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ABSTRACT 

Because the Earth is not a rigid homogeneous sphere , the path of  a near­
Earth satellite will deviate from a perfect ellipse . If accurate measure­
ments of satellite orbits are available , one can hopefully deduce parameters 
from the observed orbital motions which model geophysical features. This 
dissertation gives the results and techniques to estimate one nonstation­
ary variation in the Earth ' s  gravity field--the principal lunar semi-diurnal 
(M2) ocean tide . 

Since the ocean tides cause periodic perturbations with periods greater 
than a week in the evolution of the Keplerian elements of a satellite , 
the mean Kepler!an elements (osculating Keplerian elements less all short 
period oscillations) are studied • .  To date , no investigator has produced 
mean Keplerian elements accurate enough to observe the small variations 
caused by the M2 ocean tides . To solve this problem,  approximate analytical 
transformations have been applied which account for large first-order 
effects . Elimination of very high frequency effects is accomplished with 
the aid of an ideal low-pass filter . Precise transformations are only part 
of the solution, however. Accurate orbits significantly affected by ocean 
tides must be available . Fortunately , two such satellite orbits were 
obtained--1967-92A,  a U. �. Navy satellite , and the NASA satellite , GEOS-3 . 

Two terms in the harmonic expansion of the M2 global tide height can be 
observed . Estimates of · these coefficients have been · obtained . These 
estimates are somewhat smaller than recent published values obtained from 
numerical solutions of Laplace tidal equations . 

Application of the satellite derived M2 ocean tide coefficients to the 
problem of the deceleration of the lunar nean longitude yiels an estimate 
of -27 . 4  arc seconds/century2 which is in close agreement with recent 
analyses of ancient eclipses and modern transit data. Because the entire 
tidal deceleration of the lunar mean longitude can be accounted for by the 
ocean tide model obtained in this study , it can be inferred that the solid 
tide phase lag must be less than l� . 

Knowledge of these important quantities in geophysics and space science, 
as well as the method developed to extract this information from satellite 
or�its , are considered important contributions of this study. 
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1. INTRODUCTION 

The last twenty years of space explorati�n since the launch of Sputnik 

I in 1957 has revolutionized the science of geophysics . With the very 

first transmitted satellite data , it was possible to determine precisely 

the Earth ' s  oblateness for the first time . Improvements in the knowledge 

of long wavelength features of the geopotential have been continuous. 

Today , geopotential spherical harmonic coefficients to degree and order 

(30, 30) are being estimated or improved. A�ospheric density studies 

obtained from satellite orbit analysis have also resulted in major improve­

ments in man ' s  knowledge of the structure of the atmosphere . By the late 

1960 ' s  orbits of geodetic and navigation satellites were being analyzed 

at the meter level for such geodetic phenomena as polar motion and non­

stationary variations in the Earth's gravity field. This dissertation 

gives the results and techniques used to estimate one such nonstationary 

variation in the Earth ' s  gravity field-ocean tides from satellite orbit 

perturbations • 

. ,If the Earth were a rigid · homogeneous sphere , satellite orbits due to 

this central force field. would be perfect ellipses . However ,  the actual 

distribution of the Earth ' s  mass is nonhomogeneous which gives rise to a 

rotating noncentral force field . Since the Earth is not a rigid body , 

tidal motion o� the oceans and the deformation of the Earth ' s  core and 

mantle create further complications . These phenomena plus the gravita­

tional attraction of the other celestial bodies affect the satellite 

orbits and cause their paths to deviate from ellipses . 

If accurate measurements of satellite orbits are available, one may hope 

to deduce these geophysical features from the observed orbital motions . 

1 



The problem investigated in this study is the deduction of the following 

information from the obserVation of the orbits of 1967�92A and GEOS-3: 

1. The M2 tidal parameters which describe the semi-diurnal motion of 

the global ocean tide . 

2.  The rate of slowing d�wn of the orbital motion of the Moon through 

the centuries because of resonance between the lunar motion and 

the motion of the M2 ocean tide . 

R. R. Newton (1965, 1968) and Kozai (1968) independently attempted 

solutions from satellite ephemeris· data for the parameters* which des­

cribe the solid Earth deformations due to the attraction of the Sun 

and Moon. Since these nonstationary disturbances of the Earth's potential 

perturb the orbits periodically with periods greater than a week, the 

slow�y varying features of satellite motion must be analyzed to recover 

them. Newton pioneered a purely numerical technique for isolation of the 

long-periodic effects of the Love numbers, while �ozai used traditional 

analyt ic methods . Newton obtained a precision of 0 . 5  to 1 . 0  arc second 

in the �nclinations of his precessing Kepler ellipses . He rej ected the 

possibility of ocean tides corrupting his results since he considered 

that it "contributed little to the total potential • • •  The ocean tides 

are rather random in phase and almost cancel when averaged over the 

entire Earth at any particular instant ." Kaula (1969 )  tried to explain 

the large differences in Newton ' s  results by a latitude dependence of 

the solid Earth tide effect . Douglas et ale ( 1972, 1974) convincingly 

showed an apparent latitude dependence by obtaining second degree Love 

* Love numbers named after A.  E .  H .  Love . 
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numbers for GEOS-l and GEOS-2 of 0 . 22 and 0 . 31, respectively. Lambeck 

et al . (1974) clarified this entire subject when they showed that the 

effects of the ocean tides were not at all random but were systematically 

similar to the effects of the solid tide. The ocean tides are functions 

of longitude and latitude and they were responsible for a large portion 

of the difference between the GEOS-l and GEOS-2 results . 

Douglas et al . (1972, 1974) obtained improved mean elements by first 

removing large perturbations in the elements due to low degree and order 

terms of the geopotential before averaging .  Since these parameters 

reveal themselves as periodic variations in the elements , their removal 

protects one against leaving behind residual effects due to averaging 

over only a fraction of a period . The critical parameter which scientists 

have tried to recover is the lag in the response of deformation of the 

Earth to the attraction of the Sun and Moon . This lag is a very impor-

tant measure of the anelasticity of the Earth ' s  core and mantle (Kaula , 

1968 ) . Because of the neglect of ocean tide effects , progress has been 

limited in the estimation of the solid tide phase lag of the Earth from 

satellite orbit analyses . o 0 Values ranging from 0 to 5 have been suggested 

for the phase lag from tiltmeter observations and satellite orbit analyses . 

Results of seismological data which yield information about rates of decay 

of free oscillations of the Earth at periods of about I hour lead one to 

believe that the · lag should be between 00 and 10. 

Differencing common points of orbits determined from successive two-day 

data spans have shown that eonventional orbit determination results are 

now accurate to a few meters (1 meter � 0 . 03 arc second) along the direc-

tion of motion (along-track) . If the along-track positions are known to 

this accuracy , then the semi-major axes should be known to the centimeter 
3 



level. However , no one has yet demonstrated centimeter accuracies in their 

mean elements . This inability to produce mean elements that have the same 

accuracy as osculating elements was the initial impetus for this endeavor . 

It was believed that if mean orbital elements could be obtained with a 

precision of 0 . 01 arc second in the inclination or node (normally out-of-

plane· components are known better than the along-track components) , then 

it would be possible to solve for. meaningful ocean tide parameters� This 

is advantageous since no modeling of the dynamics of the oceans would be 

required . Lambeck et ale (1974) attempted a solution of the ocean tide 

parameters affecting satellite orbits , but concluded that their results 

were "not significant" bec.ause of the inadequate precision of the orbital 

data . 

Precise transformations are only part of  the solution , however .  Accu-

rate orbits significantly affected by ocean tides must be available . 

Fortunately, two such satellite orbits were obtained -- 1967-92A , a u� s. 

Navy Navigation Satellite, and the NASA satellite , GEOS-3 . Improved 

transformations have been developed and the 1967-92A and GEOS-3 orbital 

data have been analyzed . Even though only a few ocean tide parameters 

can ·be obtained from satellite orbit perturbations , they have an extremely 

tmportant application to the tidal acceleration of the Moon . 

In 1975 Lambeck applied the ocean tide theory developed in 1974 to the 

problem of the orbital evolution of the Moon . Using the results of 

numerical solutions to Laplace tidal equations., Lambeck obtained a 

/ 2 • . 
value of -35 arc seconds century for the lunar N (acceleration of lunar 

mean longitude) which seemed to agree well with observations of ancient 

eclipses . Based on these results , Lambeck argued that since the predicted 
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value of N of the Moon from ocean tides matched the observed value of N, 
then the effect of the solid tide was small . This supports the argument 

that the solid tide "phase lag cNso1id is proportional to lag angle) must 

be close to zero . A subsequent analysis of ancient eclipse data (Muller 

1974) and analysis of transits of Mercury (Morrison and Ward 1975) has 

shown the proper value of N to be -26 to -28 arc seconds/century
2

. moon 
Not only are the ocean tide results obtained in this study in reasonable 

agreement with numerical solutions of Laplace tidal equations , but they 

also yield a value of N , due to "ocean tides , of -27. 4 arc seconds I moon 
2 century -- a value in close agreement with the recent results of Muller , 

and Morrison and Ward . This result is also supported by Kuo (1977) who 

estimates the s�lid tide phase lag to be less than 1 . 00 based on data 

from "a network of grav±meters placed along a parallel of latitude across 

the United States. A variation of 0 . 50 in the solid tide phase lag 

causes the N results to change by no more than 1 arc second/century
2

. 

Knowledge of these important quantities in geophysics and space science ,  

as well as the method developed to extract this information from satellite 

orbits,  are considered important contributions of this study. 

Chapter 2 reviews the equations derived by Kaula (1966) to eliminate the 

major perturbations due to the geopotential field , and discusses some of 

their physical interpretations . The advantage of using low-pass filtering 

before the averaging process is introduced , and several examples of ideal 

and actual mean element results are given. 

The origin and representation of ocean tidal phenomena are discussed in 

detail in Chapter 3 .  The histPric work of Doodson (1921) will b e  empha-

sized as well as the recent " efforts of Hendershot t  and Munk (1970) ,  Lambeck 

5 



et a1 . (1974) . The appropriate potential function in terms of Keplerian 

elements for ocean tide attractions is given and its long period charac-

teristics are discussed . 

The solid tide attraction is discussed in Chapter 4, and its corres-

pending potential is given. Expressions of this. potential function in 

. terms of the ecliptic Keplerian elements of the disturbing body (as 

opposed to Earth equatorial e�.ements) ,  which are derived in appendix I, 
� 

are stated . The fr�quency equivalence between ocean tide and solid tide 

satellite perturbations are shown . 

Chapter 5 discusses the data processing of the inclination and nodal 

perturbations of the two satellites 1967-92A and GEOS-3 . Comparisons are 

made between observed orbit variations and predictions from numerical 

tide medels , showing observational equations derived from each sequence 

of orbital elements. These observations are then reduced with a standard 

least-squares algorithm to yield estimates of the ocean tide parameters. 

These estimates, obtained entirely from satellite orbit perturbations , 

are then compared with current numerical solutions · of Laplaces tidal 

equations . 

The ocean tide results are applied to the lunar orbit evolution problem 

in Chapter 6. Comparisons are made between satellite ocean tide predic-
. 

tions of the lunar N and the observations of N from ancient eclipse and 

Mercury transit data . 
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2 .  GENERATION AND UTILIZATION OF MEAN KEPLERIAN ELEMENTS 

2.1 Osculating Keplerian Elements 

In order to observe the behavior of a history of a perturbed satellite 

ephemeris and compare this ephemeris with the theoretical history of an 

unperturbed one, an appropriate potential function must first be con­

structed and differential equations be drawn up in terms of suitable 

coordinates . By far the major cause of the deviation of motion of a 

near-Earth satellite from the theoretical path of two-body motion is the 

nonspherical geopotential field of the Earth. To be able to observe 

orbital variations of a few meters due to phenomena, such as tides, one 

must first remove the effects of the geopotential which range in magni­

tude up to tens of kilometers . In addition, the attractions of other 

disturbing celestial bodies must also be modeled , since their effects 

also can be many times larger than those geophysical parameters which , 

hopefully , will be recovered . " One particular choice of coordinates which 

is well suited for such investigations is the set of osculating Keplerian 

elements .  Osculating Keplerian elements are coordina tes that instan-" 

taneously define the Kepler ellipse obtained from the satellite's 

position and velocity. �ince " the potential field is noncentral , these 

elements will continuously change . The Earth ' s  attraction deviates only 

slightly from a central force field and, therefore , the osculating 

ellipse will retain most of the attributes of the Kepler ellipses . Also , 

use of the Keplerian elements is very beneficial because of the stable 

behavior of the" out-of-plane elements (inclination and right ascension of 

the ascending node) . Errors in energy (semi-major axis) will only affect 

the motion along the direction of motion (along-track) . The symbols used 
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for these osculating elements throughout this report are as follows: 

a semi-major axis 

e eccentricity 

i inclination 

n - right ascension of ascending node 

� - argument of perigee 

M - mean anomaly 

It will be seen that such forms of the potential would be rather 

expensive to use in integrating .the orbit numerically on a computer , but 

they are very useful to use when analyzing the major amplitudes and 

frequencies which perturb the motion . The standard set of three second-

order differential .equations in terms of inertial Cartesian elements 

defining the motion can be transformed into a set of six first-order 

differential equations in terms of these new variables which is usually 

referred to as Lagrange planetary equat�ons. The der�vat�on can be found 

in many standard textbooks on celestial mechanics , such as . Brown and 

Shook (1933) and Brouwer and Clemence (1961), and the results of this 

transformation are given here . For motion in a conservative· force field , 

the differential equations of motion can be obtained from a scalar , 

normally called the potential. Let the potential function U be given as 

u ,. .JL + R (2 . 1) 2a 

where �� is the total energy ·due to two-body attraction of the Earth and 

R represents all other effects , such as geopotential and third-body 

attractions. Then the set of s�x first-order equations is given by 
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da 2 3R · - .. -
dt Na aM 

2 de l-e aR - ". --r dt Na e 
--
aM 

di cos i 3a 1 aR 
dt - Na2 (l-e2)lisiu · i 3;-Na2(l-e2)�s1n i QC&I 

(2.2) 
dl.l) - cos i - - 2 2 II: . dt Na (l-e )-�sin i 

dM -:II 
dt 

2 
N _ !=}- oR _ ..!.. oR 

Na e 3e Na 3a 

where N -

3R 
ae 

� is the gravitational constant G times mass of Earth . Nonconservative 

contributions must be included in (2 . 2) in terms of force components. 

2 . 2  Keplerian Potential Function for Geopotent1al 

Kaula (""1961 , 1966) has transformed the various potential func-

tions into very useful forms as harmonic expansions in terms of the 

fundamental frequencies of the motion n, w, M. Let Vtm stand for the 

degree 2 and order m terms of the potential . Then 

GO 1 

v = V a t,m 

1 
JJ 
ae L F (i) 1: G (e) SR. (w,M,n,e) t + 1 p=O tmp q __ GO tpq mpq 

t=2 m=o 

(2 . 3) 

9 



where 

R.-m even 

cos [ (R.-2p)w+(1-2p+q)M+m (O-8)] 

-S1m R.11 odd 

R.-m even 

+ sin [ (1-2p)w+ (1-2p+q)M+1D (O-6) J 

ae is semi-major axis of the Earth, 

9 is CreenW1ch sidereal angle 

CR.. 
and S1m are the standard cos1nusoidal and sinusoidal coeffi­

cients when the potential is .expressed in terms of spherical 

coordinates (latitude and longitude) . 

From (2.3) it is seen that summations over four subscripts must  be 

performed to evaluate the total potential. It is for this reason that 

the potential function expressed as in (2.3) is not normally used when 

operationally integrating satellite ephemerides. For example , modeling 

to . first order a typical geodetic satellite ephemeris to the sub-meter 

level could require more than 500 · !mpq · sets . 

The inclination functions FR.mp (i) and eccent�icity functions GR.pq �e) 

are polynomials. The inclination polynomials are of finite degree , but 

the eccentricity polynomials are not. However, for small values of e 

(less than 0.2)  the eccentricity polynomials do converge rapidly . A 

useful property to remember is that the leading term of GD (e) is pro-, �pq 
portional to e Iq l, where e is eccentricity . Therefore , the summation 

over q is usually restricted to only small values of \ q l depending on 

10 



the precision required. 

2 . 3  Secular , Reson�nt , m-Daily, and Long Period Contributions 

Notice the convenience of form (2.3). After substituting (2 . 3) into 

(2 . 2) ,  it is easy to see how the element perturbations are driven by a 

linear �ombination of the three fundamental frequencies w, M, 0-6. For 
dO example, 
dt is given by . 

d0R. mpg 
dt 

1 
'\.I a e =-

1+1 a 

aF Romp (i) 

(J.i Go (e) So (w,M,O,9) Npq Nmpq 

S 1mpq 
- [::] 

R.-m even 
cos y 

R.-m odd 

[s ] 1-m even 
+ 1m . 

C Sl.n y 
1m R.-m odd 

y .. (�-2p)w·+ (R.-2p+q)M + men-e) 

If R.-2p = R.-2p+q .. m = 0, the angular argument is identically zero; and 

such R.mpq combinations would give secular terms (Go .. const) . Nmpq 

If R.-2p+q .. 0 and m F O�then the derivative would go through m cycles in 

a day . Such an R.mpq combination is called an m-daily term . If R.-2p+q .. 

m .. 0 ,  then both the mean anomaly rate and the rotation rate of  the Earth 

are not present • . Thus , the only angular element which is present is the 

argument of perigee which is very slowly changing. Any term containing 

only w is called a long period term . Resonance occurs when the orbital 

motion and the rotation of the Earth beat against one another . This 

happens when 

(R.-2p+q) M +(R.-2p)c.il � m(9-f2) R.-2p+q:; 0 
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is satisfied . As the equality becomes more exact , the resonance period 

can become quite long . 

2 .4 Analytical Approximations and Mean Keplerian Elements 

As will be shown in Chapter 3 ,  perturbations due to certain phenomena , 

such as tides , can only be detected when long period effects are studied . 

This is accomplished by converting from osculating Kepler ian elements to 

a set of elements with as many of the short period effects removed as 

possible. That is , the history of any osculating element 
'
ai (t)  (1-1 , 2  • • •  , 6) 

can be expressed as the sum of long and short periodic contributions 

where ai(c) is che sum of the low frequency, . constant, and secular contri­

butions, aa
i

(t) represents the high frequency oscillations . The a
i are 

called mean Keplerian elements. The first step in the process of convert-

ing from osculating to mean variables is to remove all terms that have M 

and e as angular arguments , which is equivalent to removal of short period 

terms. 

First-order approximations to the perturbations' are found by assuming 
. . . 

chaC a , e , i , M, w., n are consCanC . This results in an equacion of che form 

where Kli K2, ao' a are constants. 
. . 

The above can be integrated to give 
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When· \-ci l is small, as is the case of resonance, then the perturbations 

can become very large. Excluding this case , substitutions of Va into ""mpq 
Lagrange planetary equations and integrating as above yields the perturba-

tion equations as given by Kaula (1966): 

2F G (1-2ptq) Sa (6) t tmp tpq ""mp9 6a '" )Ja • �mpq e N.a R.t2 & 

1 Ae! = )18e . mpq 

2 � 2 � . 
F G (l-e ) [(l-e ) (1-2p+q)- (R.�2p)]Sa (�) 1mp R.pg IIImpq 
N.aR.+3 & 

a F1 G1 [(�2p)cos i - m]S1 (6) 
6i III mp pq mpC! 

1mpq '" )1ae Na
1+3(l_e2)� sin i 6 . 

. 2 -1 -
[-(1-e )e (aGo fae) + 2(R.+l)G! ]F n Sa (6) 

�M '" lla! ""pq pq ""mp ""mpg 
bpq e 3 1+ • Na 6 

1 3lla Fa Ca Sa (6) (1-2p+q) e ""mp ""pq ""mIX! 
. 1+3 ·2 

Na & 

(2.4) 

where N "'Yll/a3 � '" (1-2p+q)M + (1-2p)w + men-a), 

S a is the integral of S with respect to its argument. ",mpq 1mpq 
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Since C20 is approximately 1000 times greater than any other geopoten-

tial coefficient , the C2 0 secular terms very closely resemble the actual 

secular rates of the elements n,w,M 

3N c20a! 
2az (l-eZ)Z 

3N c20a! 
wref � 4aZ(1-e2)2 

cos i 

(2 .5) 

These angular rates are used as the reference angular rates in the 

denominators of equation (2 .4) ,  i .e . , it represents deviations about a 

secularly precessing Kepler ellipse (a,e,i,n,w,M constants). 

Recalling that long period perturbations (excluding resonance) due to 

the geopotential occur when only w appears in the angular argument , 

extremely long periods will occur when w � O .  From the above wref 
equation , it is found that w � a when 

cos i = ± ;-s- . 63 4

° 

116 6

° 

'5 or l. = . . , • 

This situation is usually referred to as the "critical inclination" 

problem. 

Polar orbiting satellites (1 = 90°) exhibit no node motion due to C2 0 . 

Satellites with inclinations less then 90° have node regressions (C2�O) , 

while satellites with retrograde orbits (t>90o) exhibit·progressions of 

the node . 
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Expressions for the first-order perturbations due to third-body attrac­

tious are giveu Dy Kaula (�96l) and are similar to (2.4). Such expres­

sions will be discussed " in Chapter 4 when the effects of solid-body tides 

are analyzed. 

2 . 5  Previous Numerical Transformation Methods 

Transforming from osculating to mean elements or , in other words , 

completely eliminating all short period terms could be performed entirely 

using analytical techniques . However , if a transformation is required 

to remove all short-period terms to the centimeter level , one must con­

sider second-and higher-order terms in addition to a vast number of 

first-order perturbations . " To eliminate the complexity and large amounts 

of computer time required to perform such tranoformations , R. R. Newton 

(1965) fitted a secularly precessing Kepler ellipse to a c10s�ly-spaced 

ephemeris of Cartesian elements . He obtained a precision of 0 . 5  to 1 . 0  

arc second in the mean inclination of U .  S .  Navy navigation satellites . 

He then used these "mean" Kep1erian elements to recover lumped values of  

" the solid Earth tidal Love numbers and phases . There were large varia­

tions in his results which Lambeck et a1 . (1974) properly explained as 

the neglect of the influence of ocean tides . 

Douglas et ale �1972) modified this procedure by removing large first­

order perturbations from a sequence ·of closely-spaced osculating 

Keplerian elements prior "to the least squares fit to a secularly pre­

cessing ellipse . They obtained a fit of 0 . 1  arc second in the mean 

inclinatiom and 10 cm in the mean semi-major axes of the GEOS-l and 

GEOS-2 satellites. 
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Also unaware of the systematic effects of ocean tides on orbits of near­

Earth satellites, Douglas et a1. (1972-) using this improved 'method of 

obtaining mean elements obtained very precise and differing values of the 

solid tide Love number k2 from the two satellites , which implied a 

latitude dependence on the particular orbit being analyzed . 

It was the results of Douglas et ale (1972) that led to the present 

effort to try to produce mean Kep1erian elements having a precision of 

0 . 01 arc second in mean inclina�ion and I cm in the mean semi-major axis 

(1 cm change in the mean semi-major axis would cause the position in the 

direction of the velocity vector to change by only 1 m in a day) . To 

obtain their results , Douglas et ale corrected the osculating ,elements 

for geopotential terms through degree and order , (4 ,4 )  bef,ore averaging 

over a one-or two-day sequence to extract the single set of mean elements . 

2 . 6  Application of Low-Pass Filtering 

It was felt that the use of Kaula ' s, harmonic approach should be 

extended to include all significant perturbations due to the geopotential 

through degree and order (30 , 30) .  Table I gives a few selected effects 

on the semi-major axis and inclination of GEOS-2 . It is easily seen 

that even for this small collection of frequencies , one time span over 

which all listed terms have an integer number of periods would b e  extremely 

long. The cost of integrating such a lengthy traj ectory would be prohibi­

tive . One solution to this problem is the use of a low-pass filter to 

numerically remove high-frequency effects . This is a natural extension of 

the averaging process u�ed by Newton and Douglas et ale 
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Degree 

2 

2 

" 3 

13 

14 

Table l.--Selected geopotent1al perturbations on 

GEOS�2, GEM 6 gravity model 

Order 

0 

2 

1 

13 

13 

Frequency 
(Cycles/Day) 

25.6 

12 . S 

7 6 . 9  

23 . 6  

1 . 998 

27 . 6  

1 . 003 

37 . 4  

11 . 8  

0 .18 

.17 

.16 

17 

6a 
(m) 

8000 . 

130 . 

0 . 3  

8 .  

0 

2l . 

O .  

12 . 

8 .  

2 . 6  

. 2  

. 4  

6i 
(sec) 

15 . 

0.5 

. 0002 

. 14 

4 . 7  

. 2  

. 05 

. 1  

. 1  

. 5  

. 04 

. 07 



First , the number of tmpq sets required · to achieve centimeter precision 

would be diminished. That is , only perturbations with'amplitudes larger 

than 1 m, with periods shorter than the chosen cutoff frequency , must be . 

removed since the filter .will "catch" or effectively throw out all pertur-

bations with frequencies greater than the cutoff frequency. However , all 

significant . variations with periods greater than the cutoff period must 

still be modeled. Thus, the filter would tend to keep down the number of 

tmpq sets and at the same time eliminate all high frequency effects o f  

all orders . The reference t o  higher-order effects is analogous to higher-

order terms in a Taylor series expansion. To evaluate the first-order 

approximations , a , e , i , n ,� ,M  were assumed to be constant when , in fact ,  

they were not .  For example , the predicted variation in the semi-major 

axis , due to the twice per revolution effect of C2 0, is in the neighborhood 

of 8 km. This approximation is good to about 20 m which can be accounted 

for if higher-order terms are considered. 

Low-pass filtering can be described simply as multiplying any signal in 

frequency space by a unit step function which is equal to zero above any 

chosen cutoff frequency . This is expressed mathematically by 

A (w) = A (00) • H (00) 

where A (00) is Fourier transform of filtered signal 

A (w) is Fourier transform of input signal 

H (00) = 1 
o 
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Since multiplication in frequency space can be expressed as a convo1uti�n 

in the time domain, equation (2.6) can be written equivalently as 

a (t) -�- a«) h(t-<) d < 

where aCt) is filtered signal (2.7) . 

aCt) i& input signal 

A computer implementation of equation (2.7) has been programmed using 

. the well known Simpson-rule algorithm. Two shortcomings of the above 

procedure must be pointed out . First. the limits of integration (-a, m) 

mus t be replaced with realistic finite limits (0, T) . For all results 

quoted here , a value of T equal to two days was used . To avoid transient 

effects near the endpoints caused by the integration over a finite 

interval, only filtered values during the middle day were actually used 

in the averaging process .  Second , even though an extremely small cutoff 

frequency is preferred, one is limited by the duration of the finite span 

of data to be filtered . Eight-cycles per day was chosen for the results 

here . 

The advantage o f  the filter can be easily seen by comparing figures 1 

and 2 .  Figure 1 contains the semi-major axis of GEOS-2 , after first-order 

corrections , using only the GEM-6 geopotential model ( Lerch et ale 1974) 

in the satellite equations of motion. Notice the scale required to dis-

play these elements is at the 20 m level , the expected second-order effect 

due to J2' The high .frequency of the residual effects is also pronounced . 
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Figure 2 shows the same GEOS-2 elements used in figure 1 after passing 

them through the law-pass filter described above . The scatter about the 

average value is reduced to an rms of 3 em, and the high frequency 

signature has been eliminated . 

'Figure 3 contains the unfiltered and filtered values of the inclina-

tions less first-order correct ions . The dominant slope is due to long-

period variations which should be present in all terms except the sem1-

maj or axis . The scatter in the filtered inclinations is less than 0 . 02 

arc second, which is less than the level expected of such phenomenon as 

the M2 tidal effect, while the scatter of the unfiltered points is about 

0 . 1  arc second . 

Figure 4 gives a seven-day history at daily intervals of the filtered 

and unfiltered semi-major axes after averaging over a day . The scatter 

of the unfiltered mean elements is of the order 5 cm, while the filtered 

points are smooth to the precision of the graph and have a definite 

frequency content equal to the beat period of the 13th order resonances . 

This effect is believed to be a second-order interaction of J2 with the 

resonant terms . The comparison leads one to believe that at least 5 cm 

of the lO-cm scatter experienced by Douglas et al. (1972) could have 

been due to inaccuracies in the transformations . 

Figure 5 shows the history in the filtered mean semi-maj or axis of 

GEOS-2 during two weeks in June 1968. The elements were obtained from 

two-day arcs of optical flash data� The apparent sinusoidal variation 

with a period of approximately six days is due to unaccounted-for 

resonant effects ,  and the secular decay is due to the combination of 

drag and solar radiation pressure effects. Note that the random compo-
�� 

nent of the signal shown in figure 5 is at the centimeter level. Numerous 
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application$ · of this technique exist not only to determine geodetic and 

geodynamic parameters , but also to evaluate the most subtle radiation and 

atmospheric effects . 

2.7 Damping Effect of Averaging 

Equally �mportant in the conversion from osculating to mean elements is 

the removal of the direct lunar perturbations prior to averaging . The 

direct lunar perturbation corresponding to the semidiurna1 M2 frequency 

on the mean inclination has an amplitude 50 times greater than the ocean , 

.tide effect , so that any damping of the direct effect due to averaging 

will cause large errors in the ocean tide parameter determination . It 

is easy to show that a sinusoidal variation of frequency w averaged over 

an interval 2� has its phase unchanged and its amplitude damped by a 

factor sin (w�)/w�. As will be shown in Chapter 3 , the dominant effect 

of the semi-diurnal M2 tide is a semi-monthly orbit perturbation . With 

a one day average this damping amounts to about 1% and thus would produce 

an error of. 50% in the ocean tide signal if allowed to occur . 

2. 8 Tidal Perturbations from a Sequence of Mean Elements 

To isolate those perturbat ions due to tides and other geophysical para-

meters of interest , one must first pass the sequence of mean elements 

through an orbit determination program which properly models as many of 

the terms of the differential equation that are no� to be estimated or 

improved . Fortunately ,  such a program was available from NASA Goddard 

Space Flight Center , Greenbelt , Maryland , This computer progr� implemented 

oy Williamson and Mullins (1973 ) , is called ROAD (Rapid Orbit Analysis 
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and Determination). The force model ·.\sed in ROAD is based all Kaula ' s 

work. Only long period , secular, and resonant terms are used which allows 

the numerical integrator to use stepsizes of a revolution or longer , as 

compared to conventional orbital integrators which normally use 1/75 to 

1/100 revolution stepsizes. Such a program is very useful when analyzing 

long sequences of mean elements and predicting satellite life times 

Oiagner and Douglas , 1970). The possible force model parameters available 

to the ROAD user are the following: 

up to 200 tmpq sets - any degree and order term can be 

used to (40 ,40) 

solar and lunar third-body att·ractions . 

solar radiation pressure 

atmospheric drag 

solid tides 

dynamic effect of precession and nutation 

second order J2 secular effects 

All the above options were exercised when analyzing the data for this 

study. The application of the. third-body effects of the Moon and Sun was 

e�pecia11y useful . As will be shown in Chapter 3 and Chapter 4, the solid 

and ocean tides have the same frequency spectrum as do the direct effects 

of the disturbing bodies . Thus, ROAD was used quite effectively to 

eliminate or filter out the. direct effects of the Sun and Moon so that 

only perturbations du� to solid and ocean tides would remain when the 

ROAD theoretical orbit was subtracted from the actual satellite mean 

element ephemeris. 

25 



2.9 Aliasing 

One might think that fitting an orbit to the mean element data could 

cause the fitted orbit to adjust to alias the parameters sought , e .g . , 

as the ocean tides� Such aliasing should not happen in this case , however . 

The orbit is predominately governed by the central body and J2 attractions . 

Thus , the orbit determ!nat ion must first satisfy these dynamical con­

straints before any other much smaller terms in the potential function 
can be considered. That is , effects such as zonal and tessera! harmonics 

and solid and ocean tides are driven br the massive effects of .central 

body and ob!ateness effects. This wi!! be made even more evident when 

analytical approximations to tidal perturbations are ob tained . 
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3. OCEAN TIDES 

3.1 Background 

The ebb and flow of the ocean tides on the shore have always fascinated 

and stimulated mankind . As pointed out by E .  P. Clancy (1968), an 

ancient Roman author , Pliny it was aware of the dependence of tides on the 

motions of heavenly bodies as early as the first century A . D . From 

Pliny's Ristoria Naturalis we find the following : '�uch has been said 

about the nature of waters; but the most wonderful circumstance is the 

alternate flowing and ebbing of the tides, which exist, indeed, under 

various forms, but is caused by the Sun and the MOon .  The tide flows 

and ebbs twice between each two risings of the Koon,  always in the space 

of twenty-four hours . First ,  the Hoon rising with the stars swells out 

the tide, and after some time , having gained the summit of the heavens , 

she declines from the meridian and sets , and the tide subsides . Again , 

after she has set , and moves the heavens under the Earth , as she approaches 

the meridian on the opposite side , the tide flows in ; after which it 

recedes until she again rises to us . But the tide the next day is never 

at the same time with that of the preceding ." 

Of course Pliny was referring to the principal lunar semi-diurnal 

frequency which Darwin (1898) gave the name M2. (M for Moon , 2 for twice 

�er day) and which has a period of 12 . 42 hours . 

Even though. the correlation of tides to the motion of the Sun and Moon 

were known to ancient observers , it was not until 1687 that Sir Isaac 

Newton in his Principia was able to construct a simple mathematical model 

for tidal phenomena . Based on his law of gravitation , Newton predicted 

the occurrence of spring and neap tides, diurnal and elliptic inequalities . 
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Laplace in 1773 was the first to . formulate the differential equations 

of motion · (�h1ch now are us�lly referred to as Laplace tidal equations) . 

In his M'canigue celeste, Laplace solved the idealized case . of a fluid 

covering the entire Earth under the influence of  forced oscillations . 

The obvious rise and fall of tides caused man to ·leave records of the 

ebb and flow as well as tidal crests along coasts and estuaries . In 

1866 Lord Kelvin made the first harmonic analysis of such tidal observa­

tions . This procedure was quickly adopted . In 1898 George Darwin , in 

his book The Tides , provided a detailed description of the tide generating 

potential and associated frequencies . This work was the authoritative 

reference for approximately 25 years . 

In 1921 A. T .  Doodson, recognizing the fact that Darwin ' s  work was 

based on variations in equatorial angul�r arguments of the Sun and Moon , 

revised Darwin ' s  theory to represent the tide raising potential in terms 

of the ecliptical rather than equatorial variables . 

The ang.ular arguments of Dooclson ' s trigometric . series and their periods 

are given in table 2 .  The lunar mean longitude i s  the sum o f  the lunar 

node , mean anomaly , and perigee angles . The node is referr.ed to the 

ecliptic . The mean longitude of the lunar perigee is the sum of the 

node and perigee angles which are again measured in the ecliptic . Like­

wise ,  the solar mean longitude is the sum of the perigee and mean anomaly 

angles . Thus , each of the fundamental �gular . quantities of both the 

Sun and Moon can be broken down into linear combinations of their mean 

Keplerian angular values . In addition , evaluation of local mean lunar 

time will require information about the Earth ' s rotation . 
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Table 2. --Six fundamental angular arguments of 

the Earth�Moon-Sun system 

Representation 

This 
study Doodson 

T 

62 s 

6 3 h 

64 P 

6 s N' ,. -N 

66 P I  

Description 

mean · lunar t·ime reduced to an 
angle T ,. e - s . S 
where ag is the longitude of Greenwich 

Period 

12. 42 hr 

Moon ' s  mean longitude 27 . 3215 d 

Sun ' s  mean longitude 365 . 2422 d 

�ongitude of Moon ' s  perigee 8 . 847 yr 

N is the longitude of the MOon ' s ascend-
ing node 18 . 613 yr 

longitude of the Sun ! s  perigee 20 , 940 yr 

As was indicated when. comparing Doodson ' s  and Darwin ' s  work , a very 

important pOint is that these angular variables are referred to the plane 

of the ecliptic--the plane created by the orbital motion of the Earth 

about the Sun . Th�s should be remembered as it will be referred to again 

when discussing the solid-tide contribution . 

3 . 2  Doodson ' s  Harmonic Representation of Tide Height 

Traditionally, as defined by Doodson , the variation in height at tide 

gages has been represented by an amplitude and associated phase for each 

argument number . The argument number is a shorthand notation for repre-

senting the integral coefficients of the six fundamental figures used to 
29 



evaluate the angular argument . 

The argument number is obtained by taking the last five integral 

coefficients and adding the integer 5 to each to create a set of positive 

integers . This new set of six pos·itive digits then constitutes the argu-

ment number. For example, if the angle 

2T - 3s + 4h + p - 2N ' + 2P l  

is being considered , the argument number that represents this frequency 

is 229 . 637. The first three numbers are called the constituent number 

(229 ) . The first two are called the group number (22),  and first number 

is called the species number (2) . Doodson ' s  constituent number and 

the Darwinian symbols can usually be used to represent the same collection 

of maj or frequencies (periods of �ne year or less ) . 

A breakdown of some of the Darwinian symbols and associated Doodson 

argument numbers are given in table 3 .  

Thus , at any tide gage the tide height can be represented by 

h (T) .. 1: c5 cos (n ·j- 1/I  ) (3 . 1) 
n n n 

- - 6 
where n· S .. 1: n . St. n is a vector of the six integers representing . 

i-I 1. . 
all possible combinations of 6i , or what Doodson called the argument 

number . nl is always restricted to positive integers while n2 - n6 can 

take on any positive or negative integer value . 

ated amplitudes and phases at the gage. 

c5 and 1/1 are the associ-n n 

This same procedure can be eXtended to represent amplitude and phase 

over the entire Earth surface (�endersho tt and Hunk, 197n) 

h ($ , A , T) .. 1: c5n (� ' A ) cos [;·S��n($ , A ) ]  
n 
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Dan·.fuian 
Symbol 

Table 3 .--Se1ected Darwinian symbol and Doodson 
argument numbers 

Doodson 
Argument 

Number 

255 . 555 

273. 555 

Period 
(hr) 

12 . 42 

12 . 00 

Description 

Principal lunar semi-diurna1 

Principal solar semi-diurnal 

245 . 655 12 . 66 Larger lunar elliptic semi-diurnal 

275 . 555 11 . 97 Luni-so1ar semi-diurnal 

264 . 455 12 . 19 Smaller lunar elliptic 
165 . 555 23 .93 Luni-so1ar diurnal 

145 . 555 25 . 82 Principal lunar diurnal 

163 . 555 24 . 07 Principal solar diurnal 

135 . 655 26 . 87 Larger lunar elliptic 

Mf 075. 555 13 . 6 6  d Lunar fortnightly 

Mm 065 . 455 27 . 55 d Lunar monthly 

Ssa 057 . 555 188 . 62 d Solar semi-annual 

This is accomplished by expressing (3 . 2) in terms of 

° (q" A ) COS 1P ( q" A)  and 0 ( q" A) sin ;jJ ( q" A)  n n n n 

which are then expressed in series of surface spherical harmonics (Lambeck . 

et a1 . 1974 ) .  Of course , on the continents the 0n (q" A )  must vanish . That 

is , the height for any frequency component n = (nI ,n2 , o  • •  ,n6 ) at any point 

(� , A ) , at time T, will be given as 

h (q" A , T) n 

CD 1 + _ _  + = E E P ftm (sin 41)  [C sin (n '  S+oA+e: 1 ) 
1=0 m=O II. D1m m 

+ C;1m sin (n· B - mA.+e: �m) 1 
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The t = 0, 1 components of (3 . 3) are discussed by Hendershott (1972) .  

3 . 3  Cotidal Charts 

Although the global tide solution is �pressed by a set of coefficients 

+ -
C d and C d, , scanning this list ·of coefficients is unacceptable when n� n� . 

trying to visualize the physical processes . The traditional method of 

presenting any ocean tide model is with a cotidal chart . A typical 

cotidal chart is given in figure 6 .  The physical features of the global 

tide are readily available. For example , there are places where no tidal 

oscillations exist . These points are called amphidromes .  The tidal 

crest will circulate about these amphidromic points with the period of 

the particular tidal component being investigated . On the co tidal chart 

the amphidromes can b� found. where the constant phase lines or cotida1 

lines emanate .  Those lines not originating at the amphidromes are the 

lines of constant amplitude or corange lines . 

3 . 4  Numerical Solutions of Laplace Tide Equations 

It has been tried several times to integrate numerically the Laplace 

tidal equations using modern computer methods (Hendershott , 1972 ;  Bogdanov 

and Magarik , 1967 ; Peker�s and Accad , 1969) . To date , no two solutions 

exhibit close agreement . Large variations in location of amphidromes 

exist and phase differences of hours are common . Table 4 gives the 

principal terms in the spherical harmonic representation of three models 

for the M2 component as given by Lambeck et a1 . (1974) . Notice that the 

amplitudes differ by approximately 25% . Disagreement in the phases is 

also quickly oDserv�d . Iqis is not unexpected , however . It was necessary 

for each investigator to model such characteristics as ocean bo ttom 
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Figure 6 . --A Typical Co t ida l  Chart 



topography , coastal boundaries , internal friction due to the viscosity of 

water , ocean loading and friction in the shallow seas . 

3 . 5  Other Methods for Resolution of Tidal Parameters 

One could also suggest that the solution for the phases and amplitudes 

be obtained from least-squares fits of the spherical harmonic re�resenta-

tions to tide "gage data . This would be the most obvious method if 

sufficient data were available from the open areas of the oceans . To 

date, mostly coastal "tide gage data are available , and the dynamics of 

the tides in these areas is controlled by the coastal boundaries and the 

continental shelf . A few deep sea instrumental results are indeed avail-

able, but not nearly enough to be used to obtain any representation of 

the global tide . Their use has been restricted to a realistic comparison 

of solutions of the Laplace tidal equations . 

Satellite perturbations , on the other hand , do reveal the effect of 

global solid and ocean tides . This phenomenon affords us the opportunity 

" to solve for a limited set of spherical harmonic coefficients without 

having to construct the complicated dynamics required by oceanographers 

when trying numerically to solve the tidal differential equations . 

Table 4 . --Principal coefficients from various 

ocean tide models 

+ + c+ C22 tl2 
Investigator (em) (degree) (c�t 

Pekeris and Accad 4 . 4  340 1 . 4  

Hendershott 5 . 1  316 1 . 2  

Bogdanov and Magarik 4 . 3  325 1 . 7  

34 

+ e 4 2  
(degree) 

170 

115 

116 



3 . 6  Ocean T�de Potential 

Once the tide height is known , then the potential due to this mass of 

water can be obtaine� � This is accomplished by realizing that the tidal 

layer constitutes a very thin film with constant density and varying height 

covering a nearly spherical body . The mass of a small element located at 

latitude , and longitude A on the surface is given by 

dm (IfI , l) • 1: h (IfI , l) p o  a2 coso , d+ dA n n w  0 e ( 3 . 4) 

where the summation is computed over all possible tidal frequencies n .  

Integrating the differential ext ernal potential due t o  each differential 

mass at (IfI, A) over the entire sphere yields a modified or time varying 

. potential due to this tidal layer on any mass at point (r " � ' t A ' )  

4U (r ' , � , , A  ' , T) = G['I1'J.°'l1'/2 
-1(/2 

n.s)  

The denominator in (3 . 5) is just the dis tance from any point (r r t � ' , A ' )  

to the differential mass on th� surface at (� , A ) . y ' is the angle from 

(a , .  t A o )  to the center of the Earth to the point (� ' , � ' , A ' ) . No ting that 
e 

� ' 2-2a r ' cos y ' +a2) -� is the generating function for Legendre polynomials 
e e 

and using the orthogonality relation between Legendre polynomials and 

associated Legendre functions (which occurs when the tide height representa­

tion is multip lied by the Legendre p olynomials generat ed by the expansion 

of the denominator) , equation ( 3 . 5) can now be wri tten (MacRobert 1967 ; 

Menzel 1961) 
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or 
1+1 

6U ' Cr ' . � ' . A ' .r) • 4rrGalw D�m 21�1 (:� PI.mCsin � ' )  • ( 3 . 6) 

The center of mass attraction of the Earth causes the ocean floor to 

depress .  There is also another . deformation due to the attraction on the 

ocean floor upward toward the tidal layer .. The combination of these two 

deformation results in yet another change to the potential . This further 

change due to deformation ·is defined by the load deformation coefficients 

h' and k' �k and MacDonald 1960) . h '  is used to define the geometric n n n 
height change as h '  AU . As pointed out by Munk and MacDonald , the n n 
depression is greater than the uplift . so h '  and k '  are negative as might . n n 
be expected . Thus , the total potential outs ide the Earth ' s' surface can 

now be written 

AU ' (r , � , A) = E (l+k! )  AU n (r , � , A )  
nim "" n""m (3 . 7 ) 

where AU (r , $ , A ) � given in (3 . 6) . The time variable T has been suppressed . 

Numerical values of k� used in this study are taken from Farrell (1972) . 

ki = -0 . 308 
., k4 = -0 . 132 

Lambeck et a1 . (1974). , following the same procedure as Kaula (1969) , have 

expressed equation (3 . 7) in terms of the Keplerian ('equatorial) elements 

of a satellite 
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· .!lU' 
(l+ki) 

21+1 (;i 
� i 

J

R.-m even ± s  n + 
G 1pq �e) . 

. Y�R.mpq 
+ cos ·  R.-m odd 

+ - - + 
where y- - ( t-2p)w· + (t-2p+q)M + men-e ) + n · S + £-n  nR.mpq - - nll.m 

( 3 . R) 

The inclination functions Ftmp ( i) and eccentricity functions Gtpq (e) are 

the same polynomials discussed in Chapter 2 .  

3 . 7  Analytic Approximations of Ocean Tide Perturbations 

As with estimating perturbations due to the geopotential , the pot ential 

toU ' must be substituted into the Lagrangian planetary equations to obtain 

the six firs t-order differential equations o f  the motion . Again , no ting 

that a , e , i  remain nearly constant , the integration of these equations can 

be approximated by assuming the angular variables n , w ,M , S .  to change lin-
1. 

early . in time ( L e . ,· secular rates due to C2 0 are used for n , � ,M) . Now 

the differential equations are easily integrated . For example , the incli-

nation perturbations are given by 

= 

cos i - ] � . 
]R.

-m even _ S1.n + 
m Y�R.mpq 

+ cos 1-m odd 
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• ± 
Notice the presence of the y in the denominator of (3 . 9) . Since the 

• + 
perturbations due to ocean tides are small , small values of y - will be 

required to amplify the perturbations to a detectable level . It is for 

this reason that mean elements (slowly varying) rather than osculating 

elements are analyzed . 

Integration of the node is slightly more complicated . There is the 

expected ' direct ' effect and an indirect effect through the C Z o  secular 

rate assumption . First , the direct effect is found by integration of 

the n equation, as was done .for di/dt . This indirect effect is obtained 

by realizing that the assumed secular rate due to CZQ 

. 
o secular cos i 

will experience small changes due to the low frequency variation in the 

inclination ob tained in equation (3 . 9) . Thus , the indirect effec t  is 

IlG (t ) indirect = 
j. an 

Combining these two effects gives 

.... 
t.o"'" nlmpq 

secular 
at Ili (e ) dt . 

[ ]l-m even ; cos + 
i - ml l Y�lmpq f :; sin q,-m odd 

(3 . 10) 



3 . 8  Long Period Ocean Tide Perturbations 

For a given' �ector ' of ' coeff1c1ents n. only certain values o f  tmpq are · 

admissible to ach:i:eve low.' frequency perturbations (periods longer than one 

day) . R.-2p+q must equal zero to eliminate the mean anomaly . Since B 1  a 

• •  • 

e - s , where 9 is the sidereal rotation, u must equal n l  to cancel out all 

daily variations . m cannot take on negative values so only angular varia­

+ bles y yield long period terms. Since perturbations are proportional to 

e 1 q l , q must equal zero to rule out negligible terms . With q set equal to 

zero , the R. - 2p + q coefficient now reduces to R. - 2p . Thus R. mus t  now 

be even . For semidiurnal terms (nIa2) , values of R. and m to be considered 

are (2 , 2) , 
'
(4 , 2) , (6 , 2) • • • •  For the diurnal tides (nI,,"l) , 1 and m can take 

on the val�es (2 , 1) , (4 , 1) , (6 , 1) • • • •  Only R. - 2 , 4  need be considered .  

To sense the magnitude o f  these ocean tide perturbations , table 5 gives 

amplitude. estimates on the inclination and node elements for several sate1-

lites . One notices at once the large perturbations due to solar tides . 

As was pointed out previous�y , this effect is due to the small values o f  

y which appear in the denominator of the perturbation equations . It is also 

obvious that the perturbation due to the tidal component ,  which is the mos t  

desirable to observe , makes the principal lunar semidiurna1 o r  M2 , in fact , 

one of the most difficul t to resolve . From table 5 it is seen that resolu-

tion of the M2 ocean tide requires an accuracy of 2/100 arc second in the 

node and inclination data. The data of Douglas et al e (1972) were accurate 

to the 1/10 ' �rc second level which enables them to resolve the much larger 

solid-tide perturbations • . 
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"'" 
0 

Sat el l i te 

GEOS-l (1=59 . 4 ° )  

GEOS-2 (i"105 . 80) 

GEOS- 3 ( 1"1 15 . 0� )  

NAVSAT · ( i=89 . 250) 

BE-C (1 .. 4 1 .  2 ° )  

. 
° STARI.ETTF. ( 1=49 . 8  ) 

SEASAT ( i-108 . 00 ) 

LAmmS (1"'110.0°) 

Table 5 . --Pred le ted perturbat ions on sevel'a1 satellites 

Tide 

M2 ° 1  S 2  

Ai Ml Pel'iod �l lin Period M Ml Period 
(arc see) (arc sec ) (days) (arc see) (arc see ) (days) (arc sec ) (arc sec) (days) 

0 . 03 0 . 01 11 . 7  0 . 00 0 . 00 12 . 6  0 . 04 0 . 05 5 5 . 7  

. 04 . 02 15 . 3  . 00 . 01 14 . 4  . 4-3 2 . 70 432 . 3  

. 06 . 03 1 7 . 2  . 00 . 0 1  15 . 2  . 12 . 26 103 . 9  

. 04 . 01 13 . 6  . 00 . 01 1 3 . 6  . 20 . 54 169 . 6  

. 04 . 03 10 . 3  . 01 . 01 1 1 . 8  . 0 3  . 04 34 . 4  

. 04 . 04 10 . 5  . 01 . 01 1 1 . 9  . 0 3  . 05 36 . 5  

. 07 . 0) 16 . 2  . 00 . 0 1  14 . 8  . 21 ! 68 163 . 4  

. 01 . 00 14 . 0  . 00 . 00 1 3 . 8 . 0 5  . 02 2BO . 7  

P I  

IIi . An Period 
(ue see ) (arc sec ) (days) 

0 . 06 0 . 01 85 . 4 

. 28 3 . 33 632 . 4 

. 4 1  2 . 52 48 2 . 1  

. 00 . 31 1 1 5 . 9  

. 07 . 07 5 7 . 9  

. 08 . 03 60 . 8  

2 .  lOB . 3120 . 

•. 02 . 07 221 . 3  



4 �  SOLID TmE 

4 . 1 Tide Raising Potential 

Based on Newton ' s  inverse square theory of gravitation , the attraction 

of the Sun on the Earth is approximately 178 times the attraction of the 

Moon on the Earth . However , the origin of the tidal forces 1s due to the 

difference of attract�ons of the body at any po�nt on the surface with 

the same attraction at the center of mass . On figure 7 ,  the graVitational 

forces (Newtonian attraction) are represented by the solid lines . Differ-

encing the force on the center of mass with the other two forces at the 

surface (so lid lines) yields the origins of the body arid ocean tides (in 

conjunction with the Earth ' s  rotation) represented by the dotted lines . 

Thus , the tidal forces are proportional to the inverse cube of the 

distance to the dis turbing body . It then follows that the lunar tidal 

,force is actually about twice the 'solar tidal force due to the proximity 

of the Moon to the Earth . 

A deformation is created by this attraction which looks like an e11ip-

soid with the maj or axis pointing toward the Moon . 

' The gravitational acceleration of a mass m* at a point r* on mass at 
.... 

the of the Earth can be calculated frOl.l'1 its point r relative to center 

corresponding potential 

CD 

U = Gm* l: 
rn 

PD,' (cos s) (4 . 1) 'n+l n-2 r* 

where cos s 
r.? 

____ , the cosine of the angle from the mass point to 
\:rl 17' 1 

the disturbing body' from the center of the Earth . 
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EARTH 
�- - -

em 

Figure 7 . --Tide Raising Forces Due to the Moon 

As with the loading due to the ocean tides di�cussed in the previous 

chap ter , proportionality constants (called Love numbers) are used to 

represent the height change and associated nonstationary character of . 

the pot ential due to this attrac tion . The deformation in height for the 

degree n at the surface is defined by h U (a ) / g . The modification to . n n e  
the potential at the surface is defined by the potential Love numbers , kn , 

as 

(4 . 2) 

Since the moon is at approximately 60 Earth radii from the Earth , increas-

ing the degree of n results in a damping effect of 1/60 . 
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Applying Dirichlet ' s  theorem allows one to calculate the additional potential 

outside the Earth due to this deformation " �s 

• _ Gm* ;. k (�e\ n (�) n+l 
l1U (F) " r* L

2 
n r*1 r 

" n-
(4 . 3) 

4 . 2  Solid Tide Potential as a Function of Satellit e  Keplerian Elements 

Kaula ( 1969) has reformulated the above in terms of the Keplerian ele-

ments of boOth the disturbing body and the mass as 

CD n n 
�U .. Gm* L E E  

n=2 m=O p-O 
(n-m) ! 
(n+m) ! 

n 
a e 
* n+l a 

F (i) Fnmh {i*) G (e) G h . {e*) cos [ {n-2p) w+{n-2p+q)M nmp npq n J 

- (n-ih) w*- {n-2h+j )M*+m(G-G*) ] 

Ie � 1 1  maO 
m 2 m+O 

(4 . 4 )  

where F(1) and G {e) are the familiar inclination and eccentri�ity polyno-

mials . 

Normally t�e coordinate system in which the above Kepler elements are 

referenced is an Earth equatorial system. However , as previously discussed ,  

the historical representation o f  the ocean tides has been in terms of the 

ecliptic variables of the disturbing body (Moon or Sun) . This is only 

natural since the mean angular rates of the Moon or Sun are rather constant 

and also well known in the ecliptic. system. On the other hand , the sys tem 

in which satellite mean element rates are fairly constant is the Earth 
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equat.orial system. This too is only natural since the maj or perturbing. 

effect on near Earth satellites is due to the Earth ' s  oblateness .  Thus , 

in order to campare in detail the effectsof both solid and fl�id tide 

perturbations, it is necessary to express the disturbing potential in 

terms· of the satellite equatorial elements and the body ' s  ecliptic ele-

ments .  

The mechanics of this transofrmation can be  found in appendix I .  The 

resultant · form of the potential in terms of the equatorial elements of 

the satellite and ecliptic elements of the disturbing body is given bv 

CD n n CD n I k l  
6U = Gm

* L L L L L L n=2 m=O p=O q __ CD k=-n h=O 

�n-m� ; F (i) F I k l h (i
*
) G (e) G h . (e*) n+m . nmp n npq n J 

[ COS 
]m-k e:en 

n-k (-1) sin m-k odd 

.p = (n-2p)w+(n-2p+q)M+mn-(n-2h+j )M
*
-(n-2h)w*- l k l n*+sgn (k) (�-m)�/ 2 • 

(4 . 5) 

It is seen that equation (4 . 5) is very similar to equation (4 . 4) ,  as 

would be expected .  The extra subscript k simply reflects the fact that 

the equatorial rates of the disturbing body do vary depending on the 

alignment in ecliptic space.  For example , the equatorial value of the 

lunar inclination will vary between 18° and. 28° depending on the .location 

of the ecliptic value of the node . The ecliptic inclination of approxi­

mately 50 will sinusoidally vary about the obliquity of the ecliptic (23° ) . 

Likewise, the equatorial' node and perigee rates of the disturbing body 

also vary . The �* 
k scale the .individual frequency terms . n,m, 
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also a convenient procedure to equat e  common frequency components of the 

solid Eart h  and ocean tide potentia1s� Not1c� also the presence of 

multiple solid Earth tide terms for a given ocean tide 'component . For 

example, the conditian' for an M2 term is that the angle 2 (n-n*)-ZM*-2w* 

be present . This can happen for two sets of coefficients 

k - -m - -'! 

However, as is pointed out in appendix I ,  the scale coefficient for k - -m 

is negligible while for k - m the coefficient is close to unity . 

Thus , for each solid tidal component of  the potential there is a corres­

pond�ng ocean t�de potent�1 contr�but1on �th the same angu1ar argument 

and vice versa .  Another important case i s  , when the degree and order 

subscripts of the ocean tide terms are equal (1 - m) . In this situation 

the corresponding solid tide component of same frequency will have 

identical dependence on the satellite orbit . lhat is , the ratio of the 

coefficients of the trigonometic functions of, the solid and ocean tide 

terms will be constant no matter what values of a , e , i  are used . Thus , 

the solid and ocean tide parameters cannot be separated from analysis of 

long period perturbation of orbital elements alone . 

4 . 3  Solid lide Lag 

Since the longest period of free oscillation (Jefferies 19 70) of the 

Earth is slightly less than one hour , we have been able to treat the 

Earth ' s  response to the deforming attraction as a static response .  Because 

of the ane1ast icity of the Earth, the actual deformation or rise and fall 
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in the surface occurs slightly af�er the point on the surface passes under 

the disturbing body . Thus ,  the potential must be modified slightly to 

account for this phenomenon . Following KOzai (1965) , let us assume a 

modified or fictitious position for the disturbing body under which the 

maximum bulge occurs � Figure 8 shows that one must move from point A to 

point B .  First , any lag in the Earth ' s  response will occur in the direc-

tion of the Earth ' s  rotation . Let dt be the lag in time (a positive 

number) . This fictitious position can be represented by a rotation of 

the body ' s  orbital plane about the Earth ' s  rotational axis , an amount 

e�t , and then backing up the satellite in time , an amount dt . This pro-

cedure is accomplished by increasing the nodal crossing , an amount edt , 
. 

and then decreasing the mean anomaly by 'Mdt or 

n
* 

.. n
*
+ 

e
�t f 

_ it  * .* 
Mf .. M - Mdt 

Then a more realistic expression for the disturbing potential can be given 

by substituting the above into equation (4 . 4 )  

au h " nmpq J 

where �mhj 

At 

n a e K (n-m) ! F (i) F (1*) G (e) ( *) a*n+l m (n+m) ! nmp nmh '  npq Gnhj e 

cos [ (n-2p)w+(n-2p+q)M-(n-2h)w
*
-(n-2h+J" )M

*
+m(n-Q

*
)+€ ] R.mhj 

• 
.. - (n-2h+j)M* C1t + melrr 

• 
F:= me�t 
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This approach agrees. with Newton (1968) and Kaula (1969) in that the lag 

angle is proportional to frequency (parwinian assumption} . 

z 

y 

x 

Figure 8 . --Fictitious Lunar Orbit Compensation for Solid Earth Phase Lag 
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5 , ESTIMATION O;F M2 OCEAN TIDE PARAMETERS FROM 
SATELLm OWT �ERTURl!ATIONS 

5 . 1  Discussion of Data 

Two histories of satellite ephermerides have been obtained for studying 

the effects of sol�d and oc�an tides . The first was a set of  osculating 

elements of a U. S .  Navy Navigation satellite 1967-92A obtained ,from 

James G .  Marsh of the NASA' s  Geodynamics Branch , Goddard Space Flight 

Center , Greenbelt ,  Maryland . Mr ,  Marsh obtained the Doppler data for 

this satellite covering a l60-day arc from the U. S. Department of Defense .  

The second satellite for ' which data were made available is the GEOS-3 

satellite . GEOS-3 was launched in early 1975 and was designed specifi­

cally for geodetic investigations . It is ,the first satellite launched 

with an operational radar altimeter ( NASA , 1974) to measure directly 

the surface of the oceans . To be able to utilize the high quality 

altimeter data, the Naval Surface Weapons Center , Dahlgren , Virginia 

tracked GEOS-3 with approximately 40 globally distributed Doppler stations 

on a continual oasis . Very precise orbits were obtained from this track­

ing campaign . Using the mean element conversion program, �hich was created 

for this study , the Defense Mapping Agency Topographic Center , Washington , 

D .  C .  converted a 200-day arc of osculating GEOS-3 data for use in this 

endeavor . 

5 . 2  Analysis of 19.67-92A Satellite 

The gravity model used by Marsh when determining the orD1ts of 1967-92A 

from the Doppler data was the GEM-7 ,mode1 (Wagner et a1 . 1976 ) . The use 

of GEM-7 was an important ,factor in the success of this work . In ' order to 

48 



achieve a precision of 0 . 01 arc seconds , it was necessary to consider 

perturbations due to the entire GEM-7 model (which is complete to 25 , 25) 

and remove about 600 tmpq terms in Kau1a ' s  formulation of geopotentia1 

perturbations . 

Table 6 gives the expected perturbations on 1967-92A due to different 

tidal eomponents . O£ eourse, the M2 tide is the one currently being 

sought . Remembering that the tidal amplitude 1s proportional to the 

period (1DVerse1y proportional to the rate) ,  it is reasonable to expeet 

the solar tides to be larger in amplitude than the lunar ones . For 1967-

92A the node is rather insensitive to either the (2 , 2) or the (4 , 2) tidal 

harmonics . It is for this reason that only the inclination of 1967-92A 

is studied. 

After the 1967-92A mean elements were passed through the ROAD program, 

the differences between the theoretical orbit , which ROAD determined from 

the data, and actual mean elements were output for further analysis . 

The inclination differences were then assumed to have the ocean tide 

pe�turbations and solid tide errors remaining,  since it was uumodeled in 

the ROAD computer runs . Also ,  other unmodeled or mismodeled effects were 

also left behind . Therefore , it was , necessary to extract the ocean tide 

perturbations using standard leas�uares procedures . An amplitude and 

phase were fitted to the inclination residuals at the M2 frequency as 

well as other frequencies which appeared , such as resonant , S2 ' P l  fre­

quencies . A slope and an intercept were also included in the solution 

set to remove left-over secular and very long period effects , such as 

the Kl and K2 tidal effects . A periodic effect of unknown origin , with a 

period equal to approximately 8 days , also had to be included in the 
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solution set . 

Figure 9 shows a typical portion of  the inclination residuals after 

removing all perturbations including solid tide effects with k2 = 0. 30 
o and d - 0 except for the solved-for amplitude and phase at the M2 fre-

quency . Not the M2 tide is clearly discernible . The rms fit to the data 

was 0 . 03 arc seconds . The solution for amplitude and phase at the M2 

frequency implies the following observation equation for the M2 tide : 

" " 
( 5 . 1) 

0 . 99 xlO-2 C+ Sin [a ( t)+e+
22] + 0 . 94 

x 10-2 
C�2 sin [a (t)+e�2] . c m  22 em ... ... 

where a C t) = 2n - '2M* - 2w* - 2n* 

Table 6 . --Perturbati�ns on the inclination of 1967-92A 
satellite due to ocean tides 

Period 
Component Days Amplitude Source 

" 
M2 13 . 6  0 . 04 Hendershott* (1972) 

" 
S2 169 . 6  0 . 17 Bogdanov and Magarik* 

(1967) 
K2 2383 . 0  Unknown 

" 
01 13 . 6  0 . 000 Dietrich* (1944) 

" 
PI 175 . 9  0 . 004 Felsentreger et al . 

" (1976) 
Kl 4766 . 0  0 . 08 Dietrich* (1944) 

*As reported by Lambeck et a1 . (1974) . 
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Figure 9 . --0bserved versus calculated inclinat ion values a t  M2 frequency 
for 1967-92A . 



a Ct) is equal to 1 cycle/13 . s8 days . 

Table 7 gives a comparison of this result with amplitude and phase .  

predicted from four other .numerical M2 tide results . The mean elements 

used to obtain these results are given in table 8 .  

The formal variances of these results were obtained by assuming the 

variance of the data to be equal to the mean squared residual after the 
" 

fit (0 . 03) . Because of the uniqueness of the M2 frequency ( the effect 

of the 01  component 1s negligible on 1967-92A) , little aliasing from 

other sources is likely. Thus , the formal uncertainties obtained are 

reasonably reliable . 

Of course ,  other tidal components can also be obtained from these mean 

elements , but caution is required because of aliasing effects . 

Table 7 . --Amplitude and phase of inclination perturbations 
due to the M2 ocean tide on 1967-91A satellite 

Source Amplitude Phase 

" 
3310 Observed 0 . 038 

" 

3350 Pekeris and Accad 0 . 031 
» 

3220 
Hendersho tt (Model 1)  0 . 040 

" 
2800 Hendershott (Model 2) 0 . 044 

" 
3400 Bogdanov and Magarik 0 . 030 

· 5 . 3  Analysts of. GEOS-3 Satellite 

. GEOS-3 · is an ideal satellite to use for tidal studies . For M2 recovery , 

the inclination perturbation is dominated by the (2 , 2) harmonic and the 
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Table 8 .  Mean Keplerian Elements (l967-92A) 

T I ME A E I lODE PER I GEE " 
( "JD) ("ETERS) (DEGREES) , ( DEGREES) ( DEGREES> ( DEGREES )  
4 1 12 1 . 0  745091 7 . 416 0 . 0053695 19. 24673344 36. 97650111 24 . 761 71357 56. 59259076 
,4 1 12 3 . 0  7450916 . 115 0 . 0052570 19. 24602Zl5 36 . 12450599 1 9 . 52975716 49. 1 1 172932 
4 1 12 S . 0  7450915 . 147 0 . 005 1 401 19. 24562107 36. 67221 1 5 1  1 4 . 1 1910169 4 1 . 7551 4641 
4 1 12 7 . 0  7450915 . 04Z 0 . 0050Z 1 2  19 . Z4561904 36. 5201 5004 1 . 73695363 3 4 . 5065 1 422 
4 1 1Z9 . 0  7450913 . 963 0 . 0041994 19. 246 1 2714 36. 36123110 3 . 1 5397251 2 7 . 31920763 
4 1 13 1 . 0  7450913 . 1 21 0 . 004776Z 19 . 2 4652640 3 6 . 2 1 65 5 1 93 357 . 43614194 20. 40611 73 1  
4 1 133 . 0  7450912 . 345 0 . 0046534 19. 24631 777 36. 06411 1 54 35 1 . 5666 1 15 7  1 3  • 57146940 
4 1 135 . 0  7450911 . 8 4  I 0 . 0045324 19 . 24541167 35 . 91 210413 345 . 53396566 6 . 91 426227 
4 1 13 7 . 0  7450911 . 196 0 . 0044 1 42 89. 24456411 3 5 . 76027840 339 . 3Z53Z836 0 . 4Z8522 1 2  
4 1 139 . 0  745091 0 . 5Z4 0 . 0043007 19. Z4440Z87 3 5 . 60770161 332 . 93320062 354 . 1 2132 1 4 7  
4 1 14 1 . 0  7450910 . 050 0 . 0041931 19 . 24476171 35 .45545 1 16 3Z6 . 35 719922 341 . 0 1 Z09787 
4 1 143 . 0  7450979 . 297 0 . 0040933 19 . Z4516443 35 . 3034 1 585 3 1 9 . 60044007 342 . 07120769 
4 1 145 . 0  7450971 . 410 0 . 004003Z 19 . Z45 1 4 1 77 35 . 1 5 1 47979 3 1 -2 . 6567911 4  336 . 33 1 1 9465 
4 1 147 . 0  7450977 • 735 0 . 0039236 19. 24463201 34 . 99932775 305 . 53045 7 1 2  330 . 761 54 1 72 
4 1 84 9 . 0  7450977 . 05 1  0 . 0031567 19 . 24316303 3 4 . 146171 05 291 . 24330741 325 . 361611 49 
4 1 15 1 . 0  7450976 . 316 0 . 0031037 19. Z4320100 34 . 694169 1 3  290 . 1221122 1 320 . 1 04 1 7111 
4 1 15 3 . 0  7450975 . 417 0 . 0037657 19 . 2429541 7 34 . 54 1 33560 213 . 29377 124 3 1 4 . 95041 475 
4 1 155 . 0  7450974 . 717 0 . 0037431 19.2431 1343 3 4 . 31165344 2 7 5 . 616760'56 309 . 1 76 1 2 1 3 1  
4 1 15 7 . 0  7450973 . 97 1  0 . 0037375 19. 24365504 3 4 . 23622701 261 . 03932025 304 . 14 3 1 0561 
4 1 15 9 . 0  7450973 . 1 66 0 . 0037410 19. 2431 5 1 06 34 . 013971 1 7  260 . 3915 1 6 1 3  299 . 10 4 1 0601 
� 1 I6 1 . 0  7450972 . 361 0 . 0037749 19. 24337556 33 . 93 1 55127 252 . 10699 1 06 294 . 7 1 72 1 456 
4 1 163 . 0  7450971 . 571 0 . 00311 74 19 . 24244006 33 . 77167Z56 245 . 30 1 15636 Z19 . 546216 1 2  
4 1 165 . 0  7450970 . 954 0 . 0031746 19 . 24 1 13541 33 . 62545104 237 . 90443505 2 1 4 . 27045 1 35 
4 1 16 7 . 0  7450970 . 1 32 0 . 0039454 19. Z4200596 33 . 47234561 ZlO . 65711926 271 . 14 5 1 53"9 
4 1 169 . 0  7450969 . 4 1 1 0 . 0040212 19. 24260460 33 . 3 1959141 223 . 51572635 273 . 24591 463 

4 1 17 1 . 0  7450961. 572 0 . 00 4 1 2 1 7  19 . 24295 1 1 9 33 . 1 67 1 2452 2 1 6 . 61990291 267 . 47095641 
4 1 173 . 0  7450961 . 091  0 . 0042241 19 . 2 4211 676 33 . 0 1 451716 209. 916795 1 2  261 . 50423650 
4 1 1 75 . 0  7450967. 513 0 . 0043336 19. 24227439 32 . 161 13592 203 . 46721445 255 . 35542974 
4 1 17 7 . 0  7450967. 1 70 0 . 0044415 19 . 24 1 66190 32 . 70171 1 5 0  1 9 7 . 1 3450'70 249 . 02 161640 
4 1 179 . 0  7450966 . 550 0 . 0045670 19 . 24 1 33077 32 . 55 5 5 31&2 1 9 0 . 9136395" 242 . 50714 1 1 1  
4 , '" . 0  7450965 . 1 1 9  0 . 0046190 19 . 2 4 1 496 1 1  32 . 4024 1 4 1 1  1 1 4 . 99961052 23 5 . 12160132 
4 1 113 . 0  7450965 . 249 0 . 0041 1 1 5  19 . 24206449 32 . 24942551 1 79. 1 7202591 221 . 99370399 
4 1 11 5 . 0  7450964 . 424 0 . 0049347 19 . 2 4266275 32 • 09614095 1 73 . 491 91324 222 . 01 1 491 1 7  
4 1 117 . 0  745096 3 . 151 0 . 0050557 19. 24213 5 1 2  3 1 . 94433296 1 67 . 95572 2 1 9  2 1 4 . 11606566 
4 1 119 . 0  7450963 . 1 51 0 . OOS 1 745 19 . 242376Zl 3 1 . 791 51511 1 6 2 . 54123 5 1 0  207 .63343500 
4 1 191 . 0  7450962 . 773 0 . OOS2197 19 . 24 1 69930 3 1 . 63145407 1 5 7 . 24553134 200 . 2713 1 017 
4 1 193 . 0  7450962 . 306 0 . 00540 1 1  19 . 2 4 1 62341 31 . 41 5 1 2751 1 52 . 04475 1 49 1 9 2 . 12332969 
4 1 195 . 0  7450961 . 562 0 . 0055069 19. 24230245 3 1 . 332 1 6065 1 46 . 931672 1 4  1 1 5  . 27461 460 
4 1 197 . 0  7450960 . 701 0 . 0056064 19 . 2431 945 7 3 1 . 1 7955149 1 4 1 . 923 1 93 1 1 1 77 . 63512 1 50 
4 1 199 . 0  7450960 . 033 0 . OOS6917 19 . 24362340 3 1 . 02 72 1 463 1 36 . 97397750 1 69 . 93 1 1 1315 
4 1 90 1 . 0  7450959. 544 0 . 0057145 19. 24357442 3 0 . 17479097 1 32 . 011577 1 7  1 62 . 1 6373191 
4 1 903 . 0  745095 9 . 017 0 . OOS1622 19 . 2 4325479 30 . 722 1 3297 1 2 7 . 26076741 1 5 4 . 34001662 
4 19OS . 0  7450951 . 629 0 . 0059301 19. 24300209 30 . 56929234 1 2 2 . 47751164 1 46 . 4 7337146 
4 1 907 . 0  7450951 . 1 40 0 . 0059909 19 . 2 43 1 4 1 49 30 . 4 1 6461 1 1  1 1 7 . 74 1 0 1 522 1 31 . 56165929 
4 1 909 . 0  7450957 . 692 0 . 0060420 19. 24379103 30 . 26314047 1 1 3 . 03755531 1 30 . 6 1 77 1 190 
4 1 91 1 . 0 7450957 . 475 0 . 0060141 19 . 2 44 7 1 775 30 . 1 1 1 59731 1 01 . 361 5 1 0 1 7  1 2 2 . 64643271 
4 1 9 1 3 . 0  7450956. 199 0 . 0061 1 60 19. 24543726 29. 95952 1 59 1 03 . 7022 1 1 1 5  1 1 4 . 6512 1 1 52 
4 1 91 5 . 0 7450956 . 491 0 . 0061 371 19 . 24556579 29 . 10 75 4 1 10 99 . 06323176 1 0 6 . 65020 7 1 6  
4 1 91 7 . 0  7450956 .243 0 . 0061 502 19 . 24 5 1 6646 29. 65535127 94 . 43531724 91 . 632346 1 6  
" 91 9 . 0  7450955 . 132 0 . 0061 5 3 1  19 . 240490943 29 . 50214016 19. 11 615561 90 . 60702596 
4 1 92 1 . 0  7450955 . 305 0 . 0061 456 19. 245347640 29. 35033637 15 . 191 &5229 '2 . 51952259 
' 1 923 . 0  745095 4 . 562 0 . 0061 2740 19 . 2 4639415 29 . 1 9135620 10 . 55373675 740 . 51556910 
4 1 925 . 0  7450953 . 966 0 . 0060997 89. 24731 139 29. 04671026 75 . 90402237 66 . 59330199 
4 1 927 . 0  7450953 . 544 0 . 006063 1 19 . 24761625 21. 89521251 71 . 23603296 5 1 . 6 1977920 
4 1929 . 0  745095 3 . 1 30 0 . 00601 72 19.24751121 2 1 . 74361 7 1 5  66 . 54317735 5 0 . 6 7 1 5 7340 
4 1 93 1 . 0  7450952 . 489 0 . 00596 1 1  19 . 247365 1 1  21 . 59 1 90141 61 . 1 1615696 42 . 76004739 
4 1 933 . 0  7450951 . 747 0 . 0051973 19. 247369 1 4  2 1 . '4001019 5 7 . 04790620 3 4 . 19249409 
4 1 935 . 0  745095 1 . 224 0 . 0051244 19 . 2 '779497 21 . 21122276 5 2 . 23666117 2 7 . 06169951 
4 1937 . 0  7450950 . 4 1 3  0 . 00574'59 89 . 24169960 21 . 13667402 4 7 . 379566 1 2  1 9  • 29162646 
4 1 939 . 0  7450949. 146 0 . 0056559 19. 24965401 2 7 . 9&556702 42 . 45136269 1 1 . 571107640 
4 1 94 1 . 0  7'509409 . 1 17 0 . 0055607 19 . 25 0 1 2611 2 7 . 13406 1 1Z6 3 7 . '6732715 3 . 9361 1 2" 
4 1 945 . 0  74509" . 725 0 . 0054519 19.2'991217 2 7 . 683557'7 32 . 39194669 356 . 37 1 95919 
"9405 . 0  7'50''' . 463 0 . 005351 7  19 . 24957656 Z 7 . 53223313 27 . Z5 16 1 052 341 . 1116671 9  
4 1 947 . 0  74509407. 196 0 . 0052397 19.2"51327 2 7 . 31061702 22 . 00671244 341 . 50473121 
4 1 949 . 0  7"094 7 . 040 0 . 0051 239 19. 250293 1 6 2 7 . 22941 743 1 6 . 646400304 334 . 23776055 
4 1 '5 1 . 0  7450946 . 009 0 . 0050052 19 . 2 5 1 30314 2 7 . 07154991 1 I • 16115466 327 . 01115407 
4 1953 . 0  7450944 . 995 0 . 0041145 19 . 2 5 1 96591 26. 92794376 5 . 5 7547150 320. 05677970 
4 1 95 5 . 0  7450943 . 965 0 . 0047630 19 . 252040665 26 . 77740905 359. 14756374 3 1 3 . 1 6075720 
4 1957 . 0  7450943 . 1640 0 . 0046420 19.25 1 74556 26. 62664355 353 . 96004543 306 . 42646759 
4 1 95 9 . 0  7450942 . 041 0 . 0045232 19 . 2 5 1 44333 26 . 47570760 347 . 901296 1 2  299 . 15907272 
" 961 . 0  745094 1 . 2 1 0  0 . 0044075 19 . 2 5 1 43115 26. 32466117 3" .617511 20 293 . 4631 3117 
4 1 963 . 0  7450940 . 415 0 . 0042962 19 . 2 5 1 93779 26 . 1 7379215 335 .29916961 217 .23514531 
4 1 96 5 . 0  7"0939.632 0 . 004 1 909 19. 2527 1 1 1 4  26. 02323725 321 . 73226421 211 . 1 1936605 
' 1 967 . 0  7450931 . 726 0 . 0040'34 19 . 25336945 25 . 17294330 321 .'75 1 7671 275 . 33 3 14474 
4 1969 . 0  745093 7 . 909 0 . 0040055 19.25337433 25 . 72261701 3 1 5 . 033 1 1959 269 . 66303230 
4 1 97 1 . 0  7'5093 7 . 307 0 . 0039271 19 . 25279222 25 . 572 1 0 1 1 2  307 . 92420125 264 . 1 6 1 73'00 
" '73 . 0  7"0936 . 499 0 . 0031622 19. 2522'479 2 5 . 4 2 1 23337 300 . 66203199 251 . 11 6 1 5764 
4 1 975 . 0  7'50935 . 39 1  0 . 003 1 1 01 19 . 25236656 25 . 2703 1 931 293 . 26046094 253 . 61 2402273 
4 1977 . 0  7"0934 . 31 4  0 . 0037745 19. 25299799 25 . 1 1 969774 215 . 74947441 241 . 5 1 963060 
4 1 979 . 0  7450933 . 239 0 . 0037531 19 . 2 5 3619" 2 4 . 96940016 271 . 1 71 1 4131 243 . 495 1 4923 
4 1 91 1 . 0  7"0932 . 335 0 . 0017473 19. 25376112 24 . 1 1 9221 5 1  270 . 56502731 2l1 . 49912"3 
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ncdeisaffected mainly by the (4 , 2) harmonic . The node and inclination data 

were treated in the same manner as 1967-92A. An amplitude and phase at 

the M2 frequency were obtained for each element history. The resulting 

M2 observation equations for GEOS-3 are 

Inclination : 

Node : 

II 
(3 . 99 ± O � 4)xlO-2 sin [aCt) + 3

2
7

0 

± 4°] (5 . 2) 
II " 

= Id!6 xlO

-
2 

C
!

2 sin [aCt) + ei2] - O��
2 

xlO-2C
t

2 sin [a (t)+e

t

2
] 

.. -2 (2 . 73 ± O . 7)xlO cos [a Ct) + 2910 ± 13°] 
" 

(S . 3) 

0 . 24 10-2 c+ [ + 3 38 2+ 
. + = - � X 22  cos a Ct) + e22] - �m xlO- C42 cos [aCt)+e42 ]  

where aCt) • 2n - 2M* - 2w* - 2n* . 
a

Ct) is equal to 1 cycle/l7 . 2  days . 

The node and inclination histories were considered independently . Since 

each of the 100 pairs of inclination and node values was the result of a 

single orbit determination , then it is possible for the element pairs to 

be highly correlated . Three typical correlation coefficients from differ-

ent data reductions have been obtained from the Naval Surface Weapons 

Center (NSWC) , Dahlgren , Virginia 

-0 . 026 

-0 . 039 

-0 . 036 

These correlation coefficients are quite low . Therefore, using the 

inclination and node data as. if they were independent is justified . Unlike 

1967-92A, the node rate on GEOS-3 is not small . Thus , the frequency of 
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perturbations on GEOS-3 of  the many t id.al constituents will not have a 

very long or secular trend . Table 9 gives the expected amplitude and 

associated frequency of  the maj or tidal components .  All these terms were 

included in the least squares adjustment for the M2 tidal components . An 

unknown component with a l2 . 4-day period also had to be included in the 

solut1on set . 

Table 9 . --Perturbations on the inclination and node of  

GEOS-3 satellite due to ocean tides 

Period Amp litud.e 
Component Days Inclination Node Source 

M2 17 . 2 0 �t06 0 !'03 Hendershott* (1972) 

S2 103 . 9  �'l2 �'26 Bogdanov & Magarik 
(196 7) * 

K2 66 . 23 

01 15 . 23 �'004 �'Ol Dietrich* (1944) 

P I 482 . 12 �'4l 2'15 Felsentreger et al e 
(1976) 

Kl 132 . 45 '!07 ':05 Dietrich* (1944) 

* As  given by Lambeck et al e ( 1974)  

The rms of  the fit to the inclination residuals was 0 . 02 arc seconds ; 

. the rms of the fit to the node residuals was 0 . 04 arc second . The fit of 

the node is not expected to be as good as the inclination . During each 

two-day orbital reduction the set of all station longitudes mus t  be modi-

fied for any disturbance in time . UTl correc tions used .in the �ata reductions 

at NSWC - Dahlgren were not available for this study . Figure 10 shows the 
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inclination residuals after removing all perturbations except for the M2 

parameters plotted against ' the recovered M2 signal . The presence of the 

M2 perturbations is obvious . Table lO ' gives a comparison , of the recovered 

M2 amplitude and phase with the predicted values from the available numer-

ical tide models . Table 11 gives the GEOS-3 mean element data used in the 

study. 

5 . 4  Two Satellite Least-Squares Ocean Tide Solution 

The resulting data reductions have made available three M2 observation 

equations for two harmonics - (2 , 2) and (4 , 2) . Since more observation 

equations are available than there are unknowns , and since uncertainties 

are available for eacq observation, a weighted least-squares solution for 

the tidal parameters i,s in order . 

Given a linear relationship between a set of measurements Y and a solu-

tion sta�e x 

T E(nn ) =- r (5 . 4) 

E(n)  - 0 

Then the minimum-variance solution is the least-squares solution 

,x =- (5 . 5) 

The covariance matrices for the measurements r are available from the 

individual data reductions for the amplitude and phase observations at the 

M2 frequency. The actual amplitude and phase solutions were' in terms o f  
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a.mplitude times the sine and cosine of phase angle to avoid non-linearities . 

The measurements corresponding to equat·ion (5 . 4) are given in equations 

(5 . 1) , (5 . 2) ,  and (5 . 3) .  

As previously indicated a value of k2 and lag 0 2  must b e  assumed in order 

to separate the ocean tide parameters . Table lZ gives the results obtained 

when various values of k2 and 0 2  are used . The solutions appear �o be 

reasonable, especially when one considers that no other satellite derived 

M2 tidal parameters have been published to date . 

These estimates are systematically �mal1er than the results obtained from 

numerical solution of Laplace tidal equations presented in table 4 .  The 

quality of the results presented in table 12 can also be judged by how well 

the prediction of the evolution of the mean lunar longitude with these 

estimates matches the observed retardation of the lunar mean motion . This 

comparison is given in chap ter 6 .  

Table 10 . --Amplitude and phase of inclination and node 
perturbations due to the M2 ocean tide on 

GEOS-3 satellite 

Inclination Node 
Source Amplitude Phase Amplitude Phase 

11 

3270 11 
2910 ObservEd 0 . 040 0 . 027 

" 

339 0 " 
35 20 Pekeris and Accad 0 . 051 0 . 030 

3170 " 
2860 Hendershott (Model 1) 0 . 061 0 . 030 

" 

2760 " 
2440 Hendershott (Model 2)  0 . 065 0 . 025 

" 
3280 2900 Bogdanov and Magarik 0 . 050 0 . 049 
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Table 1 1 - Mean 
T illE A E 

(IIJD) (IIETERS) 
4252 5 . 0  72 1 9574 . 616 0 . 0004112 
4252 7 . 0  72 1 9576 . 1 3 7  0 . 000496 1 
42529 . 0  72 1 95 72 . ��9 0 . 0005 0 1 5  
425 1 1 . 0  72 1 95 76 . 1 5 5  0 . 0005016 
4 2 5 1 1 . 0  72 1 95 72 . 071 0 . 0005 164 
42515 . 0  72 1 95 74 . 211 0 . 00052 1 1  
42517 . 0  72 1 9572. 112 0 . 0005309 
42519 . 0  72 1 9� 7 1 . U6 0 . 000531>2 
4254 1 . 0  72 1 9 5 7 1 . 570 0 . 0005459 
425 4 3 . 0  72 1 9569 . 2 5 4  0 . 000552 1 
42545 . 0  721 9"3 . 32 4  0 . 00051>09 
42547 . 0  721 9569 . 026 0 . 00051119 
42549 . 0  72 1 95 7 1 .  715 0 . 0005757 
4255 1 . 0 7219570. 019 0 . 0005157 
425 5 3 . 0  72 1 9569 . 1 91 0 . 0005911 
4 2 5 5 5 . 0  72 1 9 5 7 1 . 021 0 . 0006025 
425 5 7 . 0  721 9566 . 915 0 . 0006091 
425 5 9 . 0  12 1 95 7 0 . 164 0 . 0006116 
4256 1 . 0" 72 1 9566 . 45 3  0 . 0006269 
42563 . 0  72 1 9569 . 202 0 . 0006349 , 
42565 . 0  72 1 9567 .UI 0 . 0006449 
425" . 0  12 1 9566 . 5 74 0 . 00065 1 1  
42569 . 0  72 1 9561 . 2 56 0 . 0006626 
425 7 1 . 0  721 95114 . 73 7  0 . 0006697 
42571 . 0  721 9561 . 924 0 . 0006800 
42515 . 0  72195114 . 691 0 . 0006113 
4 2 5 1 7  . 0  12 19567 . 136 0 . 0006912 
4251 1 . 0  12 1 9565 . 1 3 1  0 . 0007 1 5 1  
42513 . 0  721 9�66 . 5 1 7  0 . 0007259 
42515 . 0  7 2 1 9562 . 952 0 . 0007110 
425 1 7 . 0  721 9566 . 169 0 . 0007411 
42519 . 0  721 9562 . 2 3 5  0 . 00075 1 4  
4259 1 . 0  72 1 9565 . 4 54 0 . 0007605 
42593 . 0  721 9562 . 9 1 0  0 . 0007699 
42595 . 0  72 1 9563 . 1 1 2 0 . 0007716 
4259 7 . 0  72195114 . 3 1 1  0 . 0007171 
42599 . 0  72 1 956 1 . 113 0 . 0007950 
4260 1 . 0  72 1 9565 . 20 1  0 . 000105 1 
4260 1 . 0  72 1 9560 . 710 0 . 0001112 
4260 5 . 0  721 9561 . 903 0 . 000lZZ6 
4260 7 . 0  721956 1 . 110 0 . 0001 1 1 7 
4260 9 . 0  72 1 956 I .  5 0  I 0 . 000140] 
4261 1 .  0 721 9562 . 5 19 0 . 0001504 
4Z6 1 3 . 0  7219559. 219 0 . 0001515 
426 1 5 . 0  72 1 9562 . 99 1  0 . 0001615 
426 1 7 . 0  721955 1 . 3 1 9  0 . 0001763 
4261 9 . 0  721956 1 . 971 0 . 0001151 
4262 1 . 0  72 1 95 5 9 . 025 0 . 0001h5 
426Z l . 0  721'1560 . 05 4  0 . 0009032 
4262 5 . 0  721 9560 . 722 0 . 0009 1 30 
4262 1 . 0  7219551 . 1 76 0 . 0009206 
42629 . 0  72 1 9561 . 490 0 . 000'1;03 
42611 . 0 72 1 95 5 6 . 146 0 . 0009377 
4263 3 . 0  721 9UO . 35 3  0 . 0009471 
42615 . 0  7 2 1 9 5 5 7 . 094 0 . 0009553 
4263 7 . Q  72 1 95 5 7 . 929 0 . 0009641 
42639 . 0  721'155& . 1 50 0 . 0009712 
4264 1 . 0  721'15 5 5 . 314 0 . 00091 1 2  
4264 3 . 0  72 1 95 5 1 . 75 1  0 . 000990'1 
42645 . 0  7219554 . 1 74 0 . 0009990 
42647 . 0  12 1 95 5 1 . 299 0 . 00 1 0011 
42649 . 0  72 1 95 5 4 . 93 0  0 . 00 1 0 1 73 
4265 1 . 0  721 9556 . 446 0 . 00 1 0265 
4265 1 . 0  721'15 5 6 . 201 0 . 00 1 0356 
4265 5 . 0  7219553 . 725 0 . 00 1 0439 
42651 . 0  72 1 95 56 . 66 1  0 . 001 0537 
42659 . 0  721'1552 . 1 5 7  0 . 00 1 06 1 7  
4266 1 . 0  721'1556 . 0 4 1  0 . 00 1 0 7 1 4  
4266 3 . 0  721'1552 . 3 1 9  0 . 00 1 07'13 
42665 . 0  1219553 . 719 0 . 00 1 0111 
42667 . 0  72 1 95 5 3 . 204 0 . 00 1 0972 
42669 . 0  12 1 95 5 1 . 010 0 . 00 1 1 0 5 7  
426 7 1 . 0  721'1554 . 010 0 . 00 1 1 1 55 
42613 . 0  72 1 9549 . 90 3  0 . 001 1 235 
42675 . 0  72 1 95 5 3 . 95 7  0 . 00 1 1 3 3 4  
42671 . 0  7219550 . 017 0 . 00 1 1 4 1 5  
42679 . 0  721'15 5 1 . 113 0 . 00 1 1 5 1 0  
4261 1 . 0  721'155 1 . 069 0 . 00 1 1601 ,  
42Ul . 0  7219549 . 1 7 1  0 . 001 1 U 7  
4261 5 . 0  72195 5 1 . 9 1 2  0 . 00 1 1 711 
42617 . 0  72 1 9 H 7 . 539 0 . 00 1 1 169 
42619 . 0  721 9�5 1 . 499 0 . 00 1 1 969 
4269 1 . 0 71 1 9541 . 1 90 0 . 0012047 
42693 . 0  721'1549 . 2 1 6  0 . 00 1 2 1 4 3  
426'15 . 0  721'1541. 122 0 . 00 1 2211 
42697 . 0  7219546 . 464 0 . 00 1 232 1 
426'1 9 . 0  721 9HI . 195 0 . 00 1 2 4 1 1  
4270 1 . 0  7219544 . 72 1  0 . 00 1 2491 
4 2 70 3 . 0  7219541 . 4 5 1  0 . 00 12595 
42705 . 0  721954 4 . 156 0 . 00 1 2670 
4270 7 . 0  7 2 1 9546 . 349 0 . 0012 769 
42709 . 0  7219544 . 196 0 . 0012155 
4 2 7 1 1 . 0 7219H3 . 679 0 . 00 1 294 1 
4 2 7 1 3 . 0  721'1545 . 967 0 . 00 1 303' 
42 7 1 5 . 0  7219541 . 606 0 . 00 1 3 1 1 3  
42 7 1 1 . 0  7 2 1 95 4 5 . 4" 0 . 0 0 1 3222 
42 7 1 9 . 0  72 1 9HO . 1 1 I  0 . 0 0 1 3291 
4272 1 . 0  72195 4 3 . 316 0 . 00 1 3197 
4272 3 . 0  721'15 4 1 . 47 1  0 . 001 ]471 

Keplerian 
I 

( DEGREES ) 
1 1 4 . 99295425 
1 1 4 . 99299017 
1 1 4 .  99197�2� 
1 1 4 . 99461191 
1 1 4 .  99561104 
1 1 4 . 99 5 72411 
1 1 4 . 9956199 1  
1 1 4 . 99� 1 1911> 
1 1 4 . 99444511 
1 1 4 . 99424 1 1 0  
1 1 4 • 99391 1 04 
1 1 4 . 994553Z3 
1 1 4 . 99499 1 15 
1 1 4 . 99 5 41> 1 26 
1 1 4 . 99527612 
1 1 4 . 99421755 
1 1 4 . 99347471 
1 1 4 . 99241143 
1 1 4 . 9924 1 0 1 1  
1 1 4 . 99232719 
1 1 4 . 99270061 
1 1 4 . 99290526 
1 1 4 . 99266411 
1 1 4 . 99233 1 4 1  
1 1 4 . 99 1 1 1 4 3 5  
1 1 4 . 99029696 
1 1  � .  98911U6 
1 1 4  . 9195 0616 
1 1 4 . 91961300 
1 1 4 . 9191"01 
1 1 4 . 91912932 
1 1 4 . 91165911  
1 1 4 . 91 766943 
1 1 4 . 91 7 1 9724 
1 1 4 . 916&56 1 1  
1 1 4 . 91671245 
1 1 4 . 91 725 1 1 5  
1 1 4 . 91 13 9 5 3 1  
1 1 4 . 98714614 
1 1 4 . 91740563 
1 1 4 . 91700401 
1 1 4 . 91643920 
1 1 4 . 916 1 5 356 
1 1 4 . 91650991 
1 1 4 . 91672 7 1 5  
1 1 4 . 91151 1 9 1  
1 1 4 . 91715321 
1 1 4 . 91&34552 
1 1 4 . 9113 7412 
1 1 4 . 9112 1 167 
1 1 4 . 91 1 1 6 5 1 1 .  
1 1 4 . 9171070 5  
1 1 4 . 91130410 

' 1 1 4 . 91173U7 
1 1 4 . 91910396 
1 1 4 . 99011357 
1 1 4 . 99056190 
1 1 4 . 99053621 
1 1 4 . 91995511 
1 1 4 . 91992265 
1 1 4 . 91956967 
1 1 4 . 91995011 
1 1 4 . 9'1025191 
1 1 4  . 99071 1 1 1  
1 1 4 . 9 9 1 3 3 5 & 1  
1 1 4 . 99 1 1 5735 
1 1 4 . 99017511 
1 1 4  . 9196171 7 
1 1 4 . 91 9 1 1'104 
1 1 4 . 91&91 2 1 1  
1 1 4 . 91929690 
1 1 4 . 919& 5 3 3 2  
1 1 4 . 91'115124 
1 1 4 . 919'13469 
1 1 4 . 91 9 1 0507 
1 1 4 .  '11152222 
1 1 4 . 91756363 
1 1 4 . 9170064 1 
1 1 4 . 91695552 
1 1 4 . 91 7 1 3 1 05 
1 1 4 . 91103172 
1 1.4 . 91& 1 93 4 1  
\ 1 4 . 91 1 1 4155 
1 1 4 . 91720 0 1 4  
1 1 4 . 9&6412]4 
1 1 4 . 91620219 
1 1 4 . 9&6 1 764 1 
1 1 4 . 9&692571 
1 1 4 . 91 710920 
1 1 4 . 91 1 1 0142 
1 1 4 . 91 & 1 9 1 21 
1 1 4 . 91 1 1 3255 
1 1 4 . 91711120 
1 1 4 . 9&705096 
1 1 4 . 91701 1 4 1  
1 1 4 . 917042'11 
1 1 4 . 91&0294 1 
1 1 4 . 91155110 
1 1 4 . 91195 1 42 

Elements 
lODE 

(DEGREES) 
274 . 4Illl3 1 1  
279 . 93171213 
215 . 11499111 
290 . 1 36 1 61]7 
296.21746171 
101 • 71190919 
307 . 1 9041251 
] 1 2 . 64 1 96 1 59 
1 1 1 . 09HZl61 
323. 54412439 
321:99601391 
3 3 4 . 44735744 
119. 19166611 
345 . 149911>05 
150 . 1 0 1 11141 
156. 25255261 

1 . 70360447 
7 . 1 54555 1 6  

1 2 . 60545494 
1 1 . 05637715 
2 3 . 50721037 
2 1 . 95120731 
34 . 40191950 
19 . &5965449 
45 . 3 1 0 06 1 4 1  
50 . 1604 1 229 
56 . 2 1012932 
6 7 . 1 1 202591 
72 . 562505lZ 
7 1 . 0 1 2 103 1 4  
11 . 4621 1 261 
1 1 . 9 1 27 1 1 52 
94 . 36260605 
99 . 1 1 25 7 1 4 7  

1 0 5 . 26268 1 1 4  
1 1 0 . 7 1 217101 
1 1 6 . 1 6 3 1 5011  
1 2 1 . 6 1 327145 
1 2 7 . 06322070 
1 12 . 5 1 291671 
1'3 7 . 9621 I 066 
1 4 3 . 4 12904]3 
1 41 . 16 3 1 9629 
1 5 4 . 3 1 360724 
1 59 . 7639 1339 
165 . 2 1 4 1 0 179 
1 70 . 664 1 7906 
1 76 . 1 1 4 1 9621 
1 1 1 . 56432407 
1 1 7 . 0 1 4 5 1 1 02 
1 92 . 46 5 1 1611 
1 97 . 9 1 60 1 624 
201 . 36706151 
201 . 1 1 100609 
2 1 4 . 26165190 
2 1 9 . 7 1 92 1 1 90 
22 5 . 1 6916256 
2 3 0 . 62079550 
216 . 0 7 1 15924 
241 . 52302169 
246 . 97 4 1  0239 
252. 4250294& 
2 5 7 . 17514331 
263. 32649901 
261 . 7 772 1 1 12 
274 . 22195007 
21'1 . 67190013 
21 5 . 1 2992031 
290 . 5&012211 
296 . 01 1 41204 
301 . 41 1 15294 
306 . 932 1 9026 
1 1 ,2 . 31241 3 3 1  
3 1 7 . 13213716 
3Zl . 2 1 1 1 1257 
121 . 733294 1 5  
1 34 . 1 1335273 
139 . 6 3 322200 
345 . 01101744 
3 5 0 . 53290191 
355 . 9IZ13404 

I .  432760U 
6 . 1 1261 169 

1 2 . 13211021 
17 . 7120 4 1 71 
Zl . 21 1 77229 
2 1 . 61 1 50700 
14 . 1 3 1 4 1 751 
19 . 5 1 1 31736 
45 . 01 1 42701 
5 0 . 4 & 1 41750 
5 5 . 91 1 35120 
6 1 . 1 1 1 21911 
66 . 1 1 125635 
72 . 21 1 47419 
7 1 . 711'11597 
11 . 1 1261151 
1 1 . 61312574 
94 . 01 3 7 1 1 0 1  

S9 

(GEOS-3) 
PER IGEE II 

, (DEGREES) (DEGREES) 
4 1 . 6 1929910 6 5 .  �070 1 412 
47 .001 1 1 4 4 6  1 71 . 27169716 
4 5 . 67 1 52191 210 . 76 0 1 1 5 5 5  
4 1 . 91767199 2 1 . �9I2nl9 
42. 71774795 1 15 . 95201 99 9  
4 1 . 1 1261257 2 4 1 . 7650"50 
39. 921 74652 35 1 . 1l03Z1Z9 
3 1 . 47115 70] 91 . 7]92224l 
17 . 1 7 1 56510 2 06 . 1 9125197 
36 . 0 1 64 1 1 1 0 3 1 3 . 5 1 5 55560 
3 4 . 569061>09 6 1 . 1 Z367614 
3 3 . 56160079 161 . lI5 1 "94 
12. 09562306 275 . 92247717 
3 1  . 1 6074116 23 . 0 1 769116 
29. 19744616 1 1 0 . 44706910 
21. &5059745 2 3 7 . 6 5 5 16090 
27 . 1 1 74 1 612 344 . 15415 1 4 1  
26 . 55940009 92 . 27167 1 3 5  
2 5 . 741"3 1 &  1 99 . 25 5 0 1 0 3 4  
2 4 . 49012201 306 . 61052504 
2 3 . 1403 1 0 4 3  5 3 . 59442345 
22. 59592000 1 60 . 90144077 
2 1 . 7 1 22 1 1 3 &  267. 95642636 
2 0 . 71011711 1 5 . 057291 2 7  
1 9 .  717Z1709 1 22 . 26121114 
1 9 . 0431425 1 229 . 1 2 154919 
1 1 . 9294&4 5 1  1 16 . 4 1 355112 
1 6 . 1 1396701 1 90 . 4910 1 969 
1 5 . 45119532 297 . 3941>10 1 1  
1 4 . 6062 3 5 7 1  4 4  . 4 1 364991 
1 1 . 72 1 99271 1 5 1 . "6109 1 4  
1 3 . 06 1 62217 251 . 29710 1 5 9  
1 2 . 01005925 5 . 50 1 1 0621 
1 1 .  44 1 114026 1 1 2 . 2512 7 1 46 
1 0 . 46 1 70420 2 1 9 . 4 1 243 1 1 7  

9 . 1 3 1 5 0 4 4 1  326 . 2 1 1 1 1 9& 4  
9 . 0 1 790341 71 . 1 9'119619 
I . U77604 1 1 1 0 . 1 6 1 54 1 1 9  
7 . 5100111 1 5  216. 912 1 6955 
6 . 6524 1 00 7  3 4 . 01449447 
6 . 1 2951575 1 4 0 . 719 1 1 1 71 
5 . 2 1 2 3 74 1 0  2 4 7 . 173110 7] 
4 . 6599Z134 3 5 4 . 59'100950 
3. 14&5 4 1 39 1 0 1 .  saU1Z9Z 
3 . 1 4 7101 1 1  201 . 46499 5 & 1  
2 . 52067017 3 1 5 . 26917053 
1 . 10262960 62 . 266030CO 
1 . 2 1 4 1 1 1 9 1 161 . 9]06 7016 
0 . 1 5299262 2 7 5 . 9735'1311 

359 . 15 144915 2 2 . 6 5 0 1 5953 
359 . 04945093 1 2 9 . 63 7 1 2201 
351 . 4 1 607147 216. 45041 1 99 
357 . 11110 1 1'1 3 4 3 . 26546799 
357 . 02 1 71104 '10. 20469170 
356 . 5 34 5 9240 1 96 . 1 1 1 0 5 5 & 3  
355 . 70262613 101 . 90 0 5 1 1 9 7  
35 5 . 1 '1210573 50 . 5'11921&4 
3 5 4 . 40690277 15 7 . 5614 7399 
3 5 1 . 11292007 264 . 32110 3 1 3  
351 . 1 96 1 4093 I I .  1 5190551 
352 . 49 1 0 1 111 1 1 1 . 0411'1695 
3 5 1 . 96 1 92 1 63 224 . 7662 6 1 5 6  
3 5 1 . 1 56910 1 3  1 3 1 . 76445972 
350 . 66055450 71 . 44924646 
349. 19971055 1 & 5 . 40 4 1 7 1 45 
349 . 37340 1 2 1  292 . 1 206 1 960 
341 . 71 1 11 1 2 1  1 I . 9419'17U 
341 . 0 6 1 06 1 1 7  1 4 5 . 12041696 
34 7 . 5 1 1 65009 252 . 56324225 
346. 76154611 3 5 9 . 50949162 
346 . 3091 3412 1 06 . 1 5 706275 
345 . 5&549716 2 1 3 . 07952641 
345 . 07322279 1 1 9 . 71620156 
344 . 42149012 66 . 61111 446, 
3 4 3 . 101612 1 0  1 13 . 4 5 1 4 1 761 
341 . 2104975 1 210 . 1 7 1 3 1 9 1 5  
342 . 5 9049522 2 7 . 062290 1 6  
342 . 1 4420155 1 1 1 . 70414170 
34 1 . 4 145 1 2 1 4  240 . 6 1619641 
340 . 9274 1 19 1  3 4 7 .  322Z13l5 
340 . 29021296 94 . 1 6 1 5 5 719 
339 . 7 1 ] 4 1 70 5  200 . 'I 197'1Z 8 1  
339 . 2 1 306735 307. 6407 3960 
331 . 54&03 701 54 . 5 1 061993 
331 . 09157953 1 6 1 . U:644274 
337 . 40165 0 1 7  261. 05"24159 
336 . 9 4 1 94945 1 4 . 7297506 1 
116 . 33 790401 1 2 1 . 54221461 
335 . 1943025 I 221 . 29349'175 
335 . 29401762 115 . 00 1 25501 
114 . 6569 1 2 4 1  1 1 . 14970786 
334 . 2211 1 74 1  1 11 . 41511352 
1 1 1 . 5&350429 295 . 14494145 
11 1 . 1 5 570012 4 1 . '11 1 1 0180 
332 . 512744'11 1 4 1 . 7 7 1 70 1 82 
332 . 07 0 1 6 Z l 1  2 5 5 . 49196167 
311  . 51652204 2 . 1 9 746060 
310 . '19217426 1 0 9 . 009'1017'1 
330 . 51311570 2 1 5  . 6 3 361186 



Table 12. �ean tide eoeffieieata obtained with 

various· values of solid t�de parameters 

Fixed Adj usted 

k2 + + + + <52 C22 £22 C·ij2 £ 42 (em) . (em) 

0 . 30 0
° 

3 . 23 3310 
. 87 1130 

. 30 . �o 2 . 76 3250 .87  1130 

. 30 10 
2 . 32 3180 

. 87 1130 

. 31 0
0 

3 . 86 3170 
. 98 1100 

. 31 �o 
3 . 46 3110 . 98 1100 

. 31 1° 3 . 11 303
0 . 98 1100 
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6 .  Lt1&\R ORBIT EVOLUTION 

Analysis of ancient lunar eclipse and modern transit data has revealed 

a secular decay in the rate of change of the mean longitude of the· Moon 

or equivalently a secular increase in the lunar orbital period.  Any 

:::::-::n:: ::: :::::d

P::i::':: ::fl;:t
r:�3::a::

crea
.
e
)i� 

th:
i
:'�:::j

or 

r Earth . �ou IJ 
total orbital energy is equal tO �.�rth + �on) /2aMoon l the increase 

in � means that on the Earth is transferring energy into the orbital 

motion of the Moon. This increase is accompanied by a decrease in the 

rotation rate of the Earth as well as energy loss due to the friction in 

the oceans and solid deformation. This orbital evolution of the Moon has 

been studied by Kaula (1969) and Lambeck (1975 ) . Kaula investigated the 

effects of solid tides and Lambeck examined both solid and oceanic effects . 

The mean motion of any orbit is given by 

. � [ G ( M + msat )� N ... 3 
a 

(6 . 1) 

where M is Earth mass . Any secular decay in the sace1lite's: mean motion 

(o� increase in orbital energy) can be found by diff erentiating (6 . 1) · 

with respect to time 

• 3 N • 
N ... - 2' (a) a .  (6 . 2) 

The next step is to substitute the appropriate solid or ocean potential 

into Lagrange planetary equations to obtain an expression for a .  From 

chapter 4 . 0 , the potential for the lunar solid tide attraction is 
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.. Gm* "� AU solid a * L.J 
impqhj 

with u .. { R.-2p ) w+{R.-2p+q)M+mG 

u* ::I "O ,-Zh)IIl*+(t':"Zh+j )M*-+mn* 

(g.-m) ! 
Ie F 

R. 
(i)  G ( )  ( R.+m) ! m mp R.pq e 

(6 . 3) 

2 aAU 
Remembering that a .. 

Na aM ' equation (6 . 3) can be differentiated and then 

substituted into (.6 . 2) .  It is at this point that tpe satellite being 

studied is chosen to be the Moon . Thus , the Keplerian elements of. the 

disturbing body (Moon) and the Keplerian elements of the satellite have 

the same value . That is , the Moon causes a deformation in the distribu-

tion of mass in the Earth which in turn affects the evolution of the lunar 

orbit . Now that the orbital elements of the satellite and the disturbing 
. . 

body are the same , the angular argument used in the a or N equation is 

(2h-j-2p+q)M*+(2h-2p) w* + £
R.mhj . 

Secular terms will occur when this " angular argument contains only the 

constant £�j . Thus , for secular solid tidal decay , p must equal h , and 

q" must " equal j .  da/dt is then given b!'" 

. 
a .. 
solid 

B .. 
R.m 

2 B R.m [F R.mh (1*) GR.hj (e*) ] 2 

m R. a G • k �l+l 

[G(M+m*)a] � 
e ( R.-m) ! 

( R.+m) ! 

( R.-2h+j ) sin £R.mhj 

(6 . 4 )  

Ie m 

Combining all possible combinations of lmpqhj , which would yield secular 

da/dt terms , the numerical representation for the second degree contribution 
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of solid tides to the orbital evolution of the moon is given as 

NSOlid ··-1040 k2 sin 2�2  arc seconds/century2 

where 02  is the phase lag associated with the second degree harmonic . 

Similarly the ocean tide potential 

41TGa2 
t\U _ __ ;;;.e 

n a I: 
R.mpq 

(l+k
�
) 

2R.+1 
[ s i!-m + even 

YR.mpq -cos -m odd 

(6 . 5)  

can be used to model the secular acceleration of  the lunar mean motion 

due to ocean tides . As with the solid tide , this 1s accomplished by 

substituting equation (6 . 5) into Lagrange planetary equations and setting 

. the satell�te ·elements equal to the lunar values . The equation of 

interest is the da/dt equation 

B '  = 
nR.mpq 

3GM 

rcosl R.-m even 
LSinJ R.-m odd 

[G (M+m*)a] � 

where p is mean density of the Earth 

2. 

(6 . 6) 

The fourth-degree terms will experience a reduction of (1/60) compared to 

the second-degree terms . Thus , only the second degree terms need be 

considered . By far the dominant tide is the lunar M2. (solar terms will 
. 

be periodic) .  Lambeck obtains contributions to � due to the N2 and moon 
0 1  ocean tide components of -4 . 4  arc seconds/century2 which will be used 
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here . No other ocean tide components affect the lunar mean motion in a 

secular manner . Values of lunar elements can be inserted into ( 6 ."6)  with 

lmpq = 2200 for the H2 components to give 

N . =-8 . 21 C+ co ( + ) arc seconds 
ocean M2 

2 2  s E 22  century t 

The combined solid and ocean contributions yield the observation 

equation 

. + + Ntotal = [-1040 k2 sin (20 2) -8 . 21 C2 2  Cos ( € 22) 

arc seconds 
-4 . 4 (N�+O l ) ] 2 , century 

(6 . 7 ) 

(6 . 8 )  

Muller (1976) has performed an extensive analysis of ancient eclipses and 

modern transit data (Morrison and Ward 1976) and obtains -27 . 2 ± 1 . 7  arc 

2 . 
seconds/century for the lunar N .  The Morrison and �.Jard result is 

-26 .0 !: 2 . 0  arc seconds/century2 from transits of �ercury . Lambeck evalu-
. 

ated the lunar N M using the mean of three numerical tide models 
. ocean �. 2 

and obtained -35 ± 4 arc seconds/century
2

. At that time the accepted 

• 2 value of N was in the vicinity of -35 to -40 arc seconds/century . 

Lambeck ' s result seemed to agree with those recent values ; he concluded 

with the following : 

"We conclude with confidence that if not all , at least a very maj or 

part of the secular change in the Moon ' s  mean longitude , is caused by 

dissipation of tidal energy in the oceans , and we do not have to invoke 

significant energy sinks in the Earth ' s  mantle or core . " 

64 



In light of the recent evaluations of lunar N, the value of -35 ± 4 arc , , 
2 

seconds/century would imply that the solid phase lag would be following 

rather than leading the Moon. 
o ' 

Using . 30 and 0 as nominal values of k2 and 02 ' respectively and the 

ocean tide values calculated in this study from 1967-92A and GEOS-3 perturba­

tions , the value of N is - 27 . 4  ± 3 arc seconds/century 2, a value which is 

in very good agreement with Muller , and Morrison and Ward . This result can 

be used also to argue that the effect of the solid tide must be small . 

Since the satellite-derived values of ocean tide parameters depend on what 

solid-tide values are used , table 13 gives the different solutions when the 
. 

k2 and lag angle are varied . Notice the consistency of Ntotal for various 

combinations of k2 and 02 . It is seen that even if the lag angle is 

changed by 0 . 5° , the resulting N changes by only 1 arc' second/century2 . 

J.  T. Kuo of Lamont-Doherty Geological Obseryatory (1977)  analyzed data 

from a network of tidal gravimeters placed along a parallel of latitude 

across the United States and determined that the phase lag must be less 
o than 1 . 0  --another result which is in harmony with the above quoted values . 

, Table 13 . --Lunar N 

N °2 + + Kl ell  Ell  
(cm) arc 

0 . 30 00 3 . 2  3280 

. 30 �o 2 . 8  325 

' . 31 00 3 . 9  317 

. 31 �o, 3 . 5  311 

results with various values of k2. and lag 

solid ' 2 
secl (100 yr) 

0 

-5 . 4 

0 

-5 . 6 
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. 
N ocean l arc sec/ (100 yr) 

-27 . 4 , 

-22 . 9  

-2i . 3  

-22 . 7  

. 
N total 

arc sec/ ClOO yr ) l 

-27 . 4  

-28 . 4  

-27 . 3  

-28 . 3  



The explanation for the larger influence of the ocean tide compared to 

the solid tide on the evolution of the mean longitude of the Moon can be 

obtained by examining the phase angles of the solid and ocean contribu-

tions . As discussed earlier, the solid bulge of the Earth , due to the 

° attractio� of - the Moon, will lead the Moon "by approximately 1 . 0
" 

or less . 

ff " 1 d h i f d + f 90° , The e ective ea due to t e oceans s oun by subtracting £2 2  rom 
. 

so that the N
total given in equation (6 . 8) is expressed in terms of 2 sine 

functions . Since the angular argument is proportional to frequency 

(Darwinian assumption discussed in chapter 4) the lead due to oceans is 

oceans 
°22 

Also , the degree and order harmonic ( 2 , 2) physically represents an 

equatorial ellipticity or the equivalent ocean tide bulge . Thus , even 

though the direct attraction of the ocean tide is much smaller than the 

solid tide , the resulting torque of the oceans generated" by the large 

55° lead actually dominates " the behavior of the small secular decay in 

the mean motion of the Moon.  
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APPENDIX I .--SOLID TIDE POTENTIAL IN TERMS OF DISTURBING 

BODY ' S  ECLIPTIC ELEMENTS 

Transforming from the equatorial coordinate system to the ecliptic can 

be accomplished in two ways . The first would be the obvious technique of 

converting the three coordinate dependent variables node , perigee , and 

inclination of the body into ecliptic elements . The second technique , 

and the one that is used here , is to rotate' the surface harmonic terms 

due to the disturbing body from the equatorial to the ecliptic system . 

This method is not only direct , but also yields the potential in a form 

that allows easy analysis of the fundamental frequencies . Returning to 

Kaula (1962) , Qne finds that 

£lU (r) = Gm: i: k (
a
� fa;+l 

p (cos S)  r n=2 n r �J \r n 

where starred quantities refer to the disturbing body , unstarred 

quantities refer to the satellite, and S is the angle from disturbing body 

to center of the Earth to. the satellite , can be expressed as 

6U n k [p (sin 6 )  P (sin O*)+2l: (n-m) ! P (sin 0 )  
n n n 

I 
(n+m) ! nm m= 

P (sin 0* ) (cos ma cos ma* + sin ma sin ma*) ]  nm 

( L I) 

where P is the associated Legendre function , 0 and 6* are declination 
run 

of satellite and body , respectively ; and � and �* are right ascension of 

satellite and body , respectively . 

Since both (a , o ) and (a* , o*) are in an Earth-equatorial system,  it is 

necessary only to transform the starred terms to · the ecliptic . This 

is a rather simple transformation , since both the ecliptfc and equatorial 
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systems have the x-axis in common . Let £ be the angle of rotation about " 

the x-axis from the equatorial "plane to the ecliptic system (obliquity of 

the ecliptic) . Then any vector P whose components are known in the 
ec 

ecliptic system can be expressed in the equatorial system by the matrix 

relation 

where 

Let 

P = A P 
e ec 

1 o o 
A = 0 cos t -sin £ 

o sin e: cos e: 

(1 . 2 )  

b e  a surface harmonic of degree n and order m .  Alternatively ( I . 2) can be 

written as y (� ", >. )  = P (sincjl) [cos "m>. + i sin mI.] nm nm 

= yR ( � , A )  + yI ( � , A) i 
nm run 

(1 . 3) 

where R and I stand for real and imaginary componentS , respectively . ( 1 . 1 )  

can now be rewritten as 

Courant and Hilbert ( 1953) have provided the necessary formulas for 

expressing any surface harmonic in a desired coo rdinate system as the 

linear combinat ion of surface harmonics in another sys tem 
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Y ( $ , A )  nm 
;.. (n-r) ! (m, r) = LJ (n-m) ! S2n (p , a , T)  Ynr (� " A ' ) 
r=-n (1 . 5) 

(m, r) 1 m+r .  r-m S2n (p , a , T )  = "(n+r) ! exp [-i (m+r)p] exp [-i (r-m)a]  (cos T ) (sl.n T) . 

where p ,  a ,  T depend on the rotation . For the particular rotation at 

hand , the proper set of arguments are p=O ,  a=w/2 ,  T=€ /2 .  (1 . 5) can now 

be rewritten so that any linear factor on the right is expressed as a 

product of a scale factor and rotation factor 
n 

YnR. ($ ,  A)  = I: 1/InR.t(€ /2)  exp [-i{r-�)w/2] Ynr(� ' , A ' ) 
r=-n 

( 1 . 6 )  

The" 1/1 values are rather easy t o  compute using equation (1 . 5) . As nR.r 
one might expect , the largest contribution" occurs when r = 1 . For example . 

the important Y22 ($ , A ) term would be given as 

P22 (sin$) exp (i2A) = . 17xlO -2 
P22 (sin$ ' ) exp (-2iA ' ) 

-2 + . 33xlO exp (3wi/2) P2 1 (sin$ ' ) exp (-iA ' ) 

- . 47 P20 (sin$ ' ) 

· - . 76 exp (wi/2) P2 1 (sin$ ' ) exp (iA ' ) 

+. 92 P22 (sincjl ' ) exp (2iA ' )  
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where advantage has been taken of the relation 

P n (X) = (�l) i. (n-i.) ! P ( )  n ,-JI. (n+i.) ! n, R. x • 

Substituting (I . 6) into (I . l) and carrying on in the same fashion as 

Kaula did yields results similar to his , 

(I . 7) 

(n-m) ! F (i) F ( . *) G ( )  ( * (n+m) ! amp n l k l h  1 npq e Gnhj e ) 
[ ]I:l-k even cos 

p 
n-k 

(-1) sin' Q_k odd 

p = (n-2p)w+(n-2p+q)M+mn- (n-2h+j )M*-(n-2h)w*- l k l n*+sgn (k) (k-m) �/2  

1P*  = nmk 

(_l)K (n- lIt ! ) I  �nmk (n+ l k l ) ! if k < 0 

if k > 0 

and now the starred variables refer to the ecliptic elements of the 

disturbing body . 
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