
UNITED STATES 
DEPARTMENT OF COMMERCE 

M•lcolm B•ldrlg•, Secretuy 

NOAA Technical Memorandum NOS NGS-39 

HEART OF GOLD: COMPUTER ROUTINES FOR LARGE, 
SPARSE, LEAST SQUARES COMPUTATIONS 

Dennis G. Milbert 

Rockville, Md. 
April 1984 

Reprinted May 1997 

I N•llonml OcHnlc •nd I National Ocean Service I Charting and Geodetic Services 

Almo•pherlc Admlnl•lr•tlon Paul M. Wolff. Asst. Administrator A. Adm. John 0. Bossler. Director 
John V. Byrne. Administrator 



NOAA Technical Memorandum NOS NGS-39 

HEART OF GOLD: COMPUTER ROUTINES FOR LARGE, 

SPARSE, LEAST SQUARES COMPUTATIONS 

Rockville, Md. 
April 1984 

Reprinted May 1997 

U.S. DEPARTMENT OF 
COMMERCE I National Oceanic and 

Atmospheric Admimstration I National Ocean 
Service 



Contents 

Abstract.................................................................... 1 

Introduction................................................................ 1 

Statement of the least squares problem ...................................... 2 

Application of HEART OF GOLD................................................ 7 

Implementation features .................................................... · 12 

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

Ref er enc es. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

Appendix A. HEART OF GOLD function calls ................................... 18 

ii 



HEART OF GOLD: COMPUTER ROUTINES FOR LARGE, 
SPARSE, LEAST SQUARES COMPUTATIONS 

Dennis G. Milbert 
National Geodetic Survey 

Charting and Geodetic Services 
National Ocean Service, NOAA 
Rockville, Maryland 20852 

ABSTRACT. A collection of routines for processing large, 
sparse, least squares systems is described. The routines 
are highly transportable and support structured development 
of programs. 

INTRODUCTION 

A standard problem in the analysis of data is the least squares solution. 
Large agencies may easily compute a hundred solutions each day, and even 
small solutions involve more than one hundred parameters. Clearly, massive 
computational resources are expended on least squares computations. 

With the need to more efficiently compute least squares problems came 
research to handle larger and larger equation systems. This research, as it 
applies to the direct elimination method of solution, covered two areas: 

1) Exploitation of the sparsity of large least squares problems by 
the use of data structures. 

2) Use of backing (auxiliary) storage to hold sections (pages) of the 
equations until needed for computations in main memory. 

The need for more computer resources, driven by a community much larger than 
one which only performs least squares solutions, stimulated research in three 
kev fields of computer science: 

1) Development of Very Large Scale Integration (VLSI). 

2) Creation of sophisticated computer operating systems which supported 
multiprograming, multiprocessing, and virtual memory allocation. 

3) Structured programing. 

The work in VLSI has led to the development of both large and small 
computers. Each type has impressive capabilities when compared to versions 
only a few years old. The advances in operating systems have allowed more 
efficient utilization of resources in a given computer system. The software 
engineering techniques generally named "structured programing" address the 
problems in software development and maintenance. 

Research in computer science has made a far-reaching change in the environ
ment of data analysis. Each day fewer people keypunch cards, submit them to 
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a computer operator, and wait for the printout. And, more people have access 
to personal computers which can also function as terminals to a time-sharing 
system for larger problems. 

The proliferation of computers at all levels of capabilities has seriously 
increased the problem of program conversion. With the price of hardware 
dropping rapidly, the time and human resources involved in software 
conversion, development, and maintenance have become key factors: Expressed 
simply, "Chips are cheaper than people." 

In this paper I describe a collection of subroutines for the creation, 
solution, and inversion of sparse systems of equations for least squares 
problems. I have named these routines HEART OF GOLD, after the Infinite 
Improbability Drive powered starship from the novel, The Hitchhiker's Guide to 
the Galaxy (Adams 1980). 

The routines in the package were developed to meet particular research needs 
of the author, and are presented here in the spirit that these routines may be 
of more general use. These routines are currently implemented in the FORTRAN 
77 language subset. No machine dependent features, no operating system calls, 
and no assembly language routines are used in this package. The routines are 
highly transportable. This software is available by contacting the National 
Geodetic Information Center (N/CG174), National Oceanic and Atmospheric 
Administration, Rockville, Maryland 20852 (telephone 301-443-8623). 

STATEMENT OF THE LEAST SQUARES PROBLEM 

The least squares problem is 

minimize cp(X) ~ V(X) I 2:-l V(X) 
Lb 

(1) 

where V(X) is a residual function (Dennis and Schnabel 1983). Con~ider the 

method of observation equations (Mikhail 1976, Schwarz 1974, or Uotila 1967) 

L 
a 

F(X ) 
a 

(2) 

where L is a vector of computed observation values of length n, X is a vector 
a 

of model parameters of length u, and F is a vector of functions that is a 

theoretical model which describes the observations in terms of the parameters. 

In this method 
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V(X) 

where Lb is the vector of actual observations. 

Assume model F(Xa) is not strongly nonlinear and the problem is a small 

residual problem. These simplifying assumptions allow selection of the 

Gauss~Newton method of solution. 

The design matrix, A, is defined as 

A 3F 
ax 

a x 
a 

x 
0 

where A is a matrix of differential changes in the observation model with 

respect to the parameters, X , evaluated at a particular set of parameter 
a 

values, x
0

. A vector of observation misclosures is 

L L - L b a 

where Lb and La are described above. 

Associated with the observation vector Lb is a symmetric 

(3) 

(4) 

(5) 

variance-covariance matrix L: which contains information on observation 

Lb 

precision and correlation. 

The observation equation may now be written as 

AX L + V (6) 
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where V is a vector of residual errors and X is a vector of corrections to the 

parameter vector X . The least squares estimate of X is 
a 

x 

This is a solution of the normal equations 

NX = U 

where the matrix of normal equation coefficients is 

N 
t"'-1 
A~ A 

Lb 

and the right hand vector is 

u 

One technique for solution is to compute a Cholesky decomposition of the 

normal matrix, N, 

NX = RtRX = U. 

The estimate of X provides a new set of values for our parameters by 
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(7) 

(8) 

(9) 

(10) 

(11) 



x + x-x 
a a (12) 

If the observation model F(X ) is nonlinear (that is, A is not constant for 
a 

any set of X ), then the entire process, starting with eq. (2), must be 
a 

iterated until the vector X reaches a stationary point. a 

Estimates of parameter precision and correlations are given by the 

adjusted parameter variance-covariance matrix, I:x . This matrix is computed by 
a 

x 
a 

Of course, this matrix can always be scaled by an estimated variance of 

(13) 

unit weight, if such an estimate is felt valid. The user may also compute 

the precision of any other quantity which can be derived from the parameters. 

Suppose one wishes to compute a vector of quantities, S, 

s S(X ) 
a 

from the adjusted parameters, X • A geometry matrix, G, is defined as 
a 

G 
x 

0 

(14) 

(15) 

where G is a matrix of differential changes in the functions, S, with respect 

to the parameters, X , evaluated at a particular set of parameter values, X. 
a 

By the principle of linear error propagation, 
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I: GL Gt 

s xa 
or 

L G (At~~lf Gt 

s 

wherel: is the variance-covariance matrix of the computed quantities. 
s 

(16) 

(17) 

This last equation is useful since its terms are quantities derivable 

from the parameters. It could be used, for example, to computel: or l:L . 
v a 

Use of this equation assumes that the model is not too nonlinear, that the 

parameter vector X has been adequately estimated by the method of least 

squares, that the design matrix, A, and the geometry matrix, G, are known, and 

that the variance-covariance matrix of the observations l:L is known. 
b 

Another useful quantity is the correlation coefficient, p, where 

p 
o .. 

1] 

o.. a . . 
11 J J 

(18) 

and o is the value in the i-th row and j-th column of the adjusted parameter 
ij 

variance-covariance matrix,2: . These correlations can be thought of as a 
Xa 

normalized covariance, since 

-1 s p s 1. (19) 

Correlations between parameters that approach ±1 indicate ill-conditioning of 

the system. 
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APPLICATION OF HEART OF GOLD 

The HEART OF GOLD routines are able to process large least squares systems 
by exploiting the sparse nonzero structure of a problem. Speed in execution 
is attained by using a static data structure. Specifically, the rows of the 
system are stored end-to-end in an array. The price paid for this rapid 
processing is a requirement that the structure of each least squares problem 
be known before the equations are accumulated and solved. 

For this reason, HEART OF GOLD may be envisioned as a pair of modules. One 
module performs the analysis of the structure of a least squares problem. 
This structure is stored in an INTEGER array NX(). The other module performs 
the computations using the structure determined by the first module. The 
elements of the normal equations are stored in a REAL array A(). (Of course, 
if the user requires more precision than is provided by the REAL data type on 
a particular machine, then the routines can be easily modified to accommodate 
the DOUBLE PRECISION data type.) 

Appendix A contains a highly detailed description of the HEART OF GOLD 
function calls. The reader may wish to refer to the appendix while reading 
the following material. 

Structure Analysis of a Least Squares Problem 

It is easily shown that the normal equations for a least squares problem are 
symmetric. The first step in exploiting structure is to save only the upper 
triangular (or lower triangular) portion of N (eq. 9). The model parameters, 
X, can be ordered so that the nonzero elements will fall in a diagonal band 
whose width is small with respect to the rank of the system (minimize 
bandwidth). Figure l shows an example of this band storage structure. Here 
the programer processes a system where all the nonzero elements fit into a 
bandwidth of three. This structure can be completely described by storing 
the array indices of the diagonal elements in an INTEGER index array, NX(). 
Clearly, if the bandwidth is one, then the system is strictly diagonal. And 
if the bandwidth is equal to the order, then the system is full, and sparsity 
is not exploited. 

The index array NX() can be computed by executing the function BAND. The 
only knowledge required is the order of the system and an adequate bandwidth. 
If BAND returns a false value, then insufficient storage was allocated to 
NX(). As can be expected, the execution of BAND is very rapid. 

Research has shown that even greater savings in storage and execution times 
can be achieved by using a variable bandwidth (profile) structure (Jennings 
1977). Figure 2 illustrates the variable bandwidth scheme. As with the fixed 
bandwidth scheme, the structure is completely described by the index array 
NX(). 

Since it is not reasonable to expect the user to have prior knowledge of an 
optimum profile for a given least squares problem, HEART OF GOLD includes 
functions to determine a near-optimum profile. The user will first initialize 
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Figure 2.--Variable bandwidth storage structure. 
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the NX() array, then accumulate connectivity information, and finally analyze 
the structure. 

The structure is initialized by calling OPENG. Knowledge of the order of 
the system is required. Connectivity information is provided by repeated 
calls of the function ADDCON. An INTEGER array IC() must be furnished which 
holds the indices of the nonzero coefficients of a given observation equation. 
If ADDCON returns a false value, then insufficient storage was allocated to 
NX(). Once all the connections have been accumulated, a near-optimal 
structure is determined by a call to subroutine REORDR. 

One disadvantage of analyzing the connectivity is that it takes longer than 
a simple invocation of BAND. However, this disadvantage is offset by 
requiring less knowledge about a given least squares problem. The structure 
of a least squares problem (either fixed or variable bandwidth) depends upon 
how the parameter indices are associated with the model parameters. Structure 
will vary as the user permutes (reorders) the parameters. The structure 
analysis performed in REORDR permutes the parameter indices to give a 

·near-optimal profile and stores this profile in NX(). In addition, tables are 
computed which relate the user parameter indices to the internal parameter 
indices that produced the near-optimal profile. The user need never consider 
the internal indices. 

Solution of a Least Squares Problem 

Once a structure has been determined by invocation of BAND or REORDR, the 
least squares problem is ready to be solved. The normal equations are 
initialized by calling function OPENN. It returns a false value if 
insufficient storage was allocated to A(). 

The observation equations are accumulated one at a time into the normal 
equations by repeated calls of the ADDOBS function. The user supplies the 
INTEGER array IC() that holds the indices of the nonzero coefficients for a 
given observation equation. A REAL array C() that holds the nonzero 
coefficients themselves must also be provided, as well as the weight, wr, of 
the observation equation, and the misclosure, OBS, computed by eq. (5). 
Observation equations may be accumulated in any order. ADDOBS returns a false 
value if the structure defined earlier cannot hold the observation equation. 
In this circumstance, the programer must use a larger bandwidth or a different 
scheme of numbering the parameters or actually analyze the structure using 
the HEART OF GOLD routines. 

In some instances, sets of correlated observations must be processed rather 
than uncorrelated observations. The coefficient array C() is now two 
dimensional, where the second dimension spans all the correlated observations 
in the set. The misclosure, OBS(), is now an array with a length of the 
number of correlated observations, and the weight, WT, is replaced by the two 
dimensional variance-covariance matrix, SIGOBS(). This array holds the 
covariance information. The call to function ADDCOR will decorrelate the set 
of observation equations and accumulate them into the normal equations. 
ADDCOR will return a false value if an incorrect variance-covariance matrix is 
supplied or if an incorrect structure is being used. 

Once all the observations have been processed, the system is solved using a 
Cholesky factort~ation by calling function SOLVE. It will return a false 
value if the system was never initialized by OPENN, or if singularities were 
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encountered. A singularity is detected by using a small, positive singularity 
tolerance, TOL, supplied by the user. The number of singularities is returned 
in LSING. The parameter index numbers are returned in an array, ISING(), and 
the associated normalized diagonal values are returned in an array, GSING(). 
The singularities are repaired by replacing the singular diagonal with a large 
positive number. This is equivalent to constraining that singular unknown to 
its preliminary value. The Cholesky factor and the values of the corrections 
to the model parameters replace the normal equations in the structure in all 
cases. Of course, if the system is singular, then the user must be cautious 
in the use of the model parameter corrections or any other quantities derived 
from the singular Cholesky factor. 

The values of the parameter corrections may be retreived by calling function 
GETA. A row (or column) of IORDR+l should be included. The column (or row) 
will be the parameter index. In fact, GETA can be used to inspect any element 
of the normal equations or Cholesky factor by supplying the appropriate row 
and column indices, I & J. GETA will return a false value if the requested 
element is not in the profile. 

Elements of the normal equations may be overwritten by a complementary 
function, PUTA. It will return a false value if the element to be replaced is 
not in the profile. PUTA should be used with caution, since an incorrect 
value can inadvertently change the normal equations. Use of ADDOBS or ADDCOR 
will accumulate the sum of the squared, weighted misclosures in location 
(IORDR+l,IORDR+l). Calling SOLVE will also compute the sum of the squared, 
weighted, linear residuals and store this value in the same location. This 
quantity could be monitored in an iterative solution to indicate convergence. 

On rare occasions, the need arises to solve the same system with a new right 
hand vector (eq. 10), U, computed from a new misclosure vector, L. In these 
situations, the work involved in computing the Cholesky factor can be 
retained. Repeated calls of PUTA are required to place the new elements of 
the right hand vector, U, into the system. Calling function RESOLV computes a 
new set of parameter corrections, X, for the new system. RESOLV returns a 
false value if the equations have not yet been factored by SOLVE. 

Analysis of a Least Squares Problem 

In addition to the solution vector, X, of a least squares problem, the 
programer of ten needs statistics about the solution. One useful element is 
the variance of a parameter, which is on the diagonal of"' • Hanson (1978) ""-•x 

a 
has shown the inverse elements of the normal equations can be computed within 
the profile in place, at no greater cost than in computing only the diagonal 
elements of the inverse. Calling the function INVERT comp1utes the inverse 
within profile from the Cholesky factor. GETA can then be used to inspect the 
elements of the variance-covariance matrix of the adjusted parameters (eq. 
13). INVERT returns a false value if the equations have not yet been factored 
by SOLVE. 

Other advantages accrue from computing all the elements of the inverse 
within the profile. If desired, variance of quantities can be computed and 
can be derived from the parameters. Among the quantities which can be so 
determined, without involving any elements of the inverse outside the profile, 
are variances of the adjusted observations and variances o:f the residuals. 
This computation is known as error propagation, and is governed by eq. (16). 
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The variance of a quantity, VAR, can be computed by calling function PROP. 
The user must supply the coefficient array, C(), and the associated index 
array, IC(), for the linearized equation. Similarly, the covariance between 
two equations, COV, is computed by calling function PROPCV. The user supplies 
two coefficient arrays, Cl() and C2(), and associated index arrays, IC!() and 
IC2(), for the pair of linearized equations. PROP and PROPCV return a false 
value if the system has not yet been inverted by INVERT or if the computation 
requires covariance elements not stored'within the profile. 

Finally, the user may desire to compute the correlation coefficients for all 
the elements within the profile. This is done by calling function CORR. It 
returns a false value if the system has not yet been inverted. 

IMPLEMENTATION FEATURES 

In this section I will cover a few points on HEART OF GOLD, and present 
information useful to the advanced user of these routines. 

Transportability 

Great care was taken to ensure HEART OF GOLD was implemented in the American 
National Standards Institute (ANSI) standard ANSI X3.9-1978 (FORTRAN 77). As 
of this writing, HEART OF GOLD has been compiled in APPLE FORTRAN (APPLE), VS 
FORTRAN (IBM), FORTRAN level lORl (UNIVAC), and FORTRAN 77 (HP) with no 
editing required and no error messages generated. The proliferation of 
computers and language variants makes strict adherence to the ANSI standard 
the central virtue of HEART OF GOLD. 

Data Abstraction and Modularity 

One of the major advances in computer science in the past two decades has 
been development of "structured programing" techniques. Two ideas imbedded in 
HEART OF GOLD are those of data abstraction and modularity. Data abstraction 
separates the logical view of the data from the internal storage structures 
(Isner 1982). Modules perform specific tasks and make a minimum number of 
"assumptions" about processes in other parts of a program (Turner 1980). 

It can be seen from the earlier section on application, that two data 
abstractions are used in HEART OF GOLD. The structure and connectivity of the 
least squares problem are managed by OPENG, ADDCON, REORDR, and BAND. The 
accumulation, solution, and analysis of the least squares problem is managed 
by the remaining routines. A knowledge of internal storage structure is not 
needed to use HEART OF GOLD. However, some knowledge is helpful in selecting 
between fixed and variable bandwidth for a particular least squares problem. 

It may also be inferred that HEART OF GOLD is a pair of modules. 
operates on structure. The other module operates on the numbers. 
are constructed from the way in which the least squares problem is 

One module 
The modules 
abstracted. 

To allow the user ease in discarding routines not needed for a particular 
problem, the modules were designed as subprograms sharing common variables. 
The equation module uses a COMMON block named DENNIS, and the structure module 
uses a COMMON block named KATHY (named after the author and his wife). These 
COMMON blocks carry "housekeeping" details not needed by the user. Storage of 
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data in this fashion is known as "information hiding," a concept derived from 
data abstraction and modularity. 

The idea of information hiding has been deliberately violated in HEART OF 
GOLD. This was done by giving the user access to A() and NX(), primarily to 
achieve transportability by strictly conforming to the FORTRAN 77 standard. 
An advanced user may access A() and NX(). For most applications, however, the 
programer will not directly access the arrays except by use of functions GETA 
and PUTA. 

Whenever an operation on the structure or the equations had the potential of 
failure, this fact was always signaled back to the calling routine. This was 
done by writing most of the HEART OF GOLD subprograms using a LOGICAL 
FUNCTION, allowing the user to detect and handle errors with nicely structured 
code. For example, 

IF(.NOT.INVERT(A,NX)) THEN 
WRITE(6,'('' PROGRAMMER ERROR -- EQUATIONS NOT INITIALIZED'')') 
STOP 666 

END IF 

The IF() THEN ••. ELSE ••. ENDIF structure is also useful for error handling. 
A LOGICAL FUNCTION supports "defensive programing," and leads to more robust 
software. 

Memory Management 

Advances in VLSI and computer operating systems have greatly changed the 
computational environment. In the past, throughput on a mainframe was linked 
to the user, minimizing the amount of random-access memory (RAM) required. 
This led to development of software which would page the normal equations in 
and out of backing storage, while it accumulated and solved the equations 
(Dillinger 1981). With personal computers, a user now has exclusive access to 
128K bytes or more of RAM. One personal computer is shipped with one full 
megabyte of RAM. On these systems, the user would simply allocate A() and 
NX() to be as large as desired. 

Mainframe computing has kept pace by development of virtual operating 
systems. These systems automatically transfer programs and data between two 
or more memory levels (Schmitt 1983). These have greatly increased address 
space in a mainframe, and lowered programing costs by eliminating the need for 
manual overlays and data transfer. A user should again allocate A() and NX() 
as large as desired on virtual systems. 

A piece of folk wisdom from the early days of virtual systems was: "A user 
can page memory to backing storage better than the operating system, since the 
user knows more about his or her problem." This statement can be debated on a 
number of levels. A virtual system will page memory on a global basis, 
increasing total throughput, while a user can only invoke some strategy local 
to the particular least squares problem. Now, virtual systems have special 
hardware, computer architectures, and input-output channels for address 
translation and memory paging. Paging strategies for virtual systems are 
based on some variation of locality of reference, where the seldom accessed 
memory segment is paged out first. The HEART OF GOLD storage structures 
(either fixed or variable bandwidth) support a locality of reference paging 
strategy. If the reader envisions a Cholesky factorization proceeding 
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row-by-row on the row storage structure, one finds excellent locality of 
reference. Any user defined strategy would not significantly deviate from 
paging by the virtual system. User paging is hampered by address translation 
in the software and by the slow speed of normal input-output. The latter 
drawback can be alleviated somewhat by doing input-output without buffers or 
by allocating larger buffers. Input-output without buffers is invariably 
system dependent. It requires assembly language routines or special operating 
system calls, which degrade the transportability of the software. Allocation 
of large buffers on a virtual system will lead to two levels of paging. The 
virtual system will page the buffers and the normal equations which are, in 
turn, paged by the user. 

Storage Structure 

The information in this section is intended for advanced users of HEART OF 
GOLD. Reference to George (1981) is helpful. 

The user can easily envision how to compute the diagonal indices for a fixed 
bandwidth, when given the order of the system and the bandwidth, by examining 
figure 1. So, I will concentrate on the variable bandwidth (profile) 
structure of figure 2. Here the diagonal indices are trivially computed from 
the row widths. The row widths can be detemined by processing an adjacency 
structure {George 1981: 41-42). However, an adjacency structure is best 
determined from a connection table, since a connection table is easily updated 
while an adjacency structure is not. As seen in figure 3, NX() is partitioned 
by HEART OF GOLD into several segments. 

! IHEAD NBR LINK ! NBRLST ! NBRPNT 

Figure 3.--Memory partition for connectivity accumulation. 

IHEAD is of length IORDR, NBR is the length of two times the maximum number 
of edges (IEMX), and LINK is of length IEMX. These three segments hold the 
connection table built by function ADDCON. Upon calling REORDR, the 
connection table is translated into an adjacency structure. This is stored in 
NBRLST of length IEMX and in NBRPNT of length IORDR+l. The user does not need 
to provide IEMX. It is computed as a maximum to utilize all the storage 
available to NX(). 

Recall that the row width and storage structure vary with the order of the 
parameters, even though the connectivity and adjacency do not. HEART OF GOLD 
uses a Cuthill-McKee ordering of the unknowns computed by the algorithms and 
routines presented in George (1981). This ordering scheme was selected 
because of the low processing times found by George (1981: 277-294). A 
Cuthill-McKee order for a row storage structure is identical to a Reverse 
Cuthill-McKee order for a column structure. By envisioning the normal 
equations in the lower triangular form, these orders are identical to a 
Reverse Cuthill-McKee order for a row structure, and a Cuthill-McKee order for 
a column structure. 

In the Cuthill~McKee computation, NX() is repartitioned as shown in 
figure 4. 
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! Reserved ! NEWORD ! MASK ! LDEG ! Unused ! NBRLST ! NBRPNT 

Figure 4.--Memory partition for Cuthill-McKee computation. 

The reserved area is of length IORDR+l. NEWORD holds the Cuthill-McKee 
order, and is of length IORDR. NEWORD determines an internal index number 
from a user-provided index number. Both MASK and LDEG are used by the reorder 
algorithms, and are of length IORDR. NBRLST and NBRPNT continue to hold the 
adjacency structure. 

After the Cuthill-McKee computation, NX() is again repartitioned as shown in 
figure 5. 

I PROF ! NEWORD ! INVORD ! Unused 

Figure 5.--Memory partition after reordering. 

The order in NEWORD is inverted and stored in INVORD, which is of length 
IORDR. INVORD determines a user-defined index number from an internal index 
number. The profile is stored in IPROF, and is of length IORDR+l. As 
mentioned before, IPROF is determined from the row widths, which are 
determined from the adjacency structure still stored in the high end of NX(). 

It is seen that the NX() returned by REORDR holds not only the profile 
(IPROF), but also translation tables (NEWORD and INVORD) 'Which relate the user 
parameter indices to the internal parameter indices. The remaining storage is 
no longer accessed by the HEART OF GOLD routines. The advanced user may wish 
to store the A() array in the unused portion of NX() by using a memory 
overlay. This would be done by 

EQUIVALENCE (A(l),NX(l)) 

and by always referencing A() with a constant offset, IOFFST. For example, to 
initialize the normal equations, 

IF(. NOT. OPENN (A(IOFFST) ,NX, IORDR, LENG-IOFFST)) THEN •••• 

A() may be single precision, double precision, or even extended double 
prec1s1on. NX() could be long integer or short integer. So the value of 
IOFFST will depend upon a particular application and the number of INTEGER 
words that may be stored in a REAL word. 

In some least squares problems, the parameters are "clustered." For 
example, parameters might be coordinates (latitude, longitude, height). These 
parameters would always·appear as a trio in any observation equation. 
Substantial savings in the structure analysis can be realized by accumulating 
connections and computing Cuthill-McKee order for the coordinate triplets 
themselves, rather than for individual parameters. In such a case, IORDR 
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passed in OPENG would not be the order of the least squares problem, but 
rather would be the number of coordinate triplets. When calling ADDCON, IC() 
would contain triplet indices rather than parameter indices. 

Naturally, after calling REORDR, NX() will hold a profile and translation 
tables for the triplets. The profile and tables will have to be converted to 
their appropriate representations for parameters before invoking OPENN. 
However, the conversion should take less processing than the full structure 
analysis of a large least squares problem. The user may also be faced with a 
"variable clustering" problem when dealing with quadruplets, pairs, and 
single parameters as well as triplets. For example, the problem may require 
solving a number of instrument scale errors and constant biases, as well as 
coordinates. The instrument parameters cluster in pairs, and the coordinate 
parameters cluster in triplets. 

Such issues complicate the conversion to a parameter structure, and will 
vary with each application. The user must determine if exploiting parameter 
clustering is worthwhile. HEART OF GOLD was written as two modules to allow 
this flexibility. Of course, this feature is optional. Normal invocation of 
HEART OF GOLD, where each parameter is single, will work correctly. 

SUMMARY 

HEART OF GOLD is a pair of modules which perform the structure analysis and 
the solution of large, sparse, least squares problems. The routines are 
designed to encourage good programing practices, yet allow the advanced user 
to directly access the structure and normal equation elements. Two 
structures, a fixed and a variable bandwidth, and one reordering algorithm are 
provided. Of course, the user could develop other reorder algorithms, and 
replace the appropriate elements of the structure array, NX(). Great care has 
been taken to adhere to the ANSI standard, and not to use system dependent 
features in the implementation of HEART OF GOLD. 
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APPENDIX A, --HEART OF GOLD FUNCTION CALLS 

LOGICAL = BAND(IORDR,NX,NXLENG,LBAND) 

CALL OPENG(IORDR,NX,NXLENG) 

LOGICAL = ADDCON(IC,LEN,NX) 

CALL REORDR(NX) 

LOGICAL = OPENN(A,NX,IORDR,LENG) 

LOGICAL = ADDOBS(C,IC,LEN,OBS,WT,A,NX) 

LOGICAL = ADDCOR(C,IC,OBS,SIGOBS,LUNK,LOBS,A,NX,IFLAG) 

LOGICAL = SOLVE(A,NX,TOL,ISING,GSING,LSING) 

LOGICAL = GETA(I,J,VAL,A,NX) 

LOGICAL = PUTA(I,J,VAL,A,NX) 

LOGICAL = RESOLV(A,NX) 

LOGICAL = INVERT(A,NX) 

LOGICAL = PROP(C,IC,LEN,VAR,A,NX,IFLAG) 

LOGICAL = PROPCV(Cl,IC1,LEN1,C2,IC2,LEN2,COV,A,NX,IFLAG) 

LOGICAL = CORR(A,NX) 

LOGICAL = IN(I,J,NX,INDEX) 
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LOGICAL FUNCTION B~TD(IORDR,NX,NXLENG,LBAND) 

FUNCTION: 

BAND 

IORDR 

NX 

NXLENG 

LBAND 

Determine the profile using a fixed bandwidth. 

Success of the profile computation. Output, LOGICAL. 
TRUE Profile computed. 
FALSE -- Insufficient storage allocated to NX. 

(Increase NXLENG to 3 * IORDR + 1) 

Order of the normal equations. Input. 
INTEGER scalar variable 

Index vector to describe the profile. Input. 
INTEGER array, length of NXLENG 

Length of the index vector. Input. 
INTEGER scalar variable 

Fixed bandwidth for the profile. Input. 
LBAND must be between 1 and IORDR inclusive. 
INTEGER scalar variable 
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SUBROUTINE OPENG(IORDR,NX,NXLENG) 

FUNCTION: 

IORDR 

NX 

NXLENG 

Initialize the connection matrix for profile determination. 

Order of the normal equations. Input. 
INTEGER scalar variable 

Index vector to describe the profile. 
INTEGER array, length of NXLENG 

Length of the index vector. Input. 
Allocate at least 6 * number of unique connections + 2 * IORDR 
INTEGER scalar variable 

LOGICAL FUNCTION ADDCON(IC,LEN,NX) 

FUNCTION: 

ADDCON 

IC 

LEN 

NX 

Accumulate observation equation connections into the profile 
array. 

Success of the accumulation of the connections. Output,LOGICAL. 
TRUE All connections accumulated. 
FALSE -- Insufficient storage allocated to NX. 

(Increase NXLENG in subsequent OPENG) 

Parameter index of the observation equation. Input. 
INTEGER array, length of LEN. 

Length of the parameter index array. Input. 
INTEGER scalar variable. 

Index vector describing profile. 
INTEGER array, length of NXLENG 

SUBROUTINE REORDR(NX) 

FUNCTION: 

NX 

Determine a minimum profile by internal reorder of parameter 
indices. 

Index vector describing profile. 
INTEGER array, length of NXLENG 
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LOGICAL FUNCTION OPENN(A,NX,IORDR,LENG) 

FUNCTION: 

OPENN 

A 

NX 

IORDR 

LENG 

Initialize the normal equations 

Success of the initialization. Output, LOGICAL 
TRUE Equations initialized 
FALSE -- LENG, length of storage, incompatable with profile 

requirements 

Elements of the normal equations 
REAL array, length of NX(IORDR+l)+IRANK 

Index vector describing profile 
INTEGER array, length of NXLENG 

Order of the normal equations. Input 
INTEGER scalar variable 

Length of the normal equation array, A. Input 
Must be greater than or equal to the value of NX(IORDR+l)+IORDR. 
INTEGER scalar variable. 

LOGICAL FUNCTION ADDOBS(C,IC,LEN,OBS,WT,A,NX) 

FUNCTION: 

ADD OBS 

c 

IC 

LEN 

OBS 

WT 

A 

NX 

Accumulate an observation equation into the normal equations. 

Success of the accumulation of the observation equation. Output. 
TRUE All elements accumulated within profile. 
FALSE -- All elements not within profile. 

(CAUTION: Normal equations damaged) 

Coefficients of the observation equation. Input. 
REAL array, length of LEN. 

Parameter index of the observation equation. Input. 
INTEGER array, length of LEN. 

Length of the observation equation arrays. Input. 
INTEGER scalar variable. 

Misclosure of the observation equation. Input. 
REAL scalar variable. 

Weight of the observation equation. Input. 
REAL scalar variable. 

Elements of the normal equations. 
REAL array, length of NX(IORDR+l)+IORDR 

Index vector describing profile. Input. 
INTEGER array, length of NXLENG 
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LOGICAL FUNCTION ADDCOR(C,IC,OBS,SIGOBS,LUNK,LOBS,A,NX,IFLAG) 

FUNCTION: 

ADDO BS 

c 

IC 

OBS 

SIGOBS 

LUNK 

LOBS 

A 

NX 

IFLAG 

Accumulate correlated observation equations into the normal 
equations. 

Success of 
TRUE 

the accumulation of the observation equations. Output. 
All elements accumulated within profile. 
SIGOBS is not positive definite. FALSE (IFLAG 

FALSE (IFLAG 
1) 
2) All elements not within profile. 

(CAUTION: Normal equations damaged) 

Coefficients of the observation equations. Input. 
One row for each observation equation, length of LOBS. 
One column for each parameter, width of LUNK. 
Two-dimensional REAL array, C(LOBS,LUNK) 

Parameter index of the observation equations. Input. 
INTEGER array, length of LUNK. 

Misclosures of the observation equations. Input. 
REAL array, length of LOBS. 

Positive definite covariance matrix of the obs. equations. Input. 
One row and one column for each observation equation, length and 
width of LOBS. 
Two-dimensional REAL array, SIGOBS(LOBS,LOBS). 

Number of parameters in the observation equations. Input. 
INTEGER scalar variable 

Number of observation equations. Input. 
INTEGER scalar variable 

Elements of the normal equations. 
REAL array, length of NX(IORDR+l)+IORDR 

Index vector describing profile. Input. 
INTEGER array, length of NXLENG 

Failure 
I FLAG 
IFLAG 
IFLAG 

return code. Output. 
0 Successful accumulation. 

= 1 SIGOBS is not positive definite. 
2 All elements not within profile. 

(CAUTION: Normal equations damaged) 
INTEGER scalar variable 
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LOGICAL FUNCTION SOLVE(A,NX,TOL,ISING,GSING,LSING) 

FUNCTION: 

SOLVE 

A 

NX 

TOL 

ISING 

GS ING 

LS ING 

Cholesky factor and solve the normal equations. 

Success of the Cholesky factorization and solution. Output. 
TRUE Successful factor and solution. 
FALSE (LSING=O) Attempt to solve non-initialized system. 
FALSE (LSING#O) Singularities encountered. 

Elements of the normal equations. 
REAL array, length of NX(IRANK+l)+IRANK 

Index vector describing profile. Input. 
INTEGER array, length of NXLENG 

Singularity tolerance. Input. 
REAL scalar variable. 

Unknown index of the singularities. Output. 
INTEGER array, length of LSING. 

Googe number of the singularities. Output. 
REAL array, length of LSING. 

Number of singularities encountered. Output. 
INTEGER scalar variable. 
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LOGICAL FUNCTION GETA(I,J,VAL,A,NX) 

FUNCTION: 

GETA 

I 

J 

VAL 

A 

NX 

Retreive an element of the normal equations. 

Success of the retreival of element I,J. Output, LOGICAL 
TRUE Element within profile placed in VAL 
FALSE -- Element not within profile 

Row of the element to be retreived. Input. 
INTEGER scalar variable 

Column of the element to be retreived. Input. 
INTEGER scalar variable. 

Retreived value. Output from function. 
(O.O if unsuccessful retreival) 
REAL scalar variable. 

Elements of the normal equations 
REAL array, length of NX(IORDR+l)+IORDR 

Index vector describing profile. Input. 
INTEGER array, length of NXLENG 

LOGICAL FUNCTION PUTA(I,J,VAL,A,NX) 

FUNCTION: 

PUTA 

I 

J 

VAL 

A 

NX 

Replace an element of the normal equations. 

Success of the replacement of element I,J. Output, LOGICAL 
TRUE Replaces I,J element within profile 
FALSE -- Element not within profile 

Row of the element to be replaced. Input. 
INTEGER scalar variable 

Column of the element to be replaced. Input. 
INTEGER scalar variable. 

Replacement value. Input. 
REAL scalar variable. 

Elements of the normal equations. 
REAL array, length of NX(IORDR+l)+IORDR 

Index vector describing profile. Input. 
INTEGER array, length of NXLENG 
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LOGICAL FUNCTION RESOLV(A,NX) 

FUNCTION: Solve the factored normal equations for a new right-hand side. 

RESOLV Success of the solution. Output, LOGICAL. 

A 

NX 

TRUE Successful solution. 
FALSE -- Attempt to solve system not yet factored or already 

inverted. 

Elements of the normal equations. 
REAL array, length of NX(IORDR+l)+IORDR 

Index vector describing profile. Input. 
INTEGER array, length of NXLENG 

Note: Since the normal equations have been factored, one only needs to read 
the right-hand side into A before invoking RESOLV, and to read the 
solution out of the right-hand side after using RESOLV. Since the 
profile always includes the right hand side, one could skip using PUTA 
and GETA by use of the following code. 

*** COMPUTE INDICES 

INDEX 
INDEX2 

NX(IORDR) 
2 * IORDR + 1 

*** LOAD RIGHT HAND SIDE 

DO 100 I=l,IORDR 
ISQ=NX(INDEX2 + I) 

100 A(INDEX + ISQ)=RHS(I) 

*** SOLVE AGAIN 

IF(.NOT.RESOLV(A,NX)) THEN 
error condition 

ENDIF 

*** UNLOAD RIGHT HAND SIDE 

DO 200 I=l,IORDR 
ISQ=NX(INDEX2 + I) 

200 X(I)=A(INDEX + ISQ) 
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LOGICAL FUNCTION INVERT(A,NX) 

FUNCTION: 

INVERT 

A 

NX 

Compute the inverse of the normal equations. 

Success of the inversion. Output, LOGICAL. 
TRUE Successful inversion. 
FALSE -- Attempt to invert system not yet factored or already 

inverted. 

Elements of the normal equations. 
REAL array, length of NX(IORDR+l)+IORDR 

Index vector describing profile. Input. 
INTEGER array, length of NXLENG 

LOGICAL FUNCTION PROP(C,IC,LEN,VAR,A,NX,IFLAG) 

FUNCTION: 

PROP 

c 

IC 

LEN 

VAR 

A 

NX 

IFLAG 

Compute a variance by linear error propagation. 

Success 
TRUE 

of the propagation. Output, LOGICAL. 

FALSE (IFLAG = 1) 

FALSE (IFLAG = 2) 

All required elements within profile. 
System not yet inverted or already 
correlated. 
All covariance elements not within profile. 

Coefficients of the geometry equation. Input. 
REAL array, length of LEN. 

Parameter index of the geometry equation. Input. 
INTEGER array, length of LEN. 

Length of the geometry equation arrays. Input. 
INTEGER scalar variable. 

Propagated variance. Output. 
REAL scalar variable. 

Elements of the normal equations. 
REAL array, length of NX(IORDR+l)+IORDR 

Index vector describing profile. Input. 
INTEGER array, length of NXLENG 

Failure return code. Output. 
IFLAG = 0 Successful propagation. 
IFLAG = 1 -- System not inverted or already correlated. 
IFLAG = 2 -- All covariance elements not within profile. 

INTEGER scalar variable 
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LOGICAL FUNCTION PROPCV(Cl,IC1,LEN1,C2,IC2,LEN2,VAR,A,NX,IFLAG) 

FUNCTION: 

PROP 

Cl,C2 

IC1,IC2 

LEN1,LEN2 

cov 

A 

NX 

!FLAG 

Compute a covariance by linear error propagation. 

Success 
TRUE 

of the propagation. Output, LOGICAL. 

FALSE (!FLAG 1) 

FALSE (!FLAG = 2) 

All required elements within profile. 
System not yet inverted or already 
correlated. 
All covariance elements not within profile. 

Coefficients of the geometry equations. Input. 
REAL array, length of LENl and LEN2 respectively. 

Parameter index of the geometry equations. Input. 
INTEGER array, length of LENl and LENZ respectively. 

Length of the geometry equation arrays. Input. 
INTEGER scalar variable. 

Propagated covariance. Output. 
REAL scalar variable. 

Elements of the normal equations. 
REAL array, length of NX(IORDR+l)+IORDR 

Index vector describing profile. Input. 
INTEGER array, length of NXLENG 

Failure return code. Output. 
!FLAG 0 Successful propagation. 
!FLAG = 1 -- System not inverted or already correlated. 
!FLAG = 2 -- All covariance elements not within profile. 

INTEGER scalar variable 

27 



LOGICAL FUNCTION CORR(A,NX) 

FUNCTION: 

CORR 

A 

NX 

Compute the correlation matrix from the inverse of the normal 
equations. 

Success of 
TRUE 
FALSE --

the computation. Output, LOGICAL. 
Successful correlation computation. 
Attempt to compute correlations for 
inverted or already correlated. 

Elements of the normal equations. 
REAL array, length of NX(IORDR+l)+IORDR 

Index vector describing profile. Input. 
INTEGER array, length of NXLENG 

system not yet 

LOGICAL FUNCTION IN(I,J,NX,INDEX) 

FUNCTION: 

I 

J 

NX 

INDEX 

Is the I,J element within the profile? Output, LOGICAL. 
TRUE Element within profile, index placed in INDEX. 
FALSE -- Element not within profile. 

Internal sequence # of row of the element to be inspected. Input. 
INTEGER scalar variable 

Internal sequence # of col. of the element to be inspected. Input. 
INTEGER scalar variable. 

Index vector describing profile. Input. 
INTEGER array, length of NXLENG 

Index into the normal equation array. Output. 
INTEGER scalar variable. 

Note: If the internal sequence for unknowns IROW and JCOL are not available 
they may be gotten by using the array elements 

I NX(2 * IORDR + 1 + IROW) 
J = NX(2 * IORDR + 1 + JCOL) 
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