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T. INTRODUCTION

A number of computerized techniques for using P-waves,
S~-waves, or both, to determine focal mechanisms have been de-
veloped in recent years. Programs have been developed for P-wave
solutions by Knopoff (1961), Kasahara (1963), Wickens and Hodgson
(1967), and Zhelankina et al. (in press). Programs for the S-wave
solutions have been developed by Udias (1964), Hirasawa (1966),
and Stevens (1967) using S-wave polarization angles, and by
Zhelankina et al. using the direction of SH and SV first motions.
These solutions have dealt with the P-wave and S-wave data sep-
arately. A more recent proposal for a combined P- and S-solution
(Udias and Baumann 1969) lacks the statistical support that per-
mits incorporation of objective evaluations of the quality of P-
and S-data.

Increased use of computers in the determination of focal
mechanisms has helped to point out large discrepancies between
solutions given by different observers and has indicated that a
number of these solutions must be regarded as marginal at the
very best, This has been documented by Wickens and Hodgson (1867)
and by Stevens and Hodgson (1968).

Sykes (1967), Stauder (June 1968, December 1968) and Isacks
et al. (1968) have demonstrated the value of mechanism solutions
in the study of regional and global tectonic patterns. A method
permitting the properly qualified use of marginal solutions and
giving an objective and easily interpreted indication of the
quality of solutions will undoubtedly be useful in studying these
patterns. The purpose of this paper is to present a method for
finding and visually and statistically evaluating mechanism solu-
tions.

The method consists of an interpretation of the error sur-
faces generated by plotting as a function of the model parameters
(e.g., strike and dip of the nodal planes) an appropriate measure
of the discrepancy between the observed P-wave first motions,
S-wave polarization angles, or both, and those predicted on the
basis of a particular focal mechanism model. These surfaces show
that it is usually difficult to arrive at a unique set of param-
eter values because there is typically a range of acceptable solu-
tions. A good solution is characterized by a narrow range of
acceptable parameter values, that is, by small fiducial regions;
a poor solution is characterized by large, ill-formed fiducial
regions.



IT. S-WAVE, P-WAVE, AND P- and S-WAVE MECHANISM SOLUTIONS
A. Theory of the Solutions

Source mechanism determinations involve nonlinear mathemat-
ical models and, in the case of P-wave first motion data, non-
normal statistics. To pursue the implications of these features,
we must first define what is meant by a solution.

The best focal mechanism solution for given data and a
given model of the source mechanism may be defined as that opti-
mizing some agreed-upon measure, such as the sum of squares, of
the difference between observed quantities and their wvalue pre-
dicted from the model. However, because a scound cheice of the
measure of agreement and the construction of correctly scaled
fiducial regions about the resulting solution are rooted in the
statistics of the observations, it is desirable to return to a
basic criterion which uses these statistics.

The method of maximum likelihocod produces estimates having
many desirable properties. The statistics of the observations
are fully used, in contrast to the minimum variance method, for
example, which uses only the second moments of the distribution
of the observational errors. The problem at hand involves both
continuous data (S-wave polarization angles), discrete data
(P-wave first motions), and combinations of the two. The statis-
tical argument leading to maximum-likelihcod seolutions and fi-
ducial regions differs in these three cases. Details of the nu-
merical procedure for the construction of P-wave fiducial regions
are sensitive to subtle variations in the statistical argument.
In addition, various standard simplifying assumptions that play
an important role in most applications of statistics to adjust-
ment problems no longer apply. Thus, the statistical discussion
leading to the solutions and fiducial regions is expanded in an
attempt to convey some appreciation of this aspect of the problem.
We first describe the formulation of the maximum-likelihood solu-
tions and the numerical procedure for finding these solutions
before discussing the fiducial regions.

B. S-Wave Sclution

Seismologically, P-wave first motion data can be said to
be more important than S-wave data because of their greater
density, ease of measurement, and reliability. However, for an
exposition of the statisties involved, S-wave data are logically
prior to P-wave data because S-wave data depart least from the
ordinary adjustment situation in which statistical considerations
support a least-squares criteria. We will recapitulate this de-
velopment to provide a framework for the derivation of the P-wave
first motion maximum-likelihood solution.
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L(E;fs) is maximized as a function of B for that B producing the

the smallest RS = Eviz, illustrating the well-known result that
i

maximum-likelihood estimation applied to normally distributed

data leads to a least-squares solution.

The parameter ¢ appearing in L, the "variance of an obser-
vation of unit weight," can be estimated from the vector of

least-squares residuals VLS by the formula from linear least

squares (see, e.g., Hamilton 1964, Rao 1965, and Draper and
Smith 1966), so that

: _ ot o )
g2 = VLS WVLS/(n u)
or 82 = RES/(n - u)

where n is the number of observations and u is the number of
parameters. Use of this estimate in the nonlinear case is justi-
fied below in the derivation of S-wave fiducial regions.

Note that V in V'W7 and 8% consists of residuals on polariza-
tion angles rather than functions of polarization angles and pa-
rameters as in Udias (1964). Alternative assignments of re-
siduals give simpler analytical solutions. However, the direct
numerical maximum-likelihood solution used here permits resid-
uals to be put where required by the statistical analysis.

In addition, the direct numerical solution avoids difficult-
ies in the solution arising from the nonlinearity of the model
such as those caused by the presence of secondary minima in
R_(B). The complete likelihood surface is explored and exhibited
in a consistent manner for P- , S- , and P- and S-waves. Any
stationary points not corresponding to solutions pose no problem
as they may in Newton-Gauss (linearization--least-squares
solution--iteration) solutions.

The polarization angles , €, are the final result of several
component measurements and judgments, each subject to error.
The central limit theorem asserts that the distribution of a
linear combination of n errors from rather arbitrarily distribu-
ted populations tends toward normality as n increases. The
precise distribution of € would take into account the 2m-
periodicity of € and the m-ambiguity introduced because of the
inability to pick the sense of first motion in about 20 percent
of polarization angle determinations. These details are neglect-
ed here in favor of a simplifying assumption of normality.
Empirical studies of polarization angle residuals support the
reasonableness of this approximation (Stauder and Bollinger 196.4).
A minimal interpretation is that maximum likelihood, based on
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normality, 1s equivalent to the use of a least-squares criteria
for the fit between model and observations. The specific form of
the distribution is needed to obtain the fiducial regions which
give a visual representation of the quality of a sclution.

C. P-Wave Sclutiocn

The P-wave data consist of compressional or dilataticnal
first motions at each station which either agree or disagree with
the first motion predicted for that station by a model of the
earthquake mechanism. Let P, denote the probability that the ob-

served first motion agrees with the true first motion at station
i; that is, P is the probability of reading (and reporting!)

the record correctly. Then the probability of disagreement, that
is, of reading the record incorrectly, is 1 - P,. 1If there is

evidence for significant variation in the quality of P-wave first
motion determinations at various stations, this variation is cor-
rectly and entirely accounted for by variation in P.. This

variation in Pi amounts to a form of "weighting" appropriate for
the P-wave observations. 1In fact, we use Pi = P for all i. This

is analogous to the use of the same standard errors at all sta-
tions (weight matrix = I) in the S-wave solution. In a more
sophisticated solution, the quality of the observation as ex-
pressed in Pi could be related to the observed or predicted

amplitude of the signal, but the assumption that P. = P has been

found adequate. The equations below easily extend to the case of
different P..

Some investigators have proposed "weighting" as a funection
of the separation of stations and nodal planes. In this report,
weights are regarded as related only to the quality of the ob-
servations as expressed in P. and M. The interaction of stations

and nodal planes (e.g., the increased importance of stations near
the nodal planes) is already present in a correctly formulated
solution. Attempts to '"guess in advance" or to arbitrarily in-
fluence the effect of specific data points are not logically

well founded (also see comments below on the estimation of P).

An agreement or disagreement at station i is assumed sta-
tistically independent of agreement or disagreement at any other
station j. Therefore, the probability of agreement at both
stations 1 and j is Pin, or the probability of agreement at

station 1 and disagreement at station j is Pi(l - Pj). (The

assumption of statistical independence was incorporated into the
S-wave p.d.f. by the use of a diagonal covariance matrix M.)









the probability of a score of R, conditional on B and the config-
uration of the N-stations, is given by the binomial probability
funection

Pr(R agreements) = (g) pR¢1 - p)N-F

That is, for fixed B and stations, R is a binomially distribu-
ted random variable. As shown in, for example, Wilks (1962},
Mood and Graybill (1963), and Rao (1965), the maximum-likelihood
estimate of the parameter P in the binomial probability function,
based on a sample of size N producing R agreements, is

P = R/N.
flnce for R = BML’ we have R = Rmax’ an estimate of P based on
By, 18
o Rmax
b=,
corresponding to the formula for 82 based on Rs' P is discussed

at more length than &%, in part to emphasize the distinction Le-
tween point binomial and binomial distributions.

If N is small (<20 or so) or the station distribution is
poor, p computed as above may be unrealistically near one, re-
sulting in regions that are too small. In this case, a more
realistic value of P based on past experience, usually .90<P<.95,
is used rather than R___/N. o

max

If R, <.5N, it is possible to change B so that all predicted

first motions reverse, thus changing the number of agreements to
R, = N - R,>.5N>R . Thus with R' defined by

R R>.5N

t - —_—
RY = N-R R<. 5N ;

the exact probability function of R' is given by

0 R «<,LN
Pr(R') = Pr(R) R = ,EN.
Pr(R) + Pr(N - R) R>. 5N

Note z Pr(R') = 1. However, the P's and N's encountered in
all R!

practice, P>.75 (based on P) and N>5, give a very small
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probability for R<.S5N. Therefore, Pr(R') differs insignficantly
from Pr(R}, and the second term is neglected.

It has been suggested that P-wave motions inconsistent with
those at nearby stations be discarded (Zhelankina et al., in
press). While this may produce the illusion of a better solution,
in fact, discarding inconsistent P-wave motions adulterates the
main source of information about P-~the probability of reading a
first motion correctly. P influences the size of the P-wave
fiducial regions and should be estimated from the total available
data. Rejections, if made at all, should be made after an
initial solution using all data to estimate P. '"Inconsistent"
stations may also affect the shape of the fiducial regions. 1In
fact, because an impartial assessment of quality (requiring both
the size and shape of fiducial regions) is always a goal in this
report, no rejections based on inconsistencies alcne are made.
The method of maximum likelihood and the presentation of fiducial
contours based on the likelihood or score surface use all of the
information in the data, good and bad, for the solution and for
the fiducial regions.

Henceforth, P and 8? are to be understood for P and o?
where needed. In the construction of S-wave fiducial regions, it
is possible to allow for the additicnal source of random varia-
tion introduced by use of 8% in place of ¢? by standard methods
carried over from linear least-squares theory. A corresponding
development for the P-wave case 1s not attempted. It is doubtful
that this "second-order" statistical consideration 1s important,
but this is a direction in which the analysis could be extended.

D. Combined P- and S-Wave Solution

The maximum-likelihood formulation of a combined P- and
S-wave solution uses Np observed first motions Xp defined over
a discrete sample space and N polarization angles ?S defined on
a continuous sample space.

In review, the likelihood function for S-wave data alone
was

— = ~ N !

L(Bsxg) = ¢(XS|B) = ¢ exp{- 5= R_}

and the likelihood function for discrete P-wave data was
R N-R
L(B3X,) = pr(iplﬁ) =pPy(r-py P

where R_ = T'WV and Rp = the number of agreements with the motion

predicted by parameters B. For convenience, RS and Rp are denoted

as the "S-sceore" and "P-score," respectively. The P-wave solu-
tion required Rp to be maximum and the S-wave solution required
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E. Focal Plane Determination

Most work in determining the focal planes of an earthquake
has been done using source models which are point sources. The
observed data are plotted on a unit sphere, called the focal
sphere, centered on the hypocenter. A unit position vector lo-
cates the observed data for station i on the focal sphere at the
azimuth and dip along which the ray to station i leaves the
source. Various projections have been used to display the focal
sphere and the observed data in two dimensions. The techniques
of solution and discussion of the results are dependent on the
projection used. Stauder and others have made popular the use
of the stereographic projection for the presentation of results.
This projection, a conformal azimuthal projection, gives a nice
representation of the focal sphere and makes the results fairly
easy to visualize. Another projection also used (and used in
this report) is the azimuthal equal-area projection--sometimes
called the Schmidt net. This projection makes possible accurate
comparisons of the relative sizes of contoured areas.

A plane through the center of the focal sphere intersects
the focal sphere along the arc of a great circle path which pro-
jects into a circle on the stereographic projection and into a
quartic curve closely approximating a circle on the azimuthal
equal-area projection. The "pole" of such a plane is defined as
the point where the unit vector normal to the plane intersects
the focal sphere, or the projection of this point.

A discrete, incremental process is used in the program de-
scribed in this report to compute the scores upon which the focal
mechanism solutions and fiducial regions are based. The score is
computed for an initial orientation of the nodal planes. The
mechanism is then rotated incrementally through three independent
angles until the focal sphere is covered.

Because of the radial symmetry of the radiation pattern of
type I and type II source models, only one-half of the focal
sphere need actually be sampled. TFor this reason, the above-
mentioned projections of the focal sphere are of the lower hemi-
sphere only. Points on the upper hemisphere are first mapped in-
to their diametrically opposite points on the lower hemisphere.
This fact has some (generally insignificant) implications for the
constructions described below.

The orientation corresponding to the best score is the
maximum-likelihood solution. As mentioned above, the solution
for P-wave data may consist of a region (several points of the
discrete grid) rather than one point only. The score computed at
each position of the focal planes is saved for use in determir-
ing fiducial regions by the method described below.
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The rotations are defined in a right-handed coordinate sys-
tem at the focus having positive axes x (north), y (east), and
z (down). The azimuth ¢ of a vector is the angle measured clock-
wise from north to the projection of the vector onto the xy-plane.
The spherical colatitude 6 of a vector is the angle from the
tz-axis_to the vector. The direction cosines of a unit wvector X
in the xyz-system are given in terms of 6 and ¢ by

sin6 cosd
X = 8 = sin® singd
Y cos6
A plane is uniquely specified by its unit normal vector whose
intersection with the unit sphere is the "pole" of the plane. If

the unit normal to a plane Pl is given in terms of 6 and ¢, as
above, then the strike and dip of plane Pl are (¢i7m) and 6, re-

spectively. Here, "strike" denotes_the azimuth ofzthe line of
intersection of plane Pl and plane xy (the horizontal plane), and
"dip" denotes the dihedral angle (<m/2} formed by the Pl-plane
and the xy-plane.

The rotations are carried out by the equation

1 0 0 sing 0 cosé® cos¢ sin¢ 0O x
=| 0 coshi sini 0 1 0 -singd cos¢ @ v s
z 0 -sin} coski ~-cogf 0 sineg 0 Q 1 Z

or X = DX where D = CBA and C,B,A are the indicated orthogonal

3 by 3 matrices representing rotations about current x-,y-,zZ-

axes, respectively. Specifically, A represents a rotation of the

coordinate axes about 2z through the angle ¢ measured from the

Xx-axis toward the y-axis, B is a rotation about the current y-axis,

through the angle (7-8) measured from the x-axis toward the z-axis,
2

and C is a rotation about the current x-axis Ehrough_ag_@ngle A

measured from the y-axis toward the z-axis. X = (x,y,z) is a

(unit) position vector of a point on the focal sphere in the above

defined, earth-oriented coordinate system; and X = (x,y,z} gives

the coordinates of this same point in the system of the rotated

focal mechanism.

Because of the orthogonality of D, the transformation from

the rotated coordinates X to earth-fixed coordinates X is given

by ¥X = D'X. Also note that the rows of D are the direction
cosines of the rotated axes. Thus,

a B Y
D = o 3
y B
a B8 Y
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Figure l.--Perspective view and corresponding lower
hemisphere representation of the focal planes.



with an obvious nota .on for the direction cosines. Multiply-

fal

ing, one finds that as s Y, are given in terms of 6 and ¢ by

the same equations X = (a,B,Y)t above. Therefore, 6 and ¢ are
the dip and azii th of the (rotated) x-axis, the pole of the
yz-plane, and this pole is not moved by the C-rotation through A.

For convenience, denote the yz-plane as the "A-plane" and
its associated pole (the x-axis) as the "A-pole". Similarly, de-
nocte the xz-plane as the "B-plane" and the y-axis as the "B-pole"
(see figure 1)}, The designations "A-plane and B-plane" are a
convenience for the purpose of describing the numerical solution
only and do not imply any physical distinction between the two
planes. The A- and B-planes are the nodal planes of P-wave and
S-wave radiation patterns for a type II source that consists of
two couples having equal forces and moments lying in the xy-plane
and aligned with the x- and y-axes. Because of the orthogonality
of the coordinate axes, the A- and B-planes are perpendicular and
the A-pole lies in the B-plane and the B-pole lies in the A-plane.

For ¢ = 8 = X = 0, the initial orientation of the movable
axes is x down, y east, and z south. ¢ is then increr nted from
0 to 2m. For each value of ¢, the incr. :intation of 6 from 0 to
ﬂ causes the A-pole to progress from downward to horizontal.

Thus, the A-pole occupies successively the points of a grid cov-
ering the lower half of the focal sphere. Finally, for each pair
of values ¢ and 8, that is, for each position of the A~pole, A

is incremented from 0 to m. Thus, the C-rotation through XA ro-
tates the B-plane about pole A, and the B-pole rotates in the
fixed A-plane while remaining on the lower half of the focal sphere.

To help illustrate this process, figure 1 shows perspective
drawings of two orthogonal nodal planes and their corresponding
representation on a stereographic projection before and after
a A-rotation. In figure la, the A-plane i the angular face of
the block with normal vector A. The B-plane contains A and has
normal vector B. ¢a and ¢b are the strikes of the A- and B-planes

and 0, and 6, are their dips. (Figures la and 1lb do not show oy
or 6, due to the difficulty of showing these angles on this

figure.) In flgure 1b, the B-plane has been rotated by the angle
A while remaining orthogonal to the_A-ple 2, that is, A-B = 0.
In figures lc and 1d, A~ fived w__le B moves along the trace of
the A-plane during the A-rota._on.

When the A-plane has been incremented through all of its
orientations, a grid of minimum error va @2s will have been gen-
erated over the lower hemisphere of the focal sphere. These val-
ues can be contoured to show the shape of the minimum error sur-
face, the most impor ant features of which are the minima and
the 95-percent fiducial regions.
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If the grid spacing were indefinitely small, this procedure
would result in a twofold redundant covering of the lower hemi-
sphere. Each pair of positions of the two poles would be occupied
twice, the second time with A and B interchanged. However, be-
cause of the finite grid spacing (usually 5°), the duplication is
not exact. Because of the convenience in the contouring progran
of a complete uniform grid in 8 and ¢ of the projected scores
(the terminclogy is explained below in the discussion of fiducial
regions) and of the desirability of a smaller increment size on
A, this redundancy is retained.

The A-rotation is preferably incremented by a smaller step
size because of the importance for good contours of defining an
optimum score over the "hidden" angle A. This is done by the
grid search of % alone without the aid of interpolation. The var-
iation of the score with A is separately plotted as in figure 12
only at the solution, if at all. On the other hand, the marginal
scores on the grid of "explicit" angles 6 and ¢ are used to con-
struct the contoured regions such as those in figures 9, 10, and
11. Thus, the detailed variation of scores with 8 and ¢ is in-
terpolated and explicitly displayed, whereas the variation with
A does not have these advantages. Experience with the program
and comparisons with exact regions constructed by the procedure
described below have confirmed the desirability of a finer samp-
ling of X than of 6 and ¢ to establish precisely the score pro-
jections before the 6, ¢ contouring is done. More complicated
solution and contouring procedures have been rejected in favor
of a simple, direct construction.

For each position of the A-pole, the best value of Rp and

R_ (P-score and S-score) found during the rotation of the B-plane
i8 assigned to the position of the A-pcle on the projection of
the lower half of the focal sphere. These values are contoured
to produce ncnlinear 95-percent fiducial regions about the P-wave
solution and S-wave solution as explained below. At each step in
the A-rotation, Rp and RS are stored for use in the combined so-

lution. In the combined sclution, the smallest combined score
RPS over X is assoclated with each A-pole position. These values
of Rps are then contoured at equal-score intervals to show the
likelihood surface for the combined sclution. The minima of this
surface give the maximum-likelihood solution for the position of
the poles A and B. The results of these plots are shown in fig-
ure 11.

From Udias (1964), we have the equations of the computed
polarization angles € for both the type II (double-couple) and

18



the type I (single-couple) polarization angles. The equation for
the double-couple polarization angles 1is

SH (B, y + By X)X - (ax y + ay X}y

The observed polarization angles are plotted on a stereograrhic
projection as in figure 6. The theoretical values of polariza-
tion angles for each solution are computed from the above equation
and plotted as shown in figure 7. This plot allows visual com-
parison with the observed values and is helpful for evaluation of
a particular station's agreement with the solution.

The equation for the single-couple polarization angles is

i SH i -(ax y - Bx X)) cos iO
tang = — =

= 4 — 2 s - .2 s
SV (ax X BX y)cos i, Yy 2 sin® i

In our procedure, it is simple to replace one eguation with the
other in the computer program. However, experience has shown
that the double-couple model with its larger number of adjustable
parameters will usually fit the observed data better than the
single-couple equation. For this reason and because Udias and
Baumann (1969), Stauder (June 1968, December 1968}, and others
find a double-couple model to be acceptable in a majority of
cases, we have used the type II solution in most work so far.
The computer time required makes it undesirable to run every
earthquake using both models. In the future, we hope to study
some shallow earthquakes using the single-couple model.

The two orthogonal planes A and B define four quadrants of
the focal sphere. The double-couple and single-couple models
both predict the same first motions that are alternately compres-
sional and dilatational in these quadrants. The observed or com-
puted first motion y. at station i was defined as +1 for com-
pression and -1 for dilatation. The sign of a quadrant is de-
fined as the sign of the product xy, of the x- and y-coordinates
in the rotated system, of any position vector X =

(x,y,z)t in that quadrant. From the above eguations x = o X +
B y + Yy z, y = ay X + By y + Yy Z where X = (§,§,E)t is the ]
position vector in the original, unrotated system. Thus, if X{
is the computed first motion, xi = Sgn(xiyi), giving +1 in the

first and third quadrants and -1 in the second and fourth quad-
rants in the xy-plane. This sign convention agrees with that of
Stauder (1960).
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Figure 2.--Relation between the station complementary circles and the poles of the
planes which define the compressional and dilatational quadrants.



When B lies in the hemisphere not containing X;5 X,*B is then
negative. Now if both trial poles Bx and B lie in the same hemi-
sphere as in figure 2a, the product (Xi-Bx)(Xi-By) will be pos-
itive and therefore Xs is in a positive quadrant. If the trial
poles lie in opposite hemispheres as in figure 2b, then Xi lies

in a negative quadrant and the poles are separated by the com-
plementary circle of Xi.

Hence, we can conclude that counting the number of station
vectors lying in negative quadrants is equivalent to counting the
number of station complementary circles (SCC's) that divide the
trial poles. Conversely, counting the number of stations in pos-
itive quadrants is equivalent to counting the number of SCC's
that do not divide the trial poles. Note that "divide the poles”
means the same as to cross the shortest great circle path joining
the two poles. In fact, an arbitrary path between the poles
crosses each SCC whose station vector lies in a negative quadrant
an odd number of times and crosses each SCC whose station vector
lies in a positive quadrant an even number of times.

The SCC's are differentiated in some fashion according to
whether the observation at the station is compressional or dila-
tational. For example, the SCC's corresponding to compressional
observations are plotted as solid lines and those corresponding
to dilatational observations are plotted as dashed lines. Having
selected any two orthogonal trial poles, the total number of
agreements (i.e., the P-score Rp) is equal to the number of neg-

ative SCC's dividing the poles, C(_), plus the number of positive

SCC's not dividing the poles. The last number is the total number
of positive SCC's N(+), minus the number of positive SCC's di-

- 4 L - : —_ + .
viding the poles C(+), giving RP C(_) C(+) N(+)

It may happen that one of the trial poles falls on the upper
hemisphere of the focal sphere. In this case, a change of sign
of the pole on the upper hemisphere transfers it to the diamet-
rically opposite point on the lower hemisphere; this has the
effect of changing the signs of all quadrants while leaving the
planes in the same orientation. Thus, the score i1s changed to

- . = + 1 i - =
N Rp Because N N(+) N(_), this gives N Rp C(+)

C(_) + N(_). By reversing the argument, we see that only trial

poles and SCC's on the lower hemisphere need be considered if the
score is computed by the equation

- o - N

o - T = Ca Cb + Nb, Tig
p N
N=T » T<z
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Here Ca is the number of SCC's of one type dividing the poles,
Cb is the number of SCC's of the opposite type dividing the poles,
and N is a constant equal to the total number of observations of

the opposite type.

If Ca is the number of positive SCC's, then when T<§, the
two poles on the lower hemisphere are separated by a dilatation-
al quadrant; whereas, if Tiﬁ, they are separated by a compression-

al quadrant. This is mentioned as an aside because the sign of
the quadrants is usually obvious from inspection of the observa-
tions. The case of both poles on the upper hemisphere is of no
consequence because reversal of both poles leaves planes, signs,
and scores unchanged. The maximum-likelihood solution consists
of the region generated by all of those pairs of poles separated
by the maximum possible number of SCC's of one type and the mini-
mum possible number of the other type.

The preceding procedure applies whether or not the poles are
orthogonal. However, the poles are required to be orthogonal in
all solutions we have performed based on the incremental search
described above.

With the use of this procedure, the exact boundary of the
P-wave solution region can be obtained graphically. Consider a
solution defined by five SCC's with compressions and dilatations
plotted as solid and dashed lines, respectively, as in figure 3.

A pole 1in the region G (dotted) and a pole in the region H (cross-
hatched) are separated by the maximum number (one) of dashed lines
and the minimum number (zero) of solid lines. The requirement
that the poles be orthogonal complicates the construction slight-
ly., All poles in G or H may not possess an orthogonal pole in

the other region. In the case represented in figure 3, H is

large and the region consisting of all points orthogonal to points
in H is also large and completely covers G. The reverse is not
true. We can find the region of points orthogonal to any given
region by drawing the complementary circles of the corner points
of that region, as shown by the dash-dot lines in figure 3 for

the region G. These lines will be great circles through pairs of
stations. The area between these complementary circles contains
all points orthogonal to points in G. Thus, considering both

the orthogonality criterion and the station distribution, we find
that the solution is bounded by the limits of the area K shown as
dotted and crosshatched. In general, the region of points orthog-
onal to K may not cover all of the initial region G and this must
be checked. In the example shown, G and K are orthogonal regions,
that is, any point of either region has orthogonal points in the
oppeosite region. Thus, G and K represent the regions for the
poles giving the maximum-likelihood solutions for this example.
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Figure 3.-- Construction of the exact boundaries for the
maximum-likelihood P-wave solution.






EXACT
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COMPUTER-CONTOURED
BOUNDARY

DUTLINE OF "K'

Figure U.--A comparison between the computer-contoured and
the exact boundaries for the maximum-likelihood P-wave
solution.
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the station distribution, the data, and the functional and sta-
tistical model assumed. Even in those nonlinear problems that
still permit an exact analytical scolution, analytical small-
sample equal-likelihood contours are unlikely to be practically
obgainable. The same applies, a fortiori, to subproblems (b} and
(c).

There are two standard apprcaches which can overcome this
difficulty in practice: (1) linearization of the model in the
vicinity of the scolution and use of the standard linear least-
squares error-analysis procedures, or (2} numerical point-by-
point construction of the fiducial regions. Even after the lin~
earization in approach (1), the solution to subproblems (b) and
(c) presents difficulties unless the joint distribution of error
is multivariate normal. Under this assumption, complete solu-
tions to subproblems (a), (b), and (c¢) are available for the lin-
earized problem. In the nonlinear case only, a large-sample
(large N} result is available for the exact distribution of
maximum-likelihood estimators and consequent large-sample fiducial
(confidence) regions. This result has only limited applicability
in the present problem, but will be returned to briefly in con-
nection with S-wave fiducial regions. The numerical construction,
approach (2), has the advantage of producing the maximum-
likelihood solution and the solutions to subproblems (a) and (b}
by consistent procedures that use the same numerically generated
values.

The boundaries for both S-wave and P-wave fiducial regions
are contours of the score surfaces which are numerically generated
as described above 1in connection with the maximum-likelihood
solution procedure. While the determination of P-wave regions is
entirely numerical, it 1s more convenient to determine the size
of the S-wave fiducial regions using a result from linear least
squares carried over as an approximation to the nonlinear case.
Thus, P-wave data are handled entirely by approcach (2}; however,
for computation of the S-wave fiducial regions, approach (1} is
used to determine the size of the region and approach (2) to de-
termine the boundary configuration. Inspection of the regions
thus obtained (see figures 9, 10, and 11) confirms the signifi-
cant departure of the contours from the elliptical shapes ex-
pected from a linear, or large-sample,model. That is, the non-
linearity of the model has a significant effect on the shape of
the range of reasonable variation.

Before considering the statistical aspects of subproblems
{b}, content, and (¢}, interpretation, there are first some con-
siderations that arise because the parameter space is three-
dimension while the representation of regions is, of necessity,
two~dimensicnal. The parameters are the three angles $,8,2 that
specify the rotation carrying X into X.

In a multivariate problem, three types of fiducial regions
are distinguished, just as three types of preobability densities
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(cor nuous variables) or functions (discrete variables) are dis-
tinguished: Jjoint, marginal, and conditional. TFor the moment,
we will postpone comment on any subtleties concerning the precise
probability statements that can be made about fiducial regions.,
Roughly speaking, a joint 95-percent region is a volume in the
curvilinear 6¢r-space that has a 95-percent probability of cover-
ing the true values of 6,4,A. On the other hand, a marginal 95-
percent region on 6 and ¢ has a 95-percent r »>bability of contain-
1ng the true values of 8 and ¢, whatever the true value of A. A
conditional 95-percent region on 6 and ¢, conditional on XAy, has
a 95-percent chance of including the true values of 6 and ¢ when
A is constrained to equal A,. While these distinctions may ap-
pear at first to be inconsequential, they are, in fact, central
to the correct construction and interpretation of multivariate-
confidence regions.

The only kind of region constructed here is a three-
dimensional joint fiducial region in f,¢, and A. .This three-
mensional region is then visualized by means of its projections
onto an azimuthal equal-area map of the lower focal hemisphere,
just as a volume in Cartesian x-, y-, z-coordinates can be vis-
ualized by its projection upon the coordinate planes. The 6¢A-
space itself is curvilinear and cyclic, not Cartesian, and is
therefore difficult to visualize as a whole. However, the basic
idea of projection along tangential coordinate curves holds.

This tangential projection is effected numerically by con-
touring scores that are minimal over A on a 8¢-grid. In the
6pA=-space, such a minimum Rm (or maximum, depending on the score
in question) 1s a point of tangency of a 6¢-constant, A-variable
coordinate line, with the three-dimensional, equal-score surface
on which the score is Rm. A contour line of constant score on
the 8¢-surface is generated by all those A-coordinate lines tan-
gent to the equal-score surface.

The projection of the lower hemisphere thus contains two
two-dimensional "views" or curvilinear projections of the three-
dimensional surface bounding the fiducilial region and embedded in
the 6¢i-space. A third "view" could be obtained by contouring
scores about the third pole, or any other direction fixed in the
X-system. Only the A- and B-pole contours are shown, however,
because these are most directly related to the position of the
two nodal planes and are sufficient to describe the uncertainty
in their orientation.

To make possible the comparison of different fiducial regions,
it is necessary that the regions be standardized so that their
content 1s in some sense the same. Recall that subproblem {(c)
involves the definition and interpretation of a suitable measure
of content and that.subproblem (b) deals with the procedure for
finding a particular likelihood contour which will realize a cer-
tain content chosen in advance. It is generally acknowledged
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that the ideal meas ‘e of content in "~ situation is j 1il1-
ity. Thus, an ideal me--r—- of the range of variability

region constructed about Tne particular solution (an estimate of
the unknown, true parameters), with the property that the prob-
ability of the region including the true parameters is a constant
(say 95-percent) set in advance.

Such a region, if it can be found, is called a "strict ¢ nfi-
dence region." 1In a sense, all fiducial regions are approxima-
tions to strict confidence regions. Such regions may still dif-
fer among themselves, however, because of necessary compromises
with the exact theory or because of differing interpretations of
the acceptable meanings of "probability."

There is one method for construction of strict confidence
regions that uses only the joint probability function Pr(x;B) of
data ¥, dependent on fixed but unknown parameters B. No addition-
al new probability functions are introduced except those deriv-
able by straightforward summation (Rao 1965, and Cramér 1946).

In the following description of this construction, it is assumed

that both the observation and parameter spaces are discrete.

Similar equations apply when both are continuous. In the dis-
crete case, an equation such as L Pr = 1 - ¢ 1is understood to
A
mean that I Pr is the smallest sum >1 - a. Exact equality is not
A

usually possible because the sum increases by discrete jumps.

The probability function Pr(X;B) gives the probability of ¥
for a partlcular value of B. On the basis of these data x, the
maximum-likelihood solution is B(X). Then Pr(R;B) = EPr(x,B)
where the sum is over all ¥ that produce B as the maximum-
likelihood estimate. Thus, for a given B, we can associate with
every point in the parameter space the probability of finding
that point B as the maxlmum-llkellhood solution Pr(B;B). If each
X determines a unique &, then & . Pr(B;B) = 1 because

allg

I _ Pr(X3;B) = 1. A region A(B) about B so that I Pr(B;B) =
ally A

l] - o for a given 1 - a, say 95-percent, is called, for reasons
not gone into here, an "acceptance region." Some criteria, such
as Pr(B;B) = constant, must be established for the boundary of
the acgeptance reglon Thus, with probability 1 - a, A(B) con-
tains B (the maximum-likelihood estimate) when_the true value of
the vector of the parameters is B. Now let C(Bl) be the set of
11 B such that their corresponding A(B)'s all contain a particu-
lar estimate Ri1. Then C is a strict 1 - @ confidence region_about
B,; that is, the probability that the unknown true value of B is
covered by C is 1 ~ ¢. For, by construction, C covers B if and
only if A(B) covers B8,; that is, the two events {B€C(B )} and
{R,¢A(B)} are equivalent and therefore have the same probablllty
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1 - a. In contrast to the one-dimensional case, the multivariate
case involves some arbitrariness arising from the choice of other
criteria for the boundary of A(B), C(8), or both.

This definition of a strict-confidence region, while logi-
cally sound, has been criticized as being nonintuitive. More to
the point are the criticisms that: (1) the properties of linear-
ity,_continuity, and homogeneity of the A's, of symmetry of
¢(B;R), and so forth, that make an analytical construction of a
strict confidence region possible in some cases simply do not ap-
ply in the case of S-wave and P-wave data; (2) direct numerical
gonstruction of the grid of acceptance regions is out of the
question because of the magnitude of the computations involved;
and (3) the correct extension of this derivation for strict con-
fidence regions to mixed discrete and continuous Pr's and to set
estimators (R not uniquely defined) is problematlc At present no
practlcal procedure is known for construction of strict confidence
regions by this method in the problem at hand.

In some problems, it may be expedient to use as an approxi-

mate fiducial reglon the acceptance region constructed about the
particular solution B, taken as true. The correct probability
statement is: Under the hypothesis that B, the true value, is in
fact equal to B the partlgular solution obtained, the probabil-
ity that another solution 8 will fall within R is 95 percent.
This region gives an idea of the scatter introduced into the sol-
ution process by random errors in data. The construction of this
single acceptance region still involves difficulties in the gen-
eral case.

A second method for construction of strict confidence regions
requires a statistic s(x,B) which is a function of the parameters
B, but whose probability function Pr(s) is not. Then a probabil-
ity statement about s can be made without knowledge of the param-
eters and can sometimes be converted into a probability statement
about the parameters. For example, if Pr{s(x,B)<s,;} = 1 - a and
if {S(x,B)<Bﬂ iff {BeC(X)}, then C(X) is a (1 - a)-confidence
region for E based on the observations X. The linear-normal reg-
gions described below in connection with S-wave data are most
easily derived from this viewpoint, although an exact extension
of this method to nonlinear, non-normal data is again not known.

There are three general constructions that are essentially
different from the above two methods and that avoid some of their
difficulties. The differences between the three lie more in the
interpretation than in computational detail. For the purposes of
the discussion in this report, the three constructions have been
lumped together as "Bayesian'" because of (i) computational simi-
larities; (ii) historical connections; (iii) the common feature
that each construction involves the introduction of probabili?y
measures or conventional measures of content (such as a priori
probability, fiducial probability, or percent likelihood) whose
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significance must be postulated rather than deduced from that of
Pr(x;B); and (iv) the common_features that only one point in the
sample space of observables x, that which is actually observed,
enters into the equations. Thus, no summations of probability
over ¥, such as those needed to construct acceptance regions, are
involved. The newer consensus seems to be that Bayesian proced-
ures are simpler, more flexible, and more appealing to intuition
than are strict, non-Bayesian constructions; in addition, they
have the advantage of being possible.

The three "Bayesian" constructions are discussed below.

(1) Percent-likelihood region. Let X = I L(83X), then R bound-
alle

ed by L = constant and such that £ (L/K) = 1 - a is a 100(1 - a)

R
percent-likelihood region. This is a minimal interpretation,
stripped of all statistical implications, that is favored by phys-
icists and others for just the sort of statistically intractable
problem we have at hand. Nothing is asserted except that R con-
talns, for example, 95 percent of the likelihood over B for a
given ¥. This interpretation achieves the goal of standardization
of content.

(2) Fiducial region. There does not seem to be a clear exposi-
tion of fiducial probability in the multivariate case requiring
renormalization. For present purposes, fiducial probability ap-
parently amounts to nothing more or less than the assertion that
because (renormalized) likelihood obeys the defining postulates
for a probability function, and for other more obscure reasons
not gone into here, renormalized likelihood is, in fact, a prob-
ability function denoted by the term "fiducial probability" to
distinguish it from conventional probability. The region R con-
structed exactly as in construction (1) is called a 95-percent
fiducial region.

(3) Classical Bayesian confldence region. This is a region R,
given by L Pr(B[x) =1 - a, Pr = constant on boundary, where

R
Pr(B|X) is the a posteriori probability function of B conditional
upon ¥, obtained from Bayes' formula

Pr (BlX) = L(B;X) Pr(B)/T.

Here T = § _L(B;X)Pr(B8) where Pr(B) is the a priori prob-
allg _
ability function of B.

The problem sometimes encountered is that there may be no em-
pirical hold on Pr(B) and that there may be more than one reason-
able choice of parameters and associated a priori Pr that do not
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lead to identical results but for which there is no clear rule
for choosing one over another. The only situation con: ~ lered here
is that of complete a priori ignorance about B, This is usually
expressed by Pr(g) = where Ze = 1 and ¢ is constant, although
B

the case of mixed discrete observat ns and continuous parameters
admits other possibilities. (Because the parameter space spanned
by 8¢X is finite, we need not be concerned with the limit as
€ + 0, as is sometimes necessary.) In this case, Pr(B|Y) L/K
with K= I _ L so that the classical Bayesian confidence regions

allg
are identical with those obtained from construction (1) or (2).
The statement is allowed that, on the basis of the data yx, there
is a 95-percent a posteriori probability that the true value of
B lies in R.

Historically, constructions (1) and (2) are outgrowths of
construction (3) that attempt to avoid the introduction of
a priori probabilities while retaining the computational advan-
tages of a Bayesian approach. In this report, the term "fiducial
region" 1s used, not because of a special preference for construc-
tion (2) above, but as a neutral term which has been used by
others to avoid the implication that regions are either strict
confidence regions on the one hand or classical Bayesian confi-
dence regions on the other. A fiducial region is defined by the
specification of a computational procedure, the results of which
may be interpreted as in construction (1), (2), or (3).

Although the demonstration is lengthy, all of the above con-
structions, non-Bayesian and Bayesian (understood to involve on-
ly the "complete-ignorance" uniform a priori probability as de-
scribed above), can be shown to lead to the same regions when ap-
plied to linear-normal adjustments incorporating the standard as-
sumptions. That is, the joint regions finally obtained will all
be ellipsoids (for u = 3) of identical size and shape. Thus, in
the linear-normal case, there are several simultaneously correct
(or at least valid alternative) probability statements which can
be made to aid the interpretation of the regions. In the absence
of linearity, normal statistics, continuity, and large samples,
no such unification has been found. Mixtures of discrete observ-
ables and continuous parameters give rise to still more alterna-
tives and problems of interpretation.

This aforementioned list does not exhaust all possibilities
for construction of confidence regions. The aim has been only to
give a brief summary of methods available for the sclution of
subproblems (b) and (¢) in the case of S-wave and P-wave first
motion data.

B. S-Wave Fiducial Regions

If the S-wave model is linearized in the vicinity of B, the

following results hold (Hamilton 1964, chapter 4). If RLS is the
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minimum RS at B where R is the S-wave score, defined as above,
and R denotes RS at some B # B, then (R - RLS)/RLS is distributed

as (b/V)F , vhere b is the dimension of B, (three), and v is the
)

"degree of freedom", (v = n - u = N - 3), associated with 82.

b . . . .
Then R<{1 + 35 Fb,v, 1 - a}RLS is a (1 - a)-fiducial region on B.

The use of exact nonlinear contours whose size is determined
by the statistics of the linear case is recommended in Draper and
Smith (1966). The proof that the region so constructed consti-
tutes a fiducial region for B (while on the face of it, the prob-
ability statement refers to a functlon of R), rests in the linear
case upon the identity; (R - R g)/Rigo = - BE N(B - B)/R g =

l

(8 - ﬂ@ "1 (% - B)/v, where ﬁg - N' 82 and N = A'WA, the

normal equation coeff1c1ent matrix formed from the observation
equations, V = {E(B ) - £°} + A(R - B ), that result from Taylor's
BEI

series linearization of €(B), with A = —:
0f Ba

The ellipsoid

-1 .
b,v, 1 - o 18 the (1 - a)-

confidence region about 8 in the linear problem. If v + =, that

defined by (B - B‘)tﬁé (B - 8) < bF

is, o2 is assumed to be known without error, the last equation

--_Ath—-l T _ 3 2 SR R
becomes (B - B) Mg © (B g) < Xp,1 - o Where Mg = N'7 og. In
most linear problems, this ellipsoid is more easily constructed
by diagonalization of N or M than by contouring of R-values.

The equivalence of the two procedures is assured in the lin-
ear case by the identity just mentioned. In the nonlinear case,
the contouring of R-values gives the correct shape of the fidu-
cial region; the use of the R = {1 + E F } Ry g contour

b\),l—a
as a l - a Peglon is justified as an approximation by an argument
using a Taylor's series expan51on of R about R. This expansion
gives R - RLS = % (R - Q(B - B) +# ... where 0 =
2 _ ~ o e
E:BZIA . There is no term linear in (B = B) because B 1s a sta-
oB9B B

tionary point of R. TFrom R = VWV and V = €(B) - &°, one finds,

3%e
. _ 2 ~
for W diagonal, Q = 2{nij + ngv2 BB BB ———=7—} where {nij} = N and
{Ei} = e(B). Thus, R - RLS = (B - ﬁ)tN(E - B) + terms that are
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at least cubic in small quantities (g - 8) and V. Neglecting
these higher terms leaves the identity from which the desired re-
sult follows just as in the truly linear case.

This approximation in the neighborhood of R also justifies
the use of §, derived from the linear theory. (v82/0?) = (RS/GZ)
is distributed as xc,a fact which can be used to construct a con-

fidence interval for 0% about 62 (Hamilton 196L4).

Note that, because the expected value of Vi E(vi) and,

therefore, of any linear combination of vi's is zero, E{%Q} = N.

. . R . . _ 9%1nL
Define I, Fisher's information matrix, by I = - E —— .
, JdRoR
Since L{B) = c expy - - R (g) ! , then 97InkL . _ -lrQ and
20 s T 20
B3B8
I = N—%T . It is known that for large numbers of observations,

a maximum-likelihood estimate R, based on likelihood L, is approx-

imately (multivariate) normally distributed, with mean B and

M= 1"t - Nlg2, Thus, as the number of observations increases,

the linear-normal theory becomes more accurate. Intuitively ex-
plained, this means that for large v the fiducial region becomes

smaller (generally N_1 behaves like %I) and in a small enough

neighborhood of the solution the R = constant contours become
ellipses.

The preceding has been in the nature of a summary of rele-
vant points only, with no attempt at derivational completeness.
The analysis of the linear-normal adjustment is well established
and extensively discussed in the statistical literature (Hamilton
1964, and Graybill 1961). We have found the extension to the non-
linear case to be an eminently satisfactory and practical approx-
imation that greatly simplifies the construction of S-wave fidu-
cial regions.

C. P-Wave Fiducial Regions

As noted previously, the maximum-likelihood estimate based
on P-wave first motion data 1is not unique, but consists of a
region, possibly disconnected, in the parameter space. For given
data fﬁ = {X§}= the three-dimensional parameter space can be sub-

divided inteo "constant-score" volumes 1n which R_ is constant.

Constant score also means constant likelihood. Each of these
volumes is imaged on the projection as two constant-score regions,
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Figure 5.--Computer plot showing P-wave first motion data
on the lower hemisphere.
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one about each pole. In the following, "region" may refer either
to a volume in the parameter space or to the areal projections of
such a volume. The constant-score regions may be further sub-
divided into "constant-combination" regions (CCR's) in which the
same RP stations agree. Thus, in a CCR, the same specific sta-

tions (R_ in number) agree and the same N - Rp stations disagree
for any 8 in the region. If instead of Pi = P, the Pi are all

different but constant (independent of B), the CCR's are identical
with the constant-score regions.

The CCR's represent the finest resolution of the parameter
space that is possible on the basis of P-wave first motion data
for a given station distribution on the focal sphere. No dis-
tinct points in the same CCR can be discriminated by any evidence
from the P-wave first motion data. The partitioning of the sample
space into CCR's is completely determined by the station distri-
bution before the introduction of specific data Xg- A CCR can be

defined as the set of all B for which i;(g) = {XE} is constant.
Not all 2N possible combinations of + 1's and - 1's in i;ﬁg) are

produced by some B. Therefore, for a given YP’ not all
(g) possible combinations of agreements and disagreements produc-

ing a score of R are attained for some B, Denote the number of
combinations producing a score of R by C, for later use. Constant-
score regions are built up out of CCR's."P The specific scores ob-
tained and the configuration of the constant-score regions depend

on x°, while the configuration of CCR's does not.
P g

On the basis of data I;, each CCR has associated with it the

R N - R
likelihood P P(1 - P) P, That is, for B in a particular CCR

denoted by A, the likelihood is L(EEA;EB) Pr(§;|§eA) =

R N -R
PP -P) P, Thus, the continuous parameter space has been

divided into a finite number of discrete events (EaAj), where

j =1 ...m and m is the number of CCR's. The sum of likelihood
over these events is given by

L R N - R R N - R
TL(BeA.3x°) = L P P(1 - P) P-x{c, PP1-p P,
. 3°%p . R R
] ] P P
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Figure 6.--Computer plot showing observed S-polarization
angles on the lower hemisphere.
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N -R

Let K = 1 C P p(1 - P p l; then region F, defined so
allR
R N - R
that £{c, PP (1 - P) P/x}= £, is a 100f-percent fiducial
F'op
region for B about é where f is the smallest value of the sum
> 100(1 - a) = 95 percent. The summation starts with Rmax and
proceeds downward, that is, R -1, R - 2, and so forth.
max max

Region T 1is bounded by that equal-score (equal-likelihood) con-
tour about B for which the sum first equals or exceeds 1 - a.

The CR 's are approximated by counting the number of combina-
P
tions giving the same score encountered during the grid search of
8¢A. The CR 's and the corresponding likelihoods-are stored in

order of descending magnitude from Rmax' Thus, K is the sum of

this entire list. However, in practice, the summation is stopped
when additional terms cease to contribute significantly. It is
assumed that terms for Rp <.5N never contribute significantly.

The Rp on the boundary of F is found by summing this list again

until the sum first equals or exceeds .9$5K.

Interpreted as a classical Bayesian confidence region, F is
based on an a priori Pr(B8) which is constant and equal for each
of the events (BeAj). That is, the a priori probability associa-

ted with each CCR is the same; the occurrence of B in any CCR is
a priori as probable as the occurrence of B in any other CCR.
Interpreted as a percent-likelihood region or a region based on
fiducial probability, no a priori probability need be brought in.

Another possibility which suggests itself is that the a priori
¢(B) be uniform over the volume of the parameter space so that the
a priori probability associated with a CCR is proporticonal to its

R N-R
volume. Then the sums for K and F have the form [ P Pa1-p) Paq
L

where the sum is over the 8¢i-grid points & and where dQ

2

g the

differential element of volume in the #¢8i-coordinates, is propor-

tional to % sinBE d6£d¢£dkg. This procedure is identical to the

conventional treatment when all variables are continuous.

The mixture of discrete and continuous variables offers the
possibility of discretization of the parameter space. Although
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Unlike many routine a ustment problems, the computational
details of exact small-sample fiducial regions for P-wave (and
S-wave) first motion data are surprisingly sensitive to subtle
(not to say obscure) variations in the statistical argument. This
fact has motivated us to present the above discussion of general
approaches to fiducial regions to provide an appreciation of the
subtleties involved and a basis for further discussion.

V. DATA PROCESSING

The preceding sections of this report discuss some statis-
tical techniques for aiding the evaluation of a focal plane solu-
tion and procedures for finding that solution from "observed"
data projected on the focal sphere. How these observed data are
corrected and projected to the focal sphere has much to do with
the accuracy of the solution and with the meaningfulness of the
statistics applied. All procedures currently used to get observ-
ed data on the surface of the focal sphere are fairly straight-
forward. However, 1f the accuracy of the solutions is to be im-
proved, then at least some of the techniques for analyzing the
observed data will surely have to be improved.

The actual process of generating a solution is summarized in
the flow diagram in figure 8. The first step is to gather the
seismograms to be used. These are usually obtained as 70-mm film
chip copies from the National Geophysical Data Center in Asheville,
N.C. TFor large, important earthquakes, a request is sent to co-
operating seismograph stations throughout the world for the loan
of their original seismograms of the earthquake.

The direction of first motion of the P-wave is read from the
seismogram. When available, both long-period and short-period
records are read. The first motions taken from long-period rec-
ords are usually used in the solution; however, sometimes stations
having only short-period seismographs may be located in critiecal
positions relative to the mechanism. TFor this reason, it is
sometimes desirable to supplement long-period data with short-
period observations. The relative merit of using long- and short-
period P-data is under study; this is one reason for reading both.

The stations having long-period records which are in the
proper distance range are studied to see i1f they have usable 5-
wave data. If so, horizontal components of long-period seismo-
grams from these stations are digitized in the vicinity of the
S-wave arrival, using an x,y digitizer which records the output
directly on magnetic tape. The digitizing begins at the start
of a time mark and ends at another time mark. In addition to the
X, y values, a code number is recorded. This code number is used
to indicate the component, the beginning of a time mark, and
the start of the S~wave. The beginning of the S-phase is picked
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Figure 8.-~-System flow chart showing the operations and
computer programs involved in computing focal mechanisms.
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by the operator digitizing the record. When desirable, an opera-
ticnal computer program is available to edit or consolidate these
tapes. Another program, SPLOT, will read these tapes and plot
the digitized seismograms on a Cal-Comp plotter. These plots
give back the data in the form of seismograms at the scale at
which they were digitized for visual comparison with the original
records. In addition, on the same execution run, a plot of the
horizontal-particle motion for a 30-second portion of the record
is given, beginning slightly before the start of the S-wave that
was picked by the operator. The S-polarization angle is selected
from this plot and recorded.

The observed polarization angle to be used as input to the
program for computation of the focal mechanism solution is then
computed from the relation:

(S-polarization angle) = (back azimuth) - (S-orientation).

It might be noted that while the S-orientation is measured pos-
itive north through east in the distance range normally used, the
S-polarization angle is positive in the opposite sense because of
the curvature of the ray path. At current writing, only stations
at distances of between 40° and 80° are used, and no crustal cor-
rections or surface interactions are computed for the polariza-
tion angles. This should not produce an error of more than 6° in
the angle (Nuttli and Whitmore 1962). More experience with a
larger number of solutions may help to determine if corrections
are necessary.

Some typical S-wave particle-motion plots have been shown by
Nuttli and Whitmore; because many plots of the authors are simi-
lar to theirs, we have not shown any here. However, we have noted
dertain patterns which occur repeatedly. Standard deviations of
15° to 20° have not been unusual among the solutions we have run,
and the same is true of those presented by Stauder (June 1968).
Surface corrections in the distance range used can only account
for a maximum error of 6°, so improvement would seem to be pos-
sible in the analysis of S-wave motion and the selection of
S-polarization angles.

Coordinates (X.,yY:.,z.) of an observation on the focal sphere
have been obtained From the geographic coordinates of the station
and hypocenter by projecting the observation back along the ray
path. Those stations which are to be used in the solution are
keypunched onto IBM cards. These cards are then used as input
to the computer program ANGLAZ, shown in figure 8, which computes
the necessary station parameters needed in the focal plane solu-
tion. The program ANGLAZ was developed to make these calcula-
tions using subroutines provided by Dr. E. P. Arnold. For each
station, this program computes the distance, azimuth and back
azimuth, predicted arrival time, and angle of departure of the
ray at the source for both P- and S-waves. The angle of departure
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Figure 9,--Computer plot showing the 96.5-percent fiducial
limit for the P-wave solution.
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is computed using the JB (Jeffreys-Bullen) travel-time tables.
Nine pgints are interpolated from the tables, using Gregory's for-
mula with second forward differences (Jeffreys and Jeffreys 1956)
to get the travel-time at the appropriate depth. Gregory's for-
mula differentiated with second forward differences is then used

on these points to compute the ray parameter p = %%. The angle
of departure io i1s then computed in the normal closed form io =

arcsin(p%) where p is the ray parameter, v is the velocity at the
hypocenter, r is the radius to the hypocenter, and all are con-
verted to appropriate units. For stations within an arc-distance
of about 1.5°, another program provided by Dr. E. R. Engdahl is
used to make these same computations for P-waves because the
travel-time curves used in this system are more finely divided for
the crust near the epicenter. Both programs use JB travel-~times
and velocities. These programs print the parameters and also
punch cards with the same data. The observed P-wave first motions
and S-polarization angles are then keypunched on these parameter
cards and are used as input to the computer program PSWAVE.

The actual calculation of the solution and the contouring
of the fiducial limits are done by the program PSWAVE (see fig-
ure 8) which is operational on a CDC-6600 computer. This program
will find either a P-wave, an S-wave, or a combined P- and S-wave
solution.

When program PSWAVE has determined the best solution and the
statistical constants, it contours the fiducial limits and plots
the data as shown in figures 5 and 6. The program actually writes
a magnetic tape containing the proper instructions for a Cal-
Comp plotter to draw the diagrams. Figures 5 through 7 and 9
through 12 were all computer-generated by the program PSWAVE. A
summary of the solution is printed out in table 1. Because of
the large number of increments needed for precise solutions, some
of the program has been done in assembly language to increase the
speed of the calculations. Moreover, because of the length of the
programs, they are not printed here.

The Aleutian earthquake of May 1lu, 1969, was selected as a
good example of the procedures presented here. The P-wave data
plotted in figure 5 were all selected from long-period instru-
ments of the worldwide system. Short-period records were also
selected and agreed in general with the long-period data. At
least there 1s no acceptable short-period solution which is sig-
nificantly different from the long-period results. The evaluation
of this solution was carried out on a five-degree grid. The
solutions selected by the program PSWAVE are shown in table 1.

The orientation of the mechanism is specified by the x- and y-axes
of the focal mechanism coordinate system, and the contours show-
ing the fiducial regions are limits on the allowable variation

of these axes. Therefore, it is convenient to specify the solu-
tion by giving the strike and dip of these vectors. The strikes

45




Table l.--Earthquake focal plane

1969 May 14 GMT 19 hrs.
51.3N. 179.9W. 42 km.

Aleutian Is.

Pole of A-Plane

solution.

32 mins. 57.1 secs.

Pole of B-Plane

Strike Dip Strike Dip
P-wave solution 75.00 45.00 322.79 659,30
S-wave solution 180.00 30.00 337.20 651.98
Combined solution 190.00 30.00 336,31 64. 36

P-Wave Solution
Total observations 62
Agreeing observations 62
Disagreeing observations 0
Computed probability P 1.0
Fiducial 1imit (based on P = .85) 96.5%
Fiducial limit Rp 61

S-Wave Solution
Total observations 19
Sum of squared residuals Ry 5,002.5
Standard deviation 17.68
Fiducial 1imit 95.0%
Fiducial limit RS 8,041,5

Combined Solution
Agreeding P-wave first motions Rp 6l
S-wave sum of squared residuals RS 6,260.9
Weighting constants (a = 2.944, b = .00160)
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Figure 10.--Computer plot of the 95-percent fiducial limits
for the S-wave solution.
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Figure 11.--Computer plot showing the best combined P-
and S-wave solution and contours of_equal likelihood
around the maximum-likelihood solution.
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earthquake, it does not always happen that way. The authors have
seen cases where, because of the poor distribution of the S-wave
data and the better distribution of the P-wave data, the S-wave
polarization angles have had very little effect on the solution.
This circumstance shows the value of using both P- and S-wave
data with proper weighting as developed above.

VI. CONCLUSION

The system described here provides NOAA with the capability
needed for routine computer calculation of focal mechanisms based
on P-wave data, S-wave data, and combinaticons of the two. The
presentation of fiducial limits makes possible the evaluation of
the quality and allowable variation of any P-wave or S-wave solu-
tion. As these limits have the same meaning from one solution to
another and are presented on an equal-area grid, the relative
quality of sclutions is easy to evaluate.

The P-wave, S-wave, and combined P- and S-wave solutions are
all based on straightforward statistical arguments using the meth-
od of maximum-likelihood estimation. More complex statistical
models have been rejected in favor of a direct apprecach based on
clearly stated simplifying assumptions. Our experience with un-
published sclutions has convinced us that this direct approach is
adequate and produces results that are reasonable and intuitively
satisfying.

The new graphical-geometric method also presented here for
finding and constructing the exact boundaries of P-wave solutions
possesses significant advantages over conventiconal P-wave solu-
tions. This method has already proved to be a valuable supple-
ment to the numerical grid construction of boundaries; it is also
useful for checking programs and for studying particular earth-
quakes in detail. New computer programs based on this method are
planned; these are expected to provide exact limits for the P-
wave solution and for all significant alternatives more efficient-
ly than the present program using a grid search.

A study of the May 14, 1969,Aleutian earthquake shows clear-
ly the desirable properties of sclutions constructed by these
aforementioned procedures. In particular, the agreement found
between the P-wave first motions and the S-polarization angles
supports the concept of combined solutions.

The emphasis in this report has been on the methodology of
focal plane determinations and on the derivation and implementa-
tion of solution methods. Currently operational programs con-
stitute a tool for the extension of work in: (1) routine calcu-
lation and cataloging of mechanisms; (2) local and regional
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SUM OF SQURRES OF RESIDUALS

ALEUTIRN IS. 1969 MAY 14 1932 57.1 51.3N 179.9HW 42KM
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Figure 12.--Computer plot showing a profile of the S-wave score
with the initial plane held fixed at the value given.
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LIST QF NQTATIOI
* vector of observab s

| vector parameters

EML maximum likelihood estimate of parameters
$(x) probability density function (p.d.f.) of ¥
$(B) p.d.f. of B ( n "a priori" p.d.f.)

¢(x|B) p.d.f. « X conditicnal upon B

$(Xx,B) joint p.d.f. of ¥ and B

$(X3B) p.d.f. of ¥ functionally dependent upon parameters B

Pr(ib]_) probability function of Eﬁ conditional upon B

b1 fp,;élﬁ) mixed probability function of Ep (discrete variables)
and Es (continuous variables)

L( ¥) likelihood of B

L¢ YP,YS) likelihood of B, based on ¢r(§b,§slﬁ)

V vector of residuals, Vs

Vs residual = difference between the value of an observable com-

puted by a model and its observed value.

|
<

R "S_scopre" = WV (= Iv.? when W = I)
i

Rp "P-score" = n' ber of agreements between predicted and ob-

served senses of first motion of P-wave

R "combined P-S scopre" = aRS + bR

ps p

a = 1n ( 5) i
- - coefficients in R
b= L ps
202
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