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Executive Summary 
 

The National Geodetic Survey (NGS) plans to modernized the National Spatial Reference 
System (NSRS) in 2025. One part of that modernization is the estimation of both geometric and 
orthometric reference epoch coordinates (RECs) from decades of existing GNSS, classical and 
leveling observations. 

To support the estimation of RECs, NGS published a report outlining the mathematics necessary 
to not only project observations through time to the reference epoch but also to properly account 
for the uncertainties in the models used to do the projecting (The Multi-Epoch Least-Squares 
Adjustment Problem: Models Relating Estimable Parameters at a Single Epoch to Geodetic 
Observations, Stochastic Constraints and Fixed Constraints at Multiple Epochs, Volume I: The 
Projection Method, Smith, Gillins, Heck and Roman, July 2023, NOAA Technical Report NOS 
NGS 79). That report outlined how observations (and constraints) across various epochs could be 
projected through time using a model of changes to parameter values (MCPV). However, the 
report only provided generalized equations and left unsolved certain practical aspects of the 
application of the equations.  

One of those practical aspects centered on questions of covariances:  Will they exist in the 
models and even if they do not, will they arise out of the method used to create projected 
observations?  That is the focus of this report. 

Herein the author explored these questions, and more. The first subject addressed was the 
relationship between the abstract mathematical construct of the MCPV and the available geodetic 
value change models (GVCMs), such as the intra-frame deformation model (IFDM2022) and the 
dynamic geoid model (DGEOID2022). Next, equations are derived which would properly use 
covariances which might exist in the GVCMs. However, the conclusion reached is that if such 
covariances exist, then the cofactor matrix of the projected observations becomes full and for 
large least-squares adjustment problems, this becomes a practical impossibility to invert.  

The author then assumes such covariances will be unknown (or ignored) and shows how 
additional covariances arise simply through the process of projecting, when observations share a 
common point. The author then addresses the practical impacts of these additional covariances, 
and finally concludes that the only practical approach is to ignore certain covariances entirely 
and forcibly construct the cofactor matrix of the projected observations to exactly match the 
structure (diagonal and/or block-diagonal) of the cofactor matrix of the original observations. 

The author closes the paper with a summary, and an appendix which discusses certain special 
circumstances when the cofactor matrix of the projected observations might be singular. 
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1 Introduction 
In one method of modeling of the multi-epoch least-squares adjustment (ME-LSA) problem 
(Smith et al., 2023), observations (𝒀𝒀) taken across a variety of observation epochs are projected 
through time into projected observations (𝒀𝒀�) at the adjustment epoch. The differences between 
observations and projected observations are a function changes to the parameter values from the 
observation epoch to the adjustment epoch, which come from a model of changes to parameter 
values (MCPV). Similar statements can be made about constraints and projected constraints. 
However, in the modernized national spatial reference system (NSRS; NGS 2021a, NGS 2021b, 
NGS 2021c), the estimation of reference epoch coordinates (RECs) by the National Geodetic 
Survey (NGS) will be performed under a strict set of rules, one of which will be that fixed and 
stochastic constraints will only be imposed at the adjustment epoch. As such, in REC adjustment 
projects the MCPV will only impact the observation equations, not the constraint equations, and 
so there will be no difference between constraints and projected constraints. Therefore, we will 
focus solely on the impact of the MCPV upon projected observations. 

Complicating this situation, NGS does not have any models which fulfill the definition of the 
MCPV as per (ibid)1. Rather, NGS has related models, such as the intra-frame deformation model 
of 2022 (IFDM2022), and DGEOID2022. Such models fall into a class called geodetic value 
change models (GVCM)2. Thankfully, the MCPV can be derived from one or more GVCMs. This 
was discussed in (ibid) and will be expanded in this report. 

If the MCPV is known without variance (i.e., fixed), then the dispersion matrix of the projected 
observations, Σ𝑦𝑦� , will be identical to the dispersion matrix of the observations, Σ𝑦𝑦. This is 
essentially what was done in the 2011 National Adjustment (Dennis, 2020). See section 3.1.   

However, if the MCPV is known with variance (i.e., stochastic), then the dispersion matrix of the 
projected observations, Σ𝑦𝑦� , will be the sum of the dispersion matrix of the observations, Σ𝑦𝑦,  plus 
the dispersion matrix of the MCPV contribution to the projected observations, Σ𝑦𝑦� ,𝑚𝑚.  

If all of the GVCMs are fixed, so too is the MCPV. If at least one GVCM is stochastic, the MCPV 
is stochastic. 

The primary issue examined in this report is how to compute matrix Σ𝑦𝑦� ,𝑚𝑚 when given one or more 
GVCMs, with special attention placed on which, if any, covariances are provided in the GVCM. 
A related issue is that the matrix Σ𝑦𝑦�,𝑚𝑚 might be significantly less sparse than Σ𝑦𝑦, making Σ𝑦𝑦�  less 
sparse by extension. This report discusses what causes the loss of sparsity in Σ𝑦𝑦�,𝑚𝑚, the practical 

 
1 That is, no model at NGS is constructed as changes over time to Earth-centered Earth-fixed Cartesian coordinates 
𝑋𝑋,𝑌𝑌,𝑍𝑍, as required for geometric adjustments.   Nor does a model exist at NGS constructed as changes over time to 
orthometric heights 𝐻𝐻, as required for orthometric adjustments. 
2 This term was carefully chosen. First, its acronym does not begin with “M”, helping the reader to distinguish 
between MCPV and GVCM at a glance. Second, it is generic, where geodetic value can refer to just about anything. 
In IFDM2022 it refers to local East-North-Up changes (velocities and displacements). In DGEOID2022 it refers to 
local changes (velocities only) to the geoid undulation. In theory, the Euler Pole Parameter model of 2022 
(EPP2022), will be a GVCM since it will contain rotation rates about the ITRF2020 axes which represent changes to 
geodetic values, from which changes to 𝑋𝑋, 𝑌𝑌 and 𝑍𝑍 may be derived. 
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difficulties arising from that loss of sparsity and makes recommendations as to how to alleviate 
those difficulties.  

The bulk of this report is in sections 5 and 6, covering geometric adjustments and orthometric 
adjustments. As these two different types of adjustments have their own GVCMs and their own 
particular issues, they must be discussed separately. In each of those two sections, we will begin 
with a general discussion of projected observations, and show how to compute the diagonal or 
block-diagonal elements of Σ𝑦𝑦�,𝑚𝑚 for each observation type. We will then turn to the off-diagonal 
elements of Σ𝑦𝑦�,𝑚𝑚 by examining certain special cases. We will show in section 7 how knowledge 
of covariances within the GVCM (and the MCPV, by extension) is one of the two main causes of 
loss of sparsity in Σ𝑦𝑦� ,𝑚𝑚, and that the other primary cause is shared points between two 
observations. The shared points issue can cause loss of sparsity if the GVCMs contain grids of 
linear velocities or grids of discontinuities that are used in common between two projected 
observations (even if no covariances are available in the GVCM), which happens to be exactly the 
situation with IFDM2022 and DGEOID2022. 

We will close the paper with a discussion of practical issues, specifically seeking a compromise 
between knowledge of off-diagonal elements in Σ𝑦𝑦�,𝑚𝑚 and the practical implications of those 
elements being non-zero. 

 

1.1 Terminology and notation 
A few words about dispersion, cofactor and weight matrices are warranted. As pointed out in 
Appendix A of Smith et al. (2023): 

“…dispersion matrices (represented by Σ) are not generally available for either 
observations, stochastic constraints or a GVCM. Rather, one or more cofactor matrices 
(represented by 𝑄𝑄) are available, with the relationship between dispersion matrices and 
cofactor matrices being through one or more variance components…”.  

If a single variance component exists, relating each dispersion matrix to one cofactor matrix, this 
is the Gauss-Markov Model, or GMM (Snow, 2021). If each dispersion matrix is related to 
multiple cofactor matrices through multiple variance components, this is the Variance Component 
Model, or VCM (ibid). 

Within the GMM, the inverse of a cofactor matrix is called a weight matrix, represented by a 𝑃𝑃. 
Weight matrices, in general, do not exist in the VCM, as cofactor matrices in that model tend to 
be singular.  

Because the equations for the VCM are different from the GMM, this report will restrict its 
discussion to dispersion matrices in general, despite their lack of availability, and will only 
introduce cofactor matrices when necessary. 

Additionally, we adopt similar notation as was used in Smith et al. (2023). Specifically, when 
discussing a particular observation epoch, we will use the variable 𝑖𝑖. The adjustment epoch will 
not have an index variable. Related to this are the actual times of the epochs themselves. The time 
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of observation epoch 𝑖𝑖 will be designated by variable 𝑡𝑡𝑖𝑖, and the time of the adjustment epoch will 
be designated by variable 𝑡𝑡𝑎𝑎. 

Finally, because some of the vectors and matrices will get a bit large for the printed page, it will 
sometimes be difficult to show every element of them. Therefore, we will often look at block-
rows, and block-columns. To do so, we adopt the notation that a bold variable means vector. 
Thus, variable 𝑋𝑋 (not bold) means the 𝑋𝑋 coordinate (of a Cartesian triad) but 𝑿𝑿 (bold), means a 
vector containing all three Cartesian coordinates as follows: 

𝑿𝑿 = [𝑋𝑋 𝑌𝑌 𝑍𝑍]𝑇𝑇 , (1) 
𝚫𝚫𝑿𝑿 = [Δ𝑋𝑋 Δ𝑌𝑌 Δ𝑍𝑍]𝑇𝑇 , (2) 
𝑬𝑬 = [𝐸𝐸 𝑁𝑁 ℎ]𝑇𝑇 , (3) 

𝚫𝚫𝑬𝑬 = [Δ𝐸𝐸 Δ𝑁𝑁 Δℎ]𝑇𝑇 , (4) 
𝑬𝑬 = [𝐸𝐸 𝑁𝑁 ℎ]𝑇𝑇 . (5) ̇ ̇ ̇ ̇

 

2 Special case of the multi-epoch least-squares adjustment problem as 
applied to reference epoch coordinates  

In the projection method of the ME-LSA problem (Smith et al., 2023), the incremental projected 
observation equations and incremental projected constraint equations, using a stochastic MCPV, 
take this form: 

𝒚𝒚� = 𝐴𝐴𝝃𝝃 + 𝒆𝒆𝒚𝒚�, 
𝒘𝒘� = 𝑆𝑆𝝃𝝃 + 𝒆𝒆𝒘𝒘� , 
𝒈𝒈� = 𝐹𝐹�𝑔𝑔𝝃𝝃 + 𝒆𝒆𝒈𝒈� , 
𝜸𝜸�𝒂𝒂 = 𝐹𝐹�𝜸𝜸𝝃𝝃. 

(6) 

 

The random errors in (6) are distributed as: 

�
𝒆𝒆𝒚𝒚�
𝒆𝒆𝒘𝒘�
𝒆𝒆𝒈𝒈�
�~��

0
0
0
� , �

Σ𝑦𝑦� 0 0
0 Σ𝑤𝑤� 0
0 0 Σ𝑔𝑔�

� = �
Σ𝑦𝑦 + Σ𝑦𝑦�,𝑚𝑚 0 0

0 Σ𝑤𝑤 + Σ𝑤𝑤� ,𝑚𝑚 0
0 0 Σ𝑔𝑔�,𝑚𝑚

��. (7) 

̅
̅

 

Equations 6 and 7 are the general form of the projection method of modeling the ME-LSA 
problem. However, as mentioned in the introduction, this paper will focus on one specific 
scenario of the ME-LSA problem, with the following criteria: 

a) The MCPV is stochastic, and 
b) All constraints (fixed or stochastic) will only be provided at the adjustment epoch. 

This is done for a few reasons. First, using a stochastic MCPV provides a rigorous, consistent way 
for older observations to be down-weighted relative to more recent observations.  

Second, having all constraints at the adjustment epoch allows NGS to restrict them solely to those 
values that are well-known, without the need to project them through time. For instance, in a 
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geometric adjustment (ibid), defining constraints solely at the adjustment epoch means NGS can 
constrain the coordinates at CORSs which were actually operational and had a well-defined 
coordinate function on the date of the adjustment epoch3. This restriction on constraints will 
simplify (6) and (7). With all constraints at the adjustment epoch, the MCPV has no impact on the 
constraint equations, and the equations reduce down to 

𝒚𝒚� = 𝐴𝐴𝝃𝝃 + 𝒆𝒆𝒚𝒚�, 
𝒘𝒘� = 𝑆𝑆𝝃𝝃 + 𝒆𝒆𝒘𝒘� , 
𝜸𝜸�𝒂𝒂 = 𝐹𝐹�𝜸𝜸𝝃𝝃, 

(8) 

and 

�
𝒆𝒆𝒚𝒚�
𝒆𝒆𝒘𝒘��~ ��00� , �

Σ𝑦𝑦� 0
0 Σ𝑤𝑤�

� = �
Σ𝑦𝑦 + Σ𝑦𝑦� ,𝑚𝑚 0

0 Σ𝑤𝑤
��. (9) 

 

̅
̅

Note in (9) that Σ𝑤𝑤� ,𝑚𝑚 has been eliminated, as have all matrices and vectors associated with 
projected fixed constraints (not at the adjustment epoch), 𝒈𝒈�. 

This scenario will be expected NGS policy with regard to upcoming reference epoch coordinate 
(REC) and survey epoch coordinate (SEC) adjustments (NGS, 2021c). Therefore, under these two 
criteria, most of the remaining discussion will focus on observations, and not constraints. 

2.1 Two types of adjustments 
In the modernized NSRS, NGS will compute RECs in two types of adjustments (NGS, 2021c):  
geometric and orthometric. Each type of adjustment has a finite list of allowable observation, 
constraint and unknown parameter types. In geometric adjustments, the unknown parameters will 
be Earth-centered Earth-fixed (ECEF) Cartesian coordinates, 𝑋𝑋𝑌𝑌𝑍𝑍. In orthometric adjustments, 
they will be orthometric heights, 𝐻𝐻.  

These two types of adjustments will be examined in detail, in particular in sections 5 and 6. 

3 The relationship between a model of changes to parameter values 
(MCPV) and a geodetic value change model (GVCM) 

 

Smith et al. (2023) required that the model of changes to parameter values (MCPV) must always 
refer to the same types of parameters being estimated (𝑋𝑋𝑌𝑌𝑍𝑍 for geometric, 𝐻𝐻 for orthometric). 
Also, all values coming from the MCPV must be at observation points4 and each value must be a 
single value of change between some observation epoch 𝑖𝑖 and the adjustment epoch. For example, 

 
3 Meaning that older GNSS vectors, for example, which may have a CORS as an endpoint at the observation epoch, 
but where that CORS no longer exists at the adjustment epoch, will treat neither endpoint as constrained once the 
observation becomes a projected observation. 
4 The physical points where observations were collected. The MCPV must also, according to Smith et al. (2023) 
provide values at constraint points, but as mentioned earlier, no constraints will be projected through time, so this 
point is moot. 
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in a geometric adjustment the MCPV must, for any given observation provide the change to 𝑋𝑋, 𝑌𝑌 
and 𝑍𝑍 between 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑎𝑎, at the point where observation 𝑖𝑖 took place. Similar changes to 𝐻𝐻 must 
come from the MCPV for an orthometric adjustment.  

As pointed out in (ibid) NGS does not have any models which directly provide such values of 
change. That is, NGS has no MCPVs. What is available are various gridded models of change to 
certain geodetic coordinate values. In particular the intra-frame deformation model of 2022 
(IFDM2022) and the dynamic portion of GEOID2022 (i.e., DGEOID2022). The first is made up 
of linear velocities (as well as their standard deviations) and episodic displacements (with no 
standard deviations) in a local East-North-Up (𝐸𝐸𝑁𝑁ℎ, where h represents ellipsoid height as the up 
direction) frame. The second is made up entirely of linear velocities (as well as their standard 
deviations) in geoid undulations, 𝐿𝐿5. IFDM2022, and its predecessor, the horizontal time-
dependent positioning program, or HTDP (Snay, 1999), belong to a class of models sometimes 
called crustal deformation models. However, DGEOID2022 does not. For this reason, Smith et al. 
(2023) adopted the more general term geodetic value change model, or GVCM to group both 
IFDM2022, DGEOID2022 and any other such models in the future.  

A quick summary of the differences between the MCPV (needed) and the GVCMs (available) is 
found in Table 1. 

Table 1:  A comparison between the MCPV and the various GVCMs from which it may be 
derived. 

Model of Changes to Parameters Geodetic Value Change Model  
(MCPV) (GVCM) 

Has no name IFDM2022 or DGEOID2022 
Exists only as a mathematical construct for Exist as stand-alone models outside of an 
one least-squares adjustment adjustment 
Needed at observation points Tend to be provided in grid form 
Must reflect changes to parameters of the Tend to be changes to 𝐸𝐸𝑁𝑁ℎ (IFDM2022) or 
adjustment:  either 𝑋𝑋𝑌𝑌𝑍𝑍 for geometric or 𝐻𝐻 𝐿𝐿 (DGEOID2022) 
for orthometric 
Provides a single value, in the units of the May contain multiple types of values 
appropriate parameter, for any given including velocities (length/time) and 
parameter, point and epoch. episodic displacements (lengths). 

 

3.1 An historic example:  The National Adjustment of 2011 
The 2011 national adjustment of GPS measured baselines6 estimated coordinates at passive 
control in the NAD 83(2011) frame at epoch 2010.00 (Dennis, 2020). It was a geometric 
adjustment, whose unknown parameters were Earth-centered, Earth-fixed Cartesian coordinates 
𝑋𝑋𝑌𝑌𝑍𝑍. The MCPV (though this term was not yet used) was derived from HTDP, a type of GVCM.  

 
5 Although 𝑁𝑁 is the traditional variable for geoid undulation, it is already being used to mean “North” in this report.  
6 More often called GPS vectors, the term measured baseline will be used in this paper to avoid confusion with the 
term vector, which will be used exclusively in its linear algebra context, meaning a one-dimensional column array. 
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HTDP contains grids of linear velocities in the north and east direction, very few linear velocities 
in the up direction, and models of displacing events7 (which can be converted into instantaneous 
displacement vectors), but no variances on any of these quantities. The HTDP software, which 
reads and uses the HTDP grids and models, is capable of applying 𝐸𝐸𝑁𝑁ℎ velocities over time and 
displacement vectors at specific epochs to form total 𝐸𝐸𝑁𝑁ℎ change vectors between two epochs, 
then rotating the total change vectors into an 𝑋𝑋𝑌𝑌𝑍𝑍 frame to serve as the MCPV. However, with no 
variances, this meant that the MCPV was treated as fixed, and thus older GPS measured baselines 
were not rigorously and consistently down-weighted relative to more recent ones.8   

3.2 Changes that will come with the modernized NSRS 
For the modernized NSRS, a few things will be different than in the past. 

First, the effectively 2-D (East and North) HTDP will be replaced with a 3-D IFDM2022.  

Second, the GVCM will not be treated as fixed, but rather will have some statistical information. 
The most obvious and available information will be in the form of grids of standard deviations of 
velocities, which can be squared to yield variances. What is less clear is the availability of 
covariances in the GVCM. Therefore, in this report we will address both the situation when 
covariances are known and when they are unknown in the GVCM and what that will mean for the 
sparsity of the dispersion matrix of the projected observations Σ𝑦𝑦� . 

3.3 Covariances and their effect on sparsity 
This question of sparsity is very important. As mentioned earlier, the dispersion matrix of the 
projected observations Σ𝑦𝑦�  is a combination of the dispersion matrix of the observations Σ𝑦𝑦 and the 
dispersion matrix of the MCPV contribution to projected observations Σ𝑦𝑦�,𝑚𝑚. Since nearly every 
observation in the geometric and orthometric adjustments will be a function of the coordinates 
(parameters) at two or three points, that means the dispersion matrix Σ𝑦𝑦� ,𝑚𝑚 should, if possible, 
account for the covariances between those two or three points to compute the correct dispersion 
for a single projected observation. 

In fact, it gets much more complicated than that. In the discussion of random errors in Smith et al. 
(2023, Appendix A), some choices were made to ignore certain covariances. The justification 
given in (ibid) was to keep the dispersion (or cofactor) matrices sparse, rather than full. Herein we 
will go into greater detail on that exact topic. 

One of the choices made in (ibid) was to ignore covariances between epochs in the MCPV. This 
choice is not made lightly, because, as stated in (ibid): 

“When the GVCM is mostly grids of linear velocities, error covariances between 
epochs…at the same point will always exist.” 

 
7 Although the only displacing events in HTDP are earthquakes, it is conceivable that other events, such as landslides 
or volcanic eruptions could be added to future GVCMs, and so we adopt the generic term “event” for this paper. 
8 Actually, some modifications were made to the projected observation weight matrix to account for some 
observations in subsidence areas, but no systematic attempt was made to propagate MCPV errors through time. 
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However, in (ibid) this choice was nonetheless made, so as to simplify the dispersion matrices in 
the ME-LSA problem. This paper revisits that choice, and provides more details on how to treat 
the available covariances between epochs in a practical way. We will discuss this in section 7, but 
as a brief glimpse of what is coming, we will conclude, in sections 5.4 and 6.4, that two 
uncorrelated observations will become two correlated projected observations if we rely upon a 
common grid of velocities from the GVCM and either have (a) at least one common point 
between the two observations or (b) have covariances between two velocities at a distance from 
one another.  

Both of these situations have substantial implications on the sparsity of Σ𝑦𝑦�,𝑚𝑚, and thus Σ𝑦𝑦� , which 
is why the choice to ignore the GVCM covariances was proposed in (ibid). Some of the missing 
details from (ibid) have been provided herein, and a practical solution to the lack of sparsity will 
be discussed in section 7. 

Before going any further, we briefly address the complication that GVCMs are currently available 
on grids, while the MCPVs are needed at observation points. 

4 Interpolating the geodetic value change model (GVCM) from grid 
nodes to observation points 

In Table 1, we pointed out the main differences between the GVCMs and the MCPV. One of 
those differences was requiring values from the MCPV at observation points while having values 
from the GVCMs on grids. This is a small complication, and one that can be easily addressed. 

The two GVCMs from NGS (IFDM2022 and GEOID2022) will, for the immediate future, consist 
of gridded data that always come in pairs:  one grid for data values and one grid for standard 
deviations of those data values. Most NGS products and services which use these grids will use 
interpolation to derive a data value at some point of interest, based on grid nodes that surround 
that point. As pointed out in Smith (2023), the question of properly computing the standard 
deviation of a value interpolated from grid nodes is complicated by the need for, and general lack 
of, knowledge about covariances between grid nodes. However, as Smith (ibid) concluded, a 
realistic, though always slightly pessimistic, estimation of the standard deviation of an 
interpolated value can be computed by applying the same interpolation scheme to the grid of 
standard deviations as was applied to the data grid. This can be done without any knowledge of 
covariances between grid nodes. 

As such, though the GVCM is given on grid nodes, and the MCPV is needed at observation 
points, the use of interpolation from the gridded GVCM (data and standard deviation grids both) 
will be assumed to yield correct data values and acceptable (if not entirely correct) standard 
deviations of those data values at the points where the MCPV is needed. 

To put it more simply, further discussion of the GVCMs will assume that their values (and the 
standard deviations of those values) are available at any given point, and not just at grid nodes. 

The next two sections contain similar discussions about the relation between GVCMs and the 
MCPV, and the role of covariances. Three types of covariances will be discussed:  those that are 
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known in the GVCM, those that arise from frame rotations between the GVCM and MCPV 
(geometric adjustments only), and those that arise when two observations share common points. 
Each section is laid out the same, first discussing a single point, then a single observation, and 
finally discussing the relation between any two observations with zero, one or two points in 
common. Section 5 covers these topics for geometric adjustments, while section 6 covers them for 
orthometric adjustments. 

5 Geometric Adjustments 
Parameters estimated in geometric REC adjustments will be global Cartesian coordinates at a 
reference epoch, with some nuisance parameters estimated as well. Observations will include 
GNSS vectors and classical (angle/distance) observations, though the possibility of PPP 
coordinates as an observation type are being considered. Constraints will be global Cartesian 
coordinates at active control stations at the reference epoch. 

5.1 Converting the GVCM to the MCPV at a single point 
In the case of geometric adjustments, the equations which will convert IFDM2022 (as the 
GVCM) into the MCPV, for any given point (𝐴𝐴), at epoch 𝑖𝑖, are derived in this section.  

We begin by stating that IFDM2022 consists of: 

• One set of six grids being three grids of linear velocities, in 𝐸𝐸𝑁𝑁ℎ, and three grids of their 
standard deviations 

• Multiple sets of six grids of displacements, in 𝐸𝐸𝑁𝑁ℎ, (one set per event) each set being 
three grids of displacements and three grids of their standard deviations.9 

While the grids of velocities can be easily visualized as having some non-zero value everywhere, 
that situation is less clear with displacements, since displacing events tend to have a finite radius 
within which they move the crust. Therefore, we will explicitly make what we will call, our 
displacement assumption:   

For every event, 𝑘𝑘, within the GVCM, there will be a [Δ𝐸𝐸,Δ𝑁𝑁,Δℎ]𝑇𝑇 vector, and its 
related vector of standard deviations10, at every grid point. 

Next, we define rotation matrix 𝑅𝑅𝐴𝐴. 

𝑅𝑅𝐴𝐴 = �
− sin λ𝐴𝐴 − cos λ𝐴𝐴 sinϕ𝐴𝐴 cos λ𝐴𝐴 cosϕ𝐴𝐴
cos λ𝐴𝐴 − sin λ𝐴𝐴 sinϕ𝐴𝐴 sin λ𝐴𝐴 cosϕ𝐴𝐴

0 cosϕ𝐴𝐴 sinϕ𝐴𝐴
� (10) 

 

In (10), ϕ𝐴𝐴 and λ𝐴𝐴 are the geodetic latitude and longitude of point 𝐴𝐴, respectively. Matrix 𝑅𝑅𝐴𝐴 is 
the rotation matrix used to convert changes in a local 𝐸𝐸𝑁𝑁ℎ horizon system into changes in a 

 
9 At the time of this writing, IFDM2022 contains no standard deviations of displacements. However, because NGS 
plans to estimate such values in future versions, the equations which rely on them are provided.  
10 Such vectors of displacement and their standard deviations might have magnitudes of zero (especially if a point is 
a far distance from the epicenter of a displacement event), but in general should still exist. 
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global ECEF Cartesian 𝑋𝑋𝑌𝑌𝑍𝑍 system. It will be critical for converting any geometric GVCMs that 
have their various values stored in 𝐸𝐸𝑁𝑁ℎ into the MCPV.  

Let the set of all events, 𝑘𝑘, which falls between epoch 𝑖𝑖 and the adjustment epoch be called 𝐾𝐾(𝑖𝑖). 
Then, for each 𝑘𝑘 ∈ 𝐾𝐾(𝑖𝑖) we can convert the 𝐸𝐸𝑁𝑁ℎ displacements provided by the GVCM into 𝑋𝑋𝑌𝑌𝑍𝑍 
displacements, required to populate the MCPV in a geometric adjustment as follows: 

�
𝛥𝛥𝑋𝑋𝐴𝐴,𝑖𝑖
𝛥𝛥𝑌𝑌𝐴𝐴,𝑖𝑖
𝛥𝛥𝑍𝑍𝐴𝐴,𝑖𝑖

�

𝑘𝑘

= 𝑅𝑅𝐴𝐴 �
Δ𝐸𝐸𝐴𝐴,𝑘𝑘
Δ𝑁𝑁𝐴𝐴,𝑘𝑘
Δℎ𝐴𝐴,𝑘𝑘

�    ∀  𝑘𝑘 ∈ 𝐾𝐾(𝑖𝑖). (11) 

 

Subscript 𝑘𝑘 on the left side means “contribution to the MCPV from the 𝑘𝑘𝑡𝑡ℎ event.”   

Unlike displacements from events, linear velocities must first be converted to displacements, by 
multiplying by the time span from epoch 𝑖𝑖 to the adjustment epoch, and then rotated from 𝐸𝐸𝑁𝑁ℎ to 
𝑋𝑋𝑌𝑌𝑍𝑍, as follows:  

�
Δ𝑋𝑋𝐴𝐴,𝑖𝑖
Δ𝑌𝑌𝐴𝐴,𝑖𝑖
Δ𝑍𝑍𝐴𝐴,𝑖𝑖

�

𝑣𝑣

= 𝑅𝑅𝐴𝐴(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑎𝑎) �
𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴
ℎ𝐴𝐴
� = Δ𝑡𝑡𝑖𝑖𝑅𝑅𝐴𝐴 �

𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴
ℎ𝐴𝐴
� (12) 

̇
̇
̇

̇
̇
̇

 

Subscript 𝑣𝑣 means “contribution to the MCPV from velocities”. 

Note the replacement of (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑎𝑎) with Δ𝑡𝑡𝑖𝑖, a shorthand for this scalar quantity which will be used 
throughout the rest of the paper. Note also the lack of subscript 𝑖𝑖 on 𝐸𝐸𝐴𝐴, 𝑁𝑁𝐴𝐴 and ℎ𝐴𝐴. This is 
because these velocities are constant. We will see later that this is an important point, causing 
covariances between projected observations that share points. This will be discussed in sections 
5.4 and 6.4. 

The total change to the parameter values (the MCPV), for geometric adjustments, as derived from 
an 𝐸𝐸𝑁𝑁ℎ-based GVCM (IFDM2022) at grid node 𝐴𝐴, between observation epoch 𝑖𝑖 and the 
adjustment epoch is found by combining (12) with the sum of all displacements in (11), to yield: 

̇ ̇ ̇

�
Δ𝑋𝑋𝐴𝐴,𝑖𝑖
Δ𝑌𝑌𝐴𝐴,𝑖𝑖
Δ𝑍𝑍𝐴𝐴,𝑖𝑖

� = �
Δ𝑋𝑋𝐴𝐴,𝑖𝑖
Δ𝑌𝑌𝐴𝐴,𝑖𝑖
Δ𝑍𝑍𝐴𝐴,𝑖𝑖

�

𝑣𝑣

+ 𝑠𝑠𝑠𝑠𝑠𝑠(Δ𝑡𝑡𝑖𝑖) � �
𝛥𝛥𝑋𝑋𝐴𝐴,𝑖𝑖
𝛥𝛥𝑌𝑌𝐴𝐴,𝑖𝑖
𝛥𝛥𝑍𝑍𝐴𝐴,𝑖𝑖

�

𝑘𝑘
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)

= 𝑅𝑅𝐴𝐴

⎝

⎛Δ𝑡𝑡𝑖𝑖 �
𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴
ℎ𝐴𝐴
� + 𝑠𝑠𝑠𝑠𝑠𝑠(Δ𝑡𝑡𝑖𝑖) � �

Δ𝐸𝐸𝐴𝐴,𝑘𝑘
Δ𝑁𝑁𝐴𝐴,𝑘𝑘
Δℎ𝐴𝐴,𝑘𝑘

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞

= 𝑅𝑅𝐴𝐴

⎝

⎛Δ𝑡𝑡𝑖𝑖 �
𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴
ℎ𝐴𝐴
� + 𝑞𝑞𝑖𝑖 � �

Δ𝐸𝐸𝐴𝐴,𝑘𝑘
Δ𝑁𝑁𝐴𝐴,𝑘𝑘
Δℎ𝐴𝐴,𝑘𝑘

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞, 

(13a) 

 

where 

̇
̇
̇

̇
̇
̇



𝑞𝑞𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠(Δ𝑡𝑡𝑖𝑖) = �
+1  if (Δ𝑡𝑡𝑖𝑖) > 0
−1  if (Δ𝑡𝑡𝑖𝑖) < 0
0  if (Δ𝑡𝑡𝑖𝑖) = 0.

 (13b) 

Because velocities and displacements are both modeled in the temporal direction of earlier-to-
later11, they must be applied negatively when the observation epoch precedes the adjustment 
epoch (Δ𝑡𝑡𝑖𝑖 < 0) and positively when the adjustment epoch precedes the observation epoch (Δ𝑡𝑡𝑖𝑖 >
0). This need to change the sign is applied automatically to the velocities, since they are 
multiplied by Δ𝑡𝑡𝑖𝑖 and thus adopt the sign of Δ𝑡𝑡𝑖𝑖. However, no such situation happens with the 
displacements, which is why the 𝑠𝑠𝑠𝑠𝑠𝑠(Δ𝑡𝑡𝑖𝑖) operator was inserted in (13). However, since inserting 
that operator into every equation will grow cumbersome, we set it equal to 𝑞𝑞 for the rest of the 
paper.  

The changes to parameter values seen in (13) are only half of what we need. Since the MCPV is 
stochastic, we also need the dispersions of these changes. We therefore apply the law of error 
propagation to (13), to arrive at the dispersion matrix Σ𝑀𝑀𝑖𝑖 of the MCPV applied to all parameters 
for epoch 𝑖𝑖 (see Smith et al., 2023), as follows: 

Σ𝑀𝑀𝑖𝑖 = 𝐷𝐷 ��
Δ𝑋𝑋𝐴𝐴,𝑖𝑖
Δ𝑌𝑌𝐴𝐴,𝑖𝑖
Δ𝑍𝑍𝐴𝐴,𝑖𝑖

�� = 𝐷𝐷

⎩
⎨

⎧
𝑅𝑅𝐴𝐴

⎝

⎛Δ𝑡𝑡𝑖𝑖 �
𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴
ℎ𝐴𝐴
� + 𝑞𝑞𝑖𝑖 � �

Δ𝐸𝐸𝐴𝐴,𝑘𝑘
Δ𝑁𝑁𝐴𝐴,𝑘𝑘
Δℎ𝐴𝐴,𝑘𝑘

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞

⎭
⎬

⎫

= 𝑅𝑅𝐴𝐴𝐷𝐷

⎩
⎨

⎧
Δ𝑡𝑡𝑖𝑖 �

𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴
ℎ𝐴𝐴
� + 𝑞𝑞𝑖𝑖 � �

Δ𝐸𝐸𝐴𝐴,𝑘𝑘
Δ𝑁𝑁𝐴𝐴,𝑘𝑘
Δℎ𝐴𝐴,𝑘𝑘

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎭
⎬

⎫
𝑅𝑅𝐴𝐴𝑇𝑇

= 𝑅𝑅𝐴𝐴

⎝

⎛Δ𝑡𝑡𝑖𝑖2𝐷𝐷 ��
𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴
ℎ𝐴𝐴
�� + 𝑞𝑞𝑖𝑖2 � 𝐷𝐷��

Δ𝐸𝐸𝐴𝐴,𝑘𝑘
Δ𝑁𝑁𝐴𝐴,𝑘𝑘
Δℎ𝐴𝐴,𝑘𝑘

��
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞𝑅𝑅𝐴𝐴𝑇𝑇

= 𝑅𝑅𝐴𝐴

⎝

⎛Δ𝑡𝑡𝑖𝑖2𝐷𝐷 ��
𝐸𝐸𝐴𝐴
𝑁𝑁𝐴𝐴
ℎ𝐴𝐴
�� + � 𝐷𝐷��

Δ𝐸𝐸𝐴𝐴,𝑘𝑘
Δ𝑁𝑁𝐴𝐴,𝑘𝑘
Δℎ𝐴𝐴,𝑘𝑘

��
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞𝑅𝑅𝐴𝐴𝑇𝑇 . 

(14) 

̇
̇
̇

̇
̇
̇

̇
̇
̇

̇
̇
̇

 

Note that the 𝑠𝑠𝑠𝑠𝑠𝑠 function, when squared, is always +1 unless applied to zero. In (14) we have 
assumed that covariances between velocities and displacements, and covariances between any two 
displacements, will be unknown, and therefore set to zero. Since, in this example, there are only 

 
11 That is, a positive velocity means that a parameter will grow larger as time goes in the forward direction. 
Similarly, a positive displacement will mean a parameter grows larger as time goes in the forward direction. 
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three unknown parameters (𝑋𝑋𝐴𝐴, 𝑌𝑌 12
𝐴𝐴, 𝑍𝑍𝐴𝐴), “all parameters”  encompasses only those three, and 

means that Σ𝑀𝑀𝑖𝑖 will be a 3 × 3 matrix. 

Equation 14 is useful because it translates the dispersions of our stochastic GVCM into 
dispersions of the MCPV itself, though only at a single point, 𝐴𝐴. That doesn’t get us yet to the 
dispersion of the contribution of the MCPV to the projected observations, Σ𝑦𝑦� ,𝑚𝑚. To derive that, 
we must look at actual observations, discussed next. 

 

5.2 Geometric Example:  One observation 
Unlike orthometric adjustments where only one type of observation is allowed (differential 
orthometric heights; see section 6), geometric adjustments have a variety of allowable 
observations. Some observations relate to a single point only (e.g., PPP coordinates), some relate 
two points (e.g., GNSS vectors, slant distances, zenith angles, geodetic azimuths, unoriented 
directions), and some relate three points (e.g., horizontal angles). Some come as triads of values 
(e.g., PPP coordinates, GNSS vectors), while the rest are single values. Some may be related to an 
unknown nuisance parameter (e.g., slant distances, zenith angles), while some must be related to 
an unknown nuisance parameter (e.g., unoriented directions).  

For simplicity, we group these observations into four types:   

• 1 = Related to one point, no nuisance parameters (PPP) 
• 2 = Related to two points, no nuisance parameters (slant distances, zenith angles, 

azimuths, GNSS vectors) 
• 2n = Related to two points and one nuisance parameter (slant distances, zenith 

angles, unoriented directions) 
• 3 = Related to three points (horizontal angles) 

Each of these combinations yields a slightly different situation, with slightly different equations. 
As many of the details are similar between observation types, we will derive the contribution of 
the MCPV to the projected observations, Σ𝑦𝑦�,𝑚𝑚 for a single type of observation, specifically 2n, 
(slant distances, zenith angles, unoriented directions) and extrapolate conclusions to the other 
observation types afterwards.  

Consider, in general, one observation (of any type) made at epoch 𝑖𝑖: 

𝒀𝒀𝒊𝒊 = 𝑎𝑎𝑖𝑖(𝚵𝚵𝒊𝒊) + 𝒆𝒆𝒚𝒚𝒊𝒊   ,   𝒆𝒆𝒚𝒚𝒊𝒊~ �𝟎𝟎, 𝚺𝚺𝒚𝒚𝒊𝒊�. (15) 

As per the previous paragraphs, note that observation vector 𝒀𝒀𝒊𝒊 can be 1 × 1 or 3 × 1, though we 
may remain general about its size through most of the following derivation. 

 
12 In Smith et al. (2023), matrix Σ𝑀𝑀𝑖𝑖  is defined as the dispersion of the changes to values of all parameters between 
epoch 𝑖𝑖 and the adjustment epoch, not just the parameters at our point of interest. However, in this case, they are 
one and the same. 
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We begin by mapping observations into projected observations, as per Smith et al. (2023). In the 
derivation below, bold indicates a vector of values. Subscripts 𝐴𝐴, 𝐵𝐵 and 𝑠𝑠 refer to points 𝐴𝐴, 𝐵𝐵 and 
the nuisance parameter, respectively. Because we are dealing with a single observation, our single 
observation vector, 𝒀𝒀𝒊𝒊, is the same as the entire observation vector 𝒀𝒀. Coefficient (or “design”) 
matrices 𝐴𝐴𝑖𝑖,𝐴𝐴 and 𝐴𝐴𝑖𝑖,𝐵𝐵 are either 1 × 3 or 3 × 3 , while design matrix 𝐴𝐴𝑖𝑖,𝑛𝑛 is either 1 × 1 or 
3 × 1.13,14  

̅ ̅ ̅

𝚫𝚫𝑿𝑿𝑨𝑨,𝒊𝒊 𝒆𝒆𝚫𝚫𝑿𝑿𝑨𝑨,𝒊𝒊

𝒀𝒀� = 𝒀𝒀 − 𝐴𝐴𝑖𝑖𝚫𝚫𝑷𝑷𝒊𝒊,𝑴𝑴 = 𝒀𝒀 − 𝐴𝐴𝑖𝑖 ��𝚫𝚫𝑿𝑿𝑩𝑩,𝒊𝒊� + �𝒆𝒆𝚫𝚫𝑿𝑿𝑩𝑩,𝒊𝒊��
0 0  

𝚫𝚫𝑿𝑿𝑨𝑨,𝒊𝒊 𝒆𝒆𝚫𝚫𝑿𝑿𝑨𝑨,𝒊𝒊

= 𝒀𝒀 − [𝐴𝐴𝑖𝑖,𝐴𝐴 𝐴𝐴𝑖𝑖,𝐵𝐵 𝐴𝐴𝑖𝑖,𝑛𝑛] ��𝚫𝚫𝑿𝑿𝑩𝑩,𝒊𝒊� + �𝒆𝒆𝚫𝚫𝑿𝑿𝑩𝑩,𝒊𝒊�� 
0 0

𝑅𝑅𝐴𝐴 0 0 𝚫𝚫𝑬𝑬𝑨𝑨,𝒊𝒊 𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒊𝒊

= 𝒀𝒀 − [𝐴𝐴 𝐴𝐴 𝐴𝐴�𝑖𝑖,𝐴𝐴 �𝑖𝑖,𝐵𝐵 �𝑖𝑖,𝑠𝑠] � 0 𝑅𝑅𝐵𝐵 0� ��𝚫𝚫𝑬𝑬𝑩𝑩,𝒊𝒊� + �𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒊𝒊��  
0 0 0 0 0

𝑅𝑅𝐴𝐴 0 0 ⎧ 𝑬𝑬𝑨𝑨 𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
= 𝒀𝒀 − [𝐴𝐴 𝐴𝐴 𝐴𝐴 ⎞�𝑖𝑖,𝐴𝐴 �𝑖𝑖,𝐵𝐵 �𝑖𝑖,𝑠𝑠] � 0 𝑅𝑅𝐵𝐵 0� ⎛Δ𝑡𝑡𝑖𝑖 � � + 𝑞𝑞𝑖𝑖 � �𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑬𝑬𝑩𝑩⎨0 0 0 0 𝑘𝑘 0⎩⎝ 𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠ (16) 

𝒆𝒆𝑬𝑬𝑨𝑨 𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌 ⎫
⎞+ ⎛Δ𝑡𝑡𝑖𝑖 �𝒆𝒆𝑬𝑬𝑩𝑩� + 𝑞𝑞𝑖𝑖 � �𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�  
⎬0 𝑘𝑘 0

⎝ 𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠⎭

𝑅𝑅𝐴𝐴 0 0 𝑬𝑬𝑨𝑨 𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
= 𝒀𝒀 − [𝐴𝐴 𝐴𝐴 𝐴𝐴 ⎞�𝑖𝑖,𝐴𝐴 �𝑖𝑖,𝐵𝐵 �𝑖𝑖,𝑠𝑠] � 0 𝑅𝑅𝐵𝐵 0�⎛Δ𝑡𝑡𝑖𝑖 � � + 𝑞𝑞𝑖𝑖 � �𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑬𝑬𝑩𝑩

0 0 0 0 𝑘𝑘 0
⎝ 𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠  

𝑅𝑅𝐴𝐴 0 0 𝒆𝒆𝑬𝑬𝑨𝑨 𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

− [𝐴𝐴 𝐴𝐴 𝐴𝐴 ⎞�𝑖𝑖,𝐴𝐴 �𝑖𝑖,𝐵𝐵 �𝑖𝑖,𝑠𝑠] � 0 𝑅𝑅𝐵𝐵 0�⎛Δ𝑡𝑡𝑖𝑖 �𝒆𝒆𝑬𝑬𝑩𝑩� + 𝑞𝑞𝑖𝑖 � �𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�  
0 0 0 0 𝑘𝑘 0

⎝ 𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠
 

Equation 16 shows a few things of interest. First, though there is a nuisance parameter involved, it 
is not projected through time using the MCPV. This is clear from the zeroes in the last row of the 

𝚫𝚫𝑿𝑿𝑨𝑨,𝒊𝒊 𝒆𝒆𝚫𝚫𝑿𝑿𝑨𝑨,𝒊𝒊

vectors in the top line of the equation such as �𝚫𝚫𝑿𝑿𝑩𝑩,𝒊𝒊� and �𝒆𝒆𝚫𝚫𝑿𝑿𝑩𝑩,𝒊𝒊�. Second, the vector 𝒆𝒆𝒚𝒚  of the �,𝒎𝒎
0 0

̅ ̅

̅ ̅ ̅

̇
̇

̇
̇

̇
̇

̇
̇

 
13 We note that the only observations which are type 2n have a 𝒀𝒀𝒊𝒊 whose size is 1 × 1. Nonetheless, the 𝒀𝒀𝒊𝒊 vector in 
(16) will be treated as being either 1 × 1 or 3 × 1 , so that it can be extrapolated to observation type 2.   
14 In Smith et al. (2023), the variable 𝜟𝜟𝑿𝑿  was used to represent changes to parameter values that were stochastic. 
However, this paper uses 𝜟𝜟𝑿𝑿 to mean a GNSS measured baseline. As such, for clarity, in this paper stochastic 
changes to parameter values will be designated by 𝚫𝚫𝑷𝑷 instead of 𝜟𝜟𝑿𝑿. We assume that this will not cause confusion 
with weight matrix 𝑃𝑃.  

12 
 



13 
 

random errors in the MCPV, as they contribute to the projected observations, can be found in the 
last line of the equation, and is related to the random errors in the GVCM, as follows: 

𝒆𝒆𝒚𝒚�,𝒎𝒎 = −[𝐴𝐴�𝑖𝑖,𝐴𝐴 𝐴𝐴�𝑖𝑖,𝐵𝐵 𝐴𝐴�𝑖𝑖,𝑠𝑠] �
𝑅𝑅𝐴𝐴 0 0
0 𝑅𝑅𝐵𝐵 0
0 0 0

�

⎝

⎛Δ𝑡𝑡𝑖𝑖 �
𝒆𝒆𝑬𝑬𝑨𝑨
𝒆𝒆𝑬𝑬𝑩𝑩

0
� + 𝑞𝑞𝑖𝑖 � �

𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

0
�

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞. (17) 

 

Recall that we are so far only dealing with one observation, so that 𝒀𝒀𝒊𝒊=Y. Thus, the dispersion of 
the random errors in (17) will be the 3 × 3 dispersion matrix Σ𝑦𝑦�,𝑚𝑚. We express the dispersion of 
𝒆𝒆𝒚𝒚�,𝒎𝒎 as: 

Σ𝑦𝑦�,𝑚𝑚 = 𝐷𝐷�𝒆𝒆𝒚𝒚�,𝒎𝒎� = 𝐷𝐷

⎩
⎨

⎧
−[𝐴𝐴�𝑖𝑖,𝐴𝐴 𝐴𝐴�𝑖𝑖,𝐵𝐵 𝐴𝐴�𝑖𝑖,𝑠𝑠] �

𝑅𝑅𝐴𝐴 0 0
0 𝑅𝑅𝐵𝐵 0
0 0 0

�

⎝

⎛Δ𝑡𝑡𝑖𝑖 �
𝒆𝒆𝑬𝑬𝑨𝑨
𝒆𝒆𝑬𝑬𝑩𝑩

0
� + 𝑞𝑞𝑖𝑖 � �

𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

0
�

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞

⎭
⎬

⎫
  

= [𝐴𝐴�𝑖𝑖,𝐴𝐴 𝐴𝐴�𝑖𝑖,𝐵𝐵 𝐴𝐴�𝑖𝑖,𝑠𝑠] �
𝑅𝑅𝐴𝐴 0 0
0 𝑅𝑅𝐵𝐵 0
0 0 0

�𝐷𝐷

⎩
⎨

⎧
Δ𝑡𝑡𝑖𝑖 �

𝒆𝒆𝑬𝑬𝑨𝑨
𝒆𝒆𝑬𝑬𝑩𝑩

0
� + 𝑞𝑞𝑖𝑖 � �

𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

0
�

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎭

⎬

⎫
�
𝑅𝑅𝐴𝐴𝑇𝑇 0 0
0 𝑅𝑅𝐵𝐵𝑇𝑇 0
0 0 0

�

𝑇𝑇

�
𝐴𝐴�𝑖𝑖,𝐴𝐴

 𝑇𝑇

𝐴𝐴�𝑖𝑖,𝐵𝐵
 𝑇𝑇

𝐴𝐴�𝑖𝑖,𝑠𝑠
 𝑇𝑇

�  

= [𝐴𝐴�𝑖𝑖,𝐴𝐴 𝐴𝐴�𝑖𝑖,𝐵𝐵 𝐴𝐴�𝑖𝑖,𝑠𝑠] �
𝑅𝑅𝐴𝐴 0 0
0 𝑅𝑅𝐵𝐵 0
0 0 0

�

⎝

⎜
⎛
𝐷𝐷 �Δ𝑡𝑡𝑖𝑖 �

𝒆𝒆𝑬𝑬𝑨𝑨
𝒆𝒆𝑬𝑬𝑩𝑩

0
�� + 𝐷𝐷

⎩
⎨

⎧
� �

𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

0
�

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎭

⎬

⎫

+ � 2𝐶𝐶 �Δ𝑡𝑡𝑖𝑖 �
𝒆𝒆𝑬𝑬𝑨𝑨
𝒆𝒆𝑬𝑬𝑩𝑩

0
� , �

𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

0
��

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)

+ � � 2𝐶𝐶 ��
𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌𝒌𝒌
𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌𝒌𝒌

0
� , �

𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌𝒌𝒌
𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌𝒌𝒌

0
��

𝑘𝑘2
𝑘𝑘2∈𝐾𝐾(𝑖𝑖)
𝑘𝑘1≠𝑘𝑘2

𝑘𝑘1
𝑘𝑘1∈𝐾𝐾(𝑖𝑖)
𝑘𝑘1≠𝑘𝑘2 ⎠

⎟
⎞
�
𝑅𝑅𝐴𝐴𝑇𝑇 0 0
0 𝑅𝑅𝐵𝐵𝑇𝑇 0
0 0 0

�

𝑇𝑇

�
𝐴𝐴�𝑖𝑖,𝐴𝐴

 𝑇𝑇

𝐴𝐴�𝑖𝑖,𝐵𝐵
 𝑇𝑇

𝐴𝐴�𝑖𝑖,𝑠𝑠
 𝑇𝑇

� 

(18) 

= [𝐴𝐴�𝑖𝑖,𝐴𝐴 𝐴𝐴�𝑖𝑖,𝐵𝐵 𝐴𝐴�𝑖𝑖,𝑠𝑠] �
𝑅𝑅𝐴𝐴 0 0
0 𝑅𝑅𝐵𝐵 0
0 0 0

�

⎝

⎛𝐷𝐷 �Δ𝑡𝑡𝑖𝑖 �
𝒆𝒆𝑬𝑬𝑨𝑨
𝒆𝒆𝑬𝑬𝑩𝑩

0
�� + 𝐷𝐷

⎩
⎨

⎧
� �

𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

0
�

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎭

⎬

⎫

⎠

⎞�
𝑅𝑅𝐴𝐴𝑇𝑇 0 0
0 𝑅𝑅𝐵𝐵𝑇𝑇 0
0 0 0

�

𝑇𝑇

�
𝐴𝐴�𝑖𝑖,𝐴𝐴

 𝑇𝑇

𝐴𝐴�𝑖𝑖,𝐵𝐵
 𝑇𝑇

𝐴𝐴�𝑖𝑖,𝑠𝑠
 𝑇𝑇

�  

̇
̇

̇
̇

̇
̇

⎜
̇
̇

̇
̇

⎟

̇
̇



= [𝐴𝐴�𝑖𝑖,𝐴𝐴 𝐴𝐴�𝑖𝑖,𝐵𝐵 𝐴𝐴�𝑖𝑖,𝑠𝑠] �
𝑅𝑅𝐴𝐴 0 0
0 𝑅𝑅𝐵𝐵 0
0 0 0

�

⎝

⎛Δ𝑡𝑡𝑖𝑖2 �
𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨� 𝐶𝐶�𝒆𝒆𝑬𝑬𝑨𝑨 , 𝒆𝒆𝑬𝑬𝑩𝑩� 0

𝐶𝐶�𝒆𝒆𝑬𝑬𝑩𝑩 , 𝒆𝒆𝑬𝑬𝑨𝑨� 𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩� 0
0 0 0

�

+ � �
𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌� 𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌 , 𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌� 0

𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌 , 𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌� 𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌� 0
0 0 0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞�
𝑅𝑅𝐴𝐴𝑇𝑇 0 0
0 𝑅𝑅𝐵𝐵𝑇𝑇 0
0 0 0

�

𝑇𝑇

�
𝐴𝐴�𝑖𝑖,𝐴𝐴

 𝑇𝑇

𝐴𝐴�𝑖𝑖,𝐵𝐵
 𝑇𝑇

𝐴𝐴�𝑖𝑖,𝑠𝑠
 𝑇𝑇

� 

 

= [𝐴𝐴�𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴 𝐴𝐴�𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵 0]

⎝

⎛Δ𝑡𝑡𝑖𝑖2 �
𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨� 𝐶𝐶�𝒆𝒆𝑬𝑬𝑨𝑨 , 𝒆𝒆𝑬𝑬𝑩𝑩� 0

𝐶𝐶�𝒆𝒆𝑬𝑬𝑩𝑩 , 𝒆𝒆𝑬𝑬𝑨𝑨� 𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩� 0
0 0 0

�

+ � �
𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌� 𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌 , 𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌� 0

𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌 , 𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌� 𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌� 0
0 0 0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞�
𝑅𝑅𝐴𝐴𝑇𝑇𝐴𝐴�𝑖𝑖,𝐴𝐴

 𝑇𝑇

𝑅𝑅𝐵𝐵𝑇𝑇𝐴𝐴�𝑖𝑖,𝐵𝐵
 𝑇𝑇

0

� 

 

  
 

=

⎝

⎛Δ𝑡𝑡𝑖𝑖2�𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨� + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐶𝐶�𝒆𝒆𝑬𝑬𝑩𝑩 ,𝒆𝒆𝑬𝑬𝑨𝑨� 𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐶𝐶�𝒆𝒆𝑬𝑬𝑨𝑨 , 𝒆𝒆𝑬𝑬𝑩𝑩� + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩� 0�

+ � �𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌� + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌 , 𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌� 𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌� + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌� 0�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞�
𝑅𝑅𝐴𝐴𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴 𝑇𝑇

𝑅𝑅𝐵𝐵𝑇𝑇𝐴𝐴𝑖𝑖,𝐵𝐵 𝑇𝑇

0
� 

 

= Δ𝑡𝑡𝑖𝑖2�𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴
𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴 𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐶𝐶�𝒆𝒆𝑬𝑬𝑩𝑩 , 𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴

𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴 𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐶𝐶�𝒆𝒆𝑬𝑬𝑨𝑨 ,𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵
𝑇𝑇𝐴𝐴𝑖𝑖,𝐵𝐵 𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵

𝑇𝑇𝐴𝐴𝑖𝑖,𝐵𝐵 𝑇𝑇 �

+ � 𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴
𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴 𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴

𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴 𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵
𝑇𝑇𝐴𝐴𝑖𝑖,𝐵𝐵 𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵

𝑇𝑇𝐴𝐴𝑖𝑖,𝐵𝐵 𝑇𝑇

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)

  

 

Note in (18) that covariances between velocities and displacements, and between displacements 
and other displacements, have been set to zero as mentioned earlier. However, covariances 
between velocities at different points and displacements at different points remain, such as 
𝐶𝐶�𝒆𝒆𝑬𝑬𝑩𝑩 ,𝒆𝒆𝑬𝑬𝑨𝑨� or 𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�. In the future, NGS may have knowledge of such covariances, but 
for now they will also be set equal to zero since IFDM2022 (called “IFVM2022” in NGS 2021a) 
currently does not contain them. This reduces (18) to: 

 

Σ𝑦𝑦�,𝑚𝑚 = Δ𝑡𝑡𝑖𝑖2�𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴
𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴 𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵

𝑇𝑇𝐴𝐴𝑖𝑖,𝐵𝐵 𝑇𝑇 � + 

� 𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴
𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴 𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵

𝑇𝑇𝐴𝐴𝑖𝑖,𝐵𝐵 𝑇𝑇

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)

. (19) 

̇ ̇ ̇

̇ ̇ ̇

̇ ̇ ̇

̇ ̇ ̇

̅ ̇ ̅ ̇ ̇ ̅ ̇ ̇ ̅ ̇

̅ ̅ ̅ ̅
̅
̅

̅ ̇ ̅ ̅ ̇ ̇ ̅ ̅ ̇ ̇ ̅ ̅ ̇ ̅

̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

̇ ̇

̅ ̇ ̅ ̅ ̇ ̅

̅ ̅ ̅ ̅

 

A few things can be noted about (19). First, the fact that there is a nuisance parameter associated 
with this observation had no impact upon matrix Σ𝑦𝑦� ,𝑚𝑚. As such, (19) is valid for both observation 
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types 2 and 2n. Second, (19) holds, whether the size of the a 𝒀𝒀𝒊𝒊 vector is 3 × 1 or 1 × 1, though 
(19) yields a 3 × 3  or 1 × 1  matrix, respectively, for those two cases. Third, the dispersion 
matrices 𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨� and 𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩� will be 3 × 3 diagonal matrices, since NGS does not have 
covariance information between velocities in the East and velocities in the North, etc.  

Similar derivations can be performed for observation types 1 and 3, but rather than provide full 
details, we simply provide the final equations, using similar assumptions and approaches. 

For observation type 1: 

̇ ̇

Σ𝑦𝑦�,𝑚𝑚 = Δ𝑡𝑡𝑖𝑖2�𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴
𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴 𝑇𝑇 � + 

� 𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴
𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴 𝑇𝑇

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)

 (20) 

 

For observation type 3: 

Σ𝑦𝑦� ,𝑚𝑚 = Δ𝑡𝑡𝑖𝑖2�𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴
𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴 𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵

𝑇𝑇𝐴𝐴𝑖𝑖,𝐵𝐵 𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐶𝐶𝑅𝑅𝐶𝐶𝐷𝐷�𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐶𝐶
𝑇𝑇𝐴𝐴𝑖𝑖,𝐶𝐶 𝑇𝑇 � + 

� 𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴
𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴 𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵

𝑇𝑇𝐴𝐴𝑖𝑖,𝐵𝐵 𝑇𝑇

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)

+ 𝐴𝐴𝑖𝑖,𝐶𝐶𝑅𝑅𝐶𝐶𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐶𝐶
𝑇𝑇𝐴𝐴𝑖𝑖,𝐶𝐶 𝑇𝑇  (21) 

̅ ̇ ̅

̅ ̅

̅ ̇ ̅ ̅ ̇ ̅ ̅ ̇ ̅

̅ ̅ ̅ ̅ ̅ ̅

 

Equations 19-21 are critical. They show the relationship between the variance-covariance matrix 
of the GVCMs (such as IFDM2022) and the contribution of the MCPV to the variance-covariance 
matrix of projected observations15.  

One thing which might not be obvious in the above equations is that those geometric observations 
that are triplicates (PPP coordinates and GNSS vectors) that (20), for PPP, and (19), for GNSS 
vectors, will always yield a full 3 × 3  matrix Σ𝑦𝑦� ,𝑚𝑚. This happens because of the presence of the 
rotation matrices, even if the dispersion matrices of the GVCM, such as 𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�, are diagonal. 

Therefore, even if by some strange chance the 3 × 3 dispersion matrix Σ𝑦𝑦 of the observations 
were diagonal16, the addition of a full 3 × 3 matrix Σ𝑦𝑦� ,𝑚𝑚 from (19) or (20) to it will guarantee that 
the 3 × 3 dispersion matrix Σ𝑦𝑦�  of the projected observations will be full. (Recall: we are so far 
only talking about a single observation and haven’t begun discussing larger Σ𝑦𝑦� ,𝑚𝑚 matrices 
associated with multiple observations. The full 3 × 3 matrix Σ𝑦𝑦� ,𝑚𝑚 for this one observation would 
only be a single on-diagonal block of a much larger Σ𝑦𝑦�,𝑚𝑚 in an adjustment with multiple 
observations.)   

 
15 This is a good time to remember that we don’t actually have variance-covariance matrices, but rather have 
cofactor matrices, but the conclusion is the same if one simply replaces variance-covariance with cofactor. 
16 A very unlikely situation, since most modern GNSS processing software provides, at a minimum, a 3 × 3 block-
diagonal dispersion matrix for GNSS vector observations. However, some older software did yield such diagonal 
matrices. 
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We may therefore conclude that, for a vector of multiple observations (𝒀𝒀) which contains only 
GNSS measured baselines or PPP coordinates, and a GVCM parameterized in an 𝐸𝐸𝑁𝑁ℎ system, it 
is guaranteed that the dispersion matrix Σ𝑦𝑦�  of the projected observations will be at least block-
diagonal, with each block being 3 × 3.  

What is more interesting, and has greater implications to the ME-LSA problem, are the off-
diagonal blocks of Σ𝑦𝑦�  coming from the off-diagonal blocks of Σ𝑦𝑦� ,𝑚𝑚. To explore those, we will 
examine a variety of cases between two observations.  

For now, we will restrict ourselves solely to the case when the two observations are GNSS 
vectors. The reason for this will not be immediately clear, but in order to stave off any nagging 
questions arising at this time, we summarize why:  when two otherwise uncorrelated observations 
share a point, they always map into correlated projected observations. This has the effect of 
putting a non-zero value into Σ𝑦𝑦�,𝑚𝑚, and thus Σ𝑦𝑦� , that otherwise was a zero value in Σ𝑦𝑦. Since 
matrix Σ𝑦𝑦 is generally always diagonal17 or block-diagonal with block sizes being multiples of 
3 × 3 (for simultaneously processed GNSS vectors), the addition of new non-zero off-diagonal 
elements in Σ𝑦𝑦�,𝑚𝑚 and thus Σ𝑦𝑦�  changes the structure from one that is sparse (and also easy to 
invert) to one that is more complex (and possibly more difficult to invert). It is not at all clear that 
the additional information is worth the cost of significantly changing the mechanics of how the 
LSA is executed. Thus, we will conclude, in section 7, that the only time we need consider two 
observations in computing Σ𝑦𝑦� ,𝑚𝑚, is when dealing with two GNSS vectors that were processed 
simultaneously in the same session. 

Having gotten ahead of ourselves, we now return to the original discussion of the covariances 
between two observations, but restrict it only to the case of two GNSS measured baselines. We 
will look at the situations that two GNSS measured baselines share zero, one or two points.  

5.3 Geometric example: Two GNSS measured baselines, no shared points 
Consider one observation vector, containing two observations:  one being a measured baseline 
from point 𝐴𝐴 to point 𝐵𝐵 at epoch 𝑖𝑖 and the other from point 𝐶𝐶 to point 𝐷𝐷 at epoch 𝑗𝑗. The 
observation equation takes this form: 

𝒀𝒀 = �
𝒀𝒀𝒊𝒊
𝒀𝒀𝒋𝒋
� + 𝒆𝒆𝒚𝒚  ,   𝒆𝒆𝒚𝒚~�𝟎𝟎,𝚺𝚺𝒚𝒚�. (22) 

 

Each observation, 𝒀𝒀𝒊𝒊 and 𝒀𝒀𝒋𝒋, is a 3 × 1  vector. Because the observation equation for GNSS 
measured baselines is linear, we may expand (22) as such: 

𝒀𝒀 = �
𝚫𝚫𝑿𝑿𝑨𝑨𝑩𝑩,𝒊𝒊
𝚫𝚫𝑿𝑿𝑪𝑪𝑪𝑪,𝒋𝒋

� + 𝒆𝒆𝒚𝒚 = 𝐴𝐴 �
𝚵𝚵𝒊𝒊
𝚵𝚵𝒋𝒋
� + 𝒆𝒆𝒚𝒚 = �

𝐴𝐴𝑖𝑖 03,12

03,12 𝐴𝐴𝑗𝑗
� �
𝚵𝚵𝒊𝒊
𝚵𝚵𝒋𝒋
� + 𝒆𝒆𝒚𝒚 (23) ̅

̅
̅

 
17 A case might be made that any two observations, without regard for observation type, made by common 
observers, at common points, with common instruments on common days are correlated, and thus should have a 
non-zero off-diagonal element (covariance) in Σ𝑦𝑦. However, the only software packages which regularly provide 
covariances between two observations are simultaneous GNSS vector processors. 
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= �
𝐴𝐴𝑖𝑖,𝐴𝐴 𝐴𝐴𝑖𝑖,𝐵𝐵 0 0 0 0 0 0

0 0 0 0 0 0 𝐴𝐴𝑗𝑗,𝐴𝐴 𝐴𝐴𝑗𝑗,𝐵𝐵
�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑿𝑿𝑨𝑨,𝒊𝒊
𝑿𝑿𝑩𝑩,𝒊𝒊
𝑿𝑿𝑪𝑪,𝒊𝒊
𝑿𝑿𝑪𝑪,𝒊𝒊
𝑿𝑿𝑨𝑨,𝒋𝒋
𝑿𝑿𝑩𝑩,𝒋𝒋
𝑿𝑿𝑪𝑪,𝒋𝒋
𝑿𝑿𝑪𝑪,𝒋𝒋⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ 𝒆𝒆𝒚𝒚 

= �−𝐼𝐼3 +𝐼𝐼3 0 0 0 0 0 0
0 0 0 0 0 0 −𝐼𝐼3 +𝐼𝐼3

�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑿𝑿𝑨𝑨,𝒊𝒊
𝑿𝑿𝑩𝑩,𝒊𝒊
𝑿𝑿𝑪𝑪,𝒊𝒊
𝑿𝑿𝑪𝑪,𝒊𝒊
𝑿𝑿𝑨𝑨,𝒋𝒋
𝑿𝑿𝑩𝑩,𝒋𝒋
𝑿𝑿𝑪𝑪,𝒋𝒋
𝑿𝑿𝑪𝑪,𝒋𝒋⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ 𝒆𝒆𝒚𝒚. 

 

Notice that the observations between two points at one epoch are shown as functions of the 
coordinates of every point (𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷) at every epoch (𝑖𝑖, 𝑗𝑗), which is how Smith et al. (2023) 
developed the multi-epoch least-squares adjustment (ME-LSA) problem. 

Now, according to (ibid, equation 23) the observations in (23) need to be mapped into projected 
observations, using the stochastic MCPV (based on the GVCM). This mapping yields the 
projected-observation equation: 

𝒀𝒀� = 𝒀𝒀 − �
𝐴𝐴𝑖𝑖 03,12

03,12 𝐴𝐴𝑗𝑗
� �
𝚫𝚫𝑷𝑷𝒊𝒊,𝑴𝑴
𝚫𝚫𝑷𝑷𝒋𝒋,𝑴𝑴

� = 𝒀𝒀 − �
𝐴𝐴𝑖𝑖 03,12

03,12 𝐴𝐴𝑗𝑗
� �
𝚫𝚫𝚵𝚵𝒊𝒊 + 𝒆𝒆𝑴𝑴𝒊𝒊
𝚫𝚫𝚵𝚵𝒋𝒋 + 𝒆𝒆𝑴𝑴𝒋𝒋

� = 𝒀𝒀 − �
𝐴𝐴𝑖𝑖 03,12

03,12 𝐴𝐴𝑗𝑗
�

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝚫𝚫𝑿𝑿𝑨𝑨,𝒊𝒊
𝚫𝚫𝑿𝑿𝑩𝑩,𝒊𝒊
𝚫𝚫𝑿𝑿𝑪𝑪,𝒊𝒊
𝚫𝚫𝑿𝑿𝑪𝑪,𝒊𝒊
𝚫𝚫𝑿𝑿𝑨𝑨,𝒋𝒋
𝚫𝚫𝑿𝑿𝑩𝑩,𝒋𝒋
𝚫𝚫𝑿𝑿𝑪𝑪,𝒋𝒋
𝚫𝚫𝑿𝑿𝑪𝑪,𝒋𝒋⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝒆𝒆𝚫𝚫𝑿𝑿𝑨𝑨,𝒊𝒊
𝒆𝒆𝚫𝚫𝑿𝑿𝑩𝑩,𝒊𝒊
𝒆𝒆𝚫𝚫𝑿𝑿𝑪𝑪,𝒊𝒊
𝒆𝒆𝚫𝚫𝑿𝑿𝑪𝑪,𝒊𝒊
𝒆𝒆𝚫𝚫𝑿𝑿𝑨𝑨,𝒋𝒋
𝒆𝒆𝚫𝚫𝑿𝑿𝑩𝑩,𝒋𝒋
𝒆𝒆𝚫𝚫𝑿𝑿𝑪𝑪,𝒋𝒋
𝒆𝒆𝚫𝚫𝑿𝑿𝑪𝑪,𝒋𝒋⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

 

= 𝒀𝒀 − �
𝐴𝐴𝑖𝑖 03,12

03,12 𝐴𝐴𝑗𝑗
�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑅𝑅𝐴𝐴 zeroes

𝑅𝑅𝐵𝐵
𝑅𝑅𝐶𝐶

𝑅𝑅𝐷𝐷
𝑅𝑅𝐴𝐴

𝑅𝑅𝐵𝐵
zeroes 𝑅𝑅𝐶𝐶

𝑅𝑅𝐷𝐷⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

⎣
⎢
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Note in (24) that 𝑞𝑞𝑗𝑗 = 𝑠𝑠𝑠𝑠𝑠𝑠(Δ𝑡𝑡𝑗𝑗) and also that for the first of the three displacing event 
summations, that 𝑞𝑞𝑖𝑖 = 𝑞𝑞𝑗𝑗, since events which impact both observations must both be on the same 
side of the adjustment epoch, and so we choose 𝑞𝑞𝑖𝑖, though could just as easily have used 𝑞𝑞𝑗𝑗. This 
holds only for the first of the three displacing event summations. 

Note in (24) that it was necessary to distinguish between events that affect both projected 
observations (𝑘𝑘 ∈ 𝐾𝐾(𝑖𝑖) and 𝑘𝑘 ∈ 𝐾𝐾(𝑗𝑗)), those that affect only the projected observations from 
epoch 𝑖𝑖 (𝑘𝑘 ∈ 𝐾𝐾(𝑖𝑖) and 𝑘𝑘 ∉ 𝐾𝐾(𝑗𝑗)), and those that affect only the projected observations from epoch 
𝑗𝑗 (𝑘𝑘 ∉ 𝐾𝐾(𝑖𝑖)and 𝑘𝑘 ∈ 𝐾𝐾(𝑗𝑗)).  

Also note in (24) there are two places where random errors contribute to the projected 
observations. The first, subtler place, is that the observation vector 𝒀𝒀 has random errors, 𝒆𝒆𝒚𝒚, 
embedded in it. That random error vector is not particularly relevant to the following derivations, 
which is why it was not separated from 𝒀𝒀. The other place is the last half of the last line of (24), 
where we see the error vector of the stochastic MCPV, as it impacts the observation vector. We 
have called that error vector 𝒆𝒆𝒚𝒚�,𝒎𝒎, and show its relationship to the error vector of the MCPV 
directly, 𝒆𝒆𝑴𝑴, as follows: 

18 
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𝑅𝑅𝐶𝐶𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌

𝑅𝑅𝐷𝐷𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑖𝑖 �

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝐴𝐴𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

𝑅𝑅𝐵𝐵𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

𝑅𝑅𝐶𝐶𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌

𝑅𝑅𝐷𝐷𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌

𝟎𝟎
𝟎𝟎
𝟎𝟎
𝟎𝟎 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑗𝑗 �

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝟎𝟎
𝟎𝟎
𝟎𝟎
𝟎𝟎

𝑅𝑅𝐴𝐴𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

𝑅𝑅𝐵𝐵𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

𝑅𝑅𝐶𝐶𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌

𝑅𝑅𝐷𝐷𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

= −𝐴𝐴�𝒆𝒆𝑴𝑴. 

(25) 

 

The relationship between the dispersion matrices of 𝒆𝒆𝒚𝒚�,𝒎𝒎 and 𝒆𝒆𝑴𝑴 is seen as follows: 

Σ𝑦𝑦�,𝑚𝑚 = 𝐷𝐷�𝒆𝒆𝒚𝒚�,𝒎𝒎� = 𝐴𝐴�𝐷𝐷{𝒆𝒆𝑴𝑴}𝐴𝐴�𝑇𝑇 = 𝐴𝐴�Σ𝑀𝑀𝐴𝐴�
𝑇𝑇. (26) 

̇

̇

̇

̇

̇

̇

̇

̇

 

This is a good place to provide a reminder and clarification about the difference between the 
geodetic value change model (GVCM) and model of changes to parameter values (MCPV). We 
will do so by examining the last line of (24), replacing the displacements which affect only one 
projected observation with ellipses, for brevity. See Figure 1. Note we have dropped the 𝑞𝑞𝑖𝑖 for 
space consideration. 

Figure 1:  The relationship between the MCPV and GVCM (IFDM2022) in projected 
observations within a geometric adjustment 

 



 

We turn our attention back to the 6 × 6 Σ𝑦𝑦� ,𝑚𝑚 matrix. Because Σ𝑦𝑦�,𝑚𝑚 in (26) is a bit complicated, it 
will be examined in 3 × 3  blocks below.  

̅ ̇ ̅ ̅ ̇ ̇ ̅

̅ ̇ ̇ ̅ ̅ ̇ ̅

̇ ̇ ̇ ̇

̇ ̇ ̇ ̇

̇ ̇ ̇ ̇

̇ ̇ ̇ ̇

̅ ̇ ̅ ̅ ̇ ̇ ̅

̅ ̇ ̇ ̅ ̅ ̇ ̅

20 

Just examining the velocity-based contribution to Σ𝑦𝑦�,𝑚𝑚, we have: 

Σ𝑦𝑦�,𝑚𝑚𝑣𝑣,11
= Δ𝑡𝑡𝑖𝑖2 �𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴

𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴
𝑇𝑇 − 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐶𝐶�𝒆𝒆𝑬𝑬𝑩𝑩 , 𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴

𝑇𝑇𝐴𝐴𝑖𝑖,𝐴𝐴
𝑇𝑇

− 𝐴𝐴𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐶𝐶�𝒆𝒆𝑬𝑬𝑨𝑨 , 𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵
𝑇𝑇𝐴𝐴𝑖𝑖,𝐵𝐵

𝑇𝑇 + 𝐴𝐴𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵
𝑇𝑇𝐴𝐴𝑖𝑖,𝐵𝐵

𝑇𝑇�, 
  

(27a) 

Σ𝑦𝑦�,𝑚𝑚𝑣𝑣,21
= Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗 �𝐴𝐴�𝑗𝑗,𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶 �𝒆𝒆𝑬𝑬𝑪𝑪 ,𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴

𝑇𝑇𝐴𝐴�𝑖𝑖,𝐴𝐴
𝑇𝑇 − 𝐴𝐴�𝑗𝑗,𝐷𝐷𝑅𝑅𝐷𝐷𝐶𝐶 �𝒆𝒆𝑬𝑬𝑪𝑪 ,𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴

𝑇𝑇𝐴𝐴�𝑖𝑖,𝐴𝐴
𝑇𝑇

− 𝐴𝐴�𝑗𝑗,𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶�𝒆𝒆𝑬𝑬𝑪𝑪 ,𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵
𝑇𝑇𝐴𝐴�𝑖𝑖,𝐵𝐵

𝑇𝑇 +𝐴𝐴�𝑗𝑗,𝐷𝐷𝑅𝑅𝐷𝐷𝐶𝐶 �𝒆𝒆𝑬𝑬𝑪𝑪 ,𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵
𝑇𝑇𝐴𝐴�𝑖𝑖,𝐵𝐵

𝑇𝑇
�, 

 

(27b) 

Σ𝑦𝑦�,𝑚𝑚𝑣𝑣,12
= Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗 �𝐴𝐴�𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐶𝐶�𝒆𝒆𝑬𝑬𝑨𝑨 ,𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐶𝐶

𝑇𝑇𝐴𝐴�𝑗𝑗,𝐶𝐶
𝑇𝑇 − 𝐴𝐴�𝑖𝑖,𝐴𝐴𝑅𝑅𝐴𝐴𝐶𝐶�𝒆𝒆𝑬𝑬𝑨𝑨 ,𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐷𝐷

𝑇𝑇𝐴𝐴�𝑗𝑗,𝐷𝐷
𝑇𝑇

− 𝐴𝐴�𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐶𝐶 �𝒆𝒆𝑬𝑬𝑩𝑩 ,𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐶𝐶
𝑇𝑇𝐴𝐴�𝑗𝑗,𝐶𝐶

𝑇𝑇 +𝐴𝐴�𝑖𝑖,𝐵𝐵𝑅𝑅𝐵𝐵𝐶𝐶 �𝒆𝒆𝑬𝑬𝑩𝑩 ,𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐷𝐷
𝑇𝑇𝐴𝐴�𝑗𝑗,𝐷𝐷

𝑇𝑇
�, 

 

(27c) 

Σ𝑦𝑦� ,𝑚𝑚𝑣𝑣,22
= Δ𝑡𝑡𝑖𝑖2 �𝐴𝐴𝑗𝑗,𝐶𝐶𝑅𝑅𝐶𝐶𝐷𝐷�𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐶𝐶

𝑇𝑇𝐴𝐴𝑗𝑗,𝐶𝐶
𝑇𝑇 − 𝐴𝐴𝑗𝑗,𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶�𝒆𝒆𝑬𝑬𝑪𝑪 , 𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐷𝐷

𝑇𝑇𝐴𝐴𝑗𝑗,𝐷𝐷
𝑇𝑇

− 𝐴𝐴𝑗𝑗,𝐷𝐷𝑅𝑅𝐷𝐷𝐶𝐶�𝒆𝒆𝑬𝑬𝑪𝑪 , 𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐶𝐶
𝑇𝑇𝐴𝐴𝑗𝑗,𝐶𝐶

𝑇𝑇 + 𝐴𝐴𝑗𝑗,𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷�𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐷𝐷
𝑇𝑇𝐴𝐴𝑗𝑗,𝐷𝐷

𝑇𝑇�.  

(27d) 

 

The next three sets of equations show the blocks for the displacement errors.  

First, for any 𝑘𝑘 ∈ 𝐾𝐾(𝑖𝑖) and 𝑘𝑘 ∈ 𝐾𝐾(𝑗𝑗) we have: 

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,11
= 𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴

𝑇𝑇 − 𝑅𝑅𝐵𝐵𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴
𝑇𝑇 − 𝑅𝑅𝐴𝐴𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵

𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵
𝑇𝑇,  (27e) 

  

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,21
= 𝑅𝑅𝐶𝐶𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴

𝑇𝑇 − 𝑅𝑅𝐷𝐷𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴
𝑇𝑇 − 𝑅𝑅𝐶𝐶𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵

𝑇𝑇 + 𝑅𝑅𝐷𝐷𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵
𝑇𝑇,  (27f) 

 

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,12
= 𝑅𝑅𝐴𝐴𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐶𝐶

𝑇𝑇 − 𝑅𝑅𝐵𝐵𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐶𝐶
𝑇𝑇 − 𝑅𝑅𝐴𝐴𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐷𝐷

𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐷𝐷
𝑇𝑇 ,  (27g) 

 

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,22
= 𝑅𝑅𝐶𝐶𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐶𝐶

𝑇𝑇 − 𝑅𝑅𝐷𝐷𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐶𝐶
𝑇𝑇 − 𝑅𝑅𝐶𝐶𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐷𝐷

𝑇𝑇 + 𝑅𝑅𝐷𝐷𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐷𝐷
𝑇𝑇 .  (27h) 

 

Second, for any 𝑘𝑘 ∈ 𝐾𝐾(𝑖𝑖) and 𝑘𝑘 ∉ 𝐾𝐾(𝑗𝑗) we have: 

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,11
= 𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴

𝑇𝑇 − 𝑅𝑅𝐵𝐵𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴
𝑇𝑇 − 𝑅𝑅𝐴𝐴𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵

𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵
𝑇𝑇,  (27i) 

  

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,21
= 0,  (27j) 

 

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,12
= 0,  (27k) 

 

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,22
= 0.  (27l) 



 

And third, for any 𝑘𝑘 ∉ 𝐾𝐾(𝑖𝑖) and 𝑘𝑘 ∈ 𝐾𝐾(𝑗𝑗) we have: 

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,11
= 0,  (27m) 

  

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,21
= 0,  (27n) 

 

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,12
= 0,  (27o) 

 

Σ𝑦𝑦� ,𝑚𝑚𝑘𝑘,22
= 𝑅𝑅𝐶𝐶𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐶𝐶

𝑇𝑇 − 𝑅𝑅𝐷𝐷𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐶𝐶
𝑇𝑇 − 𝑅𝑅𝐶𝐶𝐶𝐶�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌 ,𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐷𝐷

𝑇𝑇 + 𝑅𝑅𝐷𝐷𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐷𝐷
𝑇𝑇 .  (27p) 

 

Equation 27a (and 27d by replacing points C and D with A and B) is identical to the velocity 
contribution at the end of (18). This is expected, as (18) deals with one observation, as does the 
block matrices found in (27a) and (27d). Similarly do equation 27e or 27i (and 27h or 27p), equal 
the displacement portion of (18).  

However, something new is seen in (27) that hasn’t been encountered before (aside from 
separating out displacements into three categories, depending on what points they effect):  the 
non-zero off-diagonal blocks Σ𝑦𝑦�,𝑚𝑚  and Σ𝑦𝑦�,𝑚𝑚  seen in (27b) and (27c) and Σ𝑦𝑦� ,𝑚𝑚  and 

𝑣𝑣,21 𝑣𝑣,12 𝑘𝑘,21
Σ𝑦𝑦�,𝑚𝑚  seen in (27f) and (27g). Blocks Σ𝑦𝑦�,𝑚𝑚  and Σ𝑦𝑦�,𝑚𝑚  are transposes of one another, as 

𝑘𝑘,12 𝑣𝑣,21 𝑣𝑣,12
are Σ𝑦𝑦�,𝑚𝑚  and Σ𝑦𝑦�,𝑚𝑚 , an expected result since the matrix Σ𝑦𝑦� ,𝑚𝑚 should be symmetric. But more 

𝑘𝑘,21 𝑘𝑘,12
importantly they are non-zero because it has been assumed that covariances within the GVCM 
(between velocities at different points or between displacements at different points) are known. 
This brings us to our first conclusion about covariances and observations: 

Conclusion 1:  If covariances inside the GVCM are known, and even if two observations 
have no common points, then 𝛴𝛴𝑦𝑦�,𝑚𝑚 will have non-zero off-diagonal components. 

This is a critical point, and one with devastating computational impacts. Recall that if two 
observations have no common points, and are themselves otherwise uncorrelated, there will be no 
off-diagonal components in matrix Σ𝑦𝑦 for these two observations. But if we have covariances 
inside the GVCM, this adds off-diagonal elements to Σ𝑦𝑦� ,𝑚𝑚 and thus off-diagonal elements in Σ𝑦𝑦� , 
where such off-diagonal blocks were zero in Σ𝑦𝑦. This is not just a loss of a loss of sparsity, it 
means the Σ𝑦𝑦�,𝑚𝑚, and by extension Σ𝑦𝑦� , will be full. The implications of that are hopefully obvious, 
but will be discussed in section 7. 

At this time, however, IFDM2022 has no known covariances. As such, if we set them to zero, 
then the dispersion matrix Σ𝑦𝑦� ,𝑚𝑚 simplifies substantially to: 
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Σ𝑦𝑦� ,𝑚𝑚 =

⎝

⎜⎜
⎛
�
Δ𝑡𝑡𝑖𝑖2𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴

𝑇𝑇 + Δ𝑡𝑡𝑖𝑖2𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵
𝑇𝑇 0

0 Δ𝑡𝑡𝑗𝑗2𝑅𝑅𝐶𝐶𝐷𝐷�𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐶𝐶
𝑇𝑇 + Δ𝑡𝑡𝑗𝑗2𝑅𝑅𝐷𝐷𝐷𝐷�𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐷𝐷

𝑇𝑇�

+ � �
𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴

𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵
𝑇𝑇 0

0 𝑅𝑅𝐶𝐶𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐶𝐶
𝑇𝑇 + 𝑅𝑅𝐷𝐷𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐷𝐷

𝑇𝑇�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � �𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴
𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵

𝑇𝑇 0
0 0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ � �
0 0
0 𝑅𝑅𝐶𝐶𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐶𝐶

𝑇𝑇 + 𝑅𝑅𝐷𝐷𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌�𝑅𝑅𝐷𝐷
𝑇𝑇�

𝑘𝑘
𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟⎟
⎞

. 

 

(28) 

̇ ̇

̇ ̇

 

Examination of (28) leads to another very important conclusion: 

Conclusion 2:  If covariances inside the GVCM are unknown, and set to zero, and two 
observations have no common points, then 𝛴𝛴𝑦𝑦�,𝑚𝑚 will have no off-diagonal components. 

This conclusion actually holds for all geometric observations, not just GNSS vectors. It also holds 
whether the two GNSS vectors were processed in different sessions (𝑖𝑖 ≠ 𝑗𝑗, and thus have no 
known correlation/covariance) or simultaneously processed in the same session (𝑖𝑖 = 𝑗𝑗, and thus 
do have a known correlation/covariance). 

Consider what this means to the sparsity of Σ𝑦𝑦� :  if we assume that two GNSS measured baselines 
at two different epochs, 𝑖𝑖 and 𝑗𝑗, are themselves uncorrelated then the 6 × 6 dispersion matrix Σ𝑦𝑦 
of the original two observations is block-diagonal. With a stochastic GVCM, but in the absence of 
covariances in that GVCM, and with no common points between the observations, (28) shows 
that the 6 × 6 dispersion matrix Σ𝑦𝑦� ,𝑚𝑚 will also be block-diagonal. This means their sum, Σ𝑦𝑦� , the 
6 × 6 dispersion matrix of the two projected observations at the adjustment epoch, will also be 
block-diagonal. That is, the sparsity of Σ𝑦𝑦�  matches that of Σ𝑦𝑦. The next section will examine the 
case when the two GNSS measured baselines have one point in common. 

5.4 Geometric example: Two GNSS measured baselines, one shared point 
Consider now two GNSS measured baselines are from point 𝐴𝐴 to point 𝐵𝐵 at epoch 𝑖𝑖 and another 
from point 𝐴𝐴 to point 𝐶𝐶 at epoch 𝑗𝑗, removing point 𝐷𝐷 from consideration entirely. As this situation 
closely resembles the previous section, the derivations will be much briefer. 

The observation equation is: 
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𝒀𝒀 = �
𝚫𝚫𝑿𝑿𝑨𝑨𝑩𝑩,𝒊𝒊
𝚫𝚫𝑿𝑿𝑨𝑨𝑪𝑪,𝒋𝒋

� + 𝒆𝒆𝒚𝒚    ,     𝒆𝒆𝒚𝒚~�𝟎𝟎,𝚺𝚺𝒚𝒚�. (29) 

 

This expands to:  

𝒀𝒀 = �−𝐼𝐼3 +𝐼𝐼3 0 0 0 0
0 0 0 −𝐼𝐼3 0 +𝐼𝐼3

�

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑿𝑿𝑨𝑨,𝒊𝒊
𝑿𝑿𝑩𝑩,𝒊𝒊
𝑿𝑿𝑪𝑪,𝒊𝒊
𝑿𝑿𝑨𝑨,𝒋𝒋
𝑿𝑿𝑩𝑩,𝒋𝒋
𝑿𝑿𝑪𝑪,𝒋𝒋⎦

⎥
⎥
⎥
⎥
⎥
⎤

+ 𝒆𝒆𝒚𝒚. (30) 

This is then mapped into a projected observation vector, yielding: 

𝒀𝒀� = 𝒀𝒀 − �
𝐴𝐴�𝑖𝑖 03,9

03,9 𝐴𝐴�𝑗𝑗
�

⎩
⎪⎪
⎨

⎪⎪
⎧

⎣
⎢
⎢
⎢
⎢
⎢
⎡Δ𝑡𝑡𝑖𝑖𝑅𝑅𝐴𝐴𝑬𝑬𝑨𝑨
Δ𝑡𝑡𝑖𝑖𝑅𝑅𝐵𝐵𝑬𝑬𝑩𝑩
Δ𝑡𝑡𝑖𝑖𝑅𝑅𝐶𝐶𝑬𝑬𝑪𝑪
Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐴𝐴𝑬𝑬𝑨𝑨
Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐵𝐵𝑬𝑬𝑩𝑩
Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐶𝐶𝑬𝑬𝑪𝑪⎦

⎥
⎥
⎥
⎥
⎥
⎤

+ 𝑞𝑞𝑖𝑖 �

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝐴𝐴𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝑅𝑅𝐵𝐵𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌
𝑅𝑅𝐶𝐶𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌
𝑅𝑅𝐴𝐴𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝑅𝑅𝐵𝐵𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌
𝑅𝑅𝐶𝐶𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌⎦

⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑖𝑖 �

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝐴𝐴𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝑅𝑅𝐵𝐵𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌
𝑅𝑅𝐶𝐶𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌

𝟎𝟎
𝟎𝟎
𝟎𝟎 ⎦

⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑗𝑗 �

⎣
⎢
⎢
⎢
⎢
⎡

𝟎𝟎
𝟎𝟎
𝟎𝟎

𝑅𝑅𝐴𝐴𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝑅𝑅𝐵𝐵𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌
𝑅𝑅𝐶𝐶𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌⎦

⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

⎭
⎪⎪
⎬

⎪⎪
⎫

− �
𝐴𝐴�𝑖𝑖 03,9

03,9 𝐴𝐴�𝑗𝑗
�

⎩
⎪⎪
⎨

⎪⎪
⎧

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Δ𝑡𝑡𝑖𝑖𝑅𝑅𝐴𝐴𝒆𝒆𝑬𝑬𝑨𝑨
Δ𝑡𝑡𝑖𝑖𝑅𝑅𝐵𝐵𝒆𝒆𝑬𝑬𝑩𝑩
Δ𝑡𝑡𝑖𝑖𝑅𝑅𝐶𝐶𝒆𝒆𝑬𝑬𝑪𝑪
Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐴𝐴𝒆𝒆𝑬𝑬𝑨𝑨
Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐵𝐵𝒆𝒆𝑬𝑬𝑩𝑩
Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐶𝐶𝒆𝒆𝑬𝑬𝑪𝑪 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

+ 𝑞𝑞𝑖𝑖 �

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝐴𝐴𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

𝑅𝑅𝐵𝐵𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

𝑅𝑅𝐶𝐶𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌

𝑅𝑅𝐴𝐴𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

𝑅𝑅𝐵𝐵𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

𝑅𝑅𝐶𝐶𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑖𝑖 �

⎣
⎢
⎢
⎢
⎢
⎡
𝑅𝑅𝐴𝐴𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

𝑅𝑅𝐵𝐵𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

𝑅𝑅𝐶𝐶𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌

𝟎𝟎
𝟎𝟎
𝟎𝟎 ⎦

⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑗𝑗 �

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝟎𝟎
𝟎𝟎
𝟎𝟎

𝑅𝑅𝐴𝐴𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

𝑅𝑅𝐵𝐵𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

𝑅𝑅𝐶𝐶𝒆𝒆𝚫𝚫𝑬𝑬𝑪𝑪,𝒌𝒌 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎭

⎪⎪
⎬

⎪⎪
⎫

. 

(31) 

̇
̇
̇
̇
̇
̇

̇

̇

̇

̇

̇

̇

    

The error vector 𝒆𝒆𝒚𝒚�,𝒎𝒎 of the MCPV contribution to projected observations is the last line in (31). 
As before, the dispersion matrix, Σ𝑦𝑦� ,𝑚𝑚, is a bit complicated if the covariances in the GVCM are 
known. As this is not the case for IFDM2022, and such complications will only form a distraction 
going forward, we will assume that the covariances in the GVCM are not known, and will be set 
to zero. In that case, the dispersion matrix Σ𝑦𝑦� ,𝑚𝑚 simplifies to: 
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Σ𝑦𝑦� ,𝑚𝑚 =

⎝

⎜⎜
⎛
�
Δ𝑡𝑡𝑖𝑖2𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴

𝑇𝑇 + Δ𝑡𝑡𝑖𝑖2𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵
𝑇𝑇 Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴

𝑇𝑇

Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴
𝑇𝑇 Δ𝑡𝑡𝑗𝑗2𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴

𝑇𝑇 + Δ𝑡𝑡𝑗𝑗2𝑅𝑅𝐶𝐶𝐷𝐷�𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐶𝐶
𝑇𝑇�

+ � �
𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴

𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵
𝑇𝑇 𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴

𝑇𝑇

𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴
𝑇𝑇 𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴

𝑇𝑇 + Δ𝑡𝑡𝑗𝑗2𝑅𝑅𝐶𝐶𝐷𝐷�𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐶𝐶
𝑇𝑇�

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � �𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴
𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌�𝑅𝑅𝐵𝐵

𝑇𝑇 0
0 0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ � �
0 0
0 𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌�𝑅𝑅𝐴𝐴

𝑇𝑇 + Δ𝑡𝑡𝑗𝑗2𝑅𝑅𝐶𝐶𝐷𝐷�𝒆𝒆𝑬𝑬𝑪𝑪�𝑅𝑅𝐶𝐶
𝑇𝑇�

𝑘𝑘
𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟⎟
⎞

. 

 

(32) 

̇ ̇ ̇

̇ ̇ ̇

̇

̇

 

Of special interest are the non-zero off-diagonal blocks in the first two lines of (32). From (32) we 
draw a new, and critical conclusion. 

Conclusion 3:  If covariances inside the GVCM are unknown, and set to zero, and two 
observations have one common point, then 𝛴𝛴𝑦𝑦�,𝑚𝑚 will have non-zero off-diagonal 
components. 

The change in dispersion matrix Σ𝑦𝑦�,𝑚𝑚 from block-diagonal (28) to full (32) is due entirely to the 
common point, 𝐴𝐴, between the two observations, and thus the reliance of both observations upon 
the same velocities and/or at least one common displacement at point 𝐴𝐴. 

The implications of this are important. When two GNSS measured baselines (AB and AC) occur 
at different epochs (𝑖𝑖 and 𝑗𝑗), most standard GNSS processing software will treat them as two 
independent observations. But the projected observations will not be independent, as evidenced 
by the non-zero off-diagonal blocks in (32). To put it simply, if the observations are independent, 
their dispersion matrix Σ𝑦𝑦 is expected to be block diagonal, but the dispersion matrix Σ𝑦𝑦�,𝑚𝑚 of the 
contribution of the MCPV to the projected observations is full, and therefore their sum, being the 
dispersion of projected observations Σ𝑦𝑦�  must also be full.  

The non-zero off-diagonal blocks of Σ𝑦𝑦�  (the covariances between projected observations) will 
therefore be identical to those same blocks in Σ𝑦𝑦�,𝑚𝑚. These non-zero blocks are potentially 
problematic, and will be discussed in detail in section 7. 
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Before doing so, however, we ask this question:  What if the two vectors had been at the same 
epoch?  Would that still present a problem?  The answer is “probably not”, and is discussed in the 
next sub-section. 

5.4.1 Special case: observations at the same epoch 
Consider the above derivation of Σ𝑦𝑦�,𝑚𝑚, but with both vectors at observation epoch 𝑖𝑖. First, we 
must consider whether the dispersion matrix of the observations Σ𝑦𝑦 is full or block-diagonal. The 
answer depends on the processing strategy. If the GNSS data are processed simultaneously, then 
Σ𝑦𝑦 will be a full 6 × 6 matrix, not block-diagonal. However, even if the vectors are processed 
sequentially, standard operating procedure in many GNSS software suites is to process all 
measured baselines between all points that have a GNSS occupation (in this case 𝐴𝐴𝐵𝐵, 𝐴𝐴𝐶𝐶 and 
𝐵𝐵𝐶𝐶), getting one 3 × 3 dispersion matrix for each measured baseline (which would form a 9 × 9  
block-diagonal Σ𝑦𝑦). However, since one of the measured baselines is redundant, the three 
separately computed measured baselines and their respective 3 × 3 dispersion matrices can be 
mathematically combined into two correlated vectors with a full 6 × 6 dispersion matrix for the 
pair. Therefore, in general, it can be assumed that the dispersion matrix for the two observations 
Σ𝑦𝑦, assuming they both occur at epoch 𝑖𝑖, will be full.  

Since the Σ𝑦𝑦 matrix is full, adding a full Σ𝑦𝑦� ,𝑚𝑚 matrix does not add any new non-zero blocks to Σ𝑦𝑦� . 
Put another way, if your least squares adjustment software is capable of handling some off-
diagonal blocks of Σ𝑦𝑦 within one session, it can certainly handle them from Σ𝑦𝑦� .  

So, generally speaking, two measured baselines with a common point only presents new non-zero 
off-diagonal blocks to the LSA if the baselines were measured at different epochs. This will be 
discussed in section 7. We turn now to one final case:  when the two measured baselines have 
both points in common. 

 

5.5 Geometric example: Two GNSS measured baselines, two shared points 
Consider one observation vector, containing two GNSS observations, one with a measured 
baseline from point 𝐴𝐴 to point 𝐵𝐵 at epoch 𝑖𝑖 and another from point 𝐴𝐴 to point 𝐵𝐵 at epoch 𝑗𝑗, 
removing point 𝐶𝐶 from consideration. The observation equation is: 
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𝒀𝒀 = �
𝚫𝚫𝑿𝑿𝑨𝑨𝑩𝑩,𝒊𝒊
𝚫𝚫𝑿𝑿𝑨𝑨𝑩𝑩,𝒋𝒋

� + 𝒆𝒆𝒚𝒚    ,     𝒆𝒆𝒚𝒚~�𝟎𝟎,𝚺𝚺𝒚𝒚�. (33) 

 

This expands to: 

𝒀𝒀 = �−𝐼𝐼3 +𝐼𝐼3 0 0
0 0 −𝐼𝐼3 +𝐼𝐼3

�

⎣
⎢
⎢
⎡
𝑿𝑿𝑨𝑨,𝒊𝒊
𝑿𝑿𝑩𝑩,𝒊𝒊
𝑿𝑿𝑨𝑨,𝒋𝒋
𝑿𝑿𝑩𝑩,𝒋𝒋⎦

⎥
⎥
⎤

+ 𝒆𝒆𝒚𝒚. (34) 

This is then mapped into a projected observation vector, yielding: 



𝒀𝒀� = 𝒀𝒀 − �
𝐴𝐴�𝑖𝑖 03,6

03,6 𝐴𝐴�𝑗𝑗
�

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎢
⎡Δ𝑡𝑡𝑖𝑖𝑅𝑅𝐴𝐴𝑬𝑬𝑨𝑨
Δ𝑡𝑡𝑖𝑖𝑅𝑅𝐵𝐵𝑬𝑬𝑩𝑩
Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐴𝐴𝑬𝑬𝑨𝑨
Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐵𝐵𝑬𝑬𝑩𝑩⎦

⎥
⎥
⎥
⎤

+ 𝑞𝑞𝑖𝑖 � �

𝑅𝑅𝐴𝐴𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝑅𝑅𝐵𝐵𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌
𝑅𝑅𝐴𝐴𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝑅𝑅𝐵𝐵𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑖𝑖 � �

𝑅𝑅𝐴𝐴𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝑅𝑅𝐵𝐵𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

𝟎𝟎
𝟎𝟎

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑗𝑗 � �

𝟎𝟎
𝟎𝟎

𝑅𝑅𝐴𝐴𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
𝑅𝑅𝐵𝐵𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

�
𝑘𝑘

𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎭

⎪
⎬

⎪
⎫

− �
𝐴𝐴�𝑖𝑖 03,6

03,6 𝐴𝐴�𝑗𝑗
�

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎡
Δ𝑡𝑡𝑖𝑖𝑅𝑅𝐴𝐴𝒆𝒆𝑬𝑬𝑨𝑨
Δ𝑡𝑡𝑖𝑖𝑅𝑅𝐵𝐵𝒆𝒆𝑬𝑬𝑩𝑩
Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐴𝐴𝒆𝒆𝑬𝑬𝑨𝑨
Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐵𝐵𝒆𝒆𝑬𝑬𝑩𝑩⎦

⎥
⎥
⎤

+ 𝑞𝑞𝑖𝑖 �

⎣
⎢
⎢
⎢
⎡
𝑅𝑅𝐴𝐴𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

𝑅𝑅𝐵𝐵𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

𝑅𝑅𝐴𝐴𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

𝑅𝑅𝐵𝐵𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌⎦
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑖𝑖 � �

𝑅𝑅𝐴𝐴𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

𝑅𝑅𝐵𝐵𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

𝟎𝟎
𝟎𝟎

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑗𝑗 �

⎣
⎢
⎢
⎡

𝟎𝟎
𝟎𝟎

𝑅𝑅𝐴𝐴𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

𝑅𝑅𝐵𝐵𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌⎦
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎭

⎪
⎬

⎪
⎫

. 

(35) 

 

The error vector 𝒆𝒆𝒚𝒚�,𝒎𝒎 of the MCPV contribution to projected observations is the last line in (35). 
We continue as before, assuming unknown covariances in the GVCM, and setting them to zero. 
In that case, the dispersion matrix Σ𝑦𝑦�,𝑚𝑚 simplifies to: 

Σ𝑦𝑦�,𝑚𝑚 =

⎝

⎜
⎛
�

Δ𝑡𝑡𝑖𝑖
2𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴

𝑇𝑇 + Δ𝑡𝑡𝑖𝑖
2𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵

𝑇𝑇 Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴
𝑇𝑇 + Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵

𝑇𝑇

Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴
𝑇𝑇 + Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵

𝑇𝑇 Δ𝑡𝑡𝑗𝑗
2𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝑬𝑬𝑨𝑨�𝑅𝑅𝐴𝐴

𝑇𝑇 + Δ𝑡𝑡𝑗𝑗2𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝑬𝑬𝑩𝑩�𝑅𝑅𝐵𝐵
𝑇𝑇
�

+ � �
𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

�𝑅𝑅𝐴𝐴𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌
�𝑅𝑅𝐵𝐵𝑇𝑇 𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

�𝑅𝑅𝐴𝐴𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌
�𝑅𝑅𝐵𝐵𝑇𝑇

𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
�𝑅𝑅𝐴𝐴𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

�𝑅𝑅𝐵𝐵𝑇𝑇 𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
�𝑅𝑅𝐴𝐴𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

�𝑅𝑅𝐵𝐵𝑇𝑇
�

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � �𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌
�𝑅𝑅𝐴𝐴𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌

�𝑅𝑅𝐵𝐵𝑇𝑇 0
0 0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ � �
0 0
0 𝑅𝑅𝐴𝐴𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑨𝑨,𝒌𝒌

�𝑅𝑅𝐴𝐴𝑇𝑇 + 𝑅𝑅𝐵𝐵𝐷𝐷�𝒆𝒆𝚫𝚫𝑬𝑬𝑩𝑩,𝒌𝒌
�𝑅𝑅𝐵𝐵𝑇𝑇�

𝑘𝑘
𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟
⎞

. 

 

(36) 

 

As was the case in (32), we once again find non-zero elements in the off-diagonal blocks of Σ𝑦𝑦�,𝑚𝑚. 
However, we note certain patterns in the matrices of (36) that are known to cause matrix 
singularities. We point out that (36) can be written in this generalized form: 

Σ𝑦𝑦�,𝑚𝑚 =

⎝

⎜
⎛
�𝑎𝑎

2𝐻𝐻 𝑎𝑎𝑎𝑎𝐻𝐻
𝑎𝑎𝑎𝑎𝐻𝐻 𝑎𝑎2𝐻𝐻

� + � �
𝐻𝐻𝑘𝑘 𝐻𝐻𝑘𝑘
𝐻𝐻𝑘𝑘 𝐻𝐻𝑘𝑘

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � �𝐻𝐻𝑘𝑘 0
0 0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ � �
0 0
0 𝐻𝐻𝑘𝑘

�
𝑘𝑘

𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟
⎞

. 

 

(37) 

̇
̇
̇
̇

̇

̇

̇

̇

⎜
̇ ̇ ̇ ̇

̇ ̇ ̇ ̇

⎟

⎜ ⎟

 

We examine the implications of these patterns in Appendix A. Those implications lead to this 
conclusion: 
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Conclusion 4:  If covariances inside the GVCM are unknown, and set to zero, and two 
observations have two common points, then 𝛴𝛴𝑦𝑦�,𝑚𝑚 will have non-zero off-diagonal 
components, and under certain conditions, may be singular. 

As pointed out in the appendix, the singularity of Σ𝑦𝑦�,𝑚𝑚 is not guaranteed. But the fullness of Σ𝑦𝑦�,𝑚𝑚 
is guaranteed by (36), and thus will have the same impact on the sparseness of Σ𝑦𝑦�  as in the 
previous section. The potential difficulties from this loss of sparsity will be discussed in section 7. 

 

6 Orthometric Adjustments 
Parameters estimated in orthometric REC adjustments will be orthometric heights at a reference 
epoch. Observations will include differential orthometric heights reduced from leveling and 
classical surveys. Constraints will be orthometric heights at passive geodetic control marks, 
derived from ellipsoid height RECs (from a geometric REC adjustment) and GEOID2022. 

Much of this section parallels that of the geometric adjustments section, so when possible certain 
details will be skipped. 

6.1 Converting the GVCM to the MCPV at a single point 
In the case of orthometric adjustments, the equations which will convert IFDM2022 and 
DGEOID2022 (as the two GVCMs) into the MCPV, for any given point (𝐴𝐴), at epoch 𝑖𝑖, are 
derived below.  

We use the same IFDM2022 as in geometric adjustments, but restrict ourselves solely to the 
ellipsoid height information therein, that is: 

• One set of two grids containing one grid of linear velocities, in ℎ, and one grid of their 
standard deviations 

• Multiple sets of two grids of displacements, in ℎ, (one set per event) each set containing 
one grid of displacements and one grid of their standard deviations.   

The DGEOID2022 model will contain: 

• One set of two grids containing one grid of linear velocities, in 𝐿𝐿, and one grid of their 
standard deviations 

There are currently no displacing events as part of the DGEOID2022 model, nor plans to 
introduce them. 

Orthometric adjustments will have a few noteworthy differences relative to geometric 
adjustments. First, two GVCMs (IFDM2022 and DGEOID2022) must be considered rather than 
just one. Second, the adjustment is one-dimensional, not three-dimensional. And finally, 
orthometric heights can be assumed parallel with ellipsoid heights and geoid undulations, which 
means no rotation matrix is needed to relate our MCPV to our GVCMs.  

We begin with the equation for an orthometric height at some grid node, 𝐴𝐴: 
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𝐻𝐻𝐴𝐴 = ℎ𝐴𝐴 − 𝐿𝐿𝐴𝐴. (38) 
 

As before, we let the set of all events, 𝑘𝑘, which falls between epoch 𝑖𝑖 and the adjustment epoch be 
called 𝐾𝐾(𝑖𝑖). Then, for each 𝑘𝑘 ∈ 𝐾𝐾(𝑖𝑖), the orthometric height change is identical to the ellipsoid 
height change, since DGEOID2022 will contain no events. Thus, we have: 

�Δ𝐻𝐻𝐴𝐴,𝑖𝑖�𝑘𝑘 = �Δℎ𝐴𝐴,𝑘𝑘� − �Δ𝐿𝐿𝐴𝐴,𝑘𝑘� = �Δℎ𝐴𝐴,𝑘𝑘�   ∀  𝑘𝑘 ∈ 𝐾𝐾(𝑖𝑖). (39) 
 

As before, subscript 𝑘𝑘 means “contribution from the 𝑘𝑘𝑡𝑡ℎ displacement.”  Note the purposeful use 
of brackets. Though the values in (39) are 1 × 1 vectors, they will be related to larger vectors and 
matrices soon, and so it is worth remembering that these are vectors. 

Again, velocities must first be converted to displacements, by multiplying by the time span from 
epoch 𝑖𝑖 to the adjustment epoch. In this case, both IFDM2022 and DGEOID2022 will contain 
velocities. The conversion is: 

�Δ𝐻𝐻𝐴𝐴,𝑖𝑖�𝑣𝑣 = Δ𝑡𝑡𝑖𝑖�ℎ𝐴𝐴 − 𝐿𝐿𝐴𝐴�. (40) ̇ ̇
 

Subscript 𝑣𝑣 means “contribution from velocities”, and we note the lack of subscript 𝑖𝑖 on both  ℎ𝐴𝐴 
and 𝐿𝐿𝐴𝐴. Again, this means there is a common field of velocities that are treated as constant 
through time. 

The total change to the parameter values (the MCPV), for orthometric adjustments, as derived 
from two GVCMs at grid node 𝐴𝐴, between observation epoch 𝑖𝑖 and the adjustment epoch is found 
by combining (40) with the sum of all displacements in (39), to yield: 

̇
̇

�Δ𝐻𝐻𝐴𝐴,𝑖𝑖� = Δ𝑡𝑡𝑖𝑖�ℎ𝐴𝐴 − 𝐿𝐿𝐴𝐴� + 𝑞𝑞𝑖𝑖 � �Δℎ𝐴𝐴,𝑘𝑘�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)

. 
(41) 

̇ ̇

 

As in the geometric adjustment, we are also interested in the dispersions of the changes to 
parameter values. To get them, we apply the law of error propagation to (41) to arrive at the 
dispersion matrix Σ𝑀𝑀𝑖𝑖 of the MCPV applied to all parameters for epoch 𝑖𝑖 as follows: 
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Σ𝑀𝑀𝑖𝑖 = 𝐷𝐷��Δ𝐻𝐻𝐴𝐴,𝑖𝑖�� = 𝐷𝐷

⎩
⎨

⎧
Δ𝑡𝑡𝑖𝑖�ℎ𝐴𝐴 − 𝐿𝐿𝐴𝐴� + 𝑞𝑞𝑖𝑖 � �Δℎ𝐴𝐴,𝑘𝑘�

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎭

⎬

⎫

=

⎝

⎛Δ𝑡𝑡𝑖𝑖2�𝐷𝐷��ℎ𝐴𝐴�� + 𝐷𝐷��𝐿𝐿𝐴𝐴��� � 𝐷𝐷��Δℎ𝐴𝐴,𝑘𝑘��
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞. 

(42) 

̇ ̇

̇ ̇

 

As in geometric adjustments we assume no covariances between velocities and displacements nor 
between two different displacements. However, we also assume no covariances between ellipsoid 
height velocities and geoid undulation velocities18. In (42), there is only one unknown parameter 
𝐻𝐻𝐴𝐴, so “all parameters” encompasses only that one, and means Σ𝑀𝑀𝑖𝑖 will be a 1 × 1 matrix. That 
doesn’t get us yet to the dispersion of the contribution of the MCPV to the projected observations, 
Σ𝑦𝑦�,𝑚𝑚. To derive that, as before, we now examine the cases of one observation, and then two 
observations that share zero, one and two points respectively.  

 

6.2 Orthometric Example:  One orthometric height difference  
This and the three following sections have close parallels with sections 5.2 through 5.5, which 
covered GNSS observations. As such, some common details may be skipped. 

Consider an observation vector 𝒀𝒀 consisting of a single orthometric height difference, between 
two points 𝐴𝐴 and 𝐵𝐵, at observation epoch 𝑖𝑖. The observation equation is: 

𝒀𝒀 = [Δ𝐻𝐻𝐴𝐴𝐵𝐵,𝑖𝑖] + 𝒆𝒆𝒚𝒚    ,   𝒆𝒆𝒚𝒚~�𝟎𝟎,𝚺𝚺𝒚𝒚�. (43) 
 

Now we must map observations to projected observations, as: 

 
18 There can be a correlation, such as in the Hudson Bay where a substantial amount of mass is actually entering the 
region via the mantle, causing both a land uplift (ℎ𝐴𝐴) and geoid change (𝐿𝐿𝐴𝐴). However, this is more the exception 
than the rule. Often, local uplift or subsidence is due to small mass changes or no mass change (such as 
compaction), which would yield no discernable 𝐿𝐿𝐴𝐴 value at all. Regardless, the ability to compute such a correlation 
is difficult, and for the purposes of this paper, the assumption of non-correlation will be used. Any researchers 
expanding this work may wish to consider the correlation between ℎ𝐴𝐴 and 𝐿𝐿𝐴𝐴. 
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̇ ̇

̇

̇ ̇



𝒀𝒀� = 𝒀𝒀 − 𝐴𝐴𝑖𝑖𝚫𝚫𝑷𝑷𝒊𝒊,𝑴𝑴 = 𝒀𝒀 − 𝐴𝐴𝑖𝑖 ��
Δ𝐻𝐻𝐴𝐴,𝑖𝑖
Δ𝐻𝐻𝐵𝐵,𝑖𝑖

� + �
𝑒𝑒Δ𝐻𝐻𝐴𝐴,𝑖𝑖
𝑒𝑒Δ𝐻𝐻𝐵𝐵,𝑖𝑖

��

= 𝒀𝒀 − 𝐴𝐴𝑖𝑖 ���
Δℎ𝐴𝐴,𝑖𝑖
Δℎ𝐵𝐵,𝑖𝑖

� − �
Δ𝐿𝐿𝐴𝐴,𝑖𝑖
Δ𝐿𝐿𝐵𝐵,𝑖𝑖

�� + ��
𝑒𝑒Δℎ𝐴𝐴,𝑖𝑖
𝑒𝑒Δℎ𝐵𝐵,𝑖𝑖

� − �
𝑒𝑒Δ𝐿𝐿𝐴𝐴,𝑖𝑖
𝑒𝑒Δ𝐿𝐿𝐵𝐵,𝑖𝑖

���

= 𝒀𝒀 − 𝐴𝐴𝑖𝑖

⎩
⎨

⎧
Δ𝑡𝑡𝑖𝑖 �

ℎ𝐴𝐴
ℎ𝐵𝐵
� − Δ𝑡𝑡𝑖𝑖 �

𝐿𝐿𝐴𝐴
𝐿𝐿𝐵𝐵
� + 𝑞𝑞𝑖𝑖 � �

Δℎ𝐴𝐴,𝑘𝑘
Δℎ𝐵𝐵,𝑘𝑘

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎭
⎬

⎫

− 𝐴𝐴𝑖𝑖

⎩
⎪
⎨

⎪
⎧

Δ𝑡𝑡𝑖𝑖 �
𝑒𝑒ℎ𝐴𝐴
𝑒𝑒ℎ𝐵𝐵

� − Δ𝑡𝑡𝑖𝑖 �
𝑒𝑒𝐿𝐿𝐴𝐴
𝑒𝑒𝐿𝐿𝐵𝐵

� + 𝑞𝑞𝑖𝑖 � �
𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎭
⎪
⎬

⎪
⎫

 

(44) 

̅ ̅

̅

̅
̇
̇

̇
̇

̅ ̇
̇

̇
̇

 

Compare (44) with (16) and note that the one-dimensional nature of the adjustment means we 
need not rely as heavily upon bold to indicate vectors, but rather can write out each element of 
each vector or matrix as is.  

The vector 𝒆𝒆𝒚𝒚�,𝒎𝒎, can be found in the last line of (44), as follows: 

̇
̇

̇
̇

̇
̇

̇
̇

̇ ̇ ̇

̇ ̇ ̇

̇ ̇ ̇

̇

̇ ̇ ̇ ̇

̇ ̇ ̇ ̇
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𝒆𝒆𝒚𝒚�,𝒎𝒎 = −𝐴𝐴�𝑖𝑖

⎩
⎨

⎧
Δ𝑡𝑡𝑖𝑖 �

𝑒𝑒ℎ𝐴𝐴
𝑒𝑒ℎ𝐵𝐵

� − Δ𝑡𝑡𝑖𝑖 �
𝑒𝑒𝐿𝐿𝐴𝐴
𝑒𝑒𝐿𝐿𝐵𝐵
� + 𝑞𝑞𝑖𝑖 � �

𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎭
⎬

⎫
 (45) 

We express the dispersion of 𝒆𝒆𝒚𝒚�,𝒎𝒎 as: 

Σ𝑦𝑦�,𝑚𝑚 = 𝐷𝐷�𝒆𝒆𝒚𝒚�,𝒎𝒎� = 𝐷𝐷

⎩
⎪
⎨

⎪
⎧

−𝐴𝐴�𝑖𝑖

⎩
⎨

⎧
Δ𝑡𝑡𝑖𝑖 �

𝑒𝑒ℎ𝐴𝐴
𝑒𝑒ℎ𝐵𝐵

� − Δ𝑡𝑡𝑖𝑖 �
𝑒𝑒𝐿𝐿𝐴𝐴
𝑒𝑒𝐿𝐿𝐵𝐵
� + 𝑞𝑞𝑖𝑖 � �

𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎭
⎬

⎫

⎭
⎪
⎬

⎪
⎫

= [−1 +1](𝛥𝛥𝑡𝑡𝑖𝑖)2 �
𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� 𝐶𝐶�𝑒𝑒ℎ𝐴𝐴 , 𝑒𝑒ℎ𝐵𝐵�

𝐶𝐶�𝑒𝑒ℎ𝐵𝐵 , 𝑒𝑒ℎ𝐴𝐴� 𝐷𝐷�𝑒𝑒ℎ𝐵𝐵�
� [−1 +1]𝑇𝑇

+ [−1 +1](𝛥𝛥𝑡𝑡𝑖𝑖)2 �
𝜎𝜎𝑒𝑒𝐿𝐿𝐴𝐴
2 𝜎𝜎𝑒𝑒𝐿𝐿𝐴𝐴 ,𝑒𝑒𝐿𝐿𝐵𝐵

sym 𝜎𝜎𝑒𝑒𝐿𝐿𝐵𝐵
2 � [−1 +1]𝑇𝑇

+ [−1 +1]

⎝

⎛ � �
𝜎𝜎𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
2 𝜎𝜎𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘 ,𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘

sym 𝜎𝜎𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘
2 �

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖) ⎠

⎞ [−1 +1]𝑇𝑇

= (𝛥𝛥𝑡𝑡𝑖𝑖)2�𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� + 𝐷𝐷�𝑒𝑒ℎ𝐵𝐵� − 2𝐶𝐶�𝑒𝑒ℎ𝐴𝐴 , 𝑒𝑒ℎ𝐵𝐵��
+ (𝛥𝛥𝑡𝑡𝑖𝑖)2�𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐵𝐵� − 2𝐶𝐶�𝑒𝑒𝐿𝐿𝐴𝐴 , 𝑒𝑒𝐿𝐿𝐵𝐵��

+ � �𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘� − 2𝐶𝐶�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘 , 𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘��
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)

. 

(46) 

 



 

Note in (46) that covariances between velocities and displacements, and between displacements 
and other displacements, and between geoid velocities and ellipsoid height velocities have all 
been set to zero as mentioned earlier. However, covariances between velocities at different points 
and events at different points remain. In the future, NGS may have knowledge of such 
covariances, but for now they will also be set equal to zero since neither IFDM2022 nor 
DGEOID2022 contain them. This reduces (46) to: 

Σ𝑦𝑦�,𝑚𝑚 = Δ𝑡𝑡𝑖𝑖2�𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� + 𝐷𝐷�𝑒𝑒ℎ𝐵𝐵�� + Δ𝑡𝑡𝑖𝑖2�𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐵𝐵�� + � �𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘��
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)

. 
(47) ̇ ̇ ̇ ̇

In (47) we have kept the three contributions (ellipsoid height velocities, geoid height velocities 
and ellipsoid height displacements) separate for ease of understanding. 

We now turn to the same three situations which arose for geometric adjustments, but using 
orthometric height differences:  no points in common, one point in common, and two points in 
common. However, we will go through it much more quickly, skipping many details common to 
the geometric examples. 

6.3 Orthometric example: Two height differences, no shared points 
Consider one observation vector, containing two orthometric height differences, one from point 𝐴𝐴 
to point 𝐵𝐵 at epoch 𝑖𝑖 and the other from point 𝐶𝐶 to point 𝐷𝐷 at epoch 𝑗𝑗. The observation equation 
takes this form: 

̅
̅

̅

̅
̅

̅
̅
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𝒀𝒀 = �
Δ𝐻𝐻𝐴𝐴𝐵𝐵,𝑖𝑖
Δ𝐻𝐻𝐶𝐶𝐷𝐷,𝑗𝑗

� + 𝒆𝒆𝒚𝒚  ,   𝒆𝒆𝒚𝒚~�𝟎𝟎,𝚺𝚺𝒚𝒚�. (48) 

 

Expanding (48) yields: 

𝒀𝒀 = �
Δ𝐻𝐻𝐴𝐴𝐵𝐵,𝑖𝑖
Δ𝐻𝐻𝐶𝐶𝐷𝐷,𝑗𝑗

� + 𝒆𝒆𝒚𝒚 = 𝐴𝐴 �
𝚵𝚵𝒊𝒊
𝚵𝚵𝒋𝒋
� + 𝒆𝒆𝒚𝒚 = �

𝐴𝐴𝑖𝑖 01,4

01,4 𝐴𝐴𝑗𝑗
� �
𝚵𝚵𝒊𝒊
𝚵𝚵𝒋𝒋
� + 𝒆𝒆𝒚𝒚 = �−1 +1 0 0 0 0 0 0

0 0 0 0 0 0 −1 +1�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐻𝐻𝐴𝐴,𝑖𝑖
𝐻𝐻𝐵𝐵,𝑖𝑖
𝐻𝐻𝐶𝐶,𝑖𝑖
𝐻𝐻𝐷𝐷,𝑖𝑖
𝐻𝐻𝐴𝐴,𝑗𝑗
𝐻𝐻𝐵𝐵,𝑗𝑗
𝐻𝐻𝐶𝐶,𝑗𝑗
𝐻𝐻𝐷𝐷,𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ 𝒆𝒆𝒚𝒚. (49) 

Mapping observations into projected observations yields: 

𝒀𝒀� = 𝒀𝒀 − �
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Comparing (50) to (24) we see similarities, but the largest differences are no rotation matrices, 
and two sets of velocities rather than one. The random error vector 𝒆𝒆𝒚𝒚�,𝒎𝒎 of the contribution of the 
MCPV to the projected observations is found in the last line of (50), as: 
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Because the relationship between MCPV and GVCM is slightly different than in the geometric 
case, we again use a figure to exemplify it. Once again, we skip the displacements which affect 
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only one projected observation, for brevity. See Figure 2, and note that each sub-matrix 𝐴𝐴 is of 
size 1 × 4, and we have again dropped 𝑞𝑞𝑖𝑖 for space considerations. 

̅

Figure 2:  The relationship between the MCPV and GVCM (IFDM2022) in projected 
observations within an orthometric adjustment. 

̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇

̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇

̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇

̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇
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We again examine matrix Σ𝑦𝑦�,𝑚𝑚 in parts, but in this case element-by-element, rather than in 3 × 3 
blocks (as was done for the geometric case), due to the one-dimensional nature of the adjustment. 
The velocity components are: 

Σ𝑦𝑦�,𝑚𝑚𝑣𝑣,11
= Δ𝑡𝑡𝑖𝑖2��𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� − 2𝐶𝐶�𝑒𝑒ℎ𝐴𝐴 , 𝑒𝑒ℎ𝐵𝐵� + 𝐷𝐷�𝑒𝑒ℎ𝐵𝐵�� + �𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴� − 2𝐶𝐶�𝑒𝑒𝐿𝐿𝐴𝐴 , 𝑒𝑒𝐿𝐿𝐵𝐵� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐵𝐵���, 

 
(52a) 

Σ𝑦𝑦�,𝑚𝑚𝑣𝑣,21
= Σ𝑦𝑦�,𝑚𝑚𝑣𝑣,12

= Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗��𝐶𝐶�𝑒𝑒ℎ𝐴𝐴 , 𝑒𝑒ℎ𝐶𝐶� − 𝐶𝐶�𝑒𝑒ℎ𝐴𝐴 , 𝑒𝑒ℎ𝐷𝐷� − 𝐶𝐶�𝑒𝑒ℎ𝐵𝐵 , 𝑒𝑒ℎ𝐶𝐶� + 𝐶𝐶�𝑒𝑒ℎ𝐵𝐵 , 𝑒𝑒ℎ𝐷𝐷��
+ �𝐶𝐶�𝑒𝑒𝐿𝐿𝐴𝐴 , 𝑒𝑒𝐿𝐿𝐶𝐶� − 𝐶𝐶�𝑒𝑒𝐿𝐿𝐴𝐴 , 𝑒𝑒𝐿𝐿𝐷𝐷� − 𝐶𝐶�𝑒𝑒𝐿𝐿𝐵𝐵 , 𝑒𝑒𝐿𝐿𝐶𝐶�+ 𝐶𝐶�𝑒𝑒𝐿𝐿𝐵𝐵 , 𝑒𝑒𝐿𝐿𝐷𝐷���,  

(52b) 

Σ𝑦𝑦� ,𝑚𝑚𝑣𝑣,22
= Δ𝑡𝑡𝑖𝑖2��𝐷𝐷�𝑒𝑒ℎ𝐶𝐶� − 2𝐶𝐶�𝑒𝑒ℎ𝐶𝐶 , 𝑒𝑒ℎ𝐷𝐷� + 𝐷𝐷�𝑒𝑒ℎ𝐶𝐶�� + �𝐷𝐷�𝑒𝑒𝐿𝐿𝐶𝐶� − 2𝐶𝐶�𝑒𝑒𝐿𝐿𝐶𝐶 , 𝑒𝑒𝐿𝐿𝐷𝐷� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐶𝐶���. (52c) 

 

As before, we examine the displacing event components in three sections:  those that effect both 
observations, those that affect only the observation at epoch 𝑖𝑖 and those that affect only the 
observation at epoch 𝑗𝑗. 

  First, for any 𝑘𝑘 ∈ 𝐾𝐾(𝑖𝑖) and 𝑘𝑘 ∈ 𝐾𝐾(𝑗𝑗) we have: 

Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,11
= 𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� − 2𝐶𝐶�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘 , 𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘�, (52d) 

  



Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,21
= Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,21

= 𝐶𝐶�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘 , 𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘� − 𝐶𝐶�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘 , 𝑒𝑒Δℎ𝐷𝐷,𝑘𝑘� − 𝐶𝐶�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘 , 𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘� + 𝐶𝐶�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘 , 𝑒𝑒Δℎ𝐷𝐷,𝑘𝑘�, (52e) 
 

Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,22
= 𝐷𝐷�𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘� − 2𝐶𝐶�𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘 , 𝑒𝑒Δℎ𝐷𝐷,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐷𝐷,𝑘𝑘�. (52f) 

 

Second, for any 𝑘𝑘 ∈ 𝐾𝐾(𝑖𝑖) and 𝑘𝑘 ∉ 𝐾𝐾(𝑗𝑗) we have: 

Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,11
= 𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� − 2𝐶𝐶�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘 , 𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘�, (52g) 

  

Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,21
= 0, (52h) 

 

Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,12
= 0, (52i) 

 

Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,22
= 0. (52j) 

 

And third, for any 𝑘𝑘 ∉ 𝐾𝐾(𝑖𝑖) and 𝑘𝑘 ∈ 𝐾𝐾(𝑗𝑗) we have: 

Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,11
= 0, (52k) 

  

Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,21
= 0, (52l) 

 

Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,12
= 0, (52m) 

 

Σ𝑦𝑦�,𝑚𝑚𝑘𝑘,22
= 𝐷𝐷�𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘� − 2𝐶𝐶�𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘 , 𝑒𝑒Δℎ𝐷𝐷,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐷𝐷,𝑘𝑘�. (52n) 

 

As before, it has been assumed that covariances in the GVCM are known. If, however, there are 
no known covariances and we set them to zero, then the dispersion matrix Σ𝑦𝑦� ,𝑚𝑚 simplifies 
dramatically to: 
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Σ𝑦𝑦� ,𝑚𝑚 =

⎝

⎜⎜
⎛
�
Δ𝑡𝑡𝑖𝑖2�𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� + 𝐷𝐷�𝑒𝑒ℎ𝐵𝐵� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐵𝐵�� 0

0 Δ𝑡𝑡𝑗𝑗2�𝐷𝐷�𝑒𝑒ℎ𝐶𝐶� + 𝐷𝐷�𝑒𝑒ℎ𝐷𝐷� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐶𝐶� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐷𝐷��
�

+ � �
𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘� 0

0 𝐷𝐷�𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐷𝐷,𝑘𝑘�
�

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � �𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘� 0
0 0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ � �
0 0
0 𝐷𝐷�𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐷𝐷,𝑘𝑘�

�
𝑘𝑘

𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟⎟
⎞

 

 

(53) 

 

The conclusions drawn from (52) and (53) are the same as in the geometric case:  Conclusion #1 
for (52) and Conclusion #2 for (53). 

6.4 Orthometric example: Two height differences, one shared point 
Next, consider one observation vector, containing two observations, one with an orthometric 
height difference from point 𝐴𝐴 to point 𝐵𝐵 at epoch 𝑖𝑖 and another from point 𝐴𝐴 to point 𝐶𝐶 at epoch 
𝑗𝑗. The observation equation is: 

𝒀𝒀 = �
Δ𝐻𝐻𝐴𝐴𝐵𝐵,𝑖𝑖
Δ𝐻𝐻𝐴𝐴𝐶𝐶,𝑗𝑗

� + 𝒆𝒆𝒚𝒚    ,     𝒆𝒆𝒚𝒚~�𝟎𝟎,𝚺𝚺𝒚𝒚�. (54) 

This expands to: 

𝒀𝒀 = �
Δ𝐻𝐻𝐴𝐴𝐵𝐵,𝑖𝑖
Δ𝐻𝐻𝐴𝐴𝐶𝐶,𝑗𝑗

� + 𝒆𝒆𝒚𝒚 = �−1 +1 0 0 0 0
0 0 0 −1 0 +1�

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐻𝐻𝐴𝐴,𝑖𝑖
𝐻𝐻𝐵𝐵,𝑖𝑖
𝐻𝐻𝐶𝐶,𝑖𝑖
𝐻𝐻𝐴𝐴,𝑗𝑗
𝐻𝐻𝐵𝐵,𝑗𝑗
𝐻𝐻𝐶𝐶,𝑗𝑗⎦

⎥
⎥
⎥
⎥
⎥
⎤

+ 𝒆𝒆𝒚𝒚. (55) 

 

Observations are again mapped into projected observations, yielding: 

𝒀𝒀� = 𝒀𝒀 − �
𝐴𝐴𝑖𝑖 01,3

01,3 𝐴𝐴𝑗𝑗
�

⎩
⎪
⎪
⎨

⎪
⎪
⎧

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡Δ𝑡𝑡𝑖𝑖ℎ𝐴𝐴
Δ𝑡𝑡𝑖𝑖ℎ𝐵𝐵
Δ𝑡𝑡𝑖𝑖ℎ𝐶𝐶
Δ𝑡𝑡𝑗𝑗ℎ𝐴𝐴
Δ𝑡𝑡𝑗𝑗ℎ𝐵𝐵
Δ𝑡𝑡𝑗𝑗ℎ𝐶𝐶⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

−

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡Δ𝑡𝑡𝑖𝑖𝐿𝐿𝐴𝐴
Δ𝑡𝑡𝑖𝑖𝐿𝐿𝐵𝐵
Δ𝑡𝑡𝑖𝑖𝐿𝐿𝐶𝐶
Δ𝑡𝑡𝑗𝑗𝐿𝐿𝐴𝐴
Δ𝑡𝑡𝑗𝑗𝐿𝐿𝐵𝐵
Δ𝑡𝑡𝑗𝑗𝐿𝐿𝐶𝐶⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ 𝑞𝑞𝑖𝑖 �

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Δℎ𝐴𝐴,𝑘𝑘
Δℎ𝐵𝐵,𝑘𝑘
Δℎ𝐶𝐶,𝑘𝑘
Δℎ𝐴𝐴,𝑘𝑘
Δℎ𝐵𝐵,𝑘𝑘
Δℎ𝐶𝐶,𝑘𝑘⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑖𝑖 �

⎣
⎢
⎢
⎢
⎢
⎡
Δℎ𝐴𝐴,𝑘𝑘
Δℎ𝐵𝐵,𝑘𝑘
Δℎ𝐶𝐶,𝑘𝑘

0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑗𝑗 �

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

Δℎ𝐴𝐴,𝑘𝑘
Δℎ𝐵𝐵,𝑘𝑘
Δℎ𝐶𝐶,𝑘𝑘⎦

⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

(56) 

−�
𝐴𝐴𝑖𝑖 01,3

01,3 𝐴𝐴𝑗𝑗
�

⎩
⎪⎪
⎨

⎪⎪
⎧

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Δ𝑡𝑡𝑖𝑖𝑒𝑒Δℎ𝐴𝐴
Δ𝑡𝑡𝑖𝑖𝑒𝑒Δℎ𝐵𝐵
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δℎ𝐶𝐶
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δℎ𝐴𝐴
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δℎ𝐵𝐵
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δℎ𝐶𝐶⎦

⎥
⎥
⎥
⎥
⎥
⎤

−

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Δ𝑡𝑡𝑖𝑖𝑒𝑒Δ𝐿𝐿𝐴𝐴
Δ𝑡𝑡𝑖𝑖𝑒𝑒Δ𝐿𝐿𝐵𝐵
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δ𝐿𝐿𝐶𝐶
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δ𝐿𝐿𝐴𝐴
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δ𝐿𝐿𝐵𝐵
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δ𝐿𝐿𝐶𝐶⎦

⎥
⎥
⎥
⎥
⎥
⎤

+ 𝑞𝑞𝑖𝑖 �

⎣
⎢
⎢
⎢
⎢
⎡
𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘
𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘
𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘
𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘⎦

⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑖𝑖 �

⎣
⎢
⎢
⎢
⎢
⎡
𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘
𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘

0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑗𝑗 �

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘
𝑒𝑒Δℎ𝐶𝐶,𝑘𝑘⎦

⎥
⎥
⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

⎭
⎪⎪
⎬

⎪⎪
⎫

. 

 

̇ ̇ ̇ ̇

̇ ̇ ̇ ̇

̅
̅

̇
̇
̇
̇
̇
̇

̇
̇
̇
̇
̇
̇

̅
̅

̇

̇

̇

̇

̇

̇

̇

̇

̇

̇

̇

̇



 

 

The error vector 𝒆𝒆𝒚𝒚�,𝒎𝒎 of the MCPV contribution to projected observations is the last line in (56). 
As before, we ignore covariances in the GVCMs going forward, since they aren’t expected to be 
available. In that case, the dispersion matrix Σ𝑦𝑦� ,𝑚𝑚 simplifies to: 

Σ𝑦𝑦� ,𝑚𝑚 =

⎝

⎜⎜
⎛
�
Δ𝑡𝑡𝑖𝑖2�𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� + 𝐷𝐷�𝑒𝑒ℎ𝐵𝐵� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐵𝐵�� Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗�𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴��

Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗�𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴�� Δ𝑡𝑡𝑗𝑗2�𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� + 𝐷𝐷�𝑒𝑒ℎ𝐵𝐵� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐵𝐵��
�

+ � �
𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘� 𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘�

𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� 𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘�
�

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � �𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘� 0
0 0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ � �
0 0
0 𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘�

�
𝑘𝑘

𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟⎟
⎞

 

 

(57) 

̇ ̇ ̇ ̇ ̇ ̇

̇ ̇ ̇ ̇ ̇ ̇

 

Comparing (57) to (32) shows a wide array of similarities, including Conclusion #3, and the 
potential problem of non-sparsity it raises. This potential problem will be discussed in section 7. 
As in the geometric case, we consider whether the potential problem still exists when the two 
observations are at the same epoch. In this (orthometric) case, the answer is now “yes.”  (Recall 
that the answer was “probably not” for geometric adjustments.)  The reason for this is that in most 
leveling adjustments, the dispersion matrix of the observations tends to be diagonal. Despite the 
obvious factors which would correlate two differential orthometric height observations in a single 
epoch (whether that be a single day or similar small period of time), the data are not processed 
simultaneously in a session the way that GNSS data are. Thus, we don’t tend to have any 
covariance information between leveling observations, even if collected at a common epoch. With 
that being the case, even if the two leveling observations both occur at epoch 𝑖𝑖, we still expect a 
diagonal matrix Σ𝑦𝑦. Thus, the addition of the non-zero off-diagonal elements seen in (57) above, 
will remain a problem by creating non-zero off diagonal elements in Σ𝑦𝑦� , even if the observations 
occur at the same epoch. More details are found in section 7. 

6.5 Orthometric example: Two height differences, two shared points 
Finally, consider one observation vector, containing two orthometric observations, one with a 
height difference from point 𝐴𝐴 to point 𝐵𝐵 at epoch 𝑖𝑖 and another from point 𝐴𝐴 to point 𝐵𝐵 at epoch 
𝑗𝑗. The observation equation is: 
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𝒀𝒀 = �
𝚫𝚫𝑿𝑿𝑨𝑨𝑩𝑩,𝒊𝒊
𝚫𝚫𝑿𝑿𝑨𝑨𝑩𝑩,𝒋𝒋

� + 𝒆𝒆𝒚𝒚    ,     𝒆𝒆𝒚𝒚~�𝟎𝟎,𝚺𝚺𝒚𝒚�. (58) 

 

This expands to: 



𝒀𝒀 = �−1 +1 0 0
0 0 −1 +1�

⎣
⎢
⎢
⎡
𝐻𝐻𝐴𝐴,𝑖𝑖
𝐻𝐻𝐵𝐵,𝑖𝑖
𝐻𝐻𝐴𝐴,𝑗𝑗
𝐻𝐻𝐵𝐵,𝑗𝑗⎦

⎥
⎥
⎤

+ 𝒆𝒆𝒚𝒚. (59) 

  
As usual we map observations into projected observations, as such: 

𝒀𝒀� = 𝒀𝒀 − �
𝐴𝐴𝑖𝑖 01,2

01,2 𝐴𝐴𝑗𝑗
�

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎢
⎡Δ𝑡𝑡𝑖𝑖ℎ𝐴𝐴
Δ𝑡𝑡𝑖𝑖ℎ𝐵𝐵
Δ𝑡𝑡𝑗𝑗ℎ𝐴𝐴
Δ𝑡𝑡𝑗𝑗ℎ𝐵𝐵⎦

⎥
⎥
⎥
⎤

−

⎣
⎢
⎢
⎢
⎡Δ𝑡𝑡𝑖𝑖𝐿𝐿𝐴𝐴
Δ𝑡𝑡𝑖𝑖𝐿𝐿𝐵𝐵
Δ𝑡𝑡𝑗𝑗𝐿𝐿𝐴𝐴
Δ𝑡𝑡𝑗𝑗𝐿𝐿𝐵𝐵⎦

⎥
⎥
⎥
⎤
+ 𝑞𝑞𝑖𝑖 �

⎣
⎢
⎢
⎡
Δℎ𝐴𝐴,𝑘𝑘
Δℎ𝐵𝐵,𝑘𝑘
Δℎ𝐴𝐴,𝑘𝑘
Δℎ𝐵𝐵,𝑘𝑘⎦

⎥
⎥
⎤

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑖𝑖 � �

Δℎ𝐴𝐴,𝑘𝑘
Δℎ𝐵𝐵,𝑘𝑘

0
0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑗𝑗 � �

0
0

Δℎ𝐴𝐴,𝑘𝑘
Δℎ𝐵𝐵,𝑘𝑘

�
𝑘𝑘

𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎭

⎪
⎬

⎪
⎫

 

(60) 

−�
𝐴𝐴𝑖𝑖 01,2

01,2 𝐴𝐴𝑗𝑗
�

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎢
⎡
Δ𝑡𝑡𝑖𝑖𝑒𝑒Δℎ𝐴𝐴
Δ𝑡𝑡𝑖𝑖𝑒𝑒Δℎ𝐵𝐵
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δℎ𝐴𝐴
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δℎ𝐵𝐵⎦

⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
Δ𝑡𝑡𝑖𝑖𝑒𝑒Δ𝐿𝐿𝐴𝐴
Δ𝑡𝑡𝑖𝑖𝑒𝑒Δ𝐿𝐿𝐵𝐵
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δ𝐿𝐿𝐴𝐴
Δ𝑡𝑡𝑗𝑗𝑒𝑒Δ𝐿𝐿𝐵𝐵⎦

⎥
⎥
⎥
⎤
+ 𝑞𝑞𝑖𝑖 � �

𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘
𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑖𝑖 � �

𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘

0
0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ 𝑞𝑞𝑗𝑗 � �

0
0

𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘
𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘

�
𝑘𝑘

𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎭

⎪
⎬

⎪
⎫

. 

 

The error vector 𝒆𝒆𝒚𝒚�,𝒎𝒎 of the MCPV contribution to projected observations is the last line in (60). 
Finally, and again ignoring covariances in the GVCMs, we compute matrix Σ𝑦𝑦� ,𝑚𝑚 as:  

Σ𝑦𝑦� ,𝑚𝑚 =

⎝

⎜⎜
⎛
�
Δ𝑡𝑡𝑖𝑖2�𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� + 𝐷𝐷�𝑒𝑒ℎ𝐵𝐵� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐵𝐵�� Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗�𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� + 𝐷𝐷�𝑒𝑒ℎ𝐵𝐵� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐵𝐵��
Δ𝑡𝑡𝑖𝑖Δ𝑡𝑡𝑗𝑗�𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� + 𝐷𝐷�𝑒𝑒ℎ𝐵𝐵� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐵𝐵�� Δ𝑡𝑡𝑗𝑗2�𝐷𝐷�𝑒𝑒ℎ𝐴𝐴� + 𝐷𝐷�𝑒𝑒ℎ𝐵𝐵� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐴𝐴� + 𝐷𝐷�𝑒𝑒𝐿𝐿𝐵𝐵��

�

+ � �
𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘� 𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘�
𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘� 𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘�

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � �𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘� 0
0 0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ � �
0 0
0 𝐷𝐷�𝑒𝑒Δℎ𝐴𝐴,𝑘𝑘� + 𝐷𝐷�𝑒𝑒Δℎ𝐵𝐵,𝑘𝑘�

�
𝑘𝑘

𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟⎟
⎞

 

 

(61) 

 

̅
̅

̇
̇
̇
̇

̇
̇
̇
̇

̅
̅

̇

̇

̇

̇

̇

̇

̇

̇

̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇

̇ ̇ ̇ ̇ ̇ ̇ ̇ ̇

Compare (61) to (36) to see that (61) also takes the general form seen in (37). As such, the same 
conclusions are drawn as in the geometric adjustment. That is, there are some very specific cases 
in the orthometric adjustments where Σ𝑦𝑦� ,𝑚𝑚 will be singular, raising the concern that other cases 
exist. Further details are found in the appendix. 

7 Practical considerations 
There were three driving questions which motivated this paper: 

1) If covariances within the GVCMs are known, how do we use them to compute the 
dispersion matrix Σ𝑦𝑦�,𝑚𝑚 of the contribution of the MCPV to projected observations in the 
ME-LSA problem? 

2) If covariances within the GVCMs are known, which off-diagonal, or off-block-diagonal, 
elements, that are zero in the dispersion matrix for the observations Σ𝑦𝑦, are going to be 
non-zero in the dispersion matrix for the projected observations Σ𝑦𝑦�? 
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3) If the covariances in the GVCMs are not known, what conditions will cause the 
previously-zero covariance elements in Σ𝑦𝑦 to be non-zero in Σ𝑦𝑦�? 

The first question has been answered with equations found in Table 2. 

Table 2:  Summary of equations which compute elements of the dispersion matrix for the 
contribution of the MCPV to the projected observations. 

Adjustment 
Type 

Number of 
observations 

GVCM covariances 
known? 

Number of points 
in common 

Equation 
number 

Geometric 1 Yes N/A 18 
Geometric 1 No N/A 19,20,21 
Geometric 2 Yes 0 27 
Geometric 2 No 0 28 
Geometric 2 No19 1 32 
Geometric 2 No 2 36 

Orthometric 1 Yes N/A 46 
Orthometric 1 No N/A 47 
Orthometric 2 Yes 0 52 
Orthometric 2 No 0 53 
Orthometric 2 No19 1 57 
Orthometric 

 
2 No 2 61 

The second question can be answered by examination of the equations just listed, where this 
conclusion becomes obvious:  

Conclusion 5:  Knowledge of the covariances in the GVCM introduces covariances 
between the errors of every pair of projected observations.  

In simple terms, it means that the dispersion matrix Σ𝑦𝑦� ,𝑚𝑚 of the contribution of the MCPV to 
projected observations will always be full, and thus so will the dispersion matrix Σ𝑦𝑦�  of the 
projected observations. By extension, assuming the Gauss-Markov Model is used, the cofactor 
matrix 𝑄𝑄𝑦𝑦�  will also always be full. The implications of a full cofactor matrix are daunting, and 
will be discussed in subsection 7.1. 

The third question was answered in equations 32, 36, 57 and 61. In those equations it was seen 
that two observations which share at least one common point, even at different epochs, will 
transform from two uncorrelated observations into two correlated projected observations, even in 
the absence of GVCM covariances. While this will not create a full Σ𝑦𝑦� ,𝑚𝑚 or Σ𝑦𝑦�  matrix, it will 
create non-zero elements where none existed in Σ𝑦𝑦. This loss of sparsity is a concern discussed 
next. 

 
19 Note that the addition of GVCM covariances was ignored for later examples, since (a) they aren’t expected to be 
known and (b) they only complicated and distracted from the work. 
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7.1 Dealing with a dispersion matrix of projected observations that is less sparse than 
the dispersion matrix of observations 

 

In the preceding section, two scenarios were discussed where non-zero off-diagonal elements 
would occur in the Σ𝑦𝑦�,𝑚𝑚 matrix, which also means that these same elements will be non-zero in 
the Σ𝑦𝑦�  matrix. Those two scenarios are: 

1) Covariances are known in the GVCM(s) 
2) Covariances are not known in the GVCM, but two observations share one or more 

common points 

The first scenario is more problematic than the second, since the first yields a full matrix Σ𝑦𝑦� , 
while the second only adds some non-zero off-diagonal elements to Σ𝑦𝑦�  where there were zeroes in 
Σ𝑦𝑦. But in both cases, we will likely begin with a diagonal or block-diagonal matrix Σ𝑦𝑦, which is 
one of the simplest sparse matrices, but will end with a much less sparse, possibly full, matrix Σ𝑦𝑦� . 

In order to understand the implications of this less-sparse matrix Σ𝑦𝑦� , we will work through a 
thought experiment. Let us begin by assuming that we are working with the Gauss-Markov 
Model, so that the relationship between the dispersion matrix, the cofactor matrix and the weight 
matrix of the observations is: 

Σ𝑦𝑦 = 𝜎𝜎02𝑄𝑄𝑦𝑦 = 𝜎𝜎02𝑃𝑃𝑦𝑦−1. (62) 
 

The dispersion matrix Σ𝑦𝑦 is generally unavailable. The cofactor matrix 𝑄𝑄𝑦𝑦 generally is available, 
and the weight matrix 𝑃𝑃𝑦𝑦 is needed, and usually computed by inverting the cofactor matrix. 

Now, consider a large LSA problem, such as the 2011 National Adjustment (Dennis, 2020). In 
that adjustment, the input cofactor matrix of the observations 𝑄𝑄𝑦𝑦 was entirely block-diagonal. In 
some cases, the blocks were merely 3 × 3, being a single measured baseline within a GNSS 
session. In others a block might have been a few hundred elements on a side, being hundreds of 
measured baselines processed in a single GNSS session simultaneously. Despite such large blocks 
on the diagonal, this nonetheless left vast quantities of off-diagonal zeros in the cofactor matrix. 
With some 400,000 GNSS measured baselines, there were about 1,200,000 observations, and thus 
the cofactor matrix was of size 1,200,000 × 1,200,000. Although an exact estimate of the 
sparsity of 𝑄𝑄𝑦𝑦 in this adjustment was not provided, there was an average of 5.43 measured 
baselines per session. Let us round that up to 6. A simultaneously processed session with 6 
measured baselines has 18 observations, so it would fill an 18 × 18 block on the diagonal of 
matrix 𝑄𝑄𝑦𝑦. If the entire matrix 𝑄𝑄𝑦𝑦 were populated with such blocks, there would be about 66,667 
such blocks, for 21,600,000 non-zero elements in 𝑄𝑄𝑦𝑦, out of a total of 1,440,000,000,000 
elements. That would imply 99.9985% of the elements in 𝑄𝑄𝑦𝑦 were equal to zero. That value is 
only a rough estimate. The reality is that some blocks were much larger, and some smaller, but we 
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do know that 𝑄𝑄𝑦𝑦 was block diagonal, and can therefore confidently assume its sparsity percentage 
is well into the high 90s if not above 99%. 

Now consider that same adjustment, but treating HTDP, the GVCM in that adjustment, as 
stochastic. If covariances within the GVCM were known, then every single element in matrix 
𝑄𝑄𝑦𝑦�,𝑚𝑚 and thus 𝑄𝑄𝑦𝑦�  will be non-zero: its sparsity will be 0%. 

Only when we have 𝑄𝑄𝑦𝑦�  can we determine the weight matrix of the projected observations 𝑃𝑃𝑦𝑦� , by 
inverting 𝑄𝑄𝑦𝑦�; and we must have 𝑃𝑃𝑦𝑦�  to solve the LSA. However, there is a difference, in fact a 
colossal difference, between inverting a matrix of size 1,200,000 × 1,200,000 with a sparsity of 
99.9985% and one of sparsity 0%. This was mentioned in Smith, et al. (2023, Appendix A), but 
bears a brief repeat here. If inverting a full matrix requires 𝑂𝑂(𝑠𝑠3) operations, and inverting a 
block-diagonal matrix takes between 𝑂𝑂(𝑠𝑠)  and 𝑂𝑂(𝑠𝑠2)  operations (where 𝑠𝑠 is the dimension of 
one side of a square matrix) then inverting a full cofactor matrix 𝑄𝑄𝑦𝑦�  for this example would take, 
at best, thousands of times longer than inverting a block-diagonal cofactor matrix, and possibly as 
much as millions of times longer, depending on how many CPUs were available and how parallel 
one could make the inversion process. 

We therefore reach our next conclusion: 

Conclusion 6:  NGS cannot use all covariances in the GVCM, even if they are known. 

Let us therefore consider the second scenario, where we do not know the covariances in the 
GVCM, but still covariances between projected observations will occur if two observations share 
one or more common points. 

In this scenario, the sparsity of 𝑄𝑄𝑦𝑦�  will only be worse than the sparsity of 𝑄𝑄𝑦𝑦 by the addition of 
covariances between observations that share points. This raises a few questions if we are to allow 
these additional non-zero elements in matrix 𝑄𝑄𝑦𝑦�: 

1) Will 𝑄𝑄𝑦𝑦�  remain sparse enough to be inverted (in a reasonable amount of time using 
reasonable resources) for the computation of 𝑃𝑃𝑦𝑦�? 

2) If 𝑃𝑃𝑦𝑦�  is not sparse, as sometimes happens when a sparse matrix is inverted, will this be a 
problem? 

The answer to the first question depends upon the situation. In recent experiments with a national 
geometric adjustment, there were 420,328 instances of two GNSS measured baselines sharing a 
common point (out of 630,492 total GNSS measured baselines). This would yield 420,328 3 × 3 
non-zero off-diagonal blocks in the upper triangular portion of matrix 𝑄𝑄𝑦𝑦� , and an identical 
number in the lower triangular portion. As mentioned earlier, that matrix began with about 
21,600,000 non-zero on-block-diagonal elements. This common-point situation would add 
7,565,904 new non-zero elements, changing the sparsity from 99.9985% to 99.9980%, a trivial 
change in the value of sparsity, but not a trivial change in the complexity of the matrix. This is 
because all new additions are off-diagonal, and this may cause a non-trivial change in the 
computational time needed to invert the matrix. 
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Let us assume for a moment that inversion of this sparse, but not block-diagonal matrix 𝑄𝑄𝑦𝑦�  
remains logistically possible. If we are lucky, matrix 𝑃𝑃𝑦𝑦�  will also be sparse, but this is by no 
means guaranteed. Examples can be found which show how the inverse of a sparse matrix is itself 
sparse, while other examples may be found to show how it can be nearly or even completely full. 
In order to cover all scenarios, we will assume the worst case, that matrix 𝑃𝑃𝑦𝑦�  will be full. 

This brings up the need to answer the second question, above. It turns out that having a full matrix 
𝑃𝑃𝑦𝑦�  does cause a problem. The problem is not due to inverting 𝑃𝑃𝑦𝑦� , as that never happens (and 
besides, we already know its inverse). Rather, it is about the impact of a full 𝑃𝑃𝑦𝑦�  upon the normal 
matrix 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴, since that matrix is inverted.  Consider the matrix computations needed to find a 
least-squares solution within the GMM. As per Snow (2021), but retaining the notation used 
herein, the estimated incremental parameters are: 

̅ ̅

𝝃𝝃� = �𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴�
−1𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝒚𝒚�. (63) ̅ ̅ ̅

 

It is not particularly onerous to perform the multiplication 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴 nor 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝒚𝒚�, especially since 
matrix 𝐴𝐴 is itself sparse. In fact, it is worth recalling that 𝐴𝐴 is extraordinarily sparse in most 
geodetic applications, as each row will not contain more than about six non-zero elements (being 
the coefficients relating observations to the very few parameters of which that observation is a 
function), no matter whether there are thousands or millions of observations or parameters. But 
the sparseness of 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴 is the main question, since that matrix must be inverted. As it turns out, 
the sparseness of 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴is highly dependent upon the sparseness of 𝑃𝑃𝑦𝑦� . Consider the following 
two conditions for any given row/column element of 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴: 

1) If 𝑃𝑃𝑦𝑦�  is diagonal, then off-diagonal element (𝑟𝑟, 𝑐𝑐) of 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴 will be zero unless there is at 
least one observation related to both unknown parameter 𝑟𝑟 and unknown parameter 𝑐𝑐. 

2) If 𝑃𝑃𝑦𝑦�  is full, then off-diagonal element (𝑟𝑟, 𝑐𝑐) of 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴 will be non-zero unless there are no 
observations related to unknown parameter 𝑟𝑟 and also no observations related to unknown 
parameter 𝑐𝑐. 

These rules can easily be checked through some simple linear algebra. Let us consider what they 
mean, and draw some conclusions about the sparsity of 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴.  

First, for the diagonal case of 𝑃𝑃𝑦𝑦� , the sparsity of 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴 will grow quickly as the size of the 
geodetic network grows. To exemplify this, consider the simple case of GNSS measured baselines 
only. If the network consists of, say, only four points, it is a simple matter to collect an 
observation between every possible pair of those points (that is, six observations). This would 
yield a full matrix 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴, e.g., with a sparsity of 0%. However, if the network consists of 
100,000 points, it would be practically impossible to collect an observation connecting every 
possible pair of points (4,999,950,000 observations), and thus the matrix 𝐴𝐴𝑇𝑇𝑃𝑃𝑦𝑦�𝐴𝐴 would be very 
sparse. 
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However, when 𝑃𝑃𝑦𝑦�  is full the sparsity of �̅�𝐴𝑇𝑇𝑃𝑃𝑦𝑦��̅�𝐴 will always be 0%. The only time an element of 
�̅�𝐴𝑇𝑇𝑃𝑃𝑦𝑦��̅�𝐴 could be non-zero is if there existed two unknown parameters which both had zero 
observations relating to them. As one cannot estimate unknown parameters unless at least one 
observation relates to that parameter, such a situation should never arise. 

What this means is that it is risky to construct matrix 𝑄𝑄𝑦𝑦�  into any form besides block-diagonal.  
We can guarantee that if 𝑄𝑄𝑦𝑦�  is not singular and is block-diagonal, that 𝑃𝑃𝑦𝑦�  will also be block-
diagonal with the same distribution of non-zero elements as 𝑄𝑄𝑦𝑦� . But the same cannot be said for a 
sparse, but not block-diagonal 𝑄𝑄𝑦𝑦� . This brings us to another conclusion: 

Conclusion 7:  For large least-squares adjustments, unless it can be guaranteed that 𝑃𝑃𝑦𝑦�  is 
sparse, one should not construct 𝑄𝑄𝑦𝑦�  into any form besides block-diagonal. 

The term “large” is left purposefully vague, since it is dependent upon the amount of 
computational power and memory available. However, even if there were unlimited 
computational resources, there remains one other issue:  most legacy LSA software packages at 
NGS presume matrix 𝑃𝑃𝑦𝑦�  will be diagonal or at least block-diagonal, due to lack of known 
correlations between observations, as reasons mentioned earlier. This is the case for NGS’s 
original ADJUST (Milbert and Kass, 1987), ASTA20, BIGADJUST20 and NETSTAT (Pursell and 
Potterfield, 2008) software packages, and is the case for the new LSA package being developed, 
LASER. Even if we can guarantee that a sparse, but not-block diagonal 𝑄𝑄𝑦𝑦�  would yield a sparse, 
but not-block diagonal 𝑃𝑃𝑦𝑦� , there remains the issue that the LSA software must be prepared to read 
and use such an unusually formed 𝑃𝑃𝑦𝑦�  matrix. As that is not going to immediately be the case at 
NGS, we arrive at a modification of the above conclusion: 

Conclusion 7, revision 1:  For large least-squares adjustments, NGS should not construct 
𝑄𝑄𝑦𝑦�  into any form besides block-diagonal. 

However even this conclusion is not quite satisfactory yet, as it doesn’t specify a way to prevent 
𝑄𝑄𝑦𝑦�  from using blocks so large that they become a computational burden.  

Consider that each on-diagonal block in the cofactor matrix of the original observations, 𝑄𝑄𝑦𝑦, 
contains covariance information between observations at a single observational epoch 
representing a single GNSS session (covariance information being generally unavailable between 
other observation types), but that between any two observational epochs we assume no 
covariances. Consider an example of, say, two observational epochs containing two and three 
GNSS measured baselines respectively. Their on-diagonal blocks in matrix 𝑄𝑄𝑦𝑦 would be 6 × 6 
and 9 × 9 in size, and the off-diagonal 6 × 9  and 9 × 6  blocks would be zeroes. Now consider 
that one or more of the points observed in the first epoch were also observed in the second epoch. 
As these two sets of observations become two sets of projected observations, the 15 × 15 block 
representing these two epochs in 𝑄𝑄𝑦𝑦�  would contain more non-zero elements than just the 6 × 6 
and 9 × 9 on-diagonal blocks, and could be completely full if all points were common between 

 
20 These programs have never been formally documented. 



the epochs. Taken to its logical conclusion, we will end up with a matrix 𝑄𝑄𝑦𝑦�  that could either be 
described as “sparse, but not block-diagonal”, or one that is “block-diagonal, with large blocks 
that are sparse”. Neither case is acceptable for large networks, as mentioned earlier. As such, we 
revise again conclusion 7 as: 

Conclusion 7, revision 2:  For large least-squares adjustments, NGS will only construct 
non-zero elements in 𝑄𝑄𝑦𝑦�  if the corresponding element in 𝑄𝑄𝑦𝑦 is also non-zero. 

The corollary to this, since 𝑄𝑄𝑦𝑦�  is the sum 𝑄𝑄𝑦𝑦 and Σ𝑦𝑦� ,𝑚𝑚 is: 

Conclusion 8:  For large least-squares adjustments, NGS will only construct non-zero 
elements in Σ𝑦𝑦�,𝑚𝑚 if the corresponding element in 𝑄𝑄𝑦𝑦 is also non-zero. 

The only place the above two conclusions will be invoked will be within one GNSS session, with 
multiple GNSS measured baselines processed simultaneously. In that instance, and that instance 
alone, NGS will invoke equations 32 or 36 to compute Σ𝑦𝑦�,𝑚𝑚, for any two GNSS measured 
baselines in a single session that already have a known covariance in matrix 𝑄𝑄𝑦𝑦. In all other cases, 
equations 19, 20 and 21, (for geometric adjustments) and equation 47 (for orthometric 
adjustments) will be used. In this way, NGS may assure that diagonal and/or block-diagonal 
structure of 𝑄𝑄𝑦𝑦�  will match that of 𝑄𝑄𝑦𝑦. 

 

8 Summary 
The multi-epoch least-squares adjustment (ME-LSA) problem was documented, in very general 
terms, in Smith et al. (2023). Key to solving the ME-LSA is the existence of one or more geodetic 
value change models (GVCMs), which will yield a single model of changes to parameter values 
(MCPV), which in its own turn is used to relate observations to projected observations. In (ibid) 
the derivations allowed for the GVCM to be fixed or stochastic. However, the existence of, and 
impact of, covariances within the GVCM was not fully detailed in that paper, nor was the topic of 
correlations arising between projected observations due to the use of a common velocity and/or 
displacement field. The need to properly understand those two topics is what motivated this 
paper. 

Within this paper, three questions were asked and answered:  1) How should we convert GVCM 
covariances, if they exist, into MCPV covariances; 2) How will covariances within the GVCM   
impact the sparsity of the cofactor matrix of the projected observations 𝑄𝑄𝑦𝑦�; and 3) Even without 
covariances in the GVCMs, how will common velocities or displacing events impact the sparsity 
of 𝑄𝑄𝑦𝑦�? 

The first question was answered in equations 18 (geometric) and 46 (orthometric), though in each 
case we have assumed certain covariances will never be available, such as those between 
velocities and displacing events or between ellipsoid height velocities and geoid height velocities. 
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The second question was answered thus:  such covariances will yield a full cofactor matrix of the 
projected observations 𝑄𝑄𝑦𝑦�  which, in large networks, would be impractical, if not impossible, to 
invert for the needed weight matrix of projected observations, 𝑃𝑃𝑦𝑦� .  

The answer to the third question was that such covariances will yield a cofactor matrix of the 
projected observations 𝑄𝑄𝑦𝑦�  which is sparse, but not block-diagonal, which comes with a variety of 
complications. We therefore concluded that an element in matrix 𝑄𝑄𝑦𝑦�  should be non-zero only if 
that same element was also non-zero in the cofactor matrix of the original observations 𝑄𝑄𝑦𝑦. 

NGS will compute reference epoch coordinates (RECs) using the strategies and conclusions 
found in this paper.  This means that, generally speaking, all non-zero off-diagonal blocks in 
matrix Σ𝑦𝑦�,𝑚𝑚 will be ignored, except in a single case:  when two GNSS vectors occur at the same 
epoch, were simultaneously processed, and they share one or more points. Then, and only then, 
will off-diagonal elements be computed and used in the construction of Σ𝑦𝑦�,𝑚𝑚. 
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10 Appendix A:  Dealing with the singularity arising from one baseline 
with two common points 

 

Section 5.5 showed that matrix Σ𝑦𝑦� ,𝑚𝑚 takes a special form when two GNSS measured baselines 
share the same two points. That pattern was seen in (37). That equation is repeated here, for ease 
of reference.  

Σ𝑦𝑦�,𝑚𝑚 =

⎝

⎜
⎛
�𝑎𝑎

2𝐻𝐻 𝑎𝑎𝑎𝑎𝐻𝐻
𝑎𝑎𝑎𝑎𝐻𝐻 𝑎𝑎2𝐻𝐻

� + � �
𝐻𝐻𝑘𝑘 𝐻𝐻𝑘𝑘
𝐻𝐻𝑘𝑘 𝐻𝐻𝑘𝑘

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � �𝐻𝐻𝑘𝑘 0
0 0

�
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

+ � �
0 0
0 𝐻𝐻𝑘𝑘

�
𝑘𝑘

𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟
⎞

 

 

⎜ ⎟  

 

The question we now raise is whether or not a matrix of this form is invertible.  However, note 
that (37) was a special circumstance. There were only two observations and they shared both 
points. What if there were multiple observations, so that the pattern in (37) would remain but only 
represent blocks of a larger matrix Σ𝑦𝑦� ,𝑚𝑚? 

First, we consider solely to the two-observation situation. We will show that each of the four 
types of contributing matrices in (37) are singular. We begin by noticing that sub-matrices 𝐻𝐻 and 
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𝐻𝐻𝑘𝑘 are both positive-definite, and thus invertible. Also, since 𝐻𝐻 is invertible, then so must be any 
non-zero scalar multiple of it. Thus, 𝑎𝑎2𝐻𝐻, 𝑎𝑎𝑎𝑎𝐻𝐻  and 𝑎𝑎2𝐻𝐻 are also all invertible. Going forward, 
we will rely on the following matrix inversion lemma: 

𝐴𝐴 𝐵𝐵Lemma:  If 𝑀𝑀 = � �, and both 𝐴𝐴 and 𝐷𝐷 are square, then 𝑀𝑀 is invertible if and only if 𝐶𝐶 𝐷𝐷
both 𝐷𝐷 and the Schur complement of 𝐷𝐷 are invertible. 

Let us apply this Lemma to each of the four types of matrices seen in (37). 

𝑎𝑎2𝐻𝐻 𝑎𝑎𝑎𝑎𝐻𝐻We begin with � 2 �. We have already shown that 𝑎𝑎2𝐻𝐻 is invertible. We therefore 
𝑎𝑎𝑎𝑎𝐻𝐻 𝑎𝑎 𝐻𝐻

examine the Schur complement of 𝑎𝑎2𝐻𝐻: 
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𝑆𝑆(𝑎𝑎2𝐻𝐻) = (𝑎𝑎2𝐻𝐻) − (𝑎𝑎𝑎𝑎𝐻𝐻)(𝑎𝑎2𝐻𝐻)−1(𝑎𝑎𝑎𝑎𝐻𝐻) = (𝑎𝑎2𝐻𝐻) − (𝑎𝑎𝑎𝑎𝑎𝑎−2𝑎𝑎𝑎𝑎)(𝐻𝐻)(𝐻𝐻)−1(𝐻𝐻)
= (𝑎𝑎2𝐻𝐻) − (𝑎𝑎2𝐻𝐻) = 0 (64) 

 

Being equal to 0, the Schur complement of 𝑎𝑎2𝐻𝐻 is singular, therefore we conclude that any matrix 

of the form �𝑎𝑎
2𝐻𝐻 𝑎𝑎𝑎𝑎𝐻𝐻
𝑎𝑎𝑎𝑎𝐻𝐻 𝑎𝑎2𝐻𝐻

� is singular, even if 𝐻𝐻 is invertible. 

Looking at the second matrix (inside the summation), �𝐻𝐻𝑘𝑘 𝐻𝐻𝑘𝑘
𝐻𝐻𝑘𝑘 𝐻𝐻𝑘𝑘

�, and assuming 𝐻𝐻𝑘𝑘 is invertible, 

then the Schur compliment of 𝐻𝐻𝑘𝑘 is: 

𝑆𝑆(𝐻𝐻𝑘𝑘) = (𝐻𝐻𝑘𝑘) − (𝐻𝐻𝑘𝑘)(𝐻𝐻𝑘𝑘)−1(𝐻𝐻𝑘𝑘) = 𝐻𝐻𝑘𝑘 − 𝐻𝐻𝑘𝑘 = 0 

Thus, we see that any matrix of the form �𝐻𝐻𝑘𝑘 𝐻𝐻𝑘𝑘
𝐻𝐻𝑘𝑘 𝐻𝐻𝑘𝑘

� is singular, even if 𝐻𝐻𝑘𝑘 is invertible. 

The singularity of the third and fourth matrices (also inside summations), �𝐻𝐻𝑘𝑘 0
0 0� and �0 0

0 𝐻𝐻𝑘𝑘
�, 

can be seen by simple inspection:  they both have a block-column (and block-row) full of zeroes, 
a condition that always results in singularity.  

We may therefore conclude that every matrix in the sum in (37) is singular. We now ask whether 
the total matrix is singular.  

We begin by writing (37) in its combined form, as seen in (38). 

 

Σ𝑦𝑦� ,𝑚𝑚 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑎𝑎2𝐻𝐻 + � 𝐻𝐻𝑘𝑘

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � 𝐻𝐻𝑘𝑘
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗)

𝑎𝑎𝑎𝑎𝐻𝐻 + � 𝐻𝐻𝑘𝑘
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

𝑎𝑎𝑎𝑎𝐻𝐻 + � 𝐻𝐻𝑘𝑘
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

𝑎𝑎2𝐻𝐻 + � 𝐻𝐻𝑘𝑘
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � 𝐻𝐻𝑘𝑘
𝑘𝑘

𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (65) 



  
In (65) we know that each 3 × 3 block must be invertible, since each component matrix (𝑎𝑎2𝐻𝐻, 
𝑎𝑎2𝐻𝐻, 𝑎𝑎𝑎𝑎𝐻𝐻 or 𝐻𝐻𝑘𝑘) is positive-definite, and the sum of two or more positive definite matrices 
remains positive definite (and thus invertible). As such, we can attempt to apply the matrix 
inverse lemma from earlier, examining the Schur complement of the bottom right block: 

𝑆𝑆

⎝

⎜⎜
⎛
𝑎𝑎2𝐻𝐻 + � 𝐻𝐻𝑘𝑘

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � 𝐻𝐻𝑘𝑘
𝑘𝑘

𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟⎟
⎞

=

⎝

⎜⎜
⎛
𝑎𝑎2𝐻𝐻 + � 𝐻𝐻𝑘𝑘

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � 𝐻𝐻𝑘𝑘
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∉𝐾𝐾(𝑗𝑗) ⎠

⎟⎟
⎞

−

⎝

⎜⎜
⎛
𝑎𝑎𝑎𝑎𝐻𝐻 + � 𝐻𝐻𝑘𝑘

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟⎟
⎞

⎝

⎜⎜
⎛
𝑎𝑎2𝐻𝐻 + � 𝐻𝐻𝑘𝑘

𝑘𝑘
𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗)

+ � 𝐻𝐻𝑘𝑘
𝑘𝑘

𝑘𝑘∉𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟⎟
⎞

−1

⎝

⎜⎜
⎛
𝑎𝑎𝑎𝑎𝐻𝐻

+ � 𝐻𝐻𝑘𝑘
𝑘𝑘

𝑘𝑘∈𝐾𝐾(𝑖𝑖)
𝑘𝑘∈𝐾𝐾(𝑗𝑗) ⎠

⎟⎟
⎞

 

(66) 

 

This is where things could get complicated. To avoid that, let us first draw an immediate 
conclusion:  if there are no displacements which contribute to Σ𝑦𝑦�,𝑚𝑚, then (66) reduces to (64) and 
we may conclude that, in the absence of displacements, Σ𝑦𝑦�,𝑚𝑚 is always singular for two GNSS 
measured baselines that share the same endpoints.21 

Rather than attempting to prove under which circumstances a larger Σ𝑦𝑦� ,𝑚𝑚 might be singular (say 
with certain combinations of point-sharing observations), it is enough to have proven that it is 
sometimes singular, even in this very small, yet possible example. However, a number of simple 

𝑎𝑎2𝐻𝐻 𝑥𝑥 𝑎𝑎𝑎𝑎𝐻𝐻
examples of matrices of the form � 𝑥𝑥 𝑦𝑦 𝑧𝑧 � were constructed and tested, where x, y and z 

𝑎𝑎𝑎𝑎𝐻𝐻 𝑧𝑧 𝑎𝑎2𝐻𝐻
were blocks of the appropriate size, and each constructed matrix was either (a) singular or (b) else 

 
21 Though a similar conclusion could be made by only allowing displacements that impact both 𝑖𝑖 and 𝑗𝑗, and no 
velocities, such a case is not relevant, since the GVCM (IFDM2022) is, for now, a model consisting of velocities that 
always impact all projected observations, and displacements that might impact some projected observations. 
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their inverse had at least one eigenvalue equal to zero. Knowing that Σ𝑦𝑦� ,𝑚𝑚 (whether for two 
observations or more) is occasionally singular is reason enough to completely avoid any attempt 
to invert the matrix when modeling the multi-epoch least-squares adjustment problem.  

Thus, as mentioned in Smith et al. (2023), the occasional, though possibly rare, singular nature of 
Σ𝑦𝑦�,𝑚𝑚 was kept in mind, and a careful reading of that paper will show that, while inverses of both 
Σ𝑦𝑦 and Σ𝑦𝑦�  are used in the ME-LSA problem, the inverse of Σ𝑦𝑦� ,𝑚𝑚 is never used. 
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