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EXTENDED FREE NET ADJUSTMENT CONSTRAINTSl 

Haim B. Papo2 
National Geodetic Survey 

Charting and Geodetic Services 
National Ocean Service, NOAA 
Rockville, Maryland 20852 

ABSTRACT. The contribution of geodetic measurements to the 
establishment of a control network can be partitioned into 
global and local (individual) components. The global 
component epitomized in a number of geometrically 
meaningful parameters can be estimated together with the 
individual pOint coordinates. The additional rank defect 
created by the extension of the parameter list is corrected 
by free net adjustment constraints that are extended beyond 
those needed for a solution of the network datum problem. 
Two applications of extended free net adjustment are 
outlined and illustrated by elementary numerical examples. 
A non-Cartesian (skew) reference system discussed in 
appendix A provides an exotic interpretation of the 
estimated global and individual parameters. Iterations of 
the extended free net adjustment are treated in appendix B, 
featuring two distinctly different sets of preliminary 
values of the parameters. 

1. INTRODUCTION 

Free net adjustment techniques play a major role in the analysis of geodetic 
networks. Optimal error propagation properties combined with a meaningful and 
unique datum that is established without interfering with the inner geometry of the 
network (minimal constraints) have made this method of analysis extremely popular. 
Free net adjustment has been employed extensively in deformation analysis as well 
as in 4-D (time dependent) analysis of geodetic networks. Thus far, however, in 
all its forms and variations it has been used exclusively as a means for solving 
the inherent datum problem of the geodetic network. A line has been drawn (Wolf 
1977, 1918) beyond which free net adjustment constraints have been considered 
inapplicable. Such a line, real or imaginary, is highly challenging. Recent 
studies in 4-D analysis of geodetic networks by this author have renewed interest 
in extending the application of free net adjustment constraints beyond the datum­
defect-solution barrier. 

lA slightly different version of this paper was published in Bulletin GeOdesigue, 
59 (4), 1985. 

2Prepared during a grant period (September 1984 through February 1985) while 
serving as a Visiting Senior Scientist in Geodesy, National Research Council, 
National Academy of Sciences, Washington, D.C. 

Permanent address: Technion, Department of Civil Engineering, Israel Institute 
of Technology, Technion City, Haifa 32000, Israel. 
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Attention has been drawn by Wolf (1978) to the so-called smearing effect in 
adjustment computations where due to inadequate modeling a deterministic part of 
the measuremen�s is "smeared" onto the residuals. A generalization of the same 
idea can be used as a starting point for analyzing the contribution of geodetic 
measurements to the establishment of control networks. It is well known that 
measured distances, for example, contribute implicitly to datum definition (scale) 
of the network. We may be interested in having an explicit quantitative estimate 
of that contribution where conventionally the datum content of the measurements is 
"smeared" onto the control point coordinates. Another example where the 
conventional approach is inadequate is encountered in 4-0 analysis of geodetic 
networks. It is often necessary to define datum in 4-0 by minimizing only the 
irregular part of the velocities of the reference pOints while obtaining parameter 
estimates of the sys�ematic part. The above and other examples can be treated 
effectively by extending the conventional free net adjustment technique. The 
solution as proposed in this paper is one of minimal constraints with complete 
freedom in selecting the function to be minimized for a specific datum definition. 

2. THEORETICAL MODEL 

Consider a set of n measurements made with the objective of obtaining the 
estimate of u parameters. The measurements are expressed as a function of the 
parameters through a mathematical model, which when linearized around preliminary 
values of the parameters results in a system of observation equations: 

L + V .. C 'W (1) 

where C is the design matrix, W represents corrections to the approximate values of 
the parameters WO, L is the vector of differences between observed and computed 
measurements, and V is th'e vector of measurement corrections. 

If the measurements consist of distances, elevation differences, angles, or 
azimuths (but not coordinates), and the parameters are coordinates of points in a 
network, it is well known that the u parameters are nonestimable due to datum 
defect of the system of observation equations (Meissl 1982; Pope 1971) . 

We make the following simplifying assumptions: 

The geometry of the measurements is such that there are no configuration defects 
in addition to t�e datum defect (Welsch 1979) . 

The number of measurements is redundant with respect to the number of estimable 
parameters, i.e., the inequality n> (u-d) is satisfied, where d is the size of the 
datum defect. 

As a means of analyzing the contribution of the measurements the vector W is 
partitioned into global and local (individual) components through the introduction 
of a vector of parameters Y that represents contribution of the measurements to the 
global component of the pOint coordinates. The elements of Yare conceived as the 
parameters of a transformation w (a mapping of X onto W): 

(2) 
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where 

The mapping w is general (Koch and Papo 1985) . restricted only by the condition 
that D=aW/aX has to be a square, full rank-matrix. In the special case of a linear 
mapping, called also isomorphism, the vectors X and W are similar in size and 
nomenclature (Wolf 1978; Shilov 1980). Strang (1977) defines the two isomorphic 
spaces (W and X) as different and yet identical for "all algebraic purposes." X 
represents point-coordinate corrections where the global content of the 
measurements has been withheld. An important characteristic of the parameters Y is 
their complete irrelevance to the actual datum defect of the system of observation 
equations. (See discussion following equation (5').) Their number (f) is limited 
by the inequality: f«u-d). Additional properties of Y are discussed below. 

The observation eqs. (1) are rewritten now in terms of the corrections (X, Y) to 
the respective approximate values (Xo,YO). Those values (Xo,YO) serve for the 
initial (zeroth) iteration of the solution (Pope 1972). Subsequently the adjusted 

parameters x
a and ya are substituted for XO and yo, respectively, and the solution 

is iterated until convergence. 

L + V = C (D.F) 

where 

X 
Y = (A, B) X 

Y 

is a u by u full rank matrix. 

(1 ' ) 

is a u by f matrix of full column rank. This 
implies that the elements of Y are 
independent. 

The rank of (D,F) is u. However, the rank of (A,B) in eq. (1') is only u-d (same 
as the column rank of C). This means that the number of estimable parameters in 
the extended system is still u�d. The size of the null space of (A, B) is thus d+f, 
which means that d+f linear conditions between the parameters are necessary to 
obtain a minimally constrained solution. 

The (1') system is partitioned while paying attention to the size and nature of 
its defects 

( 1 " ) 

d f u-d-f f 

The Ao matrix, which pertains to Xo, is selected so that the remaining part of A 
is of full (u-d) rank (Perelmuter 1979) . The partitioning process is continued by 

_ selecting now A-l O so that the remaining (AII, B) is of full rank. The four matrices 
A, (A, B), (AIO,AII) , and (AII, B) span the same u-d linear space where only the last 
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two are of full rank. The matrix All which is of full column rank spans a (u-d-f) 
dimensional subspace of (A,B). It follows then that AIO and B span the same f­
dimensional linear subspace of (A,B). We shall see in the following sections that 
it is fairly easy to perform the above partitionings by following simple 
geometric considerations. 

A trivial minimally constrained solution is obtained by setting to zero X and 
° 

X and then solving for XII and Y. The partitioning of the (1') system into (1"), 
10 

however, is not unique. Each set of Ao,AIO,AII would produce slightly different 
parameter estimates (X,Y) due to change of base (Pope 1971) and due to errors in 
the measurements. Transformation from one minimally constrained solution into 
another is obtained as follows (Wolf 1977): 

where 

x = X + 0-1 E P + R q 

y y + q 

P is a vector of d datum transformation parameters, 
q is a vector of f variations in the Y parameters, 
E is a u by d matrix known as Helmert's matrix. 

Its columns span the null space of C. 
R is a u by f matrix of full column rank which represents an 

apparent functional relationship between X and Y. 

(3) 

However R is not a conventional matrix of partial derivatives 
as X and Y are independent by definition. The linear 
dependency is enforced only as means of guaranteeing the 
invariance of V in spite of the introduction of the additional 
parameters (Y). 

Note that p and q are small quantities of the order of the measurement errors. 

They are linearly independent which means that [ o-l E, R] is a full rank (d+f) 
matr ix. 

For both X,Y and X,Y to be minimally constrained solutions, V in (1') has to 

remain invariant under the above transformation (3). Substitute first X,Y and then 
X,Y (eq. (3}) into the right-hand side of (1') and equate: 

- -
(A,B) X 

= (A,B) X 
- - + (A B) 
Y Y 

I q
p 

I Equation (4) holds for an arbitrary nonzero only if 

4 

p 
q (4) 



(A,B) .. (0, 0) (5 ) 

which results in 

(6) 

and 
C D R + C F = C (0 R + F) .. o. (6') 

Equation (6) is well known and identifies E as a basis of the null space of the 
C matrix. A solution of equation (6'), which also complies with the stated 

-1 properties of p and q, leads to: R=-O F. Equation (5) is written again: 

(A ,B) 
0 -1 (E, -F) 

(0, I) = (0, 0) (5' ) 

where O-' (E,-F) is a matrix of full (d+f) rank. The linear independence of E and F 
means that Y cannot substitute for the datum parameters. 

Equation (5') signifies the fact that 0-1 (E,-F) 
(0, I) 

space of the (A,B) matrix (Koch and Papo 1985). 

is a basis of the null 

Of all the minimally constrained solutions defined through eq. (3) there is only 
one which satisfies the following minimum condition: 

where 

"T ... 
X X.. min 

" a r r X = X - X a X + �X ; �X = XO - X • 

(7 ) 

Here Xr is a set of preliminary values of Xa which unlike XO is kept fixed 
throughout the iterations of the solution. (See appendix B.) It provides a stable 
(fixed) basis for the datum of the free-net solution. 

Equation (1) is differentiated with respect to 

5 

p 
q resulting in: 

(8) 



Equations (8) represent d+f independent linear conditions between the X 

parameters which can correct the defects of the system. The f irst in (8) is the 

well known free-net adjustment constraints equation which corrects the datum 

defect. The second equation in (8) constitutes an extension o� the free-net 

constraints. It corrects the additional defect ca used by the introduction of Y. 

Equations (8) are written again with H • (E,-F)(D
-'

)
T

, also substituting X+�X for 

X: 

and is used as a basis for defining the linear relationship between (X; ,X�o) 

T 
and Xl1 

where 

(8' ) 

(9 ) 

It can be shown that due to the particular pattern of partitioning the square 

nonsymmetric matrix (H�,HIo) is of full rank and has a regular inverse (Pope 1971). 

Equation 9 is substituted in (1") resuiting in the following full rank system. 
See also Papo and Perelmuter (1983). 

b T 
Accord1ng to appendix B, L is defined as: L - L - LO -(Ao,A1o) (-I,G11) bX. 

(1"') 

An estimate of XII and Y can be obtained now to be followed by evaluation of Xo and 
Xlo from eq. (9). 

.. 
The condition to be satisfied by X can be defined also differently as follows 

(Wol f 1911): 

"T .. 
X Px X � min (7') 

where Px is a general, symmetric, pOSitive-semidefinite matrix. As an example we 

may set: P
X

. D
T

D . Matrix D(YO) can be evaluated Ceq. (1'» from estimates of y
a 
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obtained at the preceding iteration of the solution of normal equations. Such a 
�T � �T � choice of Px implies the minimization of W W instead of X X. Depending on the 

particular properties of X, Px may assume the characteristics of an autocovariance 
matrix (Pope, personal communication, 1985) and bring us to the realm of 
collocation. See also Hein and Kisterman (1981). 

3. TWO APPLICATIONS 

The datum defect (d) of an observational system depends on the dImension of the 
space and on the measurement types. Certain types of measurements have the 
potentIal for a dual contribution to the computation of a network as shown by Pope 
(personal communication, 1985) and also in Papo (1985). They contribute in 
determining the relative positions of the points and also in defining the datum of 
the network. Examples of such measurements are distances, azimuths, and elevation 
differences (in a 3- D net). 

We denote by e the maximum datum defect of a system in i-dimensional (i- D) space 
where e-2,4,7 for ia1,2,3. In general we would have: d<e due to one or more of 
the above datum defining measurements. 

In the fir"st application we seek to control the contribution of those 
measurements to the adjustment of a network by holding back their datum definition 
content. As an example we consider distances measured in 2- D space. Their datum 
content is scale. The linear mapping (w(Y» is " simple: 

W • Y X where Y - s ( 10) 

The distinction between W and X is that in X the datum content of the distances 
has been withheld while W contain the complete contribution of the measured 
distances. In the above 2- D case we have: 

d • 3 f .. d + f - e - 4 

D .. I as well as A .. C due to yo .. 

1 0 1 0 1 0 1 · . . . .  
ET 

HT 0 1 0 1 0 1 a · . . . .  
- -Yl Xl -Y2 X2 -Y. x. -Y .. · . . . .  .. ( 11) 

-------------- --------�-------------Xl -Yl-Xz -Yz -X. -Y. -X .. · .. . . _FT 

HT T T 
0 HIO Hll 

Note that H is equivalent to E of a 2- D system with a maximum (e-4) datum defect. 
Overconstraining (e>d) is avoided by the introduction of Y-s as an unknown 
parameter. The estimated Y constitutes the contribution of the measured distances 
to defining the datum of the network. 
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The geometric considerations which assisted us in partitioning the X, A and H 
matrices are the same as one would use when selecting a basis for a trivial 
minimally constrained solution: 

coordinate corrections set to zero define a datum, i. e., 

origin and orientation. The additional defect for scale (when s is 
defined as unknown), is corrected by defining X ... Y and then setting 
it to zero. 

1 0  2 

In the second application we define w as a 2-D linear transformation of X 
(affine-symmetric): 

u x 
= 

Y v i i 

x 0 Y 
o Y x 

i 

y = yo .. ( 12) 

o 

In this case we are interested in hold ing back the homogeneous deformation signal 
contained in the measured distances. As before, Ware coordinates based on the 
complete contribution of the measurements while X are based on the same 
measurements whose global deformation content, however, has been withheld. In the 
present case we have: 

d .. 3 f ... 3 d + f .. 6 > e .. 4 

1 0 1 0 1 0 1 
0 1 0 1 0 0 ET 

HT -Yl Xl -Y2 X2 -Y3 X3 -Y .. . ....  
... -------------- ------------ ---- -------- .. ( 13) -Xl 0 -X2 0 -X3 0 -x .. 

_FT 
0 -YI 0 -Y2 0 -Y3 0 

-YI �XI -Y2 -X2 -Y3 -X3 -Y .. 

HT T T 0 H10 H 11 

The estimated Y parameters represent the homogeneous deformation content of the 
measured distances. An exotic interpretation of X and Y is discussed in 
appendix A. 

The geometric rationale in planning the partitioning is as follows: 

8 
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As in the first case, setting X.o to zero can define the datum. The deformation 
pattern of the network is defined (fixed) by setting to zero the Xto corrections. 
In fact any three non-collinear points in the 2-D network could provide a basis for 
minimally constrain1ng the solut1on. 

4. NUMERICAL EXAMPLE IN 2-D 

Let us have an elementary 2-D plane network composed of four pOints. Their 
preliminary and simulated (true) Cartesian coordinates are shown in figure 1 and 
are also given in table 1. 

Table 1 .--Coordinates in a 2-D network 

I 0+ (0) (+ ) 
3 Preliminary 

(Fixed) True 
X y X Y 

.... 
Y 

1 - 10 -10 -10 - 10 
2 -10 10 -1 0 9 
3 10 10 1 1  11  

-.02 4 10 - 1 0  1 1  -9 

Figure 1 .  A 2-D network. 

All six distances have been measured as shown in the first two rows of table 2. 
E are the simulated (true) errors in the sense "measured minus E equal true." For 
simplicity the weight matrix was assumed to be a (6 by 6) unit matrix. 

i-j 

E 

v 

L 

Table 2. --Measurements, errors, and corrections 

1 -2 1 -3 

0.0000 0.2858 

.1216 -.1801 

-1. 1.7 

1-4 2-3 

-0.0238 �0.0950 

.1273 . 1281 

1 • 1 • 

2-4 

0.3257 

-. 1681 

-.3 

0.0000 

.1155 

.0 

The fundamental "0" solution was made to serve as a reference. This was a 
standard free net adjustment solution with d m 3: (2) for origin and (1) for 
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orientation. It may be helpful to regard this solution as a special case with 
f = 0, 'i. e., without any additional parameters Y. The last two rows in �able 2 
show, respectively, the estimated corrections to the measured distances after three 
iterations of the solution and the initial (zeroth iteration) differences between 
observed and computed distances. 

Solutions "I" and "II" made use of the extended free net adjustment method 
following the formulation given in section 3. Table 3 presents the results of all 
three solutions. The corrections V remained invariant as expected of minimally 
constrained solutions. Two to three iterations were necessary to converge to five 
Significant digits in V, X, and Y. 

Table 3. --Results of "0.", "I", and "II" solutions 

Parameters 

Xl 

Yl 

Xz 

yz 

Xs 

Ys 

x .. 

y .. 

s 

gl 

gz 
gl 

Preliminary 
value 

-10 

-10 

-10 

10 

10 

10 

10 

-10 

1 

"0" 

-0.9148 

.0943 

-.1953 

- .7976 

.8986 

.4036 

.2115 

.2998 

2.6251 

Estimated corrections 
" I" "II" 

-0.6923 -0.0165 

.2962 .2604 

.0125 .0166 

- .9852 - .2612 

.6765 - .0157 

.1915 .2483 

.0033 .0157 

.4975 - .2475 

.0208 

.0555 

- .0191 

.0351 

2.2797 0.2600 

From the value of s in solution "I" we learn that the distances define a scale 
for the network which is larger by about 2 percent as compared to scale defined by 
the preliminary coordinates. 
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The interpretation of the results of solu.tion "II" is more involved. The 
estimated linear transformation matrix (see eq. 12) represents the deformation 
pattern of the network as reflected in the measurements versus the geometry of the 
preliminary coordinates. The circle (preliminary) and the ellipse of distortion 
shown in figure 1 illustrate the results of solution "II". The major axis of the 
ellipse is inclined with respect to the x axis by 2 1 .°65. The maximum and minimum 
scale factors are 1. 070 and 0.967, respectively. For an exotic interpretation of 
"II", see appendix A. 

5. CONCLUSIONS 

Geodesy of this past decade has been dominated by the emergence and 
establishment of observational systems of a growing variety and redundancy in their 
potential for determining geodetic networks of global extent. Conflicts and 
apparent discrepancies between the datum content of different observational systems 
that are discussed in the geodetic literature can be analyzed and effectively 
controlled by the application of the extended free net adjustment approach. It 
should be noted that no information is lost by the proposed method of adjustment. 
Following the inspection. evaluation. and·eventual approval of the Y parameters. 

the transformation w can be performed on the X coordinates in order to obtain the 
conventional W. It appears that extended free· net adjustment constraints can 
provide yet another solution to the "smearing" problem in geodetic networks which 
is discussed in Wolf ( 1 978).  

In 4-D analysis of geodetic networks there are several prospective applications 
of the proposed method. With the inevitable improvement in measurement accuracy, a 
stage is reached where·no point in the network can be considered as devoid of 
relative motion. In leveling we have had this situation for soma time. If the 
relative motion of all pOints in a network is Significantly different from zero. it 
becomes practically impossible to define criteria for selecting a subset of stable 
reference pOints. The extended free ·net adjustment approach coupled with a 
modified and flexible statistical null-hypothesis procedure as proposed by Pope 
(private communication, 1985), and also shown in Koch ( 1984), is bound to tackle 
the above problem and provide an acceptable solution. 
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APPENDIX A.--SKEW REFERENCE SYSTEMS 

This appendix will attempt to give an exotic interpretation of the solution of an 
observation equations system under extended free net adjustment constraints. 

Let us have spatial distance measurements made in 3-D space with the objective of 
estimating positional coordinates of a network of pOints. The 3-D reference system 
in which those coordinates are to be defined is not a conventional Cartesian 
coordinate system. The basic triad of the reference system is not orthonormal: 
its axes are mutually nonorthogonal and scale is different along each axis. We 
will denote it as a skew coordinate system. 

The position of a point P in 
is usual in 3-D) . The position 
is the point of origin): 

the skew system is defined by three coordinates (as 
-vector of point P (Opr is evaluated as follows (0  

-. + + + OP = x i + Y j + z k 

+ + + where the three basis "unit" vectors i, j, k are of different lengths. 

The datum in such a coordinate system is defined by e = 12 parameters: 

three 
three 
three 
three 

for origin 
for orientation 
for scale 
for nonorthogonality of axes 

Spatial distances (measured in 3-D space) are known to reduce the datum defect of 
scale in a Cartesian system. In a skew reference system, measured distances of a 
minimum of six mutually nonparallel lines, which are also not parallel to the same 
plane (no configuration defects), would red uce the three scale and three 
nonorthogonality defects bringing the remaining defects to six, the same as in a 
Cartesian system. In a 3-D skew reference system there are no conventional 
geodetic measurements which are devoid of any datum content. As is well known, 
however, in a 3-D Cartesian system the measurement of spatial angles does not 
contribute to datum definition. 

Following the examples in section 3 we define Y as the estimable datum parameters 
of a skew coordinate system. In a 3-D observational system of spatial distances we 
have: 

d = 6, e = 12, and f = e - d = 6 

The elements of Yare thus the six estimable datum parameters: three for scale and 
three for nonorthogonality as follows: 

scale in x 
scale in y 

Y scale in z 
nonorthogonality between y and z 
nonorthogonali ty between x and z 
nonorthogonality between x and y 

12. 



The mapping w is the linear (symmetric) transformation formula: 

u 
v 
w 

i 

x 
y 
z 

i 

x 0 0 
o y 0 
o 0 z 

o z y 
z 0 x 
y x 0 

i 

where (x, y,z)i are the coordinates of point Pi in a skew coordinate system that is 

defined in scale and nonorthogonality of axes by the elements of Y. The elements 
of Yare estimable from least squares processing of the measurements. The 

remaining six datum parameters for origin and orientation are nonestimable. The 
remaining defect is corrected by six linear constraints (for example free net 

adjustment constraints: ET X = 0). Note that for the initial (zeroth) iteration 

yoT 
= (1, 1, 1, 0, 0, 0) and so D = I. 

The H matrix in 3-D has the following structure (Papo 1985): 

H .. (E, -F) 

1 0 0 
o 1 0 
o 0 1 
1 o 

. . . . .. 
origin 

o 
. . . . . .  . . . 

orientation 

-xl 0 0 
o -y 0 
o . 01-z 

___________ 1 __ 

-x2 0 0 
. .. . .. 

scale 

o -z -y 
-z 01 -x 1 
_y 1 -x 01 

_ ___ 1 ___ 1 ______ --

o ""z2 �Y2 
. . . . .. 

nonorthogonali ty 

H in 2-D is obtained from the above H by deleting columns and rows which contain 
or pertain to zi. 

Appendix A concludes by examining the results of the numerical example in 
section 4. The X coordinates of solution "II" are defined in a 2-D skew reference 
system. The parameters of that system are derived from the estimated Y as shown 
below. Units Qf scale along the two axes (lengths of the "unit" vectors) in terms 
of the scale implied by the preliminary coordinates are: 

s - 1 + gl - 1 .05550 x 

The angle e between the x and y axes is computed from gl as follows: 

e = arccos (2 gl) - 85.°97. 
It can be shown that the network obtained by plotting the adjusted X coordinates 

in the above skew coordinate system is geometrically equivalent to the one obtained 
by plotting W of the same pOints in a Cartesian system. 
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APPENDIX B.--ITERATIONS OF THE EXTENDED FREE-NET ADJUSTMENT SOLUTION 

The theory of free net adjustment is usually presented without considering the 
need for iterating the solution. In most cases, however, the mathematical model of 
the measurements is considerably nonlinear and so a single solution (zeroth 
iteration) is usually inadequate. 

In the case of a full rank observation equation system our only concern is to 
avoid Pope's "pitfalls" (Pope 1972) .  Assume for simplicity that the nonlinear 
mathematical model is such that the observables can be expressed as an explicit 

a a function of the parameters X and Y. Linearization is performed about a set of 

approximate values XO and yO which are chosen "close" to Xa and ya so that the 
second-and higher-order terms in the Taylor's expansion would come out small and 

could be neglected. Each solution: Xa XO X is used as a basis for + 
ya yo y 

another iteration where the new XO is taken equal to the previous Xa 

yo ya 

"Well-defined" problems converge usually after a few iterations to a stable 

X as approaches zero. 
y 

In case of a rank-deficient system (due to the need for datum definition) there 
r is a preliminary set of parameter values X which serves as a basis for datum 

definition (Papo and Perelmuter 1985). The datum of Xr is transferred to the 

adjusted xa through the following condition: 

min. 

Note that Xr is fixed, unlike XO which changes with each iteration of the 
solution. 

Begin with the observation equations (1'): 

v + L b - L 0 _ (A , B) I � I 
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(B . 1) 

( 1 ' ) 



where 

x = xa - x 0 and Y = ya 
_ yo . 

Helmert's condition (B.l) is transformed into d+f extended free r.et adjustment 
constraints as follows: 

where 

x .. X + llX and 

... 
Substitute for X in (B.2) and 

HT X T T o .. (HOt HlO) 
Xo 
XIO 

llX .. XO - xr. 

partition as in (1") with 

+ HT X + (HT, HT , HT ) I I I I 0 1 0  I I 

from which the following linear relationship is derived: 

GT X + (-I.GT ) �x 
11 11 11 

where GT .. _(HT, HT )-1 HT as defined in equation (9). 
II 0 10 II 

Substitute (B.3) into (1 ') and regroup with the result: 

Xo 

the result: 

llXo 
llX 1 0 
llX II 

v + Lb - LO + - GT �X - I 
T (A , A ) A + (A ,A ) Gil Xu 0 1 0  I 1 II 11 0 1 0  

which is written in compact form as equation ( 1 "') 

(B.2) 

(B.2') 

(B.3) 

,8 

I 
Xll 
Y 

(B.4) 

(1 "') 

AS stated in Papo and Perelmuter (1 985) the difference llX - Xa - xl" can assume 
any magnitude without impairing the linearization of the mathematical model of the 
measurements. 
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