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Cholesky Factorization and Matrix Inversion 
ERWIN SCHMID I 

ABSTRACT. The Cholesky square root algorithm used in the solution of 
linear equations with a positive definite matrix of coefficients is developed by 
elementary matrix algebra, indept-ndent of the Gaussian elimination from which 
it was originally derived. The Cholesky factorization leads to a simple inverc;ion 
procedure for the given matrix. A simple transformation makes the inversion 
applicable to nonsymmetric matrices. The least squares hypothesis is shown to be 
the simplest and most general unique solution of a system of linear equations with 
a nonsquare matrix of coefficients. The method of proof is extended to develop the 
Gaussian elimination algorithm in a readily comprehensible procedure. 

l. FACTORIZATION OF THE NORMAL 
EQ ATIO S MATRIX 

The Cholesky algorithm for solving a set of normal 
equations, in the sense as used in geodesy. foUbws 
quite readily from the ear lier Doolittle solution, 
now known as Gauss-Dooli ttle, which in turn is 
developed in the textbooks as a special case of 
Gaussian e limination applicable to a general set of 
linear equations. Although Doolittle's only publica
tion (U.S. Coast and Geodetic Survey, 1881) on 
the subject is merel y a presentation of the procedure 
without proof or reference to source, there is little 
doubt that his algorithm is based directly, or possibly 
by way of a translation such as Bertrand (1855), 
on a method for solving (symmetric) normal equa
tions which Gauss (18lla) proposed and proved 
some time before he developed the general 
"Gaussian e limination.,. 

C11C11 C11C12 C11C13 

C11C12 C12C12+C22C22 C12C13 +C22C23 
CCT= 

In any case, the Cholesky algorithm can be readily 
established with elementary matrix algebra. Since 
this algorithm is well documented. we limit our· 
selves to a heuristic approach with a 4 X 4 matrix 
which can readily be generalized to an n X n. 

The product CCT of a lower triangu lar , nonsingular 
matrix with real coefficients 

Cu 0 0 0 

C12 C22 0 0 
C= 

c.3 C23 C33 0 

cl4 C24 C34 c .. 

and its transpose CT is (row on row multiplication 
ofC) 

C11C14 

C 12C 14 + C22C24 

C11C13 C12C13+ C22C23 C13C13+ C23C23+ C33C33 C 13C .. + C23C24 + C33C34 

C11C14 C12C14+ C22C24 C13C14 +C23C24 + c33c34 c •• c.4+ C24C24+ c 3.c3. + c44c44 

1 National Ocean Survey, ationaJ Oce:an.ic and Atm0&pheric Admini.llration. 
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a symmetric matrix which is positive definite, since 
det (CCT) = det (C) · det (CT) = [det (C)]2. Arrang
ing this product matrix, as is customary, in alternate 

(l ') Cu 

(2) 

(2') 

(3) 

(3') 

(4) 

(4') 

C33 C34 

From (1) the matrix C can be reconstructed in rows 
(l '), (2'), (3 ' ), and (4') in that order. This re
versal of the multiplication procedure results in the 
Cholesky algorithm. We now assume the matrix 
CCT given as a symmetric positive definite matrix 
N with entries "'1k. In row ( l ' ) are developed the 
entries of the first column of C. The first term of 
( l ') is evidently the square root of the first term 
of row (1), and the remaining terms are obtained by 
dividing the corresponding term of row (1) by the 
first term of row (l '). In row (2) the first term is 
"reduced" by the product of C 12, the term immedi
ately above it, multiplied by itself; and the root of 
the difference gives C22. The other terms in that row 
are reduced by the product of C12 and the cor
responding term of the pertinent column; then the 
remainder is divided by C22. This completes row 
(2') which is the second column of C. 

The element n1k in the ith row and kth column 
(i ~ k) of the given matrix is 

I 

n1k=C11C1k+C21C2k+ . . . +C11C1k = L Cr1Crk (2) 
r • t 

as is easily verified by multiplication of the ith row 
of C with the kth. Writing the expression (2) in 
the form 

H 

c,,cik - "'1k - L CnCrk (3) 
r = I 

displays the complete algorithm in a single formula. 
The first factor Cn in the summation represents all 
the entries in the column of the diagonal term situ
ated above this term and previously reduced. The 
second factor Crk represents similar terms in the 
column of the term n1k being reduced. For the di
agonal term (k = i), which is computed first in a 
given row, the indicated reduction on the right-hand 
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rows labeled (1), (2), (3), and (4), and deleting the 
redundant terms below the diagonal , gives the 
scheme: 

(1) 

side of (3) results in C11Cu which requires a square 
root extraction. The other terms Ctk in the row 
(k>i) are obtained by division with Cu. 

A simple numerical example will illustrate the 
algorithm and point out some computational char
acteristics that are difficult to formalize algebrai-
cally. 
Example 1: 

Given is the positive definite symmetric matrix 

N= 

729 432 621 405 

432 1856 1928 560 

621 1928 2054 685 

405 560 685 741 

to be factored into the product of a lower triangular 
matrix C times its transpose CT. The entries of each 
row, beginning with the diagonal term, are written 
below in alternate rows a in (1). 

729 432 621 405 

27 16 23 15 

1856 1928 560 

40 39 8 

2054 685 

2 14 

741 
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The entries of the triangular matrix to be com
puted are written directly below the corresponding 
term of the given matrix. For example, n34 = 685 
of the given matrix is reduced by 23 X 15 + 39 X 8= 
657, 685-657 = 28 which, divided by the diagonal 
term 2, gives the reduced term C34 = 14. A complete 
numerical check on the computations consists in 
multiplying the computed triangular matrix by 
itself, column by column, since it is presented in 
the above scheme in its transposed position. 

In order to make the algorithm readily compre
hensible, the above example was designed so that 
all the numerical operations result in exact integers. 
This hides the effect of error accumulation in the 
general case. Extra significant figures must be 
carried in all the computations because all the 
entries a1k of the answer are, in accordance with 
(3), the result of a difference of two numbers of 
roughly the same magnitude. The situation is aggra
vated when a reduced diagonal term is small rela
tive to those previously reduced. If, for example, 
due to error accumulation, a23 = 39 in the example 
were increased to 39.05 the reduced diagonal term 
in the next row would become (2054- 232 -

39.052 ) 112 = 0.31 instead of 2, a completely erroneous 
figure which would falsify all subsequent results , 
particularly the entries in that row. 

By changing the diagonal terms of the given 
matrix N of the numerical example very slightly, 
say by adding 1 to each of these diagonal terms and 
factoring the resulting matrix, we should obtain 
numbers close to those obtained before but now no 
longer exact or rational. O perating with floating 
decimal point to four significant figures (not deci
mals), since this is the largest number of digits 
given in the problem, and comparing the result 
with that obtained with a larger number of signifi
cant digits, it will be found that: 

1. The results are correct to roughly four figures 
in the first two rows, i.e. , as long as the reduced 
diagonal terms are of the same decimal magnitude. 

2. The diagonal term of the third row again re
duce to a number which is no greater than 1/10 
of the two previously reduced diagonals, i.e., roughly 
one magnitude smaller. The figures in this row are 
found to be good to two digits only, and the degra
dation of accuracy is carried into all subsequent 
computations. 

3. With six-figure floating point precision the 
factorization wilJ prove correct to at least four 
digi ts in all the numbers of the result. 

By constructing a problem in which a diagonal 
term reduces to a number two magnitudes smaller 
than the previously reduced diagonals, it will be 
found that four additional significant digits are 
needed. In general we may conclude that if the ratio 
of the largest reduced diagonal to the smallest is on 
the order of lOk, the solution requires at least n + 2k 
significant digit to approximate n-figure accuracy in 
all the entries of the reduced matrix. Computing 
with less precision may result in the small diagonal 
term reducing to zero or a small quantity which 
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represents merely computer "noise," and conse
quently a completely erroneous result. 

There is no practical advantage in formulating 
such criteria more rigorously because the reduced 
diagonals are not even approximately known before
hand, but are developed in the solution. They can 
only indicate the precision of the solution when it is 
complete (unless, of course, it breaks down before 
that) and the increase in needed precision if a repeti
tion of the factorization seems indicated. The check 
on the solution, mentioned above, of multiplying 
c by er and comparing the result with the given 
matrix will spot blunders but is not sensitive to 
this type of error accumulation, any more than sub
s titution of approximated roots back into an alge
braic equation for example. In both cases error 
compensation masks the location and the amount of 
error. 

From equation (3) it follows that the Cholesky 
factorization is unique except for the ambiguity in 
sign introduced when i = k and the consequent root 
extraction to find Cu from C~. However, a second 
and equally valid and useful factorization of a normal 
matrix can be found , analogous to the development 
above, by postulating a product DTD, where or 
is an upper triangular matrix, instead of ccr. 
Writing this product in terms of the elements dtk 
of d, it will be readily apparent that the correspond
ing algorithm starts at the lower right-hand corner of 
the given matrix N and proceeds up the last column 
(or row) of the matrix and, in sequence, through the 
matrix from right to left (or upward). 

2. INVERSIO OF A TRIANGULAR MATRIX 

One of the most useful applications of the Cholesky 
factorization lies in the direct inversion of a sym
metric positive definite matrix N, which in the 
present context we designate a normal matrix, such 
as is encountered in the normal equations of least 
squares theory. The method is easy to comprehend, 
economical in computing space and time, and 
capable of optimal refinement of precision to a 
specified number of digits. Basically all that is 
required is the inversion of the triangular matrix C 
obtained in the Cholesky factorization of N. From 
N = ccr it follows that 

The inversion of a triangular matrix C is a relatively 
simple algorithm to execute. Consideration of a 
3 X 3 upper triangular matrix 

o o c33 

should be sufficient to indicate the sequence of 



operations and their validity for any size and type of 
triangular matrix. The nonsingularity and inverti
bility of a triangular matrix are apparent from the 
criterion that, for all i, C11 # 0. We postulate for 
the inverse an upper triangular matrix ( CT) - 1 with 
undetermined coefficients Y11< 

Y12 Y13) 

Y22 Y23 

0 y33 

and set the condjtion CT( CT) - 1 = I , the unit matrix 
of order 3. In order to make the algorithm more 
converuent for visual presentation and hand opera
tion, we write the inverse in transposed form C- 1 

underneath the given matrix er so that the matrix 
multiplication can be performed row by row: 

C11 C12 C13 (1) 

CT= 0 C22 C23 (2) 

0 0 C33 (3) (5) 

Y11 0 0 (1)- 1 

c - 1= Y12 Y22 0 (2)-1 

Y13 y23 Y33 (3)- 1 

The numbers on the right designate the respective 
rows of the given matrix and of the desired inverse. 
Since the product must equal / , each row multiplied 
by the corresponding primed row = 1, and= 0 
otherwise. In the arrangement of the matrices 
according to (5) it is convenient to start with the last 
row (3)- 1 of C- 1 and multiply it in turn with row (3), 
(2), and (1), setting the products equal to 1, 0, and 0 
respectively. Each multiplication yields a new y 
entry. Thus the first three conditions read 

= l 
= O 
= O 

(6) 

With an n x II matrix er there would have been n 
such equations. From the first of equations (5) we 
get the diagonal term y33 = l /C33, the reciprocal of 
the diagonal term of the given matrix, a relation 
whjch holds for all the diagonal terms. Substituting 
this value in the second of equations (6) gives 
Y23 = y33C23/- C22, and with both y33 and y23 in the 
third of equations (6) Y13 = (y33C13 + y23C12) / - C11. 
This completes row (3)-1, and we proceed to evaluate 
row (2)- 1 in similar fashion by multiplying it in orde r 
with rows (2) and (1). The multiplication with row (3) 
is unnecessary, since it imposes no new condition on 
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the coefficients. It merely proves the vaJjdity of our 
original assumption, i.e., that the inverse is the same 
type of triangular matrix. 

Generally, we start with the bottom row of the 
inverse and compute its entries in turn , from right 
to left, by accumulating the products of the y's 
(which were previously computed and entered) 
times the correspondjng C's in the given matrix and 
in the row above that used just previously. 
Example 2: 

A simple numerical example will illustrate that 
the algorithm is easier to perform than to formulate 
in words. Given , to invert the triangular matrix 

2 
4 
0 !) 

The significant portion of the matrix is written 
above the solid line, and the transpose of the inverse 
is developed immediately below in the space 
occupied by the omitted zeros. 

1 2 
1 4 

-1/2 1/4 

- 1/12 -5/24 

3 
5 
6 

1/6 

Starting with the diagonal term of the thi rd row, the 
corresponding term of the inverse is the reciprocal 

. . (1/6) (5) -
1/6. The ad1acent term 1s _ 

4 
= - ;,/24, and 

the next is ( l /6)(3)~(~) (- 5/24) =-1/12. The 

next row from the bottom is computed similarly, 
starting with the diagonal term 1/4 and continuing 

with (l/~\(2 ) = - 1/2. 

It should be noted that: 
a) The above arrangement is for compactness in 

hand computing but also indjcates the possibility 
for similar space saving in computer memory. It 
fits converuently into the unused space of the pre
ceding Cholesky factorization. The existence of the 
omitted zero portion of both the given matrix and its 
inverse must be kept in mind for an understanding 
of the algorithm. 

b) In practice the entries of the inverse are of 
course carried as decimal fractions. 

c) The entries in the inverse are completely 
independent of all previous rows of the inverse as 
well as of the corresponding columns of the given 
triangular matrix. This indicates that the computa
tion could equally well have started with the first 
single-entry row of the inverse and proceeded 
downward. It follows, therefore, that if a given 
triangular matrix is augmented with an additional 
row or rows, the portion of the inverse already 



computed remains unaltered, which is not true for 
other types of matrices. 

d) An independent check on the computations, as 
well as an alternative first computation, consists of 
column·by·column multiplication of the two matrices 
in the above arrangement. For example, the first 
column vector of the inverse (1, -1/2, -1/12) 
times (inner product) the 1st, 2d, and 3d column 
vectors of the given matrix, i.e., (1, 0, 0), (2 , 4, 0), 
and (3, 5, 6) respectively, satisfy the conditions 

{ 

(1 ) (1) + (-1/2 ) (0) + (-1/12) (0) = 1 
(1) (2) + (-1/2) (4) + (-1/12) (0) = 0 
(1) (3) + (-1/2) (5 ) + (-1/12) (6) =O 

with similar results for the second and subsequent 

Cu C12 Cu C1 ,1+1 
0 C22 C21 C2 ,1+1 

lo 0 0 C11 C1,1+1 
CT= 

0 0 0 0 0 0 

'Yu 0 0 0 0 0 
Y12 Y22 0 0 0 0 

I Y11t Y21t 'Ylk Y1+1,1t 

c-1= 

'Ytn 'Y2n Yin 'Y1+1,n 

column vectors of the inverse. This can be inter· 
preted as the result of actually interchanging the 
role of the two matrices, which is valid because of 
the postulated reciprocity of the matrix inverse. A 
summation check is superfluous because each row 
is independent of the others. A little reflection will 
show how the column by column multiplication can 
be used to compute the inverse in the first place. 

e) The same arrangement can be used to invert 
a lower triangular matrix by writing it in its trans· 
posed position. The inverse will then appear in its 
proper form. 

For computer programing it is necessary to have 
a formula for the general term 'Y11t of the inverse of 
an n·dimensional triangular matrix. This follows 
directly from a consideration of the extension of (5) 
to n dimensions. 

C1 ,1t - 1 C11c C1 n 
C2,1c - 1 C21c Ctn 

C1,1c-1 C11c C1n I 
0 0 0 Cnn 

0 0 0 0 
0 0 0 0 

'Ylt-1 ,k 'Ykk 0 0 

'Y1t- 1,n 'Ykn 'Ynn 

Generalizing equations (6), we have for i < k the condition 

'Y1c1cC11c+ Yk-1 ,kC1,1c - 1 + . . . + Y1+ 1,1cC1,1+ 1 + y11cCu = 0 

from which 

where all the y's on the right have been computed in 
the preceding steps. This formula can be written as 

or more concisely 

for i < k. 

In analogy with the first of equations (6) the first 

1 
y in the row is 'Ykk = -C , while for i > k, Y11c = 0. 

kk 

491·890 OL • 73 • 2 
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Having factored the matrix N into CCT and having 
inverted C, it is a simple matter to obtain the in· 
verse of N from (4). 

The quantity on the right side of (4) results from 
row on row multiplication of (C')- 1 on itself, where 
(C')- 1 is by our convention the upper triangular 
form. If the triangular matrix inverse presents itself 
in the lower triangular form C- 1, then N- 1 is pro· 
duced by column on column multiplication of c-1 

on itself. 
Since the solution to a set normal equation 

Nx = t 
is 

x= N- 1t 

the vector x is found by multiplying N- 1 with the 
given vector t . This solution is no more complicated 



or lengthy, as will be shown, than the conventional 
back solution, and it contains error theoretical 
information that only the inverse of N can provide. 

3. IMPROVING THE PRECISION OF THE 
INVERSE 

From N = ccr it follows that 

(7) 

When the computations outlined above are executed 
rigorously in floating decimal mode, the resulting 
inverse will be optimal; and the indicated multipli· 
cation in (7) will fail to exactly equal the unit matrix I 
only to the extent that the computer carries too few 
significant digits for the problem. If the given matrix 
N is known to be positive definite and one or more 
of the reduced diagonal terms in the Cholesky 
factorization (1) reduce to an excessively s mall 
number relative to the other diagonals, then the 
corresponding diagonal term of the inverse N- 1 will 
be excessively large, indicating that the mean error 
of the variable associated with this diagonal term is 
so large that the determination of this particular 
variable is meaningless from the standpoint of least 
squares theory. Such a near-singularity in the N 
matrix is a direct consequence of a poorly conceived 
phase of the measuring process and can be cor· 
rected only at the source. 

Loss of precision can, however, be considerable 
in hand computation or some other form involving a 
fixed decimal point. In such a case the multiplica· 
tion on the left side of (7) produces a matrix I * which 
is symmetric but only approximately diagonal: 

(8) 

The Cholesky factorization and the inverse can 
now be improved to match the precision of floating 
point computation, be extended to a larger number 
of signifi cant digits , or corrected for possible blun· 
ders by the following procedure. 

The matrix / * in (8) is well conditioned and can 
be factored very precisely by the Cholesky algorithm 
into I*= C* ( C*) r so that (8) becomes 

C- 1 (C- 1)T= C*(C*)T (9) 

Inverting C*, a process which is agai n capable 
of high precision since C* is strongly diagonal, 

(9) becomes 

(10) 

where now, it will be found, the identity with the 
unit matrix is good to the number of significant 
digits used in computing C* and (C*) - 1• less the 
inevitable degradation caused by the variation in 
magnitude of the reduced diagonal terms. The 
quantity (C*)-1C- 1 inside the brackets in (10) is a 
corrected value Cj1 for C- 1 and will satisfy the 
condition (7) optimally. The corrected inverse of N 
will beN- 1 = (Cj 1) rci• · 
Example 3: 

The matrix 

730 

432 

621 

405 

432 

1857 

1928 

560 

621 

1928 

2055 

685 

405 

560 

685 

742 

factors by the Cholesky algorithm into ccr where 

C= 

27.02 

15.90 

22.98 

14.99 

0 

40.02 

39.00 

8.005 

0 

0 

2.455 

11.54 

0 

0 

0 

17.89 

This result is correct to four significant digi ts and 
can be obtained by floating point computation , 
carrying six digits throughout since the ratio of the 
largest to the s mallest reduced diagonal is 40.02/ 
2.455 , roughly one magnitude. A small blunder is 
included: the firs t entry of the second row should 
read 15.99. 

A rough inversion of C produces 

c-• = 

.03701 

- .01471 

- .1128 

.04838 

0 

.02499 

-.3969 

.2449 

0 

0 

.4073 

-.2628 

0 

0 

0 

.05590 

The multiplication C- 1N(C- •)T produces the sym· 
metric matrix I * of (7). 

1• ~ (999910273 
.0021236338 -.032254215 .020536849 ) 

-. 0005391296 1.0000481731 .000362250 
1.00058520 -.000923670 

1. 000893582 
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.. 

. 
i .. 
I 

The factorization I* = C* ( C*) T yields 

( 

. 9999551355 
C* = .0021237291 

-.0322556621 
.0205377704 

0 0 
1.0000218312 0 

.0004307429 .9997722674 
- .0005827335 -.0002610191 

The matrix I * is so nearly a unit matrix that this factorization and the subsequent inversion of C* can be 
computed precisely without the aid of floating decimal to whatever number of significant digits the computer 
can handle. In this case we have used 10-digit accuracy. 

The inversion routine gives 

( 

1. 0000448665 0 
(C*)-1 = -.0021237780 .9999781693 

.0322653720 - .0004308316 
- .0205266703 .0005824711 

and the product (C*)- 1C - 1 gives the corrected inverse Cj1 : 

.0370l166051 

- .01478827989 

- .ll16252151 

.04757089854 

0 

.02498945445 

- .3970011742 

.2447532589 

0 
0 

1. 0002277845 
.0002610170 

0 

0 

.4073927766 

0 

0 

0 

- .2626317711 .05588682974 

from which the inverse of the given matrix N can be computed, correct to at least eight significant figures 
in all the entries by performing the matrix multiplication N - 1 = (Cj 1 )TCj 1 , the result being 

.01631173527 .05558892286 - .05796893565 .002658586707 

.2181385629 - .2260153925 .01367848371 

.2349443216 - .01467765708 

.003123337738 

It is important to note that the matrix c-1 is not the precise inverse of the approximate matrix c from 
the first Cholesky factorization of N. It is, rat6er, the inverse of the factor C which would have been obtained 
in such a factorization if precision to a larger number of significant digits had been available. This factor can, 
in fact, be obtained without such a more precise factorization by inverting the inverse Cj1, i.e., by computing 
(Cj 1 ) - 1 • For this numerical example the result of such an inversion yields 

27.01851217 

15.98903733 

22. 98424117 

14.98972250 

0 

40.01688000 

38.99614637 

8.00484l18 

0 

0 

2.45463361 

11. 53518233 

0 

0 

0 

17 .89330339 

This triangular matrix multiplied by its transpose reproduces the given matrix N to at least eight significant 
figures in all the entries. 
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4. COMPARISON WITH THE BACK 
SOLUTION 

Gauss developed his algorithm for the solution of 
linear equations from the standpoint of obtaining an 
equivalent set of equations in each of which an addi
tional variable has been eliminated. He also proved 
that the algorithm operating on the coefficients of 
the unknowns can be extended to the column of 
constant terms to produce the corresponding set of 
constants for the new equations. He could then solve 
for the unknowns in order, starting with the last 
equation which contains only one unknown , the 
so-called back solution. This type of solution is still 
being used to some extent. When the Cholesky 
algorithm is viewed as a simple variation of the 
Gauss-Doolittle algorithm, the analogous treatment 
of the constant column follows directly without 
further proof. However, with a development of this 
algorithm from the standpoint of matrix algebra, 
independent of Gauss, justification of the validity 
of extending the reduction to the column of con· 
stants is necessary and can be demonstrated as 
follows: 

Consider a set of, say, four homogeneous linear 
equations, the matrix of whose coefficients N is 
nonsingular, symmetric, and positive definite: 

or Nx = 0. Factoring N we obtain the equivalent set 
CCTx = 0 and, on multiplying both sides by c-1 , 

Cx=O 

which, written out in full , is 

C11x1+C12X2 + C13X3 + c •• x. = 0 

C22X2 + C23X3 + C24X4 = 0 

C33X3 + C34%4 = 0 

C44x•= 0 

(12) 

where the C's are derived in the Cholesky factoriza
tion of N. The set of conditions (12) is completely 
equivalent to (11). Furthermore, the first three 
equations of (11) are equivalent to the first three of 
(12). This follows because in producing the coeffi
cients for the first three equations of (12) the last 
row of the matrix N has not yet been considered, 
and these three equations must therefore be inde
pendent of the condition expressed by the fourth 
equation (11). These two equivalent sets of three 
equations each have four unknowns , and one 
unknown is therefore a free parameter. Setting 
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x. = 1 in both sets of three equations we have the 
equivalence of 

and 

{ 

n11x1 + n12x2+ n13X3+ n,.=O 

n 12% 1 + n22X2 + n23X3 + n2• = 0 

n 13% 1 + n23X2 + n33X3 + n34 = 0 

{

Cux1 +C12x2+C13Xa+C1•= 0 

C22x2 + C23Xa+ C2•= 0 

Ca3Xa+Cs.=O 

(13) 

(14) 

where (13) is typical of the nonhomogeneous , sym
metric, linear, normal equations of least squares 
theory and (14) the corresponding set of Cholesky
reduced equations that can be solved with a back 
solution. The extension of the above demonstration 
from four to n equations involves no essential 
difficulties. It is customary and convenient to 
designate the coefficients in the last column of (13) 
and (14), i.e., the constants in the equations, by 
symbols different from the symbols for the coeffi
cients of the unknowns x and occasionally to trans· 
fer these constants to the other side of the equations. 
Thus equations (14) can be written in the conven· 
tional form 

or 

{ 

C11x1+C12X2 +C13X3=~1 

C22x2 + C23xa= ~2 

Ca3Xs= ~3 

(15) 

where CT is upper triangular, and the vector ~ has 
components that are the negatives of the constant 
terms in (14). Computing the inverse of (CT)-1 and 
multiplying it into both sides of (15) gives the solution 
forx: 

x = (CT) -1~ 

By going through these computations it can be seen 
that they involve the identical operations used in the 
conventional back solution. Given that the inverse 
can be improved, if necessary, as shown in section 3, 
there is no doubt that this approach is at least as 
good as the conventional type of back solution. 
Furthermore, having computed (CT) - 1 it is merely 
necessary to multiply this matrix by its transpose to 
obtain the complete inverse N- 1 of N, which 

a) solves the equations (13) directly, with the option 
of refining the solution by improving the inverse, and 

b) as a covariance matrix permits the statistical 
interpretation of the solution and of s ubsequent com· 
putations with these results. 



5. APPLICATION TO INVERSIO OF 
ONSYMMETRIC MATRIX 

Although the method of inversion described above 
applies to the symmetric, positive definite matrices 
associated with the normal equations of geodesy, it 
can aJso be used to invert a nonsymmetric matrix 
with real coefficients. To solve the equations 

Ax=t' (16) 

where A is such a nonsymmetric matrix, premultiply 
both sides of (16) by AT: 

(17) 

The product AT A is of the type which we have 
designated by N and which can be factored into 
CCT and inverted. Premultiplying (17) with N- 1 

fou nd in this manner gives 

(18) 

as the solution to (16) and shows that the inverse of 
the matrix A, if it exists, is 

A-I =N-IAT (19) 

6. EQ IV ALE CE OF THE SYMMETRIC SOLU-
TIO WITH THE LEAST SQUARES POS-
TULATE 

Since an inverse is defined only for square non
singular matrices, the assumption is implicit in (16) 
that this is a set of independent linear eq uations 
with an equaJ number of unknowns x which has 
therefore a unique solution. 

The process of symmetrization used to form (17), 
when applied to a nonsquare matrix A, leads to some 
interesting and rather unexpected results. 

Ir A in (16) is not square, i.e., if there are more 
equations than unknowns, or vice versa, then A 
is not invertible, corresponding to the well-known 
fact from linear algebra that no set of x's or an 
infinity of uch sets will satisfy the equations. This 
raises the question of what legitimate operation on 
the equations (16) can produce a form with an in
vertible matrix for the coeffi cients of x. The problem 
is analogous to the purely formal device of introduc
ing an integrating factor into a diffe rential equation 
or, more basically, of multiplying the algebraic 
equation ax = b by the reciprocal of a. 

Assuming A to have dimensions m X n , with 
mn 

m > n, then by matrix aJgebra, if A is premul-
mn 

tiplied by a matrix having n rows and m columns 
the resulting product will be a square matrix which 
is, with certain known exceptions, nonsingular and 
hence invertible. The obvious choice for such an 
"inversion factor" for the equations (16) is AT, 
the trans po e of A, since it introduce a minimum 
of extraneous information into the problem- less 
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than, for example. an arbitrary matrix M with 
dimensions n X m. Premultiplying the equation 

A x = t' 
mn nl ml 

on both sides by AT we obtain 
nm 

(ATA) x=(ATt') 
n n nl nl 

with the unique solution 

(20) 

(21) 

obtained by purely formalistic considerations and 
with a minimum of additional assumptions. 

A. Observation Equations 

In the calculus of observations of directly meas
ured functions of linearized variables we are faced 
with the identicaJ problem of solving the so-called 
observation equations or error equations, of the 
form (20), linear in the unknowns or corrections to 
unknowns x, whose number n is exceeded by the 
number of equations (observations) to be satisfied. 
The adj ustment of triangulation by variation of 
coordinates is an example of this type of computa
tion. The interpretation of the individual quantities 
a1x-t'1 in each equation (20) to be a residual 
v1 = a,x- t'1 for the measured £unction correspond
ing to fixed and sufficiently close values of the 
unknowns x in all these equations, together with the 
condition that Iv2 be a minimum, also leads to the 
solution (21). We can conclude, therefore, that the 
purely formalistic considerations leading to (21) 
are equivalent to the least squares hypothesis 
which was in no way implicit in our assumptions. 
This shows the least squares postulate to be an 
irreducible hypothesis. 

B. Condition Equations 

Similar conclusions are reached in the alternative 
and equivaJent method of adjustment by indirect 
observations or with so-called condition equations. 
The typicaJ set of equations to be solved in this type 
of adjustment is 

B v = t' 
nm ml nl (22) 

with m > n and again subject to the condition 
Ev2 = minimum. Clearly the equations (22) by them
selves are not sufficiently restrictive to yield an 
unambiguous solution, since m - n independent 
conditions could be added to the set (22) before a 
solution for the v's becomes unique. Seeking the 
simplest formalistic solution for this case without 
postulating the least squares condition, we see that 
premultiplication of (22) by BT will not work because 
the product BTB with m > n will be necessarily 



singular and not invertible. However, BB1 will be 
of dimension n X n and will possess an inverse 
(BB1 ) - 1 if the conditions (22) are independent. It is 
not difficult to see that the simplest way to introduce 
B1 as a factor after B is to make a legitimate 
transformation of the variable v: 

v= B 1 k 
ml mn nl 

resulting in the conditions 

(23) 

equivalent to (22) and having the unique solution 

so that 

This, likewise, is the Gaussian least squares solution 
for "condition" equations. 

7. THE GAUSSIAN ALGORITHM FOR 
SYMMETRIC MATRICES 

Before the advent of electronic calculators and 
computers the labor of root extraction prevented the 
Cholesky factorization, with its advantages due to 
symmetry, from displacing in practice the s tandard 
Gauss-Doolittle solution for normal equations. 
For comparison, we show the simple relation 
between the two. 

From the classical development of the Cholesky 
algorithm from Gauss-Doolittle, it is known that 
Gauss_ divi_des_each reduced equation by the corre
sponding diagonal term, thus making each divi<fed 
and reduced diagonal term equal to unity. Cholesky, 
on the other hand, divides by the square root of 
these diagonals. The matrix of coefficients of the 
undivided reduced equations is in each case the 
same upper triangular matrix with diagonal terms 
di, d2, .. . dn. If the diagonal matrix whose entries 
are these d's is designated D, a corresponding 
diagonal matrix consisting of entries Vd1 , Vd2, 
. . . Vdn can be designated D 112 • The relation 
between the divided Gaussian upper triangular 
matrix G1 , with diagonal terms each equal to l , and 
the corresponding Cholesky matrix er can then be 

d 11g 13 d11g12 

d11g12g12 + d23 d11g13g12 + d22g23 

N= 

10 

written as 

(24) 

because of the theorem that premultiplication with a 
diagonal matrix multiplies all entries of a row of 
the matrix being multiplied with the corresponding 
entry of the diagonal matrix. From (24) follows 
e = G(D1l2 )1 = GD 1t2 and 

(25) 

This, together with (24), gives the Gaussian facto
rization in terms of the Cholesky factors e and er. 

The Gaussian factorization algorithm can also be 
established , independent of the Cholesky factoriza
tion, by matrix algebra. Like the method of section 1 
we postulate a given symmetric matrix N to be, 
according to (25), the product GDG1 , where G is the 
lower triangular matrix 

1 

G= 

0 

1 

and D the diagonal matrix 

D= 

0 

0 

0 

1 

and G1 the transpose of G. 

0 

0 

0 

0 

0 

1 

0 

dnn 

By actual multiplication the product N = GDG1 is 
found to be the symmetrical matrix 

d11g 1n 

dug,,.+ d22g2n 

(26) 



Conversely, if a symmetric matrix with ele-
ments nlk is given we can find , by the algebraic 
method of undetermined coefficients , the du and 
g1k in (26) in sequence, computing each row in turn. 
This approach leads to the same sequence of opera
tions and res ults specified by Gauss ·(18lla)* and 
codified by Doolittle (U.S. Coast and Geodetic 
Survey, 1881). Formulas analogous to (2) and (3) of 
section 1 are somewhat more cumber ome than for 
the Cholesky factorization and are not given here. 

From (25) the inverse of N is 

- 1 = (CT) - •D - tC- • 

a product which requires the inversion of a tri
angular matrix C and the simple inverse of the diago
nal matrix D. 

8. THE GAUS I ALGORITHM FOR NO -
SYMMETRIC MATRICE 

The term "Gaussian elimination" is commonly 
reserved for Gauss's method of reducing a system 
of linear equations with a nonsymmetric square 
matrix of coefficients to triangular form. To establish 
simply the procedure to be followed in this re
duction, it is again convenient to con ider the 
product ABT of two triangular matrices A and BT 
where A is the lower triangular matrix 

a11 0 0 

A = 
a1 1 a12 U j3 

a111 Un2 lln3 

0 

0 

0 

U jj 

llnj 

and BT an upper triangular matrix 

1 b12 bu b1 k 

0 1 b23 

0 0 l 
BT= 

0 0 0 1 

0 0 0 0 

0 

0 

0 

0 

Unn 

1 

(27) 

whose diagonal terms eQual 1 in conformance with the Gauss equations. Together the matrices (27) contain 
the necessary n2 parameters to correspond with those of an arbitrary n X n matrix. Actual multiplication 
of ABT yields the matrix M of (28). 

M= ABT= 

i-t 

= L a11b11, 

l=t 
where t' = lesser of j, k 

bu= 1 

•Thie reference con1aina a printer'• en-or in a • cry euential formula which Cauat 
co'"'cted in an addendum (1811b). Benrand (JllSS) copiea the erroneoua formulaa . 
whJch may explain why Dooliule waa 1he only one in 1he geodeuc community to follow 
1he e1e1an1 1ymmetric approach o{ the earlier Caut1 work~ 
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This is the makeup of the given square matrix to be 
factored into the triangular matrices A and BT. 
The elements b of the BT matrix are developed in 
the rows above the diagonal, and the a's of A in 
the columns on and below the diagonal. The ele
ments should be recorded, as they are computed 
(28), in their proper relative position as indicated 
by the underlining. The computation sequence is 
first column and row, second column and row begin
ning with the diagonal term, etc. 

A reduction with a 4 X 4 matrix should make clear 
the necessary steps in the reduction which will be 
found identical with the Gaussian elimination 
process. In general , when the term Tnjk in the jth 
row and kth column, j ~k, is being reduced, the 
set of a's, k-1 in number, a11, a12 . .. a1. k- 1 will have 
been computed and will occupy the spaces in the 
same row and preceding TnJk· Similarly, the column 
extending above fflJk will contain the j-1 b's: b1k, 

b 2k , ..• b1- 1, k· The sum of the products of the first 
(k-1) a's, each multiplied with the corres ponding 
b from the column set, is subtracted from mJk, 
leaving the answer ll;k , since the last term in fflJk 
is a1kbkk and bkk= 1 by definition. For k > j, i.e. , 
in the portion of the matrix above the diagonal, the 
sum of j-1 such products is subtracted from mJk , 

leaving a;1b1k from which follows b1k by division 
with a1J. already computed. When the factorization 
is complete, the matrix multiplication ABT should 
equal the given matrix M for a check on the numeri
cal work. 

If the equations to be solved by this algorithm are 

Mx=t' (29) 

then considerations similar to those of section 4 will 
show that extending the algorithm to the constant 
column t' will produce a vector /'' satisfying a system 

(30) 

M= 
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equivalent to (29) and in triangular form, ready for a 
Gaussian back solution. 

9. SQUARE ROOTFACTORIZATIO~ 

The Chole.sky modification of the Gauss algorithm 
for solving linear equations with a symmetric posi
tive definite matrix can be readily generalized to 
parallel the general case of Gaussian elimination of 
section 8. The factorization with real numbers is 
again possible if the given nonsymmetric matrix is 
positive definite. 

The assumed factors are 

a11 0 0 0 

a11 a12 a · a11 · 

(31) 

0 0 0 

which differ, in essence , from (27) only 111 that 
both matrices have identical diagonal entries. 
The product'A 1Af gives 

· a 11a1k 

(32) 



The general entry in the given product matrix 1s 

l • n 

m lk = L aj1a1k 
f= l 

(33) 

(where i= 1, 2, ... n , n being the lesser of j , k) 
as obtained by multiplying the jth row vector of A 1 

with the kth column vector of Af. When the in
dividual a's are evaluated in the sequence used in 
the Gaussian elimination of section 8, all the te rms 
exce pt the la t in the sum (33) repre enting mik 

will be known. For j > k, mJk ends with OJkllkk, with 
all a's known except <lJk· 

When all the aJk have been computed, the two 
triangular matrices of (31) will be known and can be 
inverted individually. From the ass umption M = 
A 1Af follows 

(34) 

and the solution of a system of equations Mx = t 
is x=M- 1 t. The inverse (34), when computing 
with fixed decimal point, can be made more pre
cise by a method analogous to that of section 3. 
In general the relation A1 1M(Af) - 1 = / will not be 
satisfied numerically exactly, but will produce a 
res ult 

(35) 

where / * has nonsymmetric small off-diagonal 
terms. It is of the same type as M but much more 
diagonal and can therefore be factored very pre
cisely by the same algorithm used for factoring 
(32) into /*=A ~(A:)r. Inverting these two triangular 
matrices and introducing the result in (35) produces 
a near identity 
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or' designating the products (A n-1A11 as A 11 

A1 1M(Ai) - 1 = I 

These improved values of A11 and (AD-1 substi 
tuted in the right-hand side of (34) result in the 
improved in verse of M. 

This method of factorization and inversion has the 
same advantages over the c lassical Gaussian elimi n
ation of section 8 that the original Cholesky method 
has over th e Gauss-Doolittle solution for symmetric 
matrices. On the whole, however, the method of 
sym metrization described in section 5 seems prefer· 
able to either of these two in terms of s implicity, 
generality, and economy of computation. 
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