2 r11 +2 

(n - l ){ T;:1
} 

rn +2 

29.32 

This formula was first obt ained by S tokes,2 who 
made equivalent but different assumptions m 
deriving it. Summing over m , n, we ha ve 

_ (n - l){T:n 
g,i-- 2: n+2 • 

n, m r 
29.33 

2 Stokes, op. cit. supra note I , 693. 
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19. Various interpretations are given to the points 
P, Bin figure 38, subject to the requirement Wp= UB. 
For example, Pis often a point on the geoid and Bis 
a point on the standard spheroidal equipotential, 
an interpretation which implies that the geoid and 
spheroid must have the same potential. In that case, 
measurements of gravity made on the topographic 
surface are reduced to corresponding values at p· 
.on the geoid by making various assumptions about 
crustal densities.3 The value of standard gravity 
at B on the spheroid is subtracted to give the 
gravity anomaly. In Chapter 30, we shall take P 
as a point on the topographic surface of the Earth, 
in which case the locus of the point B is a surface 
named by Hirvonen the telluroid. To compute the 
gravity anomaly in this case, WP would have to be 
measured by spirit leveling. 

20. We may wonder why the more complicated 
gravity anomaly is used in preference to the simpler, 
and more logically geometrical, gravity disturbance 
which compares the two fields at the same point 
in space. One reason is that, in the earlier applica­
tions, Pis a point on the geoid and tables of standard 
gravity are required only for points on the equipo­
tential spheroid to compute the gravity anomaly. 
Another reason is that the geodetic height h is 
initially known only approximately-in fact, one of 
the objects of the whole exercise is to find h- so that 
we cannot calculate standard gravity accurately 
at P. These arguments are less significant today 
when standard gravity is readily calculable at any 
point in space and when h can be, and usually is, 
found by successive approximation. If the gravity 
disturbance is used, some iterative procedure, 
starting with approximate values of geodetic 
heights, would be necessary and would probably 
require more computation than the use of the gravity 
anomaly; there is no certainty that the operation 
would converge, but this has not yet (1968) been 
fully investigated. Equation 29.30 for the gravity 
anomaly has the form of one of the boundary condi­
tions of classical potential theory, and this fact 
has probably attracted theoretical investigators. 
However, Equation 29.25 is a much simple'r bound­
ary condition and is more accurate. 

THE SPHERICAL STANDARD FIELD 

21. It will be apparent throughout this chapter 
and Chapter 30 that this branch of geodesy could 
be simplified by using spherical polar coordinates 

3 See also § 29-42. For full details, see Heiskanen and Moritz 
(1967), Physical Geodesy, 126-159. 
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and a spherically symmetrical standard field in 
stead of the geodetic system. If all the standan 
equipotentials are to be spheres, we can eliminat1 
the leading term in the attraction potential from th1 
potential anomaly by suitable choice of constant 
in the formulas of § 20-24, but we cannot eliminat1 
the centrifugal term. However, we can eliminat1 
both terms by making one equipotential surface • 
sphere which coincides with the base surface of th1 
spherical polar system (r= R ). In that case, th1 
standard geopotential is symmetrical about th1 
z-axis and is given by Equation 23.01 as 

U ~ GCnoPn(sin cp)+ 1 _ 2 2 1 - 2 2p (. A.) 
- = L.i rMI 3 w r - 3 w r 2 sin '+' . 

n=O 

29.34 

If the geopotential is to be constant (Uo) for al 
values of the spherical polar latitude <P over th1 
base sphere (r= R), we must have 

-Uo= GCoo!R +!w2R2 

29.35 

and all other Cno must be zero. For the leading terr 
to be the same as the leading term in the actuc 
potential, we must have Coo equal to M -the totf 
mass of the Earth. The centrifugal terms will cane( 
in the potential anomaly if the origin of sphericf 
polar coordinates lies on the axis of rotation. Th 
first harmonics (absent in the standard potentia 
will not appear in the potential anomaly if th 
origin is located at the actual center of gravit) 
this condition is compatible with cancellation o 
the centrifugal terms. If the standard geopotenti8 
Uo of the base sphere is to be equal to the actm 
geopotential Wo of the geoid, this requirement woul, 
settle the value of R in accordance with the firs 
equation of Equations 29.35. Standard gravity an1 
the latitude of the tangent to the standard line o 
force, and thus the curvature correction, are give1 
by Equations 23.02 and 23.03 or by Equations 23.0 
and 23.05. All the formulas and remarks in the las 
four subsections (§ 29-11 through § 29-20) apply i 
we use the elements of this spherical system i1 
place of the geodetic system, provided we use oni 
complete system or the other. The disadvantag1 
of this spherical system, compared with the us1 
of geodetic coordinates and a spheroidal standan 
field, is that the anomalies and meridian deflec 
tions are generally larger, although probably stil 
within the limits of the usual first-order assumptions 
there is not the same necessity in this branch o 
geodesy as there is in satellite geodesy (§ 28-101 
to provide a model field which eliminates most o 
the second harmonics. We could, of course, choose 
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a sphere as base coordinate surlace and a spheroid 
as standard equipotential , but, in that case, the 
angle K in figure 38 will be large in mid-latitudes, and 
Equations 29.25 and 29.30 for the gravity disturb­
ance and the gravity anomaly might no longer be 
sufficiently accurate; nothing would be gained. 

POISSON'S INTEGRAL 

22. We shall now suppose that values of a har­
monic function H are given at all points Q (fig. 39) 

0 

Figure 39. 

_on the surlace of a sphere of radius R. We suppose 
that H is defined at all points outside as well as on 
the sphere, and we must find the value of the har­
monic function at a point P outside the sphere at a 
distance r from the center 0 of the sphere. The 
angle between OQ and OP is shown as tJ; in figure 
39, and the distance PQ is shown as /. 

23. First, we put k=R/r in Equation 29.12 to give 

29.36 
(r2-R2) x R11 

13 ~o (2n+ 1) r 11 +1 P 11 (cos tf;). 

Next, we suppose that H is expressible as a con­

vergent series of spherical harmonics with 0 as 
origin so that we have 

oo II 

29.37 Hri= L L {H::1}!R 11+1
• 

11=0 m=O 

Multiplying these last two equations , integrating 
over the whole solid angle , and using Equation 29.10 
on the right-hand side give 

29.38 J 
(r2 

- R2
) x 11 47rR 11 { 11;;1} s 

--,-:1--H(;df! = L L -,.-n-+1- - R- 1-1+_1_ 
11 = 0 111 = 0 

in which we have int e rchanged the order of summa­
tion and integration on the right , and {H::'} .\· is the 
value of the spherical harmonic { /-/;:'} at S on the 
radius vector to P (fig. 39). Because Pis fixed during 
the integration , r and the spherical radius R are both 
constant during the integration. But {H;:1

} contains 
only geocentric latitude and longitude, whic h are 
the same at P and S, so that we have 

{H;;1
} s= {H:;1

} ,,. 

Moreover, the value of H at P is 

oo II 

H,, = L L {H;:'},,/r11+1 
11 = 0 111 =0 

so that Equation 29.38 reduces finally to 

29.39 

known as Poisson's integral. 

24. This important result e nables us, for example, 
to dete rmine the attraction potential HP at any point 
in space external to a sphere from the boundary 
values HQ of the attraction potential on the sphere. 
We have assumed that H is expressible in a con­
vergent series of spherical harmonics in the space 
external to the sphere, which, as we have seen in 
§ 21- 11, implies that the sphere contains all the 
mass. Poisson 's integral may be obtained without 
using spherical harmoni cs,4 but the potential must 
be assumed to be regular outside the sphere, which 
again is equivalent to the assumption that there 
are no masses outside the sphere. 

25. Equation 29.39 applies to any harmonic func­
tion H which is regular outside the sphere, and many 
useful formulas may be derived by giving H spe­
cial values. For example, if H is the reciprocal of 
the radius vector, we have, in the notation of fig­
ure 39, 

4 See, for example, Bateman (Dover ed. of 1944), Partial Dif 
ferential Equations of Mathematical Physics, original ed. of 
1932, 367-368. Bateman obtains Poisson's integral by using the 
Green's function for a sphere. 
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and because r, R are both constant during the in­
tegration, we have 

29.40 47T 47T J dfl 
r(r2- R2 ) - r(PT) 2 - [3 

where PT is the length of the tangent to the sphere 
from the point P. 

26. If the point P lies inside the sphere, then for 
Equation 29.12 to be convergent, we must make 
k= r/R; and in place of Equation 29.36, we have 

29.36A 

We now deal with harmonic functions of the form 
r 11 {H;;1

}, defined on the sphere as 

"° ll 

29.37A HQ= L L R 11{H;~} 
n= O m= O 

instead of Equation 29.37; and proceeding as in 
§ 29-23, we find that Poisson's integral for this 
case 1s 

29.39A H =!i_J (R
2
-r2) H dfl 

p 47T /3 Q 

instead of Equation 29.39. In physical geodesy, 
we are not very interested in this case, which can, 
however, lead to some useful geometrical results. 
For example, each Cartesian coordinate-that is, 
each Cartesian component of the position vector 
pr -is harmonic and regular inside the sphere, and 
we have 

29.41 R J (R 2
-r

2
) 

P'P = 47T /3 p'Qdfl; 

contracting this equation with (pr)P, which is con­
stant during the integration, we have 

29.42 
Rz J (R2-r2) 

r= 
4

7T 13 cos tjJ dfl. 

27. The Cartesian derivatives of a harmonic 
potential V are also harmonic so that we have in 
Cartesian coordinates 

29.43 (V) =R(r
2
-R

2)J V .) dfl_ 
r p 47T ( I Q /3 

If Vr is the direction of the potential gradient and 
g is the gravitational force, this last equation is 

and because (vr)P is constant during the integra­
tion, we have 
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If Vis the potential anomaly, it would be assume 
to a usual degree of accuracy that Vr is radial, an 
therefore (vr)Q(vr)p= cos tjJ. However, the formul 
is exact only if v,. is the direction and g is the ma1 
nitude of the gradient of V. 

28. If we assume that the harmonic potential 
is expressible in spherical harmonics as 

x It 

29.45 V= L L {V;:1}/r11+ 1 

n=O m=O 

on and outside the sphere, which is equivalent 1 

assuming that there are no masses outside tb 
sphere, then the radial component of the gradie1 
of V, denoted by g, is given by 

or 

29.46 

- av x ll n + 1 { v::1
} 

g=a;=-2: L -r-~ 
n= O 111 = 0 

x ll 

rg=- L L (n+ l){V;:1}/r11
+ 1. 

11 = 0 111 = 0 

But each term of the series on the right is a harmon 
function, and therefore rg is a harmonic functioi 
Substitution m Poisson's integral, Equation 29.31 

gives 

29.47 R 2(r2-R2) J _ dfl 
gp 47Tr gQ /:!' 

which is exact only for the radial component of tb 
gradient of V. If V = 1/ r, Equation 29.4 7 gives 

1 (r2 -R 2)Jdn 
r 2 47Tr t 1 

as we found in Equation 29.40. But if V = 1/ 
Equation 29.44 gives 

_!_= (r
2
-R

2
) J cos tjJ dfl 

r 2 47TR t 1 • 

These last two equations must accordingly be equi· 
alent, and in fact we can prove from Equations 29.3 
and 29.09 that we have 

r J cos tjJ -J dfl R -ti- dn- /:!' 

which reconciles the two equations. 

29. If the potential anomaly is expressible i 
spherical harmonics on and outside the spher1 
which will be the case if both the actual and standa1 
potentials can be so expressed, it follows from Equ. 
tion 29.33 or 29.26 that rg1 or rgo is harmonic so th< 
Equation 29.47 holds true for the gravity anomal 
or for the gravity disturbance as 

29.48 R 2(r2-R2) J dfl 
(gA)P 

4
7TT (gA)Q p" 
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This last equation is usually known as the upward 
continuation integral because it e nables us to cal­
culate the gravity anomaly (or gravity disturbance) 
at any point in space by numerical integration, if 
we have values of the gravity anomaly (or gravity 
disturbance) at a large number of points on a 
sphere. 

STOKES' INTEGRAL 

30. If we multiply Equation 29.15 for the Stokes' 
function S ( t/J) by a bounded fun ction , such as the 
gravity anomaly gA in Equation 29.33, we have 

00 (2n+l) 
S (tfJ) gA = - ~2 (n- l) Pn (cos t/J) 

"' p ( P - 1 ){ rw} 
X L L rP+2 ' 

p =O 111 =0 

assuming that gA is expressible as a converge nt 
series of spherical harmonics. Integrating this 
equation over the whole solid angle or the sphere 
in figure 39, noting that the terms of the product on 
the right are zero unless p = n (Equation 29.05), 
and using Equation 29.10, we have 

J 
00 II {TW} s 

S(t/J) (gA)Qd0=-47T 1~2 1~0 R11+2 

where { T;:i} s is the value of the harmonic { T;:'} 
at S on the radius vector OP (fig. 39). But we have 

29.49 
oo II { r::1} S 

Ts= l: L Rn+ l ' 
11 = 2 111 = 0 

om1ttmg the first- and zero-degree harmonics, so 
that we then have 

' 29.50 

known as Stokes' integral, which enables us to find 
1 

the potential anomaly by numerical integration of 
gravity anomalies over the sphere, using Stokes' 
function S ( t/J) given by Equation 29.15. At the point 
S(tfJ= 0), Stokes' function becomes infinite , and 
special methods of integration are necessary in the 
immediate vicinity of the point S. 5 

31. A similar operation on Equation 29.14 gives 

5 Detailed methods of integration are given in Heiskanen and 
Moritz, op. cit. supra note 3, 117- 123. 

If we s ubs titute k = Rf r (fig. 39) and note that we 
have 

x 11 {Tm} , T - L""' n /:', 

I' - 11= 2 1-:20 --;;;+t, 

om1ttmg the first- and zero-degree harmonics, we 
then have 

29.51 

known as Pizzetti's extens ion of Stokes' integral, 
which enables us to find the potential anomaly at 
any point in space by numerical integration of 
gravity anomalies over the sphere, using Equation 
29.14 for the special value k = R/r. 

32. The Stokes' functions S( t/J) , S(k, t/J) do not 
contain terms for n = 0, l, sometimes known as the 
"forbidden" harmonics. The term fur n = 1 would 
be infinite and cannot be included; the term for 
n = 0 could be included but is conventionally 
omitted. Equation 29.49, used to derive the Stokes' 
integral , shows then that the potential anomaly 
obtai ned from the Stokes' integral cannot cont ain 
zero- or first-degree harmonics, which means that 
these harmonics must be the same, or zero, in the 
actual and standard potentials. For the zero-degree 
harmonics to be the same, we must ass ume the same 
total mass (§ 21-41); for the first-degree harmonics 
to be the same, we must ass ume that the two mass 
distributions have the same center of mass 
(§ 21-42)-as we have already assumed, but usually 
with less effect, in supposing that the centrifugal 
terms in the geopotential are the same. There are 
no present means of accurately ensuring either of 
these conditions or of sati sfyin g the con dition 
Wp= UQ, required in the definition of the gravity 
anomaly by Equation 29.27. Considerable ingenuity 
has accordingly been applied to correcting the 
results after Stokes' integration 6 has been carried 
out over the entire globe. Equation 29.33 shows 
further that the gravity anomalies used in Stokes' 
integration should not contain ei ther of the "for­
bidden" harmonics n = 0, 1, although analysis of 
the observed gravity data does not necessarily 
indicate absence of these harmonics. 7 

33. We can similarly obtain integral formulas for 
the gravity disturba nce go instead of the gravity 
anomaly gA if we use Equations 29.17, 29.16. and 
29.26. It will be found that the Stokes' integral, 

6 /bid., 98- 111. 
7 See Lambert (1957). " Inadmissible Spherical Harmonics in 

the Expansion of Gravity Anomalies," F estschrift zum 75. 
Geburtstag von Prof Dr. C. F. Baeschlin , 149-154. 
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Equation 29.50, holds true if we use the simpler 
function S ( t/J), given by Equation 29.17, instead of 
the Stokes' function S ( t/J). Pizzetti's extension, 
Equation 29.51, holds true if we use the modified 
function S(R/T, t/J), obtained from Equation 29.16, 
for k = R/T. Use of the gravity disturbance instead 
of the gravity anomaly avoids trouble over the "for­
bidden" harmonics because the modified functions 
S(tfJ), S(R/T, t/J) do not require suppression of the 
terms n = 0, 1 nor do we have to satisfy the con­
dition Wp= UQ, required in the definition of the 
gravity anomaly by Equation 29.27. 

34. Bruns' Equation 29.28 enables us to find the 
separation between an actual equipotential surface 
and a standard equipotential surface if both sur­
faces have the same potential number. This sep­
aration (usually denoted by N) is 

29.52 N= 4:G J S(R/T, t/J) (gA)Qdf! 

in which G is any reasonable value of standard 
gravity near the point P. If P is on the geoid or 
equipotential spheroid, we make R = T, and the 
corresponding formula for the separation of geoid 
and spheroid is then 

29.53 

always assuming that the potential of the geoid is 
equal to the potential of the spheroid. The same 
formulas apply to the gravity disturbance, provided 
we use the modified functions S(R/T, t/J), and S(t/J) 
given by Equations 29.16 and 29.17. 

DEFLECTION OF THE VERTICAL 

35. If we refer to figure 39 and differentiate the 
equation 

l2 = r2 + R 2 
- 2TR cos tfJ 

covariantly for a displacement of P with Q fixed, 
we have after some simplification 

29.54 lr= Tr cos /3+ t/Jr(T sin /3) 
in which f3 is the angle OPQ- that is, the zenith .... 
distance of the direction QP in the spherical polar 
(w, </>, T) system. If we take Q as a temporary 
Cartesian origin and QP as the x-axis, the com­
ponents of the vector lr are 

lr= (al/ax, 0, 0) = (dl/dl, 0, 0) = (1, 0, 0) 

so that l,. is a unit vector in this temporary Car­
tesian system and therefore in any system. Also, 
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Tr is a unit vector, being the unit normal Vr 
the spherical polar system. Equ~tion 29.54 thE 
shows that (rt/Jr) is a unit vector perpendicular I 

Tr. Moreover, if a is the spherical polar azimu1 ..... 
at P of the direction QP, we have as usual 

lr =Ar sin a sin /3 +/.Lr cos a sin /3 +Tr cos f3 

29.55 

in which Ar, /.Lr are the parallel and meridian vecto: 
in the spherical polar system. Combining Equatior 
29.54 and 29.55, we have 

29.56 rt/Jr= A,. sin a+ /.Lr cos a. 

36. Next, we differentiate Equation 29.51 c 
variantly for a displacement of P with Q fixed I 

give 

R J (as as ) (Tr)p=- 47T aT Tr+ atfJ t/Jr (gA)Qdf!. 

Contracting this equation in turn with the spheric 
polar parallel and meridian vectors at P (which ai 
fixed during the surface integration) and usir 
Equation 29.23 for a spherical polar system, " 
have 

29.57 

where we have also used Equation 29.56. The: 
equations, with K assumed to be zero, were ori 
inally given by Vening-Meinesz; the function aS/a1 
obtained by straight differentiation of the Stoke 
function, Equation 29.15, is usually known as ti 
Vening-Meinesz function. However, in the for 
given by Equations 29.57, the equations hold tn 
for Pizzetti's extension of the Stokes' function ar 
also hold true for the integration of gravity di 
turbances (instead of gravity anomalies), providt 
the modified functions S, given by Equation 29.: 
or 29.17, are used. The azimuth a in Equatioi 
29.57 refers to the azimuth at P of the directic 
~ =l 
QP. If we use the azimuth of the direction P( 
we must change both the minus signs in Equatio1 
29.57 to plus . 

37. However, we must realize that Equations 29.; 
give the first-order meridian and parallel cor 
ponents of deflection (g, YJ) at the point Pin relatic 
to a geocentric spherical polar system; the secor 
equation does not, as discussed in § 29-13, give tl 
meridian deflection in relation to the geodetic sy 
tern, and the ~fference may be quite considerabl 
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It is by no means easy to discern this fact in the 
maze of approximations usually made in deriving 
the Vening-Meinesz integrals. The difficulty arises 
not so much from first-order approximations as 
from the nature and multiplicity of first-ord er 
approximations. 

38. The assumption that K is zero in the Vening­
Meinesz form of Equations 29.57 is in order if we 
are dealing solely with points on the base coordinate 
sphere , which is taken as a standard equipotential. 

1 Otherwise K should be computed for the standard 
field described in §29-21. The usual assumption 
that K is zero e verywhere implies that all the stand­
ard equipotential surfaces are spheres, and this 
interpretation is possible only if the standard field 
is not rotating. A nonrotating standard field is 
incompatible with the definition of the potential 
anomaly and with the harmonic properties of the 
potential anomaly on which the entire theory is 
based , although a nonrotating standard field is 
assumed in deriving the approximate formula for 
the gravity anomaly in Equation 29.31. 

39. W e do not obtain deflections in the geodetic 
system from the Vening-Meinesz integrals by using 
gravity anomalies computed for a spheroidal 
standard field , although the effect may well be dis­
guised by doing so. It is true that in the derivation 
of the Stokes and Pizzetti Equations 29.50 and 29.51 
from which the Vening-Meinesz equations are ob­
tained by differentiation , the gravity anomalies 
are merely assumed to be any function related to a 
harmonic function by Equation 29.32. Neverthe­
less, as soon as we identify thi s harmonic function 
with the potential anomaly, we introduce a stand­
ard field; for example , the use of the approximate 
formula for the gravity anomaly in terms of the po­
tential anomaly, Equation 29.31 , introduces a 
spherical nonrotating standard field, which we must 
use if we are to be consistent. It is better to use the 
spherically symmetrical rotating standard field 
described in §29-21, especially in the more accu­
rate formulas containing the gravity disturbance, 
and so retain the harmonic properties of the poten­
tial anomaly. Such a standard field lies within 
legitimate first-order approximation in this branch 
of geodesy {unlike the potential disturbance of 
satellite geodesy, discussed in §28- 101), and the 
resulting geocentric deflections can very easily 
be converted to geodetic deflections. 

GRAVITY AND DEFLECTION FROM 
POISSON'S INTEGRAL 

40. We are now able to differentiate Poisson 's 
integral, Equation 29.39 , for the potential anomaly 

T,, at P. Because rand I (fig. 39) are functions which 
can be considered as defined at Q in the same way 
as at P and because Q is fixed for a displacement 
of P, we have 

which, on substitution of Equation 29.54, becomes 

(T) ,=!i_ f [{2r _3(r
2
-R

2
) cos f3} 

1 I 47T ( ! 1~ r,. 

{
3(r2 -W) sin /3} . J - l~ rt/Jr T<~dfl. 

Contraction with the spherical polar meridian , 
parallel, and normal (r,.) vectors at P (which are 
constant during the surface integration) and use 
of Equations 29.23 and 29.56 give 

_ R J { 2r 3(r2 
- R 2

) cos /3} 
(go)1·- 47T [:!- l~ TQdfl . 

29.58 

These equations give the geocentric deflections 
and gravity disturbance, relative to a spherically 
symmetrical standard field , at any point in space 
from given values of the potential anomaly over 
the reference sphere. The only assumption made 
is that the geocentric deflections are of the first 
order. The equations do not determine gravity and 
deflec tion at points on the reference sphere (r= R) 
any more than the original Poisson equation 
determines potential, alt hough the third equation 
does apply on the sphere, apart from the singularity 
in the neighborhood of P(l = 0). Heiskanen and 
Moritz 8 remove thi s singularity by an ingenious 
device which we shall consider next. 

41. The third equation of Equations 29.58 applies 
to any potential function T and the radial component 
of it s gradient. If we apply this equation in space 
to the potential function - R/r, which becomes 
-1 on the sphere, we have 

8 Heiskanen and Moritz, op. cit. supra note 3, 37-39. 
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multiplying this equation by Tl', which remains 
constant during the surface integration, and 
adding to the thirci equatfon of Equations 29.58, 
we have 

(~~t+~Tp= ~J e: 3(r2-~~
2

) cosf3} 

2 9. 5 9 x (Tr~ - Tl') dfL 

Next, we make the substitution r= R + h, where h 
is small, and find that the contribution of the 
second term in the integrand over a small area 
in the neighborhood of Pis approximately 

6Rh cos f3 (l AT) (7Tl
2

)"""' 
l~ al R"2 

67Tcos 2 {3 ((JT) 
R al ' 

which becomes zero in the limit when P lies on the 
sphere. The contribution of the second term is 
zero everywhere else for r = R, so that when P lies 
on the sphere we have 

29.60 ( a T) + Tl'= R 
2 J ( T <r-~ Tl') dfL 

ar I' R 27T z.i 
The contribution of a small area in the neighborhood 
of P to the area integral is 

( aT) ( 1 ) ( 7Tl2 ) 
lii[ [:i R2 /' 

which remains finite as l ___,. 0, so that there is no 
singularity at P in Equation 29.60. 

EXTENSION TO A SPHEROIDAL 
BASE SURF ACE 

42. The commonest application of the formulas 
given in this chapter is to find the separation be­
tween the geoid and the standard spheroidal equi­
potential surface having the same potential number 
as the geoid. Usually the spheroid is also the 
geodetic coordinate base surface. In that case, 
the point P (in fig. 39 and § 29-14) is on the geoid, 
Q is on the spheroid, and his the required separation 
which enables us to locate the geoid with reference 
to the spheroid. To compute the gravity anomaly 
from Equation 29.27, we require gravity on the 
geoid where it cannot usually be measured. Re­
duction of the value of gravity measured on the 
topographic surface to the value of gravity on the 
geoid requires, in the first place, a knowledge of 
where the geoid is in relation to the topographic 
surface-that is, the height of the topographic sur­
face above the geoid. Moreover, all the formulas 
in this chapter require the potential to be regular 
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(or, as an equivalent condition, require the potenti<1 
to be expressible in spherical harmonics) on an' 
outside the surface of integration-in this cast 
the geoid- which implies that this surface mm 
contain all the attracting matter. Numerous a1 
tempts have been made to solve this problem b 
calculating the effect on gravity of removing a 
masses external to the geoid, using various h) 
potheses relating to the mass and density distribt 
tion. The operation usually shifts the position c 
the geoid itself to what is known as the co-g~oid o 
regularized geoid for a particular hypothesis. Nexl 
the separation h is calculated by Stokes' integratio 
of reduced gravity anomalies over the co-geoid b 
Equation 29.53. Finally, the effect on h of replacin 
the external masses is calculated. Fortunatel) 
much of the error in the hypotheses is removed b 
using the same hypotheses for the replacement c 
the external masses. A good account of the variou 
processes has been given by Heiskanen an 
Moritz. 9 

43. A further difficulty arises from the fact th: 
all the formulas in this cha pt er, including Stoke 
integral, require integration not over the irregul; 
geoid or co-geoid but over a sphere. Stokes 10 hin 
self shows that his formula is valid to a high degrt: 
of accuracy for nearly spherical surfaces. In tl 
hope of improving Stokes' results, Zagrebin 11 mod 
fied Stokes' integral for a spheroidal, in place of 
spherical, reference surface. Some errors i 
Zagrebin's results were later corrected by Bjerhar 
mar ,12 using a different method. The results a1 
complicated, and the conclusion is that there 
little or no difference in the potential (or separ. 
tion), as Stokes himself showed, but a considerabl 
difference in the V ening-Meinesz integrals fo:r: d1 
flection. The difference may, however, arise i 
part from misinterpretation of the Vening-Meine~ 
integrals, as discussed in § 29-37. We shall no 
consider a simpler method of approaching th 
problem. 

9 See Heiskanen and Moritz, foe. cit. supra note 3. 
10 Stokes, Loe. cit. supra note 1. 
11 Zagrebin (1956), "Die Theorie des Regularisierten Geoid! 

Geodiitischen lnstituts, Potsdam, Veroffentlichungen no. 
1-129. This is a German translation of an article that origina 
appeared in a Soviet journal. See (1952), "Teoriia Regulia 
zirovannogo Geoida," Trudy lnstituta Teoreticheskot Astronom 
v. 1, 87-222. 

12 Bjerhammar (1962), "On an Explicit Solution of the Gra 
metric Boundary Value Problem for an Ellipsoidal Surface 
Reference," The Royal Institute of Technology, Geodesy Di 
sion, Stockholm, 1-95, and (1966), "On the Determination 
the Shape of the Geoid and the Shape of the Earth From 
Ellipsoidal Surface of Reference," Bulletin Geodesique, rn 
series, no. 81, 235-265. 
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44. The simplicity of using a s pherical base co­
ordinate surface, as in Poisson's and Stokes' 
integrals, arises not only from the fact that the radius 
vector-the third coordinate-is constant during 
the surface integration, but also from the fact that 
functions of the radius vector in the potential and 
gravity anomalies depend only on the degree n and 
not on the order m of the spherical harmonics used 
to express the potential anomaly. We can obtain 
some, but not all, of this advantage by integrating 
over a base spheroid in the spheroidal coordinates 
of Chapter 22. The potential anomaly can be ex­
pressed in spheroidal coordinates (w, u, a) by 
Equation 22.50 as 

'.lC II 
-T/G= L L Q~11 (i cot a)P;:1(sin u) 

11=0 m=O 

29.61 X {A11111 cos mw+B11111 sin mw} ; 

the gravity disturbance gn on the base spheroid is 
then obtained from Equations 29.25, 22.28, and 
22.29 as 

aT tan a aT 
go= as =--v- aa 

G tan a 00 11 

L L (i cosec2 a)Q 1:i1'(i cot a) 
v 11=0 111=0 

29.62 X P;:1 (sin u){A11111 cos mw+ 811111 sin mw}. 

The (m, n) harmonics are accordingly related by 
the equation 

Q111 '(i cot a) 
{(gov) 111 }=itanacosec2 a 11 {T111 } 11 Q7i'(i cot a) 11 

i tan a{ (n+ l)(i cot a)Q;:1(i cot a)}{Tm} 
Q7i' (i cot a) 11 

+ i tan a {- (n - m + 1 )Q 111 (i cot a)} 
u+1 {Tm} 

Qlll (" ) II 
11 i cot a 

i tan a(n-m+ l)Q::'.ti (i cot a) {P'}. 
Q~1 (icota) 11

' 

by summation over m, n , we have 

"° II 

gov=- L L (n+ l){T;:'} 
11=0 111 = 0 

_ ~ ~ i tan a(n-m+ l)Q::'.ti (i cot a) {Tm} 
l;-20 lf;,0 o:~ (i COt a) II 

29.63 

which is an extension of Equation 29.26, except 
that the harmonics are now in terms of the reduced 

306-962 0-69-22 

latitude u and not the geocentri c latitude. We 
multiply this las t equation by the- modifi~d Stokes.­
function, Equation 29.17, 

- "' 2n+ 1 
5(1/J)= L n+ 1 P11 (cos l/J) 

11 = 0 

=cosed ljJ- ln (1 +cosec~ l/J) 

where cos ljJ is now calculated from the reduced 
latitudes u, ii as 

cos ljJ =sin u sin ii+ cos u ens ii cos (w - w ), 

29.64 

and integrate over the whole solid angle 

dil= cos u dudw. 

We then have 

J(gnv )S ( ljJ )dil =-41TT,, 

-J ~ ~ itana(n-m+l)Q::'+1(i cota) 
1;'20 1f:o 0::1 (i cot a) 

29.65 x S(ljJ){T::1}dO 

which is an extension of Stokes' integral for the 
gravity disturbance. From Equation 22.49, we h ave 

Q;:'+ i (i cot a) 

0::1(i cot a) 
(-)111(n+ m+ 1) [ (-1-)2] 
(2 3) . 1+0 . ' n + i cot a i cot a 

and the integral on the right side of Equation 
29.65 becomes 

x 11 (-) 111 tan 2 a(n+m+l)(n-m+l) 

- ;~O 1~0 (2n+3) 

29.66 x S(l/J){T;~}dil. 

ignoring the fourth and higher powers of tan a, 
which is roughly the eccentri city of the base 
spheroid. This last integral can accordingly be 
considered as a correction to the Stokes' integral 
to allow for the gravity disturbance being given 
over a sphe,·oid instead of over a sphere. The cor­
rection is of the second order in the eccentricity. 
The other difference from the Stokes' integral in 
Equation 29.65-the use of the principal radius 
v instead of a mean spherical radius R -is also a 
second-order effect, so that the spherical Stokes' 
int egral holds true for integration of gravity dis­
turbances over a spheroid to a first order in the 
eccentricity, provided we use the reduced latitude 
and, in effect, integrate over the auxiliary sphere. 

45. To calculate the co rrec tion in Equation 29.66, 
we need to expand a first approximation to the 

-
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potential anomaly in spheroidal harmonics, con­
verted if necessary from spherical harmonics by 
Equation 22.59. However , in practice, the zero­
and first-degree harmonics are usually assumed to 
be absent in the potential anomaly because the 
total mass and center of mass are assumed to be 
the same in the actual and standard fields. We 
need usually consider only the comparatively 
large second-degree zonal harmonic for which 
the correcting term in Equation 29.66 is 

- (9/7) tan 2 a f {T2} (5/3)P2 (cos tJ;)dO 

=-(15/7) tan2 a(47T/5){T2}P 

=-(127T/7) tan2 a{T2}, 

using Equation 29.10. The second-degree zonal 
harmonic, in the actual potential and therefore 
in the potential anomaly, is already (1968) well 
known. 

46. A formula in terms of the gravity anomaly 
gA instead of the gravity disturbance gD may be 
obtained from Equation 29.30, which in our prese nt 
notation gives · 

(a In y) 
vgD = vgA + v ---a;- T. 

On the base equipotential spheroid, the Bruns' 
Equation 20.23 in our present notation gives 

v( a ln y)=-!:.-1- 2w
2
v 

as p y 

= - 2- sin2 a cos 2 u - 2w 2v/y 

to a second order in the eccentricity, using Equa­
tions 22.10 and 22.12. It is usual, as in the approxi­
mate formula for the gravity anomaly (Equation 
29.31), to ignore the centrifugal te rm when mul­
tiplied by the small potential anomaly. However, 
the magnitude of this term in the last e quation is 
about 1/150, which is about the square of the 
eccentricity, so that we have no right to ignore 
this term in working to a second order. Equation 
29.63 can now be replaced by 

x II 

gA V = - 2: 2: ( n - 1 ){ r::1
} 

11 = 0 111 = 0 

"" I! 

+ 2: 2: sin2 a cos2 u{TW} 
11 = 0 111 = 0 

oc II 

+ 2: 2: (2w 2 v/y){T::'} 
11 = 0 111 = 0 

-~ ~ itana(n-m+f)Q::i,_ 1(icota){T 111 }. 

1(:0 ,f;0 QW (i cot a) 11 

29.67 
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W hen multiplied by the Stokes' function 

"' 2n+l · 
S ( t/J) = 2: n _ l P11 (cos tJ;) , 

11=2 

where cos t/J is given by Equation 29.64, and ir 
tegrated over the whole solid angle, this la~ 
equation gives an extension of Stokes' integr< 
similar to Equation 29.65 with three correctin 
terms on the right which can be evaluated numer 
cally for the main second-degree zonal harmoni 
as in § 29-43. In evaluating the centrifugal correcl 
ing term , it is re asonable to assume that (2w 2vh 
is constant at its me an value, which is about 1/14~ 

4 7. Equations 29.65 and the corresponding equc 
tion for the gravity anomaly are in the form c 
int egral equations whose solution gives the potenti< 
anomaly at a particular point P on the spheroic 
this form best illustrates the analogy with th 
Stokes' integrals for the sphere. However, th es 
integral e quations are exactly equivalent to th 
system of linear equations in Equations 29.63 an 
29.67 , expressing the gravity disturbance or anomal 
as an infinite series of spheroidal harmonics c 
the potential anomaly. We cannot, of course, solv 
an infinite number of these equations for the coefl 
cients A 11111, B11111 of Equation 29.61 any more tha 
we can evaluate the inte grals in the integral equc 
tions for all points of the spheroid; the most w 
can do is to integrate numerically the gravity dii 
turbance or anomaly at a number of discrete pointi 
which represent av erage conditions in the localit 
and are well spaced over the spheroid. In much th 
same way, we can suppose that the potenti< 
anomaly is sufficiently well re presented by a fini 
number of the coefficients A11111, B11111 in Equatio 
29.6L and we can solve Equation 29.63 or 29. 
for these coefficients. The number of coefficien 
for which we can solve will naturally be limite 
by computer capacity; we must , of course, ha 
at le ast as many observations for gD or gA as u 
known coefficients, preferably many more so th 
we may solve the observation equations derive 
from Equation 29.63 or 29.67 by least square 
The advantage of this method is that we are n 
limited to points on the spheroid; we can substitu 
all three coordinates of the observation points i 
the coefficients of the unknown A11111, B11111 in Equ 
tions 29.63 and 29.67, and have no need of Pizzet 
extensions to the integral Equation 29.65 or t 
corresponding e quation for the gravity anomal 
The same method can be used in geocentric c 
ordinates to solve Equation 29.26 or 29.33 for ti 
C 11111 , 5 11111 of the potential anomaly expressed i 
spherical harmonics. In § 29-49, we shall consid 
yet another application of this method. 
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BJERHAMMAR'S METHOD 

48. Realizing the essential simplicity of the 
classical s pherical approach, Bjerhammar,13 in 
one of the most modern methods , uses a spherical 

p 

Figure 40. 

reference surface completely embedded in the 
Earth (fig. 40). He then uses the upward c0ntinua­
tion integral in Equation 29.48, that is , 

29.68 R 2(r2-R 2) J (gA)Q 
(gA) P 4rrr -[-3 - df!' 

first, to determine values of the gravity anomaly 
(gA)Q on the reference surface from measured 
values (gA) p on the topographic surface, and 
second, to determine values in the external field 
generally from values on the refe rence surface. 
The first operation involves inve rs ion or solution 
of the integral Equation 29.68 and result s in quan­
tities which can no longer be physically identified 
with gravity anomalies because of the intervening 
matter, but do, nevertheless, satisfy the integral 
equation. The method is appli cable without modi­
fication to gravity disturbances or to any function 
derivable from Poisson's integral in the same way 
as Equation 29.48. Once the gravity anomaly, or 
preferably the gravity disturbance, has been found 
at points in the external field , it is a simple matter 
to compute actual gravity at such points; the result 
could be compared with, and be used to supplement, 

13 Bjerhammar (1962), "Gravity Reduction to a Spherical 
Surface," Technical Report, The Royal Institute of Technology, 
Geodesy Division, Stockholm, 1-2. and (1964), "A New Theory 
of Geodetic Gravity," Kungliga Tekniska Htfgskolans Handlingar, 
Stockholm, no. 243, 3- 76. Details are provided in several other 
publications of Th e Royal Institute of Technology. 

gravity de termination from s at e llites. Th e exte rnal 
pote ntial could be found by harmoni c ana lys is of 
gravity, followed by integration or by S tokes' 
integration. 

49. The integral Equation 29.68 can be solved 
approximately by the standard method of t rans­
formation to a finit e numbe r of s imultaneous linear 
equations. 14 For e xample, we c an express (g.4 ) 4 
approximately ove r the refe re nce sphe re by a 
suffic ient number of s phe rical harmonics as 

29.69 
n, m 

eve n if the fun ction (gA)Q contains simple dis­
continuities. Express ing Equation 29.36 in the 
form 

r(r2 - R 2 ) 

[3 
"" R" 
~ - (2n+ l ) P11( cos l/J) 
LJ r" 

11 = 0 

and substituting in the int egral Equation 29.68, 
we have 

J
R 11 + 2 (2n+l) 

(g4)p= r"+2 41T L {uW}P,,( cos l/l)df! 
II, Ill 

29.70 
R11 + 2 

= L r11 + 2 {uW}P , 
n,,,, 

using Equation 29.10. For each point P where 
gravity is measured or averaged on the topogra phic 
surface, we have one linear Equation 29. 70 con­
necting a finite number of the spherical harmonic 
coefficients Cnm, Snm in { u ::'} by Equation 29.02 . 
Given enough obse rvations, we can solve these 
equations for the C,1111, 511111 by le ast squares, the re by 
fitting the fun ction (gA )Q in Equation 29.69 in a 
reasonable way to the observe d values on the 
topographic surf ace. The re is no need to exclude 
the "'forbidden " harmonics n = 0, 1 from th e ex­
pression for (gA) Q· Convergence difficulti es , caused 
by matter external to the reference sphere and 
discussed in § 12-73, do not arise because we are 
not dealing with an infinite series of s pheri cal 
harmonics, but are concerned solely to find a finit e 
series which fit s a finit e number of observations. 

50. Members of the Stoc kholm school 15 have p ro­
posed various othe r polynomial re presentations of 

14 For a clear introduction to the method. see Jeffreys and 
Jeffreys (reprint of 1962). Methads of Mathematical Ph ysics, 
3d ed. of 1956. 167- 168. 

i ; See, for example. among othe r publications of Th e Roynl 
In stitute of Technology, Reit (1967). "On the Numerical Solut ion 
of the Gravimetrical Integral Equation of Bje rhamm ar." The ' 
Royal Institute of Technology, Geodesy Division, Stoc kholm . 
1-36. 
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the function (gA) Q as alternatives to expression in 
spherical harmonics by Equation 29.69. One pro­
posal is to use a finite series in powers of the topo­
graphic height h above the point Q, that is, 

(gA)q = L cul1 11
• 

II 

Substitution of this series in the integral Equation 
29.68 gives 

f 
h n R 2 ( r2 - R 2) 

29.71 (gA)l' = 2: C11 f3 41Tr df>., 
II 

the integrals in which equation can be evaluated 
numerically. The resulting system of linear equa­
tions is then solved for the coefficients C11. Anomalies 
(g4) ,, on the topographic surface or in the external 
field appear also as power series in h , an interpreta­
tion which implies that gravity anomalies are con­
stant over level plains. But this result is contrary 
to experience, as members of the Stockholm school 
themselves realize; variations in the anomalies over 
the Gangetic Plain in India have, for example, 
yielded valuable geophysical results, and the same 
could be said for many large oilfields. However, 
representation of (g.4) Q by a power series serves 
well to illustrate the principles of the method, which 
can be applied to more sophisticated polynomials . . 

51. An alternative method of solving the integral 
Equation 29.68 has been given by Moritz.16 From 
Equation 29.40, we have 

R2 =R2(r2-R2) f dD.. 
r2 41Tr f=l 

If we multiply this equation by (g.4) s - the value of 
the gravity anomaly at S in figure 39-which is a 
constant during the surface integration, and sub­
tract from Equation 29.68, we have 

R2 
z (gA)s= (gA)I' 
r 

The factor (R 2/r2
) on the left is near unity and is 

ignored, and the last equation is then solved for 
(g4 )s by iteration. For the first approximation, the 
anomalies (g4)Q, (g4)s on the sphere in the surface 
integral are taken to be their observed values on the 
topographic surface. Second approximations to the 
values on the sphere-for example, (g4)s on the 
left - are then obtained from the integral equation 
and are used in the surface integral to obtain a 
third approximation. Similar iterative methods 
have been proposed in various publications of the 

rn Heiskanen and Morit z, op. cit. supra note 3, 318. 
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Stockholm school, including Bjerhammar's first 
paper on the subject, published in 1962. 

52. The method is based on Poisson's integral 
which requires an absence of matter outside tht 
reference sphere if the quantities g.4 are to ht 
interpreted as gravity anomalies. It is possible ir 
the case of many mass distributions to removt 
matter external to the reference sphere and to adc 
matter inside the reference sphere without eff ec' 
on the total mass, on the center of mass, or on tht 
exte rnal field, but there is no guarantee that this i~ 

possible in the case of such an irregular body a~ 
the Earth; if it were possible, the (gA)Q would ther 
be gravity anomalies of the alternative mass dis 
tribution in which all the matter external to tht 
reference sphere has been removed. The existenct 
of a solution of the integral Equation 29.68 coulc 
then certainly be justified on physical grounds 
We have no need to interpret values of (gA)Q on tht 
reference sphere as gravity anomalies. We coulc 
consider (gA)Q simply a function defined on tht 
reference sphere which, when substituted in tht 
integral Equation 29.68 , correctly reproduces tht 
observed quantities (gA)I', but we still have to sho~ 
that such a function can be found by solving tht 
integral equation and is expressible to sufficien 
accuracy by a practicable number of terms. Fo: 
example, there are considerable fluctuations in tht 
anomalies over the topographic surface which coulc 
lead to even more violent fluctuations of the (gA)Q 
requiring a very large number of polynomial term~ 
for adequate representation. Failing justificatior 
on physical grounds by an alternative mass dis 
tribution, the only way of settling the question ii 
by numerical trials on simulated and unfavorabl; 
irregular mass distributions. Members of the Stock 
holm school are still (1968) engaged in such trials 
but their results so far seem to indicate that th( 
method will be sat isfactory when applied to tht 
actual Earth and will be as good as any other method 
in addition to being much simpler. 

THE EQUIVALENT SPHERICAL 
LAYER 

53. We know that the exte rnal potential of a soli( 
body can arise from an infinite variety of mas: 
distributions, and the question arises whether we 
can replace the actual mass distribution by a coat 
ing of densit y <r spread over a given surface wjthou 
effect on the exte rnal potential. In some moden 
geodetic applications, such replacement is assume< 
possible for any surface; we shall consider thi~ 
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generalization in more de tail in § 30- 55. In this 
chapter, we shall consider, as an introduc tion to 
the more general case, the classical proble m uf 
whethe r, and in what c ircumstances, the mass 
distribution of a given ex ternal potential can be 
replaced by a surface density a spread over a 
sphere. An obvious advantage would be that we can 
then obtain any re quired ele me nt s of the exte rnal 
field s traight from the s urface mass dis tribution by 
surface integration. In fact, we can obtain alter­
native, but equivalent , forms of all the integral 
formulas in thi s chapter, no more and no less, and 
the alternatives are subject to the sam e limitations. 

54. Any bounded function, including function s 
with simple di scontinuities, can be re present ed 
over the surface of a sphere in a series of sphe ri cal 
harmonics: we can accordingly express a s urface 
dens ity a in geocentri c coordinates (w , </J) as 

x II 

a = L L P::'(s in </>) { C11 111 cos mw + S11111 sin mw} 
11=0 111 =0 

29.72 

where C 11 111 , s11 111 are constant s. If dS is an element of 
area of the spherical surface, the corresponding 
element of mass is m/S; we can the n obtain the 
C11111. 5 11111 of the ex te rnal attraction potential from 
Equations 21.037. For example, we ha ve 

Cuo= R J aP11(sin </J)dS 

= R 11 +'!.1 w=Z1T f cb = +1T/
2

' aP11 (sin </J) cos <P dwd</J. 
w= O cj, = - 77/2 

If we substitute Equation 29. 72 for a , the variables 
are found to be separable and in accordance with 
the ordinary rules for integration of trigonome tric 
and Legendre func tions: we have the n 

4rrH. 11+'!. 

C110 = (211+1) C110. 

Integration of the other two equations of Equations 
21.037 in the same way shows that the same rela­
tion holds be tween the other coefficient s, and we 
can write 

29.73 (
C,, 111 ) 4rrR. 11

+'!. (c11111 ) 

S,,111 = (2n + 1) S 11111 • 

If V is the exte rnal pote ntial , we can write this 
equation in the notation of § 29-2 and with the 
physical definition of the pote ntial as 

29.74 
4rrR 11+2 

{ V"'}-- { '"} " - (2n+l) a,, ' 

which can be summed over m and 11 to give tlw 
required relation be t ween the pote ntial and th <" 
s urface de nsit y. It is assumed that unit s have been 
c hosen tu make the gravi ta tional constant G unity 
in Equation 21.035. Howeve r, Equation 29. 74 would 
hold true if we cons ide r a to be the densit y 111 ulti­
plied by the gravitational constant. 

55. If we are give n the surface dens ity in spheri­
c al harmonics, the pote nti al is obtained as a series 
of spherical harmonics, convergent right down to the 
surface of the s phe re, whic h in thi s case is the 
s phere of conve rge nce de fined in § 21- 11. However, 
if we preassign values to C11111, S,,,,, to re present the 
a ttrac tion potential of an ac tual body, such as th e 
Earth, the corresponding series of solid harmonics 
is cert ainly convergent only ou ts ide the sphere of 
converge nce for that body; it is only in that domain 
that the equivalent sphe rical coating , given by Equa­
tion 29.74, can be said to give rise to the actual 
pote ntial of the Earth. Equation 29. 74 is accord ingly 
limite d in the same way as the express ion of the 
ac tual potential in sphe rical harmonics, no more 
a nd no less . Subject to this limitation on Equation 
29. 74, we can always use Equation 29. 74 to find a 
sphe rical coating which will give rise to the actua l 
pot e ntial. 

56. The total mass M of the coating is 

29. 75 J m/S = 4rrR 2coo = M = Coo, 

in agreement with Equatio n 29. 73. Moreover, if th e 
ori gin is at the ce nte r of m ass of the actual body 
so that the first harmonics C10, C1 1, 5 11 are zero, so 
the n are c10 , C11 , and s 11 zero, and th e center of mass 
of the coa ting is at the same origi n. Equation 29. 73 
a utomatically e nsures that the actual body and the 
coating have the same ce nter of mass, whethe r thi s 
com mon ce nter of mass is a t the origi n or not. 

57. The pote ntial a t P (fig. 39), arising from the 
e le rn e nt of mass m/S = aR 2df! at Q, is 

- aR 2df! /l : 

the total pot e ntial at Pis accordingly 

29.76 f ' _ J a!F I" p-- - {- ( .lL , 

which is easily ve rified from Equations 29. 74, 
29.11 (for k = Rf r), and 29.10. This formula is an 
alternative to Poisson's integral. 

58. As another example, the vec tor force at P 
(fig. 39), arising from the coa ting, is the nega tive of 
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the potential gradient at P by the generalization of 
Equation 20.05; and so we have 

29.77 J 
aR 2 

(V,.),.=+ T L,.dn 

__... 
where lr is a unit vector in the direction QP given by 
Equations 29.54 and 29.55. This equation can be 
contracted with the meridian, parallel, and normal 
vectors (which remain fixed during the integration) 
in the spherical polar system at P to give three 
components of force and thus the magnitude and 
direction of the total force. If V is the potential 
anomaly, the magnitude of the total force to a high 
degree of accuracy is the gravity disturbance. 

59. Another formula, frequently found in the 
literature, connects the gravity anomaly gA with the 
density u of a spherical coating, giving rise to the 
potential anomaly T. Both T and g.4 have their values 
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on the sphere. From Equations 29.74 and 29.32 
we have 

"' 
11 

[ (2n + 1) (n -1) ] 
(27Tu-g4)= ,~o ,t:o 2R11+2 {T;:'}+ Rn+2 {T~} 

3T 
29.78 

2R 

in which we have also used Equations 29.33 anc 
29.45. A similar formula for the gravity disturbanct 
gn on the sphere is obtained from Equation 29.26 a~ 

29.79 
T 

(27Tu-gD)=-· 
2R 

These formulas are subject to the usual limitatior 
of absence of matter outside the sphere and to tht 
first-order assumptions inherent in Equations 29.3( 
and 29.32 for the gravity anomaly. Equation 29.7~ 
is often applied to the co-geoid as being sufficient!~ 
near a sphere. 



CHAPTER 30 

Integration of Gravity Anomalies -

The Green-Molodenskii Approach 

GENERAL REMARKS 

1. In the last chapter, we considered the integra­
tion of gravity disturbances and gravity anomalies 
over regular mathe matical surfaces which are no 
more co mplicated than a spheroid. We can not , 
however , meas ure gravity on such a refe re nce 
surface, and so are co mpelled to reduce measure­
ments of gravity actually made on the topographic 
surface of the Earth , or derived from sat ellites, to 
calculated values which would be obtained on the 
reference surface if we could measure the m on the 
reference surface. The calcula tion , which is de­
-scribed in outline in § 29-42, must assume some 
distribution of mass in the Earth 's crust. T o avoid 
making any such assumptions about crustal de nsi­
ties , which are ce rtainly a source of weakness in 
the method, much work has been don~, mainly by 
Molodenskii 1 and his associates, on the formati on 
and solution of inte gral equations requiring integra­
tion of the anomalies , not over a regular mathe­
matical surface, but over the actual topographic 
surface where the measure ments are made . 

2. Unfortunately, thi s imaginati ve conception 
introduces other , and perhaps equi valent , diffi-

1 A fairly complete summary and bibliography are given in 
Molodenskii , Eremeev, and Yurkin a (1960), " Methods for Study 
of the External Gravitational Field and Figure of the Earth," 
1-248. Translated from " Metod Izucheniya Vneshnego Gravi­
tatsionnogo P olya i Figury Ze mli ," in Trudy Tsentral'nogo 
Nauchno-Issledovatel'skogo lnstituta Geodezii, Ae'ros"emki i 
Kartografii, no. 131 , 3-251, and published in 1962 by the Israel 
Program fo r Scie ntific Translations fo r the National Science 
Foundation and the U.S. D_epartme nt of Commerce. 
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culties . In de aling with such regular surfaces as 
spheres and s pheroids or Newtonian equipoten tials 
in free air , we have not been bothered much by 
questions of continuity, but this sit uat ion is no 
longer true in the case of t he highly irregular 
topographic s urface of t he Earth. For the proper 
application of Green's theorem (for example, 
E:quation 9.19), which is used thro ughout this brancli­
of geodesy, the uni t normal vector of the s urfac e 
should vary continuously over the surface; in addi­
tion , any fun ction used in Green 's theore m should 
have continuous first derivati ves on and outside the 
surface as well as continuous second derivatives 
outside the surf ace. These last conditions are s atis­
fi ed in the case of the topographic surface by gravi­
tational potentials , but are not necessarily satis fied 
by the distance between two points , one or both of 
which lie on the surface . Some s moothing of the 
surface is accordingly necessary; in mountainous 
regions, s moothing will usually involve at least some 
of the de nsity assum ptions which the method se eks 
to avoid. Moreover , Molodenskii 's integrals contai n 
the slopes of the topographic surface re lative to the 
astronomical or geodetic zenith , and if these slopes 
are excessive , the integrals will not converge; again. 
some s moothin g of the s urface is necessary in 
mountainous regions. 

3. Recognizing these limitations, de Graaff­
Hunter 2 has proposed the introduction of a Model 

2 de Graaff-Hunt er (1960), " The Shape of the Earth 's Surface 
Expressed in Terms of Gravity at Gro und Level," Bulletin 
Geodesique, ne w series. no. 56, 191-200. 
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Earth, obtained by smoothing the actual topography 
and defined in relation to the topography, not in 
relation to the coordinate base surface; the surface 
of the Model Earth, for example, coincides with 
Mean Sea Level in ocean areas. The slopes of the 
Model Earth do not exceed one percent by much, 
and the surface is sufficiently continuous for the 
application of Green's theorem. Unfortunately, it 
is necessary to reduce measurements of gravity and 
potential made on the topographic surface to equiva· 
lent values on the surf ace of the Model Earth; thi~ 
reduction requires crustal density assumptions be· 
tween the topographic surface and the Model 
Earth which are similar to those required in reduc­
tions to the geoid , although not as extensive. Mem­
bers of the Russian school, who require the 
equivalent of such reductions only in mountainous 
areas, consider that this degree of smoothing is 
unnecessary; the subject is still (1968) controversial. 

4. The positions of points on the topographic 
surface, and therefore the form of the topographic 
surface, are known at present (1968) only in a 
relative sense, not in a single worldwide coordinate 
system. Geometrical heights, such as the third 
coordinate in the geodetic (w, <f>, h) system or in a 
spherical polar system, are mostly unknown even 
in a relative sense. Available heights are usually 
obtained from spirit leveling or vertical angle 
measurements, which, as we have seen in § 25-19, 
give, in combination with gravity measurements, 
an approximation to the geopotential. The main 
object of the global integration of gravity anomalies 
is to determine deflections and geometrical heights, 
which are not vitiated by errors of atmospheric 
refraction, and so to simplify the more precise cal­
culation of distances and directions by making 
possible the transformation to geodetic coordinates 
from measurable astronomical coordinates. In this 
sense, gravimetric methods are in direct competition 
with satellite methods, which provide positions in a 
worldwide geometrical coordinate system without 
requiring measurement of astronomical latitude, 
longitude, and potential. A disadvantage of the 
gravimetric method is the difficulty of obtaining 
sufficiently dense and accurate gravity measure­
ments over the oceans and over the polar regions, 
while satellite methods are unlikely to be an econom­
ical means of fixing dense networks on land. 
Gravimetric methods may accordingly be most use­
fully employed in the future on regional or local 
surveys in conjunction with surface triangulation, 
trilateration, or traverse. Little work has so far been 
done on these lines, but no doubt the general 
principles of methods described in Chapters 29 and 
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30 for global gravimetric surveys will still apply t< 
surveys of more limited extent. For example, th1 
low harmonics of the potential may be determinec 
globally from satellites while the higher harmonic1 
are obtained from regional ground gravimetri< 
surveys -both being used to determine deftectiorn 
for substitution in the observation Equations 26.2£ 
and 26.25 of ground networks. 

5. We cannot obtain an answer to these problem 
by sill1ply integrating gravity anomalies over th1 
unknown topographic surface as Stokes did over ; 
known sphere. Some extra data are required, and 
in practice, it is assumed that both gravity and geo 
potential are measured. This requirement consti 
tutes another serious disadvantage of the gravi 
metric method. At present (1968), accurate measure 
ments of potential, obtained from spirit levelin: 
in conjunction with gravity measurements, exis 
only in developed areas along roads or railroads arn 
would be very costly in mountainous areas. Vertica 
angle measurements, which would provide at leas 
approximate values of potential differences, an 
missing in many of the main triangulation network 
of the world through fear of the effects of atmos 
pheric refraction and through the unrealized hop1 
that heights would eventually be provided b· 
spirit leveling. It may be easier to remedy thi 
deficiency in regional, rather than in global, gravi 
metric surveys. 

6. The usual method of utilizing the potential ha 
already been given in § 29-16 (fig. 38), but is n 
stated now for convenience in a slightly diff eren 
notation. In figure 41, Q is a current point on th 

Figure 41. 

vr (normal to 
coordinate surfaces) 

S-surface 

telluroid 
or terroid 

base coordinate 
surface 
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S-surface, which is e ithe r the topographic s urface 
smoothed as necessary or the Model Earth. In thi s 
chapter, we shall be dealing sole ly with ( w, </>, h) 
coordinate syste ms , usually the spheroidal geodetic 
system: and ii'' is the straight normal through Q to 
the h-coordinate surfaces. The point B on thi s 
normal is chosen to make the actual pote ntial at 
Q(W1J) equal to the standard potential at B( UH ). 
Because W is s upposed to be known at all point s of 
the S-s urface, the loc us of the point B is a known 
surface and is called the tell11roid if S is the topo­
graphic surface, or the terroid if S is the Model 
E.arth surface. The height anomaly BQ =' and the 
gravity anomaly g<J-YB are as defined in § 29-16. 
The unit normal to the S -surface is shown in 
figure 41 as v '·. 

7. As us ual , we s hall provide full de rivations of 
the basic equations, which are not easy to find ex­
pressed in s imple terms in the lit erature, and an 
outline only of the methods for approximating and 
solving the basic e quations: descriptions of these 
methods are all too prolific in the lit erature. First, 
howeve r, we must inves tigate some geometrical 
prope rties of the S-surface in (w , <J> , h) coordinates 
to avoid breaking the argume nt later. 

THE S-SURFACE IN (w, cf>, h) 
COORDINATES 

8. The longitude and latitude (w , </>) are constant 
along the straight h-surface normal CQ (fig. 41) and 
therefore have definite values at Q so that (w, </>) 
can be taken as S-surface coord inates. Coordinates 
of the space in which S is e mbedded will be taken 
as the (w, <J> , h) system. The equation of the S-sur­
face can then be expressed in Monge's form 
(§ 6-5) as 

30.01 hQ = f(w, </> ). 

The x~ of the s urface (§ 6-5) are then given by 

30.02 x~ =f,, : (r = l,2) 

in which j~ is the derivative of the scalar f with 
respect to xa, that is, with respect to w or <f> , 
and o:; is the Kronecker delta. It should be empha­
sized that f i ~ inte rpre ted as a height only on the 
S-surface: otherwise,f is simply a fun ction of (w, <J> ). 

The Metric Tensor 

9. Substitution of the space metric tensor (Equa­
tion 17.04) in Equation 6.06 gives the metric tensor 
of the S-s urface as 

30.03 

in whi ch the ove rbar refers to the coordina te 
h-s urface passing through Q (fig. 41), not to the b ase 
coordinate s urface (h = 0) as in Equation 17.09, 
which, however, enables us to evaluate <ia/3 in terms 
of the fundamental forms of the base surface. The 
dete rminant of the me tri c tensor by direct calcu­
lation is 

30.04 

a= (ii11 + rn (ii22 +fl) - (ii1 2 + /1h) 2 

= ii + aii22f~ + iiii 11[f + 2ii a 1 '!.f ih. 

= ii(l + \7/) 

=a(l+ \7f). 

The invariant \7/ (§ 3-9) is a surface invariant ob­
tained from the metri c of the h-surface passing 
through Q, but because f is a fun ct ion of (w, </>) 
only ,/3 = 0 , and the invariant has the same value as 
the space invariant \7f. 

The Unit Normal 

10. W e can obtain the covariant components of 
the unit normal to the S-surface by giving di ss imilar 
values to the indices s and t in Equation 6.11. For 
example , for s=2, t =3, we have 

V1E 123 = E'!./3 j~ = E'!. 1/ 1 

which , using Equations 2.15, 17.05 , and 2.30, gives 

V1 = - (ii/ (I )112 /1: 

obtaining the other component s in the same way, 
we have 

30.05 

Raising the index with the space metri c tensor in 
Equation 17.05 gives the contravariant component s 
as 

v,. = {ii 11 v1, a'!.'!.v'!.. ll:1} 

30.06 

But v,. is a unit vector , and we must have 

1 = v,.v,. = (ii/a){ii 11f1 + li22ff+1} 
-= (ii /a) (1 + \7 /), 

agreeing with Equation 30.04. But from Equation 
17.28, the unit normal fir to the h-s urface is (0, 0 , l); 
if /3 is the angle between the two normals, as in 
figure 41, we have 

so that 

30.07 

30.08 

cos {3 = jj,.vr= (li/a) 112 

a/ii= 1+ 'VJ=1 + \7/ = sec2 /3 

'VJ= \7/= tan2 {3. 
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Moreover, b y making the space indices both 3 in 
Equation 6. 10 for the S-surface, we have 

1 = aaf3 faff3 + (a/ a) 

or 

30.09 Vsf=sin 2 {3 =Vf cos2 f3 =Vfcos2 /3 

in which the invariant Vs is obtained from the 
S-surface metric. All the Equations 30.01 through 
30.09 hold true in a general (w, ¢, h) system whose 
properties are given in C hapter 17. 

11. The angle f3 is the zenith distance in the 
(w, ¢, h) coordinate system of the S-surface normal 
and is also the maximum slope of the tangent plant:; 
to the S-surface in relation to the coordinate h-sur­
face, which usually will be the geodetic horizontal. 
If the azimuth of the direction of maximum slope 
is a, we can write the unit normal v,. of the S-surface 
in terms of the usual parallel, meridian , and normal 
vectors (};_r, fir, Vr) as 

v,. = Ar sin a sin /3 + P,r cos a sin f3 + iJ,. cos {3. 

30.10 

In a general (w, ¢, h) system, we can use Equations 
17.26, 17.27, 17.28, and 17.13 to find the compone nts 
of v,. in terms of h and the curvatures of the base 
coordinate surface; we can compare the result s with 
Equation 30.05 and so can express ft, h in terms of 
a, {3. For a spheroidal base surface with principal 
radi i of curvature p, v, we can use Equations 18.11 
and can express the unit normal to the S-surface as 

vr= {(v+h) cos <P sin a sin {3 , 

30.11 (p + h) cos a sin {3, cos /3} 
so that we have 

30.12 

f; = - ( v + h) cos <P sin a tan f3 
h=- (p+h) cos a tan {3. 

In these equations, h is the geodetic height of the 
point Q on the S-surface (fig. 41). Instead of working 
in terms of the azimuth and zenith distance of the 
maximum slope, it is usual in the lit erature to make 
sin a tan /3 =-tan /32 and cos a tan f3 =- tan /31 
where /31, /32 are, respectively, the inclinations to the 
geodetic horizontal in north-south, eas t-west 
direction of the tangent plane to the S-surface. 
However, by working in terms of the azimuth a and 
zenith distance /3 of the normal to the S-surface, with 
.the ~ign conve ntions used throughout this book , we 
avoid a ny ambiguity as to whether an inclination or 
slope of the tangent plane means an elevation or 
depress ion. 
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The Associated Tensor 

12. The associated metric tensor of the S-surfacc 
is given by Equations 2.44 and 2.30 as 

aaf3 = Ea yEf38ay5 

= (a/a)eaYe138(ays + hfs) 

30.13 = COS2 /3{ aaf3 + f.O:Yf_f3Bjyfs}. 

An alternative expression is obtained from Equatio1 
6.10 for the S-surface immersed in (w, ¢, h) space 
By giving the indices r, s in Equation 6.10 the 
surface values y, o, we have 

30.14 aY8= aY8+ vYvB, 

which can be shown to be equivalent to Equatio1 
30.13. 

Normal Gradients 

13. The component of the gradient of a scalar 1 
along the normal to the S-surface is given by 

aF =Frvr = cos {3(-a11/iF1 -a22f2F2 + F3) 
as 

30.15 {
aF - } =cos /3 ah- V (F ,f) 

on substituting Equations 30.06 and 30.07. Thi 
invariant V (F, f) is obtained from the metric o 
the h-surface passing through Q, and it may be mon 
convenie nt to calculate the S-surface invariant 
From the definition of the invariant in Equatio1 
3.14, it is evident that the space invariant V(F,f) i 
the same as the h-surface mvariant because J i 
a function of w, <P only. But if we set up anothe 
(w, ¢, h) coordinate system with S as a base surfac, 
and use the metric in Equation 17.05, the S-surfac, 
invariant V s (F, J) is given by 

30.16 V(F,f)='ls(F,f)+ (aFJas)(af/as), 

whatever the surface coordinates on S may be 
Substituting f for F in Equation 30.15 and remem 
bering that af/a h = 0 because f is a function of w, ~ 
only, we have 

30.17 af/as =-VJ cos /3 =-sin /3 tan /3, 
using Equation 30.08. From the last two equations 
we the n have 

'l(F,f) = V (F,f) = 'ls(F,f)- sin f3 tan f3 (aF/as) 

substituting in Equation 30.15, we have finally 

30.18 aF {aF } a;-= sec /3 ah-'ls (F,f) · 

E_quations 30.15 and 30.18 have been obtained in i 
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slightly diffe rent form by Moritz,a whose D(F ,f) is 
Y's (F , f ) cos2 {3 and is accordingly an S-surface 
invariant , although not the standard invariant used 
here. Moritz ' D(F, fl_ is, howe ve r , the same as our 
h-surface invariant Y' (F,f) or Y' (F,f). We can 
replace f by h in the S-surface invariant of Equation 
30.18, but we are not entitled to do so in Equation 
30.15 for the reasons given in § 30- 8. 

The Invariant Y' (T, f) 

14. Next, we evaluate the inva riant s in Equations 
30.15 and 30.18 when the arbitrary scalar Fis taken 
as the potential anomaly T. We have already seen 
that the h-s urface invariant in Equation 30.15 is 
the same as the space invariant , and therefore can 
be evaluat ed in the (w , </>, h) space syste m as 

30.19 

If the components of s tandard gravit y in the direc­
tions (~r, p.r, vr) of the coordinate syste m are (y1 .. 
y2 , Ya), the second term is 

-(y1~q+ Yzfiq+ YaiJQ)fq 

in which the last term is zero because i)Q= (0, 0 , 1) 
and fa= 0. In a symmetrical s tandard fi eld Yi= 0 , 
and the remaining term in the case of a spheroidal 
field is 

30.20 

using Equations 18.10 and 30.12. The compone nt 
Y2 is the gm of Equation 23.37. This term is ignored 
altogethe r in the literature on the assumption that 
there is no meridian component of standard gravity 
close to the spheroidal equipotential, but y2 can 
easily be computed and allowed for in extreme 
cases. 

15. If, as in § 19-23 , we define the vector de flec· 
lion 6,q as 

ilq= (vq) - iiq 

in which (vq), iiq are, respectively, the unit vectors 
in the direction of the astronomical zenith and of the 
normal to the geodetic coordinate system , then again 
iiqfq= 0, and the first term on the right side of 
Equation 30.19 is to a first orde r 

g(vq)fq=gll<lfq= (g cos</> ow)'i-<1.fq+ (go<f>)p..<1.fq 

=- (g cos </> ow) sin a tan {3 

- (go</>) cos a tan {3, 

3 Moritz (1964), The Boundary Value Problem of Physical 
Geodesy. Report No. 46 of the Institute of Geodesy, Photogram­
metry and Cartography, The Ohio State University Research 
Foundation, Columbus, Ohio, 1-66. Republished with the same 
title in 1965 in the Anna/es Academice Scientiarum Fennicce 
series A. III. Geologica-Geographica, no. 83, 1-48. ' 

us in g Equations 19.42 , 18.10, and 30.12. In this 
equation , ow ( o<f>) is the astronom ical minus the 
geode tic longitude (latitude). In te rm s of the usual 
component s of deflection g =o<f>, YJ= cos </>ow, we 
can finally write Equat ion 30.19 as 

Y' (T,f) = Y' (T,f) =-gYJ sin a tan {3 

30.21 - (gg-y2) cos a tan {3 

in which Y2 is the me ridian compone nt of standard 
gravit y obta inab le from Equat ion 23.37 (not to be 
confused with the c urvature parameter y2 of either 
a general (w, </> , N) sys te m or the gravitational field 
as de fin ed in § 12-17). 

. 16. The use of Equation 30.15 and of the h-surface 
invariant V(T, f) accordingly requires a knowledge 
of the de fl ection components g, YJ· S uit able choice 
of a reference spheroid would make g, YJ , a nd {3 
s mall in flat country. In mountainous country , 
measurement of vert ical angles in a triangulation 
network , combined with a n open as tronomical 
control, would provide sufficiently accurate deflec­
tions by methods discussed in Chapter 26. Never­
theless, it is a defect of the method to require a 
knowledge of de fl ections, in addition to potential 
and gravity, at all stat ions. For this reason , Moloden­
skii uses Equation 30.18 with the S-surface invariant 
Y's ( T, f), which we s hall evalua te next. However, 
Molodenskii 4 and Morit z 5 (following Molodenskii) 
use a special form of invariant ins tead of the s tand­
ard form of two-d imensional tensor invariants 
without reaping any apparent advantage. For ex­
a mple, Molodenskii 's S -surface invariant lld for 
the fun ction f of Equation 30.01 can be shown, not 
without some diffic ult y, to be 

ild= sec2 {3 ilf 

where ilf is the ordin ary S-surface Laplacian aa/3 fa/3· 
We s hall use the ordinary tensor invariants through­
out this chapter, and we shall find that the gain in 
s implicity is considerable. 

The Invariant Y'5 (T , f) 

17. If we s ubs titut e Equation 30.18 for F = T 
in the basic integral equation for the pot e ntial 

4 Molodenskii, Eremeev, and Yurkina , op. cit. supra note 1, 
81-85. 

5 Moritz, op. cit. supra note 3, 20. See also Moritz (1966). 
Linear Solutions of the Geodetic Boundary-Value Problem. Report 
No. 79 of the Department of Geodetic Science, The Ohio S tate 
University Research Foundatio n. Columbus. Ohio. 21-22. 
Republished with the same titl t in 1968 in Deutsche Geoda"t ische 
Kommission bei der Bayerisc.'i en Akademie der Wissenschaften, 
series A, no. 58, 16-18. 
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anomaly, which we shall derive as Equation 30.50, 
we find that the term containing the S-surface 
invariant 'l s(T, f) is 

30.22 'l s(T,f) sec /3/ I. 

This term accordingly contains differentials of 
T which must be removed if the integral equation 
is to be linear in T. We propose to do this by trans­
forming the term with the two-dimensional form of 
Green's Equation 9.18; that is, for any two scalars 
</J, tf;, we have 

30.23 J {'l(</J, t/l)+</Jtltf;}dS= J </Jtf;cd"'ds, 

connecting the surface integral on the left side 
with the contour integral on the right side, in which 
j"' is a unit surface vector, normal and outward­
drawn to the contour (away from the area covered 
by the surface integral). Using the same argument 
as in § 9-7, we can say also that over any closed 
surface, we have 

30.24 J {'l(</J, tf;)+</Jtltf;}dS=O 

in which the invariants are two-dimensional surface 
invariants. From the definition 'V(</J, tf;) = a"'13<Patfif3 
of the first-order invariant, we can rewrite Equation 
30.22 as 

'ls(T,f) V (-T- 1)-rv (-1- 1)· 
I cos f3 s I cos /3' s I cos /3' 

If we integrate this last equation over the closed 
S-surface and use Equation 30.24, we have 

J 'l s(T,f) dS = -J _T _ LlfdS 
I cos /3 I cos /3 

30.25 -J T'lsC c~s /3 J) dS, 

which removes differentials of T from the integral 
equation. 

18. Next, we must express the S-surface Laplacian 
Llf in terms of known or measurable quantities. If 
we continue to overbar all quantities related to the 
coordinate h-surface passing through the point Q 
of figure 41, we have 

30.26 

using Equation 17.28 for the components of Vr (the 
unit normal to the h-surface) and Equations 30.02. 
Taking the tensor derivative of this last equation 
over the S-surface, we have 

VrsX~1+ VrX~13= faf3· 

According to § 17-18, there are no 3-components of 
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Vrs in a (w, </J, h) coordinate system, and Va13=-ba/3· 
From Equation 6.16, we have also x~13 = ba13vr so that 
we have 

30.27 -ba13+ ba/3 COS /3 = fa/3 

connecting the second fundamental forms of the 
h-surface and the S-surface. Contracting this last 
equation with Equation 30.14 and using Equation 
8.13, we have 

30.28 df= 2H cos {3-2H + ba13v"'vf3, 

the last two terms of which can be evaluated from 
Equation 30.06 or 30.10 in any particular (w, </J, h) 
coordinate system. In the geodetic system with 
principal curvatures p, v of the base spheroid in and 
perpendicular to the meridian, Equations 30.10 
and 18.10 give components of the unit normal to 
the S-surface as 

r-{sec <P sin a sin /3 cos a sin /3 /3} 
v - (v+h) , (p+h) , cos 

which, together with Equations 18.01, 18.02, and 
18.05, give the last two terms of Equation 30.28 as 

1 1 
( v + h) + (p + h) 

sin2 a sin2 f3 
(v+h) 

cos2 a sin2 f3 
(p+h) 

so that Equation 30.28 finally becomes 

(1- sin2 a sin2 f3) 
t::,.f= 2H cos /3+ (v+ h) 

30.29 
(1- cos2 a sin2 /3) 

+ (p+h) . 

In addition to the azimuth a and zenith distance /3 
of the normal to the S-surface, that is, the direction 
and magnitude of the maximum slope of the tangent 
plane to the S-surface, this equation also contains 
the mean curvature H of the S-surface. There is 
no way of avoiding some expression for the curva­
ture of the S-surface in a formula for fl/, and this 
limitation must be considered the price for avoiding 
inclusion of the deflection components g, 77. If the 
S-surface is the actual surface of the Earth, (2H) may 
be obtained by estimating the sum of normal curva­
tures in two perpendicular directions from contoured 
maps. 

Deformation of the S-Surface 

19. Next, we consider a family of surfaces ob­
tained by progressive deformation of the S-surface; 
each member of the family is obtained by reducing 
the h-coordinates of points on the S-surface in the 
constant ratio k while retaining the (w, </J) coordi-
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nates so that corres ponding points be tween two 
membe rs of the family lie on the same normal to 
the h-coordinat e surfaces. Fork= 1, the me mber of 
the family is evide ntly the original S -surface ; for 
k= 0, the member is the base coordinate surface. 
We can take any relation obt ained in this section 
for the S-surface and simply substitute kh for h to 
obtain the corres ponding relation for the deform ed 
surface. If we enclose quantities relating to the 
deform ed surface in parentheses, we have, fo r 
example, from Equations 30.01 and 30.02 

30.30 

30.31 

(J) =kf 

(fa)= kfa· 

20. In particular, we shall require th e azimuth (a) 
and zenith di stance ({3) of the line of great est slope 
on the deformed s urface relative to the normal of 
the h-coordinate surface . F ro m Equations 30.12, 
we have in geode tic coordinates 

(v+kh ) sin (a) tan ({3) =- (/1) sec <P 

= k( v + h) sin a tan f3 

(p+kh) cos (a) tan ({3) =- (fz ) 

30.32 = k(p + h) cos a tan {3 . 

In sphe rical polar coordinates (p = v = R) , these 
equations reduce to 

(a)=a 

30.33 k(R+h) 
tan (/3) = R + kh tan {3; 

if we neglect h/R , the last equation becomes 

30.34 tan ({3) ~ k tan {3 . 

21. We shall also require an expression for the 
distance (/ ) between two points (P ) and (Q) on the 
deformed surface. Quantities relating to Q are over­
barred. F ro m either Equation 25.18 or 25.19, after 
some manipulation with the formulas given in 
§ 19-7, we have in geodetic coordinates 

(/)2 =(fl+ kh)2 - 2(ii + kh )(v + kh) cos a+ (v+ kh )2 

- 2e2k(ii sin ¢- v sin <P )(h s in ¢- h sin <P ) 

+ (e4 - 2e2 )(ii sin ¢- v s in ¢ )2 

30.35 

where a is the angle between the spherical re pre­
sentation of the point s (P) and (Q ). For the azimuth 

(a) and zenith distance (j3) of the direction (P)(Q) 

a t (Q ), we have fro m Equation 25. 19 

(/) s in (a) s in (/3 )=(v+ kh ) sin a s in a* 

(/ )cos (a) sin (/3 ) = (v + kh ) sin a cos a* 

30.36 

-e2 cos (/; (fl sin¢ - v sin ¢) 

(/) cos (/3) =-(v + kh ) cos a +(fl+ kh ) 

- e2 sin (/;(fl sin ¢- v sin </J) 

whe re a and a* a re fun c tions of the geode tic lati ­
tude and longi tude of corresponding point s of the 
deformed surfaces given by Equations 19.01 , 19.07, 
and 19.08. In s pheri c al pola r coordina tes (v=v= R , 
e = 0), Equations 30.35 and 30.36 reduce to 

(1)2 = 4 sin2 f tjJ(R + kh )(R + kh ) + k2(h - h)2 

= /ij ( 1 + k(hR+ h~ k~h) + k2(h - li )2 

30.37 

where we have writt en tjJ for a and lo fo r 2R s in ! t/J 
(k= 0) to agree with the notation of Chapte r 29. 
We have also 

(/ ) sin (a) sin (/3)= (R + kh ) sin tjJ sin a* 

= (R + kh ) cos <P sin (w - w ) 

(l) cos (a ) s in (/3 )= (R + kh) sin tjJ cos a* 

= (R + kh) (- si n <P cos ¢ 

+ cos <P s in(/; 

x cos (w - w ) ) 

(/) cos ([3)=(R+kh )- (R+kh) cos tjJ 

30.38 = 2 sin2 f tjJ(R + kh) + k(h- h). 

APPLICATION OF GREE N'S TH EOREM 

22. In this sec tion , we shall apply Green's theore m 
in the form of Equati on 9. 19 to a volume bounded in 
pa rt by an a rbitrary su rface S (fi g. 42), whi ch is 
some where near the ac tual su rface of the Ea rth £, 
a nd s hall obtain an expression for the pote nti al at 
a point Pon S. Later , we shall make S coincide with 
the actual surface of th e Earth , but fo r the present 
we consider the more general case where there are 
masses exte rnal to S. One of the scala rs in Equa tion 
9.19 will be the reciprocal of the di s tance (1//) fro m 
the fixed point P to a cu rre nt point Q within the 
volume, and the other sca lar will be V (the a tt rac tion 
pote nti al at Q) so that Equation 9.19 becomes 

J {l, j_ (l) _l~1 dS = f {i'ti (l) _l ~1 '} du \' as I l as J 1. l l 

30.39 
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Figure 42. 

in whic h dv is an element of volume and ds is the arc 
e le ment in the direction of the normal to S, drawn 
outward from the volume considered. 

23. ln the first place , we shall consider the internal 
volume bounded by S , and shall consider only th e 
attrac tion pot ential V1 arising from the matter out· 
side S (shaded in fig. 42) so that mathematically we 
may suppose all the matter inside S has been re­
moved. But in applying Equation 30.39 to this case, 
we notice that the surface integrand at least 
beco mes infinite whe n I = 0, that is, when Q coin­
cides with P, as it must do for some. part of the 
int egration; the refore , we cannot apply Equation 
30.39 as it stands to the whole region bounded by S. 
To overcome this difficulty, we re move a small hemi­
sphe re L of radius E , cent ered on P , from the 
volume e nclosed by S and inte grate over the re main­
ing volume, the surface S minus L , and the curved 
surface of L. For this are a and volume , Equation 
30.39 becomes 

/s_JVi :s (7) -7 a~1}ds + J JVi :s (7)-7 a~1} dS 

30.40 =J {v1~(7)-]~v1}dv. 
Throughout the volume, both 1/1 and Vi are har­
monic and the volume integral is zero. Next, we 
conside r the surface integral ove r L. If ( Vi) is an 
ave rage value of V1 over l and if dfl is an ele me nt 
of solid angle at P. the first te rm is 

( rT )fl(!/ , - ~, i -12-:--- x E~<ln = + 2rr( Vi) 
rJs 
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because l = Eon l and al/as is minus 1 on l. (Note 
that for the proper application of Green's theorem 
as derived in § 9-12 through § 9-14, the positiv~ 
direction of ds must be in the direction of the 
normal to the boundary surface exterior to the vol­
ume over which the volume integral is taken, as 
shown in fig. 42.) In the second term of the integral 
over l. a Vi/as is the normal component of the force 
of attraction arising from Vi; for physical reasons, 
this force must be finit e and have a maximum value 
(aVi /as) over L so that the second term is less than 

(ar) J 1 (av) - as! ~ E"2<ffl=-2rrE a; , 
which is zero in the limit when E --7 0. The average 
value (V1) of Vi on L becomes in the limit the poten­
tial V1P at P. We may also consider that the remain­
ing surface integral is taken over the whole surface 
except at the actual point P, although it will require 
special treatment in the immediate neighborhood 
of P as in the case of Stokes' integral (§ 29-30). 
Equation 30.40 finally becomes 

30.41 - rr 11· = 1 - - - - - <IS. 2 I T f {1 ' a (1) 1 a/ 'i} 
as I l as 

24. In deriving this result, we have assumed that 
the volume integrand in Equation 30.40 remains 
finite as E---7 0, or in other words , the volume 
integral 

taken over the hemisphere becomes zero as E---7 0. 
Throughout the small volume, bounded by the 
hemisphere L and the continuation of the surface 
S, ~Vi, by Poisson's Equation 20.14, is either zero 
or at least finite, even if Plies just inside the matter 
on and external to S. If (~Vi) is the maximum value 
of ~Vi, the second term of the volume integral is 
accordingly less than 

which is zero as E---7 0. In regard to the first term 
of the volume integral, we can consider that (-1/l) 
is the potential at Q of a particle of mass l/G sit­
uated at P ( G is the gravitational constant). When 
Q is within L, ~(l/l) is therefore zero except 
actually at the particle of mass l/G, that is, when 
Q coincides with P. For physical reasons, we must 
suppose that the actual attraction potential Vi of 
the external masses is finite within L. Accordingly , 
the first term of the volume integral becomes zero 
as E---? 0. provided we exclude the actual point 
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P ( E = 0) as we have already done in deri ving 
Equation 30.41. The exclusion of the point P, and 
of any matter actually at P, from the volume and 
the surface, although mathe matically necessary, 
makes no significant physical difference to the mass 
distribution and to the external fi e ld. Subject to 
these considerations, we are justified in assuming 
that the volume integral ov~r the he~isphere be­
comes zero as E ._ 0. 

25. Next , we s hall consider the potential Vi 
arising from matte r within the same surface S 
(shaded in fig. 43), and shall e valuate the potential 

8 

E 

Figure 43 . 

at the same point P on S by applying Green's 
theore m to the volume enclosed between S and a 
sphere S of infinite radius (not indicated in fig. 43). 
To isolate the singularity in 1/ l at P, we take a 
small he misphere l of radius E out of this volume, 
as shown in figure 43. Equation 30.39 for the re­
maining area and volume then becomes 

( {v. a (1) I aVz} dS Js-I. 2 as l -1 a; 

+f_{Vzi._ (l) _ _!_ aVi} dS 
s as l l as 

30.42 

As in the case of V, arising from the external mat­
ter, we find that the volume int egral is zero, even 
when E --? O; and so also is the integral zero over the 
infinite s phere S because Vi behaves like l/l at 
infinity. The second term of the surface integral 
over l is similarly zero, and the first term is 

where (Vi) is an average value of Vi over the 
hemispherical s urface. In thi s case, the positive 
direction of ds is inward away from the volume over 
which the volume integral is taken, as shown in 
figure 43, so that al/as=- l on the boundary nf 
the he misphere, and the surface integral as E --7 0 
is 277Y21· where ViP is the value of Vi at P. Equation 
30.42 thus reduces to 

30.43 ( { a ( 1) 1 av.,} 
- 27TVzp= Js Vz as l -1 as- dS, 

which has exactly the same form as Equation 30.41 
for the potential V1P aris ing from the external 
masses. A glance at fi gures 42 and 43 shows, how­
ever, that the positive directions of ds are opposite 
in the two cases. If we wish to combine Equations 
30.41 and 30.43 , we must change the sign of ds in 
one of these equations. We shall do so in Equa­
tion 30.43, thereby ensuring that the posi ti ve direc­
tion of ds is away from the main mass of the Earth 
in both cases. Equation 30.43 then becomes 

30.44 

Because there are no volume integrals in Equations 
30.41 and 30.44, the current point Q is now restricted 
to the surface S. The potentials (V, or Vi) and the 
compone nt of the forces of attraction in the direction 
of the normal to S, drawn toward the main mass of 
the Earth (aVi/as or aVz/as in accordance with 
Equation 20.05), must be evaluated or observed 
at points Q on S. The distance l is PQ between two 
points on S; one point is fixed at P and the other is 
the curre nt point Q in the surface integration. 

26. Nex t , we consider the potential f! of the 
centrifugal force, given by Equation 20.08 as 

30.45 n =!w2 (x2 + y2) 

in which w is the angular veloci ty of rotation of 
the Earth and (x2 + y2) is the square of the per­
pendicular distance of the point qmsidered from 
the axis of rotation. If W, V are. respectively, the 
geopotential and the attraction potential at the 
same point, then Equation 20.08 with suitable 
change of notation also gives 

30.46 w = v -n = v, +Vi - n 
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in which we have applied the principle of super­
position (§ 20-7) by making the total potential 
V =Vi+ Vz. It is clear from Equation 30.45 that .0 
has no singularities on or inside the surface S of 
figure 42 so that we can use Equation 30.40 simply 
by replacing Vi with .0. The volume integral in 
Equation 30.40 is now 

-J 2w
2
dv 

l ' 

taken over the whole volume enclosed by S; allow­
ing for the singularity of l/l at l=O as in §30-23, 
we have 

-21T.0p=J {n ~ (l) _ _! an} dS+J 2w2 dv. 
as l l as l 

30.47 

By adding Equations 30.41 and 30.44, subtracting 
Equation 30.47, and using Equation 30.46, we have 

J {w ~ (l) _ _! a~ ds-J 2w
2 dv 

as l l a; J l 

30.48 

= 21T(Vzp- ViP) + 21T.0p 

=21T(Wp+.0p-2Vip) +21T.0p 

This equation, which is fundamental to the subject, 
has been given explicitly by de Graaff-Hunter 6 

and in various approximate or special forms by 
several other writers. 

27. It can be argued that Vi and V2 in Equation 
30.46 are harmonic and therefore V = V1 + Vz is 
harmonic-for example, in the sense that if Vi 
and Vz can be validly expressed in solid spherical 
harmonics, so can V -even when P lies inside the 
attracting matter, where V should s~tisfy not the 
Laplace equation but Poisson's Equation 20.14. 
This question, which does not appear to be satis­
factorily answered anywhere in the literature, 
requires an answer even though, for reasons given 
in §21-74, we are not concerned in geodesy with 
potential and force inside matter. We have already 
noted in § 30-23 and § 30-24 that the point P, and 
with P any particle of matter at P, must be excluded 
from both the surface and the volume considered 
in Green's Equation 30.39. The point P must there­
fore be considered as lying within a small cavity 
where the potential is harmonic. This argument is 
even clearer if we consider the potential at Pin the 
form of a volume integral 

V=-J G~dv 

6 de Graaff-Hunter, op. cit. supra note 2. 
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in which l is the distance between P and a current 
point Q, G is the gravitational constant, p is tht: 
density, and the integral is taken over the wholt: 
volume occupied by attracting matter. The inte 
grand becomes infinite when Q coincides witl 
P (l = 0), and the integral does not therefore con· 
verge unless we exclude the particle actually at P. 
If we do exclude this particle (and we can do sc 
without significant effect on either the mass dis· 
tribution, the external field, or the internal field). 
V becomes a sum of harmonic functions and there· 
fore itself a harmonic function. Nevertheless, wt: 
are not entitled to differentiate the relation 
V =Vi+ Vi-once to find the force, or twice tc 
find the density-unless the resulting differentiah 
are continuous; differentiation implies a displace· 
ment from the cavity at P into the surrounding 
matter, and we must expect some discontinuity to 
result from this process. In the case of a continu­
ous distribution of matter- except in the cavity 
at P- we can argue physically from the principle 
of superposition (§ 20-7) of potential and of force. 
implying that a relation similar to V = Vi+ Vz exists 
for the force components, that the potential and 
its first derivatives are continuous at P, but the 
second derivatives are not continuous and Poisson's 
equation provides a measure of the discontinuity 
(§ 20-18). This question of discontinuous derivatives 
will become clearer when we consider single- and 
double-layer distributions in § 30-31 through § 30-41. 
we shall find that in the case of a single layer the 
potential is continuous across the surface, whereas 
the force is discontinuous and cannot be obtained 
by differentiating the potential; in the case of a 
double layer, both the potential and the force are 
discontinuous. 

28. It is usual to simplify Equation 30.48 by intro­
ducing the potential anomaly T as defined in§ 29-10. 
To do this, we write Equation 30.48 for the actual 
geopotential W and for the standard geopotential 
U and subtract, remembering that the centrifugal 
terms are the same for both actual and standard 
fields and will cancel. We assume further that the 
mass giving rise to the standard field is entirely 
contained within the surface S so that ViP for the 
standard field is zero. The result is 

30.49 

It is usually assumed that the mass giving rise to 
the standard field of Chapter 23 is contained within 
the equipotential base spheroid of this field, so 
that the field external to the spheroid can be ex­
pressed in the form of a convergent series of sphe-
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roidal harmonics as di scussed in § 23-9 and § 22-23. 
In that case , we must ensure that the s pheroid 
lies entirely within the surface S of Equation 30.49. 

29. If the s urface S coincides with or lies entirely 
outside the topographic surface of the Earth, we 
have Vu,= 0, and Equation 30.49 becomes 

30.50 21TTp=J {r i_ (l) _ _!an dS. 
as l lad 

1 This equation applies also to the co-geoid , or regu­
larized geoid, outs ide which all masses have been 
removed. On the other hand, if we do not remove the 
external masses, we must estimate their potential 
ViP at P and substitute in Equation 30.49, which 
then applies to the actual or nonregularized geoid. 
In the same way, we can estimate the potential of 
masses external to the Model Earth (or the telluroid 
or the te rroid), but with less drastic assumptions; 
Equation 30.49 can then be applied to the s urface 
of the Model Earth (or the telluroid or the terroid). 
Unless S coincide s with the actual topographic 
surface, and for reasons given in § 30-2 this situa­
tion is not altogether possible, some estimate of 
the potential of masses external to S is necessary. 

30. In applications involving satellites , we may 
require the attrac tion potential at a point P not on 
S but external to S , which, for this purpose, we shall 
assume contains all the matt er. W e apply Green 's 
Equation 30.39 to the volume bounded by S and the 
infinite sphe re . The int e grand becomes infinit e 
when the current point Q coinc ides with P (I = 0) , 
and to deal with this situation , we exclude a small 
sphere l of radius € centered on P from the area 
and volume conside red. As in §30-25, we find that 
the volume int egral is zero (even when e ~ 0) , the 
integral ove r the infinite sphe re is zero , and the 
second te rm of the surface integral ove r ~ is ze ro. 
The remaining integral ove r l , as in §30-23, is 

I~ v :s G) dS = J ~~ e
2dfl = 41TI ', .. 

The positive direction of ds in Equation 30.39 is 
away from the volume con s ide red , and we mus t 
accordingly change the sign of ds to follow the con­
vention of § ;~0-25, that is , positiv e ds away from 
the main mass of the Earth. We have finally 

30.51 41TI ,, = V- - -- -.- dS , J { a (1) 1 av} 
as I I els 

in whic h we may substitute for V the harmonic 
potential anomaly T, so that Equation 30.50 holds 
for an exte rior point P with the substitution of 47T 

306-962 0-69-23 

for 27r. If P is a n exterior point , the s ingularity a t 
P has to be re move d by excluding a s mall sphere 
of radiu s e , whe rea s if Pis confined to the surface S 
a small he misphe re se rves to re mo ve the sin gularit y~ 
The diffe re nce in area between a sphere and a 
he mi sphe re account s for the fa c tor of 2 be tween 
Equation s 30.51 and 30.50. 
Equations 30.41 , 30.44, and 30.51 are equi va len t 
to three of the s ix re la tions, usua lly known as Green's 
third identities, obt ained from Equal ion 30.39 for 
the volumes external and int ernal to th e c losed sur­
fa ce S when P is out side, on, or inside S. Tli e othe r 
three identities can easily be obtained simila rly if 
required. If Vin Equation 30.39 is not harmonic, the 
volum e integral 

J
M ' 

- -
1
- du 

must be re tained in deri ving these identities as we 
have done in de riving Equation 30.47: V must still 
be finit e and continuous, and have finit e and con­
tinuous first and second derivatives throughout 
the volume con sidered. Green's first identity is 
Equation 9.18, and Green's second identity is 
Equation 9.19 with Equation 30.39 as a special 
case. 

POTENTIAL AND ATTRACTION 
OF A SINGLE LA YER 

31. W e shall now develop fort he r the ideas in 
§ 29-.53 through § 29-.59 by conside ring the fi eld 
ari s ing from a laye r or coating of surface d t> nsit y er 
spread ove r an arbitrary S -surface. 

At External Points 

32. Omitting the gravit a ti onal con sta nt or cou ­
s ide ring er to be the surfa ce de nsit y multipli e d h y 
th e gravitational constant, the potential at an ex· 
te rnal point P arising from an e le me nt of mass at Q 
on the surface is - m/SJ I wherP I as us ua l is the 
dis tance PQ. The tot al pot e nti al at Pis accordingly 

:30.52 

wli e re K rs the Gauss ia n curvature of tir e s urface 
and dD. is an ele ment of solid angle e nclosed h y 
normals to the surface, tha t is , an e leme nt of s oli d 
augle or area in the unit s phe ri cal re prt>sc nt a tion 
of tlw surface. In de ri vin g this result , we have used 
Equa tion 13.14. 
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33. The vector attrac tion at an external point P 
arising from an elem ent of mass at Q is 

_ ml5 l 
/2 /' 

~ 
where lr is a unit vector in the direction QP and is 
also the gradient of l for a displacement of P with 
Q fixed. The grad ient of the potential at P-the 
negative of the total force of attraction from the 
generalization of Equation 20.05 - is then 

30.53 (Vr),,=+ J u;;
5 

lr =+ J 1~2 lrdD. , 

which could have been obtained by differentiating 
Equation 30.52 for a displacement of P, but only 
because there are no singularities in e ither the 
potential or gravity at an external point P. If we 
wish to combine Equation 30.53 with other equations 

in whic h lr is the unit vector in the direc tion Pr}, 
we must change the sign of lr and write Equation 
30.53 as 

3 0.53A Wr)P=- J u;;
5 

lr=- J l!t2 lrdD.. 

At Points on the Surface 

34. Equations 30.52 and 30.53 are valid if the 
5-surface has a unique spherical representation 
(§ 11-2) and continuous curvature. However, if 
the point P lies on the surface, the integrands be­
come infinite when P and Q coincide (l = 0), and 
we must investigate this case further. We do so by 
considering part of the coating to be a small circu­
lar dis c centered on P, the potential and attraction 
of which is a s tock case in the literature; 7 the poten­
tial and attraction of the remainder of the coating 
presents no problem. The potential of the disc , of 
radius E, is -27TUE which diminishes to zero as E 
decreases. Moreover, this result is true whether we 
consider P to be outside or inside the coating, so 
that the potential is continuous across the coating 
and Equation 30.52 holds true whether Plies on the 
surface or not , although the integral will need spe­
cial evaluation when Q is in the neighborhood of 
P just as Stokes' integral needs special evaluation 
in that case (§ 29-30). 

35. The attraction of the disc at P on the surface 
is 27Tu, directed along the surface normal at P if 
the disc is small enough for the density to be con­
sidered uniform. The attraction of the disc is down-

7 See, for example, Heiskanen and Moritz (1967), Physfral 
Geodesy, 129. 
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ward if P is on the outside (and upward if P is o 
the inside) of the surface so that there is a disco1 
tinuity of 47TU across the surface. If. as usual in thi 
application , P is on the outside of the surface, th 
gradient of the potential at P or the negative of th 
total force of attraction at P is given by 

(Vr)P=+ 27Tu(vr)P+ J Uf; lr 

30.54 =+ 27Tu(vr)P+ J l:tz lrdD. 

instead of by Equation 30.53. In Equation 30.54 
(vr)P is the unit outward-drawn or exterior normal t 
the surface at P, and !,. is the unit vector in th + . 
direction QP. If we wish to combine Equation 30.S. 
with other equations in which lr is the unit vecto 

+ 
in the direction PQ , we must change the sign of 1 

and write Equation 30.54 as 

30.54A 

Wr)P=+27Tu(v,.)p-J ul~ Lr 

=+27Tu(vr)P- J ~2 lrdD.. 

POTENTIAL AND ATTRACTION 
OF A DOUBLE LAYER 

36. In this section, we develop further the idea 
in § 21-101 through § 21-103 by considering a 
outer surface layer of density u and an inne 
surface layer of density minus u. The notion c 
negative density has, of course, no physical signif 
cance except in connection with the analogou 
magnetic dipole distribution, but the notion is, nevei 
theless, of value as a mathematical device. I 
figure 44, we locate an element of mass (minu 

p 

Figure 44. 

ud5) at the current point Q on the 5-surface and a 
element of mass (plus udS) at a point Q' on the srn 
face normal distant ds from Q. Because ds is sma 
and in the limit will be zero, we can suppose tha 
the two elements of area d5 at Q and Q' are bounde1 



Integration of Gravity A nomalies-The Creen-Jlfolodenskii Approach 339 

by surface normals and are equal. In proceeding 
, to the limit ds ~ 0 , we ass ume that a-ds re mains 

finit e and equal to µ, so tha t a-~ oo as ds ~ 0. The 
whole arrangement is accordingly analogous to a 
surface distribution of dipoles of moment densityµ, , 
oriented in the direction of the surface normals. 

At External Points 

37. The potential at an external point P ari sin g 
from the e le ments ± a-dS is 

_ a-dS + a-dS =-_!!:__ (l_!) dS 
l' l ds l' l · 

In the limit ds ~ 0, this last expression becomes 

- µ, .!!_ (!) dS as l 

so that the total potential a t Pis 

30.55 

which contains no singularities as long as P lies 
outside the surface (l #- O). Parti al differentiation 
with respect to s implies differenti ation along the 
surface normal at Q with P fixed , so that we have 

30.56 .... 
in whic h Lr is now a unit vector in the direction PQ. 

38. The attraction at P is 

a-dS a-dS µ, ( 1 1) 
(l' )2 ---y:z:-= ds (l' )2-Ti dS , 

which becomes in the limit 

µ, :s (fz) ds .... 
in the direction PQ = l,.. The gradie nt of the total 
potenti al at P is the negative of the total attraction 
at P, 

30.57 

At Points on the Surface 

39. If P is on the surface, there are strong singu­
larities when P and Q coincide (l = 0) and the inte­
grands become infinite . As in the case of a single 
layer, we consider small circular di scs of radius E 

taken out of the two layers, as shown in figure 45, 
where we have located P on the out side of the top 
layer. The potential of the top disc is - 2 nffE and 

Fig u re 45 . 

the potent ial of the bottom disc is 27Ta- (E - ds) to a 
first order in ds/ E, so that the total potential at P of 
the do uble di sc is - 27Ta-ds which becomes - 21Tµ, in 
the limit ds ~ 0. Instead of Equation 30.55 for the 
potenti al of the whole double layer, we have 

30.58 Vp=- 27Tµ, p-J µ, :s (}) dS. 

If we had located P on the inside of the bottom 
layer, the potential of the double dis c would be 
+ 21Tµ, p; accordingly, t here is a discontinuity of 
41Tµ, p in the pote ntial on c rossing a double layer. 

40. If we use th e same met hod to evaluate the 
att rac tion of the double layer at a point P on the 
s urface, we find that the attractio n is indeterminate 
when both E and ds tend to zero. Moreover, the 
singu larity in the potential of E q uation 30.58 sug­
gests th at there must also be a singulari ty in the 
att rac tion cont aining differentials of the moment 
distri b ution µ, , which we cannot introduce if we 
suppose that the dis tri bution is uniform over the 
s mall discs. We can overcome the difficulty by a 
device similar to that used in § 29-41 , which has 
also been used by Koch 8 in the present application. 

41. We can evaluate the integral 

by the divergence theorem , Equation 9.17. pro­
vided we re move the singularity at P, where the 
int egrand becomes infini te, by the device use d in 
§ 30-23. Or, we can use Equation 30.41 for fT1 

eq ual to unit y and obtain the result at once as 

30.59 J :s (+) d5=-21T. 

whic h can be used to rewrite t he pote ntial of the 
double layer a t P, given by Equat ion 30.58, as 

30.60 r1·=-J (µ, - µ, ,.) :s (}) tlS. 

8 Koch (1 967), Determination of the First Derivatives of th e 
Disturbing Potential by Green's Fundamenta l Formula , Report 
No. 90 of the Department of Geodetic Science, T he Ohio State 
Universit y Research Foundation, Colu mbus, Ohio, 12-13. 
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If we diffe rentiate thi s last equation for a displace­
ment of Pin a direction m,. (line element dm) with Q 
fix ed , we have 

ai7J, J aµ,p a (1) J a a (1) -= -- - dS - (µ,-µ,p) - - - dS 
am am as l am as l 

aµ,p J a a (1) =-27T- - (µ,-µ,p) -- - dS 
30.61 am am as l 

'where we have used Equation 30.59. This equation 
gives the negative of the component of attraction in 
the direction m,., provided we can show there are no 
singularities in the integrals of both Equations 
30.60 and 30.61. Using Equation 30.56, we can 
'rewrite Equation 30.60 as 

30.62 

~ 
where !,. is a unit vector in the direction PQ and v,. is 
the unit normal to the 5-surface at Q. We can show, 
as in § 29-41, that this equation contains no singu­
larity at P. The change in the vector (!/,.) for a 
di splace ment dm of P in the direction m,. with Q 
fixed is - mrdm (fig. 46), so that we have 

a -a (!!,.) =- m, .. 
m 

Accordingly, the value of the integral in Equation 
30.61 , obtained by differentiating Equation 30.62 

p 

Q 

Figure 46. 

fo r a displacement of P with Q (and therefore v,., dS) 
fix ed, is 

-J ( µ, - /1-P) _i!_ j_ (l) dS 
am as l 

= J (µ,- µ,P) a~ C/;) v,.dS 

30.63 = J (µ,~tP) {3 (!1v1)(!1.m,.) - m,.v,.}dS, 
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remembering that the gradient l at P with 
~ 

fixed is in the direction QP and is therefore minus l 
As in § 29- 41, we can show that there is no singt 
larity in this integral at P so that Equation 30.6: 
with the alternative expression in Equation 30.6~ 
correctly gives the component in the direction m,. < 
the potential gradient (or the negative of the fore 
vector) at P when P is on the surface. Because rri 

is an arbitrary vector which can be considere 
constant during the surface integration, we ca 
rewrite Equations 30.61 and 30.63 in the vector forr 

(V,.)1, = -21T(µ,,.)p+ J µ,~t' {3(l1v1)l,.-vr}dS 

30.64 

in which !,. is the unit vector in the direction fie. 
Because the moment density µ, can vary only alon 
the surface , its gradient µ,,. has no normal corr 
ponent. If we contract Equation 30.64 with an arb 
trary unit vector m 1

· , we must accordingly ignore th 
normal component of m,. in evaluating the (µ,,.)p-terrr 
For example, if q,. is a unit surface vector in th 
plane of v,. and m,., we may write 

m,.=v'' cos {3+qr sin {3, 

and the value of the (µ,r)p-term will then be - 21T(Jl-rQ 
sin {3). 

THE EQUIVALENT SURFACE LAYEm 

42. One object of the diversion on single an 
double layers in the last two sections, apart from th 
fact that these notions appear often in the literatun 
is to show that any harmonic potential can be cor 
sidered as arising from a combination of single an 
double layers spread over a surface S which cor 
tained all the original mass distribution. If P is a 
external point and Q a current point on the surfac 
as usual and if we suppose that we are given th 
values of VQ and (aV/as)Q over the surface, we ca 
take the moment density of the double layer to b 
µ,Q=- VQ/(41T) and the density of the single layer t 
be <TQ= (aV/as)Q/(41T). From Equations 30.55 ani 

30.52, the total potential at the external point l 
will be 

Vp=J_ J{vQ _!!_ (!)_!(a~ } dS, 
47T as l l a~ }Q 

30.65 

which agrees with Equation 30.51 , so that the tw 
mass distributions can be considered equivalent i1 
the sense that they give rise to the same externa 
field. 
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43. From Equation 30.58 and from the fact that 
Equation 30.52 continues to hold true for a point 
P on the surface (§ 30-34), we find that the total 
potential of both layers at a point Pon the S-surface 
IS 

Vp= iv,,+ 4~ J {vQ :s (1)-1 GBJ dS, 

giving the same answer as Equation 30.50, in which 
T can be considered a general harmonic pote ntial. 
The same two layers accordingly give the correct 
potential at a point on the surface as well as at an 
external point. The same restrictions must, however, 
be applied as in the derivation of Equations 30.50 
and 30.51 in regard to the continuity of the surface, 
which must contain all the original mass distribution. 

44. If the S-surface is an equipotential, such as 
the co-geoid or regularized geoid, VQ is a constant 
Vo over the surface, and the first term of the integral 
of Equation 30.65 becomes 

4~ Vo f :s G) dS. 

If P is an external point, there are no singularities 
in this surface integral or in the volume integral of 
the divergence theorem (Equation 9.17) over the 
space enclosed by the surface. The integral is there­
fore zero. In this case, the potential arising from the 
constant moment density is zero; we can consider 
that the equivalent coating is a single layer of 
density (aV/as)Q/(41T), known as Green's equivalent 
layer. 

45. To obtain the deflections and gravity dis­
turbance , whether at external points or on the 
surface, we shall have to differentiate Equation 
30.50 or 30.51 for a displacement of the point P , 
substitute Equation 29.23 for the gradient of the 
potential anomaly, and contract with the coordinate 
vectors as we did to derive Equations 29.58 in the 
case of the Poisson integral. The best procedure, 
which takes care of all the singularities, is to use 
the same two equivalent layers as we used for the 
potential in § 30-42. If P is external to the surface , 
we add the vector Equations 30.53 and 30.57 to 
obtain the potential gradient; if P is on the surface, 
we add Equations 30.54 and 30.64. 

THE BASIC INTEGRAL EQUATIONS 
IN GEODETIC COORDINATES 

46. Our next task will be to express Green's 
Equation 30.50 or 30.51 in a form in which they can 
be solved. We shall concentrate on Equation 30.50 

for th e potential anomaly at a point P un the S-sur­
face (fig. 47), co nsidering that the modifications 
required to use Equation 30.51 when P is outside 
the S-surface are self-evident. In figure 47, the 

Figure 47. 

v r (normal to 
S-surface) 

v,~ormal to 
coordinate 
surfaces) 

S-su rface 

base coordinate surface 

normal to the S-surface at the current point Q is 
shown as v 1

• and the normal through Q to the 
h-coordinate surface is shown as vr. The plane of 
the pa per in figure 4 7 may be considered as con­
taining v1

• and PQ, but this plane does not neces­
sarily contain vr or either normal at P, although the · 
heights of P and Q are shown ash, h, respectively. 

47. If a , {3 are the geodetic azimuth and zenith 
distance of vr, and the geodetic parallel, meridian, 
and normal vectors are ~r, p.,r , -;;r, we have as usual 

vr= ~r sin a sin {3 + µ,r cos a sin {3 +ii" cos {3. 

30.66 

We can consider that th e maximum slope of the 
S-surface relative to the geodetic zenith is a depres­
sion of {3 in azimuth a, and, for the present purpose, 
it will be sufficient to take a, {3 as the astronomical 
azimuth and zenith distance of vr. If a, f3 are the 
geodetic azimuth and zenith distance at Q of th e unit 

~ 

vector in the direction PQ, which we have seen in 
§ 29-35 is the same as the covariant gradient vector 
l,. for displacements of Q with P fixed, we have 

l,. = ~,. sin a sin f3 + µ,,. cos a sin f3 + ii,. cos f3. 
30.67 

We can obtain a, f3 direct from Equations 25.19 by 
writing l for s and by taking the overbarred point 
as Q. For substitution in Equation 30.50, we then 
have 

1 -=-yz {cos {3 cos {3 

30.68 +cos (a-a) sin {3 sin /3}. 
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From Equations 30.66 and 29.23 m our present 
notation, we have also 

aT -;;;= T,.vr=gY} sin a sin f3 

30.69 +g(g+K) cos a sin {3+ (g-y) cos f3 

where g is actual gravity, ')' is standard gravity, 
K is the curvature correction (§ 29-12), and g, Y/ are 
the usual components of deflection, all at Q. Equa­
tion 30.69 is suitable if we use the gravity disturb­
ance gu= (g-y) at Q during the surface integration. 
If we use the gravity anomaly gA and Equations 
29.25 and 29.30, we have 

30.70 
ar a ln 'Y 
ah= (g-y) =gA +ah T 

and 

·1r 
~= gY} sin a sin f3 + g(g + K) cos a sin f3 
OS 

30.71 +(g4+ a~~ 'Y r) cos 13. 

Formulas equivalent to Equations 30.69 and 30.71 
can also be obtained from Equation 30.15 for F = T 
with Equation 30.21, which shows that (gK) is 
minus the meridian component of standard gravity, 
as indeed we have already shown in § 29-12 to a 
first order in K and in the gravity disturbance. If we 
wish to avoid introducing the deflections, we can use 
Equation 30.18 for F = T with Equations 30.25 and 
30.29, after substitution in the basic integral Equa­
tion 30.50. To avoid breaking the argument, we shall 
not write this alternative in full; instead, we shall 
concentrate on using Equations 30.69 and 30. 71. 

48. We have finally to express in geodetic coordi­
nates the e lement of area dS of the S-surface at Q. 
lf we construct normals to the Ii-coordinate s urfaces 
through points on the boundary of dS, the e le ment of 
area of the Ii -surface through Q enclosed by these 
normals can be expressed in two ways as 

cos f3 dS = (v+h) (p+h) cos¢ dwd<f> 

30.72 = (v+l~)(p+h)dO, 

using Equations 9.01 and 18.04 with p, v as the 
principal radii of curvature of the base spheroid in 
the latitude ({> of Q. As s hown in figure 47, ii is the 
geodetic height of Q. The element of solid angle 
d{! from Equation 29.01 refers to the sphe ri cal 
representation of the base coordi nat e spheroid and 
can be exµresscd as 

30.73 <In = cos ¢ <fwd({>. 
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49. Substituting Equations 30.68, 30. 71, and 30.~ 
in Equation 30.50 gives 

30.74 2rrT1,+ f }TqdO = f LdO 

where 

} = {cos "i3 +cos (a - a) tan f3 sin "iJ 

+la ln 'Y} (p+h)(ii+h)/l 2 

ah 
L =- {g.1 + gY} sin a tan f3 

30.75 +g(g+ K) cos a tan {3}(p + h)(v+h), 

Equation 30. 74 is an integral equation for the u 
known potential anomaly with J as kernel. } 
quantities in the surface integrands·}, L refer 
the current point Q, and the integrands conta 
th e geodetic height s ii. But if we know the geodet 
height s of all points as well as the potential, ' 
should also know the standard potential and th 
the potential anomaly; there would be no proble1 
Accordingly, the integral equation can only be solv1 
by successive approximation. We could start wi 
assumed h eights and solve the equation for a fir 
approximation to the potential anomaly T, whi( 
enables us to calculate the corresponding geodet 
height at P. This operation would have to be 1 

peated for the height of a network of points P to I 
used in a second approximation, so that ultimate 
we should end with a network of consistent heigh 
which do satisfy the integral equation. Unfortu 
ately, this direct numerical method is excessive 
complicated and involves so much computation th 
it could hardly be used in preference to correspon 
ing data provided by satellite methods. 

50. Many attempts have accordingly been mac 
to derive integral formulas for the second and high' 
approximations. The most elegant method is 
parametric method proposed by Molodenskii 9 wl 
uses it to solve the simpler integral equation d 
rived for a single layer in the next section, althou~ 
the method could be used to solve the present pro 
lem. The integral equation is rewritten for a d 
formed surface, as discussed in § 30-19 throu~ 
§ 30-21, which simply means substitution of tl 
formulas given in § 30-19 through § 30-21 ar 
expansion in powers of k. In addition, the potenti 
anomaly is expanded in powers of k as 

30.76 T= To+ kT1 + k2T"2 + k3T3 + ... 

Because k is arbitrary in the sense that any d 
formed surface intermediate between the 5-surfa< 

"l\Ioludenskii, Eremeev, and Yurkina, op. cit. supra note 
120- 124. 
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and the base coordinate surface can be used, we 
can equate powers of k in the result and so can 
obtain a number of integral equations for To, T1, 
T2 •••• The final answer for the potential anomaly 
on the S-surface (k= 1) is obtained from Equation 
30.76 as 

30.77 T=To+T1 +T2+T3+ . .. . 

We may ask why the term containing the gravity 
anomaly and the deflections is not also expanded 
in powers of k; to do so would amount to defining 
the gravity anomaly, etc., on the base surface and 
on all intermediate k-surfaces, involving some form 
of height reduction for gravity and deflection which 
the entire Molodenskii approach seeks to avoid. 
However, we can consider that the gravity anomaly 
term is defined only on the S-surface; the term is 
therefore expressible as a function of two coordi­
nates only-the geodetic latitude and longitude ­
and retains the same value at corresponding points 
of all the k-surfaces, although the term does not 
represent the gravity anomaly , etc., on these inter­
mediate surfaces. The term (a ln y/a h) also requires 
special consideration. The usual assumption is 
that the h-coordinate surfaces are standard equi­
potentials and the centrifugal term is assumed to 
be zero in Bruns' Equation 20.17, so that we have 

30.78 a ln y = 2H=--l-____ l __ . 
ah (f>+h) (v+h) 

These assumptions may be justified in view of the 
usual assumptions made in defining the gravity 
anomaly itself (for example, by Equation 29.31) , 
especially when the term (a ln y/ah) is multiplied 
by the small potential anomaly in the integral equa­
tion; but , by the time a number of other approxi­
mations have been made, it is not unreasonable to 
doubt the value of the T2, T3, etc., terms in Equation 
30. 77. If we work in terms of the gravity disturbance 
instead of the gravity anomaly , it is evident from 
Equation 30. 70 that the term (a ln y/ah) simply dis­
appears from the integral equation, but in that case 
it would be necessary to compute the gravity di s ­
turbances from approximate geodetic heights and 
to repeat the whole computation later from more 
accurate heights. 

51. Other approximations which have been intro­
duced in the integral equation are too numerous to 
detail here. One very common-almost universal­
approxirr.ation is to re place the p, ii of the base 
spheroid by a constant mean radius of curvature R , 
which amounts to changing the coordinate system 
to spherical polar coordinates. There is no objection 
to this procedure which is sometimes described as 

a spherical approximation and is justified by rather 
unconvinc ing geometry, but to be consistent we 
should evaluate the slopes f3 and the deflections 
g, Y/ in the same system; we should also use appro­
priate values for K and (a ln y/a/z) which depend on 
the adopted standard field. These logical conse­
quences of the spherical approximation are almost 
always ignored. Anot her common approximation is 
to neglect h/R in order to simplify further the 
expressions for l, a, {1 , etc. The best reference for 
these approximate solutions is Moritz,10 but other 
approximate solut ions are given by de Graaff­
Hunter 11 and by Levallois,12 the latter using a 
spherical base surface in conjunction with gravity 
disturbances on the topographic surface. Iterative 
methods of approximate solution have been dis­
cussed fully by Koch 13 for the case of a single equiv­
alent layer, and could be extended to cover the case 
of both single and double layers. 

52. If we evaluate anomalies over the base sphe­
r_oid instead of over the S-surface, we have f3 = 0, 
h = 0, and Equations 30. 75 become 

{ 
- a ln y} pv 

}= cos {3+l ~ /2 

L=-gApii/l. 

The resulting integral equation, with the usual 
assumptions relating to (a ln y/ah) unless gravity 
disturbances are used, can be used to solve the 
Zagrebin-Bjerhammar problem (§ 29-43) or to 
provide results equivalent to those derived in 
§ 29-44 through§ 29-47. If, in addition, we assume 
that the base surface is a sphere so that p=v=R, 
l=2R sin tt}J, cos {J = sin tt}J, a ln y/ah =:o:.-2/R, the 
integral equation can be solved by spherical 
harmonics to give Stokes' Equation 29.32. 

Gradient Equations 

53. Integral equations for the gradient of the 
potential anomaly can be obtained by the met hod 
outlined in § 30-45. For example, by adding Equa­
tions 30.54A and 30.64 for the potential anomaly T 
at a point P on the S-surface and by using the layer 

10 Moritz , Loe. cit. supra note 5. 
11 de Graaff-Hunter , Loe. cit . supra note 2. 
12 Levallois (1958), ''Sur une Equation lntegrale Tres Generale 

de la Gravimetrie," Bulletin Geodesique, new series, no. 50, 
36-49. 

13 Koch (1967), Successive Approximation of Solutions of 
Molodensky's Basic Integral Equation. Report No. 85 of the 
Department of Geodetic Science, The Ohio State Universit y 
Research Foundation, Columbus, Ohio, 1-34. 
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densities given in § 30- 42 , that is, 

we have 

T 
µ = - 4 7T ' 

(Tr)P = t CB,, (v,.),,- <l~ J * ~~ !,.dS 

30.79 1 - 1 J T-Tp I } +z (T,. ),,-
4

7T -
1
-:i - {3(/ v1)lr - vr dS 

where the overbar in the third term on the right 
implies the S-surface gradient of T for reasons given 
at the end of § 30- 41. This equation can be con­
tracted wi th any vector fixed at P during the inte­
gration. T he simplest result s are obtained by 
contraction with the S-surface normal and with 
the surface vectors at P because we are then able 
to assimilate the nonintegral terms on the right. 
For example, if we contract with (v,.)1• (the S -surface 
normal at P), we have 

where as usual quantities which are not suffixed 
P refer to Q, and /,.is a unit vector in the direction 

PQ. Contraction with an S-surface vector (m")P 
(line element dm) produces exactly the same result 
with the substitution of (mr)P for (vr)P and aT/am 
for aT/as. Equivalent unexpanded formulas not 
in vector form have been obtained by Koch 14 who 
has priority for these formulas. The vector Equa­
tion 30. 79 is, however, more general and can be 
contracted with the coordinate vectors at P to obtain 
the deflections and gravity disturbance at P, using 
Equation 29.23. Invariants in contractions of Equa­
tion 30. 79 are best calc ulated from Cartesian com­
ponents which , of course, are the same at P and Q 
for parallel vectors. Theoretically, the de flec tions 
and gravity disturbance at P can be calculated from 
the three simpler component s of T,., give n by con­
traction with the S-surface normal and surface 
vectors; but, if S is the topographic surface, the 
results would be completely invalidated by uncer­
tainty in the slope of the surface. 

54. If the S-surface is·a sphere, the equations are, 
of course, much simpler and are oft en given in the 

14 Koch , op. cit . supra not e 8, 18- 21. 
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literature, but they tell us nothing which has n 
already been obtained even more simply in Chapt 
29. For example, Equation 30.80 can be reduc 
to Equation 29.60, using only results which ha 
been obtained in Chapt er 29. 

THE EQUIVALENT SINGLE LAYER 

55. The extra complication involved in the repr 
sentation of the basic Green's Equation 30.50 
both single and double layers , especially in t 
gradient equations and when the point P is on t 
surface, has led Molodenskii to propose using on 
a single layer , spread over the topographic S-su 
face, as an equivalent mass distribution giving ri ~ 
to the actual potential anomaly. The density u , 
this single layer is , of course, no longer (aV/as)/(1-rr 
but has to be determined to agree with the actu: 
potential anomaly. We have seen in § 29-55 th< 
this arrangement is possible for a general Newtonia 
potential if the S-surface is a sphere containing a 
the attracting matter, but some justification i 
needed in the case of a more general surface. Th 
potential of a single layer at a point P, which i 
either on or outside the surface , is from Equatio 
30.52 and § 30-34 

30.81 Vp=- J u;s. 

If we hold the current point Q fixed so that u an 
dS are fixed, differentiate twice covariantly for 
displacement of an external point P, and contra< 
with the associated metric tensor. all in Cartesia 
coordinates , we have 

30.82 (~V)p=-J ~(l/l)udS=O, 
provided u is bounded. Moreover, the potenti< 
at P when P is at a great distance L from S tend 
toward 

30.83 Vp= -y J udS=- ~ 
where M is the total mass of the coating. The coal 
ing accordingly does give rise to a Newtonian poter 
tial throughout the space outside the S-surface, an 
it is not unreasonable to suppose that we have suff 
cient freedom in the choice of u to represent an 
Newtonian potential in this way. Similar justificc: 
tion when P is on the surface presents more difl 
culty. Diffe rentiating Equation 30.54A again i 
Cartesian coordinates, we have 

Wrs)P = 27T(crs)P(vr)P :+ 27T<Tp(Vrs)P + J (1/ l)rsudS 

30.84 
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in which the overbar implies the s urface gradient 
of u because u can vary only over the surface. We 
are entitled to assume that the surface integral 
derives from a Newtonian potential in free space 
at P, which is analytic at P, because the integral 
is not take n over the small disc at P (§ 30-35) , so 
that there are no singularities in any of the deriva­
tives of the pote ntial represe nted by the integral. 
If we contract Equation 30.84 with the metric tensor 
and use Equation 7.19, we have 

30.85 

in which HP is the mean curvature of the surface 
at P. If the coating is to give ris e to a Newtonian 
potential at a point P on the surface, we must 
assume, as indeed we have done in § 30-34 and 
§ 30-35, that the small disc at P can be considered 
flat; in other words , that a small part of the surface 
at P, where we wish to find the potential , can be 
replaced by a plane. In practice, this conception 
presents no difficulty in the case of a sufficiently 
smooth surface ; we do not avoid, and cannot expect 
to avoid, the necessity for some smoothing of the 
.topographic surface by adopting the single layer 
device. 

56. Brovar la has noticed that Equation 30.82 is 
satisfied if we use a more general harmonic fun ction 
E inst ead of 1/ I and a more general bounded func­
tion <f> of the position of the current point Q on the 
surface inst ead of the surface density u. In that case, 

30.86 Vi· = J <f>E dS 

represe nts a harmonic pote ntial. But if VI' is to 
represe nt a general Newtonian pote ntial throughout 
the free space external to the surface, Equation 
30.83 must also be satisfied, and it has to be shown 
that a particular choice of E does so. For example, 
the spheroidal coordinate a does so (§ 22-35) and 
could be used in the representaion of a general 
Newtonian potential; so could Pizzetti's extension 
of the Stokes' function (Equation 29.14 fork= R/r), 
provided the zero- and first-degree harmonics are 
omitted. The use of Pizzetti 's fun c tion does , in fact , 
result in some simplification in the formation and 
solution of the basic integral Equation 30. 90 for a 
single laye r. But the Cartesian coordinates of P 
and many functions of the Cartesian coordinates, 
which become infinite at great distances, cannot be 
used. 

i;; Brovar (1963), "Solutions of the l\1olode nskiy Boundary 
Problem, .. American Geophysical Union translation of Geodeziya 
i Aero/otos"yemka, no. 4, 237-240. 

The Bas ic lnt e~ral Equations 

57. Writing Equation 30.54A for the pote ntial 
anomaly, contrac ting with the coordinate ve ctors 
at P (a point on the s urface), and using Equations 
29.23, 29.25, 29.30, 30.66, and 30.67, we have 

30.87 

(gry)p = 27TUp sin ap sin /3P 

30.88 -J u sin ii./• sin 'iJ,. IS 
12 ( 

30.89 

where (g1J) " · (gA) ,, are as usual the gravity dis­
turbance and gravity anomaly at P; ap, /31· are the 
azimuth and zenith dis tance of the normal to the 
S-surface at P, that is, the azimuth ap of the greate s t 
slope , a depression of /31• ; and ii.1', 'iJ,, are the azimuth 

and zenith dis tance at P of the line PtJ obtaine d in 
geodetic coordinat es from Equation 25.18. Equation 
30.87 can be combine d with Equation 30.81 and 
written as 

J [
cos 'i31· (a ln y) l] 27TU1• cos /31• - -

1
-2-- ---a;;- ,, l udS = (g..i), •. 

30.90 

which is the basic integral equation to determine u 
from gravity anomalies. The corresponding equa tion 
for the gravity disturbance is obtained by omitting 
the term containing (a In y/a/1 ),,, If Pis out side the­
S-surface, we use Equation 30.53A ins tead of Equa­
tion 30.54A, whic h amounts s imply to dropping 
the terms containing UP from Equations 30.87, 
30.88, and 30.89. 

58. Th e integral Equation 30.90 can be solved 
by any of the methods outlined in § 30-50 and § 30-
51. It is usual to solve the equation in spherical polar 
coordinates with the usual approximation a In y/ah 
= - 2/ (R + h) (Equation 30. 78). In that case , 
the first- or zero-ora-er approximation, obtained by. 
ignoring all heights or by solving the integral equa­
tion resulting from terms not containing k in 
Molodenskii's parametric solution, must be give n by 
any of the result s obtained for a spherical laye r 
in §2<}-53 through §2<}-59. Equation 30.90 in sphe r-
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ical polar coordinates with all heights ignored 
(f3p = 0, ~,, = hr+fl/J, 1= 2R sinil/J, dS = R 2dD,) 
becomes 

(gi),, = 21Ta-p-i J (!cosedl/J)a-dfl 

30.91 = 21Ta-1, - i J a- ~P11(cos l/J)dfl, 

using Equation 29.11 for k = 1. Using Equation 
29.10, this last equation can be solved in spherical 
harmonics as 

{ 111} _ { m} _ .;! ~ { 111} gA 11 p- 21T CTn P 2 211 + l CT11 I' 

30.92 47T ( n - 1) { 111 } 
2n + l CT 11 /', 

which is equivalent to 

30.93 

2n+ 1 
41Ta-p = 2:-- 1- {gAW}1' 

11,111 11 -

= "' 2n + 1 2n + l I{ 111 }P ( ·'·)dfl L.J - 1 4 gA11 II COS 'f' 
II-, Ill fl 1T 

_ l J 00 

(2n+l)2 -- gAL -l P11(cosl/J), 
41T n=2 n 

using Equations 29.10, 29.05, and 29.06 and noting 
that terms in the expansion of gA in spherical 
harmonics make no contribution to the integral 
except the term of the nth degree. Terms of zero 
and first degree must be dropped from the sum­
mation, and are not included or determined in 
e ither gA or a- for reasons given in § 29--32. How­
e ver, when these harmonics are suppressed in 
the potential anomaly, as always assumed, they 
will not appear in gA (Equation 29.32) or a-. The 
function 

= 00 (2n + 1 )2 
S(lfJ) = L P11(cos l/J) 

11=2 n - l 

is easily found by writing 

(2n + 1) 2 _ 4
11 

+ 2 + 3 (2n + 1). 
n - l n - l 

Us ing Equation 29.11 (for k = 1), Equation 29.11 
differentiated (for k = 1), and Equation 29.15, 
we have 

S ( 1fJ) = 1+3 cosec ilfJ - 18 sin ilfJ - 21 cos lfJ 

- 9 cos lfJ ln (sin !l/J+ sin2 fl/J). 
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The final equation for determining the first appro 
imation to the density a- from gravity anomalfr 
IS 

30.94 l67T2a-p = f S(lfi)g4<1n· 

The density would have to be calculated from th. 
equation if we wish to use Equations 30.88 an 
30.89 for the deflections or to calculate the extern 
field. However, if we merely require the potenti 
anomaly T at a surface point P, we can use Equ 
tions 30.92 and 29.32 and write 

4 
{ 

111
} _ _ 2 n + 1 ( n - 1 ){ T;;' },, 

1T CT11 p - n - l R11 + 2 ' 

which is the same as Equation 29. 74 for a spheric 
layer. We then have 

r,. 47T 
R = -2: 211+1 {a-:n,. 

II, Ill 

=- L J {a-::1}P11 (cos l/J)dfl 
II, Ill 

again using Equation 30.92. If we exclude zen 
and first-degree harmonics, as we must, this lm 
equation is the same as Stokes' integral, Equatio 
29.50. In other words, we may use Stokes' integrc 
to find the first approximation to the potenti< 
anomaly. To derive this result, we use value 
of gA observed on the topographic surface, fc 
reasons given in §30-50. without attempting t 
apply any reduction to the base sphere; the n 
sulting potential anomaly T is a first approxirnc 
tion to the potential anomaly on the topographi 
surface. Neither gA nor T refers to values on th 
base sphere, although these quantities are cor 
nected by equations applicable to values on the bas 
sphere. The same conclusion applies to the fin 
approximation to the density a-. It will be foun 
that the integral equations for the higher approx 
mations have the same form with functions contair 
ing heights instead of gA, and can be solved in th 
same way. The whole operation is simpler tha 
solving Equation 30. 74, and should give the sam 
results. 
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Surface tensor derivative of unit normal.. ............. .... .. 
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Latitude of the gradient of N and second coordinate in 
a (w, <f>, N) system. 
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Summary of Formulas 

Chapter 1 

Metric: 

1.06 ds 2 =g,.8dx,.dxs (r, s= 1, 2, 3) 
(in three dimensions) 

ds2 = a0 13dx0 dxf3 (a, f3 = l , 2) 
(in two dimensions) 

Unit Contravariant Vector: 

1.08 

Unit Covariant Vector: 

1.12 

Vector of Magnitude A. : 

1.09; 1.13 

Scalar Produc t: 

1.17 

l,.=A.l,. 

UM,.=A.µ cos e 

Gradient of a Scalar N: 

1.20; 1.21 N,. = iJN/axr= nv,. 

Transfo rmation of Vectors: 

1.18 

1.19 

Kronecker Delta: 

1.24 

- axr Lr=- Ls 
iJXS 

- axs 
l,.=-L iJxr ., 

o~= 1 if s= t 

o~= o if s =Pt 

Chapter 2 

Transformation of Tensors: 

2.01 
- (jxP dXq 

A,.,,= ax,. axs AJ111 

306-962 0-69-24 
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2.02 

2.03 

- iJil' (Ji'' 
Ars=--AJlll 

c'"JxP CJxQ 

Addition of Tensors: 

2.04 

Multiplication of Tensors: 

2.05 

2.06 

C.~·1 =As1B,. 

The Metric Tensor as Product of Unit Orthogonal 
Vectors: 

2.07 

2.08 

2.09; 2.10 

Ar As+ µ,.µ s + V,.V,, = g,.,, 
/...''/...' + µrµI + l'rvt = grl = Grtjg 

Raising and Lowf'ring Indices: 

grsA,.,=A·;, 

Det ermi nan ts : 

2.12 

2.16 

2.17 

The €-S ystems: 

2.14 

2.15 

2.18 

2.19 

g, .. ,A~1 =A,, 

Ae,.s1 = e;jhA;.A{Ar 

3!A =eUkers1A;,AjsAk1 

2!A ;,.= eU"ers1Aj.Ak1 
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2.22 

2.20 

2.21 

Vector Products: 

2.24 

2.25 

2.26 

es1AsB1 = (ab sin O) A_r 

EstrAsB1C,.= abc sin e sin <P 

estA_r/.lsVt = 1 

(A,., /.lr, v,. unit orthogonal right-handed vectors.) 

Further Properties of E-Systems: 

est= A_r(/.lsVI _ Vs/.lt) + /.lr ( vsA_t _ A_svt) 

2.27 + vr( A_s/.l f_ /.lsA_t) 

2.28 griestEiik= g~igk-g5kgjt 

Two-Dimensional Formulas: 

2.29 

2.30 

2.32 

2.32 

2.37 

2.34 

2.35 

2.36 

2.38 

2.39 

2.41 

2.42 

2.43 

2.44 

2.45 

- axY ax6 
A 13---A s a - ax" axl3 y 

(A", /.ll3 unit orthogonal vectors.) 

Ea13 = Aa/.l13 - /.la"-13 

/.l13 = E,,13A a 

a,,13 = A.,,A.13 + /.la/.l13 

a"l3 = A. a A.13 + /.la /.ll3 

a"l3a13y= o~= A" Ay + 1-l"/.lY 

oyg= E"l3Eys 

o~ = o~~ 

o}fgA al3p<r =A Ybp<r - A 6Yp<r 

2 !A= e"Yef36A,,13Ays 

A al3 = e"Yel36A Yb 

a"l3 = E"YEf36ays 

a,,13 = E,,yE13saY6 

Chapter 3 

Christoffel Symbols: 

3.01 [ .. k] _ 1 (agjk + agil.- agij) 
lJ, -2 (!xi C!xi - (!xk 

Mathematical Geode 

3.02 

Covariant Derivatives of a Vector A_i, Aj: 

3 07 . aA.i r · • A.l=-. + ikA_k 
) ax1 ) 

dA.i 
3.08 "-ii=-- fLA.1 axi l) 

Covariant Derivative of a Tensor A.~1 : 

aA.r 
3 09 A_r =----E+ fr A_j - fi A_r - fi A_r 0 Siil axil Uj st !IS jt Ill sj 

(Rules follow Equation 3.09.) 

Covariant Derivative of a Scalar Gradient </Jr: 
a2¢ 

3.10; 3.11 <Pr,s= axraxs-qs<Pt=<Ps,r 

Laplacian of a Vector F,.: 

3.12; 3.17 

Other Differential Invariants: 

3.13 

3.14 

\J (F) =grsF,Fs 

\J(F, G) =grsFrGs 

C url of a Vector F1: 

3.15 

Diffe rentials of Determinant of Metric Tensor: 

3.16 

Covariant Derivatives of Unit Perpendicular Vectors 

3.19; 3.20 

Chapter 4 

Frenet Equations of a Curve in Three Dimensiom 

l,..Js = xm,. 

mr.~fs=- xlr + rn,. 

4 .06 nr.Js=- rm,. 

Curvature of Orthogonal Surface Curves /,,, j,,: 

4.11 

l,,13 = <rj,,!13 + <r*jqj13 

j,,13 = - <rl ,,I 13 - <r*l,,j13 



Summary of Formulas 

4.12 

€ 013 /o(J =-(J 

€013jo13=- CJ * 

Chapter 5 

Riemann-Christoffel Tensors: 

5 03 RI _ _!!___fl _ __i__ fl+ r 111 fl - r 111fl 
• ·ijk - axj ik <Jxk ij ik 111j ij /Ilk 

5.02 

5.04 

5.05 

5.06 

5.08 

5.09 

Ai , jk - A.;, kj = R~;p.-"-1 

Wijk=-R~il•j 

R~ijk + Wjki + R!kij = 0 

R111ijk=-aa. [ik, m]- :ia k [ij, m] 
xJ llX 

+gPQ{[mk, p][ij, q]-[mj, p][ik, q]} 

R111ijk = Rp...,11; 

Ricci Tensor: 

5.11 

5.12 
a a --ri --fl +r 111f! -r 111 r1 - axj ii axl ij ii lllj ij 1111 

1 Lame Tensor: 

5.13 

5.14 

5.15 

Svq = f€P 111 i€qjkR 111ijk 

€prs€q111SPQ= Rrs/11 

Gaussian Curvature of a Surface : 

5.16; 5.17 

5.18 

5.19 

5.20 

Unit Orthogonal Surface Vectors Ao. J.1.-o: 

Ao. {3Y- Ao. Y{3= AoR.0013y= A.0R&o13Y= Kµ,o€f3Y 

5.22; 5.23 

5.24 

Riemannian Curvature : 

5.25; 5.26 

General: 

6.02 

6.06 

Chapter 6 

a x r - ,. 
--xa 
a x 0 

a o13 = §(rsx:;xz 

Surface Vectors: 

6.07 

6.08 

6.09 

/r =x~·t o 

l sx&= !13 

x~= trio+ n o 

The Unit Normal: 

6.10 

6.11 

6.12 

grs= a ol3x~x& + vrv s 

v,.€1·s1= €of3x~~ 

Vp = ! € 0{3€pstX~S 

Covariant Derivatives : 

6.13 

6.14 

The Gauss Equations : 

6.16 

The Weingarten Equations : 

6.17 

The Fundamental Forms: 

6.18 

ao/3 = {{rsx:;x~ 

bn/3 = - !fox:;v~ 

Cof3 = i{rsV ~v~= a Y0b oYb {31i 

The Mainardi-Codazzi Equations : 

6.21 

6.22 

Gaussian Curvature : 

K€00 €13y= Ron{3Y= (b0Yb13a- b1wba13 ) 
6.26 

355 

(flat space) 

(flat space) 
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6.27 aK=R1212=b (flat space) 

Chapt er 7 

Curvature (Meusnier's Equations): 

Torsion: 

t = T+ (d()/ds) = b013/0jf3 = b013j 0/ f3 

7.08 =- Vrsfrj8=- v,.8/'/S 

Curvature and Torsion: 

7.09 

7.10 

7.12 

Vrs /5 = - klr - tjr 

ba.{3/13=+ fd0+ tj0 

ba.13 = k/a/{3 + l (/aj/3 + ja/13) + k*j0j13 

Ca.(3= (k2 + l 2)f a/{3 + 2Ht(/0j13 + j0/13) + (k*2 + t 2)j0j13 

7.14 

Invariant s: 

7.15 a0!3ba.13=k+k*=2H 

7.18 K=b/a=c/b = (kk* -t2) 

7.19 2H=-v:·r 

7 .20 Kaa/3 -2Hb013 +Ca.fl= 0 

P rincipal Curvatures: 

7.21 

7.22 

7.23 

7.24 

7.25 

7.26; 7.27 

2H=K1+K2 

K= K1K2 

aa.13 = ll0Uf3 + Va.Vf3 

ba/3 = K1 Uallf3 + KzVaVf3 

Caf3 =KI Uallf3 + K~VaVf3 

Chapter 8 

Contravariant Fundamental Forms: 

8.0 l Kbaf3 = E0YEf3° b-y0 

8.02 =k*/a/ f3- t(/ ajf3+ j a/ f3)+kjajf3 

8.03 

8.04 

8.05 

8.07 

8.08 

Mathematical Geode 

K 2cCY.f3 = (k *2 + t 2 ) / a/f3 -2Ht (/0jf3 + j 0/f3) 

+ (k"+ t 2)j aj f3 

8.09; 8.12 

8.10; 8.11 b0f3vE=-a0f3xE; c0f3v5= -b0f3 

8.13 2H =a af3ba{3= b a/3Caf3 = Kc0f3ba{3 = Kb 0f3a 

8.14 a0f3Caf3 = K 2c013a013 = ( 4H2 - 2K) =Ki+ 

Covariant Derivatives: 

ba{3Y= (K1 huau{3+ (Kz)yV0Vf3 

8.16 + (K1 - Kz) ( auy + a *v-y) (u0v13+ v0u13 ) 

Caf3Y = (Kihuau13+ (KVyVaVf3 

8.17 + (Ki-Kn(auy+a*v-y }(u0v13 +v0u13 ) 

b ~~y= (l/K1 )yu0uf3 + (1/ K2)yV°vf3 

8.18 + ( 1/ Kt -1/ Kz) ( auy + a *vy ) i( u0vf3+ v0uf3 

c~~y= (l/Kihu0uf3+ (lf KnyV0vf3 

8.19 + (l/Ki- l/K~)(au-y+a*vy)(u0vf3 + v0ul:l) 

a 013baf3-y= (2H)y a0f3ca13-Y= (4H2-2K) 

b0i:lba13y=(lnK)y b0f3Ca{3Y = (4H)y 

8.20 C013ba/3Y=- (2H/Kh c0 f3Caf3Y =2(InK)y 

Mainardi-Codazzi Equations: 

8.22 

8.23 

(K1 - Kz)a= (Ki )yVY 

(Ki -Kz}a*= (KzhuY 

a(k-k*) = (k)yjY- (t)y/ -Y -2ta* 

a *(k-k* ) = (k*)y/Y- (t}~j-Y+2ta 

Space and S urface Tensors and Invariants: 

8.25 

8.26 

FrsX~x& = F 0 13 - (F,.vr) b013 

Frsurvs= F013 u0vf3 

8.27 F~1- =F'?'0 -2H(Frvr) + F,.5 vrvs 

8.29 !1F=!1F-2H(aF/as)+ (fJ 2F/fJs 2 )-x(F,.w' 

8.30 \J (F, G) = \J (F , G) + ( aF) (~G) 
as els 

Space Curved: 

8.31 K= (kk*- t 2 ) +C 



Summary of Formulas 

General: 

9.01 

9.02 

Chapter 9 

dS= Vadx 1dx 2 

dV= Vgdx 1dx 2dx3 

Surface and Contour Integrals: 

9.04 

9.06 

9.07 

9.08 (closed surface) 

9.09 

9.11 J (2Hv 1Ujk+aaf3x~fJljk,q)dS =-f j!Ujl,ds 
s (' 

9.12 J ll<f> dS =-J </>1/ds 
~· (' 

9.13 (closed surface) 

Volume and Surface Integrals: 

9.15 J T;p.-,mdV=J T;jl,v111dS 
I ' S 

9.16 J F:;:, dV=J F 111 v,11ds=J F111v 111 dS 
v s s 

9.17 J (il<f>)dV=J '(a¢/as)dS 
I ' S 

9.18 ( {\l(<f>,tjJ)+<f>lltjJ}dV=J <f>(atjJ/as)dS Jr s 

9.19 
f 

{<f>lltfi-tfill<f> }dV = J (<P atfi - t/J a<P)ds 
I ' S as as 

Metrical Relations: 

10.01 

10.02 

10.03 

10.04 
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Chapter 10 

ds 2 = m 2ds 2 

- - 2 g,.s- m g,.s 

grs= m -2grs 

m- 2 [ij , k] = [ij, k] +gil,(ln m)j+gjl, (ln m); 

10.05 -gu(ln m),,. 

r1j= qj+ ol(ln m)j+ oJ(ln m);-gijglk(ln m )k 

10.06 

m - 2Rqrs1-Rqrs1= mgqs( l/m),.1- mgqr( l/m),.s 

10.07 

10.09 

10.11 

- mg,.s(l/m)qt + mg,.1(1/m )qs 

+ m2 (g,.8gqr -g,.1gq.~) \1 ( l/m) 

R,.s- R ,..~ =-m(l/m)rs+ (l/m) (!lm)g,.,~ 

S,.s-Srs=-m(l/m),.s- (fl In m)grs 

Transformation of Tensors: 

10.12 

10.13 

10.14 

10.15 

l,.= ml,. 

m - 1l,., s=lr, s - (In m) rls+g,.s (ln m)rl1 

ml~~= Vs+ o~ (In m )rl1 - gr! (In m )rls 

<f>rs= cPrs-<f>r(ln m) s-<Ps On m) ,.+ g,.s\1 (In m , </>) 

i0.16 

10.17 

m 2/l<f> = !l<f> + \1 (In m , <f>) 

10.18 

(three dimensions) 

Correspondence of Lines: 

10.19 

x_n,.= mxnr= {x- (In m )rp1}p,.- {(Jn m)rq1}q,. 

10.20 

10.21 

10.22 

mx cos o = x-On m )1p 1 

mx sin ()=-(In m)1q1 

mf= r+ (dfJ/ds) 

mX.(dfJ/ds)=- sin O(ax/as)+r(ln m),.n ,. 
10.23 + m(1/m),.8brfs 

m2)(_f'~ xr cos() - s in O(ax/ as)+ m(l/nl),.sbr [s 

10.24 
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m 2 ( a°)(jiH) =cos 8(dXf ds )- T(ln m ),.b ,. 

10.25 + m(l/m)rsn'"/8 

S urface Normals: 

10.27 

10.28 

10.29 

N,.=nv,. 

Vrs = Vsr + Vs(ln n ),. - v,.(ln n )s 

V,.svs =On n ),. - v,.(ln n )sV8 

Transformation of Surfaces: 

10.30 

10.31 

10.32 

<la.13 = m2aa./3 
I <la.13 1 = m 4 laa.13 I 

aa.13 = m- 2aa.f3 

~(In m)=K-m2K 
~On m)=K (plane to curved surface) 

Geodesi c Curvatures: 

10.33 

Extrinsic Properties: 

10.34 

10.35 

10.36 

10.37 

10.38 

10.39 

10.40 

x~=x~ 

mv~=v~+nx~ 

In Equation 10.35, n = (In m ),.vr. 

m - 1 ba./3 = ba.13 - naa.13 

Caf3 = Ca.13-2nba.13 + n2aa.13 

mk=k-n 

mk*=k*-n 

10.4 1 mf=t 

10.42 m 2 (kk *-f2) = (kk *-t2 )-2Hn+n2 

1O.43 m 2C = C - {~(In m) - 2H n + n 2 } 

10.44 

m- 1ba./3Y- ba.13y= aa.13m(l /m )s1V8X~ 

+ af>E (ln m)e L aa13bya 
a.{3Y 

Gauss-Bonnet Theorem: 

10.46 
J 

crds - J uds=- J KdS 
(' (' s 

J 
crds+f KdS=27T 

(' s 
(continuous contour) 

10.47 

Mathematical Geode 

J 
crds+f KdS=27T-n1T+ L 811 (n-corners) 

C S n 

10.48 

J 
crds+f KdS=A+B+C-7T 

c s 
(triangle) 

10.49 

L KdS =A+ B + c - 7T 

10.50 

(geodesic triangle) 

Chapter 11 

Metrical Rela~ions: 

(Overbarred quantities refer to the sphere .) 

11.01 

11.02 

11.03 

11.04 

11.05 

11.06 

11.07 

11.08 

11.11 

11.12 

11.13 

11.14 

11.15 

<1a.13=Ca.f3 

ba.{3 =- Ca.{3 =- <la.{3 

Ca.f3 = Ca.f3 = <la.13 

laa./31 = ica./31 =K2 laa.13 I =Klba./3 1 

jj,CY./3 = ca./3 = - [; a.13 = ca.13 

bf3Yx), = bl3Yx~ 

(Scale factor m= ds/ds.) 

m2=k2+ t2 

/a.= m/a. 

m113 = ca.13 /a.= 111 2113+ 2Htj13 

Ea.13= Ea13/K; 

Principal Directions and Curvatures: 

11.18 

11.19 

11.20 

m=- K1 (in un-direction) 

m = - K '!. (in va.-direction) 

ua.=- Kiil a.; u13=-il13/K1 

va.=- K2va; v13 =- v13/K2 

Direc tion / a. (l a.ua= cos l/J): 

11.21 

11.22 cos lb -· Ki COS 1./J 
(Kr cos2 l/J+ K~ sin 2 l/J) 112 



Summary of Formulas 

- K2 sin lf; 
sin \ii 11.23 

(Ki cos2 lf;+ K ~ sin2 lf;) 1/2 

11.24 

Christoffel Symbols: 

11.30 

11.31 

fJ13- r;r13=-bY6ba130 

r;;-13 + bY0ba130 = same overbarred 

Chapter 12 

Base Vectors: 

12.001 

Jr=A. ,. sin a sin {3+ µ,. cos a sin {3 + v,. cos f3 

12.007 

A.,. = - A ,. s in w + B,. cos w 

µr=-Ar sin <f> cos w-Br sin</> sin w+Cr cos </> 

vr=Ar cos <f> cos w+Br cos <f> sin w+Cr sin</> 

12.008 

12.009 

12.010 

x,.=A ,. = -A.,. sin w- µ,. sin <f> cos w 

+ v,. cos <I> cos w 

y,.=B,.=A.,. cos w-µ,. sin <f> si n w 

+ v,. cos <f> sin w 

z,. = C,. = µ,. cos <f> + v,. s in <f> 

x=- (x-xo) sin w+ (y- yo) cos w 

y=- (x-xo) sin <f> cos w 

- (y- Yo) s in <f> s in w + (z - zu) cos <f> 

z = (x - Xo) cos <f> cos w 

+ (y-y0 ) cos <f> s in w + (z-zo) sin <f> 

(x - xo) = - x s in w - y sin <f> cos w + i cos <f> cos w 

(y-yo) = x cos w - y sin <f> s in w + i cos <f> s in w 

( z - Zo) = y cos <f> + i sin <f> 

12.0ll 

(
>..,.) (1 0 0 )(-sin w cos w 0) ( A,.) 
µ,. = 0 sin <f> c~s <f>. - cos w - s in w 0 B,. 
v,. 0 - cos <f> sm <f> 0 0 1 C,. 

12.012 

12.013 

Derivatives of Base Vectors: 

Ars= (-Ar cos w - Br sin w)ws 

12.014 = (µr sin <f>-vr cos <f>)w., 

12.015 

12.016 

12.017 

12.020 

12.021 

12.022 

12.023 

12.024 

Vrs = COS </> ArWs + µ,.<f>s 

N rs= llsVr + TlVrs 

Components of Base Vectors: 

12.025 

12.026 

12.029 

12.030 

12.034 

12.035 

12.036 

Ar= (WsA8
, </>sA8

, NsA 8
) 

=(-k1 sec <f>, -ti, 0) 

µr = ( Wsµ", </>sµ", Nsµs) 

= (-ti sec <f>,-k'2 , 0) 

= (y1 sec <f> , Y:?· fl ) 

A.a = (- k 1 sec <f>, - ti ) 

µ" = (- ti sec <f>, - J,'2) 

359 

12.041 l\.A.,. = (-k'2 cos <f>, + 11. K sec<!> a(l/fl)/aw) 

12.042 l\.µ,. = (+ t1 cos <f>. - k1. l\.a(l/n)/iJ</>) 

12.043 v,. = (0 , 0. l / fl ) 

{ 

/\.A.:1 = (k'2Yt - f 1Y'2) I fl =- (] I fl ).,. U•:?A"- f 1µ·' ) } 

Kµ:i = (k1y'2-f1yi) / fl =- (l / fl),(- l1A8 +k1µ8
) 

12.039; 12.040 

12.044 

12.045 

f\.A. 0 = (-J,'2 l'O S <f>. + t1) 

/\.µ 0 = ( + !1 l'O S <f>, - k1) 
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12.046 

12.047 

12.048 

Curvatures of N-Surfaces: 

k = ki s in2 a+2ti s in a cos a+k2 cos2 a 

12.049 

12.050 

12.051 

Ki = kt sin 2 A+ 2tt sin A cos A+ k2 cos2 A 

K2 =kt cos2 A - 2t t s in A cos A+ k2 sin2 A 

12.052 

12.053 

(K t - K2) = (k2 -kt )sec 2A = 2tt cosec 2A 

12.054 

12.055 

12 .05 6 

12 .057 

12.058 

12.060 

K= KtK2 = kik2-d 

k = Ki cos2 (A-a)+K2 sin:! (A-a) 

t=t(Ki-K2) sin 2(A-a) 

kt = Ki sin:! A + Kz cos2 A 

k2 =Ki cos2 A+ Kz si n2 A 

ti = (Ki-K2) sin A cos A 

(cos <f>)aw/al=- ki sin a- ti cos a 

=- k sin a+t cos a 

a<f>/a l =- ti sin a-k2 cos a 

= - k cos a - t sin a 

(cos </>)aw/aj= ki cos a- ti sin a 

= k* cos a - t sin a 

a<f>/aj = ti cos a - k2 sin a 

=- k* s in a- t cos a 

(cos </>)wr= (-k sin a+ t cos a)/,. 

12.061 + (k* cos a- t sin a)j,. + Ytllr 

<f>,. = - (k cos a+ t sin a)/,. 

12.062 - (k* sin a+t cos a)j,.+y2 v,. 

Geodesic Curvatures: 

12.063 

Mathematical Geodes" 

12 .064 u/y+ a-*jy= wy sin <f>- ay 

12.065 u= sin </>(aw/al)- (aa/al) 

<ri = - ki tan </>: 

12.066; 12.067 

u = <ri sin a+ a-2 cos a- (a a/al) 

12.068 

Metric Tensor: 

gi i = a11 = (/d +ti) cos 2 <f>/K 2 

gi2=ai2=-2Hti cos </>/K 2 

g 22 = a22 = Ud + ti) I K 2 

- kz a (1 In) + ti cos </> a (l In) 
A'i:i--Ka;:;- K ~ 

=- [ydld+tf)-2Hy2t.]/(nK 2 sec <f>) 

- ft sec </> a (l /n) "· a (l/n) 
g2:i- K aw -K~ 

=- [ Y2 (,q +ti) - 2Hy1t1]/nK"2 

_ ., ..l-. (a (l In)) 
2 + (a (l In)) 

2 + 1 g:i:i - sec- '+' - -- --- --; 
aw a<1> fl~ 

= [ yH/d + tf) + yH/d+tf) 

-4HttYtY2 + K2
]/ (n 2K 2 ) 

12.069 = sec 2 B/n 2 

12.070 

12.071 

a = cos 2 </>/ K"2 

g 11 = (/.i + t~+yfl sec 2 </> 

g 1
'1 = ( y1y2 + 2Hti) sec </> 

gt:i = ny1 sec </> 

12.072 (/'!.:! = (Id + m 
12.073 lg' .. 'I = n 2K'!. sec'!.</>: 

Second Fundamental Form: 

b a/3 = - (COS </>) AaWf3 - /.La</>13 
12.074 

12.075 



Summary of Formulas 

12.076 

12.077 

12.079 

12.080 

12.081 

12.082 

b = cos2 <PIK 

b1"=- (sec </J)A. 0
: b2a=- µ, a 

(In II )a =- b"13v 13 

Third Fundame ntal Form: 

12.083 

12.084 

12.085 

c= cos'! <P 

ca/3 = (sec'! ¢, 0. l) 

Coordinate Direc tions: 
Longitude: 

12.086 i,. = ( 1 1~- 0, 0) 

cos a1 = t1 / (k~ + ti) I/'!= ti Im'! 

12.087 s in ai = -k"2l(k~ + m 1 1 2 = -k"2 l m'! 

12.088 

12.089 

cos a1 = (Ki - K:!) s in A cos Alm'! 

s in ai = - (K"2 s in"2 A + K1 cos 2 A) I 111 "2 

s in (A - a1) = Ki cos Alm'! 

cos (A - ai) = - K2 sin Alm2 

Coordinate Directions: 
Latitude : 

12.090 j,. = (0, l /~- 0) 

cos a:! =- ki l (k~ + t1) I/"2 =- ki lmi 

12.091 s in a'! = ti l (q + t1) i/'! = t1lmi 

12.092 

12.093 

cos a2 =- (Ki sin 2 A+ K"2 cos"2 A )11111 

s in a2 = (Ki - K"2) s in A cos Al mi 

s in (A-a2)=-Ki s in Almi 

cos (A-a2) = -K2 cosAlmi 

The IsozenithaI: 

12.095 k,. = (0. o. 11~) 

s in a s in {3 = {sec <P a(ll 11 ) low}I~ 

cos a sin f3 = {a ( I I 11) lo</J} I~ 

12.096 

12.097 

12.098 

('OS {3 = ( 1111 )I~ 

s in a tan {3 =- (sec </J)o(ln 11 )law 

cos a tan /3 =-a (In II )lo</J 

A ,.,J,· ~ = µ,,. .J.,·" = v,..J.,· i.· = 0 

Laplacians of Coordinates: 

12.099 

12.100 

12.101 

12.102 

12.103 

D.N = i1 11 las - 2H11 

(cos </J)ws = ( 1111 )N,.. A.' 

¢.,.=( 1111 )N,.s µ, ,. 
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(cos ¢)D.w =2 sin¢ \7(w, ¢)-2 eos ¢ \7 (w, Inn) 

12 .104 + ( l I II) ( D.N ),V 

D.¢ =- 2\7(¢, In 11) -sin ¢cos¢ 'V (w) 

12.105 + (l/11)(D.N),.µ, 1 

D.11 = 11{ cos'!¢ \7 (w) + \7 (¢)} + (;),.,\' ),.v' 

12.106 

12.109 cos'!. <P \7 ( w) = kf + t1 + yf 

12.110 \7 (¢) = ,i.j + tf +yi 

12.111 cos¢ 'V (w, ¢) = 2Hti + YiY:! 

eos <P \7( w, In 11) = - kiy1 -t1'}'2 +2Hyi + (yiD. .V)l n 

12.112 = l.2y i - tiy"2 + (yiD..\') / 11 

\7 ( <P, In 11) = - ti Y1 - k"2y:! + 2Hy2 + ( y2D..\') I 11 

12.113 = kiy2 - liY1 + ( y2D.V) /11 

cos:! ¢ \7 (w) + \7(¢) =4H :!-2/\. + (yf + yi) 

12.114 = Kf+K~ + (yf +y~) 

(l /11)D.11 = 4H:! -21\. + (yf + y~) 

12.115 + (l ln ) (D. ,V),.v ,. 

S urface Invariants : 

( cos ¢)D.w = 2(sin ¢) \7( w, </J) - (2H) 11 A" 

12.118 
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12.119 

12.120 

12.121 

'V(w, <f>) =2Ht1 sec</> 

D.cp=- (sin</> cus <f>)'V(w) - (2H)aµ..a 

'V(w) = (kf +ti) sec 2 <f> 

( l/n)D.n = (4H2-2K) + 2( yf + y~)-a (2H)/as 

12.122 

Christoffel Symbols: 

n.a= nba.a; 

12.124 

12.127 

12.128 

12.129 

(surface ) = fiA.u f... Y + fiµ.. u µ.. Y 
(Jx.B ilx.B 

12.130 - Ao:f3AY- Jl.. uf3Jl..y 

12.131 

Mainardi-Codazzi Equations: 

ab.i/a<f>-ab12/aw+b11 tan </>+b22 sin</> cos </>=O 

12.134 

12.135 abda<f>-rib22/riw-b12 tan <f>=O 

12.143 a bo:.a = - a 
2 
(1 In ) + f Y a (1 In) - Caf3 

aN axaax.B af3 axY n 

12.144 =- - + bY5ba,Bfi - --(1) (1) Caf3 
11 o:.B n y n 

12.142 q 1 = sin </> cos </> ; 

Mainardi-Codazzi Equations m Tangential Coor-

Mathematical Geodesy 

ba.a=- Pa.a+ bY5ba.BoPY- JJCa,B 

12.147 
a2p -

= - ax aaxf3 + f~13PY - pCaf3 

12.148 

12.151 

Higher Derivatives of Base Vectors: 

12.153 A.:1a = ( sin <f> a(l/n) _cos <1>) 51 
a<f> n a 

12.154 

12.155 

12.159 

a(l/n) 1 
Jl..3a= -tan </> -- 81 -- 52 aw a n a 

Aaf3a = Aa:113 =- (sin <f>)µ.. ab1Y( abf3Yf aN) 

Jl..a13:1 = Jl.. aaf3 =(sin <f>)A.ab1Y ( abf3Yf aN) 

va13:1 = va:113 = aba13/aN 

Aaa3 = µ..o(l /n) tan</> A.5{a2(1n n)/ax5aN} 

µ..a33 =- A.a(lfn) tan</> A.0 {ri 2(ln ri)/rix 5riN} 

va33 =0/n){a 2(ln n)/axaaN} 

12.160 

12.161 

The Marussi Tensor: 

12.162 

NrsA.rA_s=- nk1 

N,. .. µ..rµ..s = - nk2 

NrsA.rµ..s=- nt1 

N,.,.A.rv' = ny1 

N,.,. µ..rv' = ny2 

Nr.,v"v' = n(ln n},v' 

The Position Vector: 

12.169 

p = x cos </> cos cu+ y cos </> sin w + z sin </> 

12.170 

dinates: rip/ri<f>=-x si n</> cos w-y sin</> sin w+ z cos </> 

12.145 

12.146 
12.171 

12.172 

(sec <f>)rip/riw =- x sin w + y cos w 



Summary of Formulas 

C hapte r 13 

C urvatures and Azimuths : 

13.02 k=-m cos (a -a) 

13.03 

13.04 

13.05 

t =- m s in (a -a) 

m cos a= - k cos a - t s in a 

=-k'!. cos a -ti s in a 

111 sin a= - k s in a+ t cos a 

=-k1 s in a -ti cos a 

=(cos <f>)CJw/Cls 

Geodesic C urv a tures : 
ma- - a = (a- a )13113 

13.10 

Covariant De rivatives: 

(111 / K ) 7"13 = l n/3 + j " (a -a)13 

13.12 - . (k'!.0 Cl (t /k) 
- l,.13+ Ju --:- -a /3 m- x 

13.13 

Double S phe ri c al Re presentation: 

13.19 

13.20 

13.21 

13.22 

13.25 

m k'!. cos a + ti s in a 
m * k! cos a *+ t i s in a * 

k1 s in a + t1 cos a 
k i sin a * + t i cos a * 

tan a 

tan a * 

a = U 2tt - ti k! ) 

c = (tit f- k.k°f ) 

a + b ta n a * 
c+ dt an a * 

a + c ta n a 
b + dt ana 

b = (k '!. ki- tit i) 

d = (t.k f- k1t i} 

ad-he = KK * 

(m/m*)K * s in a * = - (a cos a+ c s in a) 

(m / m*)K * cos a * = (b cos a + d sin a) 

(m */m)K sin a = (a cos a *+ b sin a *) 

(m */m)K cos a = -( c cos a *+ d sin a *) 
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C hapter 14 

(In som e cases, the fo rmulas have been extended or 
rearranged to give the isozenitha l derivatives ex­
plic itly a nd can be obt a ined a t sight from the text ual 
refe re nces on the left. ) 

Funda me nta l Forms: 

aaa13/aN = !JYlia13y(d bui;/aN ) + !JYliauy(ab13i;/aN ) 

14.03 

12.127 

12.144 = - - + /J Yli /Jn/31i - --(l) (]) CaB 
11 o/3 n y n 

12.1 43 

(Covariant derivati ves refer to s urface metric: over­
bars refe r to me tric of s pherical representat ion. Only 
nonze ro values of s pherical C hris toffe l symbols are 

12.1 4 2 rr. =sin </>cos</>; q '!.=-tan </> -) 

14 .08 Cl caB = 0 
aN 

14 .06 Cl a0 !3/<JN = - ( a 0 Y/P + af3Yb"'li ) (db yi;/dN) 

a!JaB 
aN = - b0 Ybf3 15 ( Cl by15/ AN) 

14.07; 12.127 =- b0Yr~3 

14 .08 

14.04; 3.16 

12.084 

Cl c,.13 = 0 
(I/\' 

a ln v;; a In b 
aN aN 

a In c= O 
aN 

a lnK 

aN 

C urv a ture Inva ria nt s: 

(Ove rbars refer to s urface me t ri c .) 

A (2H) /aN =- a0 B ( Clb,,,B f aN ) 

= 6(1/11) + (4H 2 - 2K) (l /n) 

14.32; 14.28 - b0 B ( 2H ) a ( l /fl ) B 

c1 (ln K) I aN =- b0 B ( cib ,,,B f cii\) 

= b0 B ( l I 11 ) a{3 + 2 H ( 1 I fl ) 
14.32~ 14.29 
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a(2H/K)/aN = c0f3(a b013/aN) 

= - c0 f3 ( 1/ n) o.f3 - 2 ( 1/ n) 

14.32; 14.30; 14.37 - b0f3(2H/K) 0 (l/11)13 

Christoffel Symbols: 

aaN rgy = ( r33) y 

=(f~:i)f3 

= (bo.f> abf3f>) 
aN y 

14.14; 14.15 

Curvature Parameters: 

14.35 

b0 13yA0 A.f3= (k1h-2t1WY sin <J> 

b0 13yA0 µP = (ti h + (k1 - k2) Wy sin <J> 

baf3YJ1PµP= (k2 h+ 2t1Wy sin <J> 

ak1 =- aba{3 A_aA_/3 = cos2 <J> ab
11 

aN aN aN 

ak2 -- aba{3 a {3- ab22 
14.34; 12.077 aN- aN µ, µ, - aN 

12.075 

14.40 

14.41 

a~(i) =aa6; 

aaN (~) = - sec <J> aa6;; 

~ (k2) = sec2 <J> ab11 
aN K aN 

<Jy1/aN=-T~s,_,s cos <J> 

ay'l./aN = - rl~ vs 

Principal Curvatures: 
baf3YU0 Uf3 = ( K1 )y 

14.43 

14.42 

baf3YV0 vf3 = ( Kz) Y 

ba13yu0 vf3 = (Kt - Kz) ( Wy sin <J>- Ay) 

dKi/ <JN=- (dba13/ aN)u0 uf3 

dK2/CJN = - (dba13/aN)1Pl'f3 

(K1 - Kz) (dA/<JN) = (dba13/dN)u0 vf3 

Miscellaneous Point Functions: 

14.09 dEaf3/aN = -Eaf3d(ln K)/aN 

14.10 iJE0 f3/iJN =+ E0 f3a(ln K) /aN 

14.11 a(KE,,13 )/aN=iJ(E0 f3/K)/aN=O 

Mathematical Geodes 

13.14; 14.05 

14.50 

a (KdS)/aN= 0 

ax~/aN= ft:rY 

av~/aN=O 

dV~f3fdN=- (fb:1)f3Vy 

14.51 

14.52 

14.16 

(The space coordinates are Cartesian 
in the last three equations.) 

dbcrf3Y = b b (()bP") 
aN o.p /j<I aN y 

Surface Vectors Defined in Space: 
1,.:i =- j,.(aa/aN) 

14.17 j,.:i = l,.(aa/aN) 

Projection of Surface Vectors: 
Length: 

a (In 8s) a (In m) 
aN aN 

14.53; 14.54 

a{ In (k2 + t2) t /2} 

aN 

14.56 a {Jn(m/K)} /aN = f'r,;1j 0 jy 

Azimuth: 
(iJa/aN)=-n:il 0 jy = (k2/m2 ){a(t /k)/aN } 

14.61; 14.67 

Components: 
14.59 ()/0 /iJN =- f~:i /Y /f3/a 

14.64 ala/aN= f~3 /13-ja(aa/aN) 

Curvatures: 
14.65 ak/aN = k{a(ln m)/aN} -t (aa/aN) 

14.66 at/aN = t{a(ln m) /aN } + k(aa/aN) 

14.69 
aa a (In m) 
aN= a aN 

Covariant Derivatives: 

14
.
70 

alnf3 __ 
1 

a{ln (m/K)} . aza 
aN - af3 aN Ja axf3aN 

14.71 aFa13 (aF) 
aN = aN nf3 - (f~:i )#FY 

(F is a scalar defined in s pace.) 

Chapter 15 

Normal Coordinates: 
Metric: 

15.02 



Summary of Formulas 

15.04 

15.05 

Unit Normals: 
15.07 

15.08 

15.10 

Surface Vectors : 

g = (l/n 2)a 

Vr = (0, 0, l/n) 

vr = (0, 0, n) 

/3=0; 13 = 0 

Christoffel Symbols: 

(space) = r;r{3 (surface) 

fg13 = nbaf3; r:ta =-(Inn )a; f /3 =-a(ln n )/aN 

15.11 

15.12 

Derivatives of Unit Normal: 
15.18 Va{3 = - baµ 

15.19 

15.20 

15.21 

Va3 = - (l/11 )a 
V3a = 0 
V33 = 0 

Mainardi-Codazzi Equation s: 

15.24 ba13y= bo.Y{3 

15.25 aba{3 = n (l) - Cuf3 
as n afj 

Normal Differentiation: 
Fundame ntal Forms: 

15.13 aaa13/as=-2ba{3 

15.25 

15.26 

Ab"µ ( 1) - .-= II - - C,.13 
ds n nfj 

aa a{3 
-- = 2a«Yaf3°bYo = 4Ha<>f3- 2Kb<>f3 

as 

15.14; 15.15 

15.27 a b<>f3 = - n b<>Y bf3o (!) + a"f3 
as fl Yo 

15.28 

15.16 

15.25 

- = - nb"Ycf3° - - n/Jl3Yc''0 -ac«/3 (I) (I) 
as n YI\ n Yo 

a(ln a) =_ 4H 
as 

S urface Invariants : 
a(2H) --

15.30 ~=n~(l/n)+ (4H2 -2K) 

15.29 

15.31 

15.32 

a (In K) = nb0 f3(.!) + 2H 
as n a{3 

a (2H/K) 
as 

ncaf31I\) -2 
\ -;;}a{3 

C urvature Parameters: 
(See § 15-35.) 

akdas = n (l/n )a13A"A.13 + (ki + t1) 

+ 2y1t1 tan </> 

ak2/as = n(l/ n )a13µ,"µP + (k~ + t7) 

-2yit1 tan</> 

at 1/as = n (l/n )a13>..aµ, f3 + 2Ht1 

14.36 -yi (k1 - kz. ) ta n</> 

Principal Curvatures: 
(See § 15-35.) 

dK 1/ds = n(l/n )a13LL"uf3 +KT 
aK2/ds = n(l/n)af3l'"vf3+ K~ 
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14.45 

14.46 
14.44 (Ki - Kz.) (Y1 tan </>- aAfas)= n(l/n )af3llauf3 

M iscellaneous Point Functions: 

aea13 = - 2He a 
as aµ 

15.17 

15.39 

15.33 

:i a{3 
_ue_= + 2He <>f3 
as 

a (f>S) fas =-2Hf>S (are a) 

d(ba13Y) /Cls=n (l/n) af3Y - caµ (ln n )y 

-c13y (ln n) a -CYu ( ln n)µ 

+ a 0E(ln n)E(b"ybr,µ + bµ-rb0a) 
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Surface Vectors Defined in Space: 
ala/as =-kla + ja( Yi tan <J>- t -aa/as) 

15.36 afa/as=kfa+ja(y1 tan </>+t-aa/as) 

Meridian and Parallel: 

15.35 

a A.a/as= (Yi tan </>-ti) /.La - k1A.a 

aA.a/as= (y1 tan </>+ti)µa+k1A.a 

aµa/as = - (Yi tan </>+ti) A.a - k2/.La 

aµa/as = - (y1 tan <1>-ti)A.a+k2µa 

Principal Directions: 

aua/as =- K1ua+va(Y1 tan <J>-aA/as) 
aua/as = +K1ua+va(y1 tan <J>-aA/as) 
ava/as = - K2Va - Ua (Yi tan <J>- aA/as) 

15.37 aua/as = +K2va-ua(y1 tan <J>-aA/as) 

Normal Projection of Surface Vectors: 
Length: 

15.38 a(ln ol)/as =- k 

Azimuth: 
15.43 aa/as = y1 tan </>+t 

Components: 
a/a 
-=kfa 
as 

15.40 

15.41 ala/as =-kla-2tja 

Curvatures: 

15.44 

15.46 

ak/as =fl (l/fl)a13faff3 + (k2 - t2) 

at/as = fl ( l/fl) a/3ja[f3+ 2kt 

aa-/as = ka- + 2t(ln fl)13ll3-k(ln fl)13jl3-t13/!3 

15.54 

Covariant Derivatives: 

15. 5 1 a ln13/ as = - k *I a/3 + ja { Q /3 + t (In fl ) /3 - t B} 
with 
15.49 

15.49; 15.50 = KbY8 (ln fl hE1>13 = Eya(ln fl hba/3 

15.52 jaQ13 = ba13(lnfl)yfY-b131>(lnfl)al8 

aFa13 (1 aF) { - :i-= fl - -;-- + FY ba/3Y-bay (1n fl)13 
uS fl uS a/3 

15.53 

C hapter 16 

Darboux Equation: 

(l/n )a13u auf3 (surface) = (l/fl )rsllrvs (space) = 0 

16.03; 16.04 

16.05 

16.06 

Mat he mat ical Geodes~ 

a A/as= Yi tan </> 

a2(1/fl) _ f1 a(l/fl) f2 a(l/fl) 
ax1ax2 12 ax1 + 12 ax2 

(Surface coordinate lines are lines of curvature.) 

Particular Solutions: 

16.07 a+ bx + cy+ dz+ er2 

Chapter 17 

The (w, <J>, h) Coordinate System: 
Metric: 
1 7 .04 ds2 = aa13dxadxf3 + dh2 

17.05 

Fundamental Forms: 
a11 = (k~ +ti) cos2 </>/ K2 b11 = k2 cos2 </>/K 

b12=-t1 cos </>/K 

b22 = ki/K 

a12=-2Ht1 cos </>/K2 

a22 = (kj + ti)/ K2 

17.12 Ca13= (cos2 </>, 0, 1) 

all= (ki+ tn sec2 </> 

a12 = '2Ht1 sec</> 

b11 = k1 sec2 </> 

b12 =ti sec </> 

b22= kz a22 = (k~ +ti) 

17.20 

17.21 

caf3 = ( sec2 <f>, 0, 1) 

a b2 K2 
- - -

Base Vectors: . 
17.23 A_r=(-k1 sec</>, -ti, 0) 

17.24 

17.25 

17.26 

17.27 

17.28 

17.29 

17.30 

17.31 

17.32 

µr=(-t 1 sec <J>,-k2, 0) 

vr= (0, 0, 1) 

KA.,.=(-k2 cos</>, +ti, 0) 

Kµr = (+ti cos </>, - ki, 0) 

Vr= (0, 0, 1) 

(cos <J>)wr=-k1A.,.-t1/.Lr 

</>r = - t1Ar - k2/.Lr 

Aaf3 = /.LaW/3 sin </> 

/.La/3 = - AaWf3 sin </> 

Vaf3 = - baf3 = (COS </> )AaWf3 + /.La</>13 

A31 =-cos </> ; /.L32 =-1 

Christoffel Symbols: 

(space) = rg/3 (surface) 



S ummary of Formulas 

17.36 

(All othe r 3 -index symbols are ze ro.) 

Kl K = l - 2f/ h + k.h2 = ( I - hi<,> ( l - hi<:!) 

17. 14; 17. 15 

'2. H I A. = '2.fl I I\ - '2.h 

367 

Laplacians: 

17.37 

17.16 

§ 17-14 /{ '2 a = Kb= c = cos'2 </> = c = Kb = K '2 a 

17.38 

17.39 

17.40 

17.41 

11h =-2H 

(cos </> )~w= 2(s in <f>) \l(w , <f> )-(2H )al. .. " 
(space or s urface) 

~</> =- ( sin</> cos <f> )\7(w)-(2H )oµ "' 
(s pace or s urface) 

with \l(w,<f> )= a 1'2=2Ht1 sec <f> 

\7(w) = a 11 = (ld + ti) sec:!</> 

C hri s toffel S ymbols: 

15.32 ; 17.52 

17.36 a I' - "· =- aaYc Y 
ah 13·1 13 

C urva ture P aramete rs: 

ak,/ah = (k'21+ 12
1) 

a/dah = (/.~ + in 

The h-Differentiation : 14.34 ; 14.36 a11/a h = '2. Ht 1 

(References may be to fo rmulas in (w, <f> , N) or ki/K = ki/K- h 
in normal coordinat es from whi ch the fo rmulas given 
now are deriv ed. See §17-32. The corresponding 11 /K = l ,/K 
formul as given now in (w , <f>, /I) coordinates are not. 17 l -. 3 k2/ K = k2/ K - h 
of course, the same in all cases.) 

The Fundamental F orms: 
15.13 All ,,µ/Ah =-'2.b .. µ 

15.25 

15.26 

ab,,µ/ Ah =- Coµ 

ik .. µ/ M1 = 0 

Aaaf3/ah = 2a"'Yaf315 by0 = 4Ha 0 f3-2 Kb 0 f3 
15.14; 15.15 

15.27 

15.28 

17.09 

17.10 

17.11 

17.17 

17.18 

17.19 

§ 17-14 

§ 17-14 

abaf3j(l h = a"/3 

Clc"f3/(lh = 0 

aa/3 = iia{3 - 2h buµ + h 2c .. µ 

bu13 = bu13 -hc .. 13 

Cu13 =Caf3 

a"13/K2 = <7"'#/K2 -'2.hbuf3/k + h2c"'# 

b"'#/ A. = Ea#/ A' - hcu# 

ca#=(:a# 

a In ~ a In b 
ah ah 

a In c= 
0 

ah 

-'2.H 

Curvature Inva riants: 

15.30 

15.29; 17.22 
15.31 

A(2H)ah = 4H2 - '2.K 

a(In K)/ah = 2H 
n('l. H I K)ah = - 2 

P rinc ipal C urvatures: 

14.44;§ 17-21 a4 /ah = O 

14.4 5 ; 14 .46 ()( ])(I( ]) 
ah ~ = ah K:! =- I 

17.35 

(l/Ki) = (ljl(i)- h 

(1/ K:!) = (1/1<2)- fi 

Miscellaneous Po int F unc tions: 
(I E,,µ/ ah = -'2. HE .. µ 

15.17 

15.39 

13.14 

a (as )/ah = -'2.Has 

a (1\85) /ah = o 
(area) 

14 .11 A(KE,,µ) /a h = a ( E"#/ /\.) /ah = 0 

14 .50; 17.36 ax:;!ah = v:; 

14 .51 av:;Jah = 0 

14 .52 

17.53 

(/v:,:13/Ah = aYlibuµYV~ 

(Space coordina tes in the last 
three equa tions are Cart esian.) 

ah"µy/ ah = o 

S urface Vecto rs Defin ed in Space: 

15.:36 

au ah = - klo - j .. ( t + aa/ah ) 

(J/"/(l h = /../" + j"( I - (la j(l h ) 
(The vector is de fined in s pace; 

it is not projected.) 
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Meridian and Parallel: 
a'A.a/alz = -t1µ,u- k1'Aa=- b;,13A.f3 

a'A.ajah = t1/.La + k1Aa= aaf3b13y'A_Y 

a /.Lal ah = - t1 'A.a - k2µ," = - ba13µ, 13 

15.35 aµ, aj alz = t1Aa+ k2µ,a = aaf3b13yµ,Y 

Principal Directions: 
aua/alz = - K1lla avaf alz = - K2Va 

avaf ah = K2Va 15.37 

Normal Projection of Surf ace Vectors: 
Length: 

(m= scale factor of spherical representation.) 
14 .53; 15.38 a(lnm) /ah = -a(lno/)/a/z = k 

14 .56; 17.36 

Azimuth: 
15.43 

a In (111/K) _ k* 
ah 

aa/ah = t 

Components: 
15.40 ala/ah = kfa 

15.41 

Curvatures: 
15.44 ak/ alz = k2 - t'2 

at/ah = 2kt 

acr/ah = kcr-t13/f3 

15.46 

15.54 

Covariant Derivatives: 
14. 70; 15.51 ala13/ah = -k*la13-}at13 

17.54 aFaf3 (aF) --= - + aY°Foba/3Y 
ah ah a{3 

17.55 a"f3a:~13 =~(~~)+V(2H,F) 

a('iS.F) = ~ (aF) + V(2H F) + 4H""f;F-2Kb"13Faf3 
ah ah ' 

17.56 

Normal Projection-Integral Equations: 

(Overbars denote values on base surface.) 

17.47 

'1a= (a-a) 

( ds/ds) sin '1a =- ht 

(ds/ds) cos '1a = (1- hk) 

17.44 

17.48 

Mathematical Geodes 

( ds/ds) 2 = 1-2hk+ h 2 (k2 + t2) 

( ds/ ds) 2k= k - h(k'2 + ['2) 

(ds/ds) 2(k'2 + t'2) = k'2 + ['2 

(ds/ds) 2 t = t 

The Position Vector: 
17.64 pr={J"+hv" 

17.65 p"=(sec <!> aµ/aw)~,.+ (ap/a<J>)W+ pi/ 

pr= (sec </> ajJ/ aw )A"+ (flp/ a<1> )µ," + (jj + h)vr 

17.66 

17.67 p=p+h 

Chapter 18 

Radii of Curvature: 

18.01 R1=-l /k1 = -l/ K1 = R1+h 

18.02 R'2=-l /k2 = -l/K'2 = R'2 + h 

Fundamental Forms: 
18.03 Krs= (aaf3, 1); g,.8 = (aaf3, 1) 

18.04 aa13= { (R1 + h)'2 cos'!.</>, 0, (R2 + h)'2} 

18.05 
18.06 

18.07 

18.08 
18.09 

baf3 = {- (R1 + h) cos'2 </>, 0, - (R 2 + h) 

Caf3 = {cos'2 </>, 0, l} 

a"f3={sec'2 </>/(R1+h) 2 , 0, l/(R2+h) 2} 

b"f3= {- sec2 <J>/(R 1 + h), 0, - l/(R2 + h)} 

c"f3= {sec2 cp, 0, l} 

Base Vectors: 

A_r= ur= {sec </>/(R 1 + h), 0, O} 

µ,r= vr = {O, l/(R'2 + h), O} 

18.10 v"=. {O, 0, l} 

'Ar= Ur= {(R1 + h) COS</>, 0, O} 

µ,,. = Vr = { 0, (R'2 + h ), 0} 

18.11 v,.= {O, 0, l} 

18.12 (cos </>)w,. = 'A,./(R1 + lz) 

18.13 <Pr= µ,,./(R2 + h) 

{
sec </> sin a sin /3 cos a sin /3 /3} fr= , , COS 

(R1 +h) (R'2+h) 

l,.= { (R1 + h)cos </>sin a sin {3, 

18.14 (R2 + h) cos a sin {3, cos /3} 



Summary of Formulas 

Derivatives of Base Vectors: 

18.15 A.21 = (R2+h) sin</>: A:1 1 =-cos</> 

}8.16 µ.11=-(R 1+h) sin</> cos</> : }J-:12 =- l 

18.17 v11=(R1+h) cos2 </>: V22=R2+h 

Surface Curvatures: 

18.18 

18.19 

18.20 

18.21 

-k= I/R 

=sin2 a/(R1+h) +cos:! a/(R:!+h) 

(R 2 -R,) sin a cos a 

(R 1 +h) (R2+h) 

u1=tan <f>/(R1+h) 

u= tan</> sin a/(R1 + h)-aa/a/ 

Codazzi Equations: 

aR.1 - -
18.22 ---:-:i:= (R1 -RJ tan</> 

cl'!-' 

18.23 ~:2 =0 
18.24 

Christoffel Symbols: 

rf1=(R1 + h) s in</> cos</>/ (R'!. + h) 

r.' 2 =-(R2+h) tan<f>/(R1+h) 

a In (R2+h) 
18.34 fi2 d</> 

18.35 

f\\ =- (R, +h) cos:!</> 

q'!. =-(R2+h) 

r 1:1 = I / ( R. 1 + h ) 

fi:i = I I ( R :! + h) 

Highe r Derivatives of Base Vectors: 

18.36 A. 21 :1=- (R'!.+h) sin </>/(R, +h) 

18.37 

18.38 

18.39 

18.40 

}J-11:1 =sin </> cos </> 

llujJ:I = - CntJ 

Ao:1:1 = }J-u:l:i = llu:l:J = Q 

Vit/fY = - bo#Y 

Vaf3Y= 5,1l)b(R1 )y cos:! </> + D'f,8/J(RJy 

18.41 + (R, -R'!.) s in</> cos </>(51,5~+51,5b)5~ 

306-962 0-69-2 5 

The Position Vector: 

18.25 H 1 cos </> =- J R2 sin </> d</> 

x = HI cos </> cos w 

18.28 _y = H 1 cos</> si n w 

z =I R2 cos </> d<f> 

= - R 1 cos </> cot </> - J R 1 cos </> cosec:! </> d<f> 

= R 1 sin</>- J (R1 -R'!.) sec</> d<f> 

18.30 

p = R 1 cus:! </>+sin </>JR'!. cos</> d<f> 

= - sin </> J H 1 cos </> co sec:! </> d<f> 

18.31 =R,-sin<f> J (R,-R:!) sec</> d<f> 

dp/ d<f> = - R r s in </> cos </>+cos </> J H 2 cos </> d</> 
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= - R r cot </> - cos </> J R, cos </> co sec'!. </> d<f> 

=-cos</> J (R r - R2) sec</> d<f> 

18.32 

18.33 

Laplacians: 

18.42 

18.45 

b.h=-2H 

6w=O 

6<f>=-tan </>/(R 1 +h) 2
- (2H) .. µ. " 

18.4() 
tan </> 

S urface Geodesics: 

aa k1 sina+t, cos a 
cot</>- = . 

fJ</> k'!.cusa+tr sma 

k sin a - t cos a 
k cos a+ t s in a 

(any s urface) 18.49 

H 1 cos</> s in a= ( R 1 + h) cos</> si n a= constan t 

18.50; 18.51 

The Spheroidal Base: 

(Eccentricit y e: 

(surfaces of revolution) 

se miaxes a, b.) 

18.53 e = b/a =+ (} - e2 ) I/'!. 
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18.55 R1(=N=v)=a(l-e2 sin2 <J>) -1/2 

R2(=M = p) = ae 2 (I -e2 sin2 <f> ) -3/2 

18.54 =e 2R.=t/a2 

18.56 

18.57 

18.58 

z=e2R1 sin</> 

f5=a 2/R1 

dp/d<f>=-e 2R1 si n</> cos</> 

x=x+h cos <!> cos w= (Ri+h) cos<!> cos w 

y= y+ h cos </> sin w = (R1 + h) cos</> sin w 

z=i+h sin</> = (e2Ri+h) s in <f> 
18.59 

p"=-(e2Ri sin</> cos</>) µ.'·+ (a 2/R1+h)v 1
• 

18.60 

Chapter 19 

Auxiliary Spherical Formulas: 

cos a= sin </> sin <f> + cos </> cos ;/> cos ow 
19.01 

cos T =cos <f> cos ;/>+sin </> sin ;/> cos ow 

19.02 =sin a* sin a* + cos a* cos a* cos a 

cos ow= cos a* cos a* 
19.03 +sin a* sin a* cos a 

sin </> sin OW= - sin a* cos a* 

19.04 +cos a* sin a* cos a 

sin¢ sin ow= cos a* sin a* 

19.05 - sin a* cos a* cos a 

sin a cos a*= cos </> sin ;/> 

19.06 - sin </> cos;/> cos ow 

sin a cos a*=·- sin </> cos¢ 

19.07 +cos </> sin ;/>cos ow 

19.08 sin a sin a* = cos </> s in ow 

19.09 sin a sin a*= cos ;/> si n ow 

cos¢ cos a*=- sin</> sin a 
19.10 +cos</> cos a cos a* 

cos </> cos a*= s in ;/> sin a 

1 9. 11 + cos ¢ cos a cos a* 

Mathematical Geodesy 

cos ;/> cos ow= cos </> cos a 

19.12 - sin</> sin a cos a* 
cos </> cos ow= cos ;/> cos a 

19.13 +sin;/> sin a cos a* 

cot a* sin ow= cos <f> tan ;/> 

19.14 - sin</> cos ow 

19.15 

cot a* sin ow= - cos ¢ tan </> 

+sin;/> cos ow 

sin a da* =sin a* cos a d<f> + cos ¢ cos a* d(ow) 

19.16 -cos</> sec ;/> sin a* d;/> 

sin a da* =sin (i* sec <f> cos ;/> d<f> 

19.1 7 + cos </> cos a*d(ow) - sin a* cos ad;/> 

da = - cos a* d<f> 

19.18 + cos </> sin a* d(ow)+cos a* d;/> 

Rotation Matrices: 

19.20 ~~G 
0 

co~ ~) sin </> 
- cos </> sin <f> 

cos w 

19.21 
C'in w 

fl= - c~s w - sin w ~) 0 

( 

-smw cos w 

Q= <l>fl = - sin</> cos w 

cos</> cos w 

19.22; 19.26 

- sin </> sin w 

cos </> sin w 

( 

cos 8w sin cf> s in 8w 

ijQT= - sin_;{> sin 8w cos T 

cos cf> sin 8w s in <T cos a* 

- cos cf> sin 8w) 

- sin <T cos a* 
cos <T 

19.25 

Base Vectors: 

19.24 {~r , fir , iir}=QQT{Ar, JJ-r , Vr} 

Azimuths and Zenith Distances: 

{sin a sin "f3, cos a sin "[3 , cos M 
19.27 = QQT {sin a sin /3 , cos a sin /3 , cos /3} 

Orientation Conditions: 

QQT= I+(- sino</> ow 

19.28 cos</> ow 

sin</> ow 

0 

o<f> 

- cos <f>ow) 
-o<f> 

0 



Summary of Formulas 

oa =sin</> ow+ cot /3 (sin a o<f>- cos a cos</> ow) 

o/3 =-cos</> sin a aw- cos a o<f> 

19.29 

The (w, <f>, N) Components of Base Vectors: 

(

x_1 J...2 J...3) (-k1 sec <f> 
R = µ,1 µ,2 µ,3 = - t1 sec <f> 

v1 v2 v3 Yi sec </> 
19.31 

S = /LI /1-2 /1-3 
(

A.1 A.2 A3) 

19.32 

19.33 
19.34 

V1 V2 V3 

C
k2 cos <PIK 

= t 1 cos <f>/K 

. 0 

ti/K sec <f> a (l/n) /aw) 
-k1/K a(l/n)/a<P 

O (l/n) . 

5 - 1=RT 

Tensor Transformation Matrices: 

ay/aw ay/a<f> ay/aN = Bi B2 Ba = QTS 
(

ax/aw ax/a</> ax/a~ (Ai A:! A:) 

19
•
35 

az/aw az/a<f> az/aN Ci C2 C:i 

(

aw/ax aq,/ax aN/ax) (A 1 A2 A3) 
aw/ay a<1>/ay aN/ay = 8 1 8 2 8 3 = QTR 

aw/az a¢/az aN/az C 1 C2 C3 

19.36 

(
a~/aw 
aq,/aw 

aN/aw 
19.37 

Parallel Transp?rt of Vectors: 

{[1, [2, [:i}=RTQQTS{fl, f2, f3} 

19.38 =RTQQT{sina sin/3, cos a sin/3, cos/3} 

{Ii, 72, f3} = s TQQTR {Li, L2, [3} 

19.39 =STQQT{sina sin/3,cosa sin/3, cos/3} 

The Deflection Vector: 
19.40 t,.r=vr-vr 

19.41 
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8 r = ( cos ¢ sin ow) F 

19.43 +(sin <T cos a*)µ/ - 2 sin2 (<r/2)v r 

Change in Coordinates : 

19.44 {wr, ¢r, Nr} = RTQQTS{wr , </>r , Nr} 

{ (ow)r , (o<f>)r, (oN)r} = (S -1QQTS-l){wr, <f>r , Nr } 

19.45 = {"R_TQQT - RT){Ar , /Lr , Vr} 

a (ow) a(ow) a (ow) 
aA. aµ, av 

~ ~ a ( o<P) = RTQQT-RT 
aA. aµ, av M= 

a (oN) a (oN ) a (oN) 
aA. aµ, av 

19.46 
19.47 R+Mr=QQTR 

{
a(ow) a(o<f>) a(oN )} 

al ' al ' at 

= ("RTQQT-RT){sina sin/3,cosa sinf3 ,cos f3} 

19.48 

Chapter 20 

Attraction Potential (Free S pace): 

20.01 N='22-Gm/r 

20.03 

Force: 

20.05 

Geo potential: 

20.08 

20.09 

20.15 

D.N=O 

Fs=-Ns=-nvs 

D.M=-2w 2 

D.M = 41TGp - 2w:! 

Equations of Motion: 

20.11 02pr = OVr = - V . 
Ot2 0( I 

(free space) 

(at de nsity p) 

(fixed axes) 

~; = -Wr-2Ersi(wC5 )i/ 

20.12 (rotating axes) 

Gravity Differentials (Free Space): 

20.17 an/as=2Hn -2w2 
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20.32 

a ~l~) =- 2H (l)2 + 2w2 (l)3 - ba# (lt (l) # 

20.27 

Flux: 

20.30 

Torque: 

f=-n55 

a/fas =-(/::,.N)55 

- (2ml2 sin2 f3)n{(k1 -kJ sin a cos a 

20.36 

20.37 

20.38 

20.39 

+ t1(cos2 a -sin2 a) 

-y. cos a cot f3 + Y2 sin a cot /3} 

= -('2mnl2 sin /3) (Vrsjr[s) 

= (2mnl 2 sin f3){t sin {3- (ln n)rF cos /3} 

= (2mnl 2 sin /3){t sin f3 + Y1 cos a cos f3 

-y2 sin a cos /3} 

Chapter 21 

Generalized Harmonic Functions: 

21.003 

21.004 

Arst · · · (ll)Hrsl . . . (11) 

Brst . .. (11lPrPsPI g1.-1 Bw .. . (11) = 0 

21.009 

Potential at Distant Points: 

Maxwell 's Form: 

v x (- )
11 

. (1) --= L -,-Jslu . .. (11) _ 
G 11 = 0 n. r s111 ... (11) 

21.017 

21.012 

21.019 

Succe ssive Derivatives of (l/r): 

( - ) n (1/ r) pqrst .. . (n)rn+l 
1·3·5 ... (2n-l) 

21.025 

{gpqlJrlJsllt ... ll(n)} 
(2n -1) 

+ {gpqgrsllt ... V(n)} 

(2n-1)(2n-3) 

Mathematical Geodes 

(-) 11 (1/r)pqrst ... (11lr" .,. 1 

1 · 3 · 5 ... (2n -1) 

n(n-1) 
2 ( 2n _ 1) gpqllrllsllt ... ll(11) 

n(n-l)(n-2)(n-3) 
+ 2 · 4(2n -1) (2n -3) g,,qgrsllt · · · ll(ll) 

(symmetrical form) 

21.026 

(1) (-) 11 n ! . 
- = u+i P11(sm </>) 
r :i33 ... <11> r 

21.027 

(~) ...... (11) 

(-)11n ! 
II+ 1 Pu (COS </> COS W) 

r 

21.028 

(1) _(-) 11 n! . , 
-; 

222 
___ (

11
>- r 11 .,. 1 P11(cos<f>smw1 

21.029 

(-)nr2n+1 (a a a)(l) 
1. 3 ... (2n-l)h' ax' ay' az -;. 

= [1 r2!::,. + ,-41),.2 
2(2n-l) 2·4(2n-1)(2n-3) 

21.031 - .. . ]fn(X, y, z) 

Potential in Spherical Harmonics: 
v x II • 

-G= L L P::'(sm <f>){C11111 cos mw 
11 =11 111 =0 

21.035 +511111 sin mw}/r11 .,. 1 

C110= LffzrnP11 (sin <f,) 

(
C11111)- "--n(n-m)! 111 . - (cosmw) 
5 -2L.Jmr ( + )' P11 (sm </>) . _ 11111 n m. sin mw 

21.037 

Normalized Coefficients: 

C1111 = Cuo/ (2n + 1) I / '!. 

(
C11111 ) [ (n+m)! ]

1
/
2

(C11111) 
511111 = 2(2n + 1) (n - m) ! 511111 

21.038 

Inertia Tensors (First and Second Orders): 

21.062A; 21.0628 Js=M~=Mp1~ 

21.064 /=grs/rs=Lffzf 2 

21.065 lo/'= Jrs(grs - Vrlls)= JrsCJ'-rAs+ /.J.r/.J.s) 



Summary of Formulas 

fop= I - / 11 cos2 </> cos2 w - /22 cos2 </> sin2 w 

- / 33 sin2 </>- 2/12 cos2 </> sin w cos w 

- 2/13 sin</> cos</> cos w 

-2p:i sin</> cos</> sin w 

21.066 

112 = 2:1ri:xy. 

11:i= l:mxi 
/23= l:mY-i 21.067 

21.073 H"' (l/r)sr = (21-31111• )/ (2r1
) 

Potential at Near Points: 

Vi•= Vo+ (V.~)op 8 +HVs1)op 8p 1 +. 

21.085 __!__ s I (11) + I (V.~1 .. . (11))op p ... p + . 
n. 

v X II -z;= L L r 11P::1( sin<f>){[C11111] cosmw 
11 = 0 111 =0 

21.086 + [511111] sin mw} 

(Cuo] = L -(,';: 0 Pu(sin (b) 
r 

( [C11 111 ])~ = 22: _ m (n-m)! P;:'(sin {b) '(' c~s mw) 
[511111] r(u + ll(n+ m)! sm mw 

21.087 

Potential at Internal Points: 

v x II _ _ 

-G= L L P1~1 (sin</>) {C11m cos mw+Snm sin mw} 
11 = 0 111 = 0 

21.096 C11111 = (Cu,,,) i/r"+ n + r" [ C11111]t: 

Alternative Expressions : 

P::'(sin </>) (cos mw) 
r n+ I) sin mW 

21.100 ( - )" ~ [_! {r-z} 111
/
2
(cos mw)] 

(n-m)! (Jz" r r+z sin mw 

P;:i (sin </>) +imw 
,.<11 +11 e-

21.103; 21. l 04 

-'----'-- - - e-lll(o/l+iw) (-)" (!" [(l) ~ 
(n - m) ! (Jz" r 

Isometric Latitude: 

e°"= cosh t/J+ sinh t/J= sec</>+ tan</>= tan (hr+~</>) 

1 +sin </> (1 +sin <1>)1 /2 
cos </> 1 - sin </> 

21.101 
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21. l 02 t/J = !u<I> sec </> d<f> 

2 1. 10 7 Vo=_! { f ( t/J + iw) + g ( t/J - iw) } 
r 

21.107A Vo=(~) F ( xr:iI)+G) G (xr~~) 

The (g, YJ , z) System: 

21.108 

21.109 

21.110 

a(tfi+ iw) 
ag 

a(t/J+ iw) 
aYJ 

a (t/J+ iw) 
az 

21.111 

21.112 

21.113 

21.114 

21.115 

g= x + iy= r cos <f>eiw 

YJ= x -iy =r cos <f>e - iw 

r2= gY/ + z2 
eiw = ( g/YJ) 1/ "2 

e°" = ( r + z) / ( gY/) i / "2 

eob+iw= (r+z)/YJ=g/(r-z) 

eob - iw = (r+z)/g =YJ/(r-z) 

i!.I.- 1. Il 
ag- 2 r 

(Jr _I g 
--2 -
aY/ r 

ar z 
-=-
az r 

1 "' . a(tfJ-iw) e- ( +1w) . 
2r ' ag 

1 e( o/l +iw) . d(t/J-iw) 
2r ' aYJ 

1 . a(tfJ-iw) 
r az 

2 j!_=i_-i i_ 
ag ax ay 

2 j!_=i_+ ii_ 
aYJ ax ay 

1 e(o/1- iw) 
2r 

1 e- (o/1- iw) 
2r 

1 
-
r 

jgj=- t; 

g33= 1 

2 ~ (l e-m(o/1-iw)) =-.E_ (l e- (m - l)(o/1- iwl) 
ag r dz r 
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21.11 6 2 i_ (.! e- m(t/l+iw)) =~ (.! e- <m+l)(t/l+iw)) 
ag r iiz r 

21.117 2 j_ (! e-m<t/1-iw)) =~ (.! e- <m+l)(t/1-iw)) 
aYJ r az r 

21.118 2 j_ (.! e- m(t/l+iw)) =-l_ (.! e-<m- l)(t/l+iw)) 
aYJ r az r 

2 i_ {PW(sin cf>) imw} ag ,.<n+l) e 

= ( _ + 2)( _ +l) PW+/(sincf>) i(m- llw n m n m ,.<n+ 2 > e 

21.119 

2 j_ {PW( sin cf>) eimw} 
aYJ ,.<n+l) 

21.122 

Gravity : 

2 1.136 

g cos (f, cos ii> 
G 

PW.t/(sin cf>) i(m+llw 
,.<11+2> e 

"' 11 +1 P::'+1 ( sin cf>) 2: 2: r<11 +2) 
11 =0 111 =0 

X (C<11 +1J, /11 cos mw 

+S<11 +1J,111 sin mw) 

C(n +l),o =! n(n +l)C111 

C(n +1), 1 =- C110+-! n (n -1 )C112 

S<n +1), 1 = -!n(n-l)S112 

{ C (n +l), m= -: C11 , (111 - l) 

+2(n-m+1) (n-m)C11,(111 +1> 

S(n + 1), /11 = -! S11, (111 - 1) 

+ -! (n-m+l)(n-m)S11, (111 +1>} 

C(11 +1). II =--! C11, (11 - l) 

S(11 +l), n =-!Sn, (11 - l) 

C(li + I), (11 +0=-! C11, II 

S(n + 1), (11 + 1) =-!Sn, 11 

21. 137 

21.138 

g cos (k sin w 
G 

(m=2, 3, .. . (n-1)) 

x 
11 +1 PW+i (sin p) 2: 2: r<11+2) 

11=0 m=O 

X (C<11 +t>. /11 cos mw 

+.5<11 +1), /11 sin mw) 

Mathematical Geodes 

C<11 +1l. o = ! n (n + 1 )S,,, 

C(l1+1>. 1 =!n ( n - l )S,,2 

S<11 +1l.1 =-C,,11--!n(n-l)C112 

{ C(11 +l), 111=tS,,,(111 - l) 

+ -! (n - m + 1) (n - m)S11, <111+1> 

S(11 +l), ,,, = -tC11, (111 - l) } 

-Hn-m+ 1) (n-m)C11,(111+1> 
(m=2, 3, (n-1)) 

C(11 +l) , 11=-!S11,(11- I) 

S(l1 +1). 11=-tC11,(11- 1) 

C(n +l), (11 +1)=!S11, II 

S(l1 +1),(11 +1)=-tC11, /1 

21.139 
g sin (f, 

G 

21.140 

21.141 

x n+ 1 P::'+ 1 (sin cf>) 
2: 2: r<11 +2) 

11 =0 111 =0 

X (C<11 +1J, 111 cos mw+S<11 +1J, /11 sin mw) 

C<11 +1J.111=- (n-m+ l)C11111 

S(11 +1J, 111=- (n-m+ l)S11111 

Spherical Harmonic Coefficients in Second 
Differentials of the Potential: 

~(-!::.). ax2 G . 

C<11+2J, o =-!(n + 1) (n + 2)C110 

+-!(n- l)n(n + 1) (n + 2)C112 

C(11+2J.1 =-in(n+ l)C111 +t(n-2) (n-l)n(n+ l)C11~ 
S<11 +2>. 1=-tn(n+1)5111 

+t(n-2) (n- l)n(n+ 1)5113 

C(11+2J, 2=-!C110-!n(n- l)C112 

+t(n-3) (n-2) (n- l)nC11-i 

S(11+2> . 2 = --!-n(n- l)S112 

+t(n-3) (n -2) (n - l)nS11-i 

C(11 +2J, 111=tG11. (111 - 2>-i(n-m+ l)(n-m+2)C11m 

+t(n-m-l)(n -m)(n-m+ l)(n-m+2) 

XC11,(111+2) 

S(l1+2), 111=!S11, (111 - 2>-i(n-m+ l)(n-m+2)511m 

+-!(n-m-l)(n-m)(n-m+ l)(n-m+2) 

21.145 xsll, (111 +2) (m > 2) 



Summary of Formulas 375 

az ( v) 
ay'2 G . 

21.146 

a2 ( ~ 
az2 G) 

21.147 

21.148 

Cc11+2J, o=-!(n + 1) (n + 2)C,,o-!(n - l)n(n + l) (n + 2)C,,2 

Cc11+2i.1=-!n(n+ l)C,,1-!(n-2) (n-l)n(n+ l)C,,3 

S(11+2>. 1=-1n(n+1)5111 -!(n -2) (n- l)n(n + l)S11:i 

Cc11+2>. 2 =-!C110-!n(n - l)C112 -!(n -3) (n -2) (n - l)nC,,4 

Sc11+2>. 2 =-!n(n- l)S112-i(n-3) (n-2) (n- l)nS,,.i 

Cc11+2i,111=-!C,1,{m-2J-!(n-m+ l)(n-m+2)C,1111-!(n-m- l)(n-m)(n-m+ l)(n-m+2)C,, , (111 +2J 

Sc11+2), m=-tS,,, (111-2J-!(n-m+ 1 )(n-m+2)S11111-i(n-m- l)(n-m)(n-m+ l)(n-m+2)S,,, (111 +2) 

(m>2) 

Cc11+2l, o = (n + 1) (n + 2)C110 

C(11+2>. 1 = n(n + 1 )C,,1 

S(11+2>. 1 = n(n + 1 )5111 

Cc11+2>. 2 = n(n - l)C,,2 

Sc11+2J, 2 = n(n -1 )5112 

Cc11+2i,111= (n- m + 1) (n - m + 2)C11111 

Sc11+2i. 111= (n - m + 1) (n - m + 2)S,,m 

(m > 2) 

Cc11+2>. o=:\-(n- l)n(n + 1) (n + 2)S112 

Cc11+2>. 1 =-!n(n + 1 )S,,1 + :\-(n - 2) (n -1 )n(n + 1 )S,,:1 

S(11+2J, 1 =-!n(n+ l)C,,1-!(n-2) (n-l)n(n + l)C11:i 

C(11+2i. 2 = i(n - 3) (n - 2) (n - 1 )nS,,.i 

S(11+2J, 2 = !C110 -!(n - 3) (n - 2) (n - 1 )nC,,4 

C(11+2>. 111= -tS,,, (111-2i+!(n - m -1) (n-m) (n - m+ 1) (n-m + 2)5,, , (111 +2> 

S(11+2>. 111=!C11,(111-2i-!(n-m- l) (n-m) (n- m+ 1) (n-m+ 2)C11,(111 +2> 

(m>2) 
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()2 ( ~ 
ayaz ct C(11 +2J. o=-!n(n+ l)(n+2)5111 

C(11 +2J. 1 =-!(n - l)n(n + 1)5112 

S (11 +2J, 1 = (n + l)C11o+f(n - l)n(n + l)C112 

C(11 +2J. 2=- ! nS111 - i (n -2) (n - l)nS113 

S(11+2J. 2 = ! n C111 + i (n-2) (n - l)nC113 

C (11 +2 J,111=-!(n- m+2)511 , (111 - 1J-i(n-m) (n-m+ 1) (n-m+ 2)511 ,( 111+1J 

S (11 +2J, m=!(n-m+2)C11,(111- l)+ ! (n- m) (n-m+ 1) (n- m+ 2)C11, (111 +1) 

21. 14 9 (m>2) 

a2 ( ~ 
azax G)' C(11 +2J, o=-in(n + 1) (n + 2)C111 

C(11 +2), 1 = (n + l)C110 -!(n - 1)n(n+1 )C112 

S (11 +2J. 1 =-!(n- l)n(n+ 1)5112 

C (11 +2), 2=!nC111 -!(n-2) (n - l)nC113 

C( 11 +2J, 111 = i(n - m+ 2)Cn,(m - O--!(n -m) (n - m+ 1) (n - m+ 2)C11 , (111 +i) 

S (11 +2J, m=i(n -m +2)511 , (111 - n- -!(n - m) (n - m+ 1) (n - m + 2)5 11 ,(111 +1) 

21.1 5 0 

Cha pter 22 

T he Meridian Ellipse (fi g. 26): 

2 2.03 

2 2.04 

sin f3 = sin a sin cf> 

tan f3 = tan a sin u 

ta n u = cos a tan cf> 

sin u = cos a sec f3 sin cf> 

22.05 = cos a sin cf>/(1- sin 2 a sin 2 cf>) 1i2 

cos u = sec f3 cos cf> 

22.06 = cos cf>/(1- sin 2 a sin 2 cf>) 1i2 

22.07 0 -sin2 asin 2 cf>)0- sin 2 a cos 2 u )=cos2 a 

22.08 (1- s in 2 a cos 2 u)1 i2 =cos a sec f3 

22 .10 

v = a cos u sec cf> = a sec f3 

= a sec a / ( 1 + tan 2 a cos 2 cf>) 112 

= a/ ( 1 - s in 2 a sin 2 cf>) 112 

=a sec a(l- sin 2 a cos 2 u) 1i2 

=a2/(a 2 cos 2 ¢+b2 sin 2 c/>) 112 

22.12 

22.13 

22.14 

22.15 

22.16 

22.17 

22.18 

22.19 

(m > 2) 

p =a cos 2 a sec 3 f3 

=a sec a/(l+tan2 a cos2 c1>r112 

=a cos 2 a/ (1- sin 2 a sin 2 cf> p12 

= a sec a ( 1 - sin 2 a cos 2 u p12 

df3/ def>= sin a cos u 

df3/du =tan a cos 2 f3 cos u 

d(ln p)/dcf>=3 sin a tan a s in u cos u 

d(v cos cf>)/dcf> = -p sin cf> 

d(v s in cf>)/dcf>=p sec 2 a cos cf> 

d v/dcf> = (v-p) tan cf> 

K = l/(pv) 

2H = -(l/p+ l/v) 

q1 =OS sin/= b sin E = a(l -e2)112 s in E 

q2 =OS cos /= (a cos E-ae) = a(cos E-e) 

22.20 

22.21 
a(l- e 2) 

r= OS = a(l - e cos E )= (1 + e cosf) 



Summary of Formulas 

Spheroidal Coordinates: 

x = (ae) cosec a cos u cos w 

y = (ae) cosec a cos u s in w 

22.22 z=(ae) cot a sin u 

22.23 r= (ae )(cos u + i cot a )1f:!(cos u - i cot a )' 1:! 

22.24 geocentri c latitude = cos a tan u 

ds:!. =(a:! cos:?. u)dw:!+ (v:?. cos:?. a)du:!. 

22.25 + ( v:?. co t:?. a)da:!. 

g 11 = 1/ (a:!. cos:?. u) : 

22.26 

22.27 

22.28 

22.29 

22.30 

22.31 

22.32 

22.33 

22.34 

CXr = nvr 

a 1 a 
aa Tl as 

tan a n=---
v 

a(ln a) 
~-~--cot a· aa . 

a(lna) _ _! 
as v 

a{3 =sec a cos f3 s in <f> aa 

a<f> . A. A. - = tan a sm 'P cos 'P aa 
a In (v cos cf>) 

aa 
a ln (a cos lL) -

aa 
a Inv . 
- -=-cot a+ tan a s m 2 <f> aa 

cot a 

22.35 a~: p=- cot a-2 tan a+3 tan (X s in2 <f> 

22.36 

22.37 

b af3 = (- v cos 2 <f>, 0, -a 2/v) 

Caf3 = ( cos 2 <f>, 0, a 2K) 

r.i:1 =- cot (X 

,. fllnn a:! 
I :1• =---=-cot a-------·1·1 ila v:?. s in a cos a 

,. (Jinn . . 
I .;I.,=--.-= sm a tan a s in ,.1.. cos A. 

·'- du 'P 'P 

22.38 

2H 
Tl 

377 

r.i:!=- tan u 

rf, =sec (X s in <f> cos <f> 

~. ii In n (J In v . . 
1.2 =--. - = -. - = sm a tan a s111 <f> cos <f> 22 du du 

22 .39 

n(l/n)1 :?.= 0 

22.40 11 (!/;) :!:?. = tan :?. a cos:?. f3 cos '2.<f> 

Exte rnal Potential: 

V x n - z;= L L o:~u co t a)P;~( sin u)(A11111 cos mw 
11 =0 111 =0 

+ 811111 s in mw) 
22.50 

Int e rnal Potential: 

v "° II -z;= L L PW(i cot a)P::1(sin u)( [A 11111] cos mw 

22
.
5 

{'=o m=o + [811111] sin mw) 

Qo(i cot a) =-ia 

0 1 (i co t a)= a cot a- I 

Q:1(i co t a) =ii (a+ 3a cot:?. a - 3 cot a) 

22.52 

(n +I )011 +1 - (2n + 1 )i cot a 011 + n011- 1=0 

22.53 

. d111011 (i cot a) 
0::1 ( l cot (X) = COSt'C 111 

(X • 
d(z cot a)"' 

22.54 

Mass Distribution: 

A 
~ i(2n + 1) _ p . _ P . _ 

110 = L.J m 11(l cot a) 11(sm u) 
ae 

(A 11111)=~ 2i(2n+l)(-)"'((n - m)!):?.-P'"(' - ) 
8 

L.J 1 m ,, 1 cot a 
11111 ae (n + m). 

22.56 . (cos mw) X P::1(s m i1) . _ 
sin mw 

[Allo] =~i(2n+l) O. p L.J ---- nz ,,(l cot a) ,, (sin ii) 
ae 

( 
[A,,11,] )=L2i(2n+l) (-) 111 ((n-m)!):!.m 
[811111] ae (n+m )! 

22.65 x O::'(i cot a)P::1 (s in ii) ( c~s m~) 
sm mw 
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Spherical and Spher'?idal Coefficients: 

(
A11m) = l ·3 ·5 ... (2n + 1) "(m+ll+l) [-1- (C11m) 
811m (n + m)! i (ae) 11 +1 511 111 

22.59 

+ (n-m)(n-m-1) _l_ (C<11-2), m) 
2 · (2n - 1) (ae) 11 - 1 Sc11-2>. m 

+ (n-m)(n-m- l)(n-m-2)(n-m-3) 
2 · 4(2n -1)(2n - 3) 

x _l_ (C<11-4 >, m) + J 
(ae)11 - 3 5c11 -4>, m • •• 

i< m+ 11 +1) (C11m) 
\s11m 

(ae) 11 +1(n-m)! [(n+m)! (A 11 m) 
1·3·5 ... (2n+l) (n-m)! 811m 

+ 2n + 1 (n + m -2) ! (A<11-2), "') 
2 ( n - m - 2) ! 8c11-2), m 

+ (2n+l)(2n-l) (n+m-4)! (A<11-4),m) 
2 · 4 ( n - m - 4) ! 8c11-4), m 

+ (2n + 1) (2n- l) (2n -3) (n + m-6) ! (A<11-6), ,,~ 
2 · 4 · 6 (n - m -6) ! 8c11-s>. ,,,} 

22.60 + ... ] 

Inertial Properties: 

22.61 M= Coo=-i(ae)Aoo 

22.63 
(

2 .( ) 2 A11 . · 2 811 1 ( ) 2 A10) = 3l ae M' i-i(ae) M'-3 ae M 

C20= p:i -! (1 11 + /'22 )=! i(aef1 (~ Azo+ Aoo) 

C21 =/ 13 =~ (ae)=IA21 

521 =/23 =~ (ae)=1821 

C22=t (1 11 -/22 ) =-* i(ae)=1A22 

522 =! / 12 =-* i ( ae )=1822 

22.64 

Differential Form of the Potential: 

22.66 
v 00 

--=""' Jr.~t ... (11l(a) . ( > G £..- rsl ... 11 
11 =0 

Chapter 23 

Symmetrical Models: 

23.0l _W = f C11oP11(sin </>) +iw2(x2 +y2) 
G 11 =0 r11+1 G 

Mathematical Geodesy 

A..-~ GC11op1 ( . A..) -2 p1( . A..) g cos'+"- £..- r"+ 2 11 +1 sm '+" -w r 1 sin'+" 
11=0 

23.02 

. - ~ (n+l)GC11op (. ) 23.03 g sm </>= £..- 11 +2 11+1 sm <P 
11 =0 r 

g sin (Cf>- <P) = - f c;;1

2° P:,( sin <P) 
11 =1 r 

23.04 + w2 r sin <P cos <P 

( ;;,._ ,.i..)- ~ (n+ I)GC,,o p ( . A..) 
g cos '+" '+" - £..- r" + '2 11 sin '+" 

11 =0 

23.05 -w2 r cos2 <P 

Standard Potential: 

- W = GMa/(ae) + GA2002(i cot a)P2(sin u) 

23.13 + {!w2a2-!w2a2P2(sin u)} 

23.ll 

23.12 

23.14 

-Wo=GMao/(ao sin ao)+! w 2a~ 

hw2 a~ 
3 cot ao- ao(l + 3 cot2 ao) 

(ae)=ao sin ao 

a = ao sin ao cosec a 

_ W = f (-) 11 (2n+ l)iAoo+ (2n-2)iA2o 
G 11 =1 (2n-l) (2n+ 1) 

23.18 
x (ae)211 - 1 p ( . "'-) +!w2(x2+y2) 

r211-1 211 - 2 sm <v G 

23.19 Aoo= iM/(ae) 

Standard Gravity: 

23.24 
age cos2 </> + bgµ sin2 </> 

g,, = ( a2 cos2 <P + b2 sin2 <P) 1/2 

gp _ g,, _ 5w2 
( 1 + 9 2 _ 16 4 + ) b a -

2 
35 tan ao 245 tan ao . . . 

23.28 

23.33 

23.34 g=ge(l+82sin2 </>+84sin2 2</>+ ... ) 

23.35 

82=-f+~q- }!qf+lf-q2 

84=kf2-iqf 

f= (a-b)/a; 



Summary of Formulas 

3 sin u cos u 
g,11 [GA20Q2(i cot a) -!&/a2] 

23.37 

23.39 

v cos a 

g= (gm+ g~) 112 

g cos {b= i (;(-)n (2n+ l)iAoo+ (2n-2)iA 20 
n=l (2n-1)(2n+l) 

23.40 
(ae )2n-t . 

X rZn P~n-1(sm <J>)-w:!r cos <J> 

g sin {b = i (; ( -) n ( 2n + 1) iA oo + ( 2 n - 2) iA 20 

n=I (2n + 1) 

23.41 
(ae )2n-t 

X r 2 n P2n - 1(sin <J>) 

gsin({b-<J>l= i G(-l11 + 1(2n+~)iAoo+.(7n-2)iA20 
11 =:! (2n -1) (2n + 1) 

(ael:!11 - 1 
X r211 PJ11-2 (sin <J>) 

23.42 +w:!rsin<J>cos<J> 

g cos ({b- <J>) = i G(-l,, (2n + 1 )iAoo + (2n - 2)iA20 
11 =1 (2n+l) 

23.43 

ge=-w2a-i G (2n + lliAuu+(2n -2liA 211 (ael:!11 - 1 
11 = 1 12n + ll a 211 

1. 3. 5 x . 
2. 4. 6 . 23.44 

(2n-3l 
(2n-2l 

Curvatures: 

(For particular values of the coefficients A, B, C, and 
D given below.) 

A+G ~ C,,o { L.. r"+:i BP,, +2 (sin <Pl 
11 =0 

For gk 2 : 

23.49 

23.50 

+ CP,~ + z (sin <J>)+ DP~ + :! (sin <Pl} 

A= w2 sin 2 {b 

B=(n+ ll(n+2l(cos 2 ¢-} sin 2 {b) 

C=-(n+ 1) sin 2¢ 

D= t sin 2 ¢ 

A=w2 

B=-Hn+l)(n+2) 

C=O 

D=-! 

23.51 

For ~~: 

A =!w2 sin 2¢ 

B=-l(n+ l)(n+2) sin 2¢ 

C=- (n+ 1) cos 2¢ 

D=!sin 2¢ 

A =-w2 cos 2 if> 

379 

B=- (n+ l)(n+2) (sin2<f)-! cos 2 i[>) 

C=- (n+ 1) sin 2¢ 

23.52 

23.53 

23.54 

23.55 

23.56 

D =-! cos2 <f> 

ag =-g (!+!)-2w2 

as p v 

riv _ Cl(l/g) 1 
aw--tan<J>~+g 

~-(12(ljg) 1 
aw----av+-g 

i!_= ~+! a(ln g) a 
as gaw p ~aq, 

---- - - + - +....!...... ~ _ 1 a ( 1 + 1 ) 4w 2y., 'Vz 
as p aq, p v g v 

a (ln g) 
Y2 paq, 

Geocentric to Geodetic Coordinates: 

r cos <P = ( v + h) cos "¢ 

23.58 r sin <P = ( v cos 2 a+ h) sin :J, 

Chapter 24 

Laws of Refraction: 

24.01 µ..= c/v 

S= ct= J µ..ds 24.03 

24.04 

24.05 

24.06 

Sr= µ.Lr 

\JS=µ.:! 

On µ..)rmr = X 

On µ..)rnr = 0 

Equations of Refracted Ray: 

24.07 
8 (µ.Lr) 
~=µ..r 

µ..r sin f3 =constant 
24.11 

(spherical symmetry) 
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Arc-to-C hord Corrections: 

(The (w, <f>, ln µ,) sys tem.) 

T= (k2-k1) sin a cos a-ti(cos2 a- sin2 a) 

+ (y1 cos a -y2 sin a) cot f3 

24.23 

24.24 

24.25 

24.26 

24.27 

(In JJ-)r = - QVr 

q = {\7 (ln µ,)} 1/2 

x= (Jnµ,)i .mr = qsinf3 

XT =(In µ,)rsnrfs 

{ (s )/s} sin (a) s in (/3 )=A s in a sin f3 

+ B sin a cos f3 - C cos a 

{(s)/s} cos (a) sin (/3)=A cos a sinf3 

24.28 

24.29 

24.30 

24.31 

+ B cos a cos f3 + C sin a 

{ (s )/s} cos (/3)=A cos {3-B sin f3 

A=l-ix2s2 

B=!s {x+! (~~) s }~tsx3 
C=! XTS 2 

(s)/s=l--Ax 2s 2 

c 
tan {(a)-a} = 

A sin f3 + B cos f3 
{(s)/s } sin {(/3)-{3}=B (ifC=O) 

Arc-to-Chord Corrections - Geodetic Model: 

24.32 T 
(p- v) sin a cos a 

(p+h)(v+h) 

24.33 b.{3=!sx:1 (T assumed zero) 

24.34 b.{3 = f sx (x assumed constant) 

24.35; 24.38 f=xR=l+(R/s)(°i3-{3) 

Velocity Correction: 

24.39 ct= t s(P., + µ, )+ -fz s 2 (flX cot {3- JJ-X cot f3) 

24.41 

Equation of Stat e : 

24.42 p=cpT 

24.43 

24.44 

24.47 

Mathematical Geodesy 

(µ, -1)/ p = constant 

dp=-pgdh 

cpT 
p = 1- 0.37803(e/ p) 

Hypsometric Formula: 

In(::)= ;;
111 

{l-0.37803(e/p)111}(h2-hi) 

24.49 

Index of Refrac tion: 

(µ, 8 -1) X 107 = 2876.04 + 16.288A_-:! + 0.136A. - 4 

24.51 

(µ,<;-l) x 107 =2876.04+ (3x16.288)11.-2 

24.53 +(5X0.136)A.-4 

24.54 

24.57 

(µ, - 1) 
(µ,<; - 1) (_!!_) 55 x 1 o- »e 
(1 +at) 760 (1 +at) 

(optical wavelengths) 

(l+at)=aT 

103.49 . 86.26 ( 5748) 
(µ,-1) X 106=-T- (p-e) +.-T- l+-y e 

24.58 (microwaves) 

Curvature : 

sin@ [ dt JJ-<:- l dp 
X µ,(l+at) (µ,-l)a dh -760 dh 

24.59 + 55 X 10-» de] 
dh 

24.60 

x (µ,-l)sin/3 [dT +~] 
µ,T dh c 

24.61 (e= 0) (optical waves) 

Astronomical Refraction: 

J J
I {( µ,r )2 }-1/2 

xds =- . . /3 - 1 d(ln µ,) 
JJ.o JJ-ol o sin o 

24.69 (spherical symmetry) 

Chapter 25 

General Equations of the Line: 

25.01 (r=l,2,3) 



Summary of Formulas 

25.02 

25.03 

25.04 

<W 
-+Pfsi'=O 
(is .~I 

x-x=sa 

y-y=sb 

z- z=sc 

{J" - pr= sf r 

sin a sin {3=-a sin w+b cos w 

cos a sin f3 = - a sin cf> cos w - b sin cf> sin w 

+ c cos cf> 

cos f3 = + a cos cf> cos w + b cos cf> sin w 

25.06 + c sin cf> 

(sec cf>)l1 =- (k2/K) sin a sin f3 
+ (ti/K) cos a sin f3 

. l2= (ti/K) sin a sin f3 

25.07 

25.09 

25.08 

25.10 

25.12 

- (~i/K) cos a sin f3 

l Ci(l/n) ,1-. • • /3 
:i=~ sec 'P sin a sin 

+
Cl(l/n) . {3+cos f3 --cosasm --

Clef> n 

= {l/n) sec /3 cos er 
(cos cf>)l1 = - ki sin a sin f3 

- ti cos a sin /3 +Yi cos /3 
12=- ti sin a sin f3 

- k2 cos a sin f3 + y2 cos f3 
fl= n cos f3 

{sin a sin {3, cos a sin {3, cos /3}=Q{a, b, c} 

a=-sin w sin a sin f3 
- sin cf> cos w cos a sin f3 
+ cos cf> cos w cos /3 

b =cos w sin a sin f3 
- sin cf> sin w cos a sin f3 
+cos cf> sin w cos /3 

c =cos cf> cos a sin f3 +sin cf> cos f3 

The Line in Geodetic Coordinates: 

{s sin a sin {3, s cos a sin {3, s cos /3} 

25.13 

25.14 

=Q{(.X-x), (y-y), (z-z)} 

x=xo(w, cf>)+h cos cf> cos w 

y= Yo(w, cf>)+ h cos cf> sin w 

z= zo(w, cf>)+h sin cf> 
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x=(11+h) cos cf> cos w 

y=(11+h) cos cf> sin w 

z=(e211+h)sin cf>=(11+h)sin cf> -e2 11 sin cf> 

25.15 

lr = { { 11 + h) cos cf> sin a sin {3 , 

(p + h) cos a sin {3, cos f3} 

25.17 Lr= { sin a sif! f3 sec cf> cos a sin f3 /3} 
(11+h) ' (p+h) ,cos 

{s sin a sin {3, s cos a sin {3, s cos /3} 

= (il+h)Q{cos (f, cos w, cos (f, sin w, sin (f,} 

-e2il sin (f,Q{O, 0, I} 

- ( 11 + h) Q{ cos cf> cos w, cos cf> sin w, sin cf>} 

+ e2 11 sin cf>Q{O, 0, 1} 

=(ii+ h){sin CT sin a *, sin CT cos a *, cos CT} 

- (11+h){O, 0, I} 

- e2 (ii sin <f, - 11 sin cf>){ 0, cos cf>, sin cf>} 

25.18 

{s sin a sin '{3, s cos a sin 13. s cos '{3} 

= (11 + h){ sin CT sin a*, sin CT COS a*, - COS CT} 

+ (ii+ ii){ 0, 0, 1} 

- e2( ii sin <f, - 11 sin cf>){ 0, cos <f,, sin <f,} 
25.19 

{x, y, z} = {x, y, z} 

25.21 

25.22 

25.23 

+ QT{s sin a sin {3, s cos a sin {3, s cos /3} 

tan w= y/i 

(ii+ h)cos <f, = (i 2 + fli /2 

Taylor Expansion Along the Line: 

25.31 (F-F) =!s(F' + F') +--(zs2 (F" - F") 

Expansion of the Gravitational Potential: 

(N- N)/n = s cos f3 + !s2 { - k sin2 {3- X sin f3 

+ 2(ln n)8q8 sin /3 cos f3 
25.33 + (ln n)s~ cos2 /3} 

N- N =!s(n cos /3 + n cos '{3) 
25.35 (first order) 
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Expansion of Geodetic Heights: 

25.39 
with 

25.38 

h - h = !s ( cos {3 + cos {3) 

+-hs2(k sin2 /3+x sin {3 

-k sin2 {3-x sin /3) 

-k sin2 a cos2 a 
(v+h) + (p+h) 

Astro-Geodetic Leveling: 

!s (Li+ ~) = (I In) { N - N} - { h - h} 
25.43 (first order) 

Li= (cos cJ> ow) sin a sin {3+ (ocJ>) cos a sin f3 

25.44 

Deflections by Torsion Balance Measurements: 

I,,=+ k1 sin f3 cosec "j3 {sin a cos a( I+ cos u) 

- sin a cot f3 sin <T cos a*} 

-k2 sin f3 cosec '{3 {sin a cos a(l +cos <T) 

- cos a cot f3 sin <T sin a*} 

+ti sin f3 cosec '{3 { (cos2 a - sin2 a) (I+ cos u) 

- cot f3 sin <T cos (a+ a*)} 

-y. cos f3 cosec "/3 {cos a (I +cos <T) 

- cot f3 sin <T cos a*} 

+ Y2 cos f3 cosec {3 {sin a (I + cos <T) 

25.48 - cot f3 sin <T sin a*} 

/,.~sin {3 cosec "/3 (I+ cos u) 

X{(k,-k2) sin a cos a+t,(cos2 a-sin2 a) 

25.50 -y, cos a cot f3 + Y2 sin a cot {3} 

/,,:::::(I+ cos <T) { (k1 - k2) sin a cos a 

25.51 +ti(cos2a-sin:?a)} 

25.49 

(AA-Ar;)=- cos a cosec "{3 cos (i, (wA -wr;) 

+sin a cosec 13 (<;,A - (i,c;) 

+ cos a cosec f3 cos cJ> (wA - wr;) 

25.52 - s in a cosec f3 ( cJ> 1 - cJ>r;) 

Chapte r 26 

The Triangle in Space: 

26.02 

Mathematical Geodesy 

s12 (cos a13 , - sin a13, 0) 

X {sin 0'.12 sin /312, cos a12 sin /312, cos /312} 

X QQT{sin a23 sin "/323, cos a23 sin "/323, cos "/323} 

26.04 

S12 (COS a23, - sin a:i3, 0) 

X QQT {sin 0'.12 sin /312, cos 0'.12 sin /312, cos /312} 

X QQT{ sin 0'.13 sin {313, cos 0'.13 sin /313, cos {313} 

26.05 

Variation of Position: 

26.08 

sd( fr)= ( fnsdXS- msdx5 ) mr + (nsdXS - nsdx5 ) nr 

26.10 

Variation of Position in Geodetic Coordinates: 

[r = A,. sin a sin f3 + µ/ cos a sin f3 + v1
• cos f3 

26.11 

mr = A'" sin a cos {3 + µ/ cos a cos f3 - v,. sin f3 

nr=_A,. cos a+µ' sin a 
26.13 

sdf3=msdi8
- msdx5 -s cos cJ> sin a dw-s cos a dcJ> 

26.15 

s sin {3 da = - nsdXS + nsdxs 

+ s(sin cJ> sin {3- cos cJ> cos a cos {3)dw 

26.16 + s sin a cos f3 dcJ> 

Lv+h~ 1coscJ>' (p"~\)' m:i} 
={sin a cos {3,cos a cos {3, - sin 13} 

Lv+h~ 1 
cos cJ>' (p~h)' n3} 

26.20 ={-cos a, sin a, O} 

Lv + h~ 1 cos cJ> ' (p:\)' m3
} 

=QQT{sin a cos {3,cos a cos {3, - sin {3} 

{ (v+h~ 1 coscJ> ' (p~h)' n:i} 
= QQT{- cos a, sin a, O} 

26.21 



Summary of Formulas 

26.22 
-2 -2 

-~~m_, -=+ m'! +iii~= I 
(ii+h) 2 cos:! <P (p+h) 2 

·
1 

iii 1 = m 1 + s cos <P sin a 

ii1 = n1 + s (sin <P sin {3- cos <P cos ~ cos {3) 

26.23 

Observation Equations in Geodetic Coordinates: 

Horizontal and Vertical Angles: 

(Observed Minus Computed) Zenith Distance 

= - ~{3 + m 1 dw/ s + m2d</>/ s + m3dh/ s 

- m1dw/s - m2d<b/s- m3dh/s 

- (dw+Sw) cos <P sin a- (d¢+5¢) cos a 
26.24 

(Observed Minus Computed) Azimuth 

=-~a-:- n1dw (cosec {3)/s- ii2d</> (cosec {3)/s 

- n3dh ( cosec. f3) Is 

26.25 

+n1dw (cosec {3)/s+n2d<f> (cosec {3)/s 

+ n3dh (cosec {3) /s 

+ ( dw +ow )(sin <P - cos <P cos a cot {3) 

+ (d¢+5¢) sin a cot {3 

Reverse Equations: 

(Observed Minus Computed) Zenith Distance 

=- ~{3- iii1dw/s - iii2d</>f s- m3dh/s 

+ m1dw/s + m2d<b/s + m3dh/s 

+ (dw+Sw) cos if> sin a 
26.28 + ( d</> + &/)) cos a 

(Observed Minus Computed) Azimuth 

=-~a +n1dw (cosec {3)/s+n2d</> (cosec {3)/s 

+ n3dh (co sec /3) Is 

26.29 

-n1dw (cosec /3)/s-n2d<P (cosec /3)/s 

- n3dh (cosec /3) /s 

+ ( dw + &i) (sin if>- cos if> cos a cot /3) 

+ (d</> + &/)) sin a cot f3 

Lengths: 

(Observed Minus Computed) Distance 

= (v + h) cos <f> sin a sin {3(dw - dw) 

+ (jJ + h) cos a sin f3 d¢ +cos ii dh 
26.30 - (p + h) cos a sin f3 def>- cos f3 dh 
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Observation Equations in Cartesian Coordina tes­
Auxiliary Vectors: 

{ I I ' I'!' l;i} = { l, . l'! . 11} 

26.33 = Q '"{ sin a sin {3 , cos a sin {3, cos {3} 

26.34 =QT{ sin a cos {3 , cos a cos {3 , - sin f3} 

26.35 = Q''{- cos a, sin a. O} 

Observation Equations - Hour Angle and Dec­
lination: 

U =(cos D cos H)Ar +(cos D sin H)W +(sin D)Cr 

26.36 
Mr= (sin D cos H)Ar+(sin D sin H)Br-( cos D)Cr 

26.39 

26.40 Nr=- (sin H)Ar+ (cos H)W 

26.42 

26.43 

sdD=-Msdx 5 + Msdx 5 

(s cos D) dH = Nsdx 5 - Nsdx 5 

Observation Equations-Hour Angle and Dec­
lination- Cartesian Coordinates: 

x - x = s cos D cos H 

y-y=scosD sin H 

26.44 z-z=s sin D 

M,.=M 1'=(sin D cos H, sinD sin H,-cos D) 

Nr= Jilr=(-sin H, cos H, 0) 

26.45 

Observation Equations - Hour Angle and Dec­
lination -Other Coordinates: 

(M., M'! , M:1)= (sin D cos H , sin D sin H, - cos D) 

26.48 

(M1 , M-i, M:i) =(sin D cos H, sin D sin H, - cos D) 

26.50 

(N,, Nz, Ni)= (-sin H, cos H , O)QTS 
26.51 

(Ni .N',!,iV;i)= (-sin H. cos H. O)Q,.S 

Satellite Triangulation- Directions: 

Basic Photogrammetri c Equations: 

26.55 (
x-xo) d (X-Xo) 
y-yo =(6)M Y-Yo 

f Z-Zo 



384 

COSK sin K 

~) M= -s~n K COS K 

0 
0 cos He 

sin De COS De - COS He - sin He xG 
-cos De 

0 )C'in H, 

sin De 0 0 
26.56 

x-xo 

f 
y-yo 

f 
26.58 

26.57 

(x-xo)2+ (y-yo} 2 +f2 

m, 1(X - Xo) + m12(Y - Yo)+ m,3(Z -Zo) 
m:11(X - Xo) + m:iAY - Yo)+ mdZ -Zo) 

m21(X - Xo) + mdY - Yo)+ m.,!3(Z -Zo) 
m:11(X - Xo) + m:dY - Yo)+ mdZ -Zo) 

(

mil 

M= m21 

m:11 

::: :::) 
m:12 m:13 

Photogrammetric Equations-Star Images: 

(

x-xo) (cos D cos H) 
~ y-y" =M cos~ sin H 

f smD 

26.59 

~) 

x- Xo m11 cos D cos H+m12 cos D sin H+m13 sin D 

f 
y-yo 

f 
26.60 

m:11 cos D cos H+m:12 cos D sin H+m:13 sin D 

m·!.l cos D cos H+m22 cos D sin H+m2:i sin D 
m:11 cos D cos H+m:12 cos D sin H+m:13 sin D 

(

cos D c1>s H) (sin a sin f3) 
cos ~ sin H = N cus a s in f3 

sm /) cos f3 

(

-sin w -c1>s w 
N = cos w - sin w 

0 0 

0) (1 0 0 ) 0 0 sin </> - cos <P 
1 0 cos </> sin </> 

26.53; 26.54 

Alternative Photogrammetric Equations: 

x- xo _n il sin a sin f3 + n12 cos a sin f3 + n1:1 cos f3 
J - n:11 sin a sin f3 + n:12 cos a sin f3 + n:1:1 cos f3 

y-yo_n2 1 sin a sin f3+n22 cos a sin f3+n2:1 cos f3 
J - n:11 sin a sin f3 + n:12 cos a sin f3 + n:1:1 cos f3 

26.62 

(

nil 

MN= n21 

n:11 

Mathematical Geodesy 

::: :::) 
n:12 n:13 

tan H = m, 2(x - Xo) + mdy- yo)+ m:df) 
mll(x- Xo)+ m21(y-yo) + m:11(f) 

tan D =sin H X m,3(x - Xo) + mdy-yo) + m:df) 
m12(x-xo)+ mdy-yo)+ m:df) 

26.64 

Hx 
mdx - Xo) + m2:1(y-yo) + m:i:i(f) 

=cos 
m, 1(x - Xo) + m21(y-yo) + m:11(f) 

Chapter 27 

Change of Spheroid: 

dw=O 

(p+h)d<f>=(e2v/a) sin <f> cos</> da 

+ (e/e2 )(p + ve2
) sin <!> cos <!> de 

27.04 dh =- (a/v)da + ev sin2 </> de 

Change of Origin: 

(v+h) cos</> dw=(sin w)dX0 -(cos w)dYo 

27.06 

(p + h)d<f> =(sin</> cos w)dXo+(sin </>sin w)dYo 

- (cos </>)dZo 

dh =-(cos</> cos w)dXo 

-(cos</> sinw)dYo-(sin <f>)dZo 

Change of Cartesian Axes: 

(v+h) cos</> dw=-w3(v+h) cos</> 

27.14 

+ (w, cos w+w2 sin w) 

X (?v+h) sin</> 

(p+h)d<f>= (w2 cos w-w1 sin w) 

X(h+a 2/v) 

dh = (w2 cos w-w, sin w) 

X (e2 v sin</> cos </>) 

Change of Scale and Orientation: 

(

sin a sin f3 sin a cos f3 

A= cos a sin f3 cos a cos f3 

cos f3 - sin f3 

27.18 
{(v+h) cos<f>dw, (p+h)d<f>,dh} 

- ~OS a) 
sm a 

0 

27.21 =sA{ds/s, df3o, - sin f3 da0 } 



Summary of Formulas 

Extension to Astronomical Coordinates: 

Change of Origin: 

27.22 {dw, d<jJ, dN} = RTQ{dx, dy , dz} 

where 

(

- k1 se~c <P - t 1 sec <P 

RT= -ti -k2 

0 0 

Yi sec <P) 
Y2 

n 

Change of Cartesian Axes: 

27.23 {dw, d<jJ, dN} = RTQN0{x, y, z} 

Change of Scale and Ori entation: 

{dw, d<jJ , dN} =sRTA{ds/s, d{30 , - sin {3 da0 } 

27.24 

Chapter 28 

Equations of Motion-Inertial Axes: 

d 2x d(mvJ.) 
28.001 m dt 2 dt FJ. 

28.002 
ax'' axr di:~ dx,. ds dx,. 

vi'=- ijS=- -=-=--= vi '' oi8 axs dt dt dt ds 

0 ,. 
_e_= vl,. 
ot 28.003 

28.004 
m o'!p,.= m ov,.= o(mvl,.) F,. 

ot 2 ot ot 

28.005 

28.006 

d ( dx 0
) agk dx~ dxq 

28.007 -V,.= F,.= dt g,.s dt - ! dx'~ dt dt 
av d -

- aw= dt {(R,+h)2 cos2 <Pw} 

- av=!£ { (R + h)2i}- I a{(R, + h)'! cos'! </J} . '! 
a<jJ dt 2 

'P 2 a<jJ w 

_ .i a{(R:! + h):!} ,.i..:! 
2 a<jJ 'P 

_av=!£ {h}-.la{(R,+hr cos:! <P} w:! 
Ah dt 2 Ah 

_ .i a { ( R :! + h )'!} <i>:! 
2 Ah 

28.008 

306-962 0-69-26 
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av d ( 2 ., "' • ) --. =- r cos- 'P w 
rlw dt 

av d ( .-2,.i.. ., • "' , --=- r'P)+ r- s m 'P cos <P w~ 
n<P dt 

28.009 av ., "' .2 ,.;._., --= ;:- r cos- 'P w - r'P-nr 

Equations of Motion-Moving Axes: 

A,.=A,. cos wt+ B,. sin wt 

B,.=- A,. sin wt+B,. cos wt 

28.010 c,.=C,. 
dA,. _ 
dt=wB,.: 

dB,. _ 
dt=-wA,.: 

dC,. 
-=0 
dt 

28.011 

28.012 

28.013 

28.014 

i-2wy=F.r+ w'!x=-aW/ih: 

.r+ 2wx=F.,, + w'!y=-aW/ay 

z =- aW/az 

Inertial Axes -First Int egrals: 

28.015 

28.016 

28.020 

28.021 

28.027 

d(v'!) =Zv,.ov,. 
dt ot 

o( vr)=-Vr 
ot 

H*=!v2 + V 

!v2 + V =f a V dt + constant 
at 

vr sin {3 =constant 

Moving Axes-First Int egrals : 

28.028 !v2 + W =constant 

The Lagrangian: 

28.029 

28.030 

l * = !Ct2 + Y2 + z2
) - V(x, y . z. t) 

d (al*) al* 
dt aqr = aqr 

The Canonical Equations : 

28.032 

28.033 

H* =!(x2 + y2 +t2
) + V(x. y , z. t) 

aH* dxr aH* dxr 
--=-· -- --
Air dt ' (i:x r dt 
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The Kepler Ellipse: . N µ 1/2a1/2(1- e2)1/2 
V Sin {3= -=·------

µ 1!2(1 + e cos f) 
al/2(1- e2)1/2 

28.035 

28.036 

28.037 

28.038 

28.039 

28.040 

28.041 

28.042 

28.043 

28.044 

28.045 

fv2 
- µ.Jr= H * 

vr sin {3= N 

dr/ ds = cos f3 

rdfl ds = sin f3 

f= v cos /3 

rj = v sin f3 

r2j=N 

(f)2 + (rfl2 = v2 = 2(µ/r+ H*) 

N= V µa(l-e2) 

H*=-µ/2a 

v2 = µ (~ _ !) = µr' 
r a ar 

27T 
n = y 

n = µ1/2a -3/2 

N = V µa ( 1 - e2) = na2 ( 1 - e2) 1/2 

28.054 

28.055 

v2 

28.056 

r r 

E 
cosf+e 

cos = 
1 +e cosf 

f 
cos E-e 

cos = 
1-e cos E 

µ 2(1+2e cos f + e2) _ µ(l + e cos E) 
N2 r 

. na sinf 
v cos (f + /3)= Q1 =- (l -e2)112 

na2 sin E 
r 

. . na(e +cos j) 
v sm (f + /3)= Q2 = (1- e2)1/2 

28.057 

Auxiliary Vectors: 

na2(1-e2)112 cos 

r 

fk= ~cos {3+ tk sin f3 

28.058 mk=- ~sin /3+ tk cos f3 

dr =ae sin E dE=ae (l-e2) sinfdf = r2e sinf N 
dt dt (1 + e cos f) 2 dt a (1 - e2) r2 

fk= >._k sin a sin {3+ µk cos a sin /3+ vk cos f3 

mk=>._k sin a cos {3+µk cos a cos {3-vk sin f3 

nk=->..k cos a+µk sin a 
28.046 

28.047 

28.048 

28.049 

28.050 

28.051 

28.052 

28.053 

28.063 

28.064 

dE na n 
- -
dt r (1- e cos E) 

(E-e sin£)= n(t-to) =M 

e sin E 
cot /3 = (1- e2)1/2 

e sinf re sinf 
cot {3=--~-

(l + e cos f) a(l - e2) 

a(l - e2) 
r= a(l- e cos£)= (l f) 

+e cos 

q1=r cosf=a(cos E-e) 

q2 = r sin J = a(l - e2)1!2 sin E 

v cos /3 
µ 112e sinf 

al/2(1 _ e2)1/2 
µ 1!2a 1l2e sin E 

r 

~=vk 

28.059 

(

cos (w+ f) cos n- sin (w+ f) sin n cos i) 
~ = cos ( w + f) sin n + sin ( w + f) cos n cos i 

sin (w+ f) sin i 

28.060 

(

-sin (w+ f) cos n- cos (w+ f) sin n cos i\, 
tk = - sin ( w + f) sin n + cos ( w + f) cos n cos i 

cos (w+ f) sin i ) 

28.061 

28.062 
( 

sin n sin i ) 
nk= - cos n .sin i 

cos l 

(

cos (w+f+/3) cos n-sin (w+f+/3) sin n cos i) 
fr = cos ( w + f + /3) sin n + sin ( w + f + /3) cos n cos i 

sin (w+ J + /3) sin i 

(

- sin ( w + f + /3) cos n - cos ( w + f + /3) sin n cos i) 
mr= -sin (w+f+/3) sin n+cos (w+f+/3) cos n cos i 

cos ( w + J + f3) sin i 



Summary of Formulas 387 n cos (w+f) 
sin (w+ /) 

VG 
0 o ) cos n sin n 

V(£) ~: = - sin ~ w + /) cos (w+ /) cos i sin i_ - sin n cos n 
0 -sin i cos i 0 0 

28.065 = K{Ak, fJk, Ck} 

~
cos (w+/) cos 0-sin (w+f) sin 0 cos i 

K= -sin (w+f) cos 0-cos (w+f) si n 0 cos i 

sin 0 si n i 

cos (w+ /) sin o+ sin (w+ /) cos 0 cos i sin i s in (w +f~ 
sin i cos ( w + f) - sin (w+ f) sin 0 +cos (w+ f) cos 0 cos i 

28.066 

28.067 

28.068 {Qi. Q2, O} = K1=o{x, y, z} 

28.069 {x, y, z} = KJ=0{q1, Q2, O} 

K = (~:;:/ :~: ~ ~) K1=0 

0 0 l 

28.070 = FK1=0 

28.071 

28.072 
(

cos f3 sin f3 0) 
Kw+f+.B = - sin /3 cos /3 0 K 

0 0 l 

pk= vfk= (v cos {3, v sin /3. O)K{Ak, {Jk, Ck} 

28.073 

pk(Ak, fJk, Ck)= (pkAk, p"Bk, µ"Cd= (x, y, z) 

28.074 = (v cos {3, v sin {3, O)K 

{.i, y, i} = KT{v cos {3, v sin {3, O} 

28.075 

28.076 

28.077 

28.078 

= Kf=oFT{v cos {3, v sin {3, O} 

=KJ=0 {v cos if+/3). v sin if+/3), O} 

{.t, y, z} =KJ=0{q1, Q2, O} 

cos i =cos cJ> sin a 

cos < w + /) = cos cJ> cos ( w - n) 

sin (w+/)=sin (w-0) cosec a= sin cJ> cosec i 

28.079 

cos Q'. = tan <P cot ( w + /) = sin <P sin Q'. cot ( w - 0) 

=sin i cos (w-0) =sin i sec cJ> cos (w+ /) 

28.080 

-cos 0 sin i cos i 

Variation of the Elements: 

28.082 
µ. 

Fr=-;:a-pr+Rr 

28.083 
dv 
- =F fr= 
dt r 

µ. cos {3 + R fr 
2 r r 

28.084 d(r2) = 2r dr 
dt dt 

28.085 
dr 
dt = PrPrf r= V COS {3 

Semimajor Axis: 

28.086 (-1!:_) da = vR fr= R pr 
2a2 dt r r 

~~= 2~
2 

{e sin/(Rrrr)+a(l~e
2

) (Rrtr)} 

28.087 

Angular Momentum: 

28.088 (vr sin {3)nr= Nnr=epqpppq 

dN onr 
- nr+N-=Erpqp R 
dt ot P q 28.089 

28.090 
dN 
--;Ji= ePQnrppRq= rRqtq 

28.091 
onr r 
fu=-N (Rqnq)tr 

Eccentricity: 

de 
1 

da dN 
µ.ae dt = 2µ. ( l - e2) dt - N dt 

28.092 = {va2 (1- e2 ) (lqRq) -Nr(tqRq)} 

de atf2(1-e2)1/2 
dt µ.t/2 {sin/('4Rq) 

28.093 +(cos f +cos£) (tqRq)} 
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de (I - e2
) {2 cos E(lqRq) 

dt v l -e cos E 

28.094 

Zenith Distance: 

28.095 

True Anomaly: 

28.096 

28.097 

28.098 

df = N + (N cosf)(Rqrq) 
dt r 2 JLe 

N(2 - cos2 f- cos E cos f)(Rqt'I) 

µ.,e sinf 

= N + (N cosf)(Rqrq) 
r 2 µ.,e 

(N sinf)(Rqtq) {l + r } 
µ.,e a(l - e 2 ) 

N (2 sinf)(Rqf q) 
r2 ev 

(cos E + e )(Rqm q) 

ev 

N µ.,1f2a1f2(1- e2)1/2 

r 2 a 2(1-e cosE'f 
n(l + e cos fl 

(1 _ e2)3/2 

Eccentric Anomaly: 

dE na a 112 (cosf-e)(R,.rr) - = - + _ __:.__.=____:.___:.__--'-

dt r eµ.,1/2 

28.099 

28.100 

(a 1/2 sin£) (2- e2 + e cosf)(Rrtr) 
eµ., 1/2 (I _ e2) 1/2 

na (2 sinf)(Rrfr) 
r ve (I - e2) 1/2 

(l-e2) 1/2 cosE(Rrmr) 

ve 

Mean Anomaly: 

dM {(I - e 2 ) cosf-2er/a} (Rrrr) 
-d-t = n +-'--------"n-a_e ____ _ 

28.101 
{ (1- e 2 ) 1!2 sin E (2 + e cosf)} (Rrtr) 

nae 

{a(l-e2) cosf-2er}(Rrrr) 
= n+-----~-----eµ., l/2a 1/2 

28.102 
{ ( 1- e 2

) sin!} (R,.tr) ( r ) 
a+--eµ., l/2a 1/2 1 _ e2 

Mathematical Geodes 

dM 2 sin E(l + e cosf + e 2 ) (Rrfr) 
-=n 
dt 

28.103 

ev 

(I - e 2 ) 112 r cosf (Rrmr) 

vae 

Inclination: 

28.104 
di r 
dt =N(Rqn q) cos (w+ f) 

Right Ascension of the Ascending Node: 

28.105 dil r R ) . f) . dt = N ( qn q sm (w + cosec i 

Argument of Perigee: 

dw df v sin /3 . dil 
dt+ dt =-r-- cos l -;Jt 

28.106 

28.107 

dw 
dt 

N r 
=7i-N (Rqnq) sin (w+ f) cot i 

(N cosf)(Rqrq) 

µ.,e 

+ l+---
(N sinf)(Rqtq) ( r ) 

µ.,e a(l-e2 ) 

r sin (w+ f) cot i ( Rqn q) 

N 

Derivations With Respect to the Elements: 

Semimajor Axis: 

28.108 

28.109 
aF r(Frrr) Frpr 
-=---=--
aa a a 

ap r a(vfr) afr av vfr pr 
-=--=v-+- [r =--=-­
aa aa aa aa 2a 2a 

28.110 

aµr a(vfr) µ 112 
-=--=--- {(e sinE)rr+ (l-e 2) 1/2 tr} aa aa 2a 112 r 

28.111 

Eccentricity: 

28.116 



Summary of Formulas 

de de 

= :r~ {(cos/) /r+( 1 + ~~lc~se~))m r sinf} 

28.117 
a[>r N 

28.118 l 2 {-rr sin/+trcosE} 
de r( - e ) 

~- N sin/ 
de - - r( 1 _ e2) {cos f +cos E} 

~- N { . 2 } 
de - r(l-e2) - sm /+cos E cos/ 

28.119 

Mean Anomaly: 

aF v 1 
28.120 aM=T; (Frfr) =~ (Frpr) 

aF (aesinf)(Frr.,.) a(l+ecosf)(F,.tr) 
aM (l-e2)1/2 + (l-e2)1/2 

28.121 
~- a(v/r) _! 12:._ __ J!:.._ r-_..!!:..... rr 
aM- aM - n dt - nr P - nr2 

28.122 

Inclination: 

aF 
28.123 a;=r sin (w+f)(Frnr) 

~ a(v/r) 
. =-::i-.-=v sin (w+f+{3)nr a z ll l 

28.124 
µ,nr 

= IV {cos ( w + f) + e cos w} 

Right Ascension of the Ascending Node: 

aF an= ErslFrCsPt 

= (r cos i)(Frtr)-r sin i cos (w+f)(Frnr) 

28.125 

~- (J[r 
an-van 

(

-cos (w+/+/3) sin n-sin (w+/+{3) cos n cos i) 
=v cos (w+/+/3) cos n-s~n (w+/+/3) sin n cos i 

= (v cos i)mr-v sin i cos (w+f+{3)nr 

N 
- a (I _ e2 ) {- cos i (I + e cos f) rr + ( e cos i sin f) tr 

28.126 +[sin i sin (w+f) +e sin i sin w]nr} 

Argument of Pe rigee: 

aF 
28.127 -= rFrtr 

aw 

~=v a/r =vmr 
aw aw 
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µ,1 /2a1/2 . 
28.128 = ---{- (l-e2

) 1l2 rr+ (e sm E)tr} 
r 

Relations Be twee n Partial Derivatives: 

. aF r(l - e2 ) 112 aF 
(ae smf) -rl. = .M a a rl 

aF 
- (1 + e cos f) -. -

aw 
. aF aF 

{e(l-e2 ) 1!2 sm E} - = (e+ cos E) -
de aw 

aF 
+ (1 - e2) 1 /2 ( e - cos E) -

aM 

. . ( f) aF aF + . aF 
sm l cot w+ iii=- an cos law 

28.129 

Derivatives of Cartesian Coordinates: 
apr pr rrr 
- - -
da a a 

apr =- (a cos f)rr + (a +-r-.) tr sin/ 
de l - e2 

apr 
-. = r sin (w + f)nr a i 
apr = (ae sinf)rr + a(l +e cosf)tr ~ 
aM (l-e2)1/2 (l-e2)1/2 n 

apr = rtr 
aw 

28 130 apr ( ") . . ( f) • an= r COS l tr - r Sin I COS W + fir 

af1r µ,1 /2 
:..:..L-=--- {(e sin E)rr+ (l -e2)1/2tr} 
da 2a 1l2r 

af1r N 
:..:..L-= {- rr sin/+ tr cos£} 
de r(l - e2 ) 

~ µ,nr 
ai =IV {cos (w+f) +e cos w} 

a1Y _ µ,rr 

aM nr2 
apr µ,1 /2a l/2 . 
- =vmr=--- {- (l-e2 ) 1l2 rr+ (e sm E)tr} 
aw r 

~ N { . f) an = a ( 1 - e2) - cos l ( 1 + e cos rr 

28.131 

+ ( e cos i sin f) tr 

+[sin i s in (w+f) 

+ e sin i sin w] n r} 
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(2ae sin J) ~= (l -e2 ) 112(1- e2 cos2 £) ~ 
<la AM 

a(l-e2
) ~ 

2r aw 

arir a fir 
{ e( 1- e2 ) 1/2 sin £} ::=_=cos E ::=_ 

<le aw 

a ·r 
+(l-e2 ) 1i2 (e-cos£) _£__ 

aM 

[sin i sin (w+ J) + e sin i sin w] ¥i 
= {cos ( w + J) + e cos w} 

28.132 x QI[__ cos i 2.1!._ (
a· r a· r) 
an ilw 

T he Lagrange Planetary Equations: 

da 2 aR 

28.134 

- --
dt na aM 

de (1- e2 ) aR (l - e 2) 112 aR 
dt na 2e aM na 2e aw 
di cot i aR cosec i aR 
dt=N aw N. an 

dM 2 aR (l -e2 ) aR 
dt= n- na aa - na2e ik 
dw N aR cot i aR 
dt= 1we ik°-Nai 
dn cosec i aR 
dt N ai 

dN aR 
dt aw 

tr aR 

N sin (w+ f) ai 

df =N _ _E_ aR 
dt r2 J.W e ae 

dE _ na +-1-{- aR 
dt - r na 2e ae 

ae(l + e cos/) aR 
(1- e 2 ) aa 

28.135 + e
2 

sin/ aR} 
(l -e2 ) ilw 

Curvature and Torsion of the Orbit: 

28.136 ( ~~) lr+v2 lrsfs=Fr 

28.137 dv =F /r 
dt r 

28.138 

Mathematical Geodes 

28.139 

28.140 

28.141 

28.143 

;;,r= nr cosy- mr sin 'Y 

Frnr 
tany=-F r rm 

28.144 

28.145 

Frmr= V 2X cosy= (µ,sin /3)/r2 + Rr 

Frnr= v2x sin y= Rrnr 

v2xm,. =Fr - (Fs/S)/r 

= (Fsms)mr+ (Fsns)nr 

28.146 = (µ, s;; /3 + Rsm8
) mr + (Rsns)nr 

28.147 

28.148 r= (dy/ds)- llrsmr/s 

28.149 r=(dy/ds)+x sin y cot f3 

The Delaunay Variables: 

Canonical Equations: 

28.163 H*=-J!::.-R =-£-R 
2a 2L2 

dl aH* ·de aH* dH aH* 
dt=-a1; Tt=- ag ; dt=-ah 

di aH* dg aH* dh aH* 
dt al ' dt ac · dt aH 

28.164 

First Integrals of the Equations of Motion -Furthei 
General Considerations: 

28.166 !tJ2 + V - wN cos i =constant 

28.167 J 
av _N . at dt = w cos i + constant 

d(N cos i) 
dt 

28.168 

rRq{ tq cos i - nq sin i cos ( w + /)} 

N cos i = es1CrPsPt 

d(N cos i) 
dt 

28.169 

28.170 

28.171 

av _ d(N cos i) 
at=w dt 

!tJ2 + V = constant 



Summary of Formulas 

2 8 .172 

28 .173 

28.174 

N cos i = constant 

!v2 + V - wN cos i =constant 

!v2 + V - wers1CrPsP1 = constant 

Integration of the Gauss Equations: 

28.180 

28.181 

Cno=- (ae)nJn 

37Ta; cos il2 

~.a=O 

~.e=O 

~.i=O 

A 61Ta;J2 (1 Ji • 2 ") 
u.1w a 2 (1- e2 ) 2 -4 sm i 

J (
dM ) . 37Ta;J2 3 • • 

dt-n dt= a2(1-e2)3/2 (1-2 sm2 i) 

28.182 

Integration of the Lagrange Equations: 

µ.a; n • :ic 

Rnm= an+l L Fnmp(i) L Gnpq(e) 
p=O q=-:<i 

28.184 x Snmpq(W, M' n, 0) 

[
C ] n-m even 

S 11 mpq= _ 1Swi cos [(n-2p)w 
nm n-m odd 

+ (n-2p+q)M + m(!l-0)] 

[
S ] n-m even + cnm sin [ ( n - 2p) w 

nm n-m odd 
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The Hamilton-Jacobi Equation: 

28.192 H*( r ~ t) + as = 0 q,aqr' at 

aS(qr, ar, t) 
Pr= aqr 

28.193 Qr=w= 
aS(qr, ar, t) 

rlar 

28.194 v + ! \7 s + ~~ = 0 

28.195 \7 S = grsSrSs 

28.196 S= W*-a,t 

28.197 H*= V +!\7W*=a, 

28.198 Pr=ar 

28.199 Qr=ort+W 

Pr= a,. 

iJW* 
Q,.=8\t+{31'=--

rl0'.1· 

28.200 K*=H*=a, 

The Vinti Potential: 

28.202 (ae) 2 =-C~o=+a~J..! 

-~ {1-(~J J~P~(sin «f>)+(:·-r JWdsin«f>) 

-( :·J JlP ~ (sin «f>) + . . . } 

28.203 

28.185 + (n - 2p + q) M + m (!1- 0)] The Variational Method: 

L (rlF11mp/rli)G11pqS11111pq 
x pq (n -2p)w + (n-2p + q)M +m(0-0) 

28.187 

Integration of the Canonical Equations: 

Contact Transformations: 

28.189 

28.190 

2 8. 19 1 

. aK* 
Qr= aPr ; 

as 
Qr= aPr; 

. aK* 
Pr=- aQr 

K*=H*+ as 
dt 

28.212 

28.213 

28.214 

28.215 

28.217 

!v2 + V=a, 

ds= vds 

[,.=vi,. 

M:=v!,.=T,. 

\7 M* = grsM:Ms* = v2grsfrls = v2 

Chapter 29 

Surface Integrals of Spherical Harmonics: 

29.01 J f 271 J 11/2 

Ydn= w= O <h =- 11/2 Ycos«f>d«f>dw 

{u;:i} = P;:1 (sin «f>) (C11111 cos mw+S11111 sin mw) 

29.02 
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{ u~1 } = P;:1 (sin <P) ( C11 m cos mw + S,,m s in mw) 

29.03 

29.04 {u11}=C,,0P11( si n</>) 

J {u~n} {il~}dO=O if (m, p) are different 

29.05 or if (n, q) are different 

J 
21T (n+m)! - -

{u;n {u;:i}dn (2n+ l) (n-m)! (C11mc,1111+S,111S11111) 

29.06 (m =P 0) 

J 
4rr -

{u,i} {u,i}dO (
2
n+ l) C110C110 (nz=O) 

29.07 

J [P~1 (sin </>)cos mw]2d0= J [P;:1(sin </>)sin mw]2d0 

21T (n+m)! 

(2n+ 1) (n-m)! 

29.08 (m =P 0) 

29.09 

P:;1(sin c/>)(Cnm cos mw 

Mathematical Geodes 

- x (2n + 1) 
1 S ( k, t/J) = 1~0 ( n + 1) kn+ P 11 ( cos t/J) 

29.16 = J:.f!__ _ ln (<1>1/2 + k - cos "') 

<1>
1
'
2 

1 - cos "' 

- x (2n + 1) 
S ( t/J) = ~o ( n + 1 ) P11 (cos t/J) 

29.17 = cosec !tfl- ln (1 + cosec !t/J) 

Introduction of the Standard Field: 

Potential Anomaly: 

29.18 T=W-U 

Curvature and Deflection: 

Lir = vr - IJr a. (cos <P ow)X.r + (o</>)µ.r= Y/Kr + g µ,r 

29.19 

29.20 vr=vr COS K-Jlr sin K 

Gradient of the Potential Anomaly: 

29.21 

Tr=(gYJ)Xr+(gg+y sin K)JLr+(g-y COS K)Vr 

29.22 

+Sum sin mw) 29.23 

29.10 
41T 

2n+ 1 {uW} P 

Series Expansions: 

29.11 
1 Xl 

L k11 P11(cos t/J) 
11=0 (1 - 2k cos "'+ k

2
) 

1
'
2 

(1- k2) x 

(l-2k cos t/l+k2)J/2 ~o (2n+ l)k"P11(cos t/J) 

29.12 

2 9 .13 <I> = (1 - 2k cos "' + k2) 

S(k, t/J) = ~2 \
2nn~N k11

+
1Pu(cos t/J) 

= k-5k2 cos "' 

-k(l-6k cos t/l+3k2)/<l>1'2 

29.14 -3k2 cos t/J ln Hl-k cos t/1+<1> 1'2) 

"' (2n+ 1) 
S(t/J) = ~ (n- l) P11(cos t/J) 

= 1 - 5 cos t/J- ( 2 - 3 cos t/J) cosec !t/J 

29.15 -3 cos t/J ln (sin !t/l+ s in2 !t/J) 

Gravity Disturbance: 

g/)=g-y 

g/)=Trvr=aT/ah 

29.24 

29.25 

29.26 g/J a.- L (n+ l){T::1}/r11+2 

n, m 

Gravity Anomaly: 

29.27 g,~ =gp-yB 

29.28 Tp ='='=-yH' 

29.29 T='='=-y' 

29.30 a. aT -(a ln y) T 
g,~ ah ah 

29.31 
aT 2T 

gA a.-+-
or r 

{g/~} = 
(n+ l){TW} + 2{T:~} = (n - 1 ){ T::1} 

r'1+2 rn +2 rn +2 

29.32 

29.33 gA=- :L 
(n -1){ TIT1} 

rn+2 
II, Ill 



Summary of Formulas 

The Spherical Standard Fie ld: 

U - ~ GC110P11(sin</>)+ 1 _ 22 1 _ 22P( . A.) 
- - ~ i+l 3 w r - 3 w r 2 sm 'f' 

11 = 0 r 
29.34 

29.35 

- Vo= GCoolR +tw2R2 

0 = GC20/R 3 -kw2R2 

Poisson's Int egral: 

29.36 
x Rn 

"" ( 2n + 1) - 1 P11 (cos t/J) ~ r11 + 
11 = 0 

x 11 

29.37 Hq = L L {H::'} /Rn+I 
11 = 0 111 =0 

29.38 

29.39 

29.40 
47T 47T J dn 

r(PT)2 = /3 

29.36A 
R2-r2 x r" 
-

1
-3 -= L (2n+ 1) R"+I P,,(cos t/J) 

11 = 0 

x II 

29.37A HQ = L L Rn{H;:'} 
11 = 0 111 = 0 

29.39A H ,=!if (R
2
-r2) H dfl 

I 47T /3 Q 

29.41 R J (R 2 -r2) 
p~ = 47T /3 p[Jdfl 

29.42 

29.43 

29.44 

'.JO II 

29.45 V= L L {V::'}/r'i+ ' 
.11 = 0 111 =0 

x II 

29.46 rg=- L L (n+ l){V;;1}/r11 + 1 

11 = 0 111 = 0 

29.47 

29.48 

S to kes' Integral: 

29.49 

29.50 

29.51 

29.52 

29.53 

Ts =-~ J S( t/l) (gi}qdfl 

Tp = -
4
: J S(R/r, t/l) (gdqdfl 

N = 4:c J S(R/r, t/l) (gt)qdfl 

N= 4:C J S( t/l) (gA) qdfl 

Deflection of the Vertical: 

gry = - 4~r J ~~sin a(g4)qdH 

29.57 R J as g(g+K) =- 41Tr atfl COS a(g.dcJdfl 

Gravity and Deflection From Poisson's Integral: 

g
c 3R (r:! - R:!) J s in f3 cos a T I" 
~ 47T /4 <J C .H 

3R(r"2-R:!) J s inf3 sinaT d" 
gY} = 47T ,~ CJ .H 

R J { 2r 3 ( r:! - ~~:!) cos /3} T,.dn (g,,),.=47T r1 < 

29.58 

(
aT) R .=!if{2r_3(r:!- R:!)cos f3} 
a + " T, 4 1·1 1~ r 1• r- 1T · 

29.59 x (T,,-T,.)dfl 

29.60 (
aT) +T,. = R :! J(TcJ~T,.) dn 
ar ,. R 21T /-1 

Extension to a Spheroidal Base S urface: 

x II 

-TJG=2: L 0::1(icotalP;:1(sinu) 
11 = 0 111 = 0 

29.61 X {A,, 111 cos mw + 811111 sin mw} 

aT tan a aT 
gn=-=----

as v aa 
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G tan a x 11 L L (i cosec2 a)Q 1
:,
1'(i cot a) 

V 11 = 0 m = O 

29.62 X P:~ (sin u){A 11111 cos mw+ 811111 s in mco} 
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JO 11 
gov=- L L (n + l){T::1

} 

11=0 111=0 

-f ± itana(n-m~l')Q::'+ 1 (icota){T;;1} 
ll=O m=o Q;;i (i cot a) 

29.63 

cos tjJ= sin u sin il +cos u cos il cos (w-w) 

29.64 

J (g/)v )S ( tjJ) dll =-4TTTp 

-J~ ~ itana(n-m~l)1Q;;1+ 1 (icota) 
f=o 1f:o o:~ (i cot a) 

29.65 XS(ijJ){T:;'}dll 

JO 11 
gAv=- L L (n- l){Tfil} 

11 =0 m=O 

x ll 

+ L L sin2 a cos2 u{TW} 
11=0 m=O 

x ll 

+ L L (2w 2v/y) {T;;'} 
11=0 m=O 

29.67 

Bjerhammar's Me thod: 

29.68 
R 2(r2-R 2) J (gA)Q 

(gA)P 
4

1Tr - 13-dll 

29.69 (gA)Q= L {u7,1} 
11, Ill 

J
R 11 + 2 (2n+l) 

(gA)P= 2 4 
"{uW}P11( cos ijJ)dll r11+ 1T L.J 
n, m 

29.70 
R11+2 

= 2: r" + 2 { u :r},, 
1l,,,, 

(g~ ),J = 2: c111i 11 
II 

29.71 

The Equivale nt Spherical Layer: 

x II 

er = LL P::1(sin </>) {c11111 cos mw+s11111 sin mw} 
11 = 0 111 = 0 

29.72 

29.73 (
c11 ,,,) 47Tf<. 11

+2 (c11 ,,,) 

s,,,,, = (211+1) S11 111 

Mathematical Geodes 

29.74 
4TTR"+2 
(2n + 1) {er::'} 

29.75 J erdS = 47TR 2coo = M =Coo 

29.76 J 
erH.2 v,.=- -

1
-dn 

29.77 J 
erR 2 

(V,.)1·=+ /21,.dll 

) ~ ~[ (2n+l){T"'} (11-l){Tm} 
(21Ter- g~ = i~o i~o 2R11+2 II + R11+2 n 

3T 
29.78 - 2R 

T 
29. 79 (2TTer-go)= 

2
R 

Chapter 30 

The 5-Surface in (w, <J>, h) Coordinates: 

30.01 

30.02 

The Metric Tensor: 

30.03 aa13=aa13+fJ13 

30.04 a:;= a(l +\lf)=a(l + \lf) 

The Unit Normal: 

30.05 v,.=(ii/a)1
'
2{-j;, -h., l} 

vr= {ii11 V1, a22 V2, V:i} 

30.06 

30.07 a/a=l+\lf=l+ \lf=sec2 /3 

30.08 \lf= \lf=tan2 f3 

(r=l,2) 

30.09 \Jsf=sin'!. f3=\lf cos2 {3 =\lfcos'!. f3 

v,. = 1'_1. s in a sin f3 + P,1· cos a s in f3 + iir cos f3 

30:10 

v,. = {(v+h) cos</> sin a sin /3. 

30.11 (p + b) cos a sin {3 , cos /3} 

j; = - ( v + b) cos </> sin a tan f3 

30.12 /2 = - (p+h) cos a tan f3 

The Associated Tensor: 

30.13 

= (ii/a)E.aYE.1315(ay15 + /y/15) 

= COS2 {3{ (iaf3 + E_UYE_f315jyfr,} 



Summary of Formulas 

30.14 

Normal Gradients: 

aF =Frvr=cos {3(-a11f1F1-a 22f2F2+F3) 
as 

30.15 

30.16 

30.17 

30.18 

= cos {3 { ~~ - \J (F, J)} 
\J (F ,J)= \Js(F ,f) + (aF/as)( af/as) 

af/as=-\Jf cos {3=- sin /3 tan /3 

aF {aF } as-= sec f3 ah - \J s (F ,f) 

The Invariant \J (T,J): 

30.19 \J(T, f)= 'J(T, f)= gPQ(Wp- U,,)fq 

'J(T,f) = 'J(T,f) =-f5!1 sin a tan /3 
30.21 - (gg-y2) cos a tan /3 

The Invariant \J sT, f): 

J 
'J.dT,f) dS=-J-T- tlfdS 
I cos f3 l cos /3 

30.25 - J T\JsC c~s /3 .J) dS 

30.26 

30.27 

30.28 

30.29 

VrX~ = X~ =fa 

- ba/3 + ba/3 COS /3 = faf3 

tlf = 2H COS {3- 2H + baf3Vavf3 

. (1- sin2 a sin2 /3) 
tlf=2H cos {3+ (v+h) 

(1- cos2 a sin2 /3) 
+ (p+h) 

Deformation of the S-Surface: 

30.30 

30.31 

(f) =kf 

(/a)= kfa 

(v+kh) sin (a) tan (/3) =-(Ji) sec</> 

=k(v+h) sin a tan f3 

(p + kh) cos (a) tan (/3) =- (h) 

30.32 =k(p+h) cos a tan f3 

(aJ=a 

30.33 
k(R + h) 

tan (/3) = R + kh tan f3 

30.34 tan (/3) ~ k tan f3 
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(l)2=(v+kh)2 -2(v+kh)(v+kh) cos a+(v+khf 

- 2e2k(v sin ¢- v sin <f> )(h sin ¢- h sin <P) 

+ (e 4 - 2e2)(ii sin ¢ - v sin <P )2 

30.35 
(l) sin (a) sin ({3) = (v + kh) sin a sin a* 

({)cos (a) sin ({3) = (v + kh) sin a cos a* 

30.36 

- e2 cos ¢<v sin¢ - v sin</>) 

(l) cos ({3)=-(v+kh) cos a+(v+kh) 

- e2 sin ¢<ii sin ¢- v sin </>) 

(lf = 4 sin2 !t/J(R + kh)(R + kh) + k2(h- hf 

= l'ij ( 1 + k(hR+ h)+ k~h) + k2(h-fi)2 

30.37 

(l) sin {a) sin ({3)= (R + kh) sin t/J sin a* 

= (R + kh) cos <P sin (w- w) 

(l) cos (a) sin ({3)= (R + kh) sin t/J cos a* 

= (R + kh) (-sin </> cos ¢ 

+cos</> sin¢ 

x cos (w-w)) 

(l) cos <ft)= (R+ kh)- (R + kh) cos t/J 
30.38 =2 sin2 !t/J(R+kh)+k(h-h) 

Application of Green's Theorem: 

J {v_i_ (!)_!av} ds=J {vtl (!)_! t:J.v} dv 
'i as l l as r l l 

30.39 

J {Vi _i (1) _ 1 a Vi} dS + J { v. _i (1)-1 a Vi} dS 
s-l as l l as l as l l as 

30.40 = J {v.tl (+)-] tlV1} dv 

30.41 -21Tv1,,= J {v. a~ (7)-f ~;'} dS 

r { v i!_ (!)-! a Vi} dS Js-l 2 
as l l as 

+J {Vi~(!)_! aVi} dS 
s as l l as 

+f {v.i ~ (.!) _.! JVi} dS 
l as l l as 

30.42 
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30.43 -21TVzp= r {Vz~ (l) _ _! aVz} dS Js as l l as 

30.44 J { a ( 1) 1 a Vz} 21TVzp= Vz as l -[Ts dS 

30.45 n = !w2 (x2 + y2) 

30.46 W=V-n=V1+Vz-n 

- 21Tnp = J { n ~ (l) _ _! an} dS + J 
2w

2 

dv 
as l l as l 

30.47 

J { W :s (7)-} aa~ dS-J 2~2 dv 

30.48 

30.49 

30.50 

30.51 

= 21T(VzP-V1P) + 21Tnp 

=21T(W,,+np-2Vip) +21Tnp 

= 21T(Wp-2V1P) + 21Tw2 (xi+ y],) 

21T(Tp-2V1,,) =f {ri_ (l) _ _! art dS 
as l l a-; J 

21TTp =f {r ~ (l) _ _! aD_ dS 
as I l as J 

Potential and Attraction of a Single Layer: 

At Ext ernal P oints: 

30.52 , J adS J a ~ 1· =- -
1
- = - Kl dn 

30.53 J mlS J a (V,.)1· = + 12 1,. =+ KJZ l,.tln 

30.53A (V,.)1·=- J a;~S l,. = - J ~2 !,.tin 

At Point s on the Surface : 

Wr)P=+ 21Ta(v,.),, + J a:; l,. 

30.54 =+ 21Ta(v,.)p+ J ;[2 lrdn 

(V,.)p = +21Ta(v,.)p-J a;;[,. 

30.54A =+21Ta(v,.),,- J ~2 l,.dn 

P otential and Attraction of a Double Layer: 

At Exte rnal Point s : 

30.55 VP= - J µ :s G) dS 
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30.56 

30.57 

At Points on the Surface: 

30.58 

30.59 

30.60 

Vp=- 21Tµp- J µ :s (7) dS 

J :s G) dS=-21T 

Vi·=- J (µ- µ1.) :s G) dS 

<W1· J aµ1· a (1) J a a (1) - = -- - dS- (µ-µp) -- - d 
am am as I am as l 

aµ1· J a a (1) =-21T-- (µ-µ1.) -- - dS 
am am as l 

30.61 

30.62 I, J (l,.vr) 
1·= (µ-µ1·) -p dS 

- J (µ- µ1.) _j_ _E__ (.!) dS 
om as I 

30.63 

(V,.)1· = -21T(µ,.)1•+ J µ~t1' {3(11v1 )l,.-v,.}dS 

30.64 

The Equivalent Surface Layers : 

JLQ =- Vi.i/(41T) 

a1~ = (aV/os)Q/(41T) 

v,, =_!_J{vQ j_ (.!.)_.!.(a~ } dS 
41T as l l a; JQ 

30.65 

The Basic Integral Equations in Geodeti c Coordi­
nates : 

vr= ~r sin a sin {3+ µr cos a sin {3+ ;;r cos f3 
30.66 

Ir=~,. sin a sin~+µ,. cos a sin~+ vr cos~ 

30.67 



Summary a/ Formula s 

a (1)- l,.vr 
i1s I --12 

1 -=-p. {cos 13 cos 13 

30.68 + cos (a-a) sin 13 sin ,8} 

30.69 +g(f+K) cos a sin 13+ (g-y) cos 13 

30.70 
aT a In y 
i1h = (g-y) =gA +~ T 

~~ =l5YJ sin a sin 13+g(f+K) cos a sin 13 

30. 71 + ( gA +a ~~ Y T) cos 13 

cos 13 dS = (v+h) (p+h) cos /!> dwd<f> 

30.72 = (v+h)(p+h)df! 

30.74 27TT1·+ J JT,,ctn = J Ldn 

} = {cos "/3+ cos (a-a) tan 13 sin [3 

+la In Y} (p+h)(v+h)//2 
ah 

l=- fa.1 +gri sin a tan 13 

30.75 + g( f+K ) cos a tan 13}(p+h)(v+h)/I 

Gradie nt Equation s : 

(
rff'I 1 J 1 ar 

(Tr )p = ! as JI' (v,.)1· - ..\.7T Ti- a.; !,.<IS 

1 - 1 J T-T,. I 30.79 + 2 (T,.),.-
4

7T -
1
-:1 - {3(1 v1)/,.- v,.}dS 

(T,.v''),. = (aD 
a~ ),. 

30.80 
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The Equi valent S ingle Laye r: 

30.87 

30.88 

30.89 

( ) ( ) (a 1 n y) 1, 
g n 1•= g 1 1•+ -.- 1• 

cJh /' 

. Ju cos "/31· = 27Tu1· cus 131· - /2 dS 

(!5YJ) P = 2mTp sin a p sin 13P 

_ J u sin a/~ sin "/3P dS 

{g( g + K)} ,. = 27Tu1· cos a1· sin 13,. 

-J <T cos fo· sin fh· IS 
/2 ( 

. J [ cos "/31• (a In y) l] 27T<T1' cos 13,. - - 12- - ---;Jh ,. / m!S = (g~)1 · 

30.90 

30.91 

30.92 

30.93 

(gA ) ,. = 27T<T1· - i J ( !cosedt/J )<TdD. 

= 27Tu1· -i J <T ~P,, (cos t/J)dn 

{ 111} - { m} _ ;J. 4 7T { 111 
g A 11 p-27T Un P 2 2n + l u,,}1• 

- 4 7T ( Tl - 1 ) { Ill} 
- 2n + l <T,, '' 

'2. n + 1 
..\.7T<T1·= L ---1 { g.~W}1• 

II, Ill Tl -

'2.n + 1 211 + 1 J 
= L --=-

1 
-

4
- {gA;:'} P" (cos t/J) dn 

11·, 111 II 7T 

= ..l J lY ~ (2 11 + o ~ P ( ·'· ) e>A L.,, 
1 

11 COS 'I' 
4 7T 11=2 n-

30.94 
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A 
Adiabatic formula, 222 
Adiabatic lapse rate, 221 , 222 

Allan, R. R., 299 

American Ephemeris and Nautical Almanac, 257, 258 
American Society of Photogrammetry, 253 

Anderle, R. J., 299 

Angle of refraction, 215, 226, 243 
Angular momentum, 273 , 276 , 282, 283 , 387 

Angus-Leppan, P. V., 220, 222 
Anomaly: 

eccentric, 189,277,284,388 
gravity, see also Gravity anomalies 
height, 329 
mean,277,284, 287,389 
potential, 311, 312, 316, 317, 319, 321, 343, 344, 392, 

393,397 
true, 189,276,281,283,284,388 

Area, 49-53, 357 

Arsenault, J. L., 304 

Associated metric tensor, see Metric tensor 
Astro-geodetic leveling, 233, 234, 382 

1 
Astronomical Ephemeris, 257, 258 

Astronomical refraction, 223, 224, 254, 380 

Atmospheric pressure, 216 
Atmospheric refraction: 

adiabatic formula, 222 
adiabatic lapse rate, 221 , 222 
angle of refraction, 215, 226, 243 
arc-to-chord corrections, 213, 214, 380 
atmospheric pressure, 216 
Barrell and Sears formula, 218, 219, 225, 226 
Bender-Owens proposal, 226 
Cauchy dispersion formula, 218 
coefficient of refraction, 215, 216, 380 
curvature,220, 221,380 

Atmospheric refrac tion: - Continued 
Dalton's law of partial pressure, 217 
dispersion formula , 218 , 220 
distance measurement s, 225-226 
distance measurements, electronic, 215 , 216, 225, 

227 
Dufour's formula, 212 
eikonal, 210 
eikonal equation, 210, 307, 379 
equations for moist air, 217 
equations of state, 216-218, 380 
Essen and Froome formula, 219, 220, 225 
Fermat's principle , 209, 210 
flat curves, 211, 212 
general remarks, 209 
geodetic model atmosphere, 214 , 215, 220, 380 
geodetic model corrections, 214, 215. 380 
geometrical wave front, 210 
gravity, mean, 217 
humidity, 221 
hypsometric formula, 217, 218, 380 

399 

index of refraction, 218-220, 379, 380 
International Association of Geodesy, 218, 219 
isopycnics, 214 
lapse rate, see also Lapse rate 
laws of, 209, 210, 379 
mean gravity, 217 
measurement of refraction , 225 , 226 
microwaves, 219, 220 
model atmosphere, geodetic, 214 , 215, 220, 380 
moist air, 217 
optical, see also Optical 
parallax correction, 224 
refracted ray equation, 210, 211, 379 
refraction correction, 251 
refractive index, see also Index of refraction 
refractivity, 217, 218, 219 
residual, 254, 255 
satellite triangulation, 223, 224 , 254, 380 
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Atmospheric refraction: - Continued 
Smithsonian Meteorological Tables , 217, 220, 221 , 

222 
spherically symmetrical medium, 211 
temperat ure , 219, 221 
torsion, 213, 379 
vapor pressure, 217 
velocity corrections, 215, 216, 380 
velocity of light , 209 
wave front, geometrical, 210 
wavelength, short, equations, 210 
wave number, 218 

Att raction: 
external points, 337, 338, 339, 396 
force of, 143, 144, 371 
points on the surface, 338, 339, 340, 396 
potential, 143, 144, 155, 172, 174, 315, 371, 373 
S-surface, double layer, 338-340, 396 
S-surface, single layer, 337, 338, 396 

Azimuth: 
definition, 71 
isozenithal projection , 99, 364 
Laplace, 134 
normal projection , 121, 368 
N-surface, 76 
N-systems, 133, 134, 370 
observation equations, geodetic coordinates, 243, 

244,383 
principal directions, 76, 360 
surface vectors, 99, llO, lll, 364, 366, 368 
symmetrical (w , cf>, h) coordinates, 126 
transformation, 133, 134 
vector in space, 109 
(w,cf>, h) coordinates, 121 
(w,cf>, N) coordinates, 70, 71, 76, 89, 90, 363 

Baker-Nunn camera, 302 

Barrell, H., 218, 219, 225 

B 

Barrell and Sears formula, 218, 219, 225, 226 
Base vector: 

(Ar, Br, Cr) system, 70, 359 
Cartesian coordinates, 70 
contravariant components, 73, 74, 359 
covariant components, 74, 75, 359, 360 
curvature parameters, 74 
derivatives, 72, 73, 126, 359 
derivatives , higher, 85, 86, 127, 128, 362, 369 
derivatives , symmetrical (w,cf>,h) coordinates, 126, 

127, 128,359,369 
matrices, 135 
N-surface, 70- 75, 133, 135, 359, 370, 371 
N-systems, 70-75, 85, 86, 133, 135, 359, 370, 371 
relations between, 71, 72 
symmetrical ( w,cf>, h) coordinates, 126, 368 
transformation between, 71, 72, 133, 135, 359 
zenith distance, 71 

Mathematical Geodes 

Base vector: - Continued 
(A_r,µ,r,v') system, 71, 359 
(w,cf>,h) coordinates, ll9, 366 
(w,cf>, N) coordinates, 69-75, 135, 371 

Bateman, H., 175, 176, 315 

BC-4 camera , 302 

Bender, P. L., 225 

Bender-Owens proposal, 226 

Bianchi, E., ll4 

Binormal: 
definition, 21 
nr , 39 
qr, 57 
transformation, 57 

Bjerhammar, A., 320, 323, 324, 394 

Bjerhammar: the Zagrebin-Bjerhammar problem, 343 

Blades' equation, 194, 196 

Bomford , G., 220, 221 

Bonnet, P. 0., 61 
Bonnet: Gauss-Bonnet theorem, 61, 358 

Bonnet's theorem, 37 

Born, M., 210, 218 

Brand, L., 49 

Brouwer, D., 302 

Brovar, V. V., 345 

Browne, W. E., 246 

Bruns, E. H., 80. 
Bruns' equation, 80, 148, 313, 318, 361, 371, 392 

c 
Canonical equations: 

contact transformations, 299, 300, 391 
Delaunay variables, 293, 390 
formation of, 275, 276, 385 
Hamiltonian H*, 275, 276, 293, 299, 385 
Hamiltonian K*, 299 
Hamilton-Jacobi equation, 300, 301, 307, 391 
Heine's theorem, 193, 301 
integration, 299-302, 391 
Vinti potential, 301, 302, 391 
von Zeipel transformation, 302 

Cauchy dispersion formula, 218 

Centrifugal forc e, 169 

Centripetal force , 272 

Chandler wobble, 168 

Chovitz, B. H., 230 

Christoffel symbols: 
first kind, 17, 354 
h-differentiation, 121 
isozenithal differentiation, 94, 95, 363, 364 
normal coordinates, 105, 107, 108, 365 
second kind, 17, 354 
spherical representation, 65, 66, 359 
symmetrical (w, cf>, h) coordinates, 127, 369 
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Christoffel symbols: - Continued 
(w, cp , h) coordinates, 120, 367 
(w, cp, N) coordinates, 81, 82, 362 

Clairaut's: 
equation, 128, 203, 230, 378 
first-order result, 204 
formula, 202, 203 

Codazzi equations , see Mainardi-Codazzi equations 

Coefficient of refraction, 215 , 216, 380 

Co-geoid, 320 

Conformal map projection, 60 

Conformal transformations, 55-61, 357, 358 

Conjugate metric tensor, see Metric tensor 

Contour integrals, 49-51, 357 

Contra variant: 
components, see also Contravariant co mponents 
curl of a vector, 19, 354 
fundamental forms, 43, 44, 356 
metric tensor , 78, 360 
space metric tensor , 33, 78, 355, 360 
surface metric tensor , 33, 78, 355, 360 
tensor, second-order, 9 
vector, three-dimensional, 3, 5 
vector, two-dimensional, 3 
vector, unit, 5, 353 

Contravariant components: 
base vector, 73 , 74 , 359 
isozenithal projection, 99, 364 
metric tensor, 77 , 78 , 360 
surface vector, 99, 364 

Cook, A. H., 174 

Coriolis force, 146, 272 

Courant, R., 177 

Covariant: 
components, see also Covariant components 
derivatives, see also Covariant derivatives 
differential in variants, 19 
differentiation, 17-20, 34 
Laplacian of a scalar F, 19, 191 
Laplacian of a vector, 19, 354 
Riemann-Christoffel tensor , 26, 355 
tensor, second-order, 9 
vector, see also Covariant vector 
E-syst em, 13 

Covariant co mponents: 
base vectors, 74, 75 , 359, 360 
isozenithal projection , 100, 364 
metric tensor, 77, 78, 360 
surface vector, 100, 364 

Covariant derivatives: 
fundamental forms, 44, 356 
h-differentiation, 121 
isozenithal differentiation, 100, 101 , 364 
isozenithal projection, 100, 101, 364 
metric tensor, 94 
rules, 19, 20, 34 

306-962 0-69-27 

Covariant derivatives : -Continued 
scalar gradient cp, 18, 354 
spherical representation, 90, 91 
surface, 33, 34, 355 
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surface vectors, isozenithal differentiation 100 101 
364 , ' , 

surface vectors, normal projection, 111, 112, 366, 368 
tensors, 18, 354 
unit perpendicular vector, 20 , 354 
vector, 18, 20, 354 
(w, cp, h) coordinates, 121, 122 
(w, cp, N) coordinate s, 86, 90, 91, 363 

Covariant vector: 
generalized, 6 
three-dimensional, 3, 6 
two-dimensional, 3 
unit, 6, 353 

Curl, 19, 354 

Curvature: 
atmospheric refraction, 220, 221, 380 
bi normal nr , 39 
correspondence of lines, 57, 58, 357 
equipotential spheroid, 207 
first, 21, 29, 41, 42. 57, 58, 65, 76, 97, 119, 120, 356, 

357,358,360,364,367 
Gaussian, 27, 28, 36, 37, 41, 46, 60, 76, 91, 355, 356, 

360 
geodesic, 22, 23, 39, 46, 60, 76 , 77, 90, 100. 112, 126, 

358 , 360,363,364,366,369 
gravit y anomalies, 311, 312 
gravity fi eld, 180- 183, 205- 207, 311, 312, 392 
h-surface, 118 
intrin~c.27,28,36 ,37,41,46,60,76,91,355,356,360 
invariants,41,96 ,97, 107, 119, 189,356,363,366.367, 

376 
isozenithal projection, 100, 364 
Lame tensor , 27, 56, 355, 357 
lines, correspondence of. 57, 58, 357 
lines of, 42 
locally Cartesian systems. 26 
mea n, 41 
meridian, 183 
Meusnier's equations, 40, 356 
normal, 40, 41, 42, 60, 75, 76, 89, 126, 358, 360, 363, 

369 
N-surface, 75, 76, 360 
orbit, 290, 291, 390 
orthogonal surface curves, 23, 354, 355 
parameters, 74, 97, 118, 199, 207 , 366, 367 
parameters, differentiation of, 97 , 364 
principal, 21, 29, 41, 42. 57, 58, 65, 76, 97, 119, 120, 

356,357, 358,360, 364,367 
principal, differentiation of, 97 
principal radii, 125. 129. 368, 370 
Ricci tensor, 27, 28, 56, 355, 357 
Riemannian, 28, 29, 60, 355, 358 
satellite orbit, 290, 291, 390 
second, 22 
specific,27 ,28,36 ,37,41,46,60. 76 , 91,355,356 ,360 
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Curvature: -Continued 
spherical harmonics, 205-207 
standard correction , 312 
standard gravity fi eld, 205- 207 , 311 , 312, 392 
surface curves, orthogonal, 23, 354, 355 
surface, symmetrical (w, </>, h) coordinates , 126 , 369 
surface vector, 100, 111 , 364, 366, 368 
symmetrical (w, </>, h) coordinates, 126, 369 
tensor, see also Lame tensor, Ricci tensor, and 

Riemann-Christoffel tensor 
torsion, 40, 41, 356 
two-dimensional , 27, 28 
umbilic, 44 
vector, 21, 22 
velocity components of curvature correction , 216 
(w, </>, h) coordinates, 125, 129, 311, 312, 392 
(w, </>, N) coordinates, 76, 89, 90, 363 

Curve: 
binormal, 21 
extrinsic properties, 39-4 7 
flat, geometry, 211, 212 
Frenet equations, 22, 354 
intrinsic properties, 21-23 
normal to, 22 
orthogonal surface, 23, 354, 355 
osculating plane, 21 
principal normal, 21, 39 
second curvature, 22 
three-dimensional, 21 , 22, 354 
torsion, 22, 40, 41, 356 
twisted, 21 
two-dimensional , 22, 23 
vector curvature, 21 , 22 

Curved space, 27, 45-47, 57, 356 

D 

Dalton's law of partial pressures, 217 
Darboux equations: 

solutions, 114, 115, 366 
triply orthogonal systems, 113-115, 366 
(w, </>, h) coordinates, 118 

Deflection vector, 136, 371 

de Graaff-Hunter, J., 212, 221, 327, 336, 343 
Delaunay variables: 

canon~alequations , 293,390 
definition of, 291- 293 
H, 293, 294 , 390 
time derivatives, 292 

de Masson d'Autume, G., 222 
Derivatives with respect to the elements: 

argument of perigee, 288, 389 
Cartesian coordinates, 288-290, 389 
eccentricit y, 286, 287, 388 
general, 285-290, 388, 389 
inclination, 287 , 288, 389 
mean anomaly, 287, 389 
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Derivatives with respect to the elements: -Continued 
partial derivatives, 288, 389 
perigee, argument of, 288, 389 
right ascension, 288, 389 
semimajor axis, 286 , 388 

Differential invariants, 19, 354 

Dispersion formula, 218, 220 

Distance measurements, 225-226 
Distance measurements, electronic, 215, 216, 225, 227, 256 
Disturbing: 

force, 282, 305 
potential, 281 

Divergence, 19 

Divergence theorem: 
tensor form, 52, 357 
two-dimensional, 51, 123, 357 

Doppler tracking system , 302, 305, 306 

Douglas, B. C., 299 

Dufour, H. M., 212, 224 

Dufour's formula, 212 

Dupin, F. P. C., 113 

E 

Eccentric anomaly, 189, 277, 284 , 388 

Eccentricity, 283, 286, 287, 387, 388 

Edlen, B. , 218 

Eikonal, 210 

Eikonal equation, 210, 307, 379 

Eisenhart, L. P., 103 

Electronic distance measurements , 215, 216, 225, 227 , 256 

Eotv0s': 
deflection, torsion balance , 234 
double torsion balance, 151 
Hungarian plains experiment, 151 
torsion balance, 150 

Ephemeris, 257, 258 

Eremeev, V. F., 327, 331, 342 

' Erickson, K. E. , 225 

Essen, L., 219, 220 

Essen and Froome formula , 219, 220, 225 , 380 

Eulerian free nutation, 168 

Euler-Lagrange equations, 307 

Euler 's angles , 262 

Extrinsic properties: 
curves, 39-4 7 
surface, 31-37, 43-47 , 60, 61, 358 

E-syste m: 
Kronecker delta, 13, 14, 15, 353, 354 
scalar, 14, 354 
tensors, 13, 14,353, 354 
three-dimensional, 13, 14, 353, 354 
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€-system: -Continued 
two-dime nsional, 15, 354 
vectors, 14, 354 

F 

Fermat 's principle, 209, 210 

Fermi, E., 26 

Ferrers' definition, 193 

Figure of the Earth, 266, 267 

Finzi equations, 55, 59, 61, 357, 358 

Flare triangulation, 246, 247 

Flat space, 25 

Force: 
attraction, 143, 144, 371 
centrifugal, 169 
centripetal, 272 
Coriolis , 146, 272 
disturbing, 282, 305 
gravitational, flux of, 149, 150, 372 
magnetic, 185 
tube of, 149 

Forsyth, A. R., 37, 56, 114, ll5, 274 

Frenet equations: 
curve, 22 , 354 
surface, 22 
three-dimensional , 22 , 354 
two-dimensional, 22 

Froome, K. D., 219, 220 

Froome: Essen and Froome formula, 219, 220, 225 , 380 

Fundamental forms: 
contravariant, 43, 44, 356 
covariant derivatives, 44, 356 
differentiation, 93, 94, 363 
differentiation, isozenithal, 93 , 94 , 95 , 363 
differentiation , normal, 105, 106, 107, 365 
first , surface , 35, 355 
normal coordinates, 105, 106, 107, 118, 119, 365, 366 
normal differentiation, 105, 106, 107, 365 
principal curvatures, 42, 356 
second,43,64,358 
second, isozenithal differentiation, 95 
second, N-surface, 78, 360, 361 
second, of spheroids, 190 
second, surface, 35, 60, 63, 64 , 355, 358 
symmetrical (w , <f>, h) coordinates, 125 , 126, 368 
third, 43 , 64, 94, 358 
third, N-surface, 78, 79, 361 
third, surface, 35, 43, 60, 64, 94 , 355, 358 
(w, q,, h) coordinates, 118, 119, 367 

G 

Gangetic Plain , India, 324 

Garfinkel, B. , 223 

Garfinkel's theory, 223 , 255 

Gauss': 
divergence theore m, 52, 357 

40.3 

equations , see also Gauss characteristic equations, 
Gauss planetary equations, and Gauss surface 
equations 

Gauss-Bonnet theorem, 61, 358 
Poisson's equation, 146, 147 
spherical represe ntation , 63-66 

Gauss charact eri stic eq uations, 36, 356 

Gaussian curvature, 27, 28, 36, 37, 41, 46, 60, 76 , 91, 355, 

356, 360 

Gauss planetary equations: 
corrections to , 304 
first-order, 282, 285, 290, 387 
int egration , 294- 298, 302, 391 
Ke pler elements, 295, 296 
second-order perturbations, 296-298 

Gauss surface equations, 31, 35, 355 

Gedeon, G. S., 299 

Geocentric latitude , 157. 189, 194, 377 

Geocentric longitude, 157, 194 

Geodesic: 
curvature, 22, 23 , 39,46,60, 76 , 77 , 90, 100, 112, 126, 

358,360,363, 364, 366, 369 
parallels , 59 
principle, 307 
space, 21,28 
three-dimensional, 21 
torsion, see also Geodesic torsion 
triangle, 61, 358 

Geodesics: 
family of, 59 
space , 21 , 28 
surface, 22, 29, 46, 128, 369 
three-dimensional , 21, 22 
two-dimensional. 22 

Geodesic torsion: 
balance measurement s, 234-237 
conformal space, 60 , 358 
N-surface, 74, 75 , 76, 360 
surface curves, 40, 41 , 356 
symmetrical (w , <f>, h) coordinates, 126, 369 
(w, <f>, N) coordinates, 74, 75 , 76 , 89, 363 

Geodetic: 
height s, 233 , 382 
latitude, 233 
longitude, 233 
model atmosphere, 214, 215, 220, 380 
model corrections, 214, 215, 380 

Geodimeter, 216 , 218, 225 

Geoid: 
co-geoid, 320 
definition, 200 
regularized, 320 
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Geoid: - Continued 
spheroidal model, 200 

Geometrical wave front, 210 

Geo potential: 
Laplacian, 145, 371 
Newtonian gravitational fi eld, 144, 145, 146, 147, 371 
rotation of the Earth, 169 
second differential, 183 
spherical coordinates, 201 
spheroidal coordinates, 200, 201, 378 
spheroidal harmonics , 200 
standard gravitational field , 311 
total time differential, 274 

Goldstein, H. , 165, 299 

Gradient: 
eq uations , 343, 344 
normal,S-s urface , 330, 331, 395 
potential anomaly, 312, 392 
scalar, 7, 18, 70, 353, 354 
surface, 31, 355 

Gravimeter, 151 

Gravity : 
anomalies, see also Gravity anomalies 
Newtonian gravitational fi eld, see also Newtonian 

gravitational fi eld 
Newtonian potential, see also Newtonian potential 
potential, see also Potential 
standard gravity fi eld, see also Standard gravity field 

Gravity anomalies: 
attraction, see also Attraction 
Bjerhammar's method , 323, 324, 394 
Bjerhammar, the Zagrebin-Bjerhammar problem,343 
Bruns' equation, 313 , 318, 392 
co-geoid, 320 
curvature , 311, 312 
deflection, geocentric, 319, 320, 341 
deflection of the vertical, 318, 319, 393 
density of a surface layer, 325 
equivalent layer, Green, 341 
equivalent single layer, 344-346 
equivalent spherical layer, 324- 326, 394 
equivalent s urfac~ layer, 340, 341, 396 
fundamental equation of physical geodesy, 313, 392 
Gangetic Plain, India, 324 
geoid, regularized, 320 
gradient equations, 343, 344 
gravity disturbances, 316, 319, 320, 321, 341, 393 
Green-Molodenskii , 327-346, 394-397 
Green's, see also Green's 
height anomaly, 329 
integral equations, 341-344 
in tegration , 309-346, 391- 397 
Model Earth, 327, 328, 329, 337 
Molodenskii's integrals , 327 

... 

Pizzetti's extension of Stokes' fun ction, 311, 318, 345, 
392 

Pizze tti 's extension of Stokes' integral, 317, 321, 393, 
394 
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Gravity anomalies: -Continued 
Poisson's integral, 309, 315, 316, 319, 320, 324, 325, 

393,394 
Poisson-Stokes approach, 309-326 , 391-394 
potential anomaly, 311, 312, 316, 317, 319, 321, 343, 

344, 392, 393, 397 
potential, double layer, 338-340, 396 
potential, single layer, 337, 338, 396 
series expansions, 310, 311, 392 
spherical polar coordinates, 318 
spheroidal base surface, 320-322, 393 
S-surface, see also S-surface 
standard field , 199, 313, 314, 392 
Stokes', see also Stokes ' 
surface integrals, spherical harmonics, 309, 310, 391 
telluroid, 314, 328, 329, 337 
terroid, 328, 329, 337 
The Royal Institute of Technology, Stockholm, 323, 

324 
upward continuation integral, 316, 317, 323, 393, 394 
Vening-Meinesz', see also Vening-Meinesz' 
Zagrebin-Bjerhammar problem, 343 

Green-Molodenskii, gravity anomalies, 327-346, 394-397 

Green's: 
equation, 332, 333-337, 341 , 344 
equivalent layer, 341 
first identity, 337, 357 
secondidentity,337,357 
theorem, 49, 327, 328, 333-337, 395, 396 
third identit\es, 337 

H 

Haalck horizontal pendulum, 151 

Hamiltonian: 
H*, 275, 276, 293, 299, 385 
K*, 299 

Hamilton-Jacobi equation, 300, 301, 307, 391 

Hamilton's: 
characteristic function, 301 
principal function, 301 

Hann, J. F. , 221 

h-differentiation, 121- 123, 367 

Height anomaly, 329 

Heiland, C. A., 185 

Heine's theorem, 193, 301 

Heiskanen, W. A., 314, 317, 319, 320, 324, 338 

Helmert, F. R., 296 

Hilbert, D., 177 

Hiran, 258 

Hirvonen, R. A., 314 

Hobson, E.W., 155, 158, 174, 176, 177, 192, 193, 194, 196 

Hobson's formula, 158, 159, 171, 175, 372 

Hopcke, W., 216 
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Hungarian plains experiment , 151 

Hypsometric formula, 217 , 218, 380 

I 
Index of refraction: 

Barrell and Sears formula, 218, 219, 225, 226 
ei konal, 210 
eikonal equation, 210, 307 , 379 
Essen and Froome formula, 219, 220, 225, 380 
geometrical wave front , 210 
laws of refraction, 209, 210 
measurement , 220 
microwaves, 219, 220 
optical, see also Optical 
refractive index, 209, 379 
velocity of light , 209 , 379 

Inertia: 
MacCullagh's formula, 167, 373 
moment of, 165, 166, 167 , 195, 373 , 380 
principal axes, 166 
principal moments, 166 
products of, 165, 373 
tensor , see also Inertia tensor 

Inertia tensor: 
fir st-order, 164, 165 , 195 , 372, 378 
nth-order, 156, 372 
seco nd-order, 165-168, 195, 372, 378 
zero-order, 156, 195, 378 

Int egrals: 
contour,49-51, 357 
Molodenskii's, 327 
Pizzetti' s extension of Stokes' integral, 317, 321, 

393, 394 
Poisson's, see also Poisson's integral 
Stokes', 317, 318, 320, 321, 322 , 346, 393 
surface, 49- 53, 357 
surface, spherical harmonics, 309, 310, 391 
upward con tinuation , 316, 317 , 323, 393, 394 
Vening-Meinesz', 319, 320 
volume, 51-53, 357 

International Association of Geodesy, 204, 218, 219 
International Astronomical Union, 204 
International Geophysical Year 1957-58, 257 
International Latitude Service, 168 
International Polar Motion Service, 168 

Intrinsic: 
curvature, 27, 28, 36,37, 41,46, 60 , 76, 91,355 , 356. 

360 
derivatives of a tensor, 21 
properties of a curve, 21-23 
properties of a surface, 28 

Invariant s: 
curvature, 41, 96, 97, 107, ll9 , 189, 356, 363, 366, 

367,376 
differential, 19, 354 
Marussi, 205 
Molodenskii's, S-surface, 331 

Invariants: -Continued 
scalar, 7, 21 
space,45, 8I,356, 36I 
S-s urface, 33I , 332, 395 
surface,45, 8I , I07 , 356,36I , 362,365 
tensor, IO, I3 
vector, 4 
\l ( T,f) , 33I, 395 
\ls (T,f), 33I, 332, 395 

Isometric latitude, 174, 175 , 373 

Isopycnics, 214 

Isozenithal projection: 
azimuth, 99, 364 
contravariant co mponents, 99, 364 
covariant co mponents, 100. 364 
covariant derivatives, 100, IOI, 364 
curvature, 100, 364 
do uble spherical representation , 91 
geodesic curvat ures, 100, 364 
length , 98, 99, 364 
N-s urface, 93 
surface vector, 98- l 01 , 364 

lsozenithals: 
definition, 66 
differentiation, 93-101, 363, 364 
normal, Il8 
projection, see also Isozenithal projection 
vector, differe nti ation, 95, 363 
(w , q, , h ) coordinates, 118 
(w , q,, N) coordinates, 80, 85 , 361 

Izsak, I. G., 302, 304 

Jacchia, L. G., 304 

Jeffery, G. B., 196 

Jeffreys, B. S., 295 , 323 

Jeffreys, H ., 168, 295 , 323 

J 

K 

40.S 

Ka ula, W. M., 160, 262, 290, 298, 299, 302, 304. 305 

Kellogg, 0. D., 173 

Kepler's: 
element s, 281, 295 , 296 
ellipse, see also Kepler elli pse 
equation , 277 , 386 
orbit , 281 
second law ,277,386 
third law, 277. 386 

Ke pler ellipse : 
angular momentum , 276 
apogee, 279 
argume nt of perigee, 279 
ascending node, 278, 279 
auxiliary vectors, 279-281 , 386, 387 
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Kepler e llipse: - Con tinued 
descending node, 278 
description of, 276-281 
eccentric anomaly E , 189, 277 
inclination, 279 
line of nodes, 279 
mean anomaly M, 277 
mean motion , 277 
orbital geometry, 189 
osc ulating ellipse, 281 
perigee, 278, 279 
potential, 189 
rectangular coordinates of the satellite, 277 
right ascension, 279 
sa tellite , 277 , 278 
true anomaly, 189, 276 
unperturbed orbit , 281 
variation of ele ment s, 282 
vec tor , auxiliary, 279-281 , 386, 387 

Kinetheodolite, 302 

King-Hele, D. G., 304 

Koch, K. R., 339, 343, 344 

Koskela, P. E. , 304 

Kozai, Y., 298 
Kreyszig, E., 32 

Kronecker delta: 
generalized, three-dimensional, 13, 14, 353, 354 
ge neralized, two-dimensional, 15, 16, 354 
mixed tensor, 11 
three dimensions, 8, 353 
E-system, 13, 14, 15, 353, 354 

L 
Lagrange equation s: 

correct ions to, 304 
Euler-Lagrange, 307 
integration, 298, 299, 302 , 391 
planetary, 290, 390 
resonance, 299 

Lagrangia n, 275, 385 

Lambert , W. D., 317 

Lame tensor, 27, 56, 355, 357 
Laplace equation , classical geodesy, 134 

Laplace equation, potential theory: 
Cartesian coordinates, 161 
geopotential , Newtonian gravitational fi e ld , 145 
potential, 183 
solutions, 175 
spherical harmonics, 183 
spherical polar coordinates, 174, 175 
surface te nsor equation, 115 

Laplacian: 

geopotential, 145, 371 
of a scalar, 19, 191 
of a vec tor, 19, 354 

Laplac ian : - Continued 

surface, 45, 356 
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symmetrical (w, q,, h) coordinates, 128, 369 
(w, <fl, h) coordinates , 120, 367 
(w, q,, NJ coordinates, 80, 81, 361 

Lapse rate: 
adiabatic, 221 , 222 
constant, 222 
humidity, 221 
recent work, 222, 223 
Smithsonian Meteorological Tables, 222 
temperature , 218, 221 

Lasers, 218, 302 

Latitude: 
geocentric, 157 , 189, 194, 377 
geodetic, 233 
isometric, 174, 175, 373 
Mercator, 174 
N-systems, 134, 371 
reduced, 187, 188 
sign conve ntions, 70 
spherical iso metric, 174, 175, 373 
spheroidal, 187, 188 
transformation, 134 
(w, q, , NJ coordinates, 70, 79, 361 

Legendre function s : 
associated, 192 
coefficients, potential, spherical harmonics , 159, 

170, 372, 373 
in infinite ser.ies, 310, 392 
second kind , 193, 377 
spherical harmonics , 159, 170, 192, 193, 372, 373 
spheroidal coordinates, 193 

Legendre harmonic s, 177 , 179 

Levallois, J. ]. , 222, 343 

Leveling, astro-geodetic, 233, 234, 382 

Levi-Civita, T., 12 , 26, 28, 29, 42, 55 

Line-crossing tec hniqu es, 258-260 
Line of observation, see Observation line 

Lines of c urvature, 42 

Lo ngitude: 
geocentric, 157, 194 
geodetic, 233 
N-systems, 134, 371 
sign conve ntions, 70 
spheroidal, 188 
transformation , 134 
(w, q, , NJ coordinat es, 70, 79, 361 

Lunar observations: 
declination , 258 
equations, 258 
geocentric coordinates, 257 
International Geophysical Year 1957-58, 257 
Markowitz' moon camera, 257 
Markowitz' system, 257 
origin-hour angle, 258 
right ascension, 258 
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Lunar observations: - Continued 
spherical polar coordinates, 257 
The American Ephemeris and Nautical Almanac, 257, 

258 
The Astronomical Ephemeris, 257, 258 
U.S. Naval Observatory, 257 

Lunisolar perturbations, 304, 305 

M 

MacCullagh's formula, 167, 373 

MacDonald, G. J. F., 168 

Magnetic anology, 184, 185, 186 

Magnetic potential, 184, 185 

Magnetometer, 185 

Mainardi-Codazzi equations: 

flat space,35,36,44,355,356 
h-surface, 123, 126, 129, 369 
isozenithal derivatives of second fundamental form, 

93 
normal coordinates, 106, 107, 123, 126, 365 
N-surface, 82-85, 362 
potential, 189 
space, 126 
spheroid, 189, 376 
surface, 35, 36, 355 
symmetrical (w, cfl, h) coordinates, 126, 127, 369 
tangential coordinates, 84, 85, 362 
(w, cfl, h) coordinates, 106, 107, 123, 126 
(w, cfl, N) coordinates, 82-84, 362 

Manual of Photogrammetry, American Society of Photo­

grammetry, 253 

Markowitz': 
moon camera, 257 
system, 257 

Marussi, A., 60, 86 , 151 , 207 

Marussi invariants, 205 

Marussi tensor, 86, 150, 183, 205, 362 

Matrix: 
rotation, 72, 133, 135, 359, 370 
tensor transformation, 135, 136, 371 

Maxwell , J. C., 154 

Maxwell's: 
form of the potential, distance points, 155 , 156 , 

372 
theory of poles, 176-179, 185, 186 

McConnell, A. J., 165 

Mean: 
anomaly, 277, 284, 287, 388, 389 
curvature, 41 
gravity, 217 
motion, 277 

Mercator latitude, 174 

Mercury, 147 

Me ridian: 
curvature, 183 
ellipse, 187- 189, 376 
normal coordinate sys tem, 109, 366, 368 
trace, 77, 360 
(w, cfl, N) coordinat es, 71 

Merson, R. H. , 297 

Metric: 
normal coordinates, 103, 104, 364 
space,5,353 

Metric tenso r: 
associated, 12, 330, 355, 394 
conjugate, 12, 353 
contravariant, 33, 78, 353, 360 
contravariant co mponents, 77, 78, 360 
covariant components, 77, 78, 360 
definition, 5, 11 
determinants, 13 , 55, 353 , 357 
differentials of determinant, 19, 34, 354, 355 
indices, 12 , 353 

·t07 

normal coo rdinat es, 103, 104, 105, 118, 119, 329, 365 
product of unit ort hogonal vectors , 11, 12, 353 
space, surface relation , 45, 356 
sphere, 63, 358 
S-surface, 329, 330, 394 
symmetrical (w, cfl, h) coordinates, 125, 126, 368 
three-dimensional , 5 
two-dimensional, 7, 15, 16 , 354 
(w, cfl , h) coordinates, 103 , 104, 105, 118, 119, 329 
(w, cfl, N) coordinates, 77, 78, 360 

Meusnier, J., 40 

Meusnier's equations, 40, 356 

Microwaves, 219, 220 
Mixed tensor, 9, 353; see also Kronecker delta 

Model: 
geodetic atmosphere, 214, 215, 220, 380 
geodetic corrections, 214, 215, 380 
standard gravity fi e ld , 199, 200, 378 

Model Earth, 327, 328, 329, 337 

Moist air equations, 217 

Molodenskii's: 
basic integral equations, 342, 345 
equivalent surface layer, 344, 345 
gravity anomalies, 327, 331, 342, 344, 345 
Green-Molodenskii, gravity anomalies, 327-346, 394-

397 
integrals , 327 
integration of gravity anomalies, 327 
invariant s, S-surface. 331 
potential anomaly, 344 

Moment of inertia. 165, 166, 167, 195. 373, 380 
Monge's: 

S-surface equation, 329, 394 
surface eq uations. 31, 32 

Morando, B. , 299 

Moritz, H., 173, 209, 314, 317, 319, 320, 324, 331, 338, 343 
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Morrison, F. F., 174 

Mueller, I. I., 151, 234 

Munk, W. H., 168 

Musen, P., 304 

Nabauer, M., 226 

Networks: 

N 

adjustment, external, 261-267 
adjustment, internal, 239-260 
adjustment procedure, external , 265, 266 
astronomical coordinates, 265, 385 
Cartesian axes, change of, 262, 263, 265, 384, 385 
Cartesian rotations, 267 
change of Cartesian axes, 262, 263, 265, 384, 385 
change of orientation, 264, 265, 384, 385 
change of origin, 261, 262, 265, 384, 385 
change of scale, 264, 265, 384, 385 
change of spheroid, 261, 384 
Euler's angles, 262 
external adjustment, 261-267 
Figure of the Earth, 266, 267 
flare triangulation, 246, 247 
general remarks, 239 
geocentric coordinates, 262 
geodet ic coordinates, 239-242, 261, 382, 383, 384 
hiran, 258 
internal adjustment, 239-260 
line-crossing techniques, 258-260 
lunar observations, see also Lunar observations 
ob.serva~ion equations,see also Observation equat ions 
onentat10n, change of, 264, 265, 384, 385 
origin, change of, 261, 262, 265, 384, 385 
satellite triangulation, see also Satellite triangulation 
scale, change of, 264, 265, 384, 385 
spheroid, change of, 261, 384 
stellar triangulation, see also Ste llar triancrulation 
Straits of Florida, 24 7 "' 
triangle in space, 239, 240, 382 
variation of position, Cartesian coordinates 240 241: 

382 ' ' ' 

variat ion of position, geodetic coordinates 241 
242,382 ' ' 

(w, cp, h) coordi nates, 239-242, 261, 382, 383 

Newcomb, S., 223 

Newton, I., 274 

Newto nian: 

equations of motion, 146, 269, 270, 272, 273, 274, 
275, 285, 290, 307, 371, 385, 390 

equipotentials in free air, 327 
gravitatio nal balance, 151 
gravitational field, see also Newtonian rrravitational 

field "' 
law of attraction, 173 
potential, see also Newtonian potential 
system, 275 
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Newtonian gravitational field: 

attraction force, 143, 144, 371 
Bruns' equation, 148, 371 
Cartesian vectors Ar, Br, Cr, 144, 145 
central field , 143- 144 
Coriolis force, 146 
differentials, 148-150 
equipotential surfaces, central field, 143 
flux of force, 149, 150, 372 
force of attraction, 143, 144, 371 
general remarks, 147 
geometry, 143, 148, 149 
geopotential, 144, 145, 146, 147, 371 
gravitational equation, 149 
gravitational force, flux, 149, 150, 372 
gravity differentials, 148, 149, 150, 371, 372 
Hungarian plains experiment, 151 
Laplacian, geopotential, 145, 371 
laws of gravity, 145, 148, 150 
Marussi tensor, 86 , 150 
mechanical principles, 143-146 
parameters, measure ment of, 150, 151 
Poisson's equation, 146, 147 
potential, see also Newtonian potential 
principle of superposition, 144 
rotating Earth, 145 
rotation, effect of, 144- 146 
satellite, equations of motion, 146, 371 
superposition of fields, 144 
symbols used, 144 
test particle,' 143 
torque, 151 , 372 
torsion, 151 
tube of force, 149 
(w, cp, N) system, 143- 151 

Newtonian potential: 
attraction, 143, 144, 155, 174, 371, 373 
basic equation, 156, 372 
constants, relations between, 160-162 
continuous distribution of matter, 156-157 
convergent series, 154 
derivatives of (l/r), successive, 157-159, 372 
distant points, 155-168, 372 
distribution of mass, 196, 197 
distribution of matter , 156, 157 
energy, 143 
general, free space, 345 
generalized harmonic functions, 154, 372 
harmonic functions, generalized, 154, 372 
Hobson's formula, 158, 159, 171, 175, 372 
homogenous polynomials, tensor form 154 
inertia , moments of, 165, 166, 167, 19S, 373, 380 
inertia, principal axes, 166 
inertia, products, 165, 373 
inertia tensor, see also Inertia tensor 
invariance, distant points, 162- 164 
invariance , near points, 171 
Laplace equation, see also Laplace · equat10n, po-

tential theory 
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Newtonian pote ntial: - Continued 
Lege ndre coe fficient s, 159, 372 
Lege ndre functions, sphe rical harmonics, 159, 170, 

372, 373 
MacC ullagh's formula, 167, 373 
mass distribution, 196, 197 
Maxwell, distant point s, 155, 156, 372 
mome nt of inertia, 165, 166, 167, 195, 373, 380 
near points, 169-171 , 373 
normalized .functions, 160 
primitive, 175 
product s of inertia, 165, 373 
sphe rical harmonics, 159, 160, 170, 171, 372, 373 
spheroidal coordinates, 191 . 
successive derivative s of (l/r) , 157- 159, 372 

Normal: 

curvature, 40, 41, 42, 60, 75, 76, 89, 126, 358, 360, 

363, 369 

diffe re ntiation, 96 
gradie nts, S-surface, 330, 331, 395 
isozenithals, 118 
principal, 21 
projection, azimuth , 121, 368 
projection, surface vector , ll(}-112, 366, 368 
to a c urve, 22 
unit, see also Unit normal 

N-surface: 
azimuth, 76 
base surface , 104, 117 
base vectors, 7(}-75 , 133. 135, 359, 370, 371 
base vectors, derivatives, 72, 73, 85 , 86, 359 
Christoffel symbols, 81 , 82, 362 
coordinate directions , 79, 80 
curvature, normal, 75, 76, 360 
fundamental form, second, 78, 360, 361 
fundamental form, third, 78, 79. 361 
Gauss ian curvature, 76, 91, 360 
geodesic curvature , 76, 77 , 360 
geodesic torsion , 74 , 75 , 76, 360 
isozenithal projection, 93 
Laplacians of the coordinates, 80, 81 , 361 
Mainardi-Codazzi equation s, 82- 85, 362 
Marussi tensor, 86, 362 
me ridian trace , 77, 360 
metric te nsor, 77, 78 
normal c urvature, 75 , 76, 360 
parallel trace , 77, 360 
position vector, 86-88 
principal c urvature, 76, 360 
sp he rical representation, 79 

N-syste m: 
azimuth, 133, 134, 370 
base vector, 7(}-75 , 85 , 86 , 133, 135, 359, 370, 371 
coordinates, changes in, 136, 137, 371 
de finition, 69 
de flection vector, 136, 371 
direction s, transformation of, 132, 133, 370 
latitude, 134, 371 

N-sys te m : - Continu ed 
longitude, 134, 371 
matri ces R and S, 135, 371 
matrices, tensor transformation , 135, 136, 371 
orie ntation conditions, 134, 135, 370, 371 
parallel tran sport of vectors, 136, 371 
tran sformation of directions, 132, 133, 370 
transformation s, 131- 137, 370, 371 
vector, de flection , 136, 371 
vector, parallel transport , 136 , 371 
ze nith dis tances, 133, 134, 370 

0 
Observation equations: 

angle of refraction , 243 
angular equations, 244, 245 
azimuth , geode tic coordinates, 243, 244 , 383 
Ca rtes ian coordinates, 246, 249, 383 
Cartes ian rotations, 267 
differential , 302-306 
direction , 248, 249, 302-305 
di sturbing force, 305 
Doppler trac king sys te m, 302, 305, 306 
drag, 304 
geocentric coordinates, 250, 383 
geodetic coordinates, 242-246, 250, 383 
horizontal angles, 242, 243, 383 
initial values, 246 
le ngth, geodetic coo rdinates, 245, 383 
luni solar perturbations, 304, 305 
perturbation, 305 
radiation pressure, 304 
range, 302-305 
range rate, 305, 306 
reverse equation , 243, 244, 383 
rotation of the Earth , 168 
satellite observations, 302 
sate llite triangulation , 256 
solar radiation pressure, 304 
s tation correction, 243 
s tellar trian gulation , 247- 250, 383 
vertical angles, 242, 243, 383 
zenith di stance, geodetic coordinates, 243, 383 
(w, </>, h) coordinates, 242- 246, 250, 383 

Observation line: 
as tro-geodetic leveling, 233, 234, 382 
Cartesian coordinates, 228, 229, 381 
C lairaut 's equation , 230 
de flec tion of the vertical, 234--237 
direct proble m, 230, 231 
ge neral equations, 227-229, 380 
ge ne ral re marks, 227 
geodetic coordinates, 229-231. 233. 381 
geodetic heights, 233, 382 
gravitational pote ntial , 231, 232, 381 
latitude, geodetic, 233 
longitude , geode tic, 233 
plane of normal section , 227 
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Observation line: -Continued 

reverse problem, 230 
Taylor expansion, 231 , 381 
torsion balance measurements of deflec tion , 234- 237, 

382 
(w, <fJ, h) coordinates, 229--231, 233, 381 
(w, <fJ, M coordinates, 228, 229 

Optical: 
path length , 210 
path length equation , 210, 379 
wavelength, 215, 218, 219, 380 
waves, 220, 221 

Orbit , see Satellite orbits 

Orbital geometry, 189 

Osculating plane, 21 

Owens, J. C., 225 

Owens: Bender-Owens proposal, 226 

Palmiter, M. T., 299 

Parallax correction, 255 

Parallel: 

p 

direction (w, <fJ, N) coordinates, 71 
normal coordinate system, 109, 366, 368 
trace, geodesic curvature of, 77, 360 
transport of vectors, 136, 371 
vectors, 131 

Pellinen, L. P., 298 

Permutation symbols: 
three-dime nsional , 13 
two-dimensional, 15, 16 

Perturbing potential, 281 

Photogrammetric equations , 251- 255, 383, 384 

Pizzetti's extension of Stokes' function, 311, 318, 345, 

392 

Pizzetti's extension of Stokes' integral, 317, 321 , 393, 

394 

Pizzetti 's formula, 203 

P lanetary equations: 
Gauss, 282, 285, 290, 294- 298, 302, 304, 387, 391 
Lagrange, 290, 390 

Plummer, H. C., 301 

Poisson, S. D., 309 

Poisson's equation, 146, 147 
Poisson's integral: 

alternate, 325, 394 
Bjerhammar's method, 324 
deflection, 319, 320, 393 
grav~y, 319, 320, 393 
integration of gravity anomalies, 309, 315-317, 393 
potential anomaly, 319 

Poisson-Stokes, gravity anomalies, 309--326, 391-394 

Position vector: 
Cartesian coordinates, 5 
N-surface, 86-88 
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spherical representation , 63, 358 
symmetrical (w, <fJ, h) coordinates, 127, 369 
(w, <fJ, h) coordinates, 124, 368 
(w, <fJ, N) coordinates, 86-88, 362 

Potential: 
analytic continuation, 172, 173 
anomaly, 311, 312, 316, 317, 319, 321, 343, 344 

392, 393, 397 
attraction, 143, 144, 155, 172, 174, 371, 373 
attraction potential Hp, 315 
Blades' equation, 194, 196 
Cartesian differentials, 180-183 
centrifugal force, 169 
Chandler wobble, 168 
convergence, 194 
curvatures of the field, 180-183 
differential form, 196, 378 
differentials , 180-183, 374-376 
disturbing, 281 
double layer S-surface, 338-340, 396 
energy, 143 
Eulerian free nutation, 168 
external, 174-176, 192, 373, 377 
external points, 337, 338, 339, 396 
external (g, YJ, z) coordinates, 175, 176, 373 
geopotential, see also Geopotential 
gravitational, 176, 185, 231, 232, 381 
gravity representation, 179, 180, 374 
harmonic functions, generalized, 153, 154, 372 
Robson's formula, 175 
inertia tensor, see also Inertia tensor 
internal, 192, 193, 377 
internal points, 173, 174, 196, 373 
International Latitude Service, 168 
International Polar Motion Service, 168 
Kepler ellipse, 189 
Laplace equation, 183 
Legendre functions, spheroidal coordinates, 193 
Legendre harmonics, gravity representation, 179 
Lege ndre harmonics , spherical harmonics, 177 
magnetic , 184, 185 
magnetic analogy, 184, 185, 186 
Mainardi-Codazzi equations, 189 
Marussi tensor, 183 
mass distribution, 193, 194, 196, 377 
Maxwell's form of the potential, 155, 156, 372 
Maxwell's theory of poles , 176-179, 185, 186 
meridian ellipse, 187- 189 , 376 
near points, 196 
Newtonian, see also Newtonian potential 
perturbing, 281 
rotation of the Earth, 168, 169 
satellite triangulation, 168 
second differentials, spherical harmonics, 181-183 
single layer S-surface , 337, 338, 396 
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Potential: -Continued 
spherical coefficients, 194-196 , 201, 378 
spherical harmonics, 153-185 , 201, 202 , 372- 376, 

378 
spheroidal coefficients , 194-196 , 201 , 378 
spheroidal coo'rdinates, 189-193 , 201 , 377 
sp heroidal harmonics, 187- 197 , 200-202, 376-378 
spheroid of converge nce, 194 
S-surface, double layer , 338-340, 396 
S-surface, single layer, 337, 338 , 396 
surface points, 338 , 339, 340, 396 
symbol convention, 199 
total, 169 
Vinti potential, 301, 302, 391 
(~, YJ, z) coordinates, 175 , 176 

Priester, W., 304 

Principal: 
c urvature, 21, 29, 41, 42, 57, 58, 65, 76, 97, 119, 120, 

356,357,358,360,364,367 
directions, 29, 42, 64, 65, 109, 120, 126 , 358, 366, 

368 
moments, inertia , 166 
normal, 21 

R 

Radiation pressure, solar, 304 

Rain sford, H. F., 218 

Range meas ureme nts, 302 

Range, observation eq uations, 302-305 

Range-rate meas urements, 302 

Range rate, observation equations, 305, 306 

Refrac tion, atmospheric, see Atmospheric refraction 

Refrac tive index, see Index of refraction 

Reit, B. G., 323 

Ricci tensor , 27 , 28, 56, 355,357 

Riemann-Christoff e l tensor: 
covariant form, 26, 355 
definition, 25, 26, 355 
special forms, 26 , 27 
two-dimensional, 27, 28 

Riemannian: 
curvature, 28, 29,60, 355, 358 
geometry , three-dimensional, 307 
space, 25 

Roemer, M., 304 

Rotation matrix, 72 , 133, 135, 359, 370 

Rotation of the Earth , 168 

Routh, E. J., 168 

Royal Institute of Technology, Stockholm, 323, 324 

s 

Saastamoinen, J. J. , 216 , 217 

Satellite, equations of motion: 
first integrals, 293, 294, 390 
inertial axes, 269-271, 385 
moving axes, 271, 272, 385 
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Newtonian, 146, 269, 270, 272, 273, 274, 275, 285, 
290,307, 371,385,390 

Satellite geodesy: 
action, leas t, 307, 308 
angular momentum , 276 
angular momentum vector, 273 
Baker-Nunn camera, 302 
BC-4 camera, 302 
canonical equations, see also Canonical equations 
centripetal force, 272 
Coriolis force, 272 
Delaunay variables, see also Delaunay variables 
derivatives with res pect to the e lements, see also 

Derivatives with respec t to the elements 
disturbing force, 282 , 305 
disturbing potential, 281 
Dopple r tracking sys tem, 302, 305, 306 
dynamic, 269-308 
eikonal equation , 307 
energy integral , 294, 390 
energy, law of conservation , 294 
equations of motion, see also Satellite, equations of 

motion 
E uler-Lagrange equations, 307 
Gauss planetary equations, 282 , 285 , 290, 294-298, 

302,304,387,391 
geodesic principle, 307 
geopotential , 274 
Hamiltonian H*, 275 , 276, 293, 299, 385 
Hamiltonian K*, 299 
Hamilton-Jacobi equation, 300, 301, 307, 391 
inertial axes, first integrals, 272-274, 385 
Kepler elements. 281 , 295, 296 
Kepler ellipse, see also Kepler ellipse 
Kepler orbit , 281 
Lagrange eq uations, 290, 298, 299, 302, 304, 307, 

390, 391 
Lagrangian, 275, 385 
least action concept, 307, 308 
movin g axes, first integrals, 274, 275, 385 
Newtonian equations of motion , 146 , 269, 270, 272, 

273, 274,275, 285,290,307,371, 385.390 
Newtonian system, 278 
observation equations, see also Observation eq ua-

tions 
orbit , see also Satellite orbits 
perturbed orbits, 281, 282 
perturbing potential, 281 
planetary equati ons, Gauss, 282, 285, 290, 294-298, 

302, 304,387 ,391 
planetary equations, Lagrange, 290, 390 
principle of leas t action, 307 , 308 
range measurements, 302 
range-rate meas urements, 302 
true anomaly, 276, 281, 283, 284 
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Satellite geo desy: - Co ntinued 
variational method , 306 , 391 
va riation of ele me nts, see also Variation of the 

elements 
velocity vector , 270, 385 
zenith distance, 283 

Satellite , Kepler ellipse, 277 , 278 
Satellite orbit s: 

curvatu re, 290, 291, 390 
Kepler, 281 
pertu rbed , 281 , 282 

torsion, 290, 291 , 390 

Satellite triangulation: 
American Society of P hotogrammetry, 253 
astronomical refraction, 223 , 224, 254 , 380 
atmospheric refraction , residual , 254 , 255 
camera calibration , 251, 253, 254 
coordinate syste m, choice, 251 , 252 
decl ination , 255 
definition, 250 
direction, 250, 251 
di rection to satellite, 255 
distances, 256, 257 
elec tronic distance measurement s, 256 
Garfinkel's theory, 255 
Ma nual of Photogrammetry, American Society of 

Photogrammetry , 253 
net adjustment , 255, 256, 257 
observation equations, see also Observation equa-

tions 
parallax correct ion, 255 
photogrammetric equations, 251- 255 , 383, 384 
potential, 168 
radiation pressure, 304 
refrac tion correction , 251 
ro tation of the Earth , 168 
SECOR , 256 
star calibration , 252 
swing, 252 
U.S . Coast and Geode tic S urvey, 255 

Scalar: 
general, 285 
gradient of N, 7, 70, 353 
gradient of</> , 18, 354 
gradient , surface, 31, 355 
invariant , 7, 21 
Laplacian , 19, 191 
product ,4, 7, 14, 353,354 
velocit y, 270 
E-system, 14, 354 

Schild , A., 26, 51 
Schmid , H. H., 224, 255 
Schols, C. M., 60 
Sears, J. E., 218, 219, 225 
Sears: the Barrell and Sears fo rmula, 218 , 219, 225, 226 
SECOR, 256 
Sign conventions: 

latitude, 70 

Sign conventions: - Continued 
longitude , 70 
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(w , </> , N) coordinates , 69, 70 

S mithsonian Meteorological Tables , 217 , 220, 221 , 222 
Solar radiation press ure, 304 

Somigliana's equation, 203 , 204 

Somigliana 's formula, 202 , 378 

Souslow, G., 60 
Space : 

curved , 27 
fi at , 25 
Riemannian, 25 

Space metric, (w , </>, h) coordinates, 118, 366 

Specific curvature, 27, 28, 36, 37, 41, 46 , 60, 76 , 91 , 355, 

356, 360 

Spherical excess, 61 , 358 

Spherical, isometric latitude, 174, 175 , 373 

S pirit levels, 245, 246 

Springer , C. E., 49, 51 

S-surface : 
associated metric tensor, 330, 394 
attraction , double layer, 338-340, 396 
attraction , single layer , 337, 338, 396 
basic integral equations , 341- 344, 345, 346, 396, 397 
deformati on, 332, 333, 395 . 
diagram, 328, 341 
double layer, 338-340, 396 
equivale nt single layer, 344- 346, 397 
equivale nt surface layers, 340, 341, 396 
geodetic coordinates, 341- 344, 396 , 397 
gradients , normal, 330, 331 , 395 
Green's,see also Green's 
integral equations, basic , 341-344, 345 , 346, 396, 397 
invariant V (T, / } , 331, 395 
invariant \7._d T, f) , 331 , 332, 395 
metric tensor , 329, 330, 394 
Model Earth , 337 
Molodenskii' s invariant s, 331 
Monge's equation, 329 , 394 
normal gradients, 330, 331 , 395 
potential, double layer , 338-340, 396 
potential, single layer, 337, 338, 396 
single layer , 337, 338, 396 
Stokes ' , see also Stokes ' 
unit norm al, 328, 329, 330, 341 , 394 
(w, cJ>, h) coordinates, 329-333, 394 

Standard gravit y fi eld: 
anomalies, see also Gravity anomalies 
Bruns' equation, 313, 392 
Clairaut 's, see also Clairaut 's 
convention, symbol, 199 
curvature, standard correction, 312 
curvatures,205- 207 , 311, 312, 392 
deflec tion , 199, 311 , 312 , 392 
disturbances , 199, 312, 313, 317, 318, 319, 323 , 392, 

393 
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Standard gravity fi eld: -Continued 
equipotential spheroid, 202-204, 207 
flatte ning of the spheroid, 203 
free air correction, 206 
general remarks, 203, 204 
geocentric coordinates, 207 , 379 
geocentric deflections, 319 
geodetic coordinates, 207 , 379 
geodetic syste m, 311 
geoid, 200 
geopotential, 311 
gradient of potential anomaly, 312, 392 
gravitational flattening, 203 
height correction, 206 
International Association of Geodesy, 204 
International Astronomical Union, 204 
Marussi invariants, 205 
Marussi tensor, 205 
mean gravity, 217 
model , spheroidal, 200 
models, fie ld , 199 
models, symmetrical, 199- 200, 378 
Pizzetti 's formula, 203 
potential anomaly, 311, 312, 316, 317, 319, 321, 343, 

344,392,393,397 
potential, see also Potential 
Somigliana's equation, 203, 204 
Somigliana's formula, 202, 378 
space,204,379 
spherical harmonics, 204, 205, 379 
spherical standard field , 314, 393 
standard curvature correction, 312 
symbol correction, 199 
(w, <f>, h) coordinates, 200, 311, 312 

Star calibration , 252 

Stellar triangulation: 
declination, 247 
observation equations, Cartesian coordinates , 24 7-

249, 383 
observation equations, geodetic coordinates , 250, 383 
origin-hour angle, 247 , 249, 383 
time correction , 249 

Sterne, T. E., 304 

Stokes, G. G., 309, 313, 320, 328 

Stokes': 
Bruns' equation, 318 
equation, 313 , 343, 392 
function, 311, 317, 318, 345, 392 
integral,317 , 318,320,321 ,322,346,393 
Pizzetti's extension of Stokes' function , 311 , 318, 

345, 392 
Pizzetti's extension of Stokes' integral, 317, 321 , 

393,394 
theore m, 50, 122, 357 

Strain, 29 

Straits of Florida, 24 7 

Surface: 
base coordinate, 328 

Surface: - Continued 
conformal space, 60, 61, 358 
covariant derivatives, 33, 34, 355 
curvature, see also Curvat ure 
curves, extrinsic prope rties, 39-4 7 
curves, torsion , 40, 41, 356 
equations, form s of, 31, 32 
equations, Gauss' fo rm , 31, 35, 355 
equations, Monge 's form, 31, 32 
equations, third functional form, 32 
extrinsic properties, 31-37, 43-47, 60 , 61 , 358 
family of, 32, 66 
Frenet equations, 22 
fundam ental form, first, 35, 355 
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fundam ental form, second, 35, 60, 63, 64, 355, 358 
fundam ental form, third, 35, 43, 60, 64, 94, 355, 358 
Gauss equations, 31, 35, 355 
Gaussian characteristic equation, 36, 356 
Gaussian curvature, 27, 28, 36, 37, 355, 356 
geodesic, 22,29,46,128,369 
geodesic torsion, see also Geodesic torsion 
gradient , 31, 355 
integrals, 49-53, 357 
integrals, spherical harmonics, 309, 310, 391 
intrinsic properties, 28 
invariants,45,81,107,356,361,362,365 
Laplacian, 45 , 356 
layer, density, 325 
Mainardi-Codazzi equations, 35, 36, 355 
metric tensor, see also Metric tensor 
minimal , 65 
Monge's surface equation, 31, 32 
normal curvature, see also Curvature 
normals , 58, 59, 358 
N-surface, see also N-surface 
orthogonal, unit vector , 28, 355 
projection, 98-101 
Riemannian curvature, 28, 29, 60, 355, 358 
space relation, te nsor , 45, 356 
spherical, equations of, 31 
S-surface, see also S-surface 
tensor derivative, unit normal , 34 
tensors,34,45 , 115, 191 ,356 
transformation of normals, 58, 59, 358 
transformations , 59, 60, 358 
vector,see also Surface vector 
Weingarten equations , 35, 43, 66 , 104, 355, 356 

Surface vector: 
azimuth,99, llO, 111 ,364,366,368 
components, normal coordinate system, 104 
components, normal projection, 110, 366, 368 
contravariant co mponent s, 99, 364 
covariant components, 100, 364 
covariant derivatives, isozenithal differentiation, 100, 

101,364 
covariant derivatives, normal projection , 111 , 112, 

366, 368 

curvatures, 100, 111 ,364,366,368 
curvatures, normal projection, 111 , 366 
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Surface vec tor: - Continued 
differentiation , space, 108, 109 
gener~ ,32 ,33,355 

geodesic curvature, normal projection , 112 , 366 
isozenithal projection , 98- 101, 364 
length,98, 99, 110,364,366 , 368 
normal coordinates, 104 
normal projection , 110- 112 
orthogonal , 15, 354 
space, d ifferent iation, 108, 109, 366, 367 
spherical represe ntation, 64, 358 
unit normal , 7,33,355 
unit normal to coordinate surface , 328, 341 

Sutton , 0. G., 222 

Swin g, 252 

Synge, J. L. , 26, 51 

Taucer, G., 60 

Telluro id , 314, 328 , 329, 337 

Telluromete r , 219 

Te ngstro m, E., 226 

Tensor: 
absolute, 13 
addition , 9, 353 
antisymmetric, 10 

T 

associated , see also Metric tensor 
characte r , 11 , 12 
conjuga te, see also Metric tensor 
contracted , 10, 353 
contra variant , second-order , 9 
covariant derivative, 18, 354 
covariant , second-order , 9 
covariant , E-sys tem, 13 
curvature, see also Curvature 
determinant , 13, 16, 353, 354 
divergence theorem, 52, 357 
dummy index, 10 
equations, 10, 25, 26, 356 
general rules, 9, 10 
indices, 12 , 353 
inertia tensor , see also Inertia tensor 
intrin sic de rivative . 21 
invariant , 10, 13 
Kronecker de lt a, see also Kronecker delt a 
Lame,27,56,355,357 
Laplace surface te nsor equation , 115 
Maru ssi, 86, 150, 183, 205 , 362 
metric, see also Metric te nsor 
mixed , second-order, 9, 353 
multi plication , 9, 10, 353 
order , 9 
relative, 13 
Ricci, 27 , 28, 56, 355, 357 
Riemann-Christoffel, 25, 26, 27 , 28, 355 
ske w-symmetric, 10 
space, surface re lation , 45, 356 

T ensor : - Continued 
surface, de rivative, 34 
surface, equati on, 115 
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surface, space relation, 45 , 356 
surface, spheroidal coordinates , 191 
symmetric , 10 
transformation , 9 , 56, 57, 353, 357 
tran sformation matrices , 135, 136, 371 
E-system, 13, 14, 353 , 354 

Terroid , 328, 329, 337 

Test particle, 143 

The A merican Ephemeris and Nautical Almanac, 257 , 258 

The Astronomical Ephemeris , 257 , 258 

Theodolite, 227 
The Royal In stitute of Technology, Stockholm, 323, 324 

Thompson, E. H. , 244 

Thompso n, M. C., Jr., 225 

Torque, 151 , 372 

Torsion : 
alte rnate expression, 213 , 380 
atmospheric refraction , 213 , 379 
balance, 150, 151 
balance measurement s , 185, 234-237 
correspondence of lines, 5 7, 58, 35 7 
curvature, 40 , 41 , 356 
curve ,22 , 40, 41 , 356 
de flection, 234- 237, 382 
Ei:itvos' double torsion balance, 151 
EOtvos' torsion balance, 150 
geodesic torsion, see also Geodesic torsion 
gravimete rs, 151 
Hungarian plains experiment, 151 
Newtonian gravitational field , 151 
satellite orbit , 290, 291, 390 
surface curves , 40, 41, 356 

Transformation: 
azimuth, 133 , 134 
base vectors, 71, 72 , 133 , 135, 359 
canonical equations, 299, 300, 391 
conformal s pace, 55-61 , 35 7, 358 
directions, 132 , 133, 370 
latitude , 134 
longitude, 134 
N-systems, 131-137, 370, 371 
space,55-61, 357 , 358 
surface normals, 58, 59, 358 
surfaces, 59, 60, 358 
tensors, 9, 56 , 57 , 135 , 136, 353 , 357,371 
vec tors, 7, 8 , 353 
vo n Zeipel, 302 
zenith dista nce, 133 , 134 

Triangulation: 
flare, 246, 247 
sat e llite, see also Satellite triangul ation 
stellar, see also Stellar triangulation 

True anomaly, 189, 276, 281, 283 , 284, 388 

Tube of force , 149 
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u 
Umbilic, 44 

U.S. Coast and Geodetic Survey, 255 

U.S. Naval Observatory, 257 

Unit normal: 
coo rdinate surface, 328, 341 
normal coordinates, 104, 105, 106, 365 
space derivatives, 106, 365 
S-surface, 328, 329, 330, 341, 394 
surface tensor derivative, 34 
vector, 33, 355 
llr , 7 
(w, If> , h) coordinates, 329 

Unit vec tor: 
contravariant, 5, 353 
covariant, 6, 353 
orthogonal surface, 28, 355 
perpendicular, 20, 354 
symmetrical (w, If> , h) coordinates, 126 · 
(w, If>, N) coordinates, 75, 80 

Upward continuation integral, 316, 317, 323, 393, 394 

Viiisiila, Y., 247 
Variation of the elements: 

v 

angular momentum, 282, 283, 387 
argument of perigee , 285, 388 
disturbing force, 282 
eccentric anomaly, 284, 388 
eccentricity, 283, 387 
inclination, 284, 388 
mean anomaly, 284, 388 
perigee, argument of, 285, 388 
right ascension, 284, 388 
se mimajor axis, 282, 387 
true anomaly, 283, 284, 388 
zenith distance, 283 , 388 

Vector: 
angular momentum, 273 
azimuth in space, 109 
base, see also Base vector 
Cartesian, 3 
contra variant, 3, 5 
contravariant, unit, 5, 353 
convention of indices, 4 
covariant, 3, 6, 353 
co variant derivatives , 18, 20, 354 
covariant, unit, 6, 353 
curl, 19, 354 
curvature, 21, 22 
curvilinear coordinates, 4-7 
deflection, 136, 371 
differentiation, space, 108, 109 
dimension, 9 
diverge nce,19,354 
geodesic curvature, 22, 23, 39, 46, 60 , 76, 77, 90, 100, 

112 , 126,358,360,363,364,366,369 

Vector: -Continu ed 
indices, co nv ention, 4 
invariant , 4 
isozenithal differe ntiation , 95, 363 
Ke pler ellipse, 279-281, 386, 387 
Kronecker delta, 8, 353 
Laplacian, 19, 354 
line element, 5. 353 
magnitude, 6, 353 
nonunit , 6 
orthogonal, unit , surface, 28, 355 
parallel, 131 
parallel tran sport, 136, 371 
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position, 5, 63, 86-88, 124, 127, 358, 362 , 368. 369 
products, 14, 354 
scalar, see also Scalar 
space, differe ntiation, 108, 109 
summation co nvention , 4 
surface, see also Surface vector 
tange nt , 39 
tran sformation , 7, 8, 353 
unit, see also Unit vector 
velocity, 270, 385 
E-system, 14, 354 

Velocity: 
light, 209, 379 
scalar, 270 
vector , 270, 385 

Vening-Meinesz': 
equations , 318 
function, 318 
integrals , 319, 320 

Vinti, J. P., 301 , 302 

Vinti potential, 301, 302 , 391 

Volland, H., 304 

Volume, 49-53 

Volume integral s,51-53, 357 
von Zeipel transformation, 302 

Wagner, C. A., 299 

Walters, L. G., 304 

w 

Watson, G. N., 194, 196, 301 

Wave front, geometrical, 210 

Wave number, 218 

Wayman , P. A., 270 

Weingarten equations, 35, 43, 66, 104, 355, 356 

Whittaker, E. T., 194, 196, 301 

Wolf, E. , 210, 218 

Wood, L. E., 225 

y 
Yionoulis, S. M., 299 

Yurkina, M. I. , 327, 331, 342 
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z 
Zagrebin , D. W., 320 
Zagrebin-Bjerhammar problem, 343 

Zenith, astronomical, 145 

Zenith distance: 
dynamic satellite geodesy, 283 
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Zenith distance: - Continued 
equations, geodetic coordinates, 243 , 383 
N-system s, 133, 134, 370 
symmetrical (w , cf> , h) coordinates, 126 
transformation, 133, 134 
(w, cf> , N) coordinates, 71 

Zhongolovitch, I. D., 298 
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