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field by means of the gravity anomalies. The model of the geopotential is based on the
simple-layer potential, in contrast to the expansion into spherical harmanics.

2. COMPUTATIONAL PROCEDURES
2.1 Representation of the Gravity Field

To represent the gravity field, the potential of a simple layer is chosen [Koch 1968].
Hence, the potential W of the Earth is divided into the potential U, which is assumed to be
known and is expressed by an expansion into spherical harmonics, and into the potential T,
which is unknown and is represented by the potential of a simple layer distributed over
the surface of the Earth. Therefore

W=l +T7 (1)
with
n n

U=‘<_:'[1+):cz(

n=2 m=0

il

jlﬁhm fsin ¢) (Ehm cos my + ghm sin mx)} + %(y2r2c052¢) {2)

and

T ﬂ 24z, (3)

where r, ¢, » are geocentric coordinates in the usual Earth-fixed system, k is the gravi-
tational constant, M the mass of the Earth, a the mean eguatorial radius, ﬁhm the normal-
ized associated Legendre function of degree n and order m, and w the angular velocity of
the Earth. Qutside the.Barth, the term containing w equals zero. fﬁm and Ehm are normal -
ized harmonic coefficients which are taken up to degree e from available results. @ is
the unknown density of the simple layer distributed over the surface 1 of the Earth. ¢
denotes the distance between the fixed point at which the potential is computed and the
moving point on Z. I is obtained by adding the topographic heights to the reference sur-
face computed from (2) by setting U = Uy, and solving for the radius r. U, is defined as
the potential of a level ellipsoid, whose constants kM, a, C, ¢ and w are taken from (2)
[Koch 1968].

By introducing the auxiliary density x and assuming constant densities X4 for the p sur-
face elements AEi into which the surface of the Earth is divided, we obtain instead of (3}
[koch 1972],



_H—E (4)

AEi

T{p:xij

i=1

The surface elements .'_\Ei are bordered by meridians and parallels and are approximately of
equal size. The integral over AEi is solved numerically by subdividing AEi into four ele-
ments at whose midpoints the kernel of the integral is assumed to be constant. The method
of defining the surface elements and their midpoints is given by Koch [1971].

The density values x; can be converted into normalized spherical harmonics [Koch 1972]:
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where Cnm and Snmu are the harmonic coefficients which define U in (2). The integral over

AET is solved numerically by subdividing AEi into nine elements. Since the coordinate sys-
tem in which r, ¢, and a are defined is geocentric, the density values Xi have to be deter-
mined under the constraint that the harmonics of first degree equal zero.

Comparisons of the simple layer model of the geopotential with other representations of
the grayity field have been made by Morrison [1971] and Pollack [1973].

2.2 Analysis of Doppler Cbservations

Satellite orbits should be computed in an inertial reference frame. B8ut since the orbit
computations in this analysis do not exceed a time period of one week, one obtains a good
approximation to anm inertial system by a geocentric coordinate system whose 3-axis is iden-
tical with the instantaneous axis of the Earth and whose 1-axis points at an angle east of
the true vernal equinox which takes into account the precession and nutation in right as-

cension. This angle is chosen to be the precession and nutation in right ascension since
1950.0 .

The Doppler data are frequencies f with

—

f=f -Eb— (Ir - rd)+sf, (6)



whaere fb is the base frequency, c the velocity of light, t the time, r and Ts the position
vectors of the satellite ard tracking station in the coordinate system defined above, and
&f ihe tropospheric refraction correction. The coordinates of the tracking stations are
also defined in an Earth-fixed geocentric system with the 3-axis pointing toward the mean
pole of 1900-1905 and the l1-axis lying in the mean meridional plane of Greenwich. To ro-
tate the Earth -fixed system into the inertial system, .the polar motion as d rmined by the
Bureau de 1'Heure and the sidereal angle as defined by the Smithsonian Institution
[Lundquist and Veis 1966] are used. This rotation is corrected for the difference between
UTC and UT1 published by the Bureau de 1'Heure because the time of the Ooppler observations
is given in UTC.

To evaluate the Doppler observations a least squares adjustment based on a differential
correction process is applied [Koch and Morrison 1970]. Hence, by means of approximate
values the Doppler frequency (6} is expanded as a function of the unknown parameters into
a Taylor series which is restricted to the linear terms. This linearization leads to the
observation equations of the least squares adjustment for the unknown parameters which are
the density values, the coordinates of the tracking stations, a base frequency offset per
pass of a satellite over a station, and, for each arc, the six orbital elements. Hence,
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(7}

A, B, C, D are matrices of coefficients, and ab, ae, ax, sx vectors of corrections to pre-
liminary values of the base frequencies, orbital elements, station coordinates, and den-
sity values. 2 and v are vectors of the observations and residuals.

The orbits of the observed satellites are computed numerically with a 48-second time
step using a 12th order Cowell-Stdrmer integration for positions, a 1Dth order Adams-
Bashforth predictor and a 10th order Adams-Moulton corrector for the velocities, and an
8th order Adams-Moulton integration for the variational equations [Gulick 1971] by which
the derivatives of the observations with respect to the unknown parameters are deter-
mined. Lagrange's interpolation is applied between time steps. To avoid errors in the
orbit computation resulting from the numerical integration in (4), the preliminé density
values are set equal to zero so that the geopotential for the orbit computation is given
by (2). 1In addition, the attraction of the sun and moon, and the influence of air drag
and radiation pressure, are considered in the orbit computations [Witte 19711].



If ¢ . denotes the covariance matrix of the Doppler observations, the normal equations
of the least-squares adjustment are given by

T -1 T_-1 T.-1
ATYA L AE D] s AL
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To reduce the number of unknowns, the corrections ab to the base frequencies are eliminated
whenever the contribution of one pass to the normal equations has been computed. The cor-
rections ae to the orbital elements are eliminated after obtaining the contribution of one
arc to the normal equations, so we get

!aa —ab ax —a

= (9)
NN » £
=ab Zpb || 2X ~b |

where N denotes the matrix of the reduced normals and f the reduced absolute column. To
avoid a singularity in the normal eguations, the lgngitude of one station must be held
fixed. This constraint as well as the constraints for E},D EEJ and §}’Iare introduced as
observations with small variances [Xoch and Pppe 1969]. In addition, the coefficients

Cz,land 52'1 must be small in comparison to the other harmonic coefficients, since for the
orbit computation the 3-axis coincides with the rotational axis of the Earth.

2.3 Density Values from Gravity Anomalies

The density values x may be computed also from gravity anomalies ag [Koch and Morrison
19707, by



_ 4g-G 3
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with

G = 41—"_”‘139 cos ¢ deda ,

where S{y) dernotes Stokes' function and y the spherical distance between the fixed point
and the variable point. Equation (10) is the solution of the gecdetic boundary value prob-
lem for a spherical earth without topography. However, this approximation is sufficient
for the present analysis.

Gravity anomalies are usually referred to the International Ellipsoid. To define them
with respect to the reference surface used here, we have

g = ag + lgrad Ull - |grad U] , (1)

where 4g; are the anomalies referred to the International E1lipsoid and Ug is its potential.
According to the theory of the geodetic boundary value problem the gradients of UI and U
must be computed at a height above the ellipsoid and the reference surface that approxi-
mately equals the topographic height at which the value of gravity has been measured. To
compute grad UI’ the potential UI has been expanded into spherical harmonics up to degree
eight [Heiskanen and Maritz 1967].

Gravity anomalies are usually given for surface elements of a certain size so that den-
sity values may be computed from (10) for the same surface elements by replacing the inte-
gral by a sum. To obtain the density values for the surface elements AEi used in the
analysis of the satellite observations, one has to interpolate with weights proportional to
the area of the surface elements. Hence,

x, = HFag, (12)

where H represents the matrix for the interpolation and F the matrix of summation according
to (10).

The density values obtained from (12) may be added as additional aobservations to the ob-
servation equations (7} of the satellite solution; that is,

(=3
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(13)



where u are the residuals. The covariance matrixEX of these observations is obtained from

the covariance matrix ZIog of the gravity anomalies by

T T
=HFzt, F . 14
Ex - — =49 — i (14)

Hence, the normal equations of a combination of Doppler data and qravity anomalies are

given by
—aa Hab ax iﬁ
= (15)
T -1 -1
Ko T S I SRS

The combination described here uses the same size surface elements for the computation of
density values from satellite observations and gravity anomalies. If one wishes to derive
more information from the gravity ancmalies, density values may be computed for smaller
surface elements than the ones used in the analysis of satellite observations. To combine
both results the approach in Kech [1970] has to be taken.

2.4 Combination with Results of Satellite Triangulation

Certain stations of the Ooppler tracking network lie close to stations of the worldwide
satellite triangulation, so results from the geometric satellite triangulation can be com-
bined with the dynamic solution. The results of the satellite triangulation are coordinate
differences with respect to one point of the satellite triangulation net. In the least-
squares adjustment for the satellite triangulation, however, the cogordinates themselves,
net coordinate differences, are determined. The coordinates of one station must Hbe held
fixed when solving the normal equations to avoid a singular system [Schmid 1974a]. The
axes of the coordinate system for the satellite triangulation Tie parallel to the axes of
the coordinate system for the Doppler stations,

Of interest are only those points of the satellite triangulation that 1ie close to
Ooppler tracking sites and that are connected by survey ties. To combine the results for
these stations, the normal equations (15) are augmented by the normal equations of the
satellite triangulation which have been reduced by eliminating the points without connec-
tions [Kech and Pope 1972]. The equation to be used is
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Kere, ax , are the cerrections to the preliminary coordinates of the Doppler tracking sta-
tions not connected to points of the satellite triangulation, and ax ; and ggg the correc-
tions to the coordinates of Doppler stations and stations of the satellite triangulation
tied by survey. ﬂg is the matrix of the reduced normals of the satellite triangulation
unconstrained by the fixed point of the qgeometric solution. Eee’ Hef’ and ﬂ$f are Ssub-

matrices of N, in {15) and Heb and N of N To {16) the contribution of the survey

b
ties have to be added. The observation eguations for the survey ties are given by

(denoting the corrections to the coordinates of the combined solution by primes)

(17)

where 1 is the unit matrix, ¢ the coordinate differences computed from the survey ties in
the coordinate system of the Doppler stations, Xso and 590 the preliminary coordinates for
the Doppler stations and the stations of the satellite triangulation, and w the residuals.
By means of the covariance matrix gc of the differences c, we obtain the normal equations
for the combination of the Doppler data, the gravity anomalies, and the results of thre
geometric satellite triangulation

Nee Net 2 Neb ax fe

T —1 - -1 b “]
Net NegtEo ke Ney Ax ¢ ferrd

= (18)
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The results of the g« etric satellite triangulation do not contain any information about
the mass center of the Earth, while the coordinates of the Doppler sites are given with
respect to the mass center. Hence, by means of the combined solution {18) the coordinates
s of the origin of the coordinate system of the satellite trianguiation may be given with
respect to the mass center of the Earth. It can be shown from a limiting case of the com-
bined solution that the mass center determination (leaving the internal geometry of the
satellite triangulation undisturbed) is given by

e To-1y-1 T -1
s= (B 07 En (x - xg) (19)
with
100 100
£ = Lo 0w
001 oot
and

= + ' = +
Bi = Hgo "o XgT Xgo T Mg

where x are the coordinates of the stations of the satellite triangulation from the com-
bined sclution (18), and I, their covariance matrix obtained by the inversion of the left
side of (18).

s may also be derived using the adjustment of observation equations with constraints. In
(15) we separate :x into the corrections ax of the stations without survey ties to sta-
tions of the satellite trianguiation net and the corrections axe of stations tied by
survey, After eliminating ax, and ax we obtain

Neptxe=fe (20)

where Eff denotes the matrix of the reduced normal equations and f the reduced absolute

f
column. On combining {20} with the reduced normal equations of the satellite triangula-

tion, we obtain, with {17),

= (21)
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which is equivalent to {18)}. After eliminating Ax% we find
-l -1y-1 -1 . S| -1(— -1)»1 = -1
(N (ﬂff t I ) L )Hg _—fg —ch—l t I —fo T I (if * I E)' (22)

Since

it follows that
Lo (Kepr ) Ree(Ze Npet 1) T
so that we obtain instead of (22)
(Y * Her (2 + 1) ) beg =ty (Ferz + L) F - Bpl( e v 1) e (23)
By setting I.= 0 in (23) we recognize that the observation equations (17) serve to
obtain identical points for the combined solution. Putting

M=l t Ny

vwhere

-1
Ny = —ff( MNer I)

Then using {16) and {20), {23) becomes

. -1 A1y -l o .
Mg = Womxg - Hgd + 2t (e v 2t ) T Rpae s

and with

we gbtain

NeAxs = Noax + Ny (Axf d). (28)
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bXp - d = BXe - € - Xy Rpo T Xy T Xgg o

where X4 denotes the Doppler coordinates plus survey ties, and

X, = +

Xy T Kgot Mg -

By addi"g-ﬂkigo to both sides of (24) we find
(2ot axy)Ngg » By 20~ 2g0)* (g * Me) 2o

With the coordinates x, of the combined solution and the coordinates X of the geometric
solution

- i -
E.k _igo-‘-‘ﬁ_xg’ ig__xgg+_A.x_g
we finally obtain
Ek£k=ﬂgig+ﬂdld . (25)
T -1 .
Now, for E'x °E in {19) we have
T.-1p _ T _ T
ErlE s E(Ng N)E-ENGE (26)

with

N,E=0

g

because solutions of the normal equations of the geometric spolution may differ by transla-
tions. In addition, we find with (25)
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Hence, instead of (19) we finally obtain
_ LT -1 T
s (ENGEYY ENg(247 %) - (27)

On the other hand {27} car be derived if, to the reduced normal equations of the dynamic
solution with the contribution

NgXyg= 9y {28)

of the survey ties included, the contribution of the constraints

id - .E i = ig
is added. The solution is given by
Ny 0 L X4 94
0 o - s [ =10
- E k
Io-E 0] |k Xq

where k is the vector of correlates. Rearrangement and elimination leads to

- N1 _ _ w1
L £ k Xq™ N4
- 0 s 8

so that, with {28) and the elimination of k, equation (27} is obtained.
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3. RESULTS
3.1 Dynamic Solution

The previcus solution by Koch and Witte [1971] for the Earth's gravity field represented
by a potential of a simple Tayer was based on Doppler tracking of five satellites. For
each satellite, two arcs of data were processed, each arc corresponding to a duratiaon of
one week. The inclinations of the five satellites ranged between 40° and 80° so that data
from a low-inclination satellite and a polar satellite were missing in the solution.

Subsequently Ooppler data from a polar satellite and a low-inclination satellite became
available, so a new solution could be prepared. In the old solution [Xoch and Witte
1971], 104 density values were determined; this is equivalent to an cxpansion into spheri-
cal harmonics to the 10th degree and order. Judqing from the results of the ald solution,
it appears doubtful that, when only satellite observations are used, a solution can be ob-
tained for the gravity field which is complete in its harmonic coefficients much beyond
the 10th degree. This is confirmed by Gaposchkin and Lambeck [1971], Lerch et =7, [1972],
and Yionoulis et aZ. [1972], whose satellite splutions are complete to the 12th order. To
avoid 111-conditioned normal equations in his satellite splution, Anderle [1971] intro-
duces for each harmonic coefficient, except E;p, an obsarvation of zero with a standard
deviation according ta the rule-of-thumb of 107°/n2, where n is the degree of the harmonic
coefficient. Based on these results, it was decided not to increase the number of unknown
density values in order to avoid ill-conditioned normal equations.

[nstead of two arcs, three arcs of observations, also of one week duration each, are
processed for the new solution. A summary of the observed data is given in table 1,
Tracking data from 41 stations have been used. Although all tracking stations are treated
as unknown stations, 11 stations lie close to one of the remaining 3G stations so that
observation equations such as {17} are introduced by means of the survey ties. The 30
st ions with their connected stations and the satellites observed by them are given in
table 2,

Table T1.--Cbservational data

o sseilie TGl Peries e s nt oo W of e of
1 1961 unl TRANSIT 48 32.4 956 1104 3 389 6,691
2 1965 32A BE-C 41.2 840 1320 3 526 9,680
3 1962 gul ANNA 1B 501 1080 1180 3 823 19,607
4 1965 B9A GEQS ] 59.4 1120 2270 3 979 33,193
5 1964 64A BE-B 79.7 880 1080 3 288 5,161
6 1967 48A 89.6 1074 1105 i) 926 22,573
7 1968 02A GEOS 11 105.8 1080 1570 3 384 11,586

Total 21 4,315 108,491
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Table 2.--Tracking stations

Stzgfon La%;:;?e Lo?géggde Location Obsg;v€:b§3t$11ttes
1* 39 283 Maryland 1.2,3.4,6
2" 30 262 Texas 1,3,4
3* 32 253 New Mexico 1,2,3,4,6
6* 51 359 England 3.4
8 =23 34 Brazil 1,3,4

10 19 204 Hawaii 1
11* 15 120 Philippines 1,3,4
12* =35 139 Australia 1,3,4
13 4 143 Japan 1,34
14 61 210 Alaska 3,4,6
15* -26 28 Scuth Africa 1,3,4
17* -14 189 Samoa 2,3,4,5,6,7
18 76 291 ireenland 4,5,6,7
19 -18 167 Antarctica 5

100* 22 202 Hawaii 2,3,4.6
200* 34 2417 California 3.6

203 38 284 Virginia 7

310 44 292 Maine 6

321 45 267 Minnesota 6

717 -5 55 Seychelles 4.6

722 -8 346 Ascension 2,5

723 -12 97 Cocos Islands 5

729 33 343 Madeira 4

738 47 241 Washington 2

809 -46 168 New Zealand 4

811 21 204 Hawatii 4

817 36 60 Iran 7

820 -32 295 Argentina 6,7

az22 12 15 Chad 7

837 -6 324 Brazil 6,7

*5tation 1 is connected by survey ties with station 111, 2 with 92, 3 with 103, 6 with
106, 11 with 121, 12 with 112, 15 with 115, 17 with 117, 100 with 340, 200 with 330 and 334.

The harmonic coefficients up to (11,11) of the old solution [Koch and Witte 1971] have
Furthermore, the coefficients {12,11),
12}, (13, 13), (14, 1), (14, 12), {14, 13}, (14, 14}, (15, 11),
{15, 12), {15, 13), (15, 14} from Gaposchkin and Lambeck [1971] are added to the coeffi-
cients for the potential U to account for the resonant terms of the satellites being

With this force field variances of unit weight considerably smaller than in

been taken to define the known potential U in (2}.
{1z, 12), (13, 11}, (13,

observed.

the old solution were obtained.
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The least-squares adjustment (8) of the new solution contains as unknown parameters 104
density values, 123 station coordinates, 126 orbital elements, and 4,315 freguency offsets.
The Tongitude of the station Maryland was held fixed. The variance of unit weight for the
adjustment equals 4.06. A value of 1.02 is obtained if the standard deviations of the
Doppler data are increased by a factor of 2. Judging from the residuals of the orbit fits,
this seems to be justified. By multiplication with the square root of 4.06, the maximum
and minimum standard deviations for one coordinate of a tracking station are found to be
£+ 40 m and £ 1 m respectively. The maximum value belongs to a tracking station that tracks
only one satellite (table 2)}. The determination of the coordinates of these stations can
be improved by combination with the results of the worldwide satellite triangulation. The
results for station coordinates are, therefore, given in the following section.

Because of the resonant terms in the potential U, the computed density values are trans-
formed by (5) into spherical harmonics to the 15th degree and order. The results are given
in table 3. Choosing kM = 3.986 013 «x 101% m? sec™ and a = 6,378,145 m for this analysis,
the value of E}’0= -484.1703 (table 3) corresponds to a flattening of 1/298.256 for the
best fitting ellipsoid. The geoid heights of figure 1 refer to this ellipsoid.

If the computed rectanqular station coordinates are transformed into ellipsoidal coordin-
ates and the leveling heights as well as the geoid undulations obtained from the coeffi-
cients of table 3 are subtracted from the ellipsoidal heights, a new reference ellipsoid
may be computed. Applying a least-squares fit, an equatorial radius of a = 6,378,140 m is
obtained. A recent determination for kM by Mariner 9 data gives kM = 3.986 008 x 1014 misec
[Esposito and Wong 1972]. With this new value a correction da/a = dkM/3kM obtained from

2

Kepler's Third Law can be computed; this yields an equatorial radius of a = 6,378,137 m.

The comparison of the new solution with the combined solution of Gaposchkin and Lambeck
[1971], for example, shows good agreement. The rms discrepancy between geoid heights com-
puted at 10° intervals is + 10.3 m and between common coefficients * 0.11 x 1078, Table 4
compares the zonal harmonics E;o of table 3 with the coefficients of Cazenave et al.
[1972], which are derived by means of the results of Kozai [1969]. Table 5 gives the posi-
tive sguare roots of the mean degree variances °n of the coefficients of table 3, which
indicate the decay of the harmonic coefficients. 94 = 1075/n? gives the values for the
decay from the rule-of-thumb, while the last column contains the anomaly degree variances
a? The values for a_ and o? beyond n = 6 are smaller than the corresponding

ag,n’ n AQ,N
values of the old solution, thus indicating the improvement over the latter.

3.2 Combined solution
Gravity anomalies given as mean values for 2,592 surface elements, 5° = 5° in size

[Kech 19707, were used for a combination with the Doppler observations according to (15).
The harmonic coefficients and the geoid undulations coming out of the combination are only






Table 3.--Potential coefficients to (15, 15) from the dynamic solution

e R B e s s B B =0 T &) B = A T = A T = A T e s T o NN o B 0 T & 5 BN &5 BN & o BN 5 » B R N S S e L S A

m"Enm 105§nm n m 108C_ 1085
0 ~484.1703 8 0 0.0099
2 2.3385 -1.4587 8 1 .0346 -0.1259
0 .9779 8 2 - .0543 .2985
1 2.1175 .3323 8 3 .0169 - 2492
2 .8831 - .6689 8 4 - .5327 .0058
3 .7815 1.2478 8 5 - 1114 .0502
0 .5207 8 6 ,2020 2172
1 - .5288 - .5458 8 7 .0755 - .1375
2 .3362 .6336 8 8 .22 .1996
3 1.0208 - .2500 9 0 .0036
4 - 2161 .2100 9 1 179 - 1346
0 .0500 9 2 - .0044 - .0075
1 - .0992 - 2133 9 3 - 110 - .2187
2 L7642 - .3978 9 4 .0694 - .0193
3 - .6413 - .2601 9 5 .1840 .0880
4 - 2857 .1510 9 6 .0442 .4828
5 .3307 - .3873 9 7 - 0321 - .4485
0 - 1749 9 8 - 1517 .2206
1 - 1342 1126 9 9 .0061 .2248
2 .0934 - 4475 10 0 .0045
3 1730 .0540 10 1 .0343 - .1009
4 - .1939 - .5837 10 2 ,0062 - .1897
5 - 1346 - 327 10 3 .0029 - .73
6 - .0462 - .1856 10 4 - .0088 - .4659
0 .1244 10 5 - .0504 - .0163
1 .3142 .1693 10 6 .0636 - 0596
2 L3345 . 1697 10 7 - 0212 - 1445
3 .3074 - .2703 10 8 - .0009 L0617
4 - .4039 - 2067 10 9 1147 .0913
5 1352 1367 10 10 .1651 - .0072
6 - .3580 - L1519
7 - 1106 - .4457
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Table 3.--Continued

n m 105 10°5__ n m L 105§nm
1 0 -0.0048 13 10 0.0155 0.0314
1 1 .0381 0.0201 13 1 - .0917 .0001
M 2 .0052 - .2002 13 12 - .0038 .0739
1 3 .0234 - .0293 13 13 - .0802 .0385
1 4 .0472 - .0239 14 0 .0022

i 5 1815 - .3528 14 1 - .0095 - .0049
1 6 - .02 .0560 14 2 .0013 - .0250
1 7 .0398 - .2301 14 3 - .0082 0256
n 8 - 0257 2560 14 4 .0045 .0008
1 9 - .0035 .0243 14 5 .0234 .0248
n 10 - .0503 - 0143 14 6 - .0015 - .om
1 1 - .0334 .0015 14 7 .0002 .0025
12 0 - .0038 14 8 - .0220 - .0007
12 1 .0087 .0439 14 9 - .0021 .0569
12 2 - .0597 1337 14 10 - .0009 .0341
12 3 - .0023 - .0086 14 M 0274 - .0896
12 4 - .0688 L0011 14 12 .0036 - .0522
12 5 .0167 - .0080 14 13 .0262 .0304
12 6 - .0199 - 1020 14 14 - .0315 L0156
12 7 - .0142 .0020 15 0 - .0023

12 8 .0055 .1575 15 1 - 00N .0047
12 g - .02n L0511 15 2 .0091 .0023
12 10 .0242 - .0541 15 3 .0062 . 0066
12 n - 0417 - .0337 15 4 .0123 .0037
12 12 - .0581 - .0633 15 5 - .0077 - 0017
13 0 .0047 15 6 .0046 - 0462
13 1 0269 - .0363 15 7 - .07 L0166
13 ? - .0183 .0100 15 8 - 0130 - 0710
13 3 - .04 .0047 15 9 .0191 .0185
13 3 - .0460 .0436 15 10 .0184 .0202
13 5 .0801 - .0775 15 1 .0005 .1002
13 6 L0672 - 1235 15 12 .0093 .0095
13 7 0586 0112 15 13 - 0476 - .0337
13 8 .0578 .1198 15 14 L0120 - .0236
13 9 L0418 .0012 S 15 .0083 .0105




Table 4.--Zonal harmonics Eﬁu

Cazenave King-Hele
et al. et al. Table 3 Table 8
[1972] [1969]

-484.1670 - -484.1703 -484.1775
.9612 0.9615 .9779 L9770
.5397 -- .5207 .5358
.0681 .0648 .0500 .0505

- .1548 -- - .1749 - .1918
.0942 .1030 L1244 L1244
.0507 -- .009% .0286
L0271 .0000 .0036 .0036
.0508 -- .0045 - .0059

- .0492 .0000 - .0048 - 0047
.0376 -- - .0038 - .0002
.0389 .0000 .0047 .0047

- .0158 -- .0p22 .0013
.0145 .0365 - .0023 - .0023

Table 5.--Degree variances of the dynamic solution

n o aaite
2 216.53 2.50 7.5
3 1.13 1.11 34.4
4 0.53 0.62 20.4
5 0.39 0.40 25.2
6 (.25 0.28 20.2
7 0.27 0.20 36.5
8 0.20 i .8
9 0.19 0.12 44.0
10 0.13 0.10 28.2
11 0.12 0.08 30.6
12 0.06 0.07 9.4
13 0.06 0,06 11.7
14 0.03 0.05 .4
15 0.03 0.04 .6
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slightly changed in comparison to the adjustment (8) of the satellite observations alone.
This means that the Doppler observations overwhelm the information coming out of the grav-
ity anomalies. Hence, the normal equations of the Doppler solution are divided by a factor
of 4, which can be justified by the results of the orbit fits as explained in the preceding
section. The covariance matrix Ex of the density values computed from (14) remains un-
changed. This combination gives a variance of unit weight close to one.

For the combinaticon with the worldwide satellite triangulation, 17 stations were se-
lectected. Table 6 gives the stations of the satellite triangulation together with the
Doppler tracking sites to which they are connected by survey ties. In the least-squares
adjustment according to (18), with the station coordinates from Schmid [1974a] and the
corresponding reduced normals, the longitude of the station Maryland of the satellite
triangulation was held fixed. Hence, the definition of the zero meridian in the combined
solution (18) agrees with the definition in the geometric satellite triangulation. If the
reduced normal equations of the satellite triangulation are introduced without scaling, the
corrections to the coordinates of the satellite triangulation in some cases exceed three
standard deviations. Hence, for the combined selution the normal equations from the satel-
lite triangulation are multiplied by a factor of four. This scaling affects all geoid
undulations by less than 2 m.

Table 6.--Stations of the satellite triangulation

statior Location Corected Lappler
G 1 Greenland 18

G 2 Maryland T and 203
G 3 Washington 738

G 1 Hawaii 811

G 15 Iran 817

G 19 Argentina 820

G 22 Samoa 17

G 3 New Zealand 809

G 40 Cocos Islands 723

G 53 Antarctica 19

G 55 Ascension 722

G 60 Australia 12

G 64 Chad B22

G 67 Brazi) 837

G 68 South Africa 15

G 75 Seychelles 717

G 1N California 200
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The variance of unit weight of the combined solution (18) equals 2.06 after introducing
the scale factors for the Doppler solution and the satellite triangulation. Using the
square root of this variance of unit weight to compute the standard deviations of the sta-
tion coordinates, values between £+ 1 m and £ 5 m for all three coordinates are obtained

th the exception of the standard deviations at the following stations:

station 10 : m =t 9 m, my =11 m, m, = +19 m

station 310: m_= 43 m, m = 35 m, m, = 221 m,
X ¥ z

station 321: m, = +49 m, my = +32 m, m, = +24 m,

station 729: m =+9m,m,=+7mm =%9m
X y z

These Doppler stations (tables 2 and 6) track only one satellite and are not connected to
stations of the satellite triangulation. The station coordinates resulting from the com-
bined solution are given in table 7.

The results of the transformation into spherical harmonics of the density values from the
combined solution are given in table 8. With the values for kM = 3.986 013 x 10'*m¥sec”?
and a = 6,378,145 m, the value of Eﬁo in table 8 corresponds to a flattening of 1/298.254
for the best fitting ellipsoid. The geoid heights of figure 2 are computed with respect to
this ellipsoid. The least-squares fit for the equatorial radius described in section 3.1
gives a = 6,378,137 m; and with the new value for kM we finally obtain a = 6,378,134 m.

The comparison of the combined solution with the combined solution of Gaposchkin and
Lambeck [1971], as before, yields an rms discrepancy between geoid heights, computed at 107
intervals, of + 8.7 m and between common coefficients, of + 0.09 x 107%. Table 4 gives a
comparison of the zonal harmonics and table 9 contains the degree variances equivalent to
the values given in table 5 for the dynamic solution.

By means of (19) the origin of the coordinate system of the satellite triangulation with
respect to the mass center of the Earth has been determined as

S = 0.7 + 0.6 m, sy = -26+2.6m, 5, % 17.0 + 4.4 m . {29)

The variance of unit weight of the adjustment (19) on which the given standard deviations
are based equals 10.0. Corresponding coordinate shifts of the origin of the system for the

s 21lite t apgulation have also been determined by Schmid [1974b] who obtained

S, = 19.6 m, sy =17.7 m, s, = - 14.3m . (30}
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Table 7.--Station Coordinates from the combined solution

Station X ¥ z

No. {meters) (meters) {meters)
1 1,122,533 -4,823,078 4,006,460

2 -741,622 -5,462,205 3,198,112

3 -1,555,988 -%,169,357 3,387,512

6 4,005,474 -71,743 4,946,669

] 4,083,879 -4,209,824 -2,499,144
10 -5,499,587 -2,485,280 2,056,918
1 -3,088,094 5,333,115 1,638,807
12 -3,942,247 3,468,827 -3,608,192
13 -3,779,659 3,024,725 4,138,963
14 -2,656,165 -1,544,370 5,570,624
15 5,051,484 2,727,316 -2,772,655
17 -6,100,021 -997,199 -1,568,462
18 539,387 -1,388,383 6,181,056
19 -1,310,709 310,443 -6,213,363
92 -741,631 -5,462,192 3,198,158
100 -5,504,157 -2,224,162 2,325,298
103 -1,556,213 -5,169,445 3,387,254
106 4,005,436 -71,748 4,946,706
111 1,122,634 -4.,823,054 4,006,457
12 -3,942,237 3,468,840 -3,608,191
115 5,051,971 2,725,645 -2,774,482
117 -6,100,018 -997,206 -1,568,461
121 -3,088,091 5,333,121 1,638,816
200 -2,572,073 -4,618,422 3,556,655
203 1,261,660 -4,881,254 3,893,544
310 1,708,845 -4,232,150 4,440,298
321 -243,892 -4,532,325 4,466,348
330 -2,568,353 -4,621,095 3,556,620




Table 7.--Continued

Station X y . z
No. (meters) (meters) (meters)
334 -2,568,383 -4,621,084 3,556,630
340 -5,504,042 -2,224 ,356 2,325,421
717 3,602,863 5,238,202 -515,924
722 6,118,419 -1,571,567 -878,452
723 -741,986 6,190,781 -1,338,562
129 5,142,508 -1,566,189 3,421,601
738 -2,127,835 -3,785,842 4,656,044
809 -4,313,793 893,023 -4,596,963
811 -5,468,020 -2,381,418 2,253,207
817 2,604,348 4,444,147 3,750,328
820 2,280,562 -4,914,563 -3,355,453
822 6,023,401 1,617,916 1,331,703
837 5,186,364 -3,654,227 -653,047
G 1 546,575 -1,389,990 6,180,230
G 2 1,130,763 ~4,830,836 3,994,694
G 3 -2,127,831 -3,785,865 4,656,022
G 11 -5,466,022 -2,404,434 2,242,212
G 15 2,604,356 4,444,151 3,750,312
G 19 2,280,610 -4,914,550 -3,355,434
G 22 -6,099,9356 -997,365 -1,568,584
G 31 -4,312,815 891,328 -4,597,260
G 40 -741,966 6,190,783 -1,338,548
G 53 -1,310,839 311,252 -6,213,276
G 55 6,118,341 -1,571,739 -878,613
G 60 -4,751,637 2,792,048 -3,200,161
G 64 6,023,389 1,617,929 1,331,727
G 67 5,186,410 -3,653,837 -654,296
G 68 5,084,827 2,670,328 -2,768,088
G 75 3,602,821 5,238,231 -515,949
G111 -2,448,852 -4,667,992 3,582,746

23
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Table 8.--Potential coefficients to (15, 15) from the combined solution

n m 108¢ 1085 n " 108¢C 1085
2 0 -484.1775 8 0 0.0286

2 2 2.3676 -1.4587 8 1 .0439 -0.0530
3 0 0.9770 8 2 .0241 1705
3 1 2.0565 0.3597 8 3 .0443 - .2739
3 2 8732 - 6335 8 4 4952 .0862
3 3 .8031 1.2784 8 5 1602 0425
4 0 5358 8 6 1227 1788
4 1 - 5432 - .4658 8 7 .0730 - .0769
4 2 3840 .6289 8 8 .2353 .1865
4 3 1.0785 - 2652 9 0 .0036

4 4 - 1983 2387 9 1 1747 - .079
5 0 L0505 9 2 .0017 0066
5 1 - .1040 - .1800 9 3 .0323 - .1695
5 2 .7074 - .3299 9 4 .0958 0262
5 3 - .5465 - L2671 9 5 .1594 .0783
5 4 - 1919 1153 9 6 .0048 .2549
5 5 .3078 - 4167 9 7 .0428 - 325
6 0 - 1918 9 8 1147 .1034
6 1 - aan .0927 9 9 .0293 1604
6 2 .016) - .3605 10 0 .0059

6 3 2512 L0751 10 1 .0431 - 037
6 4 1239 - .5546 10 2 .0297 - .0978
6 5 - .1883 - .3256 10 3 0133 - .1289
6 6 - .0298 - 1947 10 4 0012 - .3901
7 0 -1244 10 5 .0849 .0097
7 1 2682 1615

7 2 L3871 .1436 10 & -0503 - 1364
7 3 3188 o8 10 7 0209 - 0467
7 4 -.2506 ~.1916 10 8 0449 - .0093
7 5 0953 <0587 10 9 1014 .0497
/ 6 -.3748 --2191 10 10 .1938 005
7 7 -7 -.3537




Table 8.--Continued
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n m 108C 1085 n m 10¢C 1085
1 0 -0.0047 13 10 -0.0077 0.0245
1 1 .0169 0.0249 13 11 - 11583 .0029
n 2 - .0194 L1651 13 12 .0009 .0784
11 3 .0087 .0319 13 13 - .0801 .0380
11 4 .0485 .0120 14 0 L0013

n 5 L1273 -.2584 14 1 - .010% .0048
N 6 - .0319 .0143 14 .0038 0185
1 7 .0566 L1135 4 3 - 0176 .0255
n - .0065 L1392 14 4 .0085 L0016
1 9 .0196 .0149 14 5 .0082 .0354
11 10 - .0594 .0195 14 6 .0041 .0362
1 11 - .0424 .0277 14 7 - oo .0248
12 0 - .0002 14 8 - .0189 .0100
12 1 .0093 .0493 14 9 L0102 0604
12 4 - .0309 .1248 14 10 - 0187 0312
12 3 .0024 .0012 14 1 .0233 .0860
12 4 - .0613 .0390 14 12 .0040 .0458
12 5 - 0064 .0250 14 13 .0327 .0283
12 6 .0038 .0597 14 14 - .0342 .0197
12 7 - .0145 .0353 15 o - .0023

12 8 .0708 .1063 15 1 - .0044 .0067
12 9 - .0067 .0474 15 2 .0088 0120
12 10 .0310 .0563 15 3 - 0034 .0041
iz 11 - .0488 .0005 15 4 .0113 .0002
12 12 - .0527 .0592 15 5 - 0134 .0020
13 0 -0047 15 6 - .0047 .0484
13 1 .0234 .0293 15 7 - 0136 .0199
13 2 - .0112 .0162 15 8 - .0126 .0569
13 3 - .0170 .0067 15 9 .0239 .0176
13 4 - .0175 .0526 15 10 - .0001 .0149
13 5 .0721 .0249 15 11 .0134 L0963
13 6 .0686 .0424 15 12 L0131 .0127
13 7 .0539 .0056 15 13 - .0470 .0321
13 8 .0652 .0660 15 14 .0133 .0268
13 a n1a? NART 18 18 nin 0nna&n
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Table 2.--Degree variances of the combined soclution

n 108 1085, qiﬁg,a?z
2 216.53 2.50 7.4
3 1.12 1.1 33.6
4 0.54 0.62 21.2
5 0.35 0.40 20.6
6 0.24 0.28 18.4
7 0.25 0.20 3.1
8 0.18 0.16 25.4
9 0.13 0.12 20.3
10 0.1 0.10 20.7
1 0.08 0.08 15.2
12 0.05 0.07 7.1
13 0.05 0.06 8.4
14 0.03 0.05 3.9
15 0.03 0.04 4.2

The large discrepancy between the two results probably is due to the fact that the latter was
based on a comparison with 37 Doppler tracking sites whose coordinates were obtained from a
larger ampunt and a better distribution of Doppler data than the Doppler data of this znaly-
sis. However, the discrepancy might be partly explained by the computation according to

(19) or (27), where the full covariance matrix of the Doppler solution has been utilized;
this solution was not available for the computation of the results of (30). For example, if
one takes the arithmetic mean of the differences between the coordinates arising from the
geometric solution and the coordinates of table 7 from the combined solution for the 17 sta-
tions of the satellite triangulation, one obtains for the origin

S, = 5.9 m, sy = 3.3 m, 5, = -17.0 m. {(31)

These values come closer to the values of (30).
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