
NOAA Technical Memorandum NOS C&GS 1

SELECTION OF A GENERAL
PURPOSE LANGUAGE AND A
REAL-TIME LANGUAGE SUITABLE
FOR SHIPBOARD DATA SYSTEM III

Rockville, Md.
January 1984

U.S. DEPARTMENT OF / National Oceanic and / National Ocean
COMMERCE Atmospheric Administration Service

NOAA Technical Memorandum NOS C&GS 1

SELECTION OF A GENERAL
PURPOSE LANGUAGE AND A
REAL-TIME LANGUAGE SUITABLE
FOR SHIPBOARD DATA SYSTEM III
Steven R. Barnum
Nautical Charting Division

Rockville, Md.
January 1984

UNITED STATES / National Oceanic and / National Ocean Service
DEPARTMENT OF COMMERCE Atmospheric Administration Paul M. Wolff,
Malcolm Blldrlge, Sec ... tlry John V. Byrne, Administrator Assistant Administrator

Me ntion of a commercial company or product does not constitute an
endorseme nt by the National Oce anic and Atmospheric
Admi ni stration (NOAA), National Ocean Se rvice (NOS) . Use for
publ i c i ty or adve rtis i ng purposes of i nformation from this
publ ication concern i ng propr ietary products or the tests of such
products is not author i zed .

i i

CO NTENTS

Abst ract • 1

Introduction • 0 • 1

SDS I I I Performance Requirements • 2

Data Acqui s i t ion Capab i l i t ies • 2

Data Process i ng Capabi l i t i es • 3

Methodol ogy • • • • • • • • • • • • • • • • • •• 3

Quantify i ng The Language Fe atures • • • • . • • . • • • • • • • • • • • • • . • • • • • • 4

Se lection Cr iteri a • . • 5

F i l te ring Out the Unsui table Languages • 8

Ge neral Purpose Languages • 8

Re a l -Time Languages • 11

Rating the General -Purpose Languages . 12

We i ghts , Scores , and Figures of Me rit • • • • • • • • • • . • • • • • • • • • • • • 12

Results • • • • • • . • . . • • • • • • • • • • 14

Rati ng the Re al -Time Languages • . • • 14

We i g hts , Sc ores , and F i gures of Merlt . 14

Res ul ts • • . • • • • • • • • • • • • • . . • 15

Recommendati ons 0 • • • • • • • • • • • • • • • 15

Acknowl edgments • . . • • • • • • • • • • • • • • . • • • • 16

Re fere nces • • • • • • • • • • 0 • • • • • • 0 • • • • • • • • • • • • • • • 0 0 0 0 • • • • • • 0 • • • • 0 • • • 17

Bi bl i ography • . • • • • • • • 17

Appendix - Overview of the Candi date Languages • • • • • • • • . . . • • • • • 24

Ada • • • • • • • • • • • • • . • . • • • • • • • • 24

c . . . • . . . • . . . • • • • • 0 • 26

; ; i

FORTRAN 77 • 27

PL/l • . • . • • • • • • • • • 28

TABLES

1. Computati ons Of The Figures Of Me rit For The Ge neral -Purpose

Languages • 22

2. Computati ons Of The Figures Of Merit For The Rea l - Ti me

Languages • 23

i v

SELECTION OF A GENERAL-PURPOSE LANGUAGE AND A REAL-TIME
LANGUAGE SU I TABLE FOR SH I PBOARD DATA SYSTEM I I I

Steven R . Barnum
Nautical Charting Divis i on

Chart ing and Geodetic Servi ces
Nati onal Ocean Se rvice , NOAA

Rockv i l l e , Md.

ABSTRACT: Al l major general -purpose l anguages
and al l major real -time l anguages wer e
s urveyed and filtered based on the
requirements of Shipboard Data System I I I . The
languages which passed the f i l ter were then
evaluated in depth. At t his time FORTRAN 77 is
judged to be the best over a l l choi ce for
general -purpose appl i cations software. FORTRAN
77 with the real -time extensi ons (FORTRAN ISA
61. 1) is judged to be the best choice for
real -time appl i cati ons software. When Ada
becomes wi dely avai l abl e , it wi l l be the best
choice for both the general applicati ons
l a nguage and the real -time language.

I NTRODUCTI ON

Identification and sel ection of the most suitable programi ng
language for Shi pboard Data System I I I (SDS I I I) cou ld save the
National Ocean Service (NOS) a s i gn i fi cant amount of money during
the impl ementation phase and over the operational l i fe_ of the
system. The growing cost of ship operations , pr ogramers , and
software maintenance to s upport hydrographic s ur veys demands a
l anguage that wi l l increase the reliab i l ity of software, reduce
software development time, and reduce the cost of software l i fe
cyc l e mai ntenance. The purpose of t his study is to i dentify the
most suitabl e l anguage for SO S I I I based on the l anguage ' s
techn i cal advantages and disadvantages. The fol l owi ng three
cri ter i a were used to eva l uate the languages : 1) devel opment time
and cost , 2} system effectiveness, and 3) software life-cyc l e
mai ntenance cost. To judge the l�nguages usi ng the above
management cr iter i a , techn i cal features were chosen which
refl ected those criter ia .

The 5DS I I I project devel opment staff is using the structured
design techniques of Yourdon and Constantine (19 75) and De Marco
(1978) to develop physi cal and l ogi cal models of the Data
Acquisi t i on Subsystem (DAS) and Data P rocess i n g Subsystem (DPS)

1

of SDS I I I . Structured design techniques are tool s used to
manage the des ign of large softwa re projects. Softwa re � whi ch i s
designed using structured techniques� i s easier to devel op,
ver i fy , and mai ntain . The a ppropriate programi ng language for
SDS II I shoul d support structured programi ng in order to gai n the
maximum benefi ts from the resultant structured model .

Ma ny a uthorities believe that when a programer sol ves a
probl em , the programer thinks in terms of the programi ng
la nguage. If the language is i l l -sui ted to the applicati on, the
programer wi l l have a harder time sol ving the probl em. A gross
exampl e wou ld be to use a la nguage designed for report generation
to construct a space shutt le na v i gation program. A language
tuned for the a pplication provides the programer wit h the proper
too l s to bui l d the program. The possible resul ts of using an
i na ppropriate language ca n be a delayed project � cost overru n s �
a n d i ncreased costs of life-cyc l e software mai ntenance.

SDS III PERFORMANCE R EQUIREMENTS

SDS I I I wi l l perform more onsite (shi pboa rd and fi e ld site)
data ver i fi cation , formatting , quality control � and report
generation than i s presently done. The effect of these actions
wi l l be to decrease the period of time between the date the data
i s col l ected and the date the data a ppear s i n va ri ous NOS
publi shed products. To accomplish thi s, SDS I I I ha s been divided
i nto two parts: the Data Acquisition Subsystem (DAS) and the Data
Processing Subsystem (DPS). Ea ch pa rt wi l l ha ve different
operational requi rements . The DAS wi l l perform the data
a cquisition in rea l time , whi l e the DPS wi l l perform post
processing of the data col l ected by the DAS. Limited data
ver i fi cation and error detection wi l l be performed by the DAS,
whi l e ful l data veri fication , smoothing, and other data
manipulation wi l l be performed by the DPS. Most hydrography wi l l
be per formed by survey parties that con s i st of a ship carryi ng up
to four 2 9-foot launches. Ea ch ship wi l l have a DPS. Ea ch
l a unch, as we l l a s the shi p , wi l l have a DAS. Both the DAS and
the DPS wi l l support the same general- purpose language.

To specify which languages to use, the requirements of the
system must be known. The requirements are ta ken from the
functi onal speci fi ca t i on document (NOAA 1983) . For a complete
description of the operationa l and technical requirements, refer
to the Operational Requirements Ba seline (EG & G 1983) and the
Functi onal Specification Document (NOAA 19 83) .

Data Acq u i s i tion Ca pabi lities

The DAS must be capab le of the fol l owing functions for which
NOS-developed application programs wi l l be necessary.

1) Acquire data from NOS-furnished sensor subsystems and
a contractor-supplied system control device.

2) Record a l l raw data on ma gnetic media for later
processing by the DPS.

2

3) Monitor data val i dity and not i fy the vessel operator of
a l l mal functi ons.

4) Filter raw navigation data and compute current vessel
posit ion in real time.

5) Provi de the vessel helmsman and the DA S operator with
steeri ng gui dance (di stance and di rect i on from pl anned
track l i ne) , current raw data val ues (depth and
navi gation) , bearing and d i stance to a point of
reference, and current positi on, course, and speed.

6) Generate graphic displ ays of acquired data and h i storical
naut i cal chart data.

Data Processing Capabi l it i e s

The DPS must be capable of the fo l l owi ng functions for wh i c h
N OS-devel oped appli cati ons software wi l l be necessary.

1) Manage al l project data for the survey party.

2) Transfer data to and from the DA S, Marine Center, N OS
headquarters , and ot her computer systems.

3) Scan the raw data to assure qua l i ty and produce printed
reports.

4) Interacti vely edit raw data.

5) Apply correctors to the raw data.

6) Ident i fy data of hydrographic s ign if icance.

7) Interactively edit raw data correctors.

8) Perform geodetiC and ot her uti l1ty computations.

9} Di git i ze graphic and handwri tten data.

10) Generate printed data and text report s .

1 1) Generate graphic di spl ays o f acquired data and
h i stori cal nautical chart data.

12) Perform h i stori cal and contemporary data compari son s .

METHODOLOGY

Th i s study i nvol ved a l iterature search for art i c l es on a l l
major genera l -purpose and rea l -t ime 1 anguage s , i ntervi ews wi th
the managers of vari ous Automat ic Data Process ing (A DP) groups

3

with i n NOS, and the cal culation of a figure of merit to determine
a quanti tative mea sure of suitability for each language eval uated
(Anderson and Schumate 1982) . The language wi th the hi ghest
f i gu re-of-merit wa s defined as the most suitable for SOS I I I
applications.

E ven though a language is standa rdi zed , variations of the
l a nguage1s implementat i on a re sometimes very large. Si nce the
SOS I I I computer has not been sel ected , no eva l uations were
poss i b l e for va rious versions of compilers. Thus , the eva l uation
of execution time, generated program s i ze , and compi l e time
ef ficiency could not be done. To determine the best compi l er,
t he study of these parameters should be done when the computer ; s
sel ected.

The fi rst step wa s to set up a fi l ter which would elimi nate a l l
the un suitabl e languages from consideration. The languages which
passed through the f i l ter were then studied more cl osely . The
fil ter wa s comprised of requirements from the f unctional
speci fication document and f rom a list of desirab le language
features, produced by the SOS I I I staff, which should be present
i n the sel ected languages.

Quantifying The Language Features

In order to compa re one language to another, a method wa s
needed to quant i fy each language feature relative to i t s
importance. The method used for estimating the relati ve
importance of each language feature wa s taken f rom Introd uction
to Operations Research (Churchman 1957) . A fundamental example
Trom tnl s book 1S quoted to illustrate the process used to a ssign
wei ghts to the va ri ous technical features.

Suppose there a re four pi eces of wood of unequal
l ength and no device is availabl e for measuring them.
Suppose f urther that we wa nt to determine the relative
length (not absol ute l engt h) of these four stri ps. One
poss i b l e way would be to order the strips f rom the
longest to the shortest and label the l ongest A , the
next B, the next C , and the shortest O. Gi ve A a val ue
of 100% and estimate seperately B, C, and 0 what
percentage of A1 s length they represent . Suppose we get
the fol l owing results. B = 6n%, C = 30%, and D = 20%.
Now we can put B, C, and 0 end to end and compare A with
the thi s combined l engt h . If our initial estimates were
correct , the result B + C + 0 would be eq ual to 110% of
A . If this compari son revea l s a discrepancy , some
ad justment to the original estimates would be requi red .
Next we compare A to B + C , and we would expect B + C to
equal to 90% of A . Thi s compa ri son would provide
a nother check on the origi nal estimates. Fina l ly we
would compare B to C + 0 and expect to f i nd B to be
60/(30 + 20} or 1 20% of (C + D) .

Thi s procedure consists of a systematic check on relative
j udgments by a process of successi ve compar; sons.

The features of each candidate language considered in this
study were scored on a sca l e of a t o 1 . The scores were assigned
by the author and were based on the i nformation assimilated f rom

4

the refer ences i n th i s publ i cation. The final score (figure of
mer i t) was ca l culated by summing the products of each techn i ca l
featur e ' s relative weight and the language ' s score for that
techn i cal feature. The a l gor i thm stated a l gebra i ca l ly i s

N

F i gure of Mer i t = �
i = 1

W i Si ,

where W i i s the we i ghting factor for the
a nd 51 i s the score for the i t h factor .
produced for each language represent the
the language to the needs of SOS I I I .

Se l ection Cr i ter ia

i t h techn i ca l feature
The fi gures of merit
relative suitabi l i ty of

The cr i ter ia by which the languages were eval uated are d iv ided
into two areas: management and techn i ca l . The management
cr iteria served as a guide i n select ing the featur es wh ich were
then quantified . The three management cr iteria by wh ich the
programing languages were evaluated are devel opment t i me and
cost, system effecti veness , and l i fe-cyc l e ma intenance.
Devel opment time and cost should be minimized whenever i t i s not
at the expense of l i fe-cyle ma inta i nabi l i ty . Th i s cr iterion
favor s techni cal features that fac ilitate software devel opmen t ,
make projects ea sier t o staff , and �;nimi ze add it iona l software
tool development (A nder son and Schumate 1982) . System
effect i veness i s concerned wi th how we l l the end programs perform
in the user environment. Features which promote the security of
data , good a l gorithms , and min imi ze software bugs i n crease the
rel iabil ity and effecti veness of the system. Li fe-cyc l e
ma i ntenance ;s concerned wi th how easy the code i s t o update and
mod i fy over the l i fe of the system. Features whi c h promote
readab i l i ty and modu lar i ty decrease l i fe-cycle ma i ntenance cost s .

Technical features were then sel ected wh ich refl ect the
management cr iteria di scus sed above. For the two d i fferent
a ppl i cation s , data processing (the DPS) and real-time data
a cq u i s i t i on (the DA S) , the var iou s technical criteria were ranked
and weighted accord i n g to the needs of the appl i cat ion . For
exampl e, the need for systems programing in the genera l -purpose
l anguage i s not as great a s it would be for the real-time
language where access to ind i vidual regi sters and bits i s
required . The ideal language for 50 S I I I should contain at l east
all of the features menti oned below.

Data Type

The language should be strongly typed . A strongly typed
language has each of the fol l owing qual i t i es:

1) Every object has i ts own uni que type.

5

2) Ea ch type de fines a set of va l ues and a set
of ope rations for the object.

3) In every assignme nt operation , the type of the
a ss; gned va l ue and the type of the data object
a s signed to it must be equiva lent.

The programing la nguage s Pa scal and Ada a re examples of a
strongly typed language. A program written in a strong l y typed
l a nguage i s better protected against such prog raming e rrors as
typog ra phical e rrors which ca n be caught by the compiler at
compile time rather than at run time . A strong ly typed language
increases program re liability and clarity (Young 1982) .

The ability to a ssign ranges to the data types shoul d a l so be
present i n the l a nguage . An example wou ld be the de claration of
the varia ble SE CONDS. wi th an a ssociate d range of 0 to 59. If a
va l ue of 61 or any negative value we re assigned to the varia ble
SECONDS, the error �ou'd be ca ught by the compi ler at compi le
time . The la nguage shou l d a l so permit the use of use r-defined
type s . Data typing coul d be used in SDS I I I software t o keep the
various data objects (depths , ranges , positions) sepa rate and
prevent them from becoming accidenta l l y mi xed together. The type
of ope rations that ca n be performed on the objects cou l d a l so be
specified; this prevents the performance of ope rations which a re
i l lega l for that data obje ct.

Data Scope

The language must have the ability to limit the scope of its
data . Thi s fea ture i s a l so a mea sure of re liability and program
c l a rity. Data scope is concerned with how avai lable data ; s to
the whole program. The la nguage shou ld have a means of
control ling the availability of data between program modules .
This pre ve nts one mOdule from accidental ly modi fyi ng data used in
a nother modu le .

Control Structures

The language must provide a ri ch set of control constructs
(WHILE, IF-THEN-ELSE, DO, CASE, etc .) for representing the
commonly occurring types of program structure. The structures
must be unambig uous so that the overa l l structure of the program
can be easily unde rstood. They must a l l ow the prog rame r to
e xpress a l gorithms in a straightforwa rd and e fficient ma nne r .
The control structures shou l d end wi th a cl osing keyword
(ENDIF , CONTINUE) and there sh oul d be only one entry and exit
point (a prinCi ple of structured programing) . The rea l -time
l a nguages shou l d have the ne cessa ry constructs to bui l d efficie nt
rea l -time programs .

Da ta Structure

The language shou l d have the ability to g roup sets of l ogica l ly
re lated data into Single units . The language must be able to
describe data at di fferent leve l s in order to design programs in

6

a top down manner (Young 1982) . Some examples of data structures
a re arrays , re cords , linked l i sts , trees, and sets.

Program Support En v; ronment

The language shou l d have a comp l ete set of software too l s to
support the deve l opment and ma intenance of softwa re. The support
tool s incl ude edi tors , linke rs , libra rian s , project manage rs , and
uti l i ty programs . T he avai labi lity of software tool s for a
l anguage can have a l arge infl uence on the producti v i ty of
p rog rame rs and the qua l i ty of the softwa re.

Readabi lity

The abil i ty to ea si ly read and understand the code i s re quired
for ma intenance and enhancements. The basic quality of
reada b i l ity is the ability to absorb the main conce pts of a
program by reading the program text onl y , without having to
re sort to fl owc harts and written de scri pt i ons . The lang uag� l s
keywo rds and prog ram structure a ffect the readabi l i ty of a
program. T he person responsib le for maintain ing the prog ram i s
frequently not the one who wrote the program, and the former must
be abl e to understand it in order to modify the code efficient ly .

Lea rnabll i ty

The lang uage shou l d be re lat i vely easy to lea rn , or el se the
product i vity of the prog rame rs may be dec rea sed in the beg inning
of the project.

Simpl i city

The lang uage must be easi l y ma stered. If the lang uage i s too
l a rge to ma ste r . the prog rame r may re sort to using on ly a subset
of the lang uage wi thout uti l izing its ful l potentia l . The
language must be free of hidden re strictions and conditi on s . The
basic rul e s of a language a re usuCi l l y easy to l ea rn , but the
a ssociated l i sts of restrictions and condition s can be hard to
remembe r (Young 1982) .

Fl exi b i l i ty

The language shou ld be flex ib le enough to a l l ow the programe r
t o express a l l the ope ration s in a program without having to
resort to ma chine code .

Systems Prog raming

Systems prog raming has to do with the maintenance , control , and
supervi sion of computers. Systems p rograming re qui res the
abi lity to handle interrupts and to man i pul ate words, bits, and
regi sters wi th minimum use of a s sembly language . T h i s feature
i s especia l ly important for the real -time 1 anguag e.

7

Mul ti taski ng

The abil ity
DAS and DPS.
system can be

to run concurrent programs
T he coding process and the
imp roved when the l anguage

i s required in both the
effectiveness of t he
supports mu l t itasking .

Extent of Use

The l anguage shou l d be in wide comme rcial use. A widely used
l anguage that i s ava i l ab l e on many di ffe rent computers provides
NOS wi th a l a rge array of computers from which to choose.

Previous Programer Profi ciency

A l a rge number of programers al ready proficient ;n the sel ected
l anguage wi l l l ower development time and cost . I f the programers
are not fami l i ar wi th the sel ected l anguage , then the programers
wil l need training and t ime to become proficient in the new
1 anguage.

F ILTERING OUT T HE UNSUITABLE LANGUAGES

General-Purpose Languages

The fol l owing i s a l i st of features SOS I I I requires of a
general-purpose l anguage . They were used to fil ter l anguages
under cons ideration down to a candidate set. The l anguage must :

1) fol l ow a standard ,

2) have the abil ity to ca l l routines written in other
1 anguages (FORTRAN, COBOL, assembly) ,

3) have 1 4 decimal pl aces of precision ,

4) possess the abil i ty to read sequential data files
written in assembly and other l anguages ,

5) be able to reach al l peripheral devi ces .

6) have integer formats of 1 6 and 32 bi t s ,

7) be in widespread use by the computer industry,

8) be cl early suitable for the appl ication , and

9) have the abi l ity to separately comp i l e program
modul es .

The requi rement that the l anguage be standardized en sures that
the completed software wi l l be portabl e from one computer to the
next. (Thi s of course re l ies on how widely a l anguage i s
i mplemented on di fferent compute rs.) The re quirement wi l l save
the cost of rewrit ing most of the software if it becomes

8

necessary to move to a di ffe rent compute r. An example within SDS
I I I i s that code written for the DAS shou l d run on the DPS with
few change s . The abi l i ty to cal l routines wri tten in other
l anguages is re qui red so that exi sting software such as geodetlc
routines wri tten by National Geode t i c Survey (NGS) in the
p rograming l anguage PL/L and Bathymetric Swath Survey System
(BSSS) software written in FORTRAN 66 can be uti l i zed. Since
accuracy i s very important to survey i ng , 14 decimal pl aces of
precision and integer formats of 16 and 32 bits have been
spec ified. The re qui rements of precision and integer formats
have been found to be necessary based on NOS experience. The
ability to re ad fi l e s written in assembly and other l anguages i s
req uired so f i les written by the NOS Automated In formati on System
(A IS) and the DAS re a l -time language can be re ad by the DPS.
Since SDS I I I ; s conce rned wi th the input and output of data , the
l a ng uage must be able to re ach a l l of the input/output de vices
e fficient ly . To en sure a ful l range of candidate compute r s . the
l ang uage must be in widespread use. The l anguage must be clearly
suitable for the appl i cation. A l anguage designed for report
gene ration is clearly not suitable. The l anguage must support
separate compi l at i on of program modules to speed the software
deve l opment process and to increase mai ntainabi l ty of the
software. Software projects are often broken i nto subtasks with
seve ral prog rame rs re spon sible for di ffe rent subtasks. If a
l anguage supports the separate com p i l ation of program modu l e s ,
then the prog rame rs can compi le and test modules independently of
the re st of the program. If the l anguage does not support
separate compi l ation of program modul e s , then a l l the program
modules have to be completed before the program can be compi led
and te sted.

The fol l owing is the init ia l list of l anguages under
conside ration before the fi l te r was appl ied.

1) Ada

2) ALGOL 68 (ALGOri thmic Language)

3) APL (A Prog raming Language)

4) Basic (Beginne r ' s Al l -purpose Symbo l i c Instruction
Code)

5) C

6) COBOL (Common Bui sne ss Oriented Language)

7) FORTH

8) FORTRAN 77 (FORmu l a TRANsl ation)

g) HALlS

1 0) JOV IAL (J ule ' s OWn Version of the International
Algebraic Language)

g

11) MODULA I I (MODULAr programing I I)

12) Pascal

13) PL/l (Programing Language 1)

14) LISP (LISt Processing l anguage)

The requi rement that the l anguage be c l early su itab l e to the
the appl ications of 50 S I I I was appl ied fi rst. Basic , COBOL,
APL, and L I SP fa i l ed thi s cri terion.

BASIC was conceived at D a rtmouth Co l l ege to teach nonscience
majors about computers. BASIC was el imi nated because it does not
support structured programing and was not designed for scienti fic
applicat ions. COBOL was e l i minated because it ; s a probl em
ori ented busi ness data proc essing l anguage and is not we l l
equi pped to hand l e the appl ications of 50S I I I which are
computat iona l ly o riented. APL, a l anguage which ; s criticized by
many as being difficu l t to l earn because o f i ts extremely terse
syntax, has not won favor wi th many peo p l e outside the
engi neering and sci ent if ic community. APL ; s a l so not we l l
sui ted to the prob l em domain of SO S I I I , and for these reasons it
was e l i minated. I I SP, heav i l y used in art i ficia l intel l i gence
applicatio ns , was del eted from the l i st because it ; s not wel l
suited to applications other than l i st processing and general
symbol man i pu lation. W h i l e it may be possib l e to construct
appl ications software using these l anguages, the a l gor ithms wo uld
p robably be implemented in an awkward fashion and the resul ting
software would be difficu l t to mainta i n .

Next , the requirement that t h e l anguages be i n wid espread use
was appl ied . Al gol 68, HAL/S, JOVIAL, and MOOULA II fai led the
c ri teri on .

ALGOL 68 ; s popu l ar language i n the European computer industry.
Because it has a very sma l l fol l owi ng in the United States , 1t
was el imi nated from the l i st . The l anguage HAL/S, develo ped by
the National Aeronautical and Space Admi nistration (NASA) . i s
used fo r the space shutt l e mission. HALl S was el iminated
because of its l imi ted use outside o f NASA. JOVIAL ' s use i s
limi ted primari l y to the U.S. Ai r Fo rce, and it i s presently
being repl aced by the Department of Defen se ' s (DOD) new l anguage
Ada . Fo r these two reasons JOVIAL was e l i minated. MOO ULA I I i s
rel atively new and i s only impl emented o n smal l er computers such
as the DEC PDP-I I , Sage, IBM personal computer, and Appl e
computer.

The requirement that the l anguage be standardi zed waS appl ied
to resul ts of the previo us operation. FORTH waS eliminated
because there are no significant standardi zed versions of the
l a nguage. The supporters of FORTH are divided i nto several
groups , eac h hav i ng its own version of the l anguage.

Next , the requ i rement that the l anguage support separate
compi l ation of program mod u les was applied to the resu l t s of the
l ast operation. Pascal was eliminated because it does not
support the separate compi l ation o f program modu l es in i ts
standard fo rm.

10

The remalnlng l anguages , Ada, C , FORTRAN 77, and PL/l were
judged to meet al l remaining requi rement s. An ove rview of these
l anguages ;s incl uded the appendix.

Rea l-Time Languages

The fo l l owing is a list of features used to fi l ter l anguages
for the real -time application. They must

1)

2)

3)

4)

5)

6)

7)

fol l ow a standard,

have the abi lity to cal l routines written in other
l anguages (FORTRAN, COBOL, assembly) ,

have the ability to randomly access mass storage
f i l e s ,

be abl e to reach a l l peri pheral devices
and have the abi lity to manipulate individual
w ords , bytes , and b its ,

be i n widespread use by the computer industry,

be cl early suitabl e for the applicat ion , and

provide the ability to separately compi l e the
program modul es.

Characteri stics 1, 2, 5 , 6, and 7 are i ncl uded i n the real
t i me fi l ter for the same reasons they were i ncl uded in the
genera l-purpose 1 anguage fi l ter. The 1 anguage must have the
abi l i ty of systems program i n g . A programer using a l anguage with
systems programing abi lity wi l l not have to resort to the use of
assemb ly l anguage as often as a programer using a l anguage that
l acks this abi l i ty . The software written for BSSS, a real -time
data aquisition and processing system, i s composed of
approximately 12,000 lines of FORTRAN code and 10,000 l i nes of
assembly l anguage code. Assembly l anguage i s machine dependent ,
and is di fficu l t to devel op . maintai n . and debug. A l anguage
w hich can si gnificant l y reduce the use of assembly l anguage ; s
definitely preferred over a l anguage which does not. These
requi rements were used to filter al l the major real -time
l anguages to a set w hich cou ld be eva l uated.

The fonow i n g is the i ni tial list of l anguages under study
before applyi ng the fi l ter.

1) Ada

2) C

3) Edison

4) FORTH

5) FORTRAN ISA 61.1 (real -time extension)

11

6) Micro Concurrent Pasca l

7) MOOULA (MOD ULAr p rograming 1 anguage)

8) MODULA I I (MODULAr p rogrami ng 1 anguage I I)

g) PEARL (Process and Experiment Automat 1 on
Rea l -time Language)

10) D P

11) CSP

12) G YPSY

13) Path Pasca l

The requ i rement that the language have the abi l i ty to
separately comp i l e p rogram modu l es wa s app l i ed fi rst to the
i ni t i a l l i st . The languages that fa i l ed were Edi son , Micro
Concurrent Pasca l , MODULA, DP, esp. GYPSY , and Path Pascal .

The req ui rement that the language be i n wi despread use wa s
app l i ed next to the resul ts of the p revious operati on. PEARL, a
relatively popular real -t ime language i n Europe, wa s e l im inated
because i t i s impl emented on very few comp uters i n the united
States.

The requi rement that the language be standa rdi zed wa s ap pl ied
next to the resul ts of the last operation. F ORTH was el imi nated
because i t i s not standa rdi zed to any extent.

The requi rement that the langua£e be ab l e to ca l l routines
written in other languages wa s ap pl ied next. Modula I I i s only
capab l e of ca l l i ng rout i nes written in MODULA I I � assemb ly , and
Pa sca l ; therefore, MODULA II wa s el imi nated.

The rema i n i ng la nguages , Ada , C , and FORTRAN I SA 61.1 passed
a l l rema l nl ng tests. An overview of each language i s p rovided i n
the appendi x.

RATING THE GENERAL-PURPOSE LANG UAG ES

Weights, Scores� and Fi gures of Merit

The fol l owi ng p roc edure wa s used to assign weights to the
technical features. The technical features were i ni tial ly ranked
accordi n g to thei r estimated importance. In order to p rovide an
a rb i t rary reference for compa rison, one feature, the so-ca l l ed
standard outcome (F s) � wa s selected at random from the set . The
features were randomly subdi vided i nto equa l -si zed groups of no
more than four. The standard outcome wa s added to eac h group .
The features of each group were assi gned in it ia l va l ues of
i mportance (Vi) i n relation to the standard outcome (Vs = I)
based on the author1s perception of SD S I I I requi rements. The
features of eac h group were then eval uated aga i nst each other by
compa r ing the feature wi th the largest Vi , say VI , aga i nst the

12

combined importance of the remai nder of the set : Fl versus (F2
AND F3 AND F4 AND Fs). If FI was found to be more important than
(F 2 AND F3 and F4 and Fs) , then VI was adjusted so that VI > V2 +
V3 + V4 + Vs. If F1 was not judged more important than the sum
of the others in the group , then the val ues in the group were
adjusted, if necessary , to reflect that fact. The top ranking
feature of each group was then e l i minated from consideration , and
the process of comparison was repeated for each group usi ng t he
next most highly rated feature agai nst the remainde r : F2 verSUS
(F3 AND F4 AND F s). The process was iterated one more time in
s i mi l ar fashion.

The values obtained for a l l feat ures were then compared to the
original order of importance. If the computed val ues conflicted
w i th the origi nal ranking , and the original order was judged
i ncorrect , the order of importance was modified to reflect the
computed val ues and the procedure was repeated. If the order was
judged to be correct , then the val ues were adjusted in their
respective groups. Thi s process was repeated until consistent
resul ts were obtai ned. In order to obtain a set of weights for
t he calcul ation of a fi gure of me r i t , the values were normalized
to sum to a val ue of 1 , 000 by dividing each val ue by the sum of
a l l val ues and multiplying by 1 ,000.

The features were weighted i n the fol l owing order.

FEATURE WEIGHT

I) Data type . 164.6

2) Control structures . . • • . • • . . • • • • • • • • . • • . . . • 146.3

3) Program support environment • . • . • • • . • • 134.1

4) Readabil ity 109. 7

5) Data structure • • • • • • • • • • • • • • • • • • • • 91.5

6) Data scope 73. 2

7) Extent of use • • . • • • • • • • • • • . . • • • • • . • • • • • 61. 0

8) Learnability 48. 8

9) Previous programer experience • • • • • . 42.7

1 0) Simplicity • • • • • • • • . . . • • • • • • • • • . . • • • • • • • • • • . 42.7

11) Fl exibility 3 6. 5

1 2) Systems programing • 3 0.5

13) Mu lti tasking • 18.2

Each l anguage feature was t hen assigned a score in the range of
o to 1 accordi n g to how w e l l i t ful fi l l ed the ideal l anguage
requirements di scussed under Selection Criteria. The scores were

13

references and the bibl i ography. Table 1 shows the individual
scoreS and figures of me rit.

Re su lts

Table 1 indi cates Ada w ith 710 points i s the c lear wi nner.
This i s not surpr i si n g since Ada was designed from the beginning
to embrace a l l three management criteria. Se cond, at 546 point s ,
i s FORTRAN 77 w h; ch scored very strongly ; n program support
envi ronment , extent of use , and prev ious programer proficiency.
Thi rd, at 483 points , i s PL/l wh ich scored slightly be tter than
F ORT RAN 77 in the areas of data typi ng, control structure s , and
data structure . PL/ l lost po i nts i n other areas such as program
support environme n t , s impl i city , and readab i l i ty. Last , w ith 472
points , was C which had mostly average scores except for data
type (score of 0.3) and systems program i ng (score of 0. 9).

T he proce ss of we i ghting and scor i n g the features was i te rated
several times to confi rm the re sul t s . Ada consi stently came out
on top by at least a margin of 1 2 5 pOints. The other languages
rema i ned re l ative ly c l ose togethe r , usua l l y with i n 75 points of
each othe r . Some pl ace changes occurred among the three
according to how the weights were applied, but the most common
rank i ng was I) Ada, 2) FORTRAN 77 , 3) PL/ I , and 4) C .

RATING TH E REAL-TIME LANGUAGES

We ights . Score s , and Fi gures of Merit

A new set of weights for te chni cal features was composed for
real -time requi rements. The we i ghti ng proce ss was executed i n
the same manner as for the ge neral -purpose l anguage s . The
fe atures were wei ghted i n the fol l owing order .

FEATURE W E I GHT

I) Systems programing • 1 58.8

2) Data type • 1 23 . 5

3) Control structures • 1 l 7.6

4) Program support environment • • • . • • • • • • • • • • • l11.8

5) Prev ious programe r experience • • • . • • • • • • • • . • 88.2

6) Mul ti taski ng • 70. 5

7) Data structure • 58 .8

8) Extent of use • 58.8

9) Data scope • 52. 9

10) Le arnab; l i ty • 47. 7

1 4

10) Learnability • 47 .7

1 1) Readabi lity • 47.7

12) Fl exibility • 41.2

13) Simpl icity • 23 . 5

The languages were scored on a scale of 0 to 1 according to how
well they fulfilled the ideal language requirements di scussed
under Selection Criteria . Table 2 shows the indivi dual score s
and figures of me rit.

Re sults

Ada was the superior language , scoring 685 points. Again , thi s
was not surpri sing because Ada was designed to be a managea ble
real -time language. FORTRAN 77 with the ISA real-time extensions
was rated second with a figure of me rit of 566 points; it scored
highly i n the a reas of extent of use , program support
e n vi ronment , and previ ous programe r experience. The language C
placed third with a figure of me rit of 468 pai nts. It l ost some
paints because of its poor data typing ability, lack of real-time
constructs , and lack of previous programe r experience.

The process of weight i ng and sc ori ng the features was repeated
seve ral times to ve rify the re sul ts . Ada consi stently came out
a head , fol lowed by FORTRAN, and C.

RECOMENDATIONS

F rom the results of the rating proce sse s , Ada i s the most
suitable language for both the gene ral -purpose and the real-time
a pplications softwa re. Howe ve r, a s stated in the Int roducti on ,
Ada i s not rea dily available . It wa s incl uded i n the study to
keep this report from becomi ng outdated immediate ly. It is
e xpected that many more compile rs and software tools will become
a vailable for Ada a s the date set by the DOD approac hes (DOD has
speci fie d that all advanced work wi l l use Ada by January 1984 a nd
all full-sca le engi nee ri ng work will use Ada by July 1984) .
Programing for the SO S III project is expected to begin somewhere
i n the summe r of 1984. The re is certai nly not muc h time for the
i ndustry to te st the capabilities of the language , but Ada i s
a l so said to be the most care fully de Si gned and impleme nted
language to date . The U .S . Ai r Force and the Intellimac
C o rporation have al ready begun using Ada to take advantage of the
l ong-range be nefits of portable , effective , and mainta i nable
softwa re. Soon Ada should be the lan gua ge of choice for 50S I I I
appl ications softwa re .

If. howe ve r , Ada i s not ready and available , then FORTRAfl 77 is
the next best choice for ge neral -purpose applications software.
Ca re must be taken with FORTRAN beca use there are many features
present in the language that go against the philosophies of
structured programing (arithme tic IF , GOTO, and COMMON) . There
a re a l so many fea tures which can keep the softwa re from be i ng

15

portable . An exce l l ent article by Larmouth (1981) descri bes the
features within FORTRAN that shoul d be avoided to keep the
software portabl e . FORTRAN 77 w i t h the standard rea l -time
extension (FORTRAN ISA 6 1 .1) i s recommended as the real -time
applications l anguage if Ada is not ready. When FORTRAN i s used
to develop the rea l -time software, the same pr ecautions must be
made to avo i d the nonportabl e FORTRAN 77 features.

To produce effect i v e , maintai nable so ftw are , a set of rules for
control ling software development should be created and enfo rced.
The boo k , Managi n g The Structured Techniques by Yo urdon (19 75) ,
presents some ways or-managlng software development. Some
examples of what the rul e s shou ld incl ude are:

1) The use of COMMON, arithmetic I F statements , and the GOTO
statement should be restricted fr om use (the GOTO
statement may be necessary ; n some instances , but shoul d
be used on ly as a l ast resort) .

2) Every variable shou ld be explicitly declared, and a l l
co nstants sho u l d be decl ared to be of type parameter.

3) All val ues passed into a subroutine should be explicitly
dec l ared.

4) A section shoul d be provi ded at the head of each rout i ne
that explains what the rout i ne does.

5) Each var i abl e , constant , array , etc. , shoul d be
accompanied by a definition as to what it represent s .

These are just some o f the rules that must be impl emented to
ensure that the resulting FORTRAN code wi l l be portabl e ,
effective , and easy to maintain .

ACKNOW LED GMENTS

I wi sh to express thanks to Gary Guenthe r , Davi d Enabnit , and
the enti re Applied Techno logy Group for their suppo rt in
rev iewing this paper.

16

REFERENCES

Anderson , G. L, and Schumate, K. CO! 1982: Sel ecti ng a
Programm i ng Language , Compi l er, and Support Envi ronment.
Computer, August.

Churchman , C. West . , AC koff, Russe l l l., and Arnoff, l eonard E . ,
1957: Introduction to Operations Research. John Wi l ey &
Sons, New York . - .----

De Marco, Tom ., 1978: Structured Analysis and System
Specifacation. PrentTCe Hal r, Englewood sLTiff, NJ .

E9 & G Washington Analytical Services, 19 8 3: Operati onal
Requi rements Baseli ne for Ship board Data System II I,
Rockvi l l e , MD., May 27

-
. - -- -

Kernighan , B. W., and Ri tchie, D. M ., 1978: The C Programmi ng
Language, Prentice Hal l , Engl ewoods Cliff, NJ .

-

Larmouth, J . , 1981 : Fortran 77 Portabi l i ty . Software Practice
and Experience, 11.

NOAA., 19 8 3: Functional Specifi cation Document. Naut i cal Chart
Branch, NOS. Request For Proposals, NA-84-RFP-00002 .

Yourdon, Edward., 1976: Managing The Structured Techni ques.
Prentice Ha l l, Engl ewood Cliff s, NJ.

Yourdon, Edward. , and Constantine , larry l ., 1975: Structured
Design: A Di scipline of Computer Desi gn . Prentice Hal l,
E nglewooa s cl, ff, NJ.-

Young , Stephen J . , 1982: Rea 1-Time languages: Des; gn and
Development. El l i s Harwood, Halsteaa -P ress (John W i ley &
Sons) , New York .

BIBLIOGRAPH Y

Abbott, R . J ., and Moorhead , D. K . , 19 82: Software Requ; rements
and Sp ecifications: A Survey of r�eeds and Languages. The
J ourna 1 of Systems and Softwa re, 2 .

Alford, Mark W., 1977: A Requirements Engineering Methodol ogy
f o r Real- Time Requ; rements. IEEE Trans. on Software
Engi neering , VOL. SF-3 , NO. -1 .- -

Babich, Wayne., Simpson , Richard., and Thal l , Ri chard., 1981:
The Ada l anguage System . Comp uter, J une.

Barron, D. W. , 1981: PASCAL - The Language and its
Imp lementation. John Wi l ey-& Son s , Ch i cester.-

17

Boom, H . J . , and De Jon g , E." , 198(l : A Critical Comparison of
Several Programmi n g Language Impl ementation s . Software -
Practice and Experienc e , 1 0.

Brender, Ronal d F. , and Nassi , Issac R . , 1981: What i s Ada?
Computer , June.

Brook s , Frederick P. , 1 975: The Mythical Man -Month:
Essays on Softw are En gineerlng. Add i son -Wesl ey.

Bul man , Dav id M. , 1 982: Is Ada the An swer? The Yourdon
Report, 6-6, 7-1.

-

Carlson , Wi l l i amE. , 1981: Ada: A Promi sing Begi nning.
C omputer , June.

Car l son , Wi l l i am L, 1 980: Introduc ing Ada. AC M Proceedings.

C herry , George W. , 1 982: Devel opi ng Software Wi th Ada. Seminar
notebook , The U. S. Professional Development In sti tute,
1 982.

Dickson , Chr i st i ne E., 1980: FORTRAN-80 Mixes With Other
Languages to Strengthen its Rea l -T ime Powers. Electronic
Des ign , January 4.

Dickson , Chri stine E . , 1979: Modern i zed FORTRAN Combines
Powerful I/O Wi th A Structure Til i l ored for Engi neering.
E l ectronic De s ign , September 1 3 .

Dic kson , C hristine E . , 1979: So l ve Number Crunch ing Probl ems
Wit h Mode rn i zed FORTRAN Prog ramS. El ect ron i c Des i gn ,
November 22.

._--

Dijkstra , E. W . , and Hoare, C . A. R . , 1972: Structured
Pro9 ramming. Academic, New York .

Evanczuck , Stephen . , 1 983: Real-Time Operating Systems.
E lectron i c s , March 24.

Fawcette, James E . (Editor) , 1982: Ada Goes To Wor k .
Defense Elect ronics , June.

Fel dman , Jerome. , 1979: Programming Languages. Sc ienti�ic
American , December.

Feve r , Al an . , and Gehanni , Ma rai n H . , 1982: A Compari son of the
Programmi ng Languages C and Pascal . AC M Computing Sur:veys ,
14 , 1 , March .

Freitas , Robert A. , and Carl son , Patric ia A. , (editors) , 1983 :
Computer Sc i ence: Key To A Space Program Renai ssance.
Institutional Needs , Status, and Recomendat ion s , 1.

1 8

Fulto n , Cynthia. , and Whi ffen, Ri chard . , 1980: Hi gh-level
languages Take on Mo st of Real -T ime System Software.
El ectronics , December 4.

Gel ler , Denn i s . , 1 983: Cod ing in Two languages Boosts Program
Rel i a bi l i ty. Electron ics Design , March 31 .

Ghezzi . Carlo . , and Jazayer;. Mehd i . , 1983: languages : Which One
Fo r Yo u? Software News, Apr; l .

Ghezz i , Carlo., and Jazayeri. Mehd i • • 1983: languages : Wh ich Ones
(and how many) Fo r Yo u? Software News , May.

Ghezzi , Carlo . , and Jazayer; , Mehd i . , 1983 : Language s : Which Ones
(and how many) Fo r You. So ftware News , Ju ly.

Gi l breath , Jim. , 1 981 : A Hi gh-level Language Benchma rk. BYTE,
Se ptember .

Gl i gor , Vi rgi l D. , 1 983 : Ba s ic Technologies for Real -Time System.
Fi nal Report , NOAA Co ntract No . NA-82-SAC -0064 8,
Internatlo nar Software Systems Inc. , Co l l ege Par k , MD.

Ha l l , Edwi n . , 1981 : Extended Pascal Adds Real -Time Mul t itasking
to lS I-ll Fami ly. Electron ic Des i g n , No vember 26 .

Hanco c k , Le s . , and Kreiger, Mo rri s . , 1q 82: The C Primer.
McGraw-H i l l , I lew Yo rk.

--

Hanso n , D. K. , 1981: Is Block Structure Necessary? Software
_ Practice and Experience , August.

Hartrich , Fo rd . , 1981 : FORTRAN Can Beat Pascal i n Control
Appl i cations. El ectron ic Oes ign , Ju l y 23 .

Hecht, Herbert . , 1 981 : Fi nal Repo r t : A Su rvey Of Software Too l
U sage. 't�;;.:;e'i-nc::cre and Technology , NBS pub 1 i cat i on
500- 82,

H i nden , Harvey J . , and Wendy J . , 1983: Real -Time Systems .
El ectron ic Des i g n , January 6 .

Ho gan , Thorn . , 1 982: Di scover FORTH : Learning and Programming
The yo rth Language , Mcgraw-Hl ii, Berkeley , CA.

Houghto n , Raymond C . , 1 983: Software Develo pment Too l s: A
Prof i l e . Computer, May.

Hunt , James W • • 1982: Programmi ng Languages. Computer,
Apr i l •

Jensen . , K. , and Wi rth, N. , 1 97 5 : Pascal user Manual and
Repo rt . Spri nger Verl ag, New Yo rk , New Yo rk .

19

John son , R. Co l in . , 1 981 : Specia l Report: Ada, The Ultimate
Language. E l ectron;cs � February 1 0 .

Lam i e , Edward L . , 1982: PL/l Programmin9 : A Structured Approach.
Wadsworth Publishing Co. , Belmon t , CA. -

Levanthal . Lance A. , 1 978: Introduction to Microprocessors :
Software, Hardware, Programmlng. p rentTCe Ral I, Englewoods
C l iff , NJ .

l inhart , Jason . , 1983: Managing Software Devel opment Wi th C .
BYTE, AU 9uSt.

Macdona l d , George. , (Canadian Hydrographic Service, Burl ington ,
On tari o , Canada) 1983: Automat ion Today - Sc ratching The
Twenty-One Year Itch. (unpubl i shed manuscri pt) .

Martin, Thomas . , 1978: Real-Time Programming Lan guage PEARL -
Concept and C haracteri st i c s , IEEE Cat. No. C H 1338-3/78/0000-
0301.

Marti n , T homas. , 1979: " PEARL at the Age of Three . " proceedings
of the International Conference on Software En gi neering.
I E E E Cat. No. CH 1479-5/ 79/000- 0100.

Merchant , Michael J . , and st,urgal , John R.o 1977: Appl ied
FORTRAN Programming Wi th Standard FORTRAN, WATFOR, WATF IV ,
ancr-str'uctured wA I f IV:--

Metz ger, Phi l i p W. , 1973 : Managing � Software Project.
Prentice Hal l , En glewoods C l iff, NJ .

Mil l s , Har lan D. , 1982: The Calcul us of Computer Programming.
Al lyn & Bacon Inc . , Boston:--MA .-- -

Madia, Andrew . , 1 983: To Pascal Interpeter , uC·s on -chi p ROM
i s Home . Electron ics , J uly 21 .

Montgomery , Charl es. , 1983: Pascal System Pl ugs Ho les i n uC
Programming. Electronics DeS ign , J uly 21 .

Perrot , R. H. , and Dhi l l on , D. S . , 1981: An Ex peri ment Wi th
FORTRAN and Pascal . Software - Practice and .Experience, 11 .

Samnet , Jean F. , 1969: Programming Languages. Prentice Hal l ,
Eng l ewood C l iff s , NJ . -----

Department of Defense, 1 980: Reference Manual for the Ada
Programm; n9 Language ..:. Proposed StandaraDOcumenC--

Rifkin , Edward M. , And Wi l l i am s , Steve . , 1983: The C Language :
Key to Portab i l i ty. Computer Des i g n , August.

R ipps , David L . , 1 983: Mul t i tasking OS Manages A Team of
Processors. Electron i� DeSign , J u ly 21 .

20

Ro berts , Bruce. , 1 983: The C La nguage. BYTE , August.

Ross , Douglas T., and Schoma n , Kenneth E. , 1 977 : Structured
Analysis for Requi rements Definition. IEEE Tra nsactions
o n So ftware Engi neering , Vo l . SF-3 , No-:---l," January.

Ross , Douglas T., 1977 : Re f lections on Requi rements . IEEE
Tra_ nsactions on So ftwa re Engineering , Vo l . SF-3 , No-:---T:"

Sc hi ndl er , Ma x. , 1983: Rea 1-Ti me Langua ges Speak to Control
Appl ications. E lectronic Desi�� , Ju ly 21 .

Shaw , Ma ry . , Alme, Guy T. , Newcome r , Joseph M. , Rei d , Brian K. ,
and Wui f , Wm. Aq 1981: A Co mpa rison o f Programmi ng Langua ges
fo r So ftwa re Engineering. So ftwa re - Practice and
Exper; ence , 1 1 .

--- -- - --

Specto r , Da vi d . , (Prime Computer, Frami ngham , MAo): Am b i guities
and Insecuri ties i n Modula I I . (unpubl ished ma n usc ript) .

Spencer. Bi l l • • 1983: C's Po i nter Mechanism Ra ises System
Throughput. El ectronic Des i gn , J u ly 7.

Stenning . Vic • • Frogga rt . Terry . , Gi l bert , Ro ger • • and Thomas.
El l is • • 1980: The Ada Env i ronment : A Perspecti ve.

Stotts . Pa ul Da v id • • (Department of Appl ied Ma thematics and
Computer Sc ience. Uni versity o f Virgi nia . VA .): A Compa ri t i ve
Study o f Concurrent Programmi ng La ngua ges . 21 pp.
(unpubl ished ma nusc r i pt) .

Sumner , Roger T . . and Gleaves , R. E. , (Vo l ition Sys tems , P.O.
Bo x 1 236 , Del Ma r , C A. 92014) : Mo dula I I - A So l ution to
Pasca l 's Probl ems . (unpubl ished ma nusc ript) .

Thomas . Rebecca • • 1 983: What is a Softwa re Too l . BYTE, August.

Wels h . J . , Sneeringer, M , J ., and Hoa re. C . A. R . , 1 977:
Ambi gui ties and Insecurities i n Pasca l . So ftwa re -
Practice and Experienc e , 11 . 6 .

W h i t e , James Wm . , 1 983: Real -Time FORTRAN. Rea l -Time ,
Me 1 1 ; champ, Va n Nost rand .

W h i tney. Al . , and Co nra d . Ma rvin C ., 1 983 : Ca l l FORT H Fo r
Rea l -Time Control Programming. Computer Desig n . Apr i l 2 1 .

Wi l l s . J . , 1 980: Computer Langua ges In Perspective. E lectronic
Engineeri n g . May .

Zei g l er . Stephen • • Al legre, Nico l e . , Johnso n , Ro bert . , and
Mo rris , James . , 1 981 : Ada fo r the Intel 43 2 Mic rocomputer.
Computer, June.

Zvegi ntzo v , Ni cho 1 as • • 1983: Na notrends . Datamati o n . August.

21

N
N

Table l--Computationo;; of the figur-es of me..-it for the general pLlrpo'5E> lconguagF.?s

Technlcal Feature

Data type

Figure of Merit = FOM
FIJM '" W€'l.ght * ScorE

Weight

164.6

Control strl .. 'ctt.lr E'S 146. "3

Program suppor t environment 134. 1

RE'adab! II ty 109.7

Data stl""ucture 91.5

Data scope 73.2

ENtent of Lise 61

Learnabillt.y 48.8

Previ eus programer" e,: per. 42.7

SimpliCIty 42 . 7

Flenibility :;6.5

f:iystems proqraml ng :�O. 5

Multitasking 18.2

Tot.al Flgl!rP.5 of MF.Jrlt

':'da
Score

.9

.85

.8

.8

.85

.9

• 1

.. '

0

.L

."

.8

. "

C
FD�l Score F()M

148.14 .-.:. 49.38

124.355 .6 87.78

107.28 " .,; 6"1.05

Ell.76 · ,) 32.91

77.775 ., 64.05

65.88 .4 29.28

6. 1 .4 24.4

1.4.64 .6 29.28

(> (J "

8.54 .6 2:',.62

:?9. ':? .8 ::'? :2

:04.4 • '? '27. 4�-J

J 6. �m · --' 5.46

!10.4�. 471.86

FORTRf,N 77

!::)r.:or !:!

. ".

.4

• 9�.l

.7

.4

.4

.9

,9

.9�i

.6

.4

. 1

.1

F-OM
--- ---

-,--�

'�:. �":2

5B.52

:�-1. 39�',

76. -19

.. 36.6

:'.9.28

54.9

43.9:'

40. �-"6�:'

2:'i.6�

1 'l. 6

3.0')5

I. 8�'

- -"-,, . .. _-

�J,"5. 98

PL.!l
5cor'E,> FOM

. � 49. �'8

.6 87.78

.6 8(1.4t,

. " 54.B:;',

.7 64.05

.6 4::>.92

.4 ��4. 4

.5 24.4

7 a.54

. �, 12.81

" "0 18. ��;'J

.4 U.2

.1 1. B:':

48:,�. B6

N
w

Table 2--Computations of the flgur-es of mer-it for- the r-eal-time l angLlag es

Techntcal Feature

Fi gur-e of Mer- i t � FOM
FOM � Weight * Scor-P

Weight
Ada

Score FOM
C

Scar-e
FORTRANf ISA

FOM �3r:or-e F[)M

---------- ------- -.------------------------ ---- - - -- ------------- ----- "-------, ,--

Systems progr-am i ng 1 5 8 . 8 . 8 1 2"1 . 04

Data type 12::; . 5 . 9 1 1 1 . 1 5

Contr-ol structures 1 1 7 . 6 . 85 99.96

Program support envi r-onment 1 1 1 . B . 8 89 . 4 4

Previous progr-amer E'xper. 8 8 . 2 'J 0

M u l t i tasfdng 7 0 . 5 . 9 6:3 . 45

Data structure 58 . 8 . 85 4 9 . 9 8

Extent o f Lise 58 . 8 • 1 5 . 8!3

Data scope 5 2 . 9 . 9 4 7 . 6 1

Learnab i l i t y 4 7 . 7 1 4 . 3 1

Readabi 1 i ty 4 7 . 7 . 8 38. 1 6

F J e �! i b i l i t y 4 1 . 2 . " 3 2 . 9 6

Simp l i c i t y 23 . 52 . 2 4 . 704

.,---------
Total Fl gllres of Mer- i t 684.644

. 9

. ::;

. ,:.

. 5

0

. 3

. 7

. 4

. 4

. 6

. "

. 6

l, 4 2 . 92

3 7 . 0 5

3 5 . 2 8

55 . 9

0

2 1 . 1 5

4 1 . 16

...,..,. .,...., L '-' . -'".

2 1 . 1 6

2 8 . 6 2

1 4 . J 1

3 2 . 96

1 4 . 1 1 2

468 . 1 4 2

• �I 79 . 4

. 2 24.7

. 6 1 0 . 5 6

. 95 1 06 . 2 1

. 5 44. 1

. 6 42. 3

. 4 23.52

. 7 4 1 . 1 6

. 4 2 1 . 1 6

. 9 4 7 . 9 3

, 3 3 . 3 9

. 6 2 4 . 72

. 0 1 1 . 76

.-- - - - --
565. 9 j

APPENDIX

Overview Of The Candidate Languages

T h i s appendix provides a b r i ef overview of each l anguage that
met the sel ection c riteria descri bed under METHODOLOGY. I n
add i t i o n , an ex amp le program accompanys each d i scuss ion . The
programs are an impl ementati on of the Si eve of Eratosthenes
a l gorithm, which computes al l of the prime numbers from 3 to
16 ,000. Thi s al gorithm, taken from the September 1981 i ssue of
BYTE, can be used as a benchmark for comparing programing
l a nguages.

Ada

Ada was devel oped by the D OD i n response to the growi ng cost of
software maintanence. The prel ;m; nary work on Ada began i n 1 9 7 5
with a series of competi t i ons i n which Honeywe l l Bull CTI was the
f i nal wi nner. DOD has set out to standardize the l anguage before
i t s off ic ia l rel ease. Th i s i s qu ite a different route from that
taken by other languages. In the past , l anguages were i ntroduced
to the market and wo ul d become st�ndard;zed several years l ater.
DOD has trademarked the name "Ada" so that no vendor may sel l a
compi l er using the Ada name unless the comp i l er has passed the
val idat i on test. Thi s ensures that Ada code wi l l rema in portabl e
by keepi ng nonstandard Ada compi l ers off the market.

Ada was origi nal ly targeted for real -t ime, embedded systems
(systems dedicated to one particul a r purpose , e .g . , fi re and
gui dance control for tank s , m i s s l e s , and ai rpl anes) , but it has
grown during devel opment to i ncl ude a l l programing envi ronments -
busi ness , sc ienti fic , and systems programi ng. As a resul t , Ada
has been criti zed as being much too l arge for an i nd i v i dual
programer to handl e. Ada supports structured programi ng and
provides many checks to hel p prevent "bad " programing practices.
The l anguage i s said to make programers code lithe Ada way " .

Ada provides bui l t -i n data type s , and the prec i s i on of numeric
data can be control l ed by the programer. Ada i s designed to be a
very secure l anguage (l ess prone to program i ng errors) i n that
cert a i n operations are dec l ared to be associated wi th certa i n
data types i n the header of the program. For i n stance, the
variables HE IGH T and WIDTH can be dec l ared to be of type I NCHES,
whereas variabl e AREA i s dec l ared to be of type SQUARE INC HES.
Then:

f unct i on" * .. (hei ght : 1 NCHES ; wi dth: INCHES)
return SQUARE INCHES ;

req u i res that a l l mul t i pl icat i on of i nches times i nc hes have
resul t s i n square i nches. The comp i l er wi l l check to make sure
t hat thi s rul e i s adhered to. Th i s i s i n strong contrast to most
l anguages which do not a l l ow use r-defined types. Ada provides
control structures simi l ar to Pascal , a spec i a l i zed ex it
statement to break l oops , and the GOTO statement. The l anguage
provides a rich set of un i t-l evel cont rol structures such as
procedu res , function cal l s , except ions , and concurrent

24

acti vati ons. Ada � l i ke PL/ l � has the abi l i ty to recover from
execut i on-time errors. Whenever an error i s encountered� an
except i on i s ra i sed . Several such as CONSTRAINT ERROR AND
NUMERIC ERROR are predefi ned. To prevent program execut i on from
stopp i ng when the excepti on i s rai sed . a "handler" can be
attached by the user to recover from the error.

Ada i s st i l l in i t s i nfant stages. Some author it ies say that
Ada wi l l become "the" l anguage, and others say that it wi l l f i nd
i t s n iche and remai n there. Only two comp i l ers at present have
been val i dated wi th many others i n wa i t i ng. Almost every major
computer manufacturer i s work i ng on an Ada compi l er or Ada
software too l s .

The fol l ow; ng ; s an imp 1 ementat i on of the Si eve of Eratosthenes
i n Ada :

-- A " 5 1 eve of Eratosthenes" program wri tten i n Ada.

with TEXT 1 0 ;
procedure S IEVE_OF_ERATOSTHENES i s

- - Dec l arat i on o f objects

SIZE ; constant INTEGER := 8 190;
type PRIME ARRAY i s array (0-• • SIZE) of BOOLEAN;
COUNT, PRIME : INTEGER_OF_ItHEREST;

--Procedure body

beg i n
package I NT 1 0 i s new TEXT 10. INTEGER 10
(I tITEGER O'INTEREST) ;
TEXT 10.PUr-L INE (" 10 i terat i ons ") ;
for ITER i n

-I • • 1 0 l oop
count :'" 0 ;
FLAGS : = (0 . , S IZE => TRUE) ;
for i ter i n 1 • • 10 l oop

i f FI ags (I) then
PRIME := I + I + 3;
K ; = K + PR IME;
wh i l e K (= S IZE l oop

FLAGS(K) := FALSE ;
K ; = K + PRIME ;

end l oop ;
count : '" count + 1 ;
-- INT IO. PUT (PR IME) ; -- For debuggi ng
-- TEXT 10. NEW LINE (SPAC I IIG = > 1) ; -- For debugging

end i f ; - -

end l oop ;
I NT 10. PUT (COUNT) ;
TEXT IO. PUT LINE ("primes ") ;

end S I EVEJiF _ERATOSTHENES ;

25

c

The programing l anguage C was devel oped by D.M. Ritchie and B.
Kernighan at Be l l Labrotories i n 1972 on a PDP-l l computer.
Though no formal standard ex; sts , C does fol l ow a "de facto"
standard as defined i n the book , "The C Programmi ng Language"
(Ritchie and Kernighan 1978) . Thelanguage conta l n s both hlghc
l evel and l ow-l evel features and has been termed a mi d-l evel
l anguage. It i s supported by a ful l set of development too l s
under the UNIX operating system.

The l argest appl i cation of C has been i n systems programi ng
(wri t ing compi l er s , edi tors , and operat ing systems) where it ;s
necessary to spec i fy particu l ar addresses or registers. Its
popul arity has increased ; n the past few years , especial l y wi th
software vendors , because of its portabi l i ty , effi ci ency , and
ease of use. A strong feature of C ; s i t s use of primi tive
el ements to construct powerful functions. Wi th thi s feature it
;s poss ib le to construct funct ions which are not present i n the
l anguage itself. These functions can then be stored i n a l i brary
as a standard for use by a l l programe rs. An examp l e woul d be
functions wh ich wou l d overcome the primi t i ve i nput/output
abi l it ies of C. In stead of gi v ing the programer every special
feature, C provides the basic bu i l di n g bl ocks wh ich can be
assemb l ed to perform many varied tasks.

C can specify the prec i s i on of i ntegers and real numbers ; data
types can be aggregated by array s , structures , and uni ons ; and
type conversions are appl i ed freely and automati cal ly. The
control structures REPEAT, WH ILE , and FOR are provi ded with the
possi bi l i ty of exit from a l oop wi th the use of the BREAK
statement. A l imi ted form of the CASE statement i s provi ded , and
the general GO TO statement i s avai l able. Functions and procedure
cal l s are the only unit-l evel control structures. Readabi l ity
can be a problem because of the exi stence of many di fferent ways
of stating the same concept and the possi bi l i ty of producing
extremely terse code. Un l i ke Ada , automatic type conversions are
a l l owed i n C.

The fol l owi ng is an impl ementati on of the Sieve of Eratosthenes
i n C :

/*Eratosthenes Sieve Prime Number Program i n C */
#defi ne true 1
#defi ne fal se 0
#define s i ze 8190
#define si zepl 8191

mai n () [

char fl ags[s izepl] ;

i nt i , prime , count , iter ;

pr intf (" lO i terati ons/n ") ;
for (i ter = 1 ; i ter (= 10 ; i ter ++) [

count = 0 ;
for (i = O J ; <= s i z e ; ; ++)

26

flags [i] = t rue :
for (i = 0 : i (= s i z e ; i ++) [

i f (fl ags[i J) [

J
J

pr ime = i + ; + 3 ;
k = i + p ri me ;

]

whi l e (k (= s i ze) [
fl ags[kJ = fal se;
k += prime ;
J

count = count + 1;

printf (lIjn%d primes" , count) ;
]

FORTRAN 77

FORTRAN ; s the ol dest l anguage eva luated in thi s report , and i s
probably the best known. FORTRAN was devel oped by IBM i n 1954 to
sati sfy the needs of the scienti fic community. It has been
through several standardi zat i o n s , the l atest one cal l ed FORTRAN
77. Th i s latest versi on i ncorporates some of the structured
design principles developed after i ts previ ous standardi zation in
1966.

The most notabl e change for FORTRAN 77 i s the additi on of the
I F , THEN, ELSE structure otherwise known as the I 'block i f " . Th i s
el im inates the need for the arithmet i c IF and reduces the need
for the use of the GOTO statement wi th the I F statement. In
addi t i o n , the abi l i ty to handl e character strings and to open and
cl ose fi l es easi ly has been added.

FORTRAN has a very l a rge support envi ronment. Thi s i s due to
FORTRAN bei ng the oldest and most popular l anguage among the
sc ient; fic community. (Because NOS has been us ing FORTRAN for
i t s appl ications in such areas as AIS , BSSS , Ma r ine Center data
processing programs , and Sea Beam for many years , there exi sts
within NOS a l a rge pool of programers fami l i ar wi th FORTRAN.)

FORTRAN i s not a secure l anguage , and it a l l ows programers to
write confu s i ng prog rams , espec ia l l y wi t h the use of the
EQUIVALENCE and COMMOII features. Automatic conversion of
variabl e types i s performed by FORTRAN. Type check ing between
subroutines i s not performed. In keepi ng with the ANSI standard,
a l l new versions must encompass the ol d versions. Thi s ensures
that exi sting FORTRAN software wi l l work wi th the new versi on.
Al l the l anguage features wh ich are nOW consi dered "bad " are kept
i n the l atest version. Exi sting NOS FORTRAN programs cou l d be
t ransferred to the new SOS I I I computers i f the code did not
ut i l i ze any l anguage extensions or cal l s to the operating system.
Much of this software, however, uses nonstandard extensions and
cal l s to the operati ng system. A S ign ifi cant amount of work
would be required to rev i se the software before it could run on a
d i fferent computer.

FORTRAN can be extended to take on rea l -time tasks wi th the use
of the extension FORTRAN ISA 61.1. The standards were devel oped

27

by a Purdue workshop to standardile a set of real -time subroutine
i nterfaces. The subroutines i ncl ude the abi l i ty to mani pul ate
b i t s , schedu l e tasks wi th the operating system , and provide
access to the cl ock .

The fo l l owing i s an impl ementat i on of the Sieve of Eratosthenes
written in FORTRAN.

* Eratosthenes Sieve Prime Number Program i n FORTRAN
LOGICAL FLAGS (8191)

*
INTEGER I , PRIME, K , COUNT, ITER

* PERFORM 10 ITERATIONS OF THE SIEVE
*

*

DO 92 ITER " I , 10
COUNT " 0

* I N I TIALIZE THE ARRAY TO TRUE
*

DO 10 I " 0 , 8190
FLAGS " • TRUE.

10 CONTINUE
*
* FIND ALL THE PRIME NUMBERS FROM 0 TO 8190
*

*

DO 91 I " 0 , 8190
IF FLAGS(I) THEN

PRIME " I + I + 3
K " I + PR IME

20 IF K .LE . 8190 THEN
FLAGS(K) " . FALSE.
K " K + PR IME

*

GO TO 20
ENDIF

ENDIF

COUNT " COUNT + 1
*
91 CONTINUE
92 CONTINUE
*

WRITE (I , 200) COUNT
200 FORMAT (IX, 16, , PR IME ')
*

STOP
END

PL/l

PL/l was introduced by IBM in 1965 as "the" programing
l anguage. It was designed for a wide vari ety of appl i cations
(bus ines s . scient i fi c , etc.) . PL/ l represents an attempt to
i ncorporate the best features of FORTRAN, COBOL, and Al gol 60
i nto a uni que mul t i purpose l anguage.

28

I BM put considerabl e effort i nto making thi s l anguage a success
much l i ke DOD i s doing wi th Ada , al though the si tuat i on i s
s l i ghtly di fferent si nce DOD i s the one buy i n g , not sel l i ng.
Acceptance of PL/l was not as great as IBM woul d have l i ked
because few compan i e s were wi l l ing to change l anguages. It has
not made any great i n roads i nto the business (COBOL) or
scientific (FORTRAN) commun it ies . The fu l l PL/I l anguage is very
l a rge and has been scaled down to a subset known as PL/l subset
G. Thi s subset was standardized in 1981 by ANSI and has been
i mpl emented on a number of di fferent computers. IBM of course
offers the most impl ementations of PL/l on its own computers .

PL/1 provides bu i l t -io data types for wh ich a vari ety of
attri butes may be speci fied (base, preci s i o n , bi t , and picture) .
Aggregate constructors i ncl ude structures (record) , arrays, and
pointers. The l anguage al so provi des the control structures IF,
THEN, ELSE, WHILE , and the GOTO statemeot. As far as support ing
structured program i n g , PL/l i s one of the better l anguages
avai l ab l e i n the i ndustry today.

PLjl seems to be IIhol ding onll but i s not making any great gai ns
i n i ndustry acceptance, especia l ly wi th the advent of Ada. The
fol l owi ng i s an impl ementation of the Si eve of Eratosthenes
program written in PL/l.

/* Eratosthenes Prime Number Program i n PL/ l*/
prime :

proc opt i ons(mai n) ;
#repl ace

dcl

s i ze by 8190,
fal se by ' O ' b ,
t rue by ' 1 ' b ;

f1 ags (0 : 8 1 9 1) bi t (J) ,
(i , prime, k . count , iter) fixed;

put l i st(' 10 i teration s ') ;
do iter = 1 to 10
count = 0;

end ;

do i = 0 t o s 1 ze ;
flags (i) = true ;
end ;
do i = 0 t o s; ze ;
i f fl ags (i) then

end ;

do ;
prime = i + i + 3;
k = i + prime ;

do whi l e (k <= s i ze) ;
f lags (k) = fa l s e ;
k = k + prime ;
end ;

count = count + 1 ;
end ;

put s k i p l i st (count , ' p rimes ') ;
end prime ;

29

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

Thr National Oceanic and Atmospheric Administration was established as part of the Department of
Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact
of natural and technological changes in the environment and to monitor and predict the state of the solid
Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical informa.
tion in the following kinds of publications:

PROFESSIONAL PAPERS-Important defini
tive research results, major techniques, and special
investigations.

CONTRACT AND GRANT REPORTS-Reports
prepared by contractors or grantees under NOAA
sponsorship.

ATLAS-Presentation of analyzed datQ. generally
. in the form of maps showing distribution of rain
fall, chemical and physical conditions of oeeans and
atmosphere, distribution of fishes and marine
mammals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS-Re
ports containing data, observation.!!, instructions,
etc. A partial listing includes data serials; predic
tion and outlook periodicals; technical manuals,
training papers, planning reports, and information
serials; and miscellaneous technical publications.

TECHNICAL REPORTS-Journal quality with
extensive details, mathematical developments, or
data listings .

TECHNICAL MEMORANDUMS-Report' of
preliminary, partial, or negative research or tech
nology results, interim instructions, and the like.

Information on availability of NOAA publlcationa can be obtained from:

PUBLICATION SERVICES BRANCH lEI A113)
NATIONAL ENVIRONMENTAL SATELLITE. DATA. AND INFORMATION SERVICE

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
U.S. DEPARTMENT OF COMMERCE

Washington, DC 20235

	NOAA Technical Memorandum NOS C & GS 1
	CONTENTS
	Abstract
	Introduction
	SDS III Performance Requirements
	Data Acquisition Capabilities
	Data Processing Capabilities

	Methodology
	Quantifying The Language Features
	Selection Criteria

	Filtering Out the Unsuitable Languages
	General Purpose Languages
	Real-Time Languages

	Rating the General-Purpose Languages
	Weights, Scores, and Figures of Merit
	Results

	Rating the Real-Time Languages
	Weights, Scores, and Figures of Merit
	Results

	Recommendations
	Acknowledgments
	References
	Bibliography
	Appendix - Overview of the Candidate Languages
	Ada
	C
	Fortran 77
	PL/1

	TABLES
	Computations of the Figures of Merit for the General-Purpose Languages
	Computations of the Figures of Merit for the Real-Time Languages

