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THE APPLICATION OF MULTI QUADRIC EQUATIONS AND POINT MASS 

ANOMALY MODELS TO CRUSTAL MOVEMENT STUDIES 

Rolland L .  Hardy* 
National Geodetic Survey 

National Ocean Survey , NOAA , 
Rockville , Md . 20852 

ABSTRACT . The bas ic theory of multiquadric (HQ) equa­
tions relevant to crustal movement studies is summarized . 
Both the hyperboloid and reciprocal hyperboloid kernels 
of an MQ function are given a point mas s  anomaly inter­
pretation . They are applied to a realistic " error-fre e "  
model o f  sub s idence i n  the Houston-Galveston area , in a 
pure prediction test . The standard error of a s ingle 
prediction was found to be less than 0 . 5  cm/yr for opti­
mum depths of point mass anomalies ,  us ing e ither the 
hyperboloid or reciprocal hyperboloid as kernels . The 
rectangular study area of about 88 by 124 km included 
49 "error-free" sample points in an irregular pattern , 
and 49 " error-fre e "  prediction points in a grid pattern . 
Subsidence rates in the area ranged from about -1 cm/yr 
to -9 cm/yr . Only subs idence information provided by 
geodetic level ing (s imulated) was used . 

Geophysi cal interpretation beyond developing the point 
mass anomaly mode l  was somewhat l imited . Future �ests 
should include details of the gravity anomalies and 
topography to determine the full potentiality and l imi­
tations of point mas s  models for interpreting the mas s  
red istribution associated with crustal movement . 

MULTI QUADRIC EQUATIONS 

Multiquadric equations have been applied in the past to topography , gravity 

anomalies , hydrologic studies , magnetic anomalies , terrain corrections , world 

geoid determination , geologic subsurface studies , and photogrammetry , includ­

ing image reconstruction . Thi s  publication , together with a concurrent paper 

coauthored with Sandford Holdahl (Holdahl and Hardy 1977) of the National 

Ocean Survey (NOS) National Geodetic Survey (NGS) , is the first report of 

studies applying MQ equations to crustal movement . 

The background information provided in this section is designed to famil­

iarize the reader with the many flexible features o f  MQ equations. This is a 

*Prepared during a five-month grant period as a Senior Scientist in Geodesy , 
National Research Counc i l , National Academy of Sciences , Washington , D . C . , 
whi le on l eave from Iowa State University , Ames , Iowa . 
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condensed vers ion of previous publications , and includes additional insights 

into point mas s  anomaly methods . New ideas concerning the relationship o f  

MQ functions t o  deterministic covariance functions are presented . Novel 

concepts involving "mas con anomali e s "  and isostatic trends of MQ functions 

are described . I t  also shows that a variation of the fictitious observation 

equations as used in least-squares adj ustment can be used for least-squares 

prediction . 

The basic hypothesis o f  MQ analysis is that any smooth mathematical surface 

and also any smooth irregular surface (mathematically undef ined) may be ap­

proximated to any desired degree of exactnes s  by the summation of regular , 

mathematically defined surfaces , especially displaced quadric forms . "Dis­

placement" in this case roughly corresponds to " lag" in a t ime series , although 

the analogy is by no means exact . MQ equations in cartesian coordinates may , 

in general , be represented by 

n 

L 
j=l 

a, Q (X , y, X" y,) J J J f (X , y) z 

where the a ,  ' s  are undetermined coefficients , and each Q (X ,  
J 

quadric kernel function of X and Y, centered at coordinates 

ordinates Z of the complete function f (X ,  Y) are determined 

Y, X" y,) is a 
J J 

X "  y, .  The J J 

( 1) 

by the summation 

(superposition) of many quadric kernels , hence "a multiquadric (MQ) function " 

(Hardy 1971 ) . 

A frequently used example of a quadric kernel is the hyperboloid 

Q (x, Y, X "  y,) 
J J ( 2) 

where 0 is usually interpreted in geometric terms alone as the perpendicular 

distance from the X ,  Y plane to the hyperbo lic minimum . The hyperboloid 

kernel has a fairly remarkable relationship with its reciprocal 

Q (X ,  Y, X "  y,) J J (3) 
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In thi s  case, 0 can be interpreted as the perpendicular distance of a unit 

point mass (or point mass anomaly) from the X ,  Y plane on which the potential 

(or disturbing potential) is evaluated . Consequently, two general branches 

(harmonic and nonharmonic) can be developed from eqs . (1), (2), and (3) . 

For disturbing potential ( T )  and other harmonic phenomena with respect to a 

plane, the basic logical form i s  

Note that the universal constant of gravitation precedes the summation . The 

coefficients O. now take on the proper dimension and interpretation of point 
J 

mass anomalies with respect to standard point masses in the model . 

For topography and other nonharmonic phenomena with respect to a plane, the 

basic logical form is 

where H, representing topography, has been substituted for the dependent 

variable Z .  It is appropriate to give the symbols G, a. , and 0 in eq . ( 5 )  
J 

( 5 )  

the same interpretation as in eq . (4 ) because the theory of isostasy connects 

these equations in a conceptual way . For this reason, a constant K has also 

been introduced . This will be discussed in more detail later . 

Equations ( 4 )  and ( 5 )  are transformable to spherical coordinates by noting 

that 0 (depth with respect to a plane) can be visualized as a quantity (R-r) , 

i . e . , the radial difference between two spheres with the same origin . Then 

e., A. on the inner sphere r, there is a 
J J 

for every point mas s  anomaly at r., 
J 

radially corresponding R., e., A. 1. 1. 1. on the outer sphere R .  Conceptually, we can 

visualize an infinitely large set of Cartesian coordinates x, Y ,  Z as the 

locus of evaluation points on sphere R, including a finite set R . ,  6., A . • . 1. 1. 1. 
Similarly, an infinitely large set of Cartesian coordinates X., Y.,  Z. can 

J J J 
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e . , A.. This conception 
J J exist on sphere r ,  including the finite set r . ,  

justifies the substitution of (Z_z.)2 for 82 in J eqs. ( 4) and ( 5 ) . Then T and 

H are functions of the three variables ,  f (X ,  Y, 
( 4) to spherical coordinates results in 

Z). A transformation of eq. 

T (6) 

where 

cosl/! . J cos e cose . + s in e s ine . cos (A- A.). J J J 

The radius r i s  not subscripted at thi s  point , and is taken as the optimum 

constant radius of the inner s phere. The formula for the best constant r 

(Hardy and Gopfert 197 5 )  wi l l  be given later . 

Equation ( 5 )  is s imilarly transformable , resulting in 

H 

where H represents topographic ordinates "d.th rsspec = to a sphere . 

( 7 )  

The formulation o f  a linear system o f  equations and the solutions for the 

undetermined coefficients in eqs . (4) , ( 5 ) , (6), and ( 7 )  all follow the same 

pa�tern . Thi s  i s  also true for any new relationships that may be derived from 

them . For example ,  Hardy and Gopfert ( 19 7 5 )  have already derived particular 

MQ relationships from eq. (6) that express geoidal undulations N ,  components 

of the deflections of the vertical � and n, gravity anomal ies �g , and gradi­

ents of the gravity anomaly a (�g) / a R .  Consequently (with K = y, K = 1 ,  or any 

other appropriate constant) , we may express an MQ sys tem of linear equations 

in a general form as 



G 
n 

K � 
j =l 

a.. Q . .  =s . J 1.J 1. i 1 ,  2, 3 . . .  m ,  m > n 

where the symbols G and a.. are still the same as previous ly de fined . The J 

5 

( 8 )  

symbol Q . .  represents any particular quadric kernel , appropriately related in 1.J 
a geometric and physical sense to the measurements s . .  The subscript pair i j  1. 
refers to the location of the i'th data point , and the location (node) of the 

j'th kernel . These subscripted kernels form the coefficient matrix of the 

observation equations . The kernel functions can be in either plane of spheri­

cal coordinates ,  and either harmonic or nonharmonic in their physical inter-

pretation . The symbol s .  indicates a column list of data ordinates such as 1. 
N. , Ag. , H., � ., n., etc . The equivalent of eq . ( 8 )  in matrix notation for 1. 1. 1. 1. 1. 
observation equations is 

where the V. ' s  are residuals . 1. 

i = 1 ,  2, 3 . . .  m 

j = 1, 2, 3 . . .  n ,  m > n 

( 9 )  

When m = n, a unique solution i s  found . For the more general case , with 
-1 

m > n ,  the least-squares solution for the product of K , the universal con-

stant of gravitation G, and the coefficients is 

( 10 )  

For an analysis o f  the prediction error , we can determine EV
2 

with 

(ll ) 

in which the subscripts have been omitted . 
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Then the least-squares prediction of a column vector of � 's is 
P 

For the unique case, i.e., m = n, which is the limiting case of least 

squares, eq. (12) for a single � reduces to 
p 

(12 ) 

(13) 

We note t�at eq. (13) is the equivalent of the least-squares prediction 

formula given by Heiskanen and Moritz (1967, p. 268) for covariance functions. 

However, Q .. is, in general, not required to be a covariance kernel corre-
l.J 

sponding to C
ik 

of Heiskanen and Moritz (Hardy 1976, 1977). The hyperboloid 

kernel, with no statistical meaning or stochastic interpretation, is a good 

contrary example. On the other hand, the reciprocal hyperboloid and its 

spherical counterpart do qualify as deterministic covariance functions, i.e., 

these functions satisfy the geometric requirements of a covariance function 

as given in Yaglom (1962, p .  24) , but without regard for a random process 

interpretation. Moreover, the underlying reality of eq. (4 ) and its spherical 

counterpart (Hardy and Gopfert 1975) is that they are intrinsically related to 

Newton's laws, and are therefore deterministic. In this case, deterministic 

means not only routinely solvable (nonsingular coefficient matrix), but that 

the output is completely determined in a physical sense for a given input 

(Miller 1963, p. 285). 

There is another justification for asserting that some MQ functions qualify 

as deterministic covariance functions. As shown by Heiskanen and Moritz 

(1967), the covariance function C (� )  can be expanded in Legendre polynomials 

in the form 

00 

L 
n=2 

c P 
n n 

(cos �) . (14) 



I f  C(�), as given above , is appropriate for geoidal undulations , then the 

c 's must be degree variances for the geoid . Thus , we can expres s  a corre ­
n 

sponding linear system of covariance equations as 

n' n' 00 

7 

No 1 L: S.C(lJJ .. ) = L: So L: c P (cos � 0 0 ) i 
n n 1J 1, 2 . . .  m ,  m >  n' (15) 

j=l J 1J j=l J n=2 

where n' is the total number of covariance kernels , and n gives the degree of 

each Legendre polynomial . The undetermineq coefficients are des ignated as So J 
in thi s  case because , in general , they do not have the point mass anomaly 

interpretation , as  given to the ao 's , in the MQ harmonic method . J 

I f  the coefficients c were found deterministically , eq . ( 1 5) could be 
n 

called a deterministic covariance function because the polynomials c P 
n n 

(cos �) would be directly related to Newton's laws, and not depend on 

stochastic processes . In other words , there are deterministic as well as 

stochastic models in developing and us ing covariance functions , but the dis­

tinction is seldom made clear in contemporary literature . 

Empirical covariance kernels for eq . ( 15) are frequently developed directly 

from geoidal undulations in a s tochastic process model 

C(�) M{N·N'} , (16) 

i . e . , C(�) is said to be a function equal to the mean of a set of products 

N·N' over a sphere , where all N and N' are geoidal undulations separated by 

spherical distances � that are consecutively specified varying from zero to 

�. Formal integral formulas are frequently given , but they must be solved by 

numerical summation with dis crete samples . 

An alternate approach is to use tabulated degree variances c , previously 
n 

determined by a stochas tic estimate . These are substituted for c (up to a n 
truncation level) in the Legendre polynomial equivalent af c(�), also modeled 

in eq . (15). In both cases , the approach involves stochastic processes either 

directly or indirectly . 
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We can now illustrate a finite deterministic form of the covariance function 

by expanding each MQ kernel in eq . ( 4 ) , and its spherical counterpart ( Hardy 

and Gopfert 1975, eq . ( 5» into an infinite series of plane and spherical 

Legendre polynomials respectively . The spherical form becomes 

T 
n '  00 n 

G '" a. .  '" _
r
_ p ( cos ,I, ) LJ J LJ n+l n � .  

j =l n=2 R J 
( 1 7 )  

where r is the radius of an inner sphere o n  which the point mas s  anomalie s  are 

located , and R is the mean radius of the Earth . 

Using Bruns' formula T 

eq . ( 15 ) , we have 

Ny and forming a linear sys tem of equations as in 

N. 1 
n' 
L: 
j=l 

00 n '" � _r_ p ( " , ) a. . LJ 1 
cos � . .  

J n=2 y R
n+ n 1J 

i 1, 2 . . .  m, m >  n' . ( 1 8 )  

Now w e  can s e e  that the MQ harmoni c  function , as developed in this report , 

is the equivalent of a very spec ial case of covariance functions , i . e . , a 

purely deterministic case . Equation ( 1 5 )  is identical to eq . ( 18 )  for the 

case S. = a.. in whi ch the undetermined coefficients are point mass anomalies , 
J J 

provided also that the degree variances are s imultaneously 

c n 

n 
G r ---
y R

n+l ( 19 )  

Some modification o f  eq . ( 1 9 )  and further comment are appropriate because 

the optimum inner radius r is determinable with the best-r formula previously 

mentioned . Letting 8 represent the variable depth of point mas s  anomalies , 

then 8 = R - r ,  and eq . ( 19 )  becomes 

c 
n 

G 
yR ( 20 )  
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where 6 is the optimum depth of point mass anomalies , as determined from the 
o 

best-r formula . Thus , the c ' s  in eq . ( 2 0 )  
n 

are optimum , deterministic degree 

variances , containing two physical parameters ( G  and y ) and two geometric 

parameters (6 and R) . Stochastic processes were irrelevant in their de­
o 

termination . The next paragraph will explain why the difference between 

deterministic and stochastic degree variances is an important distinction . 

The contemporary use o f  the covariance kernel in eq . ( 15 )  is  deficient 

because the coefficients c in the kernel are , as previously mentioned , n 
directly or indirectly estimated by a principle involving stochastic 

processes on a sphere . Lauritzen ( 1973) has called attention to this 

defic iency on highly theoretical grounds pointing out that a Gaussian random 

field on a sphere is not ergodic . Consequently , sample averages over a 

sphere cannot rigorously determine an apparent covariance function or degree 

variance s .  According t o  Lauritzen ( 19 7 3 ,  p .  80 ) , " . . .  the problem is  not 

suited for statistical treatment . . . . " 

MQ analysis avoids thi s difficulty by being more explici t in a deter­

mini stic sense , particularly concerning a point mass model . Hardy ( 1976,  

19 7 7 )  has previously shown that for MQ harmonic analysi s ,  determining 

apparent or empirical covariances in a stochastic sense is irrelevant . 

Moreover , Hardy and Gopfert ( 19 7 5 )  made a remarkable and practical 

confirmation of Lauritzen's theoretical point of view in deriving the best­

r formula . In deriving this formula , which is  equivalent to determining 

the optimum depth of point mass anomalies , the solution was completely 

independent of the data ordinates N .  Instead , the best-r (optimum 6 ) was o 
dependent almost exclusively on the average spacing of data ordinates , and 

not on the magnitude o f  ordinates or averaging of lagged ordinate pairs 

over a sphere . 

To conclude our comments on covariance functions , we will j usti fy using 

MQ equat ions instead of expanding them into Legendre polynomials for 

discrete data as used in eq. ( 17 )  for illustrative purposes . The reasoning 

is slightly indirect , but not difficult . First , to reduce a problem involving 

discrete data to an optimum point mas s  anomaly model for the solution 
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involves making a simpl ified or engineering-type assumption . Thi s assumption 

helps solve the problem in a relatively simple manner, and implies the 

wi llingnes s  to accept a re sult that wi ll not be the same as for a more 

complete and accurate data set . Moreover, it enables one to get the most 

out o f  the available di screte data without obscuring the ba sic physical 

meaning of the results . In any case, having made thi s a priori deci s ion, 

it is better to use a s imple method that responds exactly to Newton's laws 

for a given input of discrete data than to substitute a more complicated, 

infinite Legendre series for the computation . Such a substitution not only 

compounds the computational aspect, but it also involves an additional 

approxima tion because of the necessary truncation of the series . Perhaps 

an exception to thi s l ine of rea soning could be made if it were actually 

possible to use the orthogonal polynomial properties of the Legendre series 

to determine coe ffic i ents or degree variances unambiguously by formal and 

exact integration . Generally, in practice, thi s  is not the case . So the 

applicat ion of a multiquadric series to a discrete data problem, reduc ible 

to an optimum point mass anomaly problem as shown above, wi ll probably be 

superior to other contemporary methods regarding the following features : 

1 )  accuracy of the solution, 

2) computational effic iency, and 

3) physical interpretation of the results . 

Item 3 in this l i st has been the basis for studying the apparent 

isostatic response of eq . (7 ) ,  based on coefficients (point mass anomalies) 

determined from a variation of eq . (6) . It has been previous ly shown 

( Hardy and Gopfert 1975) that the coefficients determined from one type o f  

MQ series can be substituted into any other appropriate M Q  series for 

prediction purposes . Thus, for example, geoidal undulations Np can be 

predicted from 

-
N P � f: cx .  [R2 + r

2 
- 2Rr cos 1fJ .J -1/2 

Y j =l J PJ P 1 ,  2 ,  3 . . .  ( 2 1 )  

when the coefficients cx .  have been solved from a l inear system o f  equations 
J 



n r cos 

1 1  

ljI • •  

r- tR] G L 0.. 1:! t,g . i = 1 ,  2 . • •  m ,  m > n ( 2 2 )  
2 ) 1 

j =l R- • • 1) 1) 

in which 

Equation ( 2 1 )  is a simple variation of eq . (6), obtained by substituting 

Ny for T (Bruns' formula ) .  It is also the bas ic MQ form for expansion into 

a l inear system of Legendre polynomial equations as given in eq . ( 18 ) . 

Equation ( 2 2 )  i s  a linear equation expansion o f  a basic MQ series derived 

from eq . (6). The left hand s ide of eq.  (6) and its derivative 3T/3R are 

substituted into one of the bas ic forms of the fundamental equation of physical 

geodesy , name ly t,g = - 3T/3R - 2T/R . 

By analogy , the implication is also present that predictions of H can be 
p 

made with eq . ( 7 ) , provided the coeffic ients o.j are determined from a linear 

system of equations , such as 

n 

Q. L 0.). [R
2 + r

2 
- 2Rr cos ljI 

i).
] -1/2 

= y j =l 
N. 

1 
i = 1 ,  2 . . .  m ,  m > n .  ( 23) 

In thi s  case , the mathematical relationship is s impler . The kernel functions 

in eqs . ( 7 )  and ( 2 3) are merely reciprocals of each other , and K replaces y, 

but the physical interpretation is more difficult . The validity of the 

relationship between the two equations is not immediately obvious .  Equation 

( 7) involves topographic height s  which are generally a nonharmonic phenomenon . 

The relatively c lear relationship of gravity anomalies to geoidal undulations , 

based exclusively on potential theory , is not present in the poss ible 

relationship of topographic heights to geoidal undulations .  Consequently , 

we must consider other or indirect effec t s  that would somehow relate 

topographic height s to point mas s  anomalies . One possibility for considera­

tion is the theory of i sostasy . This theory is based on the exi stence of 
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some form o f  mass deficiency under topographic highs and mass excesse' under 

topographic lows (bathymetry or ocean bottoms) . 

A few check computations with a global model have confirmed that. the 

function for H in eq . (7 ) does indeed tend toward pos itive values Loj regions 

dominated by negative point mass anoma lies as determined from t he ';r·;tf'm 

in eq . (2 3 ) .  For regions o f  predominately positive anomalies, t.ll(: c!eoid 

from eq . (2 3 )  tends to rise appropriately, whereas H in eq. (7) I(:nd�" to 

subside to negative values . Thus , the topographic he ights in Ll,js ca,3e 

are not at al l related to the Molodenski-type height anomaly, which tends 

to have the same algebraic signs and magnitudes as the geoidal undulation s 

N .  Instead, eq .  (7) modulates the topography in c lose agreement, frequency­

wise, with isostatic tendencies indicated by contemporary thfoor ie s o f  isostasy .  

The appropriate ampl itude modulation o f  the topography computed from eq. (7) 
is dependent on the magnitude of the constant K, however ;  a detailed rigorous 

computation of thi s  constant has not yet been developed . It is beyond the 

obj e ct ives of th is report to develop a complete isostatic model, whi,:::h would 

involve several re finements of the MQ method for determining point mass 

anomalies . We wi ll only sugge st a direction future investigations :;hould 

take in developing such a model . 

Equation (7 ) doe s not appear to include the influence of the Earth's density, 

but thi s e ffect may be considered to be a part of the constant K. This is 

only one of several e ffects that should be cons idered in the computation of 

thi s  factor . It is among the mos t  important, and other effect�; will depend 

upon i t .  An extension of the concept of a point mas s  anomaly to a 

representative volume distribution of the mas s  anomaly is undoubtedly 

necessary . In thi s  report we have been c areful to use the expression 

"point mas s  anomaly" rather than "point mass . "  Hence, the mass anomalies 

that sum to zero have already been superimpo sed upon the interior ot a 

spherical approximation of a Standard Earth Model . It appE:'ars now that our 

Standard Earth Model should include a density profile up to the (TWit-

mantle boundary at least, in addi tion to the usual Geodetic Refc·t( n, 

System . 
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In the context of a point mass anomaly, negative doe s not mean less than 

zero mas s . I t  means less than a normal mas s, with respect to some standard 

mass distribution that is intrinsically posi tive . The point mas s  anomaly i s  

initially associated with the point location of the anomaly at the best-r 

value (optimum 80). In combination with a proper volume for the mas s  anoma ly, 

it i s  easy to perce ive that buoyancy with a fluid Earth of variable density 

will provide the basi s  for the ri se or fall of a mas s  anomaly to a posi tion 

of equilibrium above or below the best r, thus physically confirming the 

indic ation of an isostatic trend . Determining the proper scale factors for 

propagation and ampl ification of this e ffect at the crustal surface requires 

considerably more analysis than can be accomplished here . Neverthe less, we 

have introduced the key concept of "mascon anomaly, " which can be e i ther neg­

ative or posi tive, to incorporate a dens i ty model in the computa tion of the 

constant K in eq . ( 7) . Thi s is a simple modifica tion of the concept of a 

mascon, ordinari ly used wi th only a positive defini tion . 

During the future development of the theoretical details for complete 

quanti fication of the isostatic trends represented by eq . ( 7 ) , we mus t  

remember the contemporary difficulties with all isostatic models . The " real" 

Earth a lmost never conforms wi th any isostatic model to a degree of prec is ion 

consi stent with the idea lization frequently used to simplify the 

computations . This wi ll doubtlessly be true also of the MQ approach to an 

i sostatic theory . Nevertheless, an earlier,  almost completely heuris tic 

interpretation of the hyperboloid kernel as be ing deterministically suitable 

for topography ( Hardy 1972) i s  being supported theoretically and practically 

in an unusual way .  A s  with point mas s  and material surface methods in 

general, " . . •  This case is more or less fictitious but it nevertheless is of 

great theoretical importance . "  (Heiskanen and Moritz 1967, p .  5 . ) 

During the preceding presentation, we have frequently referred to the best­

r formula, sometimes indirectly by comments on an optimum radius or optimum 

depth o f  point mas s  anomalies . The parameter r was introduced in eq . ( 6) 

and defined a s  the optimum cons tant radius of an inner sphere on which point 

mas s  anomalies are located . We will now discuss the methods of determining 

the best-r, inc luding the best-r formula ( Hardy and Gopfert 19 75 ; Hardy 19 76) . 
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The radius r in a system of equations, as in eq . (23) for example, was 

treated originally as an unknown in addi tion to the unde termined coeffici ents 

uj , making the system nonlinear.  When this is done, the number of obser­

vation equations i s  one les s  than the number of unknowns, provided we ce nter 

an MQ kernel at every observed data ordinate Ni . For maximum use of 

observed data, an MQ kernel was used at every ob served data ordinate ; the 

formation of fic ti tious observation equations easily removed the 

de ficiency in the number of equations . 

The validity of thi s  aspect of the solution was not discus sed thoroughly 

in the otherwise c omplete derivation of the be st-r formula by Hardy (1976) . 

We will now discus s  fictitious observation equations, as  applied to least­

squares predic tion, in greater detail than in any previous report . 

For background information, we note that ficti tious observations equations 

are already an accepted procedure in least-squares adj us tment, in contrast 

with leas t-squares prediction . According to Hirvonen (1971) , ficti tious 

observations are often used in least-square s ad j ustment to reduce the 

number of observations in a highly overdetermined system . A single func­

t ional observation replaces a number of observed quantities by subdividing a 

large problem into smaller parts that can be solved more routinely . In 

preprocessing a group of observations of the larger problem into a s ingle 

representative observation, i.e., a fictitious observation, it is essential 

to use the statistical properties of the weighted mean of the group . A 

simple example of a fictitious observation is to replace the several observed 

angles at a traverse s tation with a single mean value which is used in the 

subsequent traverse adj us tment . 

In least- squares prediction with MQ functions, a minor variation of this 

same bas ic principle can be used . The prediction problem may be viewed 

as one involving a fini te sample of ordinates from an indefinitely large 

predic tion vec tor . The problem i s  to find a solution that i s  optimum in some 

sense, even though the system of equations for doing so i s  underdetermined 

(Moritz 1976) . An empirical covariance kernel function is one least-

squares method of optimizing an underde termined system, but it i s  not the 
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only method . In fac t ,  redundancy may be present in all o f  the computational 

aspects of least- squares prediction with MQ functions . In some cases the 

fictitious observation concept of least-squares adj ustment may be direc tly 

applicable to a part of the problem without modification . 

Consider , for example , a  set o f  observations of the ordinate or other 

measurable quantity at a single geographic location . Obviously , a single 

most probable value determined from either a weighted or simple mean,  

according to circumstances ,  may be substituted for the larger set . 

Generally , nothing will be lost in a least-squares adjustment by making 

this substitution , and some gain in computational ef ficiency can result 

from it . Generally , if least-squares prediction is somehow dependent on 

the set of observations rather than each observation by itsel f ,  nothing c an 

be gained by forming observation equations for each separate observation 

in lieu of the single mean , and to do it will decrease computational 

e fficiency . Theoretically it is va lid to form an equation for each 

observation,  but it is not useful . On the other hand, the mean anomaly 

concept , as mentioned above , has an exceptional property which may be applied 

in a useful manner to either least-squares adj ustment or least-squares 

prediction . 

The theoretical j ustification for using mean anomalies in least-squares 

prediction with MQ functions is rather unique ; an expansion of the number 

of observation equations is merely a useful byproduct . A mean anomaly is 

numerically equal to the weighted mean o f  several ordinates at different 

locations , and in this respect is very similar to the mean of several 

ordinate observations at the same location , as in the preceding paragraph . 

rhis is not a complete definition however . We must specify the single 

point location as wel l  as  the magnitude of a mean anomaly to make appropriate 

use of it . Generally , a single point location for a mean anomaly is the 

center of a block or other regular figure represented by the anomaly . This 

point location is generally not coincident with any o f  the separately 

observed ordinates .  In any case , a discrete mean anomaly cannot occupy 

the point location of more than one of the single ordinates in the set 

or group , and even this possibility can be eliminated by an appropriate 

choice of regional boundarie s .  
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Thus, under certain conditions, an MQ least-squares predic tion method 

on a sphere may be composed of two parts; one part minimizes the sum of 

the squares of the resi dual s at all observed data ordinates making use 

of real observation equations ; the other part minimizes the sum of the 

squares of the res idual s at the est imated regional mean anomaly ordinates 

(a single ordinate for each region), making use of fictitious observation 

equations . The justification for using fictitious observation equations, 

which are consi stent with predictions of the mean regional anomal ies, i s  

fundamentally the same a s  for estimating the mean of a set of observations 

in the preproces sing commonly associated with least-squares adj us tment . 

In the case of least-squares adjustment there i s  a decrease in the number 

of observation equations, which is computationally effic ient . In the case 

of least-squares prediction there can be an increase in the number of 

observation equations. Ordinarily thi s is not computationally efficient, 

but it wil l  be useful if one is enabled to get a routine solution of an 

otherwise underdetermined system of equations . The usefulnes s becomes 

particularly noteworthy when the real observation equations by themselves 

fail to give continuous predictions of regional anomalies that are consi stent 

with the mean of discrete data in each region . 

To illustrate the point we will consider an alternative approach to 

solving the system of equations in eq . 23. Us ing n observed geoidal 

ordinates on a sphere, and n MQ kernels, we may obtain a unique solution 

for n undetermined coeffic ients a" provided any arbitrary finite value 
J 

for the radius r ( except r=O or r=R) i s  as s igned in advance .  Thi s  i s  

equivalent to an as sumption that there is no rational method o f  determining 

the best-r either a priori, or as part of the solution for the a, 's . Then, 
J 

in general, all suc h  unique solutions obtained by changing r arbitrarily 

will fit the observed geoidal ordinates exactly except for roundof f  

error . On the other hand, only one o f  these unique predictions (the one 

with the best-r) will correspond to the minimization of the squares of the 

difference between the computed regional mean anomalies on the sphere and 

the predicted regional mean anomal ies on the sphere . Unles s an appropriate 

modification of the set of observation equations is made, finding the best-r 

remains a matter of trial and error. The real observation equations for 

s ingle ordinates are, by themselves, ineffective ; they do not assure 



consistency between the measured and the predicted mean anomalies . The 

desired consistency may be assured by supplementing the real observation 

equat ions with fictitious observation equations ,  each of which incorporates 

the correlation of a set of real observations in a region with its a 
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priori estimated (or fictitious ) mean . As  a by-produc t ,  the extra observa­

tion equations provide a means for determining the best-r simultaneous ly with 

the undetermined coe fficients �. in a nonlinear least-squares solution . 
J 

The principle described above was original ly used to determine the best-r 

by least squares prediction with MQ functions . Fictitious observations 

were introduced with the assumption that the most probable ordinate at the 

midpoint of a line joining two adjacent actual ordinate observations was 

equal to the mean of the actual observations . This is nothing more or 

less than the computation of the mean anomalies for small regions having 

only two data points each , and placing the resulting mean ordinate at the 

centroid of the two-point regional data . The nonlinear least-squares 

system of equations based on thi s concept converged rapidly to give a 

solution for the undetermined �j'S and also the best- r .  It was found 

later that the best- r ,  determined by least-square s in this way , was not 

significantly different from that determined by what is now called the 

best-r formula . This formula and r elated equations wil l  be discussed in 

the following paragraphs .  

The best-r formula resu lted from a simple extension of the concept of 

fictitious observation equations as applied to least-squares prediction with 

MQ equations . In forming three real observation equations for data 

ordinates at the vertices of an equilateral triangle on a sphere , and 

adding thes e  to a single fictitious observation for the computed mean 

anomaly of these three ordinates at the centroid of the same equi lateral 

triangle ,  a rather remarkable relationship was discovered . A unique solution 

for r existed which was not dependent at all on the magnitude and algebraic 

sign of the ordinates at the vertices .  This meant also that for any adjacent 

equilateral triangle , congruent with the first triangle on one side , the s ame 

unique solution for r existed without regard for the magnitude or sign of the 

ordinates at ends of the congruent s ide , nor of the ordinate at the new vertex .  
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In brie f ,  the dis covery rapidly expanded into the concept that there i s  a 

unique best-r for any number of data ordinates on a sphere , independent of 

the magnitude and s ign of the ordinates ,  particularly if the data are 

regularly spaced at the vertices of nonoverlapping equilateral triangles .  

Consequently , MQ equations and the spherical trigononometry of equilateral 

triangles were used to develop the following condition equation: 

3 
o 

where all parameters have been previously defined except � and � .  The 
s m 

symbol � represents angular length of a s ingle s ide of an equilateral 
s 

spherical triangle . The symbol � repre sents the angular distance on a 
m 

sphere from a vertex of the same triangle to the surface centroid of the 

triangle . 

(24) 

Equation (24) may be solved directly for r, when n data points on a sphere 

of given radius R have been spec ified and the corresponding � and � are 
s m 

computed . Formula s for � as a funct ion of n and � as a function o f  $ 
s m s 

are given below . The b2st-r formula , based on a least-squares prediction 

principle, is very convenient for MQ and other point mas s  methods . It means 

that the best-r can be determined before using systems of equations such as 

eq . (23). Consequently, linear least squares rather than iterative non­

linear methods can solve all MQ systems used to date (1977) . As previously 

mentioned, the best-r formula indicates that optimum least-squares 

prediction with the MQ method is not dependent on averaging ordinate 

pairs over a sphere , as used in autocorre lation to determine an empirical 

covariance kerne l function . Equation ( 2 4 )  provide s an optimum solution 

based only on the spac ing of data ordinates, not the averaging of ordinate 

pairs at various distances as for empirical covariance. Thus, the theoretical 

diff iculties described by Lauritzen (1973) are not relevant to MQ equations. 

On the other hand, a potential di fficulty was present because equal 

spac ing of data or nodes cannot be made exactly on a sphere , except for 

special cases . However, use of the best-r formula in practice indicates 
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that it also works extremely well for unequally spaced data . With irregular 

data spacing , the computed �s is a close approximation if not the exact 

mean side length of an array of nonequilateral , nonoverlapping triangles 

on a sphere . In fact,  there is no significant difference in determining 

the best- r for irregularly spaced data by the above formula , as compared 

with a simultaneous nonlinear least-squares solution for r and a ' s  using 
j 

the same irregulary spaced data . 

Use ful auxiliary formulas for (24) are 

-1 [ 1Tn Jl/2 �
s 

(n)  = 2 tan 1 - 2 cos 3(n-2) 
in which n is the numbe r  of node s , and in turn 

-1 
tan 

[ 21/2 (1 
(cos � -

s 

- cos�
s ) ] 

cos 2� )1/2 
s 

Table 1, which lists the best-r for 10 < n < 500, was developed us ing 

eqs . (24, (25), and (26). 
For regional rather than global cases , e q .  (25) becomes 

� (n , A) 
s 2 tan 

-1 [1-2 cos (-6-(n-:-2)-R-=-2 + �)r2 

(25) 

(26) 

( 2 7 )  

in which A is  the area o f  the region on a sphere , and n is the number of nodes 

used in the region. 

As a result of studies connected with this report, the estimate of optimum 

depth 0 for point mass anomalies with respect to a plane as in e q .  (4) can 

be found from 



20 

1 - +  o 
2 3 

o 
( 2 8 )  

i n  which s i s  the length of a s ide o f  the nonoverlapping equi lateral triangles 

(or the mean s ide length of nonequilateral nonoverlapping triangles ) with 

nodal points located at the triangle vertices . This 0 should also probably 

be used in e q .  ( 5 )  for future s tudies involving an interaction of harmonic 

and nonharmonic functions . For topography and other nonharmonic phenomena 

alone , the following formula has been used with respect to a plane , 

0 . 665 D
2 ( 2 9 )  

where D i s  the rectangular grid spacing o f  nodes (or the equivalent mean for 

irregularly spaced nodes ) . Equation ( 29 )  was empirically developed with an 

MQ fit to spline functions and has not been shown to be an optimum e stimate . 

However , it has provided workab le , smoothing values for al l cases encountered 

up to this time . 

This concludes the review of MQ analysis that has had a bearing on the study 

of crustal movement applications to date . Future development of the method 

may involve such matters as hybrid data , use of the osculating surface 

principle ,  and concentric superpos ition of MQ functions . At the present time 

( 19 77 ) , the mos t  complete document on such matters is a report to the National 

Science Foundation , under Grant GK-40287 (Hardy 1976)  • 

VERTICAL CRUSTAL MOVEMENT STUDIES 

Studies of crustal movement provide a better understanding of Earth 

dynamics . Practical bene fits could come from the abi l i ty to predict 

earthquakes ,  volcanic eruptions , and other consequences of e i ther sudden 

or long-term crustal movement . Repeated geode tic leveling over a significant 

period of time with adequate connections to tidal stations is one of several 

measurement techniques that can help solve such problems . 

Apparent changes in elevation in an earthquake zone are of special 

interest . A rough analogy with the stress-strain measurements in the me­

chanics of materials seems appropriate . A homogeneous elastic material is 
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Table 1 .  --Best radius (km) of n point mass anomalies for 
a sphere with a radius of 6371 km ( global case )  

Best r Best r Best r 
n (km) n (km) n (km) 

10 360 3 . 40 1 7 5  5628 . 46 340 5830 . 21 
15  4070 . 61 180 5638 . 31 34 5 583 3 . 99 
20 4350 . 64 185 564 7 . 78 350 5837 . 69 
25 454 4 . 22 190 5656 . 86 355 5841 . 29 
30 4688 . 90 19 5 5665 . 62 360 5844 . 84 
35  4 802 . 63 200 5674 . 0 6  365 584 8 . 32 
40 4 89 5 . 21 205 5682 . 20 370 5851 . 73  
45  4972 . 54 210 5690 . 05 375 5855 . 08 
50  5038 . 4 8  215 5697 . 64 380 5858 . 36 
55 5095 . 60 220 5 704 . 9 7  385 5861 . 5 7 
60 5145 . 7 3 225 5712 . 07 390 5864 . 7 3 
65 5190 . 20 230 5 71 8 . 94 395 5867 . 83 
70 5230 . 00 235 5 725 . 59 400 5870 . 87 
7 5  5265 . 9 3  240 5 7 32 . 05 405 587 3 . 85 
80 5298 . 5 7 245 5 7 38 . 30 4 10 5876 . 79 
85 5 328 . 40 250 5 744 . 38 415 5879 . 67 
90 5 3 5 5 . 81 255 5750 . 28 420 5882 . 49 
95 5 381 . 11 260 5756 . 00 425 5885 . 27 

100 5404 . 54 265 5761 . 57 430 5888 . 01 
105 5426 . 36 270 5767 . 00 435 5890 . 69 
110 544 6 . 7 3 275 5 7 72 . 28 440 5893 . 34 
115 5465 . 81 280 5777 . 42 44 5 5895 . 9 3  
120 5483 . 72 285 5782 . 4 3  450 5898 . 49 
125 5500 . 59 290 5787 . 31 455  5901 . 00 
130 5516 . 51 295 5792 . 0 8  460 5903 . 48 
135 5 5 3 1 . 54 300 5796 . 72 465 5905 . 91 
140 5 54 5 . 82 305 5801 . 26 470 5908 . 3 1 
145 5 5 59 . 37 310 5805 . 68 475 5910 . 67 
150 5 5 72 . 26 315 5810 . 00 480 5912 . 97 
155 5584 . 54 320 5814 . 23 485 5915 . 26 
160 5596 . 26 325 5818 . 36 490 59 17 . 52 
165 5607 . 47 3 30 5822 . 39 495 5919 . 74 
170 5618 . 19 3 3 5  5826 . 34 500 5921 . 92 



22 

said to obey Hooke's law .  If  stress is increased a t  a uni form rate, 

de formation of a test specimen also increases at a uni form rate up to the 

yield point . A nonlinear response to increased stress at a uni form rate 

indicates the yield point . In a sense , fai lure of the specimen has already 

occurred even though the impending rupture i s  s l ightly de layed . Detec tion 

of the yield point before rupture actually occurs is tantamount to predicting 

that an actual rupture wil l  occur . Because of nonhomogeneity and many other 

causes, the Earth ' s  behavior is by no means as simple as this analogy . 

Also, the " state o f  the art" and the avai lability of long-term repeated 

geodetic leveling of suffic ient precision practically l imits crustal 

movement prediction to linear model s  at thi s time . Thi s  situation is 

expected to improve as more leveling data are collected in areas of 

particular interest. Special consideration of the data needs for crustal 

movement studies as  wel l  as  consideration of the tradi tional geode tic 

control and engineering uses of height information wi l l  improve data 

densi ty and di stribution characteristic s .  Al so, the evolution o f  analys i s  

methods to a more sophisticated level can b e  expected to improve the 

s i tuation in the long run . 

This technical report i s  concerned with the development of a l inear 

prediction mode l based on point mas s  anomalies . Such an approach may be 

productive because it can be logically assumed that c rustal movements 

are accompanied by , if not caused by ,  some internal mas s  redistribution 

within the Earth . 

The contemporary s trategies and models for predicting vertical crustal 

movement , based on repeated geodetic leveling in the United States and 

Canada , were presented in a review paper by Holdahl ( 1975 ) .  Holdahl ( 19 7 7 )  

has also prepared a n  up-to-date report o n  the method preferred and employed by 

the NOS/NGS ( as applied to the " Palmdale Bulge " in southern Cali fornia ) . The 

MQ equation and point mas s anomaly approach , as proposed in this presentation , 

i s  a variation of  that method . Therefore , only that method will be described 

here , and only to the extent necessary to show the MQ relationship . 



COMBINED LEAST-SQUARES ADJUSTMENT AND 
LEAST-SQUARES PREDICTION 

The NGS method as sociated with vertical crustal movement s tudies i s  a 

combined adj ustment and prediction method . A least- squares adj ustment 

of leve ling circuits is performed simul taneously with a least- squares 

predic tion of the linear coeffic ients in a function used to model surface 

ve loc ities . 
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Observation equations are developed in the following form (Holdahl 1977)  : 

�-a, i 
- h 

a, i 
- ��-a, i· (30) 

The left hand side i s  the correc tion ( residual) for an ob�erved height 

difference between A and B at time ti . The observed height difference is 

symbolized with the term �hb-a, i . The parameters are symbolized wi th ha, i 

and hb, i' i . e . ,  the adj usted heights for A and B, also at time ti . When 

crustal movement is not a cons ideration ( static Earth model) this formation 

of observation equations i s  well known and routine because time ti is 

irrelevant . Repeated leve lings at different times are an es sential 

ingredient of vertical crustal movement studie s ;  the formulation in eq . (30)  

is suitable for an expansion to include leve ling data of thi s type . 

Conceptually, the height of A at time ti i s  the height of A at an earlier 

time to plus the produc t of the time difference and a constant veloc i ty . 

Because the surface veloci ty is variable as a function of posi tion in a study 

area, i t  may be expressed as a function o f  plane coordinates X and Y. For 

a s ingle bench mark at A, we then have the fol lowing express ion : 

h ; 
a, � h + (t. 

a, 0 � 
t ) V ( X  , y )� 

o a a ( 31 )  
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Subs tituting eq . (31) and a similar one developed for h
b ,  i 

into eq . (30) 

results in a new observation equation . I t  has the form: 

R = h + ( t. - t ) V ( X
b' Y

b
) - h 

b-a , i b ,  0 l o a ,  0 

- ( to - t ) V (X , Y ) - �h 1' . 
l o a a b-a , 

(32) 

For this particular case , the new parameters , i . e . , the adj usted heights 

h and h at time t , -0, 0 a , 0 0 and the unknown velocities V (X
b

' Y
b

) and 

V ( X  , Y ) have replaced the parameters h
b ,  

. and h . a a 1 a ,  1 in eq . (3) . With 

sufficient redundancy in a set o f  observation equations , these parameters can 

be directly solved.  However , we will only get discrete velocities at the 

adj usted circuit j unctions where leveling has been accomplished two or more 

times . An important point should be made here to c larify the adj ustment­

prediction dis tinction as previously s tated.  Generally ,  there is  no provision 

for incorporating velocity observations directly in eq . (32) ; '
V ( X , Y ) and 

a a 
V (X

b
' Y

b
) are unknowns for which observations are not available; only height 

observations are directly available . An exceptional case occurs if either A 

or B is a tide gage or Very Long Baseline Interferometry (VLBI) s tation ; 

otherwise velocity is only an indirect geometric and physical consequence of 

a height change with e lapsed time . Cons equently ,  the heights are " adj us ted" 

by leas t-squares as a function of direct he ight difference observations and 

time differences , whereas the velocities are generally an indirect or 

"predicted" consequence of the same adj usted observations of height and time 

differences .  It is also desirab le to "predict" or interpolate velocities at 

points away from adj usted circuit j unctions . This can be accomplished with 

continuous " least-squares prediction , "  which is generally concerned with 

converting discrete samples of a real continuous function into a reasonable 

and logical substitute continuous function ; hope fully , the substituted 

function bears a c lose resemblance to the original unknown function in most 

of its unmeasured regions . A prediction function previously used in the NGS 

method has been an ordinary two-dimensional polynomial of the form 

V ( X  , Y ) 
a a ( 33) 
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When this prediction form and its counterpart for V (� ,  Yb) are substituted 

in eq . ( 32 ) , we have the final form for a unit-weighted observation equation 

involving both least-squares adj ustment and least-squares prediction : 

hb ,  ( t . - t ) �-a , + i 0 1 0 

- h - ( t . - t ) a ,  0 1 0 

- �� -a , i ·  

(co 

(co 

+ cIXb + c2Yb + C 3�Yb + 

+ clX + c2Y + c3X Y + a a a a 

c4Xb 
2 + . . .  ) 
2 . . .  ) ( 34 )  c4Xa + 

In this form, h� and h are the unknown heights at A and B at -0 , 0 a ,  0 t.ime t . o 
The other unknowns are the polynomial coefficients co ' cl ' c2 • • .  cn • The 

question has arisen as to whether more polynomial coefficients can be deter-

mined in eq . ( 34 )  than the number of unknown but determinable velocitie s in 

eq . ( 3 2 ) . The indications are negative , which seems reasonable bas ed on the 

combined least-squares adj ustment/least- squares prediction nature of the 

solution and some of the known limitations of each procedure by itse l f . This 

is part o f  a solvability problem that has been discussed in another paper 

(Holdahl and Hardy 1 9 7 7 )  . 

After the unknowns are determined from observation equations o f  the type 

given in eq . ( 3 3 ) , it is easy to recover any height at any time t .  by a set 1 
of equations similar to that in eq . ( 31 ) .  Moreover , a continuous prediction 

of the surface velocities in the study region can be accomplished by evalu­

ating and contouring a discrete set of evaluated V ' s  in the form p 

V (X , Y ) P P 
+ • . .  ( 35 )  

Many surface fitting techniques could b e  used to replace the ordinary poly­

nomial series in eq . ( 3 3 ) . The apparently advantageous properties o f  MQ equa­

tions in many applications as reported by the author and others have led to 
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cons idering the MQ method in this report . The modi fication is very simple . 

We let 

n 
v (X . ,  Y . )  1 1 L 

j =l 
w . Q (X . , Y . , X . , Y . ) 

J 1 1 J J 
i 1 ,  2 . . .  m m > n 

in which the V (X . , Y . ) I S ,  i 1 1 
V (�, Y

b
) ,  V (X

c
' Y

c
) " , .  and 

1 , 2 ,  3 ,  . . .  , correspond to v ex , Y ) ,  a a 
the X . , Y .  's are nodal points with their J J 

( 36 )  

associated coefficients w . .  These equations can be substituted in eq . ( 32) 
J 

and will produce an observation equation similar to that in eq . ( 34 )  in whi ch 

the MQ coe fficients are unknowns ins tead of the polynomial coefficients . 

After a least-squares solution, the predicted velocities are determined by 

using the determined coefficients w .  in the form J 

v e X  , Y ) P P 

n 

L 
j =l 

w . Q (X , Y ,  X . ,  Y . ) .  J P P J J 

There i s  no change in the method of determining adj usted heigh ts a t  any 

time t . .  1 

PHYSICAL INTE RPRETATION OF THE MULTIQUADRIC COEFFICIENTS 

( 37 )  

I f  the quadric kernel in eq . ( 36 )  is a reciprocal hyperboloid, a physical 

relationship to point mas s  anomalies is involved in some way in accordance 

with the previous discussion concerning eq . ( 3 ) .  Col lective ly, the MQ 

prediction of a single velocity at Xp ' Yp' as in eq . ( 37 ) , is the sum of 

contributions from n kernel func tions, each of whi ch is a reciprocal distance 

times a numerical coefficient . Because the end result i s  the ve loc ity 

V (Xp, Yp) ,  each contribution must be regarded as a linear component of that 

velocity . All surface velocities v ex, Y) are c learly the rate that 

topographic heights change with time, i . e . ,  aH/at . The height H i s  also a 

function of X and Y .  This is reflected in eq. (5 ) involving the hyperboloid 

as an MQ kernel .  



Note that we purposely used w ,  's as coefficients in eqs . ( 36 )  and ( 37)  J 
instead of a ,  ' s  as in eqs . ( 4 )  and ( 5) . Although the w , ' s are related to 

J J 
the a , ' s, it should not be expected that they have exactly the same inter­J 
pretation because the crustal movement problem involves veloc ities . Let us 

postulate that 

a a , 
w --2 = constant 

j at 
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i . e . ,  that the w , ' s represent the constant rate that the point mas s  anomalies 
J 

a ,  are changing with time . This is certainly consistent with eq . ( 4 )  in  which J 
we can partially differentiate disturbing potential T with respect to time t .  

-1 
Substituting t ,  for the quadric kernel and partially differentiating, the J 
result i s  

n 

G I: 
j =l 

(a t�l 
_l

aa� 
aT 

a ----1- + t --1. = 
j at j at at  

( 38 )  

In eq . (4) , the quantity T i s  a continuous phys ical variable, and the a j ' s  

may be regarded as discrete
'
samples of a continuous phys ical variable . The 

t�l
s are fundamental geome tric quanti ties only . If  we try to evaluate the J 

differential eq . in (3 8 )  to find any particular ( a T/at) i' we find that we 
-1 

must spec ify a series of t "  I S .  These are the fixed rec iprocals of distances 
1.J  

connecting a point of prediction, on a plane, to n discrete and fixed points 

with coordinates (Xj ' Yj' 0 )  which represent the location of point mas s  

anomalies . In  Euc lidean geome try, there i s  no rate of change of the 
-1 

geometry itself with time . Consequently, a t , lat , = o .  Thus, eq . ( 38 )  J J 
reduces to 

n aa , 1 "' --2 -
G .LJ at  

t
j 

j =l 

a T  
a t  

This functionally relates a change i n  a point mas s  anomaly with time to a 

change in the disturbing potential with time . 

( 39 )  
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A s imilar approach with eq . (5) leads to 

G 
n aa.. 

- L:  � £ . K , 
1 

at  J J = 

aH 
at  

' 

which together wi th eq . (39) implies a cons istent theore tical point mas s 

anomaly relationship be tween changes in height H with time and changes in 

some equivalent form of disturbing potential T with time . What is not 

expressed in eqs . (39) and (40 )  at this time are the scale fac tors and 

other refinements associated wi th the fac tor K that would reduce the given 

geometric and dynamic relationships to point mas s  anomaly models that are 

theoretically equivalent; a first attempt at a scale reconc i liation is 

given near the end of this report. Hardy (1976) has shown that gravity 

anomalies can be predicted equally wel l  in Carte sian coordinates with MQ 

formulations based on either eqs . (4 ) or ( 5 ), al though the theoretical 

basis has not been completely established . 

In making this s tudy, it was suspected that similar resul ts would be 

found when applied to crustal movement studies . The following sec tions 

conf irm thi s  anticipated resul t .  

THE ERROR OF PURE PREDICTION 

(40)  

For thi s  study , we isolated the pure prediction properties of a prediction 

function from the associated computational procedures in practice which some­

times confuse the development of a new method . The concept involves using a 

contin�ous "error-free "  mode l , " error-free" data samples , and developing a 

unique solution , whi ch causes the "pre diction" function to fit the continuous , 

" error-free " function exactly at all s ample points . This is related to the 

collocation polynomial approach (Sche id 1968 , Hardy 1971 ) which should not be 

confused with " collocation " as frequently used in geodesy by Moritz ( 1972 ) and 

others . As wil l  be seen later, the obj ective of thi s  approach is to j udge the 

performance of a prediction function by comparing predicted ordinates with the 

" error-free " ordinates at the same locations for a particular number of pre­

diction points . In other words , for the purposes of this study we define 



"pure predic tion "  as a critical confrontation and comparison of predicted 

values with true values of a realistic error-free function , away from data 

points that are fitted exactly . 
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The standard error of least-squares prediction for covariance functions, as 

given by Heiskenan and Moritz ( 1967 , p .  269)  doe s  not , in fact , compare pre­

dicted values with the corresponding true values . Instead, i t  estimates the 

error of the random s tochastic model in fitting the s ample points (Kearsly 

197 7 ) --something quite different than the error of pure prediction as used in 

this study . 

In figure 1 ,  we see a contoured plot of subsidence (in feet) in the Houston­

Galves ton area for 1942 to 1973.  This was used , as will be seen later , as the 

basis for a fictitious, but realistic contour plot of surface velocities in 

crn/yr for the same area . 

F igure 2 shows a rectangular grid pattern to cover the s tudy area , used for 

two purposes : 

( 1 )  It de fined the location of 49 grid intersections that would be the dis­

crete prediction points for all prediction functions used in the tes t . 

( 2) It provided the basis for a simulation of data collection in the s tudy 

area . One sample location was chosen at random in each of 36 grid rectangles . 

Thirteen additional sample locations were chosen within the boundary of the 

s tudy area in an "at large " manner , thus providing 49  irregularly spaced 

sample points . 

Figure 3 shows the continuous " error-free " model drawn by Holdahl , inde­

pendently of the grid intersection and random sample locations . Figure 4 

shows an overlay of the sample locations on the " error-free " model . The 

sample points completely missed s everal important subsidence features and 

sections of contour lines , which possibly would not have happened if the 

" error-free "  function had been "visible " or known a priori . Figure 5 shows 

the s e  features and partial contour lines . The miss ing features illustrate an 
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Figure 1 . --0riginal map of Houston-Galveston Sub s idence Area ( 19 4 2 - 1 9 7 3 ) ; 
contours of subs idence are given in feet ( 1  ft = 0 . 304 8 m) . 
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Figure 2 . --Rectangular grid over the Houston-Galveston 
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important point in using apparent or empirical covariance functions as a 

basis for prediction . It is obvious that the missed features of the con­

tinuous " error- free" function significantly contribute to the true variance 

of the " error-free " function . Consequently , the true variance of a real 

phenomenon is generally larger than that determined from the sample variance . 

When an empiri cal covariance function is no rmalized to unity for the variance , 

the division is usually done with a number that is too smal l .  Unfortunately , 

there seems to be no way of predicting in advance how small this number will 

be . The contemporary result of the normalization is to produce an apparent 

covariance function that is too large at small distances . Thi s  phenomenon 

also affects the computation of degree variances that may be substituted into 

what are otherwise deterministic functions . This dis cuss ion of defects in 

apparent covariance is not meant to imply that MQ or any other deterministic 

prediction method wi ll miraculous ly predict features that have not been 

sampled . On the other hand , MQ functions of the deterministic kind are not 

handicapped by this described de fect in the apparent covariance , or degree 

variances based on sampling , because covariances in a statistical sense are 

not used as the basic function . 

We will now complete the
'

discuss ion of pure prediction , and des cribe the 

accomplishment of the comparative tests . Figure 6 shows an overlay of the 

prediction grid intersections on the "error-free " mode l .  Prediction points 

are located in two of the three maj or features missed by the data samples . 

The spot velocities indicated in figures 4 and 6 were care fully interpolated 

for the 49 sample points and 49 predicted points respectively . Although the 

interpolations could be disputed from the present view of being "error free , "  

this would pointless ly require a rede finition of pure prediction as previous ly 

defined . The model is a logical surface velocity model associated with the 

Houston-Galveston subs idence area . The interpolations are logical , i f  not 

expl icitly perfect . The phi losophy of thi s  type of test dictates that " the 

model could be error free ; there fore , i t  is . "  In other words , the assumed 

" error- free " prediction points and assumed " error- free " sample points define 

the discrete "error·-free " model .  The contours themselves may be viewed as an 

inaccurate graphical representation of the " error-free " model , symbolizing 

continuity . Consequently , the "error- free" model thus defined provides a 
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beginning point for comparing predi ction functions on an equitable basis . It 

is assumed that the subsequent refinement by least-squares or other filtering 

and smoothing techniques , presumably unbiased , wi ll not advers ely affect the 

pure prediction capability of the function . In any case , all functions make 

use of the same data , and are required to make predictions of the same points . 

The quality of the prediction methods are j udged relatively by their capa­

bility to replicate the " e rror- free " model at a particular number of predic­

tion points . Al l use ful predi ction methods wil l  presumably approach the con­

tinuous e rror-free model arbitrarily close with sufficient data points , in 

accordance with the Weierstrass theorem . What is being tested , however ,  i s  

not the bas ic logic o f  the prediction method , but the pure accuracy . Other 

cons iderations being equal , the e ffi ciency is an indirect , but important , 

cons ideration because a more accurate method can presumably equal the per­

formance of les s accurate methods by us ing fewer sample points . 

COMPARATIVE RESULTS OF THE PURE PREDICTION TEST 

The following prediction functions were used for comparative tests of the 

"error-fre e "  model ( fig . 3) : 

• MQ forms (n = 49)  

Conic kernel : 

( 4 1 )  

Hyperboloid kernel : 

n [(x _ x
j
) 2 + (

Y 
_ y

j
) 2 + 0

2] 1/2 §. L:  w ,  V (X ,  Y) 

K , 1 J J = 
( 4 2 )  

a )  0 5 . 62  km 

b )  0 = 12 . 51 km 

c )  0 = 14 . 19 km 

d)  0 = 1 5 . 90 km 
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• 

Reciprocal hyperboloid kernel : 

n 
Wj Ux - xj ) 2 + (Y � yj )2 + 0 2 J-l/2 

G E j =l 

a )  0 3 . 98 kIn 

b )  0 5 . 62 km 

c )  0 7 . 62 km 

d) 0 9 . 74 km 

Bi-s ixth degree polynomial (49 terms ) 

Form : 

6 6 

E E 
i=o j =o 

c ,  , 
1. )  

V (X ,  y) . 

V ( X ,  Y )  (43)  

( 44 )  

The last function is not an MQ equation , but was inc luded for comparison 

because it is a typical polynomial fm.m previously used in crustal movement 

studies . It does not have a geophysical interpretation related to point mass 

anomalie s , and is cal led a bi-s ixth degree polynomial because it is formed in 

a manner s imilar to the well known bi-cubic polynomial . 

Figures 7 through figure 1 5  show graphical representations o f  the continu­

ous surface veloc ity predictions for each of the MQ functions above . The 

contours for each function were interpolated with respect to velocities at 

49 irregularly spaced data points that were fitted exactly by the interpola­

tion function (except for minor roundo ff errors ) , plus the predicted veloci­

ties o f  each function at 49 regularly spaced rectangular grid intersections . 

Table 2 gives the s tatistical results for the MQ functions . The bi-sixth 

degree polynomial was fitted exactly to data points , but gave such erratic 

predictions between data points that neither the contouring nor statistics 

are presented ; this seems to be a common de fect of higher degree polynomials . 
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Figure 7 . --MQ prediction ( cm/yr) with the cone as a kernel , 0 = O .  
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Figure 8 . --MQ prediction ( cm/yr) with a hyperboloid as the kernel , 8 
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Figure 9 . --MQ prediction ( cm/yr) with a hyperboloid as the kernel , 0 12 . 51 km . 
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Figure lO . --MQ prediction ( crn/yr) with a hyperboloid as the kernel , 0 = 14 . 19 krn . 
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Figure l l . --MQ prediction ( cm/yr) with a hyperboloid as the kernel , 0 1 5 . 90 km .  "'" 
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Figure l2 . --MQ prediction ( cm/yr) with a reciprocal hyperboloid as the kernel ,  0 = 3 . 98 km . 
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Figure 1 3 . --MQ prediction (crn/yr) with a reciprocal hyperboloid as the kernel , 0 
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Figure l4 . --MQ prediction ( cm/yr) with a reciprocal hyperboloid as the kernel , 0 = 7 . 62 km. 
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Table 2 . --Accuracy of surface velocity prediction 

Function 
(6 in km) 

Multiquadric forms 

Conic kernel 

Hyperboloid kernel 

a) 6 
b)  6 
c)  6 
d) 6 

5 . 62 
12 . 5 1 
14 . 19 
15 . 90 

Reciprocal hyperboloid 

a)  6 3 . 98 
b )  6 5 . 62 
c )  6 7 . 62 
d)  6 9 . 74 

Bi-sixth polynomial 

Maximum 
error 

( cm/yr) 

+ 1 . 63 

+ 1 . 85 
+ 2 . 83 
+ 3 . 02 
+ 3 . 19 

kerne l 

+ 2 . 05  
+ 1 . 88 

+ 1 . 77 
+ 1 . 88 

n . a . 

Standard error 
of a single 
prediction 

( cm/yr ) 

± 0 . 44 

± 0 . 4 6  
± 0 . 60 
± 0 . 63 
± 0 . 67 

± 0 . 56 
± 0 . 46 
± 0 . 4 3  
± 0 . 45 

n . a .  

GEOPHYSICAL INTERPRETATION OF THE RESULTS 

(a ) 
s 

From a purely geometric point of view , predictions of the surface velocities 

in the Houston-Galveston area were done very wel l  by the MQ functions . The 

contoured results in figures 7 through 15 are remarkably similar , although 

the depth of point masses 6 was varied cons iderably during the test . Using 

the statistical results in table 2 as a guide in lieu of the graphical 

results , the best nonharmonic form and the best harmonic form of the MQ func­

tions performed almost equally wel l . As indicated above , the bi-sixth degree 

polynomial did not perform adequately . Consequently , only MQ functions wil l  

be discus sed in this section of the report . 

The best statistical result , i . e . ,  a standard error , a 0 . 43 cm/yr , was 
s 

obtained us ing a reciprocal hyperboloid kernel with a point mas s  anomaly at 

a depth 6 of 7 . 62 km . This depth was estimated a priori to be optimum by 



using eq . ( 2 8 ) . Thus , the practical use of this formula for " flat Earth 

models "  has been confirmed . 

The best statistical result among the nonharmoni c MQ forms was obtained 

with the cone as a kernel . With a standard error, ° = 0 . 44 em/year , the 
s 

error estimate is only slightly worse than the best reciprocal hyperboloid . 
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For the conic form , which is a so-called degenerate hyperboloid , 0 = o .  

Although the surface o f  an MQ formulation involving cones is continuous , its 

first derivative is discontinuous at the nodal points . This discontinuity 
-10 

can be removed by ass igning an arbitrarily small 0 ,  e . g . , 0 = 1 km, whi ch 

would have no detectable effect on either the prediction or the ° = 0 . 44 
s 

em/yr . 

It should be noted that the standard error of MQ prediction with hyperboloid 

kernel s  increased steadily as the depth 0 was increased , in contrast with the 

reciprocal hyperboloid . The depth , 0 = 14 . 19 km , was one of several depths 

used in the series because it is the result obtained with the a priori use of 

the empirical formula in eq . ( 2 9 ) . This formula was developed a few years 

ago by a best fit to a bi-cubic spline function . Although the prediction at 

this depth of mass anomalies does not seem unreasonable ( fig . 10) , table 2 

shows that it is certainly not optimum in this comparison . 

In some applications, perhaps a more rigorous deve lopment o f  the point mas s  

anomaly concept, i t  may be found that a n  interac tion between harmonic and 

nonharmonic functions require s the use of the same depth 0 in both cases . 

The optimum 0 = 7 . 62 km for the harmonic form was not used with the non-

harmonic form in this tes t .  However, an estimate o f  the standard error, 

i . e . ,  Os = 0. 49 , can be obtained for the use of a hyperboloid with 6 = 7 . 6 2 

km ,  by linear interpolation in table 2 between 6 = 5 . 6 2 km and 6 = 1 2 . 5 1  km. 

In this connection it is interesting, but may be of no special signi ficance , 

that for 0 = 5 . 62 km, the standard error, O s = 0 . 46 ,  is exactly the same for 

both the reciprocal and hyperboloid kerne l s .  

A completely rigorous geophysical interpretation o f  the results o f  this 

test cannot be made because of the newness of the concept of using point mas s  
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anomaly models for crustal movement s tudies .  Also , the tes t  area in the 

Houston-Galveston area involve s subsur face changes that are much nearer the 

topographic surface than the depths of point mass anomaly sets that were 

optimum for the reciprocal hyperboloid . The average spac ing of surface data 

was about 1 7 . 8  km for which the optimum depth is 7 . 62 km , according to eq . (28 ) .  

Denser data sets are needed to provide detailed in formation about mass 

redi stribution at shal low depths . 

Subsidence in the Houston-Galveston area is general ly attributed to lowering 

of the water table by excessive use of ground water as a water supply source . 

In other words , subsidence is the result of removal of a considerable amount 

of fluid mas s  and reduction of fluid pres sure fol lowed by a compression of 

de-watered c lay layers . Geome trically , the surface has simply been lowered . 

Physically , the average density of material relative ly near the surface has 

increased . There was probably li ttle or no change in the mas s  distribution 

at the 7 . 6 2 km depth . Although the coefficients of the point mass anomalies 

at 7 . 6 2 km have changed as the subs idence progressed ,  they certainly did 

not change as much as they would have for shallower point mas s  anomaly sets . 

Another important factor has placed limi tations on the de ta ils of geo­

phys ical interpretation that can be accompli shed with thi s first test . The 

data used for thi s test consisted only of velocity data for subs idence with 

respect to the original terrain surface .  Details of heights above mean sea 

level as  of 194 2 and 1 9 7 3  were not used , which is of no consequence for fitting 

the data ordinates of the subsidence veloc ities in a purely geometric sense . 

It could affect determining the point mass anomalies , and consequently , 

the assoc iated interpretation of them . There may have been no correlation 

between the rates of subsidence with the absolute heights of the topography 

in the region , but without studying that aspec t ,  one cannot be certain .  

Obviously , a fit to the subsidence ve locities had to be based on a constant 

height reference plane ( equivalent conceptually to mean sea leve l )  in the 

absence of the detailed topography . 

Also , because of the as yet undetermined K factor in the use of the 

hyperboloid kernel , gravity anomalies are needed . The K factor appears 
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theoretically related to an i sostatic terrain model , but i n  prac tice , it must 

also inc lude some characteristics of a heuristic constant , reflecting the 

actual degree of i sostatic compensation in the region , rather than theoretical 

conditions . Subs idence or upl i ft data alone cannot provide this to facilitate 

the geophysical interpre tation of MQ equations ; an interact ion with c lassical 

isostatic procedures must be established . Direct correlation studies of 

the relationship o f  differential crustal movement with change s in the 

gravity anomaly in the same time period would also be useful . 

Having discussed the need for using topographic he ights and gravity data in 

future tests , we now return to a question discussed briefly in a previous 

section . In particular , the va lidity of us ing eqs . ( 39 )  and ( 4 3 )  to fi t topo­

graphic subsidence velocities needs to be establi shed . As given , their proper 

appl ication appears to be l imited to the rate of change of disturbing 

potential with time . With a simple modification , these equations are also 

relevant to crustal velocities because disturbing potential is related to smal l 

height changes by a l inear proportiona lity . Bruns ' formula , N Ty ,  is a wel l  

known demonstration of this fact because N is a geome tric height separation of 

the geoid and a standard ellipsoid ; T is disturbing potential ; and y is a 

standard qravity value , namely the proportional i ty constant . 

Taking N and T as dependent variables ,  and y as a constant , we partially 
-1 

di fferentiate with respect to time to obtain aN/ at = y aT/ a t . We may 
-1 

re-express thi s  as aH/at = Y
t 

a T/ a t  for our particular case . The term 

a H/ a t  is topographic subsidence with respec t to time . Thus , a H/ a t  corre sponds 

conceptually to aN/ a t  in terms of a small height separat ion with time . The 

term T i s  a potential difference at the level of the topographic surface , 

corresponding conceptua lly to disturbing potential T at ellipsoid level . 

The term Yt i s  still standard gravity , but i f  the topographic height i s  large 

we may want to adj ust: it to topographic level . Using thi s relationshi p ,  we 

are justified in re-expres sing the relationships in eqs . ( 39 )  and ( 4 3 )  in 

the form 

aH 
at 

v ex ,  y ) . ( 4 5 )  
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Equations ( 4 0 )  and ( 4 2 )  may also be expressed as 

n 
� �  L.J w .  
K . 1 J J = 

aH 
at 

v (x ,  y ) . (46)  

Thus , we have established a form of theoretical equivalence of the reciprocal 

hyperboloid and hyperboloid kernels for predicting vertical crustal velocities 

under certain restricted conditions . The results in Table 2 have already 

established the practical equivalence .  

Given the same data sets , both types of kernels and their associated 

coefficients respond as needed to give an unusually good surface fit . The 

kernels are different and the coe fficients are different ( in the sense that 

G w
j

/Y
t 

� GW
j

/K in general ) , yet the sums of their respective products at any 

given evaluation point result in uncannily similar predictions . 

Equation ( 4 5 )  should be considered the most reliable for isolating the 

actual time rate of change of the point mass anomalies because the quantity 

Y
t 

is relatively well known , whereas K is not . For the present , it is tenta­

tively assumed that K is a single constant for a region , but it may turn out 

that there is a K .  for each point mass anomaly . Because K seems to be de-J 
pendent , in any case , upon each actual topographic height and upon the degree 

of isostatic compensation rather than upon a di fferential change in height , it 

is important to use more detailed data in future tests . As previously men­

tioned , both gravity anomalies and actual topographic information associated 

with subsidence or bulge topography are needed to as sist in quantifying the 

so-called K factor . With sufficient refinement , eq . ( 46 )  should complement 

the usefulnes s  of eq . ( 4 5 ) , and together support a more complete geophysical 

interpretation of the mass redistribution associated with crustal movements .  
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CONCLUSIONS AND RECOMMENDATIONS 

The basic conclusions reached as a result of this investigation are 

( 1 ) MQ equations , both harmonic and nonharmonic , are suitable as geometric 

prediction functions associated with crustal movement studies . 

( 2 )  MQ equations have the potentiality for usage in interpreting mass 

redistribution associated with crustal movements in a mascon anomaly form . 

( 3 )  More data are needed for future studies to develop the full potential , 

and limitations , o f  mascon anomaly models . 

It is recommended that : 

( 1 )  The computer programs used in this study ( not a part of this report ) 

be documented and filed for future use in crustal movement studies . 

( 2 )  Investigations o f  this type be continued for studies o f  crustal 

movement . 

( 3 )  Data for future crustal movement studies by geodes ists should include 

detailed gravity and topographic information in addition to the topographic 

bulge or subs idence information provided by geodetic leveling . 
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