
UNITED STATES
DEPARTMENT OF COMMERCE

M•lcolm B•ldrlg•, Secretuy

NOAA Technical Memorandum NOS NGS-39

HEART OF GOLD: COMPUTER ROUTINES FOR LARGE,
SPARSE, LEAST SQUARES COMPUTATIONS

Dennis G. Milbert

Rockville, Md.
April 1984

Reprinted May 1997

I N•llonml OcHnlc •nd I National Ocean Service I Charting and Geodetic Services

Almo•pherlc Admlnl•lr•tlon Paul M. Wolff. Asst. Administrator A. Adm. John 0. Bossler. Director
John V. Byrne. Administrator

NOAA Technical Memorandum NOS NGS-39

HEART OF GOLD: COMPUTER ROUTINES FOR LARGE,

SPARSE, LEAST SQUARES COMPUTATIONS

Rockville, Md.
April 1984

Reprinted May 1997

U.S. DEPARTMENT OF
COMMERCE I National Oceanic and

Atmospheric Admimstration I National Ocean
Service

Contents

Abstract.. 1

Introduction.. 1

Statement of the least squares problem 2

Application of HEART OF GOLD.. 7

Implementation features .. · 12

Summary. 16

Ref er enc es. 16

Appendix A. HEART OF GOLD function calls 18

ii

HEART OF GOLD: COMPUTER ROUTINES FOR LARGE,
SPARSE, LEAST SQUARES COMPUTATIONS

Dennis G. Milbert
National Geodetic Survey

Charting and Geodetic Services
National Ocean Service, NOAA
Rockville, Maryland 20852

ABSTRACT. A collection of routines for processing large,
sparse, least squares systems is described. The routines
are highly transportable and support structured development
of programs.

INTRODUCTION

A standard problem in the analysis of data is the least squares solution.
Large agencies may easily compute a hundred solutions each day, and even
small solutions involve more than one hundred parameters. Clearly, massive
computational resources are expended on least squares computations.

With the need to more efficiently compute least squares problems came
research to handle larger and larger equation systems. This research, as it
applies to the direct elimination method of solution, covered two areas:

1) Exploitation of the sparsity of large least squares problems by
the use of data structures.

2) Use of backing (auxiliary) storage to hold sections (pages) of the
equations until needed for computations in main memory.

The need for more computer resources, driven by a community much larger than
one which only performs least squares solutions, stimulated research in three
kev fields of computer science:

1) Development of Very Large Scale Integration (VLSI).

2) Creation of sophisticated computer operating systems which supported
multiprograming, multiprocessing, and virtual memory allocation.

3) Structured programing.

The work in VLSI has led to the development of both large and small
computers. Each type has impressive capabilities when compared to versions
only a few years old. The advances in operating systems have allowed more
efficient utilization of resources in a given computer system. The software
engineering techniques generally named "structured programing" address the
problems in software development and maintenance.

Research in computer science has made a far-reaching change in the environ­
ment of data analysis. Each day fewer people keypunch cards, submit them to

l

a computer operator, and wait for the printout. And, more people have access
to personal computers which can also function as terminals to a time-sharing
system for larger problems.

The proliferation of computers at all levels of capabilities has seriously
increased the problem of program conversion. With the price of hardware
dropping rapidly, the time and human resources involved in software
conversion, development, and maintenance have become key factors: Expressed
simply, "Chips are cheaper than people."

In this paper I describe a collection of subroutines for the creation,
solution, and inversion of sparse systems of equations for least squares
problems. I have named these routines HEART OF GOLD, after the Infinite
Improbability Drive powered starship from the novel, The Hitchhiker's Guide to
the Galaxy (Adams 1980).

The routines in the package were developed to meet particular research needs
of the author, and are presented here in the spirit that these routines may be
of more general use. These routines are currently implemented in the FORTRAN
77 language subset. No machine dependent features, no operating system calls,
and no assembly language routines are used in this package. The routines are
highly transportable. This software is available by contacting the National
Geodetic Information Center (N/CG174), National Oceanic and Atmospheric
Administration, Rockville, Maryland 20852 (telephone 301-443-8623).

STATEMENT OF THE LEAST SQUARES PROBLEM

The least squares problem is

minimize cp(X) ~ V(X) I 2:-l V(X)
Lb

(1)

where V(X) is a residual function (Dennis and Schnabel 1983). Con~ider the

method of observation equations (Mikhail 1976, Schwarz 1974, or Uotila 1967)

L
a

F(X)
a

(2)

where L is a vector of computed observation values of length n, X is a vector
a

of model parameters of length u, and F is a vector of functions that is a

theoretical model which describes the observations in terms of the parameters.

In this method

2

V(X)

where Lb is the vector of actual observations.

Assume model F(Xa) is not strongly nonlinear and the problem is a small

residual problem. These simplifying assumptions allow selection of the

Gauss~Newton method of solution.

The design matrix, A, is defined as

A 3F
ax

a x
a

x
0

where A is a matrix of differential changes in the observation model with

respect to the parameters, X , evaluated at a particular set of parameter
a

values, x
0

. A vector of observation misclosures is

L L - L b a

where Lb and La are described above.

Associated with the observation vector Lb is a symmetric

(3)

(4)

(5)

variance-covariance matrix L: which contains information on observation

Lb

precision and correlation.

The observation equation may now be written as

AX L + V (6)

3

where V is a vector of residual errors and X is a vector of corrections to the

parameter vector X . The least squares estimate of X is
a

x

This is a solution of the normal equations

NX = U

where the matrix of normal equation coefficients is

N
t"'-1
A~ A

Lb

and the right hand vector is

u

One technique for solution is to compute a Cholesky decomposition of the

normal matrix, N,

NX = RtRX = U.

The estimate of X provides a new set of values for our parameters by

4

(7)

(8)

(9)

(10)

(11)

x + x-x
a a (12)

If the observation model F(X) is nonlinear (that is, A is not constant for
a

any set of X), then the entire process, starting with eq. (2), must be
a

iterated until the vector X reaches a stationary point. a

Estimates of parameter precision and correlations are given by the

adjusted parameter variance-covariance matrix, I:x . This matrix is computed by
a

x
a

Of course, this matrix can always be scaled by an estimated variance of

(13)

unit weight, if such an estimate is felt valid. The user may also compute

the precision of any other quantity which can be derived from the parameters.

Suppose one wishes to compute a vector of quantities, S,

s S(X)
a

from the adjusted parameters, X • A geometry matrix, G, is defined as
a

G
x

0

(14)

(15)

where G is a matrix of differential changes in the functions, S, with respect

to the parameters, X , evaluated at a particular set of parameter values, X.
a

By the principle of linear error propagation,

5

I: GL Gt

s xa
or

L G (At~~lf Gt

s

wherel: is the variance-covariance matrix of the computed quantities.
s

(16)

(17)

This last equation is useful since its terms are quantities derivable

from the parameters. It could be used, for example, to computel: or l:L .
v a

Use of this equation assumes that the model is not too nonlinear, that the

parameter vector X has been adequately estimated by the method of least

squares, that the design matrix, A, and the geometry matrix, G, are known, and

that the variance-covariance matrix of the observations l:L is known.
b

Another useful quantity is the correlation coefficient, p, where

p
o ..

1]

o.. a . .
11 J J

(18)

and o is the value in the i-th row and j-th column of the adjusted parameter
ij

variance-covariance matrix,2: . These correlations can be thought of as a
Xa

normalized covariance, since

-1 s p s 1. (19)

Correlations between parameters that approach ±1 indicate ill-conditioning of

the system.

6

APPLICATION OF HEART OF GOLD

The HEART OF GOLD routines are able to process large least squares systems
by exploiting the sparse nonzero structure of a problem. Speed in execution
is attained by using a static data structure. Specifically, the rows of the
system are stored end-to-end in an array. The price paid for this rapid
processing is a requirement that the structure of each least squares problem
be known before the equations are accumulated and solved.

For this reason, HEART OF GOLD may be envisioned as a pair of modules. One
module performs the analysis of the structure of a least squares problem.
This structure is stored in an INTEGER array NX(). The other module performs
the computations using the structure determined by the first module. The
elements of the normal equations are stored in a REAL array A(). (Of course,
if the user requires more precision than is provided by the REAL data type on
a particular machine, then the routines can be easily modified to accommodate
the DOUBLE PRECISION data type.)

Appendix A contains a highly detailed description of the HEART OF GOLD
function calls. The reader may wish to refer to the appendix while reading
the following material.

Structure Analysis of a Least Squares Problem

It is easily shown that the normal equations for a least squares problem are
symmetric. The first step in exploiting structure is to save only the upper
triangular (or lower triangular) portion of N (eq. 9). The model parameters,
X, can be ordered so that the nonzero elements will fall in a diagonal band
whose width is small with respect to the rank of the system (minimize
bandwidth). Figure l shows an example of this band storage structure. Here
the programer processes a system where all the nonzero elements fit into a
bandwidth of three. This structure can be completely described by storing
the array indices of the diagonal elements in an INTEGER index array, NX().
Clearly, if the bandwidth is one, then the system is strictly diagonal. And
if the bandwidth is equal to the order, then the system is full, and sparsity
is not exploited.

The index array NX() can be computed by executing the function BAND. The
only knowledge required is the order of the system and an adequate bandwidth.
If BAND returns a false value, then insufficient storage was allocated to
NX(). As can be expected, the execution of BAND is very rapid.

Research has shown that even greater savings in storage and execution times
can be achieved by using a variable bandwidth (profile) structure (Jennings
1977). Figure 2 illustrates the variable bandwidth scheme. As with the fixed
bandwidth scheme, the structure is completely described by the index array
NX().

Since it is not reasonable to expect the user to have prior knowledge of an
optimum profile for a given least squares problem, HEART OF GOLD includes
functions to determine a near-optimum profile. The user will first initialize

7

1 2

4

FIXED BANDWIDTH

STORAGE SCHEME

BANDWIDTH = 3

3

5 6

7 8 9

10 11

13

12

14

16

22

23

24

25

15 26

17 18 27

19 20 28

21 29

30

Figure 1.--Fixed bandwidth storage structure.

8

DIAGONAL
INDEX

1

4

7

10

13

16

19

21

30

STORAGE SCHEME

1 2 3 21

4 5 6 7 8 9 22

10 11 23

12 13 14 24

15 25

16 17 26

18 19 27

20 28

29

Figure 2.--Variable bandwidth storage structure.

9

DIAGONAL
INDEX

1

4

10

12

15

16

18

20

29

the NX() array, then accumulate connectivity information, and finally analyze
the structure.

The structure is initialized by calling OPENG. Knowledge of the order of
the system is required. Connectivity information is provided by repeated
calls of the function ADDCON. An INTEGER array IC() must be furnished which
holds the indices of the nonzero coefficients of a given observation equation.
If ADDCON returns a false value, then insufficient storage was allocated to
NX(). Once all the connections have been accumulated, a near-optimal
structure is determined by a call to subroutine REORDR.

One disadvantage of analyzing the connectivity is that it takes longer than
a simple invocation of BAND. However, this disadvantage is offset by
requiring less knowledge about a given least squares problem. The structure
of a least squares problem (either fixed or variable bandwidth) depends upon
how the parameter indices are associated with the model parameters. Structure
will vary as the user permutes (reorders) the parameters. The structure
analysis performed in REORDR permutes the parameter indices to give a

·near-optimal profile and stores this profile in NX(). In addition, tables are
computed which relate the user parameter indices to the internal parameter
indices that produced the near-optimal profile. The user need never consider
the internal indices.

Solution of a Least Squares Problem

Once a structure has been determined by invocation of BAND or REORDR, the
least squares problem is ready to be solved. The normal equations are
initialized by calling function OPENN. It returns a false value if
insufficient storage was allocated to A().

The observation equations are accumulated one at a time into the normal
equations by repeated calls of the ADDOBS function. The user supplies the
INTEGER array IC() that holds the indices of the nonzero coefficients for a
given observation equation. A REAL array C() that holds the nonzero
coefficients themselves must also be provided, as well as the weight, wr, of
the observation equation, and the misclosure, OBS, computed by eq. (5).
Observation equations may be accumulated in any order. ADDOBS returns a false
value if the structure defined earlier cannot hold the observation equation.
In this circumstance, the programer must use a larger bandwidth or a different
scheme of numbering the parameters or actually analyze the structure using
the HEART OF GOLD routines.

In some instances, sets of correlated observations must be processed rather
than uncorrelated observations. The coefficient array C() is now two
dimensional, where the second dimension spans all the correlated observations
in the set. The misclosure, OBS(), is now an array with a length of the
number of correlated observations, and the weight, WT, is replaced by the two
dimensional variance-covariance matrix, SIGOBS(). This array holds the
covariance information. The call to function ADDCOR will decorrelate the set
of observation equations and accumulate them into the normal equations.
ADDCOR will return a false value if an incorrect variance-covariance matrix is
supplied or if an incorrect structure is being used.

Once all the observations have been processed, the system is solved using a
Cholesky factort~ation by calling function SOLVE. It will return a false
value if the system was never initialized by OPENN, or if singularities were

10

encountered. A singularity is detected by using a small, positive singularity
tolerance, TOL, supplied by the user. The number of singularities is returned
in LSING. The parameter index numbers are returned in an array, ISING(), and
the associated normalized diagonal values are returned in an array, GSING().
The singularities are repaired by replacing the singular diagonal with a large
positive number. This is equivalent to constraining that singular unknown to
its preliminary value. The Cholesky factor and the values of the corrections
to the model parameters replace the normal equations in the structure in all
cases. Of course, if the system is singular, then the user must be cautious
in the use of the model parameter corrections or any other quantities derived
from the singular Cholesky factor.

The values of the parameter corrections may be retreived by calling function
GETA. A row (or column) of IORDR+l should be included. The column (or row)
will be the parameter index. In fact, GETA can be used to inspect any element
of the normal equations or Cholesky factor by supplying the appropriate row
and column indices, I & J. GETA will return a false value if the requested
element is not in the profile.

Elements of the normal equations may be overwritten by a complementary
function, PUTA. It will return a false value if the element to be replaced is
not in the profile. PUTA should be used with caution, since an incorrect
value can inadvertently change the normal equations. Use of ADDOBS or ADDCOR
will accumulate the sum of the squared, weighted misclosures in location
(IORDR+l,IORDR+l). Calling SOLVE will also compute the sum of the squared,
weighted, linear residuals and store this value in the same location. This
quantity could be monitored in an iterative solution to indicate convergence.

On rare occasions, the need arises to solve the same system with a new right
hand vector (eq. 10), U, computed from a new misclosure vector, L. In these
situations, the work involved in computing the Cholesky factor can be
retained. Repeated calls of PUTA are required to place the new elements of
the right hand vector, U, into the system. Calling function RESOLV computes a
new set of parameter corrections, X, for the new system. RESOLV returns a
false value if the equations have not yet been factored by SOLVE.

Analysis of a Least Squares Problem

In addition to the solution vector, X, of a least squares problem, the
programer of ten needs statistics about the solution. One useful element is
the variance of a parameter, which is on the diagonal of"' • Hanson (1978) ""-•x

a
has shown the inverse elements of the normal equations can be computed within
the profile in place, at no greater cost than in computing only the diagonal
elements of the inverse. Calling the function INVERT comp1utes the inverse
within profile from the Cholesky factor. GETA can then be used to inspect the
elements of the variance-covariance matrix of the adjusted parameters (eq.
13). INVERT returns a false value if the equations have not yet been factored
by SOLVE.

Other advantages accrue from computing all the elements of the inverse
within the profile. If desired, variance of quantities can be computed and
can be derived from the parameters. Among the quantities which can be so
determined, without involving any elements of the inverse outside the profile,
are variances of the adjusted observations and variances o:f the residuals.
This computation is known as error propagation, and is governed by eq. (16).

11

The variance of a quantity, VAR, can be computed by calling function PROP.
The user must supply the coefficient array, C(), and the associated index
array, IC(), for the linearized equation. Similarly, the covariance between
two equations, COV, is computed by calling function PROPCV. The user supplies
two coefficient arrays, Cl() and C2(), and associated index arrays, IC!() and
IC2(), for the pair of linearized equations. PROP and PROPCV return a false
value if the system has not yet been inverted by INVERT or if the computation
requires covariance elements not stored'within the profile.

Finally, the user may desire to compute the correlation coefficients for all
the elements within the profile. This is done by calling function CORR. It
returns a false value if the system has not yet been inverted.

IMPLEMENTATION FEATURES

In this section I will cover a few points on HEART OF GOLD, and present
information useful to the advanced user of these routines.

Transportability

Great care was taken to ensure HEART OF GOLD was implemented in the American
National Standards Institute (ANSI) standard ANSI X3.9-1978 (FORTRAN 77). As
of this writing, HEART OF GOLD has been compiled in APPLE FORTRAN (APPLE), VS
FORTRAN (IBM), FORTRAN level lORl (UNIVAC), and FORTRAN 77 (HP) with no
editing required and no error messages generated. The proliferation of
computers and language variants makes strict adherence to the ANSI standard
the central virtue of HEART OF GOLD.

Data Abstraction and Modularity

One of the major advances in computer science in the past two decades has
been development of "structured programing" techniques. Two ideas imbedded in
HEART OF GOLD are those of data abstraction and modularity. Data abstraction
separates the logical view of the data from the internal storage structures
(Isner 1982). Modules perform specific tasks and make a minimum number of
"assumptions" about processes in other parts of a program (Turner 1980).

It can be seen from the earlier section on application, that two data
abstractions are used in HEART OF GOLD. The structure and connectivity of the
least squares problem are managed by OPENG, ADDCON, REORDR, and BAND. The
accumulation, solution, and analysis of the least squares problem is managed
by the remaining routines. A knowledge of internal storage structure is not
needed to use HEART OF GOLD. However, some knowledge is helpful in selecting
between fixed and variable bandwidth for a particular least squares problem.

It may also be inferred that HEART OF GOLD is a pair of modules.
operates on structure. The other module operates on the numbers.
are constructed from the way in which the least squares problem is

One module
The modules
abstracted.

To allow the user ease in discarding routines not needed for a particular
problem, the modules were designed as subprograms sharing common variables.
The equation module uses a COMMON block named DENNIS, and the structure module
uses a COMMON block named KATHY (named after the author and his wife). These
COMMON blocks carry "housekeeping" details not needed by the user. Storage of

12

data in this fashion is known as "information hiding," a concept derived from
data abstraction and modularity.

The idea of information hiding has been deliberately violated in HEART OF
GOLD. This was done by giving the user access to A() and NX(), primarily to
achieve transportability by strictly conforming to the FORTRAN 77 standard.
An advanced user may access A() and NX(). For most applications, however, the
programer will not directly access the arrays except by use of functions GETA
and PUTA.

Whenever an operation on the structure or the equations had the potential of
failure, this fact was always signaled back to the calling routine. This was
done by writing most of the HEART OF GOLD subprograms using a LOGICAL
FUNCTION, allowing the user to detect and handle errors with nicely structured
code. For example,

IF(.NOT.INVERT(A,NX)) THEN
WRITE(6,'('' PROGRAMMER ERROR -- EQUATIONS NOT INITIALIZED'')')
STOP 666

END IF

The IF() THEN ••. ELSE ••. ENDIF structure is also useful for error handling.
A LOGICAL FUNCTION supports "defensive programing," and leads to more robust
software.

Memory Management

Advances in VLSI and computer operating systems have greatly changed the
computational environment. In the past, throughput on a mainframe was linked
to the user, minimizing the amount of random-access memory (RAM) required.
This led to development of software which would page the normal equations in
and out of backing storage, while it accumulated and solved the equations
(Dillinger 1981). With personal computers, a user now has exclusive access to
128K bytes or more of RAM. One personal computer is shipped with one full
megabyte of RAM. On these systems, the user would simply allocate A() and
NX() to be as large as desired.

Mainframe computing has kept pace by development of virtual operating
systems. These systems automatically transfer programs and data between two
or more memory levels (Schmitt 1983). These have greatly increased address
space in a mainframe, and lowered programing costs by eliminating the need for
manual overlays and data transfer. A user should again allocate A() and NX()
as large as desired on virtual systems.

A piece of folk wisdom from the early days of virtual systems was: "A user
can page memory to backing storage better than the operating system, since the
user knows more about his or her problem." This statement can be debated on a
number of levels. A virtual system will page memory on a global basis,
increasing total throughput, while a user can only invoke some strategy local
to the particular least squares problem. Now, virtual systems have special
hardware, computer architectures, and input-output channels for address
translation and memory paging. Paging strategies for virtual systems are
based on some variation of locality of reference, where the seldom accessed
memory segment is paged out first. The HEART OF GOLD storage structures
(either fixed or variable bandwidth) support a locality of reference paging
strategy. If the reader envisions a Cholesky factorization proceeding

13

row-by-row on the row storage structure, one finds excellent locality of
reference. Any user defined strategy would not significantly deviate from
paging by the virtual system. User paging is hampered by address translation
in the software and by the slow speed of normal input-output. The latter
drawback can be alleviated somewhat by doing input-output without buffers or
by allocating larger buffers. Input-output without buffers is invariably
system dependent. It requires assembly language routines or special operating
system calls, which degrade the transportability of the software. Allocation
of large buffers on a virtual system will lead to two levels of paging. The
virtual system will page the buffers and the normal equations which are, in
turn, paged by the user.

Storage Structure

The information in this section is intended for advanced users of HEART OF
GOLD. Reference to George (1981) is helpful.

The user can easily envision how to compute the diagonal indices for a fixed
bandwidth, when given the order of the system and the bandwidth, by examining
figure 1. So, I will concentrate on the variable bandwidth (profile)
structure of figure 2. Here the diagonal indices are trivially computed from
the row widths. The row widths can be detemined by processing an adjacency
structure {George 1981: 41-42). However, an adjacency structure is best
determined from a connection table, since a connection table is easily updated
while an adjacency structure is not. As seen in figure 3, NX() is partitioned
by HEART OF GOLD into several segments.

! IHEAD NBR LINK ! NBRLST ! NBRPNT

Figure 3.--Memory partition for connectivity accumulation.

IHEAD is of length IORDR, NBR is the length of two times the maximum number
of edges (IEMX), and LINK is of length IEMX. These three segments hold the
connection table built by function ADDCON. Upon calling REORDR, the
connection table is translated into an adjacency structure. This is stored in
NBRLST of length IEMX and in NBRPNT of length IORDR+l. The user does not need
to provide IEMX. It is computed as a maximum to utilize all the storage
available to NX().

Recall that the row width and storage structure vary with the order of the
parameters, even though the connectivity and adjacency do not. HEART OF GOLD
uses a Cuthill-McKee ordering of the unknowns computed by the algorithms and
routines presented in George (1981). This ordering scheme was selected
because of the low processing times found by George (1981: 277-294). A
Cuthill-McKee order for a row storage structure is identical to a Reverse
Cuthill-McKee order for a column structure. By envisioning the normal
equations in the lower triangular form, these orders are identical to a
Reverse Cuthill-McKee order for a row structure, and a Cuthill-McKee order for
a column structure.

In the Cuthill~McKee computation, NX() is repartitioned as shown in
figure 4.

14

! Reserved ! NEWORD ! MASK ! LDEG ! Unused ! NBRLST ! NBRPNT

Figure 4.--Memory partition for Cuthill-McKee computation.

The reserved area is of length IORDR+l. NEWORD holds the Cuthill-McKee
order, and is of length IORDR. NEWORD determines an internal index number
from a user-provided index number. Both MASK and LDEG are used by the reorder
algorithms, and are of length IORDR. NBRLST and NBRPNT continue to hold the
adjacency structure.

After the Cuthill-McKee computation, NX() is again repartitioned as shown in
figure 5.

I PROF ! NEWORD ! INVORD ! Unused

Figure 5.--Memory partition after reordering.

The order in NEWORD is inverted and stored in INVORD, which is of length
IORDR. INVORD determines a user-defined index number from an internal index
number. The profile is stored in IPROF, and is of length IORDR+l. As
mentioned before, IPROF is determined from the row widths, which are
determined from the adjacency structure still stored in the high end of NX().

It is seen that the NX() returned by REORDR holds not only the profile
(IPROF), but also translation tables (NEWORD and INVORD) 'Which relate the user
parameter indices to the internal parameter indices. The remaining storage is
no longer accessed by the HEART OF GOLD routines. The advanced user may wish
to store the A() array in the unused portion of NX() by using a memory
overlay. This would be done by

EQUIVALENCE (A(l),NX(l))

and by always referencing A() with a constant offset, IOFFST. For example, to
initialize the normal equations,

IF(. NOT. OPENN (A(IOFFST) ,NX, IORDR, LENG-IOFFST)) THEN ••••

A() may be single precision, double precision, or even extended double
prec1s1on. NX() could be long integer or short integer. So the value of
IOFFST will depend upon a particular application and the number of INTEGER
words that may be stored in a REAL word.

In some least squares problems, the parameters are "clustered." For
example, parameters might be coordinates (latitude, longitude, height). These
parameters would always·appear as a trio in any observation equation.
Substantial savings in the structure analysis can be realized by accumulating
connections and computing Cuthill-McKee order for the coordinate triplets
themselves, rather than for individual parameters. In such a case, IORDR

15

passed in OPENG would not be the order of the least squares problem, but
rather would be the number of coordinate triplets. When calling ADDCON, IC()
would contain triplet indices rather than parameter indices.

Naturally, after calling REORDR, NX() will hold a profile and translation
tables for the triplets. The profile and tables will have to be converted to
their appropriate representations for parameters before invoking OPENN.
However, the conversion should take less processing than the full structure
analysis of a large least squares problem. The user may also be faced with a
"variable clustering" problem when dealing with quadruplets, pairs, and
single parameters as well as triplets. For example, the problem may require
solving a number of instrument scale errors and constant biases, as well as
coordinates. The instrument parameters cluster in pairs, and the coordinate
parameters cluster in triplets.

Such issues complicate the conversion to a parameter structure, and will
vary with each application. The user must determine if exploiting parameter
clustering is worthwhile. HEART OF GOLD was written as two modules to allow
this flexibility. Of course, this feature is optional. Normal invocation of
HEART OF GOLD, where each parameter is single, will work correctly.

SUMMARY

HEART OF GOLD is a pair of modules which perform the structure analysis and
the solution of large, sparse, least squares problems. The routines are
designed to encourage good programing practices, yet allow the advanced user
to directly access the structure and normal equation elements. Two
structures, a fixed and a variable bandwidth, and one reordering algorithm are
provided. Of course, the user could develop other reorder algorithms, and
replace the appropriate elements of the structure array, NX(). Great care has
been taken to adhere to the ANSI standard, and not to use system dependent
features in the implementation of HEART OF GOLD.

REFERENCES

Adams, Douglas, 1980: The Hitchhiker's Guide to the Galaxy. Pocket Books
division of Simon & Schuster, New York, N.Y., 215 pp.

Dennis, J. E. and Robert B. Schnabel, 1983: Numerical Methods for
Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 378 pp.

Dillinger, William H., 1981: Subroutine package for large, sparse, least
squares problems. NOAA Technical Memorandum NOS NGS 29, National
Geodetic Information Center, NOAA, Rockville, Md. 20852, 18 pp.

George, Alan, 1981: Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Inc., Englewood Cliffs, N.J., 324 pp.

Hanson, Robert H., 1978: A pqsteriori error propagation. Proceedings of the
Second International Symposium on Problems Related to the Redefinition of
North American Geodetic Networks, Washington, D.C., 427-445. National
Geodetic Information Center, NOAA, Rockville, Md. 20852.

16

Isner, John F., 1982: A programming methodology based on data abstraction.
Bulletin Geodesique, 56(2), 149-164.

Jennings, Alan, 1977: Matrix Computation for Engineers and Scientists.
John-Wiley & Sons, New York, N.Y., 330 pp.

Mikhail, Edward M., 1976: Observation and Least Squares, IEP Dun-Donnelley
publisher, New York, pp. 285-288.

Schmitt, Stephen, 1983: Virtual memory for microcomputers. Byte, 8(4),
210-238.

Schwarz, Charles R., 1974-75: Adjustment computations (lecture notes),
Department of Geography and Regional Science, George Washington
University, Washington D.C.

Turner, Joshua, 1980: The structure of modular programs. Communications of
the ACM, 23(5), 272-277.

Uotila, Urho A., 1967: Introduction to adjustment computations with matrices
(lecture notes), Department of Geodetic Science, Ohio State University,
Columbus, Ohio.

17

APPENDIX A, --HEART OF GOLD FUNCTION CALLS

LOGICAL = BAND(IORDR,NX,NXLENG,LBAND)

CALL OPENG(IORDR,NX,NXLENG)

LOGICAL = ADDCON(IC,LEN,NX)

CALL REORDR(NX)

LOGICAL = OPENN(A,NX,IORDR,LENG)

LOGICAL = ADDOBS(C,IC,LEN,OBS,WT,A,NX)

LOGICAL = ADDCOR(C,IC,OBS,SIGOBS,LUNK,LOBS,A,NX,IFLAG)

LOGICAL = SOLVE(A,NX,TOL,ISING,GSING,LSING)

LOGICAL = GETA(I,J,VAL,A,NX)

LOGICAL = PUTA(I,J,VAL,A,NX)

LOGICAL = RESOLV(A,NX)

LOGICAL = INVERT(A,NX)

LOGICAL = PROP(C,IC,LEN,VAR,A,NX,IFLAG)

LOGICAL = PROPCV(Cl,IC1,LEN1,C2,IC2,LEN2,COV,A,NX,IFLAG)

LOGICAL = CORR(A,NX)

LOGICAL = IN(I,J,NX,INDEX)

18

LOGICAL FUNCTION B~TD(IORDR,NX,NXLENG,LBAND)

FUNCTION:

BAND

IORDR

NX

NXLENG

LBAND

Determine the profile using a fixed bandwidth.

Success of the profile computation. Output, LOGICAL.
TRUE Profile computed.
FALSE -- Insufficient storage allocated to NX.

(Increase NXLENG to 3 * IORDR + 1)

Order of the normal equations. Input.
INTEGER scalar variable

Index vector to describe the profile. Input.
INTEGER array, length of NXLENG

Length of the index vector. Input.
INTEGER scalar variable

Fixed bandwidth for the profile. Input.
LBAND must be between 1 and IORDR inclusive.
INTEGER scalar variable

19

SUBROUTINE OPENG(IORDR,NX,NXLENG)

FUNCTION:

IORDR

NX

NXLENG

Initialize the connection matrix for profile determination.

Order of the normal equations. Input.
INTEGER scalar variable

Index vector to describe the profile.
INTEGER array, length of NXLENG

Length of the index vector. Input.
Allocate at least 6 * number of unique connections + 2 * IORDR
INTEGER scalar variable

LOGICAL FUNCTION ADDCON(IC,LEN,NX)

FUNCTION:

ADDCON

IC

LEN

NX

Accumulate observation equation connections into the profile
array.

Success of the accumulation of the connections. Output,LOGICAL.
TRUE All connections accumulated.
FALSE -- Insufficient storage allocated to NX.

(Increase NXLENG in subsequent OPENG)

Parameter index of the observation equation. Input.
INTEGER array, length of LEN.

Length of the parameter index array. Input.
INTEGER scalar variable.

Index vector describing profile.
INTEGER array, length of NXLENG

SUBROUTINE REORDR(NX)

FUNCTION:

NX

Determine a minimum profile by internal reorder of parameter
indices.

Index vector describing profile.
INTEGER array, length of NXLENG

20

LOGICAL FUNCTION OPENN(A,NX,IORDR,LENG)

FUNCTION:

OPENN

A

NX

IORDR

LENG

Initialize the normal equations

Success of the initialization. Output, LOGICAL
TRUE Equations initialized
FALSE -- LENG, length of storage, incompatable with profile

requirements

Elements of the normal equations
REAL array, length of NX(IORDR+l)+IRANK

Index vector describing profile
INTEGER array, length of NXLENG

Order of the normal equations. Input
INTEGER scalar variable

Length of the normal equation array, A. Input
Must be greater than or equal to the value of NX(IORDR+l)+IORDR.
INTEGER scalar variable.

LOGICAL FUNCTION ADDOBS(C,IC,LEN,OBS,WT,A,NX)

FUNCTION:

ADD OBS

c

IC

LEN

OBS

WT

A

NX

Accumulate an observation equation into the normal equations.

Success of the accumulation of the observation equation. Output.
TRUE All elements accumulated within profile.
FALSE -- All elements not within profile.

(CAUTION: Normal equations damaged)

Coefficients of the observation equation. Input.
REAL array, length of LEN.

Parameter index of the observation equation. Input.
INTEGER array, length of LEN.

Length of the observation equation arrays. Input.
INTEGER scalar variable.

Misclosure of the observation equation. Input.
REAL scalar variable.

Weight of the observation equation. Input.
REAL scalar variable.

Elements of the normal equations.
REAL array, length of NX(IORDR+l)+IORDR

Index vector describing profile. Input.
INTEGER array, length of NXLENG

21

LOGICAL FUNCTION ADDCOR(C,IC,OBS,SIGOBS,LUNK,LOBS,A,NX,IFLAG)

FUNCTION:

ADDO BS

c

IC

OBS

SIGOBS

LUNK

LOBS

A

NX

IFLAG

Accumulate correlated observation equations into the normal
equations.

Success of
TRUE

the accumulation of the observation equations. Output.
All elements accumulated within profile.
SIGOBS is not positive definite. FALSE (IFLAG

FALSE (IFLAG
1)
2) All elements not within profile.

(CAUTION: Normal equations damaged)

Coefficients of the observation equations. Input.
One row for each observation equation, length of LOBS.
One column for each parameter, width of LUNK.
Two-dimensional REAL array, C(LOBS,LUNK)

Parameter index of the observation equations. Input.
INTEGER array, length of LUNK.

Misclosures of the observation equations. Input.
REAL array, length of LOBS.

Positive definite covariance matrix of the obs. equations. Input.
One row and one column for each observation equation, length and
width of LOBS.
Two-dimensional REAL array, SIGOBS(LOBS,LOBS).

Number of parameters in the observation equations. Input.
INTEGER scalar variable

Number of observation equations. Input.
INTEGER scalar variable

Elements of the normal equations.
REAL array, length of NX(IORDR+l)+IORDR

Index vector describing profile. Input.
INTEGER array, length of NXLENG

Failure
I FLAG
IFLAG
IFLAG

return code. Output.
0 Successful accumulation.

= 1 SIGOBS is not positive definite.
2 All elements not within profile.

(CAUTION: Normal equations damaged)
INTEGER scalar variable

22

LOGICAL FUNCTION SOLVE(A,NX,TOL,ISING,GSING,LSING)

FUNCTION:

SOLVE

A

NX

TOL

ISING

GS ING

LS ING

Cholesky factor and solve the normal equations.

Success of the Cholesky factorization and solution. Output.
TRUE Successful factor and solution.
FALSE (LSING=O) Attempt to solve non-initialized system.
FALSE (LSING#O) Singularities encountered.

Elements of the normal equations.
REAL array, length of NX(IRANK+l)+IRANK

Index vector describing profile. Input.
INTEGER array, length of NXLENG

Singularity tolerance. Input.
REAL scalar variable.

Unknown index of the singularities. Output.
INTEGER array, length of LSING.

Googe number of the singularities. Output.
REAL array, length of LSING.

Number of singularities encountered. Output.
INTEGER scalar variable.

23

LOGICAL FUNCTION GETA(I,J,VAL,A,NX)

FUNCTION:

GETA

I

J

VAL

A

NX

Retreive an element of the normal equations.

Success of the retreival of element I,J. Output, LOGICAL
TRUE Element within profile placed in VAL
FALSE -- Element not within profile

Row of the element to be retreived. Input.
INTEGER scalar variable

Column of the element to be retreived. Input.
INTEGER scalar variable.

Retreived value. Output from function.
(O.O if unsuccessful retreival)
REAL scalar variable.

Elements of the normal equations
REAL array, length of NX(IORDR+l)+IORDR

Index vector describing profile. Input.
INTEGER array, length of NXLENG

LOGICAL FUNCTION PUTA(I,J,VAL,A,NX)

FUNCTION:

PUTA

I

J

VAL

A

NX

Replace an element of the normal equations.

Success of the replacement of element I,J. Output, LOGICAL
TRUE Replaces I,J element within profile
FALSE -- Element not within profile

Row of the element to be replaced. Input.
INTEGER scalar variable

Column of the element to be replaced. Input.
INTEGER scalar variable.

Replacement value. Input.
REAL scalar variable.

Elements of the normal equations.
REAL array, length of NX(IORDR+l)+IORDR

Index vector describing profile. Input.
INTEGER array, length of NXLENG

24

LOGICAL FUNCTION RESOLV(A,NX)

FUNCTION: Solve the factored normal equations for a new right-hand side.

RESOLV Success of the solution. Output, LOGICAL.

A

NX

TRUE Successful solution.
FALSE -- Attempt to solve system not yet factored or already

inverted.

Elements of the normal equations.
REAL array, length of NX(IORDR+l)+IORDR

Index vector describing profile. Input.
INTEGER array, length of NXLENG

Note: Since the normal equations have been factored, one only needs to read
the right-hand side into A before invoking RESOLV, and to read the
solution out of the right-hand side after using RESOLV. Since the
profile always includes the right hand side, one could skip using PUTA
and GETA by use of the following code.

*** COMPUTE INDICES

INDEX
INDEX2

NX(IORDR)
2 * IORDR + 1

*** LOAD RIGHT HAND SIDE

DO 100 I=l,IORDR
ISQ=NX(INDEX2 + I)

100 A(INDEX + ISQ)=RHS(I)

*** SOLVE AGAIN

IF(.NOT.RESOLV(A,NX)) THEN
error condition

ENDIF

*** UNLOAD RIGHT HAND SIDE

DO 200 I=l,IORDR
ISQ=NX(INDEX2 + I)

200 X(I)=A(INDEX + ISQ)

25

LOGICAL FUNCTION INVERT(A,NX)

FUNCTION:

INVERT

A

NX

Compute the inverse of the normal equations.

Success of the inversion. Output, LOGICAL.
TRUE Successful inversion.
FALSE -- Attempt to invert system not yet factored or already

inverted.

Elements of the normal equations.
REAL array, length of NX(IORDR+l)+IORDR

Index vector describing profile. Input.
INTEGER array, length of NXLENG

LOGICAL FUNCTION PROP(C,IC,LEN,VAR,A,NX,IFLAG)

FUNCTION:

PROP

c

IC

LEN

VAR

A

NX

IFLAG

Compute a variance by linear error propagation.

Success
TRUE

of the propagation. Output, LOGICAL.

FALSE (IFLAG = 1)

FALSE (IFLAG = 2)

All required elements within profile.
System not yet inverted or already
correlated.
All covariance elements not within profile.

Coefficients of the geometry equation. Input.
REAL array, length of LEN.

Parameter index of the geometry equation. Input.
INTEGER array, length of LEN.

Length of the geometry equation arrays. Input.
INTEGER scalar variable.

Propagated variance. Output.
REAL scalar variable.

Elements of the normal equations.
REAL array, length of NX(IORDR+l)+IORDR

Index vector describing profile. Input.
INTEGER array, length of NXLENG

Failure return code. Output.
IFLAG = 0 Successful propagation.
IFLAG = 1 -- System not inverted or already correlated.
IFLAG = 2 -- All covariance elements not within profile.

INTEGER scalar variable

26

LOGICAL FUNCTION PROPCV(Cl,IC1,LEN1,C2,IC2,LEN2,VAR,A,NX,IFLAG)

FUNCTION:

PROP

Cl,C2

IC1,IC2

LEN1,LEN2

cov

A

NX

!FLAG

Compute a covariance by linear error propagation.

Success
TRUE

of the propagation. Output, LOGICAL.

FALSE (!FLAG 1)

FALSE (!FLAG = 2)

All required elements within profile.
System not yet inverted or already
correlated.
All covariance elements not within profile.

Coefficients of the geometry equations. Input.
REAL array, length of LENl and LEN2 respectively.

Parameter index of the geometry equations. Input.
INTEGER array, length of LENl and LENZ respectively.

Length of the geometry equation arrays. Input.
INTEGER scalar variable.

Propagated covariance. Output.
REAL scalar variable.

Elements of the normal equations.
REAL array, length of NX(IORDR+l)+IORDR

Index vector describing profile. Input.
INTEGER array, length of NXLENG

Failure return code. Output.
!FLAG 0 Successful propagation.
!FLAG = 1 -- System not inverted or already correlated.
!FLAG = 2 -- All covariance elements not within profile.

INTEGER scalar variable

27

LOGICAL FUNCTION CORR(A,NX)

FUNCTION:

CORR

A

NX

Compute the correlation matrix from the inverse of the normal
equations.

Success of
TRUE
FALSE --

the computation. Output, LOGICAL.
Successful correlation computation.
Attempt to compute correlations for
inverted or already correlated.

Elements of the normal equations.
REAL array, length of NX(IORDR+l)+IORDR

Index vector describing profile. Input.
INTEGER array, length of NXLENG

system not yet

LOGICAL FUNCTION IN(I,J,NX,INDEX)

FUNCTION:

I

J

NX

INDEX

Is the I,J element within the profile? Output, LOGICAL.
TRUE Element within profile, index placed in INDEX.
FALSE -- Element not within profile.

Internal sequence # of row of the element to be inspected. Input.
INTEGER scalar variable

Internal sequence # of col. of the element to be inspected. Input.
INTEGER scalar variable.

Index vector describing profile. Input.
INTEGER array, length of NXLENG

Index into the normal equation array. Output.
INTEGER scalar variable.

Note: If the internal sequence for unknowns IROW and JCOL are not available
they may be gotten by using the array elements

I NX(2 * IORDR + 1 + IROW)
J = NX(2 * IORDR + 1 + JCOL)

28

