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Computational Procedures for the
Determination of a Simple Layer Model

of the Geopotential from Doppler Observations

Bertold U. Witte

ABSTRACT. The geopotential of the earth is rep-

resented by the potential of a simple layer dis-

tributed over the earth's surface. Density val-

ues of this layer for 104 surface elements have

been determined from Doppler observations. Com-

putational procedures using this method are pre-

sented here. Numerical integration is employed

to compute satellite orbits with time sequenced

Doppler observations given as input. The geo-

potential forces acting upon the orbit are de-

scribed as well as the attraction of the sun and

moon, solar radiation pressure, and air drag. The

results of the orbit fits are combined in an ad-

justment to determine the density values of the

104 surface elements.



1 . Introduction

The determination of the earth's gravity field from

Doppler observations using a simple layer model follows an

approach outlined by Koch [1968]. The first results ob-

tained by this method, from optical satellite observations,

have been published by Koch and Morrison [19 70]. These

results showed good agreement with existing solutions , so

this approach was applied to other available data.

Many stations of the worldwide satellite triangulation

network [Schmid, 1969] are close to the Doppler tracking

sites of the U. S. Navy Doppler Tracking Network (TRANET)

[Anderle 1965] and connected by local survey to the BC-4

stations of the worldwide triangulation network. In order

to combine the results of both systems the Doppler observa-

tions are as a first step processed by means of the simple

layer potential. Results are given by Koch and Witte

[19 70 ], whereas the computational procedures are described

here .

2 . Observational Equations

Let r be the vector of the apparent position of the

satellite and

r = [x,y,z] (2-1)

where x, y, z are the geocentric rectangular coordinates of



the satellite; the origin is the center of mass of the earth;

the z-axis is identical to the instantaneous axis of the

earth, and the x-axis points at an angle east of the true

vernal equinox which equals the precession and nutation in

right ascension since 1950. Since the orbit computations

extend over arcs not longer than 7 days this coordinate system

is a good approximation to an inertial system.

The rectangular coordinates of the station vector

(u ,v ,w ) are given in a geocentric coordinate system whose
o o o

orientation coincides with the worldwide satellite triangula-

tion network; that is, the w-axis points towards the mean

pole 1900-1905 and the u-axis towards the intersection of

the Greenwich meridian (i.e. the zero meridian of the

Bureau International de l'Heure UTl-System) with the equator.

By m<5ans of the polar motion as determined by the

Bureau de l'Heure and the sidereal angle as defined by

the Smithsonian Institution [1966] the station coordinates

are rotated into the x,y,z system.

x

y, = s

u

v

w

S =

cos9 -sinB -a cos6 - b sin
sin6 cos9 -a sin6 + b cos

a -b 1

(2-2)



where a, b are the components of the polar motion, is the

sidereal angle, a simple linear expression of UT1 , or

= 0.
rev 277987616 + 1 .

rev
0027 3781191 (MJD-32 28 2 . ) ,

MJD is the Modified Julian Day Number as defined by the

Smithsonian Institution.

The vector r of the apparent position at a time t is

a function of the vector e of the orbital elements at the

epoch t , the vector x of the parameters of the gravity

field, the vector of the station coordinates r , the
s

radiation pressure parameter K
R

over the observation interval

and the drag parameter CL over the same time interval.

r = ?(e(t ),x, ?
s

, K
R
(t), C

D (t)) (2-3)

For the formation of the observation equations the

following expression is used, which is derived from the

Doppler equation.
f, ,

f = fK
- — -Sr ( |? - ? | ) + 6f . (2-4)

b c dt ' s ' tro

Here f is the calculated frequency, f, the base frequency,

c the velocity of light, which is 299,792,500 m/sec [Fricke

et al. 1965], -rr-lr - r ! the rate of change of the distance' dt ' s ' &

between the satellite and the observation station, and <$f

the tropospheric refraction correction. A detailed de-

scription of the model used for tropospheric refraction is

given by Witte [1970], but a condensed version is included

as chapter 4.



The observed Doppler frequency f is obtained by comparing

the incoming satellite signal with a reference signal generated

from a local precision oscillator and measuring the time required

to count a preset number of beats. In order to get the calculated

frequency f(eq (2-1)) the base frequency f , , which is the es-

timated satellite oscillator frequency, is used. The assumed

value of f, may contain an unknown systematic error which in

this report is considered constant over one pass. The observed

frequencies are influenced by this systematic error, which is

introduced into the adjustment as a bias parameter.

r. ■*■ ■*■ "*■
Approximate values for e, x-> v •> K„ , C~ are available so

that we obtain by means of a Taylor series expansion the follow-

ing observation equation, where a bias parameter b for the

frequency offset of every base frequency for each pass is added

Af. = I (|£) Ae v +

1
E

4

(||) A X , + I l^-) Ar
1 k=l V3e7 ik k°

£ = l V ^i£ l
m3l V8r

s
;

.
s

mq
lmq ^

i o i

i denotes here the ith observation
j denotes here the jth pass
q denotes here the qth station (total of n stations)
k denotes here the kth orbital element
I denotes here the ilth surface density element
m denotes here the mth coordinate of r

g
o denotes here the oth orbit
Af = observed frequency f minus calculated frequency f.

3 . Determination of Partial Derivatives of the Doppler-Equation

3.1 Evaluation of Derivatives of Doppler Frequency With

Respect to Station Coordinates.
8 fFor the partial derivative ~ using equation (2-4)

sm



9f b 3(|r - r R J
*

) (3-D

Here

9r c 8r
sm sm

d( r - r )
-> -*■ 1 • s '

r - r
s ' dt

and the slant range is

I? - r I = p = /(x - x )
2

+ (y - y )
2

+ (z - z )
2 (3-2)1 s ' s J J s s

The differentiation of the slant range with respect to the

time yields

d/Cx - x )
2

+ (y - y )
2 + (z - z )

2

s J J s s

dt

rtx dv dz dx 9
dy q dz

c=

2/x-x )
2

+ (y-y )
2

+ (z-z )
2

s J -'s s

(r - r ) • (r - r ,

s s ^_ (3-3)
l"*" ■*" lr - r1 s '

Introducing p as a unit vector the change in the slant

range yields with equation (3-3) the following relation

r - r I" = p-(r - r ) (3-4)
s ' s



From this we get for equation (3-1)

3f
3r

sm

3p

3r
sm

,1" -t V(r - r ) - p

3r

3r
sm

where
3r 3( r -

sp-
ar

sm

3r
sm

(? -
3r

? )
s

sm

r -

3r

3p
3r

sm

3r
sm r - r

3r

3r
• c?

sm

? )
s

C? - r )
s

r - r
(3-5)

with

3?

3x

3r c
3?

3z

and

3r
c

3x~
-uy fL

3? c (OX ' 3r
<

3z~

where co is the angular velocity of the earth.

Finally we get

3f
3r

sm

3r
_

3?

f, r/ 3r
D

C

sm .- +

3r
sm

• (r - r )
s

(r - r
s

)

L r - r r - r -).Cr
- r )-p. ^^J

sm

(3-6)



3.2 Evaluation of Derivatives of Doppler Frequency with

Respect to Parameters Influencing the Orbit.

The derivatives with respect to the parameters e , Xo» ^

and C , as used in equation (2-5), are now derived. We set

3f
3p

K m
, 3X 3p= 1 m

r

3X 3 a . 3X
m „ 3f __m

m=l 3X
3p

K
(3-7)

K
m

where p„ stands for the above mentioned parameters

e ^> Xn? Kt, and C~; and X for the coordinates x, y, z of the
K x, R D m

' J

apparent position of the satellite. The partial derivatives
3X 3 X
~ and g m are computed with the help of variational equations
3p

K
3p

K
* M

(section 7 ) .

The derivation of the Doppler frequency in equation (3-7)

with respect to the apparent position of the satellite leads to

r D3f
3X

f 3(|?

m
3X

(3-8)
m

Applying (3-4)

3f
f, 3(p • (r - r ) )

b s

3X
m

3X
m

(3-9)

3f
3X

m
■-*(b ( 3p ft t x .

. Cr - r ) +
3r

3X
m

w
m

Analogous to equation (3-5) and with 3r
3X

we get

3f
3X

m

m

9?_ 3?_. (?-?)(?- r )
3X ax V

s
; ^r

s
;

m m

(3-10)

r - r r - r
(r - r )

s
(3-11)



The differentiation of the Doppler frequency with respect to

the velocity X , where X stands for the coordinates x, y,zJ m m

leads to

3f
9X m

f^ d ( I r - r I
*

)
b ' s '

m

f. 9(p • (? - r ))
D S

9X
m

8?

ax

(3-12)

(3-13)

(3-14)
m

dr 9r
For the components of the derivative -^— and ~— we use

m 9X
m

9r
8x

3r
' 8y

-*-

1
8r
9 z

(3-15)

and

3x

8r

97

8r
31

(3-16)

3.3 Evaluation of the Derivative for the Bias Parameter

From equation (2-4) we get for the partial derivative of the

Doppler frequency with respect to the base frequency f.

3f 1 ,■> -*■
ttp- = 1 - — r - rdf, c ' s

(3-17)

where |r - r | is obtained from equation (3-3)
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4 . Tropospheric Refraction Model

For the computation of the correction term <5f in

equation (2-4) a tropospheric refraction model derived by

the Naval Weapons Laboratory is used. It is preferred to

models developed by Hopfield [1963 and 1969] because the mean

error of unit weight resulting from the use of this formula,

which will be derived below, is somewhat less than that ob-

tained with the Hopfield models [Witte 1971D

The range error As caused by the tropospheric refraction

may be described by the following equation

As = Jn ds - / ds (4-1)
tro g

where n is the index of refraction for radio waves and varies

along the signal path. The first integral is taken along the

signal path through the troposphere and the second along the

geometric path. If both ways are set equal, only an error

of second order occurs

As = / (n-1) ds (4-2)
g

The contribution of the tropospheric refraction to the

Doppler shift of the signal received from a passing satellite

is given by (compare also Hopfield 1963)

= _ £b d(As_). (l+ _ 3)tro c dt
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In equation (4-3) As is differentiated with respect to the

time t. For the approximation of a flat earth we get with

equation (4-2) and (4-3)

H
f J(n-l) dh

5f = - — — (°tro c dt cos Z
) (4-4)

The angle Z is the zenith distance and H the height of the

satellite above the earth. After integration and differentia-

tion we get for (4-4)
f

<Sftro
_b (

sin Z
z H (

-
_ 1))

C cos 2
Z

(4-5)

where n is the mean refractive index and Z the change of the

zenith distance with time. In order to solve equation (.4-5)

the following relations are used Csee also fig. 1)

1) The component of velocity along the direction of

the unit vector q, perpendicular to the vector

r - r = p, and in the plane of p and H, is q«p

2) The component of velocity along q can also be

expressed in a spherical coordinate system centered

at the observer as r - r j Z or pZ. Thusi s i

pZ = p.q

Figure 1. Diagram
to illustrate eq-(4-6)

(4-6)

orbit
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The unit vector q is given by the following relation

>x(pxH)

px(pxH)
q = P XrpXH)

(4-7)

where

|px(p xH) |
= sin Z (4-8)

->-

p in equation (4-6) can be rewritten as

-> -f -f
P = r - r (4-9)

and

p = A (u - io)

Inserting these expressions (4-7), (4-8), (4-9), (4-10) in

equation (4-6) leads to

->-

cos Z s sin Z

and substituting px(pxH) = (p-H)p - (p-p)H = p cos Z - H

into (4-11), equation (4-5) becomes

f
Sf. = - -£ (r - r )-(p L) (n - 1) (4-12)tro c s H cos Z

We replace (n - 1) by

., tro AN, - N . ,

n - 1 = -4- / (n-l)dh * —^- ^^ (4-13)
H h . . (r - r )-H1 ' stat s
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h , . = height of stationstat &

h^ = height of tropospheretro to r
AN = total change in refractive index from sea level

|! ' ;"'
up to the top of the troposphere scaled to height.

AN = change in refractive index from sea level up to
the height of the station scaled to height.

AN , . is determined by means of an exponential model
s ~ca~c

similar to that described by [Bean et. al . 1966].
C

AN . . = C (l-e" C lh stat) + — (4-14)stat ° cos 2
Z

C
2In order to get flat observations corrected, the term

cos 2
Z

is added. Observations with Z>85° are deleted, because

the computed corrections indicate that for this data the model

used is overcorrecting.

Combining equation (4-13) and (4-12) leads to the results

given in the following expression

f. ( _ r-r \ AN^_
- AN . .

of. = - — 1 r - r - —
[ = (4-15)tro c ' s '

!■*■ i r, [ p cos Z
I r cos Z J1 s '

For the constants C , C, , C_ and AN, the following numerical
o 1 2 tro 6

values, which are used by the Naval Weapons Laboratory (NWL),

have shown good results

C = 0.0025525
o

C
1

= 0.1238

C
2

= 0.657X10" 5

AN^ = 0.0 02 3tro

These numbers were used for the computation of the tropospheric

correction model as given by equation (4-15).

"Private communication from R. J. Anderle [1970].
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5 . Representation of the Geopotential

The gravitational potential W of the earth is divided

into the normal potential U, which is taken as known, and

the disturbing potential T, which will be determined by the

approach used by Koch [1968],

W = U + T (5-1)

with
7 n

U = »ir 1 + E E C-)
n

P (sine})) •
( C cos mX

n n r nm \ nm
n=2 m=0

+ S sin mX
nm

+ i oo
2 r 2 cos 2

<
f> (5-2)

r,

<
J> , A are spherical coordinates in an earth-fixed coordinate

system, k is the gravitational constant, M the mass of the

earth, a the mean equatorial radius, P the fully normalized' H ' nm J
associated Legendre function of degree m and order n, and

co the angular velocity of the earth. C and S are fully
nm nm

normalized harmonic coefficients. Their values are taken

from the solution of Anderle [1965]. The coefficients C2 1

and S2,i have been deleted because of the chosen coordinate

system, defined above. The centrifugal term in (5-2) is omitted

for points outside the earth.

The disturbing potential in equation (5-1) is represented

as the potential of a simple layer with the density x C <
|) , X )
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distributed over the surface E of the earth

T -_ jj Xiiiil dE (5-3)
E

S

s being the distance between the point at which T is com-

puted and a variable point on E. To evaluate this integral,

the earth's surface is divided into elements on which the

density of the simple layer is assumed to be constant so that

the integral in (5-3) can be replaced by a summation. 104

surface elements AE, are chosen here. These are bordered by

parallels and meridians and approximate the size of a 20° x 20

area at the equator.

104 AT
T = I Xo // ~ (5-4)

£=1 AE
£

I

The integral over the surface elements AE
p

in (5-4) is

computed numerically by splitting AE p into 4 subdivisions

and assuming the kernel of the integral computed for the

midpoint of the subdivision to be constant over the subdivision

To compute the distance s between a satellite and the midpoint

of the subdivision of AE. it is necessary to determine the

coordinates of these midpoints. For this purpose the equi-

potential surface U(eq 5-2) is defined as an ellipsoid U .

U is computed from the equation which holds for the surface
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of a level ellipsoid

kMU,
f 2 ,2,1/2
(a - b )

arc tan (a
2 - b

2
)
1/2

+ | co
2 a 2 (5-5)

All the parameters of (5-5) are available from (5-2)

except b. We obtain b from b = a(l-f), and f from the

value of C20 in (5-2) in the following manner. The relation

between C 2 o and f is given by [Heiskanen and Moritz 1967,

p. 110].

C20 = - J2 / *$

C5-6)t 1 e* 2J 2 ~-
3

1+e '2
,

_2_ me
'

15 q D

with

and

1
q Q

=
2

1 + —rsrj arc "t an e
■1

m =

2 2
(0 a

kM/l+e' 2

' 2 - 1"
(1-f) 2

- 1

e' is obtained from (5-6) as a function of J 2 by the

Newton-Raphson method of successive approximation. For

dJ :

de
this, the derivative -3

—f is needed

dJ
2 1 / > „'K '), ■/<

de'
"

3
l

2e' 3

nrv2
2

T 2

15 qoAi + e .2 Cl + e' 34

)^" 45 IT? 7
"2^ q

kMv/(1 + e ,2)3
m e' 2

a)
2 a 3

me

2q, ((-i^)r^
6 4. 1 x 3

pr-3- arc tan e ? + p-jr (5-7)
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Now all parameters for the computation of U ( eq (5-5)) are

known and therefore the radius vector of the reference sur-

face can be computed in setting U = U. Solving equation (5-2)

for r we get

r =
kM

7 n

1 + Z Z (-) n
P (sin*) x

_ _ n r nm T ■*■
n=2 m=0

(C cos mX + S sin mX)
nm nm

co
2 r 2 cos 2

(j
)

2U.
(5-8)

Equation (5-8) is determined for the earth-fixed co-

ordinates of each midpoint by direct iteration for the reference

surface, where the initial value for r is obtained for a given

latitude (J
) on an ellipsoid of revolution with semi-axes a and b.

To these values of the radius vector the topographic heights

above sea level, published by Kaula et al . [1966], were added.

Employing the given values <
f> , X of the midpoints, we can compute

the corresponding u, v, w coordinates, and then the x, y, z
coordinates of the midpoints by means of the rotation matrix (2-2)

6 . Partial Derivatives of the Potential W

The derivatives of the force acting upon the satellite

with respect to the position of the satellite are needed in

the solution of the variational equations (Sec. 7) for the

orbit computation. These derivatives are

8
2

W 3
2

W 8
2

W 8
2

W 8
2

W

3x 2 ' 3x3y ' 3x3z ' By 7 ' 8y3z

, and 3
2

W



The gradient of the potential U is used for the computation

of the reference orbit. The approximate density values are

set equal to zero. Therefore the gradient of the potential

T will not be computed here.

6.1 Gradient of the Potential U

Using the chain rule method for the partial derivatives

of U, where U = U(r, cf>jA), we find

3x 3r 3x 8cj) 3x 3X 3x (6-1)

M £uto + 3U8£3U8x
9y

'
8r 8y 8(f) 3y 9X 8y

(6-2)

m min + mii + MiA
3z

'
3r 3z 3<J> 3z 3X 3z

(6-3)

The differentiation of equation (5-2) with respect to r yields

3U
3r

kM r" "
r^L

7 n
1 + Z Z (n+1) (-) P (sin<J>) x

o n r nm
n=2 m=0

(C cos mX + S sin mX )
nm nm

+ w
2 r cos 2

cJ
> (6-4)

d P (sincf>)
With nm

d(J>

= -m tan d
> P (sin d>) + P ,, (sin <j>)Y nm

Y n,m+l
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we obtain

1 r\

|x = - — [ E 2 C-) (m tan cj
> P (sin cf>)

- P ... (sin <(>))^ r Ln =2 m=0
r nm n > m+1

(C cos mX + S sin mX ) - w

2 r 2 sin d
> cos d
> (6-5)

nm nm J

and

£E = - — [ E S m (-)
n

P (sin cf>)(C sin mA - S cos mX)
8X r o „ r nm T

nm nm JLn=2 m=0

(6-6)

As mentioned earlier the centrifugal terms in C6-4) and

(6-5)' should be omitted for points outside the earth.

The other partial derivatives — equations C6-1) - C6-3)--are

found with r = A 2 +y 2

+ z 2
, tan <
£ = . = , and

/x 2

+ y 2

tan X = J

8x
" '

r* 8y
" r s 3z

" r ;
M xz 8jb_ =

-yz 8_£ . /x 2

+ y 2 ,. .

3 *

" "
Wx 2 J y 2

' K "

Wx 2

+ y 2

' 8z

'

r * C ^

|4 = —^ , |i = ^ , |i = (6-9)3x x 2

+ y 2 9y
x 2

+ y 2 8z

6.2 Second Derivatives of the Potential U

The second derivatives with respect to x, y z of the
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potential U yield (using equations (6-1) - (6-3)) the

following expressions

3
2

U 3
2

U /9rV
9x- 3r 2

+ 2

3x
3

Z
U /8(f)

3<}>
3x

8_nj

3A
2 3x

3
2

U 3r 3_£ +
3

2
U 3r 3A_ +

3
2

U
_3J>_ 3

_A

3r • 3<j) 3x 3x 3r« 3 A 3x 3x 3<J> • 3 A 3x 3x

+ 1H ilz + 1M ill +

8U ilA
3r - 23x

3 9 rs
3x

3 A _
3x

C6-10)

3
2

U 3
. 2 U 3r 3r 3^U 3^ 3^ 3JU 3jV_ _3J.

3x3y j, 2 3x 3y 3c})

2 3x 3y
'

-.2 3x 3y

3
2 U

3r3(J>

3
2

U

3A3c})

/3r ii +

3r 3£\ +

3
2 U /3r _3_A +

3r 3_A\
\3x 3y 3y 3x/ 3r3A\Jx 3y

'

3y 3x /

/ 3A_ ii + il d±\

\ 3x 3y 3y 3x /
+

3U 3
2 r

+

3U 3
2

(j
)

+ 3U 3
2

A

3r 3x3y 3$ 3x3y 3A 3x3y (6-11)

3
2

U . 3^U 3r 3r _3_^U 3£ 3£ + _3_fU 3_A 3
_A

3x3z
3r 2 3x 3z

3<1)

2 3x 3z
3A

2 3x 3z

3
2 U

3r3(})

3
2 U

3A3(j)

/ 3r 2i +

9r 3 $ \ 3
2 U /3r W , 3r 3_A \

^ 3x 3z 3z 3x / 3r3A^3x 3z 3z 3x )

( 3_A d± . _3A Z±\
\3x 3z 3z 3x/

, 3U 3
2 r . 3U 3
2

4
> , 3U 3 2

A f 6 -12)
3r "SxTz 3^ ?x3~z "3~X "3~xTz

3
2

U

3y :

3
2

U / 3r X2

3r-
3y

3
2 U

3<})

2

ii
3y

3
2

U

3A

3A^

2

3y,

+

9 2u lz ii +

9
2 u 9r li +

32u 2* ii
3r3(J) 3y 3y 3r3A 3y 3y 3X3$ 3y 3y
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+ £U lf£ + £U 3J^_ +
3U 3J\X" " '

H 3y
23r

3y 2 3X
3y 2

C6-13)

3
2

U _ ^U 3r 3r SJ^U 3f 3| + S^U 3X. 3X

3y3z
"

3r 2 3y 3z 2 3y 3z
3X

2 3y 3z

^!£_ f i£ i£ +
9r 3^\ 3

2
U / 3r 3A , 3r 3X\

3r3(J> \3y 3z 9z 3y / 3r3X \ 3y 3z 3z 3yJ

3
2

U ( IX d± . d\ d±\ i 3U 3
2r

+
3U 3

2

({
)

+

3U 3
2

X (6-14)
9A9<j> \ 3y 3z 3z 3yJ 3r 3y3z 3$ 3y3z 3X 3y3z

3
Z U 3
2 U

3z

; 3r'

+ 2

3
2

U 3r 3

3r3<£ 3z 3ẑ

+ 2

3
2

U 3r 3X~ ^ + 2
3r3X 3z 3z

3
2

U

3
_X 3^

3X3(b 3z 3z

3U 3
2r 3U 3^1 3JJ 3
2

X

3r 3z 2 3d) . 2

'

3X _ 2T 3z 3z
(6-15)

Now the partial derivatives in equations (6-10) - (6-15)

are derived. With equation (6-4) we find

3
2 U , 2kM

3r 2 r 3

1

n

1 -: ;, Z (n + l)(n+2) (-)" P (sin 4)

2 - r nm r
n=2 m=0

(C cos mX + S sin mX )

nm nm
(6-16)

I^U = _ kM
(n+1) (

a

5 ( p
- (sin 4,)

3r3d; 2 o -n r n,m+lT r Ln= 2 m=0

m tan d
> P (sin 6) )T nm r

(C cos mX + S sin mX )

nm nm
(6-17)
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9r9X
9

2 U vm r 7 n
^

n -- SI E E (n + 1) (|) P^ (sin<f))(-C sin mA
r 2 ln=2 m=0

r nm nm

+ S cos mX)
nm ]

(6-18)

8
Z U __ kM

,,2 " r
r 7 n n

_n=2 m=0 \ cos cf
>

E E (-)"( - - -- P (sin cj)) + m tan <
j>

(P
m+1

(sin (J))
- m tan <

f> P (sin <j>)) + (m+1) tan <
J>

P« mil ( sin <f>)
" ^ xo ^ sin <J>))CC cos mXn,m+l T n,m+2 r

J nm

+ S sin mX)
nm

(6-19)

9
2

U

9<J)9X

kM
r

r 7 n n

E Em ( — ) (m tan d
> P (sin <J>)

o n 2? nm v
_n=2 m=0

- P ,, (sin d)))(-C sin mX + S cos mX)n,m+l r nm nm
(6-20)

3
2

U

9X 2

kM
r

"

7 n n

E E m

2 (§) P_ (sin <|>)(C,._
-n=2 m=0

r nm nm

+ S sin mX )

nm ]

(6-21)

And for the other terms in equations (6-10) - (6-15) we get

9
2r _ 1 x 2

. 9
2 r _ xy . 9
2r _ xz

„ 2 r 3

' 9x9y 3

' 9x9z 3

9x v J r r
(6-22)

9

9x 2 r 2 /x 2

+y

= /_ 1 + 2xi + _xf_\
+v 2 V r 2 x 2 +v 2 '

r>z x z +y
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9
2

(j
) _ xyz / ,2

+

1 \ 8
2

(J
) _ -x

+

2xz 2

(6-23)3x3y r 2/x 2 +y

2 \ T 2 x 2 +y 2)

' 9X8Z r 2/x 2 +y 2 T » /^T^T

^ - 2 ^
; *ii =

y 2 -* 2

; ^fA = (6 _ 24 )

9x 2 (x 2
+ y 2
)

2 dxdy
(x 2

+ y 2
)

2 9x8z

9
2 r 1 y^ 9
2r yz

^2 ^ 3

' 9y9z 39y r J r

9
2

4
>

:

z / 2y 2

_
.

+ y 2

(6-25)

2 r 2 /?= /2Yl _ 1 + _r_\

+ v 2 V r 2 x 2 +v 2 /8y^ r"/x"+y" V r 2 x z
+y

9
2

<
J> . _ Y

+

2yz 2

8y3z r 2 /x 2

+y

2 r*^ 1^ (6-26)

ill ■ 2xy__ . _^A = Q (6 _ 27)
^2 / 2 i 2\2 9y 9 z

9y (x +y )

9
2r 1 _ zj_ 9j^_ _ 2/x 2

+ y 2 z 9
2

A _ (6-28)
9z 2 r r 3

'

9z 2 r" 8z 2

This method of computing the partials of U was found by Gulick

[1970] to be the most efficient compared to two other alternatives.

Subroutines which compute these partials based on this and

other methods may be found in this reference along with a de-

tailed discussion of comparative efficiencies and a complete

derivation of expressions given in equations (6-10) - (6-28).
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7 , Variational Equations

The position of a satellite can be described as a

function of the parameters of the earth's gravity field plus

non-conservative forces F
c

r = VW(r,x,t) + F (r,r) (7-1)

For the time being the non-conservative forces F will not& c

be considered here so that we have

r = VW(r,x,t) (7-2)

For the solution of this differential equation a numerical

integration procedure, as described in the next section is

needed. In order to do an orbit adjustment, additional

equations, called variational equations, are necessary for
3X 9X

the determination of the partial derivatives ~ and ~
9p

k
8p

K
given in equation (3-7). To make the notation more concise,

*
8t

= (?,?) and r
0st

= Cr 0J ? ,we form state vectors r__,_ = (r,r) and r = (r ,r ) . r

consists of the quantities X , X . r n constitutes a subsetn mm °st
of the parameters p, . Here r is the initial position vector

? ... -> -f
and r the vector of the initial velocity; r and r are

equivalent to the six orbital elements represented by e, in

equation (2-5). Using the state vector notation we get for eq (7-2)

?st
= (r\VW) = S

8
(r8t ,x»t) (7-3)
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The position of a satellite is now given as a solution to

the differential equation (7-3) with the initial state

vector as boundary condition. If we form the time derivative

of the partial of r . with respect to the parameters p.r St -^
K

we get J ,

d [~5l
V% 1 ^st (7-4)

dt
"

.-*•

The numerical integration procedure will be applied to (7-4)

in order to obtain the required partial derivatives. First

we will determine the above mentioned time derivative of

the partial of r with respect to the initial state vector

and get, with eq (7-3),

V3r°2i/=

8p
»t 3rst ,

3*st 3x ,

3*st at
dt a

+ -HJ + --* 9t3r . 9r„ , 3y 9r . dr ,st °st A °st °st

Note that the last two terms are zero, because x an ^ t

do not depend on the initial state vector. So we finally

get

/
9?st \

\ o st /_ =
st st (y _ 5)dt
St °St3r_ 9r ,
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Using the rectangular coordinate system x, y, z, defined in

section 2, we get in matrix notation for the first factor

in eq (7-5)

9r st
9r st

9x 9x 9x 9x 9x 9x
9x 9y 9z 9x 9y 9z

9?
9x

9y
9y

9y
9z

9y
9x

9y
9y

9y
9z

9z 9z 9z 9z 9z 9z
9x 9y 9z 9x 9y 9z

9x 9x 9x 95^ 9x 9x
9x 9y 9z 9x 9y 9z

3£
9x

9y"

9y 9z
12
9x

9£
9y

9£
9z

9z 9z 9z 9z 9z 9z
9x 9y 9z 9x 9y 9z

(7-6)

If we partition this matrix, we will get the following

structure

9r st
9rst

9
2

W
9X

m

9X. 9X. ; ^

(7-7)

where is a 3^3 zero matrix and I is a 3x3 identity matrix
-*■ "*■

(since r and r are the independent parameters of the differential

equation (7- 3)), the lower left hand portion arises from

differentiation of (7-5) with 9
2

W as a shorthand notation
9X.9X.i ]
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for this part, and the lower right hand portion is if drag

is not present or is neglected; terms from drag would occur

in the entire lower half of the matrix if drag were present.

If a simple radiation pressure model is included, a Dirac delta

function term occurs in the lower left portion of the matrix;

for a very complex model with re-radiation an impulselike

component would still appear.

In setting up the variational equations for the solution

of x an< 3 r , the nonconservative forces F are not being
st -" <^

9X
applied. Hence, we set the term ^ £n equation (7-7)9X

m

to zero, and get instead of (7-7)
-

3r st
I

3? .st 9
2

W

9X.9X.

(7-8)

The differentiation of the state vector r . with respect tost r

the initial state vector r yields
st

9x

9x,

dx ax 9x

9y< 9z, dx,

dx

9y c

9x
9x 9y Q 9z 9x 3y c 9z

9y_
9x

9y
ay

9y
9z

9y
9x

9y
3y Q

9y
9z

3? tst
9z
dx

9z
9y

9z
9z

9z
ax

9z
3y c

9z
9z

st
dx
9x

dx
3y Q

9x
9z

9x
9x

9x
8y G

9x
9z

9y
9x

3y
9y D

9y
9z

3y
3x

9y
3y

3y
3z

9z d± 9z 9z 9z 9z
9z,

(7-9)
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For the start of the integration procedure this matrix has

the following structure

3r st
3?,

st

(7-10)

For the time change of the derivatives of the state vector r

with respect to x we get, analogous to (7-5),
st

3r st

X

dt
^st 9? st

3?

3r st

st ax ax
(7-11)

with

3? st

3X

3x

3X

3x

9-Xi 3X2

3y
3Xi

3y
3X2

3z 3z

3Xi 3X2

3x 3x

3Xi 3X2

By

3Xi
3y
3X2

3z dz
3X2

3x
3Xi 04

3Xi 04

3z

3Xi o k

3x
3X 10 4

*±
3Xi 04

3z

3Xi 04

(7-12)
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3r st
w

o

3x

3Xi

3y
3Xi

3z
3Xi

. . . .

. . . .

. . . .

3x

3X2
' *

3x

3Xi ot

ay
3X2

' •
3'y

3Xi o 4

3z 9z

3X 3X 1 h

(7-13)

3r
and

st supplied by (7-8 )

3r st 3r
In (7-11), st

3X

represents the explicit instantaneous de-

pendence of velocity and acceleration on the gravity field. Since

instantaneous velocity is an independent variable, representing,

with the instantaneous, position the instantaneous state of the

satellite, the top half of (7-13) is null. On the other hand,

3r st

3X

represents the dependence of the state vector (position and

velocity) on the gravity field, considering the state vector as

obtained by integrating the accleration over time; hence the terms

of (7-12) are not necessarily zero, although the lower half of

(7-12) literally appears to be the same as the upper half of (7-13).

Initial conditions for the integration are st i = I (7-14)
o L -i

For the elements of matrix (7-13) we find 3X,

3x

3X £

3y

3X

3z
3X

c3?)
3X 3*

•I

3 cli)
3x 3y

■i

(P)
3X^

3z

(7-15)

(7-16)

(7-17)
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where T is the disturbing potential as defined in eq. (5-3).

Using the distance s. = Ax -
x^)

2
+ (y - yJ 2

+ (z - z.) 2

between the satellite and the midpoint of the £th surface

element we get for the partial derivatives of T with respect

to x, y, z from eq (5-4)
104

S

£=1 AE,|£ = I X, !! " ~^dE (7-18)

9T

'I
104

*~ x
z

dE
s 3

y-y*
dE

s 3

Z " z
£

dE
s 3

3v
S X £ // - -5T* dE C7-19)

dy
£ = 1

*
AE

£

~ T 104

f^ S Xo // " "TT1 dE (7-20)
Z

£=1
*

AE
£

For the equations (7-15) - (7-17) we now get

x-x.

af ( ^ } = // " ~^ dE (7 " 21)
dX £

dX
AE

£

s

if- ( H ) = // " ^ dE (7 " 22)
dX £

dy
AE

£

S

-JL (II) = // jA dE (7-23)
d *£ dZ

AE
£
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8 . Orbi t Integration Procedures

The equations of motion and the variational equations

of the satellite expressed in the rectangular coordinate system

defined in sec. 2 are integrated numerically with an 0.8 minute

time step. The twelfth-order Cowell-Stormer multistep process

is used for the positions and the tenth-order predictor

corrector formulas of Adams-Bashforth and Adams-Moulton re-

spectively are used for the velocities [Henrici 1962, pp. 191-

198, 291-294], The accompanying flow-chart shows the struc-

ture of the above mentioned procedures.

The derivatives with respect to the initial state

vector and to the unknown density values (i.e.? eq (7-5) and

(7-11)) are obtained numerically by integrating the variational

equations. In this integration the corrector is solved ex-

plicitly without predicting, using the linearity of the

variational equations [Riley et al. 1967].

These procedures require the use of a starting process,

because the first time steps cannot be computed without knowing

previous values. Gill's modification of the Runge-Kutta in-

tegration method [Romanelli 196 0] is therefore employed for

the computation at these time steps. The methods mentioned

are now explained.
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PREDICT ?p+ i
ADAMS- BASHPORTH

PREDICT ?p+1

STQRMER

1 =

COMPUTE ?p+i CORRECT ?p+1

BASED ON
CURRENT

m-* ADAMS -MOULTON

?p+l ?p+l

><

COMPUTE CORRECT rp+1

Vp +1 SETS
—p

COWELL

yPp+1 Tp+1

A>+1 Vp + 1,

Figure 2. Integration process for the computation of
position, velocity, and acceleration
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8.1 Runge-Kutta-Gill Method

The totality of the variational equations is, as has

been shown in section 7, a 6x(6+104) matrix with a=aCr . ,x),

where a is a subset of parameters of p.

3(r st> 8(?st )

8(a) 8(r 0st ,x)

3r 3r .st st
3r, st 3X

(8-1)

We now apply the Runge-Kutta-Gill integration formulas to

determine 9 (r ,)/3(a) from its time derivatives, given by

(7-5) and (7-11)

K = t & Y
dt p

R x
= $ (K - 6 Q )

P P
>

Y _, n
= Y + R .-

p+1 p p+1

Q 4. n
=

Q + 3R ,. + e KX D + 1 X D D+l D•p + 1 P + 1 P P J

P = 0,1,2,3

(8-2)

After each cycle an intermediate value for d/dt[3Cr , )/3(a)]J st
is computed from (7-5) and (7-11) using Y for 3(r . )/3(.a)° p st
(i.e. for 3(r , )/3(r .) in (7-5) and 3 (r J.)/3(x> in (7-11)).st u st st A

The value of 3 (r . )/3(a) for t + At is then Y u . The initialst H

value for Q
=

o is a 6x (6+104) zero-matrix and for Y = Y
p u p °

the analytical derivatives at the starting time t as given

in section 7.
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5 , , , 5 , e are
p+1' p' p

p b
p

6
P

E
P

1/2 2 -1/2

1 1 - A/2 1 A/2 J 1

2 1 + A/2 1 -1 - A/2

3 1/6 2 -1/2

(8-3)

This method is also used for the computation of the

starting values for the components of the velocity and

position-vectors with Y now as the initial state vector as

obtained for the different satellites from the Smithsonian

Institution. Q again is a zero vector. For both computations

a time step At of 0.1 minute is used only in the starting procedure

2 The Adams-Bashforth Method

Here we have

tx

L*-k+l

'P+1
= / P(t)dt

t
P

= At

X

E Y V y
m=0 ••

LzJ
(8-4)

where the constants y are independent and will be calculated
m

r

numerically below. At is the time step; q is the number

of steps, which in this case is 10; and P(t) is the

interpolating polynomial over the interval [t ,t ].
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From the Runge-Kutta-Gill method initial values for the

state vector are supplied. Using these values

X X X

y 5 y 5 y

.z_ _z_ _zJ q-i q-2

x

y

l_2J

are computed

from the equation of motion so that the differences V
m

x

y

LZ,

can be calculated from the relations

,m

X X X

y = y - y

_z_ p _z_ P
_z_

X / X

y = v|V- 1
y

z
p

\ z

p-1
(3-5)

The expression on the right hand side of equation (S-M-) is

thus known, and can be calculated for p > q. After
p+1

using the corrector formula, explained in sec. 8.3, the index p

is increased by 1, and the same formula is used to calculate
x
y , etc. With the help of the following recurrence

L4J p+2

formula, which is derived in Henrici [1962, p. 193], numerical

values for y were calculated
'm

i i :
Y

m
+

2 Ym-1
+

3
Ym-2

+ * * * +
m+1 'm-qY T

= 1, m = 0,1,2, .
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8.3 The Adams -Moulton Method

Whereas the Adams -Bashforth method is a predictor formula

the Adams -Moulton method is a corrector formula. Here we

have

x

y

,--jp+i "-

p + l q
= J + P(t)dt = At I yZ Vt

m=0
m

"P

x

y

L_Z_I

(8-6)

p + l
where P(t) is the interpolating polynomial over the interval

A

[t ,. . t ,,]. The recurrence formula for y is similar top-q + 1 p+l 'm

that one for y and can also be found in Henrici [1962] on
m

page 194. Formula (8-6) is used like the Adams-Bashforth

formula (8-4) except that now only the values

are known. It is employed to redetermine

x
y
z

L. _jp

p-q + 1

an iterative procedure, where an approximate value

x
y
*

LJp + 1

p-1

in

x

has been obtained using the results of the predictor formulas

(Adams-Bashforth and Cowell-Stormer )

(0)x
-,m

(1)x
y

L*Jp + l

Calculating

P

(1)

p+l

+ At E y v

m=0

X

y

l-Z_

(8-7)

p + l

and re-evaluating the differences, a

better values is then obtained for
p+l
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8 . 4 The Stormer Method

By integrating a differential equation of the second

order y"(x) = f(x,y,(x)) twice, we obtain finally the formulas

for the computation of the position vector

- 2

p+1 L J p-1

= At 2
E a V

n m
m=

x

y

L-Z_

(8-8)

where again the above used symbols are defined as before.

a is obtained with the help of the following recurrence
m to

formula
2 2

= 1 - x h„ a .. - Tr- h a -
m 3 2 m-1 4 3 m-2

with h =l+i+...+i;m=l,2
m 2 m

'

2
h . , a n ;m=l , 2

m+2 m+1 °'

Formula C8-8) is used in the same manner as the Adams-Bashforth

method.

8.5 The Cowell Method

Here we have

X X X

y - 2 y + y
z z -r-, -\ zp-1

= At

p-2

1 a" V
m

m=0
m

where a
m

2 .'• 2
*

3 2 m-1 4 3 m-2

X

y

2
P

2

m+2
- h

m

(8-9)

+ 1
cr , m = 1,2,
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8.6 Integrating Procedure for Variational Equations

The system of variational equations (7-5), (7-11) can

be written as

R = SR + T

where R =

8r , 3r .st st

(8-10)

(8-11)

and is a 6x(6+104) matrix;

3r
S =

st
8?

, and is 6x6

st

and T
dt st

3X

and is also 6*(6+104).

The equations (8-10) are integrated using the qth order

Adams-Moulton formula. At the (p+1) step,r st r
q

* •
R xn = R + At E 8 R ...

P + l P
p -o qp P+l-P

(8-12)

where 3 = (-1)
qp C>> Y* ♦ C%h Y

*
p+1

+ +
<3> y!

p = 0,1 . . . , q.

q = 0,1 ... .

Assuming that R and R up to the pth step are known from

previous applications of this procedure (or at the start

from initial values obtained by the Runge-Kutta-Gill method),
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we see that the only quantity not known on the right-hand

side is R ,,. Let us rewrite (8-12) as
p + 1

q
R .. = R + At E 3* R xn + At 3* R inp + 1 p

1
qp p + l-p qo P + 1

Substituting for R ... from (8-10), we obtain° p+1

q
R .- = R + At t 3* R xn + At 3* SR xn +At 3* T ,

p + 1 p qp p + l-p qo p + 1 qo

and solving for R ,, ,& p + 1

R xn
= [i-At 3" s] ( R +At ("3" T + £ 3* R x . 1)p + 1 L qo J I p L qo

p=1
qp p + l-pj[

The matrix in brackets to be inverted is 6x6, and the matrix

in braces is 6x(6+10U). Following the computation of R .-,, ^
D + i

can be obtained directly from (8-10) for use in the next

step.

The actual computational procedure breaks the matrix R

into components as shown in (8-11) and follows the outline

given by Riley et al . [1967].

8.7 The lagrangian Interpolation Method.

To interpolate between the time steps, Lagrange's

interpolation for equidistant abscissas as given by Henrici

[1964] on pp. 201 - 202 is applied. Because an equal time
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step At is used, we can assume that the points, where the

values (f, ) of the positions, velocities and variational

equations are given, are equally spaced. Here we have

n
p(s) = E £ (s) f

k=m

where
n

l f O = IT
s 9,V S ; J1 k-q

q=m
^

q*k

This representation of the Lagrangian polynomial p(s) is

independent of the size of At. The functions )L (s), which

Henrici calls the normalized Lagrangian interpolation co-

efficients, depend only on s (the relative location of the

observation time t with respect to next lowest time t, ) and

on the integers m and n, which are the bounds of the set of

interpolating points. It turned out that the results for

n=4- and m = -3 were sufficiently accurate.
(tj)

-3 -2 -1 1 2 3 1

Using this method only the values f, for eight time steps

and the value t, need be saved. The value t, is incremented

by At for each step in the integration process, and the time-

sequenced observations are processed as soon as the time of
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the next observation (t , ) is exceeded or equaled by the
obs

current t, . We then have

s = 1 - (t, - t, )At
1 obs

The f, are stored in a circular fashion so that the latest

values replace the former values for f_„, and we need only

monitor the index of the current location of f_„ in the eight

place array.

^ • Force s Besides the Earth's Grav ity F ield Acting Upon a

Satellite

In addition to the perturbations caused by the varia-

tions of the earth's gravitational field as observed in the

previous chapters, satellite orbits will also be perturbed

appreciably by the gravitational attractions of the sun and

moon, the radiation pressure of the sun, and the drag due

to the atmosphere.

9.1 Attraction of the Sun and the Moon

All the effects of lunar and solar gravitation upon an

artificial satellite may be expressed by adding additional

terms for the potential field through which the satellite

travels. If r~ denotes the position of the sun or moon and
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M„ its mass, the disturbing function may be written [Brouwer

and Clemence, 1961, p. 465]

AF = GM
2 (

1 - -
T

-^-\ (9-1)
\ |r 2

- r| r
2 /

The first term gives the potential due to the disturbing

body. The second term arises from choosing the center of

mass of the earth rather than the center of mass of the

entire system of bodies as the origin [Danby 1962].

If we differentiate (9-1) with respect to X , where X standsr m' m

for the coordinates x,y,z, we get

||£ = GM,/- - Xm - + C ( ; 1 ; i- A (9-2)
3X

m
2

\ |? 2
- ?|

3 m
|? 2

- ?|
3 r

2

3 /

w thith Tr, - r„ (£,£;,£;), where L 5 Co lie in the equator wi

C
-, pointing toward the vernal equinox. If —

5- is factored
r

2out we get

GM r
U£ = -~ [-5 + C5 - x ) - 2 - y ] (9-3)
8X 3 m m m 1 -> -* 1 3

m r

2 |r« - r I

with

3 „-v -> 3

P

2 r 2

2r * r

2 r ~2
= [1 + (- )

Z - - (£-)] ^

• (9-4)
■* -*-i 3 r>„ r r r-,r rt - r 2 2 2
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-> ->■

If (— ) - ( — ) < 10" , equation (9-4) will then ber
2

r r
2

r
2

— ^

developed in a series so that we get

P
2 * n 3 r ,r N 2

2r ' r,
2 , r Nn , 15 r ,r N 2

2r ' r,
2 ,r

N -,2
1 . 4 [(JL)^ - -^ (=£)] + J£[(JL)' £ (JL)]

Ip _ pi 3 2 r
2

r r
2

r
2

8 r
2

r r
2

r
2

. 35 [(JL) 2 . ^2 jj.
]3 +

315
t ±2 _ £^2 _r ,-,4 (9 . 5)16 r

2
r r r

2
128 r

2
r r

2
r

2

The quantity r-rJlr r„) is the product of the normal vectors

pointing to the satellite and perturbing body. The scale of

the perturbing body's orbit is given by a
2

and is needed in a

few of the small terms, where r
2

= a~ (1 - e cosE). The series

(9-5) is then applied to (9-3) to obtain the difference
3r
2-5+5.'m m i -*■ ■*■i 3

-p _ -p|r 2
r |

3
The coefficient GM/r

2
can be deduced from Kepler's third

law. Applying this law to the orbit of the moon and the sun,

where the subscript E indicates the earth, M the moon, and S

the sun we find

G(M E
+ M

M
> = n^

G(M
E

+ M
M

) = n^(l - e
M

cosE
M

)" 3 (9,6)

with n„, e
M

, E
M

being elements of the moon's orbit where

n = mean motion, e = eccentricity, E = eccentric anomaly. r„

stands for the radius of the moon's orbit. Hence,

GM M

V1 =
M—+V "

M
(1 - e

M
cosE

M
)- 3 (9-7)

r
M

E M
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For the sun

GM M
S 2 -3

"T =
M

Q
+ M r

n
S

(1 " e
S

cosE
S

)
^

;

r
s

b h
(9-8)

n^, e„, Eqj Po are the corresponding quantities for the sun's

orbit referred to the earth; the ratio M^/ (M„ +
M^) is very

nearly 1.

In order to get the inertial coordinates £_,£_,£,-

(eq (9-3)) for the moon and sun, respectively, 3 rotations

have to be applied

5-

with

P
1

C-e)P
3
(-n)P

1
C-i)P

3
(-u)

(cosE - e)/(l-e cosE)

/l-e 2 sinE/(l-e cosE)

P
1
(-e) =

P
3
(-fi) =

10
cose -sine
sine cose

cosfi - sinfi

sinfi cosfi

1

•■

1

P
]_(-i) = cos i -sin i

sin i cos i
COSU) -sinaj

P
3

(-oo) = sinoo COSU)

1

(9-9)
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£ = 23° 26' 44'.'84

fi,oj, i are given for the moon by

O- = 12° 06' 46V05 - 0? 0529 5 386 52T

u = 196° 43' 52V316 + . 164 358 002 5T

cos i
M

= 0. 995970322

sin i
M

= 0. 089683648

with T = MJD = 3328 2.0

For the sun, i„ = 0.

Hence, P, (-i) = I, and P~(-ft) and P„(-co) may be combined into

one transformation employing co = Q~ + U}„.

Q + cu s
= Sg = 282°04' 45'.'92 + 0° 0000470684T

For the solution of equations (9-7), (9-8) values for e and E

are also needed:

e g
= 0.01677194

e„ = 0. 054900489
M

With the help of m = E - e sin E values for E are computed by

iteration. The mean anomaly m is found by

m = 358° 0' 2V42 + 0° 98 56002647T

m
M

= 215° 31' 53V26 + 13° 0649924490T

The orbital elements given here for the sun and the moon have

been computed for 1950.0 from values given in Explanatory

Supplement to the Astronomical Ephemeris and the American

Ephemeris and Nautical Almanac [I960]. Only secular terms

have been considered here, i.e., the orbits of the sun and

moon have been approximated by rotating ellipses.
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9.2 Direct Solar Radiation Pressure

The force exerted by sunlight pressure is proportional

to the solar flux and to the area of the satellite as pro-

jected on a plane perpendicular to the direction of the flux.

According to Shapiro [1963] the acceleration is

K A r
Q = Cjcr-) (b — (9-10)x sp M c rr sa S

where r q is the vector from the earth to the sun, as in section

9.1 , I is known as the solar flux in the vicinity of the

earth, c is the speed of light, (A/M ) is the area-to-mass ratio
sa

of the satellite, and K
R

is a function lC(r,r«) whose value

is or 2 depending on the location of the satellite in its

orbit. In the space cylinder formed by the earth's shadow

there is a sharp cutoff of the force for any point within the

cylinder. Here the value K = is used. For the other

part of the orbit the value 2, which expresses the reflection

characteristics of the satellite, is used.

Since the earth's orbit is elliptical, the solar flux

will vary during the year:

a 9I = I (— ) (9-11)
E
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where a is the semimajor axis of the earth's orbit, and r_
e L

is the earth-sun distance. The solar constant, I , which

represents the mean rate at which enery is received at a point
2

on the earth, is approximately 2 cal/cm sec. and remains quite

constant. Because the arcs used are not longer than 7 days

equation (9-11) was not applied.

To decide whether the satellite is in sunlight or in

shadow the inner product of the position vectors of the sat-

ellite and the sun is computed. £ is the angle between these

two position vectors. The satellite is in shadow, if the

following conditions are fulfilled (see also fig. 3)

1) cos L -

J

of the earth's
omputation of
f fects
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The components of eq (9-10) are transformed to the £-. 9 £ 9
j£;_

coordinate system as defined in section 9.1, i.e., the same

rotations are used as for the computations of the attraction
3fof the sun. The partial

K T
as necessary for eq (2-5) is

numerically integrated in the same manner as the variational

equations .

9.3 Atmospheric Drag

Most discussions of air drag in the current literature

on artificial satellites begin with the equation for the

magnitude of the drag force (e.g., Shapiro 1963 )

■ ,2

with

Q nd
= "

2
C

D
P C

R
A •)

sa
D

(~— ) = area-to-mass ratio of the satellite
sa

C~ = dimensionless drag coefficient
here approximately 2 and a variable in the
adjustment

p = air density

|rn |
= relative velocity of the satellite with

D respect to the atmosphere
"

x + coy

r*D i•*•r
D

= y - cox = y
D

z -1 Lz
D
J

where co is the average angular velocity of the earth

and |?D |
= /(*g + y£ I z^

(9-17)

C9-18)
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The drag resistance is then

ind 2
C

D
p ( R— } ' rDsa

(9-19)

The air density p is given as a function decreasing' with

height

p = p .exp [-(h - 8-10 5 )Ap] ,

h is the height of the satellite in meters obtained from

the following formula

(9-20)

h = r 1 -
R .

ma 3

Ar 2
+ E z 2

)
s

(9-21)

with F . = semimaior axis
ma j J

2 2
R . - R .

and E = _I3^L SiH ,

R
2

.
mm

R . = minor axis ,mm '

p in equation (9-20) is a value for the air density at a

height of 80 0km and is taken from the U.S. Standard Atmosphere

Supplements, 1966.

5
The value 8-10 is incorporated because of the chosen p

and the unit of meters for h. A is the inverse of a quantity

known as the "scale height" and is computed by

Ap = In (-1)/(2.10 5
)

Po
(9-22)
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wh ere p, is a value for the air density at a height of 1000km

and is also taken from the U. S. Standard Atmosphere Supple-
5ments. The denominator 2*10 gives the height difference

between p and p, in meters.

In order to get the values for p and p, the exospheric

temperature for the observation time has to be determined.

For this purpose the solar flux, the monthly solar flux,

and the geomagnetic index A for this period are taken from

the World Data Center at Boulder, Colorado. The formulas

used here can be found in the U. S. Standard Atmosphere

Supplements. First the variation in the solar cycle is taken

into account

T = 362 + 3.60 F
1Q ?

(9-23)

— . -22
where F,

n 7
is the 10.7cm solar flux in units of 10

2
watts/m /cycle/sec averaged over three solar rotations. The

variation within one solar rotation yields

T' = T + 1.8 F
10 _ ?

- F
10 _ 7

) C9-24)

where F,
n 7

is the daily solar flux averaged over the ob-

servation time of one week. Now the semiannual variation is

supplied

T = TJ + f(d) F
Q

(9-25)
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where

f(d) =
(0.37 + 0.14 sin(2^

d
3 6 5

51

))
sin Utt^^-)

with d = number of days elapsed since January 1 of each year.

The correction for the diurnal variation was also

supplied

T = 1.1 x T

This expression is a very simplified version of the equation

for the diurnal variation found in the U. S. Standard Atmosphere

Supplements .

Finally the variation with geomagnetic activity yields

T=T+AT (9-26)
00

where AT = a + ICQ Cl - exp C-0.08 A 3)
P P

The geomagnetic index A is averaged over the observation

time.

With the value for the exospheric temperature T determined

from equation (9-26), values for the air densities p and p.,

are taken out of the tables 6.1, 6.2, 6.3 given in the U. S.

Standard Atmosphere Supplements.

Values for the air density computed with equation (9-20)

are compared with values given by Jacchia [19 70] and found

to be acceptably in agreement over the range of the height

of a satellite orbit.
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In order to obtain the partial tttt- in eq (2-5) the
9C

D

partial derivative of Q , with respect to C- is numerically

integrated in the same manner as the variational equations.

1 . Adjustment of Observations

Rewriting equation (2-5) and using a vector-matrix

notation we get

A? = A Ae + B Ay + D Ar + E Ao + F Ab (10-1)^ s

with

Ae =

Ax

Ay

Az

Ax

Ay

Az

*■ H k = 1,6
ik

Ae being a (6x1) vector and A a matrix of Cg x 6) elements,

where g indicates the total number of observation equations

per arc .

^Axi

I = 1,104AX A ^
AX 1 o «tJ

B = i
i£

"The program provides an option to do the adjustment with the
parameters for air drag and radiation pressure CCp. and K

R
)

as constants. In that case equation (10-1) is solved
without Ao.
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with B being a matrix of (g x 104) elements

Ar =
s

Ar si 1

Ar
Sl 2

Ar
Sl 3

Ar
s 2 1

Ar

Ar

Ar

ni

n2

n3

Ax si
Ay sl
Az

s 1

Ax
S2

Ax

Ay<

Az

n

n

n

D =
9f

ia

a = l,3n

D being a matrix of (g x 3n) elements with a=3(q-l)+m
where, as explained on page 5, n stands for the total number

of stations, m denotes the mth coordinate of r , and q

indicates the qth station. Note that this matrix has blocks

of zeros.

Ao =

AK
R

AC
D

E =

V3KR ) > \3C
D )

with E a (g x 2) matrix

Ab =

4b
x

•
•

Ab.
• 1

Ab,

*■ n j = l,t
ID

Ab being a vector of t elements, where t stands for the total

number of passes per arc and Fa (g x t) matrix. Note that F
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has blocks of zeros.

Equation (lQ-1) may be written as

[F, G, H]

Ab

Av = t + v C10-2)

Here I is a vector equivalent to Af in equation (10-1) and

v the vector of the residuals where

G = [A,E] , H = [D,B]

Av =
Ao

, and Ari =

Ar

By means of the covariance matrix S. associated with theI
observations we get the normal equations

Ab
T -1 T -1 T -1

F Z
£

X
F F Z

£
G F E

£
H

T -1 T -1 T -1
G Z

£
F G E

£
G G E

£

■L
H

T -1 T -1 T -1HE. F H E
£

X
G H E

£
H

Av

An

T -1f e a

T -1
G h *

T -1
H E

£
I

(10-3)

In the formation and solution of the least squares

normal equations, the unknowns fall into three groups. The

three groups are: bias parameters (one Ab for each pass),

orbital parameters (orbital elements e, plus air drag C^,

and radiation pressure iC,), and surface parameters (station
K

coordinates r and density values x)«
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The normal equations formed from all observation

aquations having the form of (2-5) contain all three groups of

unknowns; a bias parameter for every pass, a set of orbital

parameters for every orbit, and one set of station coordinates

and densities. Rather than directly form and solve these

large normal equations, we eliminate the bias and orbital

parameters at the earliest possible stage. Only the reduced

normal equations associated with the station coordinates

and densities, the parameters of main interest, are accumulated

over all orbits.

The elimination of the bias and orbital parameters

is accomplished by an application of Gaussian elimination

that takes account of the special structure of the normal

equations. Generally, the elimination of X, fro:>m

M

T
P Q

~

x l~

3 .

u.

u
2 J

(10-4)
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produces reduced normals for X
9

of the form

(Q - P
T

M
_1 P) X

2
= U

2
- P

T
M~

1
U

1
. (10-5)

If desired, X, can be recovered from a "back solution"

X
]_

= M
1

(U
1

- P X
2

) . (10-6)

If M is "block diagonal", that is, of the form

M =

m
11

m
22

m
33

m
nn

(10-7)

with a corresponding partitioning of P and U, ,

P =

m

m

m

lc
2c

3c

mnc

U.

u-

u,

u
n

the reduced normals become;

n
Q

- E m. m. . m.
j = 1 DC ]] ]c

n
X,

T -1
U - l m. . m. . u.

2 .
=1 11 :: ]

(10-8)

Clearly, each term of the summation can be accumulated as

soon as m. • , m. ,and u. are available; the terms can be

accumulated in any order.
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T -1In equation (10-3), F Z F, the submatrix of the normal

■*• T -1equation associated with the bias parameters Ab, and G Z G,
•*■ T

I
the submatrix of the normal equations associated with the

orbital parameters Av, has a block diagonal form which is

retained after the elimination of Ab. The scheme described

above is applied in succession to eliminate first the bias

parameters and then the orbital parameters. The contribution

to the reduced normals arising from the elimination of the jth

bias parameter is computed during the formation of the partial

normals arising from the jth pass.

After all observations involving the 1st orbit have been

processed, the accumulated reduced normal equations (reduced by

the elimination of all bias parameters) are solved for pre-

liminary values of corrections to the orbital parameters of the

1st orbit (orbital elements, air drag and radiation pressure)

and surface parameters (station coordinates and densities).

The normal equations are then reduced a second time to

eliminate the orbital parameters. These reduced normal equations,

along with the solution for the densities and station coordinates,

are stored on tape for introduction during the formation of

normals from the second orbit according to formula (10-8).

During the processing of the observations from the oth orbit,

the reduced partial normals from this orbit (bias parameters

eliminated) are accumulated, added to the fully reduced normals

carried forward from the (o-l)th orbit, and solved for the
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oth preliminary values of orbital (for the oth orbit) and

surface parameters. Then the oth orbital parameters are

eliminated to produce reduced normals to be carried forward,

along with the oth preliminary values, to the (0+l)st

solution. The final solution for station coordinates and

density values is obtained after all orbits are processed.

In fact, the accumulation involved in the formation of

reduced normals, as above, is already an intrinsic part of

most Gaussian elimination programs, such as the Gauss-Jordan

used here. Retrieval of the reduced normals from such a

program requires only minor modifications.

The results of the adjustment for the density values x 5

are now taken to compute normalized coefficients C and Sr nm nm

in order to compare these values with existing satellite

results. If C and S denote the harmonic coefficients
nmu nmu

introduced in eq (5-2) to define the normal potential U,

we obtain [Koch 1968]

n
104

C = C + - £ y \ \ n —
nm nmu fn , . s, „ n n

, A
Z {* r P (sine})) cos mA dE (10-9)(2n+l)kM a £=1 AE

p
nm

-, 104
S = S + I Xn I! rn

P (sine})) sin mX dE (10-10)
nmu

(2n+1)kM a
n ^H ^

The integral over the surface elements AR in ((10-9) and (10-10))

is solved numerically by dividing AE, into 9 subdivisions.

The origin of the earth-fixed coordinate system and of

the orbital system--as mentioned earlier--is the center of
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mass of the earth. Hence the harmonic coefficients C,
n

, C, -. ,

and S _ , must equal zero. Furthermore Co-i and S^-, should be

small in comparison to the rest of the harmonic coefficients

since during the orbit computations the z-axis effectively

coincides with the rotational axis of the earth. To insure

this, constraints in the form of observation equations with

small variances (see Koch and Pope 1969) are set up ac-

cording to (eq (10-9) and (10-10)) and their contribution is

added to the normal equations. Five such constraint equations

are used, setting each of C,
n

, C, ,-j S-, , , C„, , and S~-. equal

to zero. As an option, C can also be constrained.r ' oo

In addition to these constraints the longitude of one

station was held fixed in the solution to prevent a singularity

which would arise if all the station longitudes and the right

ascension of each orbit were all unknown. We get the follow-

ing condition equation

j- y + Ay . yarc tan -—t— tt~ - arc tan 2-
x + Ax x

or by linearization

&■ - 2$& ) = o . (lo-ii)
1 ♦ C^)

2

V
x x 2 /X v

For some of the stations, which have been moved during the

observation time of different orbits, the surveyed distances

between the old and new location are introduced as constraints.
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The differences in the coordinates (Au,Av,Aw) are weighted

based on a mean square root error according to the obtained

accuracy and observation equations with these differences

are added.

— _ — —i
u

s
m

u
s

n
V

s
m

+
V

s
n

w
s

_ m

w
s

L- n_

Au
mn

Av
mn

Aw
L mn.

(10-12)
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