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OF A SYMMETRIC MATRIX 

Erwin Schmid 
National Geodetic Survey 
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ABSTRACT. A method is outlined and illustrated by an example to compute itera­
tively both the eigenvalues and the corresponding matrix of eigenvectors simul­
taneously. The program is applicable to symmetric matrices with real eigenvalues 
and, in particular, to the positive definite matrices of least-squares theory. A high 
degree of precision, limited only by the capacity of the computer, is attainable 
with relatively few iterations that approach the result exponentially. 

In a previous paper (Schmid 1(71) a method wa� 
proposed for computing, by iteration, the orthogonal 
matrix of unit eigenvectors, the so-called modal matrix, 
of a symmetric matrix with real coefficients (entries) 
together with the corresponding set of eigenvalues. The 
present paper reports the effort to implement the theory 
with computational resuits, as justification for claims made 
for the efficiency and accuracy of the method. During 
this investigation a number of effective refinements in 
the theory were found for the case of symmetric matrices. 
These I have not been able to generalize sufficiently to 
apply effectively to nonsymmetric matrices. The follow­
ing wiII therefore be restricted to symmetric matrices, 
which are of paramount importance in the theory of 
least squares. 

This restriction makes it feasible to simplify some­
what the notation used previously. For this reason and 
for making this presentation self-sufficient, relevant sec­
tions of the previous paper will be repeated. 

Essentially, the theory is based on a theorem, the 
validity of which depends on the convergence of the 
Left-Right Transformations (LRT) of Rutishauser 
(1958) and their identity with the convergents developed 

here. 
Given is a symmetric matrix N (= NT) with real co­

efficients that, for the present, we will assume positive defi­
nite such as the matrix of the normal equations in 
least-squares theory. A product of the type TNT-I is 
known as a similarity transformation of N and has 
the same eigenvalues, or characteristic roots, as N. It 
has been proved that for such N there exists an ortho­
gonal matrix X, i.e., one for which XT = X -" such that 

XNX-I =XNXT=D, 
where D is a diagonal matrix whose elements are the 
eigenvalues of the matrix N. The orthogonal matrix X 
(or its transpose XT) is designated the modal matrix 
and its rows (columns) are the unit eigenvectors as-
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sociated with the corresponding ci!!,envalues in D. The 
theorem, cited above, �n II hil'h t he proposed algorithm 
is based now reads: 

Theorem A: The matrix C -I Nil where N"II = C CT II II n' 
converges to the modal matrix X as n increases. 

The product of CII C,l,' is the familiar Cholesky fac­
torization of the symmetric matrix 1\'11 into the lower 
triangular matrix (LTM) CII times its transpose C�" 
the corresponding upper triangular matrix (1 ;T\1). The 
inversion of the triangular matrix CII needed to form 
the product C-1 N� X is a relatively simple and II� II 
straightforward process that is at the root of all matrix 
inversions based on the Gauss algorithm. The correspond­
ing convergent Nil to the diagonal matrix D is then 

N =X NXT 11 11 11' (1) 
and the magnitude of the off-diagonal terms of this 
convergent (1) is the criterion for the sufficiency of 
the iteration. 

To show the orthogonality of C-�, Nil, we form the 
product 

X XT= (C-I Nil)  (C-I NII)T=C-I N211(C-l)T= 11 Il II Il 11 II 
C-:,CII C;:(C�)-l=I, 

substituting C CT for N211 and making use of the sym-II Il 
metry of Nil. The transpose XT is therefore X-I of X II II � 
and hence XII =C-�, Nn is orthogonal. 

A superior method of computing XII follows from the 
following considerations. Interchanging the factors of 

Wn=C CT (2) II n 
forms the product CT C , the LRT of C CT. Factor-II II II II 
ing this product by the Cholesky algorithm we obtain 

so that 

or 

CT C =K KT n 11 II 11' 

N In = N2n N'n = C CT C CT = C K KT CT II 11 II n II II II 11 

Nln= (C K ) (C K )T. n 11 11 n (4) 



Since Cn and Kn are by definition LTM's, their product 
is an LTM and (4) is consequently the Cholesky fac­
torization of Nln, which is unique_ From the definition 
(2), Nln = C"1i C�1i and therefore, 

Cen =CnKn' (5) 
The corresponding convergent to the modal matrix is 

X =C'-N2n=C-IC CT=K-'C-'C Cr or 2n :l1l 2n n n n n 11 11 

X =K-' CT . 2n n n (6) 

A simple iterative procedure for computing Cn, and 
hence Kn and X2u, that is remarkably free of error ac­
cumulation is suggested by (5) and (61. 

The Cholesky factorization of the given matrix N in 
our notation is N = C CT . An LRT and a second fac· 1!� Jh 
torization gives C�" C,/" =K % K�". The multiplication 
C % K% = C, completes the first iterative cycle. Factoring 

the product CT C into K KT yields C K = C etc I '  I I I I 2 ., 

the index n of C, being doubled at each step. Thus after 
i + 1 iterations we ohtain Cn and Kn with n 2i. 

This procedure is superior to raising N to the 2n1h 
power hy successive exponentiation as implied in the 
original paper. A well-known property of the LRT is that 
it tends to rearrange the rows and columns of the trans­
formed matrix such that the diagonal terms, and even­
tually the eigenvalues, are in progressive decreasing 
order. One consequence of this is that a considerably 
higher indexed c.. can be obtained by the iterative ap­
proach of the previous paragraph than by straightfor­
ward Cholesky factorization of N2n. In fact, with a prop­
erly scaled matrix, the only limitation to this iterative 
process appears to be the limitation of the electronic 
computer in floating point mode with respect to the size 
of the exponents of 10. The exponents of the elements of 
the Cn and Kn matrices increase numerically with in­
creasing n and eventually bring the computation to a 
halt. 

Further improvement in precision results from the use 
of X, from (6) rather than from X = C -1 Nn s])ecified 211 11 11 
in theorem A. Not only is the index of the convergent re-
sulting from the use of the matrix (6) twice as large 
but, by the nature of its formation, this formula produces 
an orthogonal matrix almost precisely, as the numerical 
example below will indicate. For a similarity trans­
formation with an orthogonal matrix this fact is of 
basic importance. 

An electronic computer operating in floating point 
mode has an upper and lower limit to the magnitude of 
exponents it can handle. The small desk computer used 
in the computation of the numerical example, for in­
stance, has a rang,e of numbers between 10 -11l1l and 10'00 

in floating point with 14 significant digits. In order to 
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keep the elements of the matrix N211 within these limits 
for maximum n, it is expedient to scale N so that its de­
terminant det N = 1. For an m X m matrix N, this can be 
accomplished by dividing each element of the given N 
by the mth root of the determinantal value, \,hich is de­
termined in the first operation of the program, the 
Cholesky factorization of N into C ,Cr The deter-1:, 1., 

minant of each of the factors C" and C'�', is the product 

of the diagonal terms of either 
-
of these 

-
t,,-o triangular 

matrices, and the determinant of N is the square of this 
product. Let this divisor of the elements of N he k and 
the resulting matrix be N*, so that det T\-::-= 1. Then 

the matrix on the right beill;! the dia;!onal matrix]) with 
each element divided hy k. The ei;!Pllvalucs of N* are 
thus l/k times those of N and the eigenvectors are un­
affected. 

Another useful device in the applicatioll 0 f thi's al;!o­
rithm is to incrcase or decrease each eigenvalue of N 
hy a scalar k simply by adding or subtracting k to each 
diagonal term of N. This transformation also does not 
affect the eigenvectors, as is seen from the identity 

X(N + kI I XT=XNXT + XkIXT =  D+ kI, 

since XXT = I and the scalar k is permutahle in matrix 
multiplication. If the given 1'\ is not positive definite, i.e., 
if it has one or more ne;!ative or zero eigenvalues, the 
ordinary Cholesky factorization with real numbers will 
fail because some reduced diagonal term becomes negative 
or zero. By adding a sufficiently large constant to each 
diagonal term of the given matrix N, a solution for the 
modal matrix and eigenvalues is obtained which differs 
from the solution for the given matrix only in that all 
eigenvalues are positive and too large by this constant. 
This transformation is also effective in the case of a 
matrix in which the two smallest eigenvalues are very 
nearly alike. The convergence for such matrices is 
notoriously slow, a fact which is known from the theory 
of LRT's, although exactly equal ei;!envalues create no 
problem whatever in the algorithm. Dy subtracting from 
all the diagonal terms of the given matrix a quantity 
equal to the leading common digits of these nearly equal 
eigenvalues, a matrix is produced that converges normal­
ly. The digits in question are obtained, of course, from 
the preliminary computation that has failed to converge 
sufficiently. 

Another application of this device is for a matrix, all 
of whose eigenvalues are known to exceed a large num­
ber, say 1,000. In such cases it is advisable to subtract 
1,000 from all diagonal terms of the given matrix and 
thus gain 3 additional significant digits in the result. 



However, the number subtracted must not be too large, 
i.e., too close to the smallest eigenvalue, because in that 
case the resulting matrix approaehes singularity and the 
algorithm becomes unstable. In fact, if the matrix as 
given is of this nature, it may be neeessary to add a 
constant to the diagonal terms to obtain a sufTtciently 
precise resull. One indication of this situation, i.e., that 
the ratio between the largest and smallest eigenvalue is 
exeessive for the computer in question, is that the num-( 4.30S1S0068.38M-Dl 

-8.214200705660567-01 

3.W7020162702n-01 

1.0500 I 082680715-01 

05.068054617[10517-01 

5.5401755026016-01 

;1. ()82c1530605080-0 1 

·1.2221218200.361-01 

ber of iterations the computer can earry out without 
overflowing becomes small. 

Before going into further theorelical questions, we 
show some results of a numerical computation which was 
carried out on a programmable electronic desk cal­
culator. In order to have a running check on the results, 
the symmetric matrix N to be tesled was constructed 
from the formula N = XT DX, where X is the arbitrary 
orthogonal ·1 X 11 matrix 

-6.561.007600125:3-01 

-6.825280566371::18-02 

4.1 138783510257-01 

6.266132:�()26501-01 

1.102151:21161 :12-01 ) 
-().:I:I%l:lWl7B51O-02 

-7.5:17:12:115B1S7g-01 

6.:\521:12g2(J:)0BO-0l 

and D is the diagonal matrix ]) (·1, 0, 16, 25). The resulting symmetric input matrix N is then ( 0.15 12UXI5B7g07 ()() 

(l.5726 I 2:: 1 :\o()5()-() 1 

::.()70:1()02716()()2 00 

-:IJ) 117:3116616:mO-O I 

6.572612:1 130050-01 

1.111H0263-1682g 01 

7.31750:10001285 00 

1.771731632:1321 00 

The first step in the program is the Cholesky fact­
orization of N into C,:, 

e,l:,. The product of the diagonal 

terms of these two trIang�lar matriees gives the values 
of det N. From the construetion we know in this par­
tieular instance that det N is ,j. X 9 X 16 X 25 = 11,11.00, 

i.e., the product of the diagonal entries of D, the imposed 
eigenvalues of N. Dividing eaeh element of N by 11-100',\ 
we get the matrix N* whose determinant = 1, and which 
now replaces N in our computations. This divisor is 
stored and eventually used as a multiplier for the eigen­
values of N* to give the eorresponding values of N. 

The computer repeats this eycle eight times: 

1) multiplying e1' by C and factoring the pro duet 
11 It 

CT C into K KT 
11 11 II 11 ( OWJ910326307 

-0.318702046270 

0.82112()075667 

0.-139515006836 

and for N 128 ( 2�1. 99999')<)09990 

0.422242132901 

-0.308215306051 

-0.5510175.50262 

0.596805161790 

0.0000000000005 

IS .000090000996 

To produce this output requires only one inversion 
of a triangular matrix and only one modal matrix and 
one eonvergent, i.e., the fillal ones, XC" and N",,, need 
to be computed. / 

Comparison of the output XI"k with the X used ini­
tially to form N shows that the rows are in reverse 

3 

:1.070:10027·16()62 00 

7.:1175030<)012[15 ()O 

L1.12(J126781752 01 

4.6125167561151 ()O 

2) multiplying CII by K" to obtain with (05) the 

quantity C"" for step (11 of the next iteration, until 
the entries of the matrix e,l: C 

1
1 get too large for the 

computer to handle. 

Having found C, and KII for maximum n, all that 
remains to be done is to invert the J ,TM K 11 and form 
K -I CT = X in accordance with (6) and the con-

n ;\  �Jl 
vergent N"I1 = Xel1 N X��" The number of iterations 

(eight) appears to he typical for this particular pro­
gram and computer and permits Ihe computation of 

N = X N XT the 128th conver<;cnt to the diao-onal 
l:.!S 12'-; 1:!<"" r. b 

matrix of eigeIlYalues D. 

The results to 12 decimals for X1"k are 

0.626613239266 O.63S21.12n2().10 ) -0.-114.13783S102 0.7.537:-12:11;)n 16 

0.068252g566:)7 O.09:);I()5gg2078 

-0.656190760016 0.110215821161 

-0.00000000021 -0,0000000000" ) 0.000000000002 -0.000000000002 

0.000000000030 -0.0000000000051 

1.000000000023 

order, a consequence of the LRT's characteristic rear­
rangement of eigenvalues in order of descending magni­
tudes. With the use of permutation matrices it can be 
shown that a permutation of the rows of X and a similar 
permutation of the rows and columns of the D �trix 
produce an orthogonal matrix X and diagonal D re-



spectively, such that the resulting N XT D X is iden­
tical with N = X'I'DX. It should also be noted that some 
of the eigenvectors have changed sign. This, too, is a 
consequence of the rearrangement of the eigenvalues. 

The orthogonality of the X"" matrix computed with 
(6) can be verified from the product X XT = 1. Unlike 
the algorithm suggested in Schmid (1071 J, it needs no 
correction in general, the product I being diagonal to 
within practically the last decimal on the computer. This 
is also apparent from the terms of the convergent N, "8, 

demonstrating not only the orthogonality of X'2R but also 
its validity as a convergent to the modal matrix. 

A significant improvement in the convergence and pre­
cision of the result above can be obtained by permuting 
the rows and columns of the input symmetric N so as 
to put its diagonal terms in descending order of magni­
tude from top to bottom. It will then be necessary to 
permute the columns of the output matrix X correspond­
ingly in order to associate the individual eigenvectors 
with their proper eigenvalues. 

Returning now to the theoretical aspects, we continue 
the series of LRT's beginning with C C1' CT C '--' 11 n' II n 

=C CT 11 n 
N211= C1' C =K K'1' II II n Il 11 
N211= KT K =P pT 2n 11 II n II 
N�:: = P'�' P 11 = Q11 Q:�' 
N��= Q':: Q11 =R

11 R:�' 
N211= RT R =S ST 

:In II II n n 
N211 = ST S etc. on n II 

(7) 

Since it has been postulated that C�' C 11 IS factorable 

into K K'r, the LRT K1' K will also be factorable, 
n Il 11 II 

producing in sequence pT P , QT Q etc. All of these II 11 It II 
products will be factorable because the LRT does not 
increase the order of magnitude of the coefficients or 
terms of this sequence of matrices and because, in ac­
cordance with the Rutishauser theory, the sequence be­
comes increasingly well-conditioned. It remains to be 
shown that, as indicated by the notation in the first 
column of tabulation in (7), this sequence of LRT's is 
actually identical with the sequence of convergents of 
the 2nth powers N211 of the given matrix N evaluated at 
intervals n, 2n, 3n . _ . The proof is by induction. 

According to the theorem A, N211 factored into C11 C� 
yields the orthogonal matrix XII =C-:, N" and its tran­

spose X�, =X-:,=N-11 CII 
such that 

N = X  N XT 11 11 n 
=C--1 NnNN-nC n n 
=C-I NC Il 11 

(8) 
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and 

N211= C-' N�11 C 11 II 11 (8a) 

by actual multiplication of (8) by itself 2n times. From 
(8a) follows 

N211=C-I N211C =C-1 C CT C =CI' C II n Il H II Il Ii 11 11' 
as indicated in the second line of (7). Similarly for the 
next line in (7), after factoring Cl' C into K K'I' ap-

H II II 11 
plication of the theorem A yields an orthogonal matrix 
K -, Nil which advances the convergent N by means of Il 11' LJ 11 
the transformation 

K-' NIlN N-II K =K-' N K 11 II II 11 11 II It 11 
=K-' C-I N C K using (8) 
=C

�,:
IlNC:

1l 

1
1 

11 
from(5) .  

This convergent IS, therefore, equal to N",,, according 
to (8) and hence 

(N )""=N21 =C-1 N21l C 21l �ll :.!Il :!u 
= K -, C - , C CI' C K = K - , K Kl' K Il Il II II 1l II II II II =KTK Il II' 

as indicated in the third line of (7). Induction III the 
subsequent lines requires the relations 

C =C K P ;:;1\ 11 II II 
C =C K P Q 111 n 11 n 11 

etc., 

which can be readily established from N"", N'" . . .  in 
analogy to the derivation of I 1) and (5 I from NIIl. 

If, therefore, N211 = C II C:�' is computable, Nil" N ""' N:',II 
. .  are computable, as are XII' X2,,, X'II' . .  , using the 

LRT's N�,", N�',', N"I
l . . . Theoretically there is no limit to 

the degree of approximation attainable, and in practice 
any degree of accuracy desired can be obtained hy testing 
the ortho!,-,onality of the last X compute<l and correcting 
it if necessary to make it ri;:>:orously orthogonal. A method 
of correction is shown in detail in Schmid (I (J73) . 

Setting n = 1/� in (7) produces the sequence of con­
vergents N, N ':,' N, _ . .  , which in our notation is the 

original series 
-
of Rutishauser LR transforms for the 

case of a symmetric N and Cholesky factorization. This 
identity proves theorem A and. hv comparison_ illustrates 
some advantages of the proposed method. 

1. Not only the eigenvalues hut the corresponding 
eigenvectors are produced. 

2. Corresponding to i cycles of this mythod, 2i LRT's 
would be required to ohtain the same convergent to the 
diagonal matrix of eigenvalues. 

3. Suprisingly enough, althou!,-,h the Rutishauser LRT 
is relatively free of error accumulation. comparison with 
the numerical results from the above method, even though 



the latter implicitly involves matrices with the eigen­
values raised to the 2nth power, shows even less error 
accumulation. Furthermore, any error accumulation 
present can be eliminated by making the matrix XII 
rigorously orthogonal, a device which is not available 
in the Rutishauser approach. 

The basic iteration cycle used in the numerical example 
comes to an end with X21I computed from (6) when 
C'!'II C 2

11 can no longer be factored. Inspection of the 
off-diagonal terms of the matrix X N X'J' = N will 2n �Il �n 
show whether N has been sufficiently diagonalized. 

If further convergents are needed, the most obvious 
procedure that presents itself is to treat this convergent 
N211 in a manner analogous to the initially given N and 
find the 2ntll convergent of N21I• It is however, unnec­
essary to repeat the entire cycle, since the tabulation (7) 
shows that N211 the first intermediate result to be com-�Il' 
puted, is equal to KT K both of which factors are n Il' 
available from the last cycle. From this product compute 

and 
pr P = Q QT n II n il· 

According to theorem A, the orthogonal matrix Y II 

= P� 1 N �;I used as a similarity transformation on N 211 
produces the higher convergent 

and, therefore, 

Y N2nYT=p-1N2I1p =P-IKTK P 

from (7). 

n 2n n n 2n II n II n n' 
=p-lp pTp 

n n n n 
=prp 

n 11 = N 2n 
:�n 

It is, however, more efficient at this point to compute 
by analogy with (6) the orthogonal matrix 

Y =Q-IPT 2n 11 ll ' (9) 

which will advance N2n to N411 by means of the relation 

Hence 

Also 

N =Y N yr ·'in �ll 2n �n 

N =Y X NXT yT . ·tn 2n 2n 2n 2n 

N2n =X N2n XT by definition (11) 411 411 in 
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and 

N2n = QT Q from (7). i n  n n (12) 

It is apparent from (10) and (11) that the new con­
vergent to the X matrix is 

(13) 

with Y2n computed from (9). This completes the first 
iteration of the optional new cycle and additional itera­
tions of this type can be repeated as often as desired. 
The foregoing considerations show that this type of 
iteration cycle is based solely on the application of a few 
basic principles used previously and repetitions are based 
on a continuation of the tabulation (7) . 

The next iteration replaces (9) with 

Y new=S-l RT 
II n 

where Q� QII = RII R�; } . 
RT R = S ST are taken from tabulatlOn (7). 

II 11 II n 

The new (13) is then 

X new= Y new X old 
etc. 

Each iteration of this type increases the subscript 2mn 

of the previous convergent N21ll11 by 211, which is an in­
crease no longer exponential as in the first series of 
iterations but, in view of the magnitude of n, still a 
considerable linear rate. In this supplemental cycle, the 
Y matrix of (9) and ( 13) approaches the unit matrix 
I in the limit, which can serve as a test for the con­
vergence. 
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of elevation 
leveling data 

NOS NGS-8 Establishment of calibration base lines. Joseph F. Dracup, 
Charles J. Fronczek, and Raymond W. Tomlinson, August 1977, 22 
p. (PB277130). Specifications are given for establishing cali­
bration base lines. 
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NOS NGS-9 National Geodetic Survey Publications on surveying and geode­
sy 1976. September 1977, 17 p. (PB275181). This compilation 
lists publications authored by NGS staff in 1976, sources of 
availability of out-of-print Coast and Geodetic Survey publi­
cations, and information on subscriptions to the Geodetic 
Control Data Automatic Mailing List. 

NOS NGS-IO Use of calibration base lines. Charles J. Fronczek, December 
1977, 38 p. (PB279574). A detailed explanation is given for 
evaluating electronic distance measuring instruments. 

NOS NGS-1l Applicability of Array Algebra. Richard A. Snay, February 
1978, 22 p. (PB281196). Conditions required for the trans­
formation from matrix equations into computationally m�re ef­
ficient array equations are considered. 

NOS NGS-12 The TRAV-10 horizontal network adjustment program. Charles R. 
Schwarz, April 1978, 52 p. The design, objectives, and spec­
ifications of the horizontal control adjustment program are 
presented. 

NOS NGS-13 Application of three-dimensional geodesy to adjustments of 
horizontal networks. T. Vincenty and B. R. Bowring, June, 
1978, 7 p. A method is given for adjusting measurements in 
three-dimensional space without reducing them to any compu­
tational surface. 

NOAA Technical Reports National Ocean Survey 
National Geodetic Survey Subseries 

NOS 65 NGS 1 The statistics of residuals and the detection of outliers. 
Allen J. Pope, May 1976, 133 p. (PB258428). A criterion 
for rejection of bad geodetic data is derived on the basis 
of residuals from a simultaneous least-squares adjustment; 
subroutine TAURE is included. 

NOS 66 NGS 2 Effect of Geoceiver observations upon the classical trian­
gulation network. R. E. Moose, and S. W. Henriksen, June 
1976, 65 p. (PB260921). The use of Geoceiver observations 
is investigated as a means of improving triangulation net­
work adjustment results. 

NOS 67 NGS 3 Algorithms for computing the geopotential using a simple­
layer density model. Foster Morrison, March 1977, 41 p. 
(PB266967). Several algorithms are developed for comput­
ing the gravitational attraction with high accuracy of a 
simple-density layer at arbitrary altitudes. Computer 
program is included. 
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NOS 68 NGS 4 Test results of first-order class III leveling. Charles 
T. Whalen and Emery Balazs, November 1976, 30 p. (PB265-
421). Specifications for releveling the National vertical 
control net were tested and the results published. 

NOS 70 NGS 5 Selenocentric geodetic reference system. Frederick J. 
Doyle, Atef A. Elassal, and James R. Lucas, February 1977, 
53 p. (PB266046). Reference system was established by 
simultaneous adjustment of 1,244 metric-camera photographs 
of the lunar surface from which 2,662 terrain points were 
positioned. 

NOS 71 NGS 6 Application of digital filtering to satellite geodesy. 
C. C. Goad, May 1977, 73 p. (PB270192). Variations in the 
orbit of GEOS-3 were analyzed for 1'.12 tidal harmonic co­
efficient values which perturb the orbits of artificial 
satellites and the Moon. 

NOS 72 NGS 7 Systems for the determination of polar motion. Soren W. 

NOS 73 NGS 8 

NOS 74 NGS 9 

Henriksen, May 1977, 55 p. Methods for determining polar 
motion are described and their advantages and disadvan­
tages compared. 

Control leveling. Charles T. Whalen, May 1978, 23 p. 
This publication describes the history of the National 
network of geodetic control from its origin in 1878 until 
today and presents the latest observational and computa­
tional procedures. 

Survey of the McDonald Observatory radial line scheme by 
relative lateration techniques. William E. Carter and T. 
Vincenty, June 1978, 33 p. This report contains the 
results of experimental application of the "ratio method" 
of electromagnetic distance measurements for high resolu­
tion crustal deformation studies in the vicinity of the 
McDonald Lunar Laser Ranging and Harvard Radio Astronomy 
Stations. 
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