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THE STATISTICS OF RESIDUALS AND THE DETECTION OF OUTLIERS* 

All en J . Pope 
Geodetic Research and Development Laboratory 

National Geodetic Survey 
National Ocean Survey, NOAA 

Rockville, Maryland 

ABSTRACT. Insofar as possible it is desirable t o base 
the criteria for the detection of bad data on rigorous 
statistical arguments. This report recapitulates the 
statistics involved and describes the "tau" criterion 
in detail. This cri terion is especially suited for 
use in simultaneous least-squares adjustments of tri ­
angulation networks. Special note is taken of yet un­
solved problems involved in the rigorous derivation of 
still more efficient and exact rejection criteria . 

INTRODUCTION 

The examination of least-squares residuals for the detection of 
"bad data" is one of the most important and effective means for the 
quality control of geodetic work. In order to provide some motiva­
tion for looking at residuals from joint least-squares adjustments at 
an early stage, a general overview of the quality control problem 
wi 11 be useful. 

For this purpose, all large adjus t ment tasks can be broken down 
into smaller components which are, in turn, decomposable ... down to the 
sma 11 est redundant combinations of observati ans. It may or may not 
be the case that the results of component adjustments at a qiven 
level are in fact combined sequentially into an algebraic equivalent 
of a component adjustment at the next higher level. This i s always 
possible in theory, though not always mos t practical or expedient. 
More corrrnonly, rather than sequentially built up, all hiqher level 
adjustments are reinitiated from a common 11 data-base" level (for 
example, the list of directions in triangulation) which is only one 
step removed from the "raw" observations . For example, in triangu­
lation, one sequence of partial adjustments whose examination might 
be undertaken for quality control purposes would be: station adjust­
ments, triangle adjustments, quadril ateral adjustments, project ad­
justments (several levels or sizes), block adjustments, and finally 
datum adjustments. 

However t his seauence of adjust~ents is actu~l l v carried out, 
the interest here is in t he statistical evaluat ion of all stages . 

*Presented at the XVI General Assembly of the International Union of 
Geodesy and Geophysics, International Association of Geodesy, Grenoble, 
France, August 1975. 
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The purpose of this s tatistical evaluation is quality control, which 
may be described as the search for the answers to the following ques­
tions: 

1. What does the evidence of the data say about the accura cy 
of the observations? Does this evidence show that these 
observations meet the requirements associ ated with the 
specifications under whi ch the work was done? If not, 
why, and what can be done about it? · 

2. What does the answer to 1 imply about the accuracy of the 
fin al products of the adjus tment (e.g., positions)? Do 
these accuraci es meet the project speci fications, i f any, 
or conform to standa rds associated with the specifica­
tions under whi ch the work was done? If not, why, and 
what can be done about it ? 

3. Whatever the answers to 1 and 2, i s there any additional 
evidence for the presence of large errors (which may be 
blunders) or for subsets of poor quality data? If so, 
can these anomalies be explained and can anything be 
done about them? 

An ideal quality control procedure would also answer the additional 
questions : 

4 . What stati stical measures of confidence can be associated 
with the assertions made in 1, 2, and 3? Do these mea­
s ures of confidence meet conventional stati sti cal stand­
ards? If not, are there al ternative analys i s procedures 
or survey desi gns which will enable these standards t o 
be met? In 3, is t he geometric and repetitive redundancy 
sufficient to ins ure (with a desired confidence ) the de ­
tection of large errors when they occur? 

A mode rn approach to survey design starts with preliminary an­
swers to 1 in the form of accuracy fi gures of t he component observa­
tions and proceeds by simulation to find the answers to 2 and 3. 
One may then attempt to pertu rb 1 to i mprove the answers to 2 and 3. 
Thi s should be done in t he ligh t of a theo ry and proven methodology 
for joint optimization if it is not to have the character of a 
11 groping in t he dark. " However, the finally arrived at accuracy fig­
ures still have to be proven to be operationally reali zable and econ­
omic, and specifications furni shed for an observational program which 
will reliably reproduce them. 

The use of the word 11 acc uracy" above needs some dj scuss ion. In 
the usual absence of true errors, di rect esti mates of accuracy are 



impossible. It is likely that the total variance wi ll have to be 
broken down into an "error budget 11 of comoonent variances or error 
sources, each of which expresses a specific sort of internal precis ion . 
Instances are the within-nights component and between-nights component 
in astronomic work (Carroll 1975), and the station component and the 
work component (the notorious "hidden error variance 11 visible t o the 
net adjustment but invisible in a station adjustment, due to horizontal 
refraction and errors of centering, targeting , systematic pointing er­
rors) . If an adequate components-of-va ri ance model i s used and the ob­
servat ional program and the physical-geometric constraints of the 
adjustment make possible the estimation of the various components (this 
is a generalization of the statisti cal model two, random effects , anal­
ysis of variance problem), then the sum of var i ance components in the 
error model provides a way of "creepinq up on 11 an estimate of accuracy 
even when the total variance is itself not directly estimable from com­
ponent adjustments. This assumes that all systemat ic, that i s fi xed, 
effects are either corrected for, canceled out by the design of t he 
observational procedure, or modeled and estimat ed in the adjustment it­
self . Part of the value of the random effects model is that certain 
error sources that are diffi cult or impossi ble to model as fixed ef­
fects in ordinary triangulation, s uch as the errors mentioned above as 
being visible to the network adjustment but not the station adjust­
ment, can be treated as random effects to achieve an error analysis 
that incorporates a statistical estimat e of the influence of these er­
rors on derived quantities as expressed in their variance . However, 
there does not yet seem to be any universally accepted solution for 
the general random-effects analysis of variance, in contrast with the 
fixed-effects analysis of variance, whose generalization i s known to 
every deep student of adjustment t heory. It is the same as the theory 
of the general l i near hypothesi s in the presence of singulariti es . 

Obviously the answer to "What can be done about it?" depends on wh ether 
one i s looking at a simulation for pl ann ing, 1'rea l time" reducti on of new 
data, or old work from the f il es--leadina in turn to the redesian of the 
survey, the acquis ition of new data, and-the acquisi ti on of experience . 

. At this point one may env1s1on a spectrum of approaches to qua l-
ity control whose extremities fall on either side of the above mentioned 
division into components. A thoroughgoing approach woul d be to 
examine data in as many s ubsets and in ·as many different levels of 
size as is economically possible. Given the practical limi tations on 
the thoroughness with which this can be done, one has the yet- unsolved 
probl em of the selection of the sequence and coverage of the compon­
ent adjustments that will insure quality control of a desired confid­
ence. In fact the choice of components is typically an accident of 
the history of the growth of the tri angulation network. Truly sequen­
tial techniques, ideally incorporating 11 back tracking"-, partial 
batching-, and localization-capabilities , are relevant here. The 
other extreme consists in proceeding immediately to the joint 
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adjustment of all data with as li t tle prel iminary evaluation as possi­
ble and relying upon the results of this adjustment (or repetitions of 
it) to point out any quality control problems. 

A certain amount of "back trac king, " in the general sense of mov­
ing from a larger adjustment to a smal l er component , will prove useful 
as a diagnostic tool in the search for the answer to the 11l4hy? 11 1 isted 
among the questions above . The basic statistical moti vation for a 
thoroughgoing quality control procedure, as just described, is the be­
lief that there are errors (or components of variance) that are only 
visible in larger net adjustments incorporating all redundancy, avoid­
ing edge effects, and capturing a redundant sample of the random ef­
fects accounting for the 11 hidden 11 error variance, which varies with 
atmospheric conditions, terrain, observers , instruments, specifica­
tions of work, etc. On the other hand, there is al so the conviction 
that the examination of the results of large joint adjustments, be­
sides being cumbersome and expensive to repeat, cannot be relied upon 
to detect all errors. 

Quality control, as des cribed here, covers a great deal more than 
just the examination of residuals . It involves estimation of variances, 
various tests of significance on variances, and possibly other checks 
on closures of various types or on alternative measures of random var­
iation other than the variance or its square root. This paper aims to 
describe one of the statistics involved in the examination of resid­
uals, excluding other aspects of qual i ty control . 

Now it has to be confessed that there is stil l a fi fth class of 
question involved in quality control . In any problem involvin9 a suf­
ficiently large mass of heterogeneous data and complex systems of pro­
grams for their reduction, the importance of this aspect grows even to 
overshadow the other four . That is : 

5. Have any mispunches , operator's errors, programming blunders, 
etc . , made nonsense of the results of the program just run? 
If the answer is 11 No , 11 how are you su re? (Here one already 
knows the answers to "Why?" and "What can be done?" -- human 
error, and "go through your program again and again.") 

Though not a statistical question, this too is part of the motivation 
for looking at residuals . 

STATISTICS OF RES IDUALS , I 

Unfortunately , resi duals are not true errors . From the least­
squares solution of full rank observation equations AX + L = V, one 
has the least squares residuals and their covariance matri x (using an 
estimate of the variance of an observation of unit weight, cr 0

2 ) _: 



(1) 

( 2) 

Introducing the true error E = L - E(L), with the assumption that the 
model of the observations is unbiased, E(L) +AX= 0, equation (l) be­

comes 

(3) 

where M denotes the matrix in brackets in equation (l). By the substi­
tution v = sv, € = SE, A= SA, where p = sts, these equations take the 

form 

v = M E (4) 

(5) 

Note that M = I - A(AtA)-1 At is an idempotent matrix. That is, 
MM = M. In the ordinary case of a diagonal weight matrix P, V = SV 
means v. = /j): v .. ~·Jith P = E-

1 
0 0

2 , v. = v./o. , o. bei nq the a priori 
l 11 E l 11 l . 

standard error of the error on the ith observation, £ .• Al so note that 
l 

With these preliminaries, 1t is already possible to make several 
points about the distinction between V's and ·E' s. 

Besides being idempotent, Mis the projector onto the orthogonal 

complement of t he model space (the co lumn space of A). Thus for any 
- -t 

Y =AX, V Y = 0. The situation is depicted in figure l . 

5 

*In a more preci se notati on, the least-squares residuals given by 
equation (1) should be distinguished from other values of V by writing, 
for example, VLS" Here we fo llow common ~dj u stment theory usage by omit-
ting the LS. Alternate possibilities, V or£. are rejected in this 
discussion, the latter since we wish to emphasiz.e the shortcomings of VLS 
as an esti mate of E, and the former as imprecise . 
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Figure 1.--Least-squares adjustment as an orthogonal projection 
in the space of the observables. 

The projection of the true error vector onto the model space, U, 
orthogonal to V, is lost and irrecoverable. Now picture many similar 

configurations, such as the one indicated by dotted lines . £ varies 

randomly with a scatter described by Er but such that always L + £ = AXtrue· 
Averaging over all random occurrences of the true error, that is, taking 
expected values, one obtains E(£tc-) = n a

0
2 , E(Ut U) = u 0

0
2 , and 

E(VtV) = (n - u)a
0
2 , where n and u are the dimensions of Land X. Here 

we have used ~(~ t ~ ) =_tr EE" and a similar formula_for U and V, and the 

fact that tr M = rank M for any idempotent matrix M. 

Thus E(VtV) = n ~ u E("Et£) = (n - u)o0
2 , a familiar result that is the 

basis for the unbi_ased estimator of a 2 ; a
0
2 = ~ vtpv. (Note: VtPV = VtV.) o n-u _ 

The point is that we cannot know the 11 invisible 11 component U in any 

given instance, and it is only possible to circumvent this limitation in 
the average. The average square length of the invisible component is 
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-t- u -t -
E( U u) = n E( E E) = u 002 . Obviously, for n » u; v ""' ~ Thi s , 
when applicable, s implifies the statistical argument . Unfortunat ely it is a 

distinctive characteri stic of geodetic networks that u/n does not become 

arbitrarily small, but remains remarkably constant over wide varia t ions 

in the extent of the net. For triangulation (putting the res idual in 

the net adjustment on the single mean direction to each remote station) 
the value of u/n is about 0.5, for leveling 0.33. In summary , residuals 
are but the visible components of true errors. 

Another difference between V and £ i s that they rossess di f ferent 

covariance structures, as noted above. Returning to ~v in equation (2 ), 

we see that the first term p- 1 0
0
2 is j ust the covariance matrix of the 

true error (a priori or a posteriori, depending upon whether 0
0
2 or ~ 

0
2 

is used). The second term, which it is useful to call the "geometric " 

term because it reflect s the geometry of the network through t he design 

matri x A, happens to be in its own ri gh t the covariance matrix of the 

adjusted obs ervables. The geometric term is generally full even if P 

is di agonal . A practical hurdle in computing Iv is the computation of 

this second term which entirely accounts for the inequality of I and v 
IE: . No theoretical or algorithmic diffi culty is involved; it is 

solely a matter of time and expense for large triangulation adj us t ­

ments (s till a consideration even with today's compute rs) . Even the 

computation of the diagonal terms alone is suspected to be already 

past the point of diminishing returns at which the sma ll i mprovement 

in rejection procedures thus gained may not justify the expense. 

Hopefull y , it wil l be poss ible to resolve this issue i n the li gh t of 

further investigation and expe rience. 



8 

The relative importance of the two t erms can be roughly assessed by the 
measure tr(E P)/n, or what is the same thing , (tr ~) / n applied to the two 
terms of ~-. This gives a~ and (u / n) cr~ , respect i vely, for the two terms . 

v 

The fact that M (and al so the second term of M) are idempotent 
and non-negative definite makes it possible to say qui t e a lot about 
the magnitude of their elements without actually computing any. The 
following equali t ies and bounds are easily proved. 

(1) (average dia gonal term of M) =(n - u)/n 
(2) O ~(any diagonal term of M ) sl 

(3) d = (r.m.s. variation about their mean of the diagonal terms 

of M) s ~ ( n~u) ( ~) 

(4) r = (r .m.s . value of the off-diagonal terms of M ) s; 

~(n~u) (*)(n~l) . 

In fact d~ + (n-1) r 2 = (n~u)(*). Also note that if any diagonal 
term of M is either 0 or 1, then all the off-diagonal terms in that 
row and column must also be zero . The bound in (4) can be misleading. 
The number of off-diagonal terms i ncreases with n2 , whereas the number 
of significantly nonzero off-diagonal terms probably increases lin­
early . 

That 0 ! a~; s a;IP;• a restatement of (2), is obvious from equation 
(2). This is somewhat paradoxi cal at first sight, s ince one might 
think that by manipulation of the weights and/or geometry the variances 
of residuals and adjusted observables could be varied arbitrarily. 



Again note the important role played by the ratio u/n. For example, 

the bound in d is largest for (u/n) = 0.5, the triangulation value. 
The consequences of the large size and constancy of u/n hark back to 
the traditional objections to least-squares adjustments of triangu­
lation; that they cannot be relied upon to localize the error and 
instead "spread it around," introduce spurious correlation, and 

the like. 

STATISTICS OF RESIDUALS, II 

The discussion thus far has been purely algebraic. Turning now 

to the distribution of the residuals, the standard assumption of nor­
mality of the true errors is made. That is, £ is di s tributed as 

multivariate normal, N{O, re). This gives £ "' N(O,Ia 2 ), and 
- 0 
V _, N(O,rv) ; therefore n(O,crv .2 ) is the marginal distribution of the , 
i th residual vi, where (in the case of diagonal weights): 

()' 2 = 
vi 

m • . ,, 
o . . , ()' 2 

0 

The story does not end here, however, for two reasons. First, this re­
sult still requires the assumption that the true value of a 0

2 is known, 
whereas real data frequently give evidence . that this is not the case 
by significant differences (as measured by x2 ) between the posterior 
estimate and the assumed prior value of cr~. Second, this result ap­
plies to a single particular residual but there is as yet no provision 
for control of the significance level when examining groups of resid­
uals. In this case one does not look at only one residual selected in 
advance, but instead examines the residuals in order of decreasing 
magnitude. Thus, complete statistical control of the test will require 
the distribution of the largest residual rather than of a particular 
residual. 

9 
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The procedure which we have called the T (tau) criterion for re-

jection of residuals incorporates these extensions, in the first case, 

rigorously, in the second case, incorporating some approximations. To 

discuss these features of tau it will be necessary to review briefly 

some background on Studentization and tests of hypothesis. Before 

this, however, a short digression on the operational meaning of sta-

tistical statements about residuals. 

What does it mean to assert that v. ~ n(O, av~ )? One way to test 
l l 

one's understanding of such an assertion i s to construct a thought-
experiment in which its implied statements of probability can be real­

ized as the large sample limit of frequencies. Conceive of m = 100 

(say) repetitions of a geodetic survey involving n observables, that 

is, identical configuration, instrumentation, etc., differing only in 

the errors affecting the observations. These errors are assumed to 

come from a random nonnal population described by N(O,E £). Each sur­
very is then adjusted using P = E; 1

• These 100 adjustments prod uce 

100 residuals on each of the n observables. If these 100 residuals on 

observable i (say) are then used to plot a histogram, this histogram 
will approximate n(O,a 2 ) and the appro xi mation will improve as m (the 

vi 
number of repetitions of the survey, not the number of observables 
in the survey) increases. This assertion is true for i = l , ... , n, 

and in general this will involve n different distr ibutions with n 

different a 2 's. This is because the geometric part of E is not, in 
Vi v 

general, constant along the main diagonal even if P is. This in turn 

is due to the variable geometry of the net . Whereas a uniform network 

will produce relatively uniform av~'s, one fact of life in dealing 
with the triangulation as it exists in North America is that the geom­

etry, instrumentation, and specifications of the component work are 

often far from uniform, particularly in municipal surveys. 



Of course, this thought experiment is never carried out in reality 

for we have on ly one survey with only one residual on each of the 

n observations. Pooling, then hi stogramming these residuals produces 
a mi xture with no claim to norma lity, asymptotic or otherwise. It is 

an interesting statistical exercise to derive the theoretical shape of 
the resulting probability density function, but this can be done only 

if the av ~ 's are known, or if some distribution of the av~ is assumed, 
1 1 

in which case the mi xture can be approximated by a compound distribu-

ti on. One finds the characteristic departures from normality--more 
peaked, lower shoulders, higher tails. If the a/ are known, then 
the residuals can be stand.ardized to vi= vi/av . . 

1 
Then vi"" n(0 ,1) , 

- 1 
and the Vi can be pooled without producinq a mixture since pooling of 

n(O,l)'s produces another n(O.l.). Any attempt to reason backward from 

residual s to deduce characteristics of the true errors, difficult in 
any case, must take account of the varying av. 's. In the absence of 

1 
crv· 's , which have to be computed from the relatively expensive for-

1 
mula (2), one frequently sees partially standardized residuals (vi/a1). 

Thus we see that hi stograms of res i duals have to be interpreted 

with some ca re. Tau, the distribution of an internally Studentized 
residual, is impossible to realize as a histogram f rom one survey for 

the reason that there is only one value of the random variable ~0
2 

per survey, and the tau distribution incorpora tes a random variation 
f ~ 2 

o a0 that can be realized as a frequency only by the sort of 
thought experiment described above. 

The term 11 Studentization" refers to the design of a stati s tic 

that is independent of the (unknown ) true value of one or more po~ula-

11 

tion parameters. For examole, if y rJ n(µ,a 2 ), then x
0 

= (y-µ)/a ,..., n(0,1). 

The distribution of x0 is independent of the oarameter values, but the 
statistic x0 is not, since it requires knowledge of µ and a. One way to 
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avoid this requirement is to "randomize" the parameter by replacing its 
unknown true value with a statistic, itself a random variable, which is 
in some sense an estimate of the parameter in question. (In the modern 
approach to Studentization expressed in the first sentence of this para­

graph, the choice of alternative statistics is somewhat wider than this 

statement would imply.) The distribution of the new statistic must be 
known so that it can be used to make statements about probability. 

In the example, the unknown parameterµ is easily eliminated (in 
fact, so easily that it i s not usually thought of as an instance of 
Studentization) by use of 

- ( n-1 ) x
1 

= (y - y)/arv n 0, -n-

where y is the sample mean. a can be eliminated by use of 

x = (y - µ)/cr tV tn 2 -1 

~ E(yi -y) 2 
where ;= and t is Student's t distribution with n-1 n-1 n·1 

degrees of freedom. (Alternately one could vary this by Studentizing 
the departure of the sample mean from the true mean or by using n in­
stead of n-1 in the definition of cr. These are standard cases 

considered in many statistics books . ) For the elimination of both µ 
and cr , three alternatives present the-mselves: external, internal, or 
mixed Studentization of a. 

External Studentizat ion of a means that the estimates of 0 and µ 

are formed from independent samples. This gives 



where the subscripts l and 2 on the sample mean and variance estimate 

indicate that they are to be computed using independent samples of y. 

Internal Studentization means, then, the use of the same sample 

to compute the sample mean and variance estimate. This gives 

- ) A ~-1 x == (y - y I a ,.._, - T 
4 n n-1 

where the new random variabl e -r is related to Student's t by 
v 

This fonnula suffices to compute the di stribution of T. Because 
of the use of the same sample in computing y and a, the numerator 
and denominator in the statistic x4 are not independent as is 
required for a t distribution . 

By mi xed (i nt ernal and external) Studentization it is mea nt that 

whereas y is computed from sample one (say) . & is arrived at by a 

( 6) 

pooling of the variance esti mates from samole one and another independ-
ent sample two. In adjustment terminology, a is an estimate of variance 

formed by pooling a priori and a posteriori estimates of variance. By 
"pooling" is meant the minimum variance combination of variance esti-

mates of the form &2 == ( v 1 o~ + v 2o ~ ) /(v 1 + v
2

) with v
1 

and v
2 

the 

13 

associated degree of freedom . This also leads to a tau di stribution 
(Quesenberry and David 1961) . This case is considered no further here since 
part of the motivation for using t au in triangulation is to prov·ide a 
data-adaptive criterion that is uninfluenced by prior estimates. The 
pooling of variance es timates i s justified only on the assumption that 

the variances of the populations from whi ch the two samples are drawn 
are in fact the same . 
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The tau distribution was first published by W. R. Thompson (1935). 

The designation "tau" is not universal and the distribution has to 

be recognized by the occurrence of formula (6), or its inverse 

giving t in terms of ,, in which guise it is quite frequently en­

countered in obscure statistical references. Tn-l is tabled in 

Rainsford (1957), following Logan (1955). The generalization to 

arbitrary degrees of freedom needed in applications to geodetic 

adjustments has begun to appear only quite recently (Ellenberg 

1973) . Because of its relative unfamiliarity, a brief sketch of a 

derivation of tau is now given. 

~ can be factored as M U Ut, where UtU =I, and U is dimensioned 

n by v. v = rank M = n - u = the degrees of freedom associated with 

&0
2 • Now denote U = {u~}, u~ being the ith row of U, and K = Utl 

1 1 

K is av dimensional vector and K""" N(O,Io} ). Consider the quantity 

with A 

a = 
( v-1 ) Kt A K/ a 2 

0 

( 1) Kt B K/ a 2 
0 

= {u.(u.t u.)- 1 uh idempotent of rank l, and 
1 1 1 1 

B ={I - A}, idempotent of rank v - l. Note that AB= O. 

Consulting Graybill 1 s (1961) theorems 4.6, 4.15, and the definition 

of F, page 31, one concludes that a,..., F = t 2 
l .v-1 v-1 

Therefore 

b={~~ = 
------rvT 

But ~v. 
1 l 

t t -t - t ~ t 
=vi = u1 K, K K = V V = V PV, and U; LI; = 

\) 

m .. ' 1 1 
giving 

( 7) 



h ~2 w ere o = 
Vi 

(v./a ),.v-r , , v. \) , (8) 

VtPV 
v ) has been used . 

Note that equation (7) implies that l-rl ~ rv (using T to denote 
both the statistic and the distribution, as commonly done), a sur­

prising result on first sight. It can be shown that T = IV r, r 
being the sample co:rrelation coefficient when the true value is zero. 

The second distinctive feature of the tau criterion for detection 

of outliers is the control of the probability of type I error, the 

error of rejecting a true hypothesis. The rejection procedure is 

15 

thought of as a test of the hypothesis that vi,...,; n(O, ov.) for all i, where 
av. = k( crv./a

0
) = k(mi;IP;) for some unsoecified k, by u~e of the test , , 
accept H0 if max 

reject H0 if max 

< c 

~ c' 

where c i s a critical value, selected in advance so that the probability 

of rejecting a true hypothesi s is a, a number selected in advance, say 
0.05. The probability of accepting a true hypot he sis is the signifi­

cance of the test, 1 - a. The probabilities of accepting the hypothe­
sis when false, s, and reject ing a false hypothesis, 1 - s, are called 

the probability of type II error and the power of the test, respectively. 

The computation of c requires the distribution of max -r under the null 

hypothes is. This distribution is extremely difficult to compute exactly 

(Stefansky 1972), and various approximations have been suggested 
(Halperin et al. 1955) , including Thompson 's original one (eq. 9 below). 
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A simplified derivation that evades many of the subtleties in­
volved in a more thorough approach goes as follo~s. Note that 

a = P {max T > c } = P { (one or mo re of T ; ) > c } = 1 - P {a 11 •; ~ c} 

= 1 - P{(,: 1 s. c) anrl (• 2 s c) and .. . } 

If we ignore the dependence of the • 's that is present because of the 
nonzero off-diagonal terms in E that arise from geometric part, this v 
last probability can be written as rr P( .. s c) = {P(< s c)}n, since 

i l 

all ' are identically distributed. Denote a = P(T > c). 
Then 

a = 1 - (1 a)n 

l 

or a = 1 - (1 - )n ~ a a - -
n 

(9) 

Equation (9) is referred to as the transformation for control of 
type I error. Here n is the total number of observations in the group 
for which control of type I error is desired and is conventionally, 
although not necessarily, taken to be the number of (nonspur) 
observations in the adj ustment producing the residuals in question. 
By a 11 spur 11 observation (the term is sugqested by levelinq) is meant 
one for which cr and v

1
• are identically zero. This happens if there 

Vi 
are some parameters that are only exactly (not redundantly) determi ned. 
A similar transformation was supposedly used by Logan (and quoted by 
Rainsford) but our programs do not check Logan's tables . 



COMPUTATION OF THE TAU CRITERION 

The tau rejection criterion is implemented by a subroutine 

TAURE which may be called from a FORTRAN program by : 

CALL TAURE (NT, NU, ALPH, CRTAU) 

where NT is the number of (nonspur) observations 
NU is the degrees of freedom 
ALPH is the desired probability of type I error 

and CRTAU is the critical value oroduced by the subrouti ne 

(called c in the above discussion). 
It is assumed that the variance of unit weight has been estimated from 

the same least -squares adjustment that produces the residuals to be 
tested. Then all residuals for which 

are flagged for rejection. ("Blind" rejection without any effort at 
further diagnosis is never reco1T111ended, even though the statistical 
design of tau makes it poss ible if necessary.) 

In leveling adjus tments and s t ation adjustments, er is, in fact, . v. 
computed for every vi . For large triangulation network1 adj ustments 
in which the computation of ~v. is still impractical, the following 

1 
expedient compromise is recormnended. Approximate er by 

vi 

er = v. 
1 

and proceed as before . This approximation is based on the average 
value of m;i· It is oarticularly important to have good prior weights 

when cow~uting either the exact or approximate a v. 
1 

17 
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The subroutine first computes 11 a 11 by the equality in (9). An 
> 

approximate critical value c, such that a= P(T • c), i s computed 
with the aid of an approximate inverse t given in Abramowitz and 

Stegun (1965, p. 949). This is then refined by a Newton-Raphson 
iteration. Subroutine TAURE and a table of values of tau computed 
with it are included as appendices l and 2. 

Limited experience thus far has shown tau to be a reasonable way 
of answering the old question, "How big is too big?" when looking 

at residuals from triangulation . The critical values of tau are 
quite different from those based on the normal law. 

POSSIBLE EXTENSIONS AND REFINEMENTS OF TAU 

The tau as described above represents a certain plateau in the 
search for a statistically rigorous rejection criterion for use 
in quality control. It is by no means the ultimate in this res­
pect, however. A brief list of remaining problem areas in the 
search for statistical rigor follows. 

1. A feasible implementation of Stefansky' s methods for the 
computation of the exact distribution of max T can perhaps be 
found and applied to simulations and specia l studies at least, 
if not routinely. 

2. Computation and control of the probability of type II 
error, the error of retaining bad data, are particularly desira­
ble in tr iangulation adjustments, which are subject to distortion 
from bad data remaining ih. The control of type II error is 
somewhat more difficult than that of type I, requiring as it does 
formul ation of definite alternative hypotheses, leading to non­
central distributions and other compli cations . 

3. The context here has been batch adjustments. Sequential 
adjustments have, from the statistical point of view, both advan­
tages and di sadvantages . The subject deserves more study. 

4. The effect of rejection procedure on the re-estimation of 
the variance of unit weight is amenable to study. 

5. Iterated rejection procedures have to be better understood. 
Tau at least is sensitive to changes in size and degrees of 
freedom, which a fixed rejection level is not. ' 

; . . 



6. The question of the optimum size adjustment for rejection 
purposes remains open, and 

7. The rejection of bad data in satellite geodesy is quite 
a different problem, since u/n is small and the main problem is 
the unmodeled systematic errors, not the random part, which is 
typically a small part of the error budget. What, if anything, 
does tau have to offer in this situation, and are there statis­
tically rigorous alternatives? 
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A Note regarding the scan of NOS65 NGS1 
 

 
Appendices II., III., and IV. contain tabulations of computations of tau, T, and X respectively.  
In light of modern computing capabilities, as compared with those of 1976, it was felt 
unnecessary to scan all pages of the appendices.  Instead, the first page of each table was 
scanned and included for those that might wish to test their algorithms.  These excerpts are 
pages 24, 61, and 98 of the original document. 
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APPENDIX I. SUBROUT INE TAURE (PP . 20-22) 

The purpose of subroutine TAURE is to compute the rejection level 
for normalized residuals for a given number of observations, degrees 
of freedom, and desired level of type I error. This subroutine may 
be called from a FORTRAN program by: 

CALL TAURE (NT, NU, ALPH, CRTAU) 

where NT is the number of (nonspur) observations (= n) 
NU is the degrees of freedom (= v) 
ALPH is the desired probability of type I error (= a) · 
CRTAU is the critical value produced by the subrout ine(= c). 

The use of c as a rejection criterion assumes that the variance of 
unit weight aij has been estimated from the residuals being tested . 

All residuals for which the condition 

v. 
l 

(J v . 
l 

holds true, are to be flagged for rejection. 

If the estimates of the standard errors of the res idual s, 
&Vi' i = 1, ... , n , are not known, they can be approximated as: 

& =~~ 
vi n ,J'"Tfi 

where u i s the number of unknowns in the adjustment and Pi i s the 
weight of the observation. Thus the approximate rejection criter­
ion can be written as 

For further information see pages 17 and 18 of this report . 
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SUBROUTINE TAURE< NT,NU, ALPH, CRTAU ) 
DATA PI / 3 . 1415926535898 I 
PD = 2 . I PI 
s = 1. 
WNU = NU 
U = WN U - 1. 
lF< U. E0.0. ) 
IF< ALPH. EO.O . 
If ( ALPH.LT.1. 
CRTAU = 0. 
RETURN 
Q = NT 
IF< ALP H.GT .. 5 
AA = ALPH / Q 
DEL T = AA 

GO TO 72 
) GO TO 72 
) GO TO 10 

GO TO 19 

DO 18 I = 1, 100 
XI = I 
DE LT = DELT • ALPH • (( XI•Q - 1. ) I (( XI+l. ) •Q) ) 
IF ( DEL T. LT.1 . E- 14) GO TO 20 
AA = AA + DELT 
AA= 1. - (1 . - ALPH)**( l . / Q) 
P=1.-AA 
I F< U.E0 . 1 . ) GO TO 71 
F 1.386294361 11 99 - 2 .•AL OGC AA ) 
G SO RT ( F) 
X G - <2.5 15517 +.802853•G +. 0 10328 •F ) 

, <1. +1.43 2788•G +F • <.189269 +.001308•G)) 
y x • x 
A X• ( 1.+Y)/4. 
B X • <3. + Y • (16 . +5. •Y )) I 96 . 
C = X • ( -15. +Y •<17 . +Y • <19. +3 . •Y ))) I 384. 
E X • <-9 45. +Y• C- 1920. +Y• C1 482 . +Y• C776. +79. •Y ) ) )) I 92160. 
V 1. I U 
T = X + V •( A +V •CB +V•( C + E• V))) 
S Tl SOR T<U t T•T ) 
UM = U - 1. 
DEL L = 1. 
DO 70 M = 1, 50 
H = 1. - S•S 
R = 0. 
IF < AMO DCU ,2 .) .EQ. 0. 
DD = SQRT( H> 
N = . 5•UM 
DO 45 I = 1, N 
Z = 2 * I 
R = R + DD 
D = DD 
DD = DD• H • CZ/CZ+1.)) 
R = PD• <R•S +ASlN(S)) 
D = PO • D • UM 
GO TO 6 1 
DD = 1. 
N = .5 * U 
00 5 5 I = 1, H 
Z = 2 • I 

GO TO 49 

N _.. 



SU BROUTINE TAURE CDC 6600 

53 R = R + DD 
54 0 = DD 
55 DD= DD • H • <C Z- 1. l/Zl 
56 R = R• S 
57 D = O•UM 
61 CO NTINUE 
62 DE L = CP-R l I D 

I F( AB S< DEL /D ELL ) .GT •. 5l GO TO 72 
DELL = DEL 

63 S = S t DEL 
64 If ( AB SCD El l .L T. 1.E-8 ) GO TO 72 
70 CON TINUE 

GO TO 72 
71 S = S IN ( P/ PO l 
72 CRTAU = S• SQ RT CWN U) 
73 RETUR N 

EN O 

N 
I') 



APPENDIX II. TABLE OF CRITICAL VALUES BASED ON TAU (PP. 23-59} 

The tabulated value is the critical value, CRTAU, computed by sub­
routine TAURE for corresponding values of NT, NU, and ALPH, denoted 
in the table by M, NU, and ALPHA, respectively. The notations are 
connected by: 

NU = n - u = v, M = NT = n, ALPH = ALPHA = a, and CRTAU = c = T . 
v 

The critical values are tabulated for ALPH = 0.10, 0.05, and 0.01. 
For each value of ALPH NU is varied from 2 to 100 in increments of 
l, 100 to 1 ,000 in increments of 10, and from 1,000 . to 5,000 in 
increments of 100 with the addition of the two extreme values 10,000 
and 20,000. For each value of NU, M takes the value 1, M + l, and 
M = integer nearest NU/(1-F) where F has the values given at the top 
of the page . Thus F is approximately equal to (M - NU)/M = u/n. 
This sampling of M, based on (u/n) provides values of M likely to be 
representative and useful without a prohibitively lengthy listing 
for all M. 

A precise interpolation can be obtained by linear interpolation 
on M exp (- 2 c2/w), c being the tabulated value. The dependence 
on M is due to the incorporation of the transformation for control 
of type I error (seep. 16). M = l gives the value of CRTAU without 
any transformation for control of type I error. M = NU + l gives 
the value of CRTAU for use with a simple mean (see p. 13, 
Tn = CRTAU). 

-1 

This table is not intended to replace the subroutine, but is to 
be used as a supplement for checking and anticipating values pro­
duced by TAURE. 
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N 
~ 

ALPHA . 100 
.001 . 01 . 10 .20 . 2 5 . 30 . 3 5 

NU M TAU M TAU M TAU M TAU M TAU M TAU M TAU M TAU M TAU 
2 1 1. 397 3 1. 412 2 1. 410 2 1. 410 2 1. 4 10 3 1. 412 3 1. 411 3 , . 41, 3 1. 4 1 2 
3 1 1. 559 4 1. 687 3 1 .672 3 1. g12 3 1. 672 4 1. gs 7 4 1 J~5 4 1. 6~ 5 1. 696 
4 1 1. 611 5 1. 8$5 4 1.843 4 1. 43 4 1. 843 5 1. 65 5 9 1. 8 0 g 1. 880 
5 1 1. 631 6 1. 9 1 5 1. 96 7 5 1. 96 7 6 1. 991 6 1.991 7 2.n9 2.009 2.024 
6 1 1. 640 7 2.087 6 2.063 6 2.063 7 2.087 8 2. 106 8 2. 6 9 2. 1 ~~ 9 ~ . 122 
7 1 1. 644 8 2. 1 ~4 7 2. 141 7 2. 141 8 2. 164 9 2. 184 9 2. 184 10 2. 2 11 . 2 1 5 
8 1 1. 64 7 9 2. 2 9 8 2.207 s 2.~07 9 2.229 10 2.248 11 2.264 11 2.H4 12 .279 
9 1 1. 648 1 0 2.285 9 2.264 2. ~4 19 2. 2 8 5 11 2.303 12 ~. 3 19 1 3 2 . 3 14 2 . 347 

10 1 1. 649 11 2.333 1,0 2. ~ 14 10 2.3 4 ~-p3 13 2.366 13 .36~ 14 ~. 3~ 1 1 5 2 . 394 
11 1 1. 649 12 2. 377 11 2. 58 11 ~.358 1 2 . 77 14 2.408 15 2. 4 2 16 .4 5 17 2.446 
12 1 1. 649 13 2.415 12 2.398 1 2 .398 13 ~-415 15 ~ - 446 19 

2.459 17 2.471 18 2.483 
1 3 1 1. 650 14 2.451 ·1 3 2.434 1 3 2.434 14 . 451 16 .48~ 2.492 19 2.~16 ~o 2. 5 26 
14 1 1. 650 1 5 2.483 14 2.467 14 2.467 16 ~.497 18 2.§§ 19 ~. 5 3 5 20 2. 4 ~ 2.565 
15 1 1. 650 16 2. 5 1 2 15 2.497 15 2.497 17 .52~ 19 2. 1 20 .562 21 2. 57 2~ ~.592 
16 1 1.649 17 2.540 16 2.525 16 2. 5 2 5 18 ~. 5 5 20 2.577 2 1 2.588 23 ~-6~8 25 .626 
1 7 1 1. 649 18 2.565 17 2.552 17 2. 5 5 2 19 .578 

H 
2.601 23 2. 621 24 . 6 1 26 ~.649 

18 1 1. 640 19 2.589 18 2.576 18 2.576 20 1·6~1 2.633 24 ~.643 26 2.661 

n 
.678 

19 1 1 .649 20 2. 611 19 2 . 599 19 2.599 21 .6 3 ~-654 25 .664 27 2.681 2.997 
20 1 1. 649 21 2.632 ~9 2.620 ~9 2.620 

li 
.643 .674 27 ~. 692 29 2.708 ~:7~0 21 1 1. 649 H 2.652 2.641 2.641 .663 ~6 .692 28 .709 30 2. 726 

22 1 1. 649 2.671 22 2.660 22 2.660 2:~~J ~~ 
,718 29 2. 728 31 ~-74~ 34 . 794 

23 1 1. 64<; 24 2.68~ 23 2.678 23 2.67~ 2.734 3 1 2.75 33 .76 35 2.7 9 
24 1 1 .649 25 2.70 24 2.695 24 ~:~i2 2.7 4 ~.750 32 2 .765 54 .780 37 2.80~ 

~b 1 1. 649 26 2.722 25 2. 712 ~b 2.74~ .765 33 ~.780 36 ~-801 38 ~.81 
1 1. 648 27 2. 737 26 2.727 2. 727 ri, 33 . 786 35 .801 37 .814 40 .832 

27 1 1. 648 28 2.752 27 ~.743 ~i ~.743 34 .800 36 2.814 39 2.833 42 2.85 1 
28 1 1. 648 29 2.766 ~g .757 .757 31 .7 2 35 2.815 37 2.826 40 2.845 43 2.862 
29 1 1 . 648 30 2.779 2. 771 . 771 32 .796 u r!l, 39 2.844 41 ~.857 45 ~.879 
30 1 1. 648 31 2. 792 30 2.784 30 .784 33 .808 40 ~.856 43 -~73 46 .890 
31 1 1. 648 32 2.805 3 1 2.797 3 1 ~.797 34 r~3s . 854 41 2:1a~ 44 2 . 84 48 .905 
32 1 1. 648 33 ~.817 32 2.809 H .809 H z9 .~65 43 46 ~:~98 49 ~.9 1 ) 
33 1 1. 648 34 .829 33 2. 82 1 2.8~1 .850 • 76 44 2 . 93 47 5 1 .929 
34 1 1 . 648 35 2.840 34 2.832 34 2.8 2 38 2.861 43 .892 45 2.903 49 .924 52 2.939 
35 1 1 .648 36 2.851 35 2.844 35 2 . 844 39 2.871 44 ~.902 47 2 .918 ~9 ~.933 54 ~.952 
36 1 1 . 648 37 2.861 36 2.854 36 2.8)4 40 ~.881 45 . 911 48 2.9F .942 55 .961 
37 1 1. 648 38 2.871 37 ~·~65 37 ~.865 41 .891 46 .920 49 2.9 6 53 2 .955 57 2. 973 
38 1 1. 648 39 2 . 881 38 . 75 38 .875 z~ 2. 900 48 .934 H 2.949 54 2.964 58 ~. 98 1 
39 1 1. 64 7 40 2.g91 39 2.884 39 .884 2 .910 49 2.943 2.958 56 2.976 60 .993 
40 1 1 .647 41 -, . 00 40 2.894 40 2.894 44 2.918 50 2.951 53 2.966 57 ~,984 62 3.004 
41 1 1.647 I, 2 2.909 41 2.903 41 ~.903 z9 ~.933 B 2.959 55 2.978 59 .995 63 3.01~ 
42 1 1. 64 7 43 2.918 42 2.912 42 . 91 2 .941 2 . 97 2 56 2 .985 6C .003 65 3.0~ 
43 1 1. 64 7 44 2.927 43 2. 021 43 2.921 48 .949 54 2.979 57 2.993 61 3.010 66 3 . 0 9 
41+ 1 1. 64 7 45 2. 93 5 44 2.929 44 ~ .929 49 .957 55 2.986 59 3 . 004 63 3. 021 68 3.040 
45 1 1. 64 7 46 2.943 45 ~ .937 45 .937 50 2.965 56 2.99 4 60 3. s 11 64 3.oF 9i 

3.046 
46 1 1 .647 47 2.951 46 .945 46 2.945 5 1 2.972 ~g 3.00~ 61 3. 18 66 3.8 8 ~.056 
47 1 1.647 48 2.959 47 ~:~b~ 47 2.953 52 2.989 3. 01 63 3.0~8 67 3. 44 72 .062 
48 1 1.647 49 ~.966 48 

zS 
2.961 53 2.98 60 3.018 64 3. 0 5 

98 
3.854 74 3.0 7 1 

49 1 1 .64 7 50 .974 49 2.968 2.968 54 2.994 61 3.025 65 3.041 3. 60 75 3 .077 
50 1 1.647 51 2 . 981 50 2 .976 5 1 2.981 56 3.805 63 3. 03 5 67 3. 051 71 3.096 77 3.086 
51 1 1 .647 52 2.988 5 1 2.983 52 2 .988 57 3 . 12 64 3. 041 68 3.057 73 3.0 5 78 3. 091 
52 1 1. 64 7 53 2.995 52 2 . 990 53 2 .995 58 3.018 65 3.047 69 3.063 7 4 3.089 80 3. 100 
53 1 1.647 5 i+ 3.002 53 2.997 54 3.002 59 !.025 ~a 3 . 053 71 3.07 ~ 76 3.08 82 3. 108 
54 1 1. 64 7 55 !·808 ~~ 3.003 55 3.008 60 .031 3.06~ 72 3.07 77 !.094 83 3. 11 3 
55 1 1. 64 7 56 . 1 5 3.010 5~ 3. 015 61 3.83 7 98 3.86 73 3;083 79 • 183 85 3. lr 
56 1 1.647 57 3.g 2 1 

§9 
3.016 3. 021 6 2 3. 43 3. 74 75 3.89~ 80 3. 1 8 86 3. 1 6 

57 1 1. 64 7 58 3. 27 3.022 ~8 3.027 63 3.049 71 3.079 76 3. 9 8 1 3. 113 88 3. 1 4 

~g 1 1. 64 7 59 3.03~ 58 3.0 29 59 3. 03 3 64 3.054 73 3.088 77 3. 102 83 3 . 121 89 3. 138 
1 1.647 60 3.03 59 3. 035 60 3 .039 66 3 . Q64 74 3.093 79 3. 110 84 3. 12 5 91 3. 146 

60 1 1.647 61 3.045 ~9 3.041 61 3.045 67 ! .069 75· ! . 098 80 3. 11 5 ~9 3. 1p 92 3. 150 
61 1 1. 64 7 62 3.051 3.046 0 2 3. 051 68 • 075 76 • 103 81 3. 120 3. 1 8 94 3. 15 7 
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APPENDIX III, TABLE OF CRITICAL VALUES, T, 
BASED ON STUDENT~s t (PP. 60-96) 

This table is for use only with externally Studentized residuals; 
that is, the estimate of the variance of unit weight must not have 
been computed from the residuals being examined. 

The format of the table is the same as that of the tau table. 



A L PHA • I DO 

. 00 1 . 01 . 10 .20 . 2 5 . 3 0 .35 

NU M T ~ T M T M T M T M T M T M T 11 T 

~ 1 t .. 3 14 ' 12 - 379 1 o .314 I 6. 3 14 1 6. 3 14 1 6 . 314 1 6 - 3 14 1 6 - 3 14 2 12 _F9 

3 1 2 . 920 3 5 . 2 4 :. 2 4.243 2 4.243 2 4. 243 3 5 . 243 3 5 . 2 45 3 5 - 24 3 3 5. 43 
1 2 . 3 53 4 4. 11 5 3 3.690 3 3.o90 3 3 . 690 4 4. 1 15 4 4 - 11 4 4 - 1 1 5 s 4.47 1 

4 1 2 . 132 s 3 . 1;>99 4 3.452 4 3. 4 5 2 4 3. 4 5 2 5 3 . 699 5 3 . 699 6 3 . 909 6 3.909 
s 1 2 . 015 ':> 3 . 4 93 5 3.327 5 3 . 327 6 3 . 4 93 6 3 . 493 7 3 . 638 7 3.63 8 8 3.76S 
b 1 1 - 94 3 7 3 - 3 76 6 3 . 2 5 3 0 3 . 2 5 3 7 3.376 8 3 . 484 8 3 . 484 9 3 . 580 9 3 . 580 
7 I 1 - 895 8 3 . 302 7 3 . 206 7 3. 206 8 3.302 9 3.388 9 3 . 388 1 0 3.465 11 3 . s 3 s 
8 1 1 . 8oJ 9 3. 2 54 8 3 - 176 8 3. 176 9 3 . 2 S4 10 3 . 324 11 3.388 1 1 3 .388 12 3. 446 
9 1 1 - 8 3 3 1 0 3 . 2 2 1 9 3 - 155 9 3. 155 10 3. 22 1 11 3 . 280 1 2 3 .3 34 13 3 - 38 4 14 3 . 4 3 1 

10 1 1. 81 2 11 3 . i 'l'i 10 3 - 142 10 3. 14 2 11 3 . 197 13 3.296 13 3. 296 14 3 . 33 9 1 s 3. 380 
11 1 1. 796 12 3 . 18 1 11 3 - 1 3 3 11 3. 133 1 2 3. 181 14 3 . 268 1 s 3. 306 16 3. 34 3 17 3 . 3 77 
1 2 1 1. 782 1 3 3.170 12 3 - 127 1 2 3 - 1 27 1 3 3.170 1 5 3 . 247 16 3 . 28 1 17 3 - 3 14 18 3 . 30 
1 3 1 1 . 771 14 3. 162 13 3 . 124 13 3 . 1 24 14 3 . 162 16 3 . 231 17 3.262 19 3 . 3 20 20 3 . 347 
14 1 1 - 761 I 5 3 - 157 14 3 - 1 2 2 1 4 3 . 122 16 3 .1 89 18 3 . 248 19 3. 275 20 3 . 301 22 3 . 349 
1 5 1 1 - 7 5 3 16 3 . 1 s 3 1 5 3 . 12 2 1 5 3 . 122 17 3 . 183 19 3. 237 20 3 . 262 21 3.28 6 23 3 . 330 
16 1 1 - 746 1 7 3 . 15 1 16 3 . 122 16 3 . 122 18 3 . 178 20 3.228 2 1 3 . 252 23 3.29S 2S 3 . 334 
17 1 1 - 740 18 3 . 1s1 17 3 . 124 17 3 . 1 24 19 3.176 21 3 . 222 23 3 . 264 24 3 . 28 4 26 3 . 32 1 
18 1 l . 734 19 3 . I 5 1 18 3. 126 18 3 . 1 26 20 3. 174 ~~ 3.23 7 24 3. 2 5 7 26 3 . 29 3 28 3 .3 26 
19 1 1 - 7 29 20 3 - 1s2 19 3 . 129 19 3 . 129 2 1 3 . 173 3 . 233 2S 3 . 2 51 27 3 . 28S 29 3 . 317 
20 1 1 - 7 2 5 21 3. 153 20 3. 13 2 20 3 . 13 2 22 3 . 17 3 25 3 . 229 27 3 .263 29 3 . 294 3 1 3.32 3 
21 I 1 - 721 22 3 . 1s5 21 3 - 135 21 3. 13 5 23 3. 174 26 3 . 227 28 3 .2S9 30 3 . 288 32 3.3 16 
22 1 ,_ 7 17 23 3. 1 57 22 3.138 22 3 . 138 24 3 - 17 s 28 3.240 29 3 . 255 31 3 . 283 34 3 . 32~ 
23 1 1 . 714 24 3 - 160 23 3 . 142 23 ~ . 142 26 3 . 193 29 3 . 239 31 3 . 266 33 3 . 292 3 5 3 . 3 1 
24 I ,_ 711 25 3 - 162 24 3 . 146 24 . 146 27 3. 194 30 3. 238 32 3 . 264 34 3 . 289 37 3 . 32 4 
25 1 1 . 708 26 3 - 16S 2S 3. 149 25 3 . 149 28 3 . 196 31 3. 237 33 3.2~2 36 3.298 38 3.319 
26 1 1 . 706 27 3. 169 26 3. 1s 3 26 3. 1 S3 29 3 . 197 33 3 . 24 9 3S 3 . 2 ~ 37 3 . 29 S 40 3 . 326 
27 1 1 . 703 28 3 - 172 27 3 - 1s7 27 3. 1 S7 30 3 . 199 34 3 . 249 36 3 . 27 39 3 - 30 3 42 3.333 
28 1 1 - 70 1 29 3 - 175 28 3 . 161 28 3 . 101 3 1 ~ . 201 3S 3 .249 37 3 . 27 1 40 3 . 30 1 43 3 . 33 0 
29 1 1 - 699 30 3 . 178 29 3 - 16 5 29 3 . 16S 32 3. 204 36 3 . 250 39 3. 2 8 1 41 3.300 4S 3 . 336 
30 1 1 . 697 3 1 3 .18 2 30 3. 169 30 3. 169 33 3 . 206 ~s 3 . 261 40 3 . 26 0 43 3. 30 6 46 3. 33 4 
31 1 1. 696 32 3 . 16S 3 1 3. 173 3 1 3. 173 34 3 . 209 3 . 261 41 3 . 280 4 4 3 . 307 48 3.340 
32 1 1 - 694 33 3 . 189 32 3. 177 32 3 . 177 36 3 . 222 40 3 . 262 43 3 . 289 46 3 . 3 1 s 49 3 . 339 
33 1 1 - 692 34 3 . 192 33 3 . 181 33 3 . 181 37 3. 2 24 4 1 3 . 263 44 3 . 290 47 3 . 31 4 s 1 3.34S 
34 1 1 - 691 3 5 3 . 196 34 3 . 185 34 3 . 18 5 38 3 . 227 43 3 . 273 4S 3 . 290 49 3 .3 22 S2 3. 3 41, 
35 1 1 - 690 3o 3 . 200 3 5 3 . 189 35 3 . 189 39 3 . 229 1,4 3 . 274 4 7 3.298 s o 3. 3 21 S4 3 .349 
36 1 1 . 688 37 ~ . 203 36 3 . 193 36 3 . 193 40 3 . 232 4S 3. 27 5 48 3 . 299 5 1 3. 3 21 SS 3 .349 
37 1 1 - 08 7 38 . 207 37 3 . 197 37 3 . 197 4 1 3 . 2 3 s 46 3 . 27 7 49 3.300 S3 3 . 328 57 3. 3 5 s 
38 1 1 - 686 39 3 - 21 0 38 3. 201 38 3.~01 42 3.237 48 3.286 s 1 3.308 S4 3 . 32g S8 3.354 
39 1 1 - 685 40 3 - 214 39 3 . 204 39 3 . 04 43 3.240 49 3.287 52 3 . 308 S6 3 - 33 60 3.360 
40 1 1 - 684 41 3 . 217 40 3. 208 40 3 . 2 0~ 44 3 . 243 50 3 . 289 S3 3.309 57 3 - 3 3 s 62 3 . 36S 
4 1 1 1 - 683 4 2 3 - 2 2 1 4 1 3. 212 41 3 . 21 46 3 . 253 51 3 . 290 S5 3. 317 59 3 . 342 63 3.36 S 
42 1 1 - 682 43 3 . 224 42 3. 216 4 2 3 . 21 6 47 3 . 256 53 3.298 S6 3. 3 18 60 3.342 6S 3 . 37 0 
43 1 1 . 681 44 3 . 2 2 7 43 3. 21 9 43 3 . 21 9 48 3 . 2 S8 54 3 . 300 S7 3. 3 19 61 3.343 66 3 . 370 
44 '1 1. 680 4S 3 . 2 31 44 3 . 2 2 3 44 3 . ~p 49 3 . 261 55 3.302 S9 3.326 63 3 . ~ 4 9 68 3.376 
45 1 1 . 679 46 3 . 234 45 3. 226 45 3. 6 so 3 . 264 S6 3 . 303 60 3.327 64 3 . 3SO 69 3 . 376 
46 1 1 . 6 79 47 3 . 23 8 46 3 . 2 3 0 4 6 3.230 s 1 3 . 266 S8 3. 3 11 61 3.328 66 3 . 3S6 71 3. 381 
47 1 1 - 678 48 3. 24 1 47 3 . 2 33 47 3. 2 3 3 52 3.269 59 3. 3 13 63 3 . 33S 67 3 . 3 5 6 72 3. 381 
48 1 1 . 677 49 3. 24 4 48 3 . 237 48 3 . 2 3 7 53 3 . 27 1 60 3 . 3 14 64 3.336 69 3 . 362 74 3 . 386 
49 1 1 .677 so 3. 247 49 3 . 24 0 49 3.ro 54 3.274 61 3. 3 16 6S 3. 338 70 3 . 363 75 3.386 
so 1 1. 676 5 1 3 . 2 5 1 so 3 . 244 5 1 3. s 1 56 3 . 283 63 3.3 23 67 3 . 344 7 1 3.364 77 3. 391 
5 1 1 1 - 6 7 5 52 3.254 51 3.247 52 3 . s 4 57 3 . 28S 64 3.32S 68 3 . 34 s 73 3.369 78 3 . 392 
52 1 1. 6 7 s S3 3. 2 5 7 52 3.2SO 53 3. 2 5 7 58 3 . 288 6S 3. 326 69 3 . 347 74 3 . 37 0 80 3 . 396 
53 1 1 - 674 54 3.260 53 3 . 2 S4 54 3 . 260 59 3 . 290 66 3 . 328 71 3 . 3 5 3 76 3 . 37S 82 3 . 40 1 
'i 4 1 1 . /, 74 'i'i ' - ? r\' 54 ... . 25 7 55 3.?63 60 3.29'1 68 '\.33S n 'I - 3 S4 77 3 - 376 83 3. 40 1 
5S 1 1 - 673 So 3. 266 SS 3 . 260 56 3 . 266 61 3 . 29S 69 3 . 336 73 3 . 3 5 s 79 3 . 382 85 3. 401.l 
S6 1 1. 673 S7 3 . 269 56 3.263 57 3 . 269 6 2 3 . 298 70 3.338 7 S 3. 361 80 3 . 383 86 3.406 
57 1 1 . 672 S8 3 . 272 57 3 . 266 S8 3 . 272 63 3 . 300 71 3 . 340 76 3 - 3 62 8 1 3.384 88 3 . 41 1 
S8 1 1 . 672 59 3. 27 5 S8 3.269 59 3. 275 64 3 . 302 73 3 . 346 77 3.364 83 3.389 89 3. 41 1 
S9 1 1. 67 1 60 3 - 27 8 59 3. 273 60 3. 278 66 3. 3 10 74 3 . 348 7Q 3.369 84 3 390 91 3 .416 
60 1 1. 671 6 1 3 - ~81 60 3 . 276 61 3. 281 67 3 . 3 12 7S 3 .349 80 3 . 3 71 86 3 . 394 92 3.416 



APPENDIX IV. TABLE OF CRITICAL VALUES, X, BASED 
ON THE NORMAL DISTRIBUTION (PP. 97-133) 

This table is for use with a known variance of unit weight; that is, 
the variance of unit weight is considered to be a known constant, 
rather than a random variable. The transformation for control of 
type I error introduces dependence on NT. The format of the tables 
exhibits NT(= M) values dependent on NU, as described in Appendix I, 
thus introducing an apparent dependence of X on NU, even though the 
critical value for a given M is independent of NU, in fact represent­
ing the limit as NU grows large. This format is retained to facili­
tate comparison with the tau and t tables and to exhibit the normal 
critical values incorporating the transformation for control of 
type I error. 
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ALP HA . 100 

' f . 001 . 01 . 10 . 20 . 2 5 .30 . 3 5 

NU M x M x M x M x M x ,., x M x ,., x ,., x 
1 1 1 . 64 5 2 1. 949 1 1. 645 1 1.645 1 1 . 645 1 1.645 1 1 . 645 1 1. 645 2 1 .949 l.O 

2 1 1 . 045 3 2 . 11 4 2 1. 94 9 2 1. 949 2 1 . 949 3 2. 114 3 2. 11 4 3 2. 114 3 2. 11 4 o:i 

3 1 1.045 4 2.226 3 2. 1 14 3 2. 114 3 2 . 114 ~ 2. 226 4 2. 226 4 2 . 226 5 2. 3 11 
.. 1 . 64 5 5 2 . 3 11 4 2.226 4 2.2~6 4 2.226 5 2. 31 1 5 2. 311 6 2.378 6 2. 378 
5 1 . 645 6 2. H8 5 2 . 3 1 1 5 2. 311 6 2 . 378 6 2 . 378 7 2 . 434 7 2.434 8 2.481 
6 1. 64 5 7 ? . 434 6 2.378 6 2. 378 i 2 . 434 8 2.4 81 8 2 . 481 9 2 . 523 9 2. 5 2 3 
7 1 . 645 8 2. 4 81 7 2.434 7 2.434 8 2.481 9 2 . 5 2 3 9 2.523 10 2.560 11 2 . 592 
8 1 . 645 9 2. 5 2 3 8 2.48 1 8 2. •81 9 2 . 523 10 2.560 11 2. 592 1 1 2.592 12 2.622 
9 1 . 645 10 2.560 9 2. 5 2 3 9 2 . 523 10 2 . Sl8 11 2. 592 1 2 2.622 13 2 . 649 14 2.674 

10 1 . 6 4 5 11 2. 592 10 2 . 5 60 10 2 . 560 1 1 2 . 592 13 2 . 649 13 2 . 649 14 2.674 1 5 2.697 
11 1. 61, 5 12 2.622 11 2.592 11 2. 5 9 2 12 2.622 14 2 . 674 1 5 2 . 697 16 2 . 7 18 17 2.738 
12 1 . 6 4 5 13 2 . 649 1 2 2 . 622 1 2 2 .622 13 2.649 15 2 . 697 16 2 . 718 17 2.738 18 2.757 
1 3 1. 64 5 14 2.674 13 2.649 I 3 2. 649 14 2 . 674 16 2 . 718 17 2 . 738 19 2 . 774 20 2. 79 1 
1 4 1. 64 5 15 2.697 14 2 . 674 14 2.674 16 2 . 718 18 2 . 757 19 2.774 20 2 . 791 22 2. 822 
1 5 1 . 645 16 2.718 1 5 2 . 697 15 2 . 697 17 2 . 738 19 2. 774 20 2 . 791 2 1 2 . 807 23 2.836 
16 1 . 645 17 2.738 16 2. 718 16 2 . 718 1 B 2. 757 20 1.. 791 2 1 2.807 23 2 .8 36 25 2.862 
17 1. 645 18 2. 7 5 7 17 2 . 738 17 2 . 738 19 2. 774 21 2.807 23 2 . 836 24 2.849 26 2.875 
18 1 . 645 19 2. 774 18 2 . 757 18 2 . 757 20 2.791 23 2 . 836 24 2 . 849 26 2 . P.75 28 2.898 
19 1 . 6 4 5 :'O 2 . 791 19 2 . 774 19 2. 774 21 2 . 807 24 2 .849 25 2.862 27 2 .887 29 2 . 909 
20 1 . 6 4 5 2 1 2. 807 20 2.791 20 2 . 791 22 2 . 8 22 25 2 .862 27 2 . 887 29 2 . 909 31 2 . 930 
21 1. 64 5 22 2. 82 2 2 1 2 . 807 21 2 . 807 23 2.836 26 2.8"/5 28 2 . 898 30 2 . 920 32 2.940 
2 2 1. 64 5 23 2 . 036 22 2 . 822 22 2 . 822 24 2.849 28 2 . 898 29 2 . 909 3 1 2.930 34 2 . 958 
23 1 . 64 5 24 2 . 849 23 2.836 ;:3 2 .836 26 2 . 875 29 2 . 909 3 1 2 . 930 33 2.949 35 2.967 
24 1 . 645 25 2 . 862 24 2.849 ~ 4 2.849 27 2 . 887 30 2.920 32 2 . 94 0 34 2 . 95 8 3 7 2.984 
25 1. 64 5 26 2 . 875 25 2 . 862 25 2 . 862 28 2 . 898 3 1 2 . 930 33 2.949 36 2.976 38 2.992 
26 1 . 6 4 5 27 2.88 7 26 2.875 26 2 . 875 29 2 . 909 33 2.949 35 2.967 37 2 . 984 40 3. 00 8 
27 1 . 64 5 28 2 . 898 27 2.887 27 2.887 30 2 . 920 34 2.958 36 2.976 39 3 . 000 42 3 . 023 
28 1. 645 29 2.909 28 2.898 28 2 . 898 3 1 2 . 930 35 2 . 967 37 2 . 984 40 3 . 008 43 3 . 030 
29 1.045 30 2. 920 29 2.909 29 2 . 909 32 2 . 940 36 2. 976 39 3.000 41 3.0 15 45 3.043 
30 1 . 645 31 2 . 930 30 2 . 920 30 2.920 33 2.949 38 2 . 992 40 3 . 008 43 3 . 030 46 3 . 050 
3 1 1 . b4 5 32 2 . 940 31 2.930 31 2.930 34 2.958 39 3.000 41 3. 01 5 44 3. 03 7 48 3 .063 
32 1. 645 33 2.949 32 2.940 32 2 . 940 :l6 2 . 976 40 3.008 43 3 . 030 46 3. 0 50 49 3 . 069 
33 1 . 64 5 34 2.958 33 2 . 949 33 2. 949 H 2 . 984 41 3.015 44 3 . 037 47 3. 057 51 3.08 1 
34 1 . 6 4 5 35 2.967 34 2.958 34 2.958 38 2 . 992 43 3 . 0 30 45 3 . 043 49 3. 069 52 3.087 
35 1 . 645 36 2. 97 6 35 2.967 35 2. 967 39 3 . 00 0 44 3.037 47 3 . 057 50 3.075 54 3.098 
36 1 . 64 5 37 2 . 984 36 2. </76 36 2.976 40 3 . 008 45 3 . 04 3 48 3 . 063 5 1 3 . 08 I 55 3 . 103 
37 1 . 645 38 2.992 37 2.984 37 2 . 984 41 3.0 15 46 3 . 050 49 3 . 069 53 3.092 57 3. 11 4 
38 1.645 39 3.000 38 2 . 992 38 2 . 992 42 3.023 48 3. 063 5 1 3.081 54 3. 098 58 3 .1 19 
39 1 . 645 40 3 . 008 39 3.000 39 3 . 000 4 3 3 . 03 0 49 3.069 52 3.087 56 3 . 109 60 3 . 129 
40 1 . 645 41 3 . c 15 40 3. 008 40 3.008 44 3.037 50 3.075 53 3.092 57 3 . 114 62 3 . 139 
4 1 1 . 64 5 42 3 . 02 3 41 3. 01 5 41 3. 0 15 46 3.050 51 3 . 08 1 55 3. 103 59 3 . 124 63 3. 143 
I, 2 1 . 645 43 3.030 42 3 .023 42 3. 02 3 47 3 . 057 53 3 . 092 56 3. 109 60 3 . 129 6 5 3 . 152 
43 1 . 64 5 44 3 . 037 43 3. 030 43 3. 030 48 3.063 54 3 . 098 57 3. 11 4 61 3 . 134 66 3 . i 5 7 
44 1.645 45 3 .043 44 3 . 037 44 3. 037 49 3.069 55 3. 103 59 3. 124 63 3 . 143 68 3. 165 
45 1 . 645 46 3.050 45 3 . 043 45 3 . 043 50 3.075 56 3 .109 6 0 3. 129 64 3. 148 69 3 . 170 
46 1 . 645 47 3.057 46 3 . 05LJ 46 3 . 050 5 1 3 . 08 1 58 3 . 119 61 3. 134 6 6 3. 15 7 71 3. 178 
4 1 . 645 48 3 . 063 47 3 . 0 57 47 3 . 057 52 3 . 087 59 3. ~ 24 63 3. 143 67 3. 161 72 3. 182 
4v 1 . 645 49 3.069 48 3 . 063 48 3.063 53 3 .092 60 3 . 129 64 3 . 148 69 3 . 170 74 3 . 190 
49 1.645 50 3 . 075 49 3 . 0b9 49 3 .069 54 3 . 098 61 3. 134 65 3 . 152 70 3 . 174 75 3 . 194 
50 1 . 645 5 1 3.081 50 3 . 07 5 51 3. 08 1 56 3 . 109 63 3. 143 67 3. 161 7 1 3 . 178 77 3. 20 1 
5 1 1 . 645 52 3.087 5 1 3 . 081 52 3.087 57 3 . 114 64 3. 148 68 ; . 16 5 7 3 3. 186 78 3.205 
52 1 . 645 53 3.092 52 3.087 53 3. 092 58 3 . 119 65 3. 152 69 3. 170 7 4 3. 190 80 3 . 212 
53 1 . 645 54 3 . 098 53 3. 092 54 3 . 0<:'8 59 3. 12 4 66 3 . 157 71 3 . 178 76 3. 198 82 3 . 220 
54 1.645 55 3 . 103 54 3. 098 55 3 . 1u3 60 3. 129 68 3. 16 5 72 3. 182 77 3.201 83 3.223 
55 1.645 56 3. 109 5 5 3 . 103 56 3. 109 61 3. 134 69 3. 170 73 3 . 186 79 3. 209 85 3.23 0 
Sc 1.645 57 3. 114 56 3. 109 57 3. 1 14 62 3. 139 70 3. 174 75 3 . 194 80 3.212 86 3. 23 3 
57 1 . 64 5 58 3 . 119 57 3 . 114 58 3.1 19 63 3. 14 3 71 3.178 76 3. 198 8 1 3 . 2 16 88 3 . 24 0 
58 , . 64 5 59 3 . 124 SB 3. 11 9 59 3. 12 4 64 3 . 148 73 3. 186 77 3 . 20 1 83 3. 2 2~ 89 3 . 243 
59 1 . 64 5 tO 3 . 129 59 3 . 124 6 0 3., 29 66 3. 157 74 3. 190 79 3 . 209 84 3 . 226 9 1 3 . 249 
oO 1. 645 6 1 3 . 134 60 3. 129 61 3 . , 3 4 c7 3 . 16 1 75 3. 194 80 3. 21 2 86 3. 233 9 2 3 . 252 




