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1 Introduction 
A datum transformation is some formula or tool that takes as input some coordinate(s) in a 
starting geodetic datum and attempts (often imperfectly) to give as output some new 
coordinate(s) in a different geodetic datum.  The history of datum transformations is long and 
distinguished, but will not be covered in this paper. The authors also note that this paper covers 
theory applicable only to horizontal transformations.  

Although NGS began in the 1980s writing computer code to do complex datum transformations 
(such as LEFTI; Vincenty 1980), it wasn’t until the release of NADCON 1.0 (Dewhurst 1990) 
that an NGS transformation tool was fast, accurate, and sufficiently simple to see widespread use 
across the nation.   

When NADCON 1.0 was released, both the software and documentation addressed coordinate 
differences in both curvilinear and linear units.  Yet the two units are not interchangeable, within 
the context of datum transformations.  The actual NADCON transformation (change in latitude 
or longitude) has always been a curvilinear process (i.e., as changes in the angular units of 
latitude and longitude, each done separately).  There is no actual change in latitude or longitude 
that happens “in meters.”  Yet NGS has always provided linear (meter) values as “companion” 
values to the curvilinear transformation results.  This subtle, but important, point was generally 
overlooked in all versions of NADCON prior to NADCON 5.0 (Smith and Bilich, 2017).  With 
the transformation grids in NADCON 5.0 release 20160901, as implemented in the NGS 
Coordinate Conversion and Transformation Tool (NCAT) came a decision to rely purely on the 
definable curvilinear coordinate changes.  It was felt that providing horizontal datum 
transformation values “in meters” was both scientifically incorrect and confusing. 

While linear values were computed as companion quantities (with all the attendant problems, 
which this report will cover), they were not released as official transformations in NADCON 5.0 
release 20160901 and were therefore not codified into NGS’s two primary tools, NCAT and 
VDatum. 

However, it was soon clear that this situation was not entirely satisfactory to the user community.  
One reason for wanting linear units is to provide a simple means to assess the magnitude of 
change, in familiar units.  Knowing the magnitude helps answer questions about what to expect 
and whether a transformation is appropriate, for example, if the transformed coordinate 
differences are smaller than the spatial accuracy of the data.  Since spatial accuracy is frequently 
given in linear units, it is useful to also have an estimate of the transformation in linear units—
even if it lacks technical rigor.    

That being said, the authors recognize that, in part, users now expect linear units because NGS 
provided them in the first place.  The decades preceding NADCON 5.0, with the general “hand 
waving” by NGS about linear versus curvilinear coordinate changes, created a desire in the user 
community to see “coordinate shifts in meters.”  This paper discusses both what is valid and 
invalid with reporting linear units in NADCON, and describes how NGS will continue to support 
this user request, while maintaining scientific rigor. 
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2 Datum transformation basics 
Dewhurst (1990), in discussing NADCON 1.0, defined a datum transformation simply enough. 
Here we use NAD 27 and NAD 83, though this could just as easily be generalized into “new 
datum” and “old datum”, as: 

𝜙𝜙𝑁𝑁𝑁𝑁𝑁𝑁 83 = 𝜙𝜙𝑁𝑁𝑁𝑁𝑁𝑁 27 + 𝛿𝛿𝛿𝛿 
(1) 𝜆𝜆𝑁𝑁𝑁𝑁𝑁𝑁 83 = 𝜆𝜆𝑁𝑁𝑁𝑁𝑁𝑁 27 + 𝛿𝛿𝛿𝛿 

where φ denotes latitude and λ is longitude. Note that the units in this equation are all curvilinear 
(e.g., decimal degrees or degrees/minutes/seconds, etc.)   

Expanding the above equations to include some descriptive text within the context of their actual 
use in a NADCON example might be instructive.  For example, assume the NAD 27 latitude and 
longitude of a point (say “AB1234”) is known, and the intent is to use NADCON to estimate the 
NAD 83 latitude and longitude of the same point.  As such, the latitude part of equation 1 reads 
like this: 

(The estimated latitude of AB1234 in NAD 83 in degrees/minutes/seconds) is equal to (the 
published latitude of AB1234 in NAD 27 in degrees/minutes/seconds) plus (some value in 
degrees/minutes/seconds, interpolated from the NADCON latitude grid, at the NAD 27 
latitude and longitude1)2 

Similarly for longitude.  Note that there is a very subtle point that is easily overlooked:  the input 
and output values refer to the same point, but in different datums.  Put more directly:  the point 
did not move.  Rather, NGS has replaced one datum with another.  That replacement of one 
datum with another comes with large changes (such as the location of the geocenter and/or the 
size and shape of the reference ellipsoid being used) and small changes (such as the impact of 
local and regional surveys which have improved relational understandings of local geodetic 
control points from one datum to another).  But the point did not actually move any linear 
distance.  Thus there does not exist any displacement “vector” which connects the point in the 
old datum with the same point in the new datum.  

NGS has been guilty of using the term “shifts” to describe the coordinate change that comes out 
of a datum transformation, and that terminology has been embraced by the user community as 
well.  But a “shift” implies that something moved.  It is around this word “shift” that a lot of the 
linear versus curvilinear problems arise.  For example, the question might be asked: “How many 
                                                            
1 Note that the question of “which latitude and longitude should I use when asking the software to interpolate off 
of the grid” is not a trivial one.  If the coordinate differences between two datums are large enough, and the grid 
spacing small enough, then one might actually see significant differences when using the “old datum” or the “new 
datum” when determining which latitude and longitude to give the grid interpolator.  Thankfully this situation does 
not exist for any of the transformations in NADCON.  Therefore, with equal accuracy, one can give the grid 
interpolator the latitude/longitude in “old datum” or in “new datum” and receive the same answer for what the 
datum transformation is between the old datum and the new datum. 
2 The values in the NADCON grids are actually provided in units of arcseconds.  This is because even the largest 
coordinate changes due to a horizontal datum transformation within the datums of the National Spatial Reference 
System (NSRS) have never exceeded a few arcseconds. 
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centimeters did my point shift when NAD 83(NSRS2007) was replaced with NAD 83(2011)?”  
The correct answer, hopefully obvious by now, is “that question has no answer.”  The next 
section describes why this is so, and subsequent sections will attempt to avoid the nonsensical 
while still providing a linear value that is a useful companion value to official coordinate 
changes coming out of NADCON. 

As a related aside, NADCON 5.0 also provides transformation error estimates in curvilinear 
units (arcseconds).  This is done for the same reason that coordinate differences are in curvilinear 
units.  And, as with the transformation values themselves, there is an expectation in the user 
community that transformation errors should also be provided in linear units (e.g., meters).  As 
such, although this report is intended to address coordinate differences, the same concepts also 
apply to NADCON error estimates. 

3 Units, and a little philosophy 
There is essentially one reason that equation 1 works at all, and that is that the values φNAD 83 and 
φNAD 27 are both in the same units, specifically curvilinear, and that these two coordinates can 
completely explain the horizontal transformation.  From a purely philosophical standpoint, it 
might be argued that these two different latitudes are not even the same kind of things, being 
determined in different ways at different times, but that does not prevent equation 1 from being 
useful.  Being different kinds of things, but both expressed in curvilinear coordinates, still allows 
for equation 1 to “work,” and as a critical corollary it obviously requires that δφ must also be 
curvilinear. 

Consider now the question “how big is δφ in meters?”  Answering this question is not simple.  
The easiest (and, in fact, long-encoded answer in NADCON, since version 1.0), yet incorrect, 
way would be to treat δφ as the separation between two points on an ellipsoid, and compute the 
distance between the points.  There are two inherent scientific inaccuracies with this approach.  
First, δφ is the difference in coordinates at one point (not two).  Second, if the two datums 
involved in δφ have different ellipsoids (such as is the case with NAD 27 and NAD 83), there is 
no obvious choice of which ellipsoid to use. 

But an even simpler problem exists when one asks “how big is δφ in meters?”.  In order to fulfill 
the definition of “datum transformation” in equation 1, we would need to express φNAD 83 and 
φNAD 27 in meters as well!  And this raises the follow-up question:  how can you express 
inherently curvilinear coordinates (latitudes or longitudes) with linear units?  The answer is “you 
can’t”. 

To summarize: the big question, and where philosophy enters in, is: 

Question: What is this horizontal distance NGS has been calculating and reporting 
in NADCON for decades? 

The big answer is:   
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Answer: It is not a real horizontal distance at all, and thus nobody should use it as 
anything but a ballpark ‘companion value' to understand the general scale of 
horizontal deformation of a network of points in an area which have undergone a 
datum change via NADCON. 

4 Actual distance 
In order to shed light and provide a way forward, it will be instructive to discuss formulae which 
compute actual distances in both curvilinear and linear units.  Specifically, consider two unique 
points, both on the same ellipsoid, separated by some non-zero distance, and both with 
coordinates provided in one datum (NAD 83(2011), for example).  The geodetic coordinates of 
these two points are (φ1, λ1) and (φ2, λ2). 

4.1 ENU vs arc distance 
To ask “how far north and east is point 2 from point 1?” can raise a confusion with regard to 
what is meant by “north” and “east.”  Thus, before proceeding, this issue will be clarified.   

It is possible to build a local Cartesian coordinate system, centered at point 1, with “east” and 
“north” axes defining the horizon plane, tangent to the ellipsoid at point 1 (often called a “local 
geodetic horizon” system).  The “up” axis would point along the ellipsoidal normal at point 1.  
While such a system certainly lends itself to answering questions about “north” and “east” 
distances, it does not actually describe distances between points on the ellipsoid.  That is, to 
travel “north” or “east” in point 1’s local ENU system is to travel off of the ellipsoid the moment 
one leaves point 1.  Admittedly, the effect on horizontal distance due to departure from the 
ellipsoid is extremely small for even the largest NADCON 5.0 shifts (about 20 arcseconds). To 
illustrate, for a shift of 20 arcseconds in latitude, the ENU plane departs from the ellipsoid by 3 
cm, yet the ENU distance north (about 617 m at 45° latitude) is shorter than the ellipsoidal 
distances by only 0.001 mm. The effect is the same for a shift in longitude at the equator, but the 
difference decreases to zero at the poles. Nonetheless, an ENU approach is not strictly 
appropriate for the curvilinear geometry of the problem, and, moreover, such a solution is 
unnecessary.   

Therefore, rather than worry about a local Cartesian coordinate system, the issue of “distance in 
the north” and “distance in the east” will be solved by computing arc distances on the ellipsoid, 
in the meridian (for “north”) and along a parallel (for “east”). 

4.2 Arc distances 
Most of the equations below come from (Rapp, 1991), and describe the distance in “north” (arc 
along the meridian) and “east” (arc along the parallel) between two points on the same ellipsoid.  
Consider the differential arc distance in the meridian first:  

𝜕𝜕𝜕𝜕 = 𝑀𝑀(𝜙𝜙)𝜕𝜕𝜕𝜕 (2) 
where M(φ) is the radius of curvature in the meridian: 
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𝑀𝑀(𝜙𝜙) =  
𝑎𝑎 (1 − 𝑒𝑒2)

(1 − 𝑒𝑒2 sin2 𝜙𝜙)3/2 (3) 

In the above equation, a is the ellipsoid semi-major axis and e2 is its first eccentricity squared.  
Integration of Eq. 2 over a finite latitude difference of ∆φ = φ2 – φ1 results in an infinite series 
without an exact closed-form solution.  However, an approximation for the distance s can be 
made if ∆φ is assumed to be “small,” by using Mm (the evaluation of Eq. 3 at the mean latitude of 
the end points): 

𝑠𝑠 ≈  𝑀𝑀𝑚𝑚 Δ𝜙𝜙 , (4) 

or 

𝑠𝑠 ≈  
𝑎𝑎 (1 − 𝑒𝑒2) Δ𝜙𝜙

(1 − 𝑒𝑒2 sin2 𝜙𝜙𝑚𝑚)3/2 (5) 

where φm is the mean latitude of φ1 and φ2, in radians. 

Consider next the differential arc length along the parallel: 

𝜕𝜕𝜕𝜕 = 𝑁𝑁(𝜙𝜙) cos𝜙𝜙 𝜕𝜕𝜕𝜕 (6) 

where N(φ) is the prime vertical radius of curvature given by 

𝑁𝑁(𝜙𝜙) =  
𝑎𝑎

�1 − 𝑒𝑒2 sin2 𝜙𝜙
 (7) 

The integration of this equation is simpler, with an exact solution: 

𝐿𝐿 = 𝑁𝑁(𝜙𝜙) cos𝜙𝜙 Δ𝜆𝜆 (8) 

and thus, at the same mean latitude φm used in equation 5, the arc length L becomes 

𝐿𝐿 =  
𝑎𝑎 cos𝜙𝜙𝑚𝑚 Δ𝜆𝜆

�1 − 𝑒𝑒2 sin2 𝜙𝜙𝑚𝑚
 (9) 

For consistency with the coordinate differences in NADCON, equations 5 and 9 will be 
expressed with ∆φ and ∆λ in arcseconds: 

𝑠𝑠 ≈  
𝑎𝑎 (1 − 𝑒𝑒2) Δ𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠

(1 − 𝑒𝑒2 sin2 𝜙𝜙𝑚𝑚)3/2 ∙
𝜋𝜋

180° ∙
1°

3600 𝑠𝑠𝑠𝑠𝑠𝑠
 (10) 
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𝐿𝐿 =  
𝑎𝑎 cos𝜙𝜙𝑚𝑚 Δ𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠
�1 − 𝑒𝑒2 sin2 𝜙𝜙𝑚𝑚

∙
𝜋𝜋

180° ∙
1°

3600 𝑠𝑠𝑠𝑠𝑠𝑠
 (11) 

 

Equations 10 and 11 therefore express the distance in “north” (arc along the meridian) and “east” 
(arc along the parallel) between two points on the same ellipsoid, where ∆φ is assumed “small,” 
and all coordinate differences are provided in arcseconds. 

It so happens that equations 10 and 11 are the exact formulae that have been used in NADCON, 
for the reporting of transformations “in meters,” with these GRS 80 ellipsoid parameters: 

 a = 6,378,137 meters (exact) 

 e2 = 0.00669438002290… (unitless, not exact) 

However, it must be re-emphasized:  the only official transformations coming out of NADCON, 
for latitude and longitude, are coordinate differences expressed in curvilinear values 
(arcseconds).  The encoding of equations 10 and 11 since the first version of NADCON have 
been done with the best of intentions, but is philosophically incorrect3.   

Nonetheless, because these values have been helpful for visualizing and understanding 
deformations of survey point networks induced by datum transformations, NGS plans to encode 
them into NGS’s two primary tools: NCAT and VDatum, as appendices to NADCON, for both 
coordinate differences and error estimates.  However, both will be quantities computed by 
NCAT and VDatum (or other software applications) but will not be official products of the 
NADCON transformation itself. 

Because of this decision, it may be worthwhile to close with some words about the accuracy of 
equations 10 and 11, without regard to the correctness, or lack thereof, of their application. 

 

4.3 Accuracy 
While equation 11 is exact at any latitude, use of the mean latitude in equation 10 introduces a 
level of approximation which should be quantified. 

Equation 10 is accurate to within ±0.4 mm for ∆φsec < 900" = 0.25° ≈ 28 km, at any location on 
the GRS 80 ellipsoid.  The error magnitude is maximum at the equator and poles and minimum 
at φm = 45° (−0.002 mm for ∆φsec = 900").  The maximum error (at the poles and equator) 
decreases to ±0.00013 mm for ∆φsec = 60" (1 arcminute), which is about 1.85 km at φm = 45°.  
The bottom line is that equation 10 is accurate to better than ±0.00001 mm for any ∆φsec  values 

                                                            
3 In fact, they are also numerically incorrect, in that the Clarke 1866 ellipsoid, used in NAD 27, was completely 
ignored in computing linear values from the curvilinear coordinate changes in the NAD 27/NAD 83(1986) 
transformation.  For reference, the Clarke 1866 ellipsoid has a = 6,378,206.4 m (exact) and e2 = 
0.00676865799729... (not exact). 
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which might come from NADCON 5.0 (for an assumed maximum ∆φsec ≈ 20", for the American 
Samoa region).   

Note, linear arc lengths obtained using ∆φsec and ∆λsec should not in general be combined to 
compute an accurate geodesic distance (i.e., as the square root of the sum of their squares).  
However, for all NADCON 5.0 transformations, the ∆φsec and ∆λsec values are sufficiently small 
that their conversion into linear units (using Eq. 10 and 11) agree to better than 0.01 mm with 
actual geodesic distances (e.g., using the Vincenty method; Vincenty 1980).  As an example 
using large delta values of ∆φsec = ∆λsec = 60" (much larger than any NADCON 5.0 
transformation), s = 1850.57988 m and L = 1423.05792 m at φ = 40°.  The “horizontal”4 distance 
implied by these deltas can be approximated by √𝑠𝑠2 + 𝐿𝐿2, = 2334.46776 m, which is only 0.01 
mm greater than the actual geodesic distance of 2334.46775, and the error is even less for 
smaller deltas.  Despite this excellent agreement, the error increases rapidly with increasing 
deltas, to 1.3 mm for ∆φsec = ∆λsec = 300" (5 arcminutes) and 36 mm for ∆φsec = ∆λsec = 900" 
(15 arcminutes).  For this reason, caution should be exercised when attempting to estimate 
“horizontal” distances using delta latitude and longitude values. 

As mentioned previously, another source of error (and ambiguity) when computing linear 
coordinate differences occurs when the transformation involves two different ellipsoids.  
Consider the same large delta values of ∆φsec = ∆λsec = 60" at φ = 40° from the previous example, 
but with the linear distances based on the Clarke 1866 ellipsoid.  The resulting distances are 
shorter by 33 mm for latitude and longer by 37 mm for longitude than those based on the 
GRS 80 ellipsoid.  The maximum magnitudes of linear differences in latitude for this case are 
118 mm shorter than GRS 80 at the equator and 90 mm longer at the poles (whereas the linear 
difference in longitude is relatively constant at most latitudes and goes to zero at the poles).  
Although these differences decrease proportionally with decrease in ∆φsec and ∆λsec, it clearly 
shows the difficulty in determining meaningful, accurate linear values for curvilinear coordinate 
differences when the input and output ellipsoids are not the same, as occurs when transforming 
between NAD 27 and NAD 83 (1986).        

4.4 Summary 
Since its inception, NADCON has computed actual curvilinear coordinate changes (arcseconds), 
while also reporting linear distances as companion values.  The ingestion of NADCON 5.0 
release 20160901 into NCAT and VDatum did not originally include these linear companion 
values, due to their philosophical incorrectness.  This is true for two reasons: (a) the 
transformation values within NADCON 5.0 release 20160901 are not separations between two 
points and (b) two different ellipsoids might be in play, such as the NAD 27 to NAD 83(1986) 
transformations.   

                                                            
4 The term “horizontal” is in quotes because it is an amalgamation of things: on the one hand s and L represent arc 
distances on an ellipsoid, but combining them as √𝑠𝑠2 + 𝐿𝐿2 treats them as linear distances in a Cartesian frame.  For 
this reason, while NGS will be providing the s and L values as “companion” values to the true transformations, 
there will not be a corresponding “horizontal” value. 
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Nonetheless, users have requested that NGS reinstate linear distances as a companion to 
NADCON official datum transformations.  In order to address this situation, NGS has encoded 
equations 10 and 11 into NCAT and VDatum (based on the GRS 80 ellipsoid) as a companion to 
NADCON 5.0 release 20160901, for both transformation coordinate differences and error 
estimates.  As part of the decision to add such functionality to NCAT and VDatum, NGS has 
provided this paper as an explanation about why these linear values should be treated with 
caution. 
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