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THE STATISTICS OF RESIDUALS AND THE DETECTION OF OUTLIERS*

Allen J. Pope
Geodetic Research and Development Laboratory
National Geocdetic Survey
National Ocean Survey, NOAA
Rockville, Marytand

ABSTRACT. Insofar as possible it is desirable to base
the criteria for the detection of bad data on rigorous
statistical arguments. This report recapitulates the
statistics involved and describes the "tau" criterion
in detail. This criterion is especially suited for
use in simultaneous least-squares adjustments of tri-
angulation networks. Special note is taken of yet un-
solved problems involved in the rigorous derivation of
stil]l more efficient and exact rejection criteria.

INTRODUCT ION

The examination of least-squares residuals for the detection of
"bad data" is one of the most important and effective means for the
quality control of geodetic work. In order to provide some motiva-
tion for looking at residuals from joint least-squares adjustments at
an early stage, a general overview of the quality control problem
will be useful.

For this purpose, all large adjustment tasks can be broken down
into smaller components which are, in turn,decomposable...down to the
smallest redundant combinations of observations. It may or may not
be the case that the results of component adjustments at a given
level are in fact combined sequentially into an algebraic equivalent
of a component adjustment at the next higher level. This is always
possible in theory, though not always most practical or expedient.
More commonly, rather than sequentially built up, all higher level
adjustments are reinitiated from a common "data-base™ Tevel (for
example, the 1ist of directions in triangulation) which is only one
step removed from the "raw" observations. For example, in triangu-
lation, one sequence of partial adjustments whose examination might
be undertaken for quality control purposes would be: station adjust-
ments, triangle adjustments, quadrilateral adjustments, project ad-
justments (several levels or sizes), block adjustments, and finally
datum adjustments.

However this seauence of adjustments is actually carried out,
the interest here is in the statistical evaluation of all stages.

*Presented at the XVI General Assembly of the International Unjon of
Geodesy and Geophysics, International Association of Geodesy, Grenoble,
France, August 1975.



The purpose of this statistical evaluation is quality control, which
may be described as the search for the answers to the following ques-
tions:

1. What does the evidence of the data say about the accuracy
of the observations? Does this evidence show that these
observations meet the requirements associated with the
specifications under which the work was done? If not,
why, and what can be done about it?

2, What does the answer to 1 imply about the accuracy of the
final products of the adjustment (e.q., positions)? Do
these accuracies meet the project specifications, if any,
or conform to standards associated with the specifica-
tions under which the work was done? If not, why, and

what can be done about it?

3. Whatever the answers to 1 and 2, is there any additional
evidence for the presence of large errors (which may be
bTunders) or for subsets of poor quality data? If so,
can these anomalies be explained and can anything be
done about them?

An ideal quality control procedure would also answer the additional
gquestions:

4. What statistical measures of confidence can be associated
with the assertions made in 1, 2, and 3? Do these mea-
sures of confidence meet conventional statistical stand-
ards? If not, are there alternative analysis procedures
or survey designs which will enable these standards to
be met? In 3, is the geometric and repetitive redundancy
sufficient to insure (with a desired confidence) the de-
tection of large errors when they occur?

A modern approach to survey design starts with preliminary an-
swers to 1 in the form of accuracy figures of the component observa-
tions and proceeds by simulation to find the answers to 2 and 3.

One may then attempt to perturb 1 to improve the answers to 2 and 3.
This should be done in the Tight of a theory and proven methodology
for joint optimization if it is not to have the character of a
"groping in the dark." However, the finally arrived at accuracy fig-
ures still have to be proven to be operationally realizable and econ-
omic, and specifications furnished for an observational program which
will reliably reproduce them.

The use of the word "accuracy" above needs some discussion. 1In
the usual absence of true errors, direct estimates of accuracy are



impossible. It is likely that the total variance will have to be
broken down into an "error budget" of component variances or error
sources, each of which expresses a specific sort of internal precision.
Instances are the within-nights component and between-nights component
in astronomic work {Carroll 1975), and the station component and the
work component (the notorious "hidden error variance" visible to the
net adjustment but invisible in a station adjustment, due to horizontal
refraction and errors of centering, targeting, systematic pointing er-
rors). If an adequate components-of-variance model is used and the ob-
servational program and the physical-geometric constraints of the
adjustment make possible the estimation of the various components (this
is a generalization of the statistical model two, random effects, anal-
ysis of variance problem), then the sum of variance components in the
error model provides a way of "creeping up on" an estimate of accuracy
even when the total variance is itself not directly estimable from com-
ponent adjustments. This assumes thatall systematic, that is fixed,
effects are either corrected for, canceled out by the design of the
observational procedure, or modeled and estimated in the adjustment it-
self. Part of the value of the random effects model is that certain
error sources that are difficult or impossible to model as fixed ef-
fects in ordinary trianqulation, such as the errors mentioned above as
being visible to the network adjustment but not the station adjust-
ment, can be treated as random effects to achieve an error analysis
that incorporates a statistical estimate of the influence of these er-
rors on derived quantities as expressed in their variance. However,
there does not yet seem to be any universally accepted solution for

the general random-effects analysis of variance, in contrast with the
fixed-effects analysis of variance, whose generalization is known to
every deep student of adjustment theory. It is the same as the theory
of the general linear hypothesis in the presence of singularities.

Obviously the answer to "What can be done about it?" depends on whether
one is looking at a simulation for p1ann1nq, "real time" reduction of new
data, or old work from the files--leading in turn to the redesign of the
survey, the acquisition of new data, and the acquisition of experience.

At this point one may envision a spectrum of approaches to qual-
ity control whose extremities fall on either side of the above mentioned
division into components. A thoroughgoing approach would be to
examine data in as many subsets and in as many different levels of
size as is economically possible. Given the practical limitations on
the thoroughness with which this can be done, one has the yet-unsolved
problem of the selection of the sequence and coverage of the compon-
ent adjustments that will insure quality control of a desired confid-
ence. In fact the choice of components is typically an accident of
the history of the growth of the triangulation network. Truly seouen-
tial techniques, ideally incorporating "back tracking"-, partial
batching-, and localization-capabilities, are relevant here. The
other extreme consists in proceeding immediately to the joint



adjustment of all data with as little preliminary evaluation as possi-
ble and relying upon the results of this adjustment (or repetitions of
it) to point out any quality control problems.

A certain amount of "back tracking," in the general sense of mov-

ing from a larger adjustment to a smaller component, will prove useful
as a diagnostic tool in the search for the answer to the "Why?" listed
among the questions above. The basic statistical motivation for a
thoroughgoing quality control procedure, as just described, is the be-
lief that there are errors (or components of variance) that are only
visible in Targer net adjustments incorporating all redundancy, avoid-
ing edge effects, and capturing a redundant sample of the random ef-
fects accounting for the "hidden" error variance, which varies with
atmospheric conditions, terrain, observers, instruments, specifica-
tions of work, etc. On the other hand, there is also the conviction
that the examination of the results of large joint adjustments, be-
sides being cumbersome and expensive to repeat, cannot be relied upon
to detect all errors.

Quality control, as described here, covers a great deal more than
just the examination of residuals. It involves estimation of variances,
various tests of significance on variances, and possibly other checks
on closures of various types or on alternative measures of random var-
iation other than the variance or its square root. This paper aims to
describe one of the statistics involved in the examination of resid-
uals, excluding other aspects of quality control.

Now it has to be confessed that there is still a fifth class of
question involved in quality control. In any problem invoelving a suf-
ficiently large mass of heterogeneous data and complex systems of pro-
grams for their reduction, the importance of this aspect grows even to
overshadow the other four. That is:

5. Have any mispunches, operator's errors, programming blunders,
etc., made nonsense of the results of the program just run?
If the answer is "No," how are you sure? (Here one already
knows the answers to "Why?" and "What can be done?" -- human
error, and "go through your program again and again.")}

Though not a statistical question, this too is part of the motivation
for looking at residuals.

STATISTICS OF RESIDUALS, I

Unfortunately, residuals are not true errors. From the least-

squares solution of full rank observation equations AX + L =V, one
has the least squares residuals and their covariance matrix (using an
estimate of the variance of an observation of unit weight, Gf')I
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L - a(ate) Tt Aty 2. (2)

Introducing the true error ¢ = L - F(L), with the assumption that the
model of the observations is unbiased, E(L) + AX = 0, equation (1) be-
comes

Yy =Me,* (3)

where M denotes the matrix in brackets in equation (1). By the substi-
tution V = SV, € = Se, A= SA, where P = StS these equations take the
form

(4)

-
I
=|

4]

=MG2. (5)

Note that M = 1 - ﬁ(ﬁtﬁj*lﬁt is an idempotent matrix. That is,
MM=M In the ordinary case of a diagonal weight matrix P, V = SV
means V} = /E;'vi. With P = 2;1 oo s V} = Vi/o., o; being the a priori
standard error of the error on the ith observation, €;- Also note that
I- =1 cg, in contrast to Iy =M o

With these preliminaries, 1t is already possible to make several
points about the distinction between V's and ¢'s.

Besides being idempotent, M is the projector onto the orthogonal

complement of the model space (the column space of A). Thus for any
Y=AX, V°Y =0. The situation is depicted in figure 1.

*In a more precise notation, the least-squares residuals given by
equation (1) should be distinguished from other values of V by writing,
for example, V Here we follow common adjustment theory usage by omit-
ting the LS. A]ternate possibilities, V or £, are rejected in this
discussion, the Tatter since we wish to emphas1ze the shortcomings of V
as an estimate of e, and the former as imprecise.



Figure 1.--least-squares adjustment as an orthogonal projection
in the space of the observables.

The projection of the true error vector onto the model space, U,
orthogonal to V, is lost and irrecoverable. Now picture many similar
configurations, such as the one indicated by dotted 1ines. & varies
randomly with a scatter described by & but such that always L+e-= ﬁxtrue.
Averaging over all random occurrences of the true error, that is, taking
expected values, one obtains E(Eté") = n U&Z, E(ﬂﬂzﬂ) =y o&z, and
E(ﬂhtg) = (n - u)o;i, where n and u are the dimensions of L and X. Here
we have used E(c te )= tr f= and a similar formula for U and V, and the
fact that tr M = rank ﬁ-for any idempotent matrix ﬁl

Thus E(QAtgj = D—ﬁ—H-E(E{EA)= (n - u)o, a familiar result that is the

basis for the unbiased estimator of o023 o= 4&5\’ (Note:_\.’tPV = V)
The point is that we cannot know the "invisible" component U in any
given instance, and it is only possible to circumvent this Timitation in
the average, The average square length of the invisible component is



E(Utﬂ_) = %E(Etg) = u 002. Obviously, for n >> u; Vo~ . This,

when applicable, simplifies the statistical argument. Unfortunately it is a
distinctive characteristic of geodetic networks that u/n does not become
arbitrarily small, but remains remarkably constant over wide variations

in the extent of the net. For triangulation (putting the residual in

the net adjustment on the single mean direction to each remote station)

the value of u/n is about 0.5, for leveling 0.33. In summary, residuals
are but the visible components of true errors.

Another difference between V and e is that they possess different
covariance structures, as noted above. Returning to ﬁv in equation (2),
we see that the first term P"1s? is just the covariance matrix of the

0
true error (a priori or a posteriori, depending upon whether ¢ 2 or o2

is used). The second term, which it is useful to call the “gegmetr'ic('JI
term because it reflects the ageometry of the network through the design
matrix A, happens to be in its own right the covariance matrix of the
adjusted observables. The geometric term is generally full even if P
is diagonal. A practical hurdle in computing zv is the computation of
this second term which entirely accounts for the inequality of EV and
I.. No theoretical or algorithmic difficulty is involved; it is
solely a matter of time and expense for large trianqulation adjust-
ments (still a consideration even with today's computers). Even the
computation of the diagonal terms alone is suspected to be already
past the point of diminishing returns at which the small improvement
in rejection procedures thus gained may not justify the expense.
Hopefully, it will be possible to resolve this issue in the 1light of

further investigation and experience.



The relative importance of the two terms can be roughly assessed by the
measure tr{f P)/n, or what is the same thing, (tr I)/n applied to the two
terms of Lo - This gives a% and (u/n)oﬁ, respectively, for the two terms.

The fact that M {and also the second term of M) are idempotent
and non-negative definite makes it possible to say quite a Tot about
the magnitude of their elements without actually computing any. The
following equalities and bounds are easily proved.

(1) (average diagonal term of ﬁ) =(n - u)/n
(2) 0 =< (any diagonal term of M ) =1

(3) d = (r.m.s. variation about their mean of the diagonal terms
M n-u u—H
of M) s\/( i )(h")
(4) r = (r.m.s. value of the off-diagonal terms of M) =

VEH B G

In fact d? + (n-1) r2 = (Eﬁg- %— . Also note that if any diagonal
term of M is either 0 or 1, then all the off-diagonal terms in that
row and column must also be zero. The bound in (4) can be misleading.
The number of off-diagonal terms increases with n2, whereas the number
of significantly nonzero off-diagonal terms probably increases lin-

early.

That 0 < o%i < o%/pi, a restatement of (2), is obvious from equation
(2). This is somewhat paradoxical at first sight, since one might
think that by manipulation of the weights and/or geometry the variances

of residuals and adjusted observables could be varied arbitrarily.



Again note the important role played by the ratio u/n. For example,
the bound in d is largest for {u/n) = 0.5, the triangulation value.
The consequences of the large size and constancy of u/n hark back to
the traditional objections to least-squares adjustments of triangu-
lation; that they cannot be relied upon to localize the error and
instead "spread it around," introduce spurious correlation, and
the like.

STATISTICS OF RESIDUALS, II

The discussion thus far has been purely algebraic. Turning now
to the distribution of the residuals, the standard assumption of nor-
mality of the true errors is made. That is, e is distributed as
multivariate normal, N(O, Z.). This gives & ~ N(0,Is2), and
Vo~ N(O,zv.); therefore n(O,UV;Z) is the marginal distribution of the
ith residual Vi where (in the case of diagonal weights):

m. .

The story does not end here, however, for two reasons. First, this re-
sult still requires the assumption that the true value of o s known,
whereas real data frequently give evidence that this is not the case
by significant differences (as measured by x?) between the posterior
estimate and the assumed prior value of cf . Second, this result ap-
plies to a single particular residual but there js as yet no provision
for control of the significance level when examining groups of resid-
uals. In this case one does not look at only one residual selected in
advance, but instead examines the residuals in order of decreasing
magnitude. Thus, complete statistical control of the test will require

the distribution of the Zargest residual rather than of a particular
residual.
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The procedure which we have called the + (tau) criterion for re-

jection of residuals incorporates these extensions, in the first case,
rigorously, in the second case, incorporating some anproximations. To
discuss these features of tau it will be necessary to review briefly
some background on Studentization and tests of hypothesis. Before
this, however, a short digression on the operational meaning of sta-
tistical statements about residuals.

What does it mean to assert that Vi n(0, OV%)? One way to test
one's understanding of such an assertion is to construct a thought-
experiment in which its implied statements of probability can be real-
ized as the large sample Timit of frequencies. Conceive of m = 100
(say) repetitions of a geodetic survey involving n observables, that
is, identical configuration, instrumentation, etc., differing only in
the errors affecting the observations. These errors are assumed to
come from a random normal population described by N(O,ZE). Each sur-

very is then adjusted using P = 2;1. These 100 adjustments produce

100 residuals on each of the n observables. If these 100 residuals on
observable i (say) are then used to plot a histogram, this histogram
will approximate n(O,ovi) and the approximation will improve as m (the
number of repetitions of the survey, not the number of observables

in the survey) increases. This assertion is true for i =1, ..., n,
and in general this will involve n different distributions with n
different GV?IS' This is because the geometric part of L, is not, in
general, constant along the main diagonal even if P is. This in turn
is due to the variable geometry of the net. Whereas a uniform network
will produce relatively uniform cvi's, one fact of 1ife in dealing
with the triangulation as it exists in North America is that the geom-
etry, instrumentation, and specifications of the component work are

often far from uniform, particularly in municipal surveys.
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Of course, this thought experiment is never carried out in reality
r we have only one survey with only one residual on each of the

observations. Pooling, then histogramming these residuals produces
mixture with no claim to normality, asymptotic or otherwise. It is

interesting statistical exercise to derive the theoretical shape of
2 resulting probability density function, but this can be done only

the Uvi's are known, or if some distribution of the Uvi is assumed,
which case the mixture can be approximated by a compound distribu-

. One finds the characteristic departures from normality--more

iked, Tower shoulders, higher tails. If the o,? are known, then

v
a resifuals can be standardized to Gi = Vi/UV1'1 Then Gi’“ n(0,1),

i the ¥; can be pooled without producing a mixture since pooling of
),1)'s produces another n(0,1). Any attempt to reason backward from
siduals to deduce characteristics of the true errors, difficult in

¢ case, must take account of the varying ovi's. In the absence of

'S which have to be computed from the relatively expensive for-
la (2), one frequently sees partially standardized residuals (Vilci)'

Thus we see that histograms of residuals have to be interpreted

th some care. Tau, the distribution of an internally Studentized
s7dual, is impossible to realize as a histogram from one survey for
> reason that there is only one value of the random variable 302

~ survey, and the tau distribution incorporates a random variation
802 that can be realized as a frequency only by the sort of

ught experiment described above.

The term "Studentization" refers to the design of a statistic
at is independent of the (unknown} true value of one or more popula-

on parameters. For examnle, if y ~ n(u,a2), then x, = (y-u)/a ~ n(0,1).

e distribution of X, 1s independent of the parameter values, but the
atistic x; is not, since it requires knowledge of y and o. One way to
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avoid this requirement is to "randomize" the parameter by replacing its
unknown true value with a statistic, itself a random variable, which is
in some sense an estimate of the parameter in question. (In the modern
approach to Studentization expressed in the first sentence of this para-
graph, the choice of alternative statistics is somewhat wider than this
statement would imply.) The distribution of the new statistic must be
known so that it can be used to make statements about probability.

In the example, the unknown parameter u is easily eliminated (in

fact, so easily that it is not usually thought of as an instance of
Studentization)} by use of

k= v - Po~n (0, 251)

where vy is the sample mean. o can be eliminated by use of

x, = (y ~u)/a~t

. 2(yi-y)? o
where o = 7 and tn_js Student's t distribution with n-}
degrees of freedom. (Alternately one could vary this by Studentizing
the departure of the sample mean from the true mean or by using n in-

stead of n-1 in the definition of a. These are standard cases

considered in many statistics books.) For the elimination of both u
and o, three alternatives present themselves: external, internal, or
mixed Studentization of o.

External Studentization of o means that the estimates of g and u

are formed from independent samples. This gives

_ — g ’nﬁl
X3 = (y - }'1)/02”. _n_ tn__]
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rere the subscripts 1 and 2 on the sample mean and variance estimate
ndicate that they are to be computed using independent samples of y.

Internal Studentization means, then, the use of the same sample

3 compute the sample mean and variance estimate. This gives

N
xq—(y-y)/cw(n T

here the new random variable T, is related to Student's t by
=/v_tv‘.1

Yo - 1+ tﬁ-l

T
W

This formula suffices to compute the distribution of . Because
f the use of the same sample in computing y and &, the numerator
nd denominator in the statistic x, are not independent as is
equired for a t distribution.

By mixed (internal and external)} Studentization it is meant that
hereas y is computed from sample one (say), & is arrived at hy a

ooling of the variance estimates from samole one and another independ-
nt sample two. In adjustment terminology, o is an estimate of variance
ormed by pooling a priori and a posteridri estimates of variance. By
pooling” is meant the minimum variance combination of variance esti-

~

ates of the form &2 = (vlﬁi + v28§)/(v1 + v2) with vy and v, the

ssociated degree of freedom. This also leads to a tau distribution
Quesenberry and David 1961). This case js considered no further here since
art of the motivation for using tau in triangulation is to provide a
ata-adaptive criterion that is uninfluenced by prior estimates. The

ooling of variance estimates is justified only on the assumption that

he variances of the populations from which the two samples are drawn

re in fact the same.
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The tau distribution was first published by W. R. Thompson (1935).
The designation "tau" is not universal and the distribution has to
be recognized by the occurrence of formula {6}, or its inverse
giving t in terms of t, in which guise it is quite frequently en-
countered in obscure statistical references. Tn-; 1s tabled in
Rainsford (1957), following Logan {1955). The generalization to
arbitrary degrees of freedom needed in applications to geodetic
adjustments has begun to appear only quite recently (Ellenberg
1973). Because of its relative unfamiliarity, a brief sketch of a
der{vation of tau is now given,

M can be factored as ﬁ_= U Ut, where UtU = I, and U is dimensioned
nby v. v = rank M=n-u-= the degrees of freedom associated with
802. Now denote U = {u?}, u$ being the <th row of U, and k = Ut[—.

« is a v dfmensional vector and « ~ N(0,Io). Consider the quantity

{v-1) b A |~</cr02

a =
(1) b B lc/oro2

with A = {ui(uf ui)‘1 u?} idempotent of rank 1, and

B ={I - A}, idempotent of rank v - 1. HNote that AB = 0.

Consulting Graybill's (1961) theorems 4.6, 4.15, and the definition

of F, page 31, one concludes that a ~ Flm_1 = ti_l-
Therefore
t
v a \/G(u.I k)
b = = NT\; (7)
v-1+a ¢(KTK)(U$ 1)

But /E;Vi =y, = u? K s Ce = VPV = P ey and u? u; = ﬁ%i’ giving
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(Vi/GV-)NT\) s (8)
1

, m vipy
where 8V_= ('——7)(\ " )has been used.

Note that eguation (7) implies that |t| < /' (using 1 to denote
both the statistic and the distribution, as commonly done), a sur-
prising result on first sight. It can be shown that 1= Y r, r
being the sample correlation coefficient when the true value is zero.

The second distinctive feature of the tau criterion for detection

of outliers is the control of the probability of type I error, the

error of rejecting a true hypothesis. The rejection procedure is

thought of as a test of the hypothesis that v, ~ n(0, o, ) for all i, where
Uvi = k(6v1/ao) = k(ﬁ%i/pi) for some unspecified k, by uSe of the test

accept H, if max (vi/&V1) <c

reject H, if max (v1/6v_) : C,
i

where ¢ is a critical value, selected in advance so that the probability
of rejecting a true hypothesis is a, a number selected in advance, say
0.05. The probability of accepting a true hypothesis is the signifi-
cance of the test, 1 - «. The probabilities of accepting the hypothe-
sis when false, R, and rejectina a false hypothesis, 1 - g, are called

the probability of type II error and the power of the test, respectively.
The computation of ¢ requires the distribution of max t under the null
hypothesis. This distribution is extremely difficult to compute exactly
(Stefansky 1972), and various approximations have been suggested
(Halperin et al. 1955), including Thompson's original one {eq. 9 below).
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A simplified derivation that evades many of the subtleties in-
volved in a more thorough approach goes as follows. MNote that

P{max T > ¢} = P{{one or more of Ti) >¢l =1 - P{all T = cl

1 - P{{r; =c) and (t, sc) and ...} .

2

If we ignore the dependence of the t1's that is present because of the
nonzero off-diagonal terms in zv that arise from geometric part, this
last probability can be written as [ P(Ti =c¢) = {P(r = c)}n, since

i

all t are identically distributed. Denote a = P(t >c).
Then
a='|-('|-a)n

1

or a=1-(1-a)"’:“%. (9)

Equation (9} is referred to as the transformation for control of
type I error. Here n is the total number of observations in the group

for which control of type I error is desired and is conventionally,
although not necessarily, taken to be the number of (nonspur)
observations in the adjustment producing the residuals in question.

By a "spur" observation (the term is sugagested by leveling) is meant
one for which 9. and v, are identically zero. This happens if there
are some parameters that are only exactly (not redundantly) determined.
A similar transformation was supposedly used by Logan (and quoted by
Rainsford) but our programs do not check Logan's tables.



COMPUTATION OF THE TAU CRITERION

The tau rejection criterion is implemented by a subroutine
TAURE which may be called from a FORTRAN program by:

CALL TAURE (NT, NU, ALPH, CRTAU)

where NT is the number of ({nonspur) observations

NI is the degrees of freedom

ALPH is the desired probability of type I error

and CRTAU is the critical value produced by the subroutine

{called c in the above discussion).
It is assumed that the variance of unit weight has been estimated from
the same least-squares adjustment that produces the residuals to be
tested. Then all residuals for which

lvilavil 2 ¢

are flagged for rejection. ("Blind" rejection without any effort at
further diagnosis is never recommended, even though the statistical
design of tau makes it possible if necessary.)

In leveling adjustments and station adjustments , &V is, in fact,

computed for every Vi- For large triangulation network1 adjustments
in which the computation of GV, is still impractical, the following

. . . 1 .
expedient compromise is recommended. Approximate Iy. by
i

=

i
=
as

and proceed as before. This approximation is based on the average
value of E%i' It is pmarticularly important to have good prior weights

when corputing either the exact or approximate dv
i

17
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The subroutine first computes "a" by the equa]lﬁy in (9). An

—

approximate critical value ¢, such that a £ P(+r € c), is computed
with the aid of an approximate inverse t given in Abramowitz and
Stegun (1965, p. 949). This is then refined by a Newton-Raphson
iteration. Subroutine TAURE and a table of values of tau computed
with it are included as appendices 1 and 2.

Limited experience thus far has shown tau to be a reasonable way
of answering the old question, "How big is too big?" when looking
at residuals from triangulation. The critical values of tau are
quite different from those based on the normal law.

POSSIBLE EXTENSIONS AND REFINEMENTS OF TAU

The tau as described above represents a certain plateau in the
search for a statistically rigorous rejection criterion for use
in quality contrel. It is by no means the ultimate in this res-
pect, however. A brief list of remaining problem areas in the
search for statistical rigor follows.

1. A feasible implementation of Stefansky's methods for the
computation of the exact distribution of max r can perhaps be
found and applied to simulations and special studies at least,
if not routinely.

2. Computation and control of the probability of type II
error, the error of retaining bad data, are particularly desira-
ble in triangulation adjustments, which are subject to distortion
from bad data remaining in. The control of type II error is
somewhat more difficult than that of type I, regquiring as it does
formulation of definite alternative hypotheses, leading to non-
central distributions and other complications.

3. The context here has been batch adjustments. Sequential
adjustments have, from the statistical point of view, both advan-
tages and disadvantages. The subject deserves more study.

4. The effect of rejection procedure on the re-estimation of
the variance of unit weight is amenable to study.

5. Iterated rejection procedures have to be better understood.
Tau at least is sensitive to changes in size and degrees of
freedom, which a fixed rejection level is not.



6. The question of the optimum size adjustment for rejection
urposes remains open, and

7. The rejection of bad data in satellite geodesy is quite
different problem, since u/n is small and the main problem is
he unmodeled systematic errors, not the random part, which is
ypically a small part of the error budget. What, if anything,
oes tau have to offer in this situation, and are there statis-
jcally rigorous alternatives?
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A Note regarding the scan of NOS65 NGS1

Appendices II., III., and IV. contain tabulations of computations of tau, T, and X respectively.
In light of modern computing capabilities, as compared with those of 1976, it was felt
unnecessary to scan all pages of the appendices. Instead, the first page of each table was
scanned and included for those that might wish to test their algorithms. These excerpts are
pages 24, 61, and 98 of the original document.
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APPENDIX 1. SUBROUTINE TAURE (PP. 20-22)

The purpose of subroutine TAURE is to compute the rejection level
for normalized residuals for a given number of observations, degrees
of freedom, and desired level of type I error. This subroutine may
be called from a FORTRAN program by:

CALL TAURE (NT, NU, ALPH, CRTAYU)

where NT is the number of {nonspur) observations (= n)
NU is the degrees of freedom (= v)
ALPH is the desired probability of type I error (= a)
CRTAU is the critical value produced by the subroutine (= c).

The use of ¢ as a rejection critekion assumes that the variance of
unit weight a% has been estimated from the residuals being tested.

A1l residuals for which the condition

V-
1 : ¢

o
Vi

holds true, are to be flagged for rejection.

If the estimates of the standard errprs of the residuals.

A

a,., 1 =1, ..., n, are not known, they can be approximated as:

Vi
fn-u g
a = Y—
Vs n

i NA'n

where u is the number of unknowns in the adjustment and p; is the
weight of the observation. Thus the approximate rejection criter-
ion can be written as

Qs
(o]

Vi ‘/5;- AN 9

For further information see pages 17 and 18 of this report.
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SUBROUTINE

532
56
55
56
57
51
62

63
64
70

71
72
73

TAURE col &60C
R = R + DD
D = 0D
DD = 0D * H »((Z=1.)/D)
R = R*3
b = DxUM
CONTINUE
DEL = (P-R) / D

IFC ABSC DEL/DELL ) .GT. .5) GO TO 72
DELL = DEL

S =5 + DEL

1F¢ ABS(DEL) ,LT. 1.E=-8 ) GO TO 72
CONTINUE

60 TO 72

5 = SIN(P/PD)

CRTAU = S5«SQRT(WNU)

RETURN

END
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APPENDIX IIT, TABLE OF CRITICAL VALUES, T,
BASED ON STUDENT'S t (PP, 60-9)

This table is for use only with externally Studentized residuals;
that is, the estimate of the variance of unit weight must not have
been computed from the residuals being examined.

The format of the table is the same as that of the tau table.
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APPENDIX Iv. TABLE OF CRITICAL VALUES, X, BASED
ON THE NORMAL DISTRIBUTION (PP. 97-133)

This table is for use with a known variance of unit weight; that is,
e variance of unit weight is considered to be a known constant,
ther than a random variable. The transformation for control of

pe I error introduces dependence on NT. The format of the tables
hibits NT{= M) values dependent on NU, as described in Appendix I,
us introducing an apparent dependence of X on NU, even though the
jtical value for a given M is independent of NU, in fact represent-
g the 1imit as NU grows large, This format is retained to facili-
te comparison with the tau and t tables and to exhibit the normal
itical values incorporating the transformation for control of

pe I error.



z

ALPHA = 100

fo= [B[oR 01 10 .20 .25 .30 35
u M X M X M X M X M X M X M X [ X M X
1 1 1.645 2 1.949 1 1.645 1 1.645 1 1.0645 1 1.645 1 1.645 1 1.645 2 1,949
2 1T 1.645 3 2.114 2 1.949 2 1.949 2 1.949 3 2.114 3 2.114 3 2.1146 3 2.114
3 1 1.645 4 2.2206 3 2,114 3 2,114 30 2.114 4 2,226 & 2,226 4 2.226 5 2.311
4 11,665 5 2.311 4 2.226 4 Z.2¢H 4 2.226 5 2.311 5 2.311 6 2.378 6 2.378
5 1 1.665 6 2.378 5 2.3 5 2.311% 6 2.378 6 2.378 7T 2.434 7 2.434 8 2.481
6 1T 1,663 7 0.434 6 2.378 & 2.378 T 2.434 8 2.481 B 2.48% 9 2.523 9 2.523
7 T 1.645 B 2.481 7 2.434 7 2.434% 8 2.481 9 2.523 9 2.523 10 2.560 11 2.592
8 1 1.645 9 2.52%2 8 2.481 8 2.481 9 2.523 10 2.560 11 2.592 1 2.592 12 2.622
9 1 1.645 10 2.560 9 2.523 9 2.523 10 2.5¢0 11 2.592 12 2.622 13 2.649 14 2.674
0 11,645 1 2,502 10 2.560 10 2.5é0 11 2.592 13 2.649 13 2,649 14 2.674 15 2.697
1 1 1.645 12 2.622 11 2.592 11 2.592 12 2.6¢2 14 2.674 15 2.697 16 2.718 17 2.738
2 1 1.643 13 2.649 12 2,022 12 2.622 13 2.649 15 2,697 16 2.718 17 2.738 18 2.757
3 1 1.645 14 2.674% 13 2.649 13 2.649 14 2,674 16 2.718 17 2.738 19 2.774 20 2.791
4 11,665 15 2,697 16 2.674 14 2.674 16 2.718 18 2.757 19 2.774 20 2.791 22 2.822
5 1 1.645 6 2.718 15 2.697 15 2.697 17 2.738 19 2.774 20 2.791 21 2.807 23 2.836
6 1 1,665 17 2.738 16 2.718 16 2.718 18 2.757 20 2.791 21 2.807 23 2.836 25 2.862
7 T h.6465 18 2.757 17 2.738 17 2.738 19 2.774 21 2.807 23 2.836 24 2.849 26 Z2.B75
8 1 1.645% 19 2.774 18 2.757 18 2.757 20 2,791 23 2.836 24 2.849 26  2.R75 28 2.898
1 1.645 2 2.791 19 2,774 19 2.774 21 2.807 24 2.849 25 2.862 27 2.BB7 29 2.909
1 1,645 21 2.807 20 2.791 20 2.791 22 2.822 25 2.862 27 2.887 29 2.909 31 2.930
1 1.665 22 2.822 21 2.807 21 2.807 23 2.836 26 2.875 28 2.898 30 2.920 32 2.940
T 1.645 23 2.836 22 Z2.822 22 2.822 24 2,849 28 2.B98 29  2.909 31 2.930 34 2.958
1 1.645 24 2,849 23 2.B36 z3 2.836 26 2.8B75 29 2.909 31 2.930 33 2.949 35 2.967
1 1.645 25 2.8h2 26 2.B49 24 2.849 27 2.8B7 30 2.920 32 2.940 34 2.958 37 2.984
1 1,645 26 2.875 25 2.862 25 2.862 28 2.898 31 2.930 33 2.949 36 2.976 38 2.992
1 1.645 27 2.887 26 2.875 26 2.875 29 2.909 33 2.949 35 2.967 37 2.984 40 3.008
1 1,665 28 2.8B98 27 C.BBY 27 2.887 30 2.%920 34 2.958 16 2.976 39 3.000 42 3.023
1 1.645 29  2.909 28 2.898 28 2.898 311 2.930 35 2.967 37 2.9Bé4 40 3.008 43 3,030
1 1.645 30 2.920 29 2.909 29  2.909 32 2.940 36 2.97¢ 39 3.000 41 3.015 &5 3.043
1 1.645 31 2.930 30 2.920 30 2.920 33 2.949 38 2.992 «0 3.008 43 3.030 46 3.050
1 1.043 32 2.940 31 2.930 31 2.930 34 2.958 39 3.000 41 3.015 44 3,037 48 3.063
11,645 33 2,949 32 2.940 32 2.940 36 2.976 40 3.008 «3  3.030 46 3.050 49 3,069
T 1.645 34 2,958 33 2.949 33 2.949 37 2.984 41 3,015 44 3,037 47 3.057 51 3.081
1 1.645 35 2.967 34 2.958 34 2.958 38 2.992 43 3,030 45 3.043 49 3.069 52 3.087
1 1.645 36 2.976 35 2.967 35 2.967 39 3.000 4% 3,037 47  3.057 50 3.075 54 3.098
1 1.645 37 2.984 36 2.97¢6 36 2.976 40 3.008 S 3.043 48 3,063 5t 3.081 55 3.103
1 1,645 38 2.992 37 2.984 37 2.984 41 3,015 46 3.050 49 3,069 53 3.092 57 3.114
1 1.643 39 3.000 3g 2.992 38 2.992 42 3.023 48 3.063 51 3.081 54 3.008 58 3.119
T 1,645 40 3.008 39 3.000 39 3.000 43 3.030 49  3.069 52 3.087 56 3.109 60 3.129
1 1.645 41  3.015 «0 3,008 40 3.008 44 3,037 50 3,075 53 3.092 57 3.114 62 3.139
1 1.643 42 3.023 41 3,015 41 3.015 46 3,050 51 3.081 . 55 3.103 59 3.124 63 3.143
1 1.645 43 3.030 &2 3,023 42 3.023 47 3,057 53 3.092 56 3.109 60 3.129 65 3.152
1 1.645 46 3,037 43 3,030 43 3.030 48 3,063 S4 3,098 57 3.114 61 3.134 66 3.157
1 1.645 45 3.043 4h 3,037 44 3,037 £9  3.069 55 3.103 56 3.124 63 3.143 68 3.165
1 1,643 46 3.050 45  3.043 45  3.043 50 3.075 56 3.109 60 3.129 64 3,148 69 3.170
46 1 1.645 47 3.057 46  3.05u 46 3,050 51 3.081 58 3.119 61 3.134 66 3,157 71 3,178
1 1.645 48 3,063 47 3.057 47 1.057 52 3.087 59 [y 63 3.143 67 3.161 72 3.182
4y 1 1.645 49  3.069 48 3.063 48 3,063 53 3.092 60 3.129 64 3,148 69 3.170 74 3.190
49 1 1,645 50 3.075 49 3,069 49 3,069 54 3.098 61 3.134 65 3.152 70 3,174 75 3,194
50 1, 1.645 51 3,081 50 3.075 51 3.081 56 3.109 63 3,143 67 3.161 71 3.178 77 3.201
1 1.645 52 3.087 51 3,081 52 3,087 57 3.114% 64 3.148 68 3.165 73 3.186 78 3.205
52 1 1.645 53 3.092 52 3.087 53 3.092 58 3.119 65 3.152 69 3.170 74 3.190 BO 3.212
53 1 1,645 34 3.0098 53 3.092 54 3.008 59 3.12¢4 o6 3.157 71 3.178 76 3.198 82 3.220
5S4 11,645 55 3.103 S4 3,098 55 3.103 60 3.129 68 3.165 72 3.182 77 3.201 83 3,223
55 1 1.645 56 3.109 55 3.103 56 3.109 61 3.134 69 3.170 73 3.18¢6 79 3,209 85 3.230
56 1 1.645 57 3.114 56 3.109 57 3.114 62 3.139 70 3.174 75 3.194 80 3.212 86 3.233
57 1 1.645 58 3.119 57 3,114 58 3.119 63 3,143 71 3.178 76 3.198 81 3.216 B8 3.240
58 T 1,645 59 3.124 58 3.11¢ 59 3.124 66 3,148 73 3,186 77 3.201 83 3.225 89 3,243
59 1 1,645 &0 3.129 59 3.124 60 3.129 66 3.157 74 3.190 79 3,209 84 3.226 91 3.249
60 1 1.645 61 3,134 60 3.129 61 3,134 67  3.161 75 3.194 80 3.212 B6 3.233 92 3.252
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