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ON DATA SNOOPING AND MULTIPLE OUTLIER TESTING 

Johan J. Kok* 

National Geodetic Survey 
Charting and Geodetic Services 
National Ocean Service, NOAA 

Rockville, Md. 20852 

ABSTRACT. Data snooping, using Studentized or un-studentized 
one-dimensional conventional hypothesis tests, is described as 
a special case of general multivariate linear hypothesis tests. 
The derivation of test statistics is based on the ideas of 
Allen J. Pope. Special attention is given to the concepts of 
internal and external reliability of networks, as defined by 
W. Baarda, for un-Studentized data snooping. Finally a heu­
ristic procedure for the detection of multiple (or simultaneous) 
outliers in one adjustment, called "iterated data snooping," 
is described. The results of an experiment with simultated 
errors in the observations are given. 

l. INTRODUCTION 

Three types of tests that are in use for the detection of isolated blunders (out­

liers) in the observations for geodetic networks can be divided into Studentized 

tests, using either Student's t-distribution or the tau-distribution, and in un­

Studentized tests, using the standard no:rmal distribution of Gauss-Laplace. 

Allen J. Pope showed, during a series of seminars at the National Geodetic Survey 

(NGS) (Pope 1982), that the three types of tests mentioned can all be derived 

algebraically from general multivariate linear hypothesis tests as found in, e.g., 

Hamilton (1964), Graybill (1976), and Koch (1980). 

Section 2 of this report generally follows Pope's derivation. Section 3 

gives a short review of the concepts of internal and external reliability of net­

works. These were defined by Baarda (1968, 1977) as measures of the quality, as 

well as the optimization of design of geodetic networks with respect to the possible 

presence of outliers in the observations. 

*Prepared during a grant period (June 1981 through May 1982) while serving as a 
Visiting Senior Scientist in Geodesy, National Research Council, National Academy 
of Sciences, Washington, D.C. 

Permanent address: Delft University of Technology, Department of Geodesy, 
Thijsseweg 11, Delft, The Netherlands. 
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AS the derivation of the tests includes multidimensional hypothesis tests for 

simultaneous outliers of unspecified relative size, this has been the start of the 

idea of iterated data snooping, described in section 4. Iterated data snooping is 

an attempt to overcome the difficulties encountered when more than one outlier is 

present at the same time. It is known that, because the residuals in a least­

squares adjustment are not robust with respect to outliers in the observation~, 

one outlier can mask others. Also, an outlier may cause the rejection of good 

observations, especially in un-Studentized outlier tests where the rejection limit 

(critical value for the test) is not affected by the estimated variance of unit 
"2 weight cr

0
• 

In iterated data snooping we try to make the residuals (and consequently the 

statistics for data snooping tests) more robust by subsequent removal of suspected 

observations using the sequential adjustment technique (backwards). As will be 

shown, this can be done without recomputing or updating the triangular (Cholesky) 

factors of the normal matrix, so information about possible simultaneous outliers 

can be generated during a single adjustment computation. 

2. MULTIVARIATE LINEAR HYPOTHESIS TESTS 

2.1. The Use of Variance Ratios 

consider an adjustment of an overdetermined geodetic network by the method of 

variation of parameters. The (linearized) observations equations are 

where 

A6.X = 6.L + V, 

0 
L1.L = L-L{X } ; ("observed" minus "computed" observations") 

r = degrees of freedom, or redundancy, 

A least-squares adjustment based on the observation equations has the solution 

X = x0 + 6.X = x0 + (AtPA)- 1AtP6.L; 

2 

_1 
with P = n xl • 

(1) 

(2) 



Its covariance matrix is 

. h "2 = 
Wl.t C1 d 

r 

or 

as the unbiased estimate of a~. 

Adjusted observations are 

" 0 A 0 A 

L = L + ~L = L + A6X 

and least-squares residuals to the observations 

V = L - L = ti. - 6L. 

(3) 

(4) 

(5) 

-1 
Sometimes r

1 
is a diagonal matrix, and consequently also P = Q

1 
, but this is not 

necessary. Nor111ally distributed observations are not required for the least­

squares adjustment, but this is assumed here for the purpose of hypothesis testing. 

A constrained least-squares adjustment of the same problem, which is introduced 

for the purpose of testing general linear hypotheses concerning the parameters 

(unknowns) or functions thereof, has observation equations 

A6X = 6L + v 
c 

t 
C 6X = L c 

where matrix ct is of full rank c. 

The degrees of freedom are now f = r + c, with 

r =degrees of freedom,unconstrained adjustment, 

c = number of constrafnts. 

From the theory of the linear model (Hamilton 1964, Graybill 1976) we have the 

following quantities and their distributions after applying the least-squares 

adjustment. The unconditional sum of least-squares of residuals of the uncon~ 

strained adjustment (1) is 

3 

(Ga) 

(Gb) 

(7) 



and the additional sum of squares due to the constraints in the constrained adjust­

ment based on eqs. (6a) and (6b) is 

t t 2 2 
(V PV - V PV) - X .a c c c 0 

(8) 

It can be shown that the sums of squares VtPV and (VtPV - VtPV) are independ~ntly 
c c 

distributed as x2• 

Also we have the identity 

(VtPV - VtPV) =(Ct6x - L >:cctQAC)-~ (Ct6x - L ). 
c c c x c 

"2 t Then, using a
0 

= (V PV)/r, we have the variance ratio 

T = ~------------------------~~ = c.02 
0 

r 

c 

With eqs. (7) and (8), we see that Tis distributed as F denoted as 
c,r' 

VtPV - VtPV 
T = ~c ___ c ______ _ . r - -

VtPV c 

2 

X/c 
2 

X /r r 

F • c,r 

(9) 

(10) 

( 11 ) 

2 "2 t In case the variance factor a
0 

is known, the estimate a0 = (V PV)/r in eqs. (10) 

and (11) can be replaced by 0 2, and we get 
0 

t " t t - 1 t " ( c 6x - L ) • ( c Q"C) • ( c 6x - L ) 
c x c 

t 
c 

(12) 
T' 

c 

We will refer to tests based on the statistic of eq. (11) as the "Studentized" case 

and to that of eq. (12) as the "un-Studentized" case. 

Statistics of type T and T 1 in eqs. (11) and (12) can be used for testing the 

hypothesis that a parameter (unknown) or a combination or function of parameters 

in the adjustment are in agreement with known values. This is done by choice and 

specification of the constraint equations (6b). In adjustments of geodetic networks 

we rarely have this knowledge (e.g., theoretical values) of the parameters. 
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However, the apparatus of general linear hypothesis tests can also be used for 

hypotheses on parameters that are not originally included in the adjustment model1 

but instead are introduced after the adjustment as additional parameters. In the 

following this possibility is worked out. It is included for reference, because 

a similar strategy is followed for outlier testing, described in section 2.2. 

Let us now denote the observation equations for an unconstrained adjustment 0£ a 

geodetic network by 

(13) 

For reference purposes a least-squares adjustment based on this system of equa­

tions will be called the "nominal" adjustment, with r degrees of freedom, it has 

a vector of residuals denoted by V( . l)" 
nomina 

For the case that model errors are supposed to be present in t.~e observations, 

the model is extended with additional parameters x2 for such unknowns 

(14) 

with degrees of freedom f = r - c, when c is the number of additional parameters 

X2 • The constrained adjustment for this enhanced adjustment model has obser•Jation 

equations 

b.L + V 
c 

L . 
c 

( lSa) 

( 15b) 

A valid choice of a set of explicit absolute constraints on the parameters X2 is, 

e.g.' 

(0 I ) and L = Q, 
c c 

where 

I = (E. E. Ek •••••• ) with E. = i-th unit vector, etc. 
c l. J l. 

•rhe consequence of this s~ecific choice is that the parameters ·X 2 , just added to 

the adjustment,are at the same time constrained to zero. The results of the 

constrained (enhanced) adjustment, using eqs. (lSa, lSb), will be the same as 

those of the nominal adjustment, using (13) on its own. 

5 



consequently, the degrees of freed.an of the constrained enhanced adjustment equal 

that of the nominal adjustment f'=(r-c) + c = r, and the residuals V = v • 
c - n 

t def 
If C

2
X

2 
- LC = µc' the hypotheses will generally have the form 

- null hypothesis H : 
0 

- alternative hypothesis H : µ ~ O. a c 

Such hypotheses do not specify anything about the fWlcti9nal model (design matrix 

A) or the stochastic model (covariance matrix t 1 = Q1 .cr~), so it is assumed that 

these are correct. The variance factor, however, may be known or Wlknown, 

depending upon the type of test that will be used: Studentized or un-Studentized. 

Studentization involves only a~, so for both types of tests the relative size of 

the variances described by Q1 must be known. The dimension of the hypothesis is 

determined by the number of additional parameters, and it equals the rank of the 

matrices B and ct. Usually the hypotheses describe ad~itional small physical effects, 

which were not included in the model of the nominal adjustment, but possibly are 

present. :If only one parameter X 2 is used to describe the hypothesis, then ct is a 

lxu vector and B is a nxl vector, with rank 1. Consequently, the hypothesis in 

this case is one-dimensional. If the hypothesis is described by use of c additional 

parameters x2, then ct is a cxu matrix, and B a nxc matrix, both with rank c. The 

hypothesis is then c-dimensional. 

For testing hypotheses, to be formulated in the enhanced adjustment model, we 

use the statistic of eq. (10): 

(Ct6X - L )t 
t _ 1 

(Ct6X -(C Q"'C). L ) 
·r1 

c • x c F (16) = .. 
c,f' 

c.o2 

0 

where 

ct = (0 I ) 
c and L c = 0 

"'2 VtPV 
cr

0 
= --r--1 f = r -c = degrees of freedom, unconstrained adjustment. 
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Then 

because c tbx = r 0 re) [ 6:· 1 = 

l:iX2 

also 

Now consider that 

then 

and 

I c 

Le = 0, 

" t _l " 
l:iX2 ~2l:iX2 

VtPV 

-1 --1 -1 -1 
= (N ) 22 = N2 2 = (N22 - N21 N11 N12) 

t t -1 t -1 = (B (P-PA(A PA) A P)B) 

= (BtPQ PB)-l 
v c 

or 

- -1 
where v = PV and ~ = PQ p = P-PA (AtPA) AtP. 

c c v 
c c 

Also u t:l rA tPL1 
l BtPLJ 

7 

f ... F f - c c , 
(17) 

(18) 



then 

-1 
U2 = U2 - N21 N11 U1 

BtPL - BtPA(AtPA) 
_1 

AtPL = 

BtP(L - A(AtPA) 
-1 AtPL) = 

t =-B PV 
c 

U2 
t-

or =-B V . c 

·Finally we have 

t _1 t-= (B Q- B) (- B V ) • 
VC C 

Now eq. (17) becomes, with use of eqs. (18) and (20): 

or 

! = V~B(BtQ;CB)- 1 

(Bt~ B) 

c VtPV 

f 
c 

F 
c,f 

By use of the identity (9) eq. (17) can be written as 

so it follows 

VtPV 
c c 

or 

VtPV 

f --F 
c c,f' 

then from eqs. (21) and 

t VtB(BtQ- -1 
- V PV B) 

C VC 

-1 

(22) 

BtV 
c 

t-t 
= V PV 

-t t 
- V B(B Q- B) B V c c c v c 

c 

8 

that 

(19) 

(20) 

f 
c 

( 21) 

(22) 

(23a) 

(23b) 



Then the test statistic T1 can also be written as 

T 
1 

= 

VtB(BtQ- B)-lBtV 
c v c f 

~~~~~~c~~~~~~-· - ,... F • 
vtPV - VtB(BtQ- B)- 1atv c c,f 

c c c v c 
c 

(24) 

This last equation is very useful, because all quantities V and Q- can be ob-
c VC 

tained from the nominal adjustment with 

V = PV c c = PV 
n 

and Q- = PQ p = v v 
c c 

PQ p 
v 

n 

and matrix B can be specified without actually performing the enhanced adjustment 

itself. 

In Pope (1982) the statistic T2 is introduced, which is defined as 

The distribution t c,r is "new" 

!_ - T 
c c,r 

(25) 

and not known, but it can be expressed as a function 

of the F-distribution, because Tz can be written as a function of T1 as follows 

VtB(BtQ- B) -1 BtV 
VtPV VtPV - VtPV v c f c r r c c 

T2 = - = -
VtPV c VtPV f VtPV 

c 
c c c c 

or with use of eq. (22) : 

VtPV 1 
r r 

Tl T2 = . . T1 = . . . 
VtPV f VtPV t f - V PV 

c c c c 
1 + 

VtPV 

r.T r.F c,f 
1 

l 
r 

Tl Then T2 = . = c f 
1 +- . T1 f + c. Tl f + c. F c,f f 

9 



Thus 

r.F f r c, 
- - ---"'---- = T 
c F c,r f + c. c,f 

If the variance factor o2 is known, we may write eq. (24) as 
0 

2 
Xe 

(:: F ) ' 
C C ,no 

(26) 

(27) 

which is the un-Studentized statistic for general linear hypotheses in the 

enhanced adjustment model, where T1 in eq. (24) and T2 in eq. (25) are Studentized 

ones. In all three cases there are several possibilities for the choice and speci­

fication of B.~x2 • In all cases, however, the matrix (BtQ- B) must be regular and 
Ve 

invertible. The rank of the total matrix Qv = P - PA(AtPA)-1 AtP is r = n-p, 
c 

where n is the number of observations and p is the number of independent unknowns 
t 

in the nominal adjustment (or the rank of A PA). Consequently the rank of 

(BtQ...: B) can maximally be r = n-p. If (BtQ- B} is singular, then the (local} redun-
~ ~ 

dancy is insufficent to test the hypothesis specified. 

For one-dimensional hypotheses, where Ct is a 1 x u vector and B is a n x 1 

vector, the statistics T1 , T2 and T3 are (dropping subscript c): 

;;;tbCbtQ-bl 
-1 t-

b v 
Tl 

v (r-1) F = . -t -t t -1 t- 1 I r-1 V PV - v b(b ·Q-b) b v 
v 

(28) 

;;;tbCbtQ-bl- 1btv 
'I' 

v = r - T 2 
VtPV 1 , r 

(29) 

-t t -1 t- x2 v b(b Q-b) b v v l 
T3 = c= F ) 

02 1 1 I 00 

(30) 

0 

10 



Considering that 

F 
l ,r-1 is the square of Student's t ; 

r-1 
T 2 is the square of univariate tau T ; and 1,r r 

F l 1<:0 = x~ is the square of standard-normal n[O,l], 

one can also write 

{31) 

(32) 

(33) 

For eq. (32) see Pope (1976), and for eq. (33) see Baarda (1968). 

One-dimensional hypotheses of the type 

tested by use of statistic t 3 in eq. (33),play an important role in Baarda's 

a-method of testing. By use of chosen levels of significance a and power 1.-S, 

quantification of reliability of networks is based on the same type of hypotheses 

and tests. This is reviewed in section 3. A geometrical derivation and interpreta­

tion of the one-dimensional un-Studentized test can be found in Baarda (1968) and 

van Mierlo (1981). An illustration of the applicability of the general one­

dime-nsional linear hypothesis tests to deformation analysis is given in Kok (1981, 

1982), where the vector b in the hypothesis is used to describe a systematic pattern 

of changes in coordinates due to deformation. 

ll 



2.2. Tests for the Detection of Outliers (Data Snooping) 

For the purpose of testing for outliers in the observations in a least-squares 

adjustment the enhanced model of section 2.1 and linear hypotheses tests can be 

used as follows. For this purpose the enhanced model of which we are thinking 

is no longer one which contains additional small physical effects, but instead is 

one which is enhanced by the addition of c blunder parameters for a selected set 

of ~ observations. 

vector 6X2 is the vector of (unknown) blunder parameters, each parameter re­

presenting the blunde~ in one of the observations. We then have 

H
0

: 6X2 = 0 (null hypothesis) 

Ha: 6x2 ~ O (alternative hypothesis). 

If the alternative hypothesis is an assumption of c outliers of unspecified 

relative sizes being present in the vector of observations, then each column of B 

assigns the effect of a single blunder parameter to the appropriate observation. 

In this case the c columns of B will be unit vectors. If the hypothesis involves 

knowledge about the relative size of the errors, (e.g., a systematic disturbance 

of observations) then the columns of B will not be unit vectors. 

Suppose a hypothesis involves c different outliers of unknown sizes. Then 

matrix B is 

B {b. b . • ••• } = { e:. e:. • ••• } = I • 
1 J 1 J c 

Each column of B (unit vector) assigns the effect of the particular blunder para­

meter to just one observation, e:. to observation L., e:. to observation L , and so 
1 1 J j 

forth. The hypothesis is c-dimensional, because the rank of B is c, and there 

are c blunder parameters ~x 2 • 

12 



Test statistics of eqs. (24), (25), and (27) become respectively 

2 
c.a 

0 

t­v 

r 
c 

x2 
c 

c 

r-c _ ... 
c 

2 
T c,r 

F 
c,r-c 

(34) 

(35) 

(36) 

- t -1 t t- t 
where v = PV and Q- = PQ P = P - PA(A PA) A P: and I V and (I Q-I ) are selected v v c c v c 

elements of V and Qv' related to those observations that are involved in the hypo­

thesis. All these quantities can be computed from a nominal adjustment. Forming 

hypotheses involving such simultaneous possible outliers is generally not easy 

because of the lack of available information. 

A special application, however, is given in Kok (1982). This is the testing of 

the coordinates of known points in the case of densification networks and deforma­

tion networks (in one-, two-, and three-dimensional coordinate systems), one at a 

time. Usually this is done by one-dimensional tests, where each coordinate succes­

sively is considered to be possibly an outlier. Using statistics from eqs. (34), 

(35), or (36), we can involve in each hypothesis the coordinates of one point, which 

will be one (x), two (x, y), or three (x, y, z) respectively. For one-dimensional 

coordinate systems (e.g., leveling, gravity) these tests coincide with standard 

data snooping, but for two-orthree-dimensional coordinate systems the hypothesis 

for each point is two- or three-dimensional. This seems to be a more realistic 

strategy than testing each coordinate separately. 

Baarda (1968) introduced "conventional" alternative hypotheses, where only one 

outlier at a time is assumed to be present. Each conventional hypothesis is then 

one-dimensional and the vector b = &i' a unit vector corresponding to that observa­

tion involved in the hypothesis. If we form these conventional hypotheses for all 

observations successively, this results in a set of n conventional Ha., each of 
1 

them being one-dimensional. Testing these Ha. consecutively is called "a data 
1 

snooping strategy." 
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We have H 
0, 

l. 

(i=l, ••• ,n} 

Test statistics for one-dimensional hypotheses of eqs. (31), (32), and (33) 

then become 

or 

where 

t = 
1 

tl = 

v. = 
l. 

t2 = 

t3 = 

- V. 
l. 

=2 )~ (VtPV - v. 
l. 

-v. 
l. 

Q-12 
V. 

l. 

- b tv 
l. 

,., t ~ 
a • Cb. Q-b.) 

0 l. v l. 

t-- b. v 
l. 

t ~ a
0

• Cb. Q-b.) 
l. v l. 

r;:i - t 
r-1 

- --v. -v. 
l. l. 

= = - T a .Q- '2 
,., r 
av· 0 v. l. 

l. 

---v. -v. 
l. l. 

n ro, 1] = = --~ a o·Q- o-
v. vi 

l. 

(37) 

(38) 

(39) 

These are the test statistics for either Studentized data snooping, using Student's 

t-distribution (Heck, 1980) or the tau-distribution (Pope, 1976), or for un­

Studentized data-snooping, using the standard normal distribution (Baarda, 1968). 

The data snooping tests are then for each observation, respectively: 

if (40a) 

if 1 then reject H0 • 
r . 1-0. J. 

(40b) 
I 

14 



if 
Iv.I 

1 
t 3 = - 0-_- > x1-a then reject Ho. 

vi 1 

(40c) 

If H
0

. is rejected in favor of Hai' this means that at least the i-th observation 
1 

Li has to be checked for a possible gross error. 

In the most uncommon case of uncorrelated observations, where p is a diagonal 

matrix, statistics t 1 , t 2 , and t 3 are often replaced by 

- v i 
t' =-------

1 ( V tPV - V ~ ) ~ 
1 

lr-1 ... t · r-1' 
( 41) 

where V. 12 = Q • v., 
1 v. 1 

1 

-v. 
t' 1 

T = -- r; 2 A 
(42) 

a 
v. 

l. 

-v. 
t' 1 n ~o, 1] ; = ---3 

(43) 

a v. 
1 

which are slightly easier to compute. 

2.3. Least-Squares Estimates for Outliers 

To test for the presence of outliers (using one-or multidimensional hypo~eses), 

matrix B in the enhanced adjustment model of section 2.1: 

is built up by c unit vectors, where c is the number of possible (simultaneous) 

outliers involved in the hypothesis, and consequently the dimension of the 

hypothesis and of the test. Using the least-squares solution of eq. (20) : 

A 
.~x = 

2 

15 



we can compute least-squares estimates of outliers from the results of the nominal ... 
adjustment. A vector of blunder estimates 'ilL can be found in general by 

Considering that B is a n x c matrix of unit vectors, this is 

t -1 t-= I (I Q-I) (-I V), c c v c c 

t 
where (I o-I ) is a selected c x c submatrix of c -v c 

Q- = v 
PQ p 

v 

t -1 t = P - PA(A PA) A P, 

(44) 

(44a) 

In the common case of one-dimensional conventional hypotheses, B is a n x 1 unit 

vector bi = e:., and we have 
l. 

" _ 1 -
'ilL = E. Q- (- V.) = 

l. V. l. 
l. 

(45) 

In this case the vector 'i/L has only one nonzero element 'i/L,, which can be written 
l. 

as the least-squares estimate of a single blunder in L 

... 
'i/L. 

l. 

-v . = _J._ 

Q-v. 
l. 

2 ,..2 

(46) 

Since eqs. (44), (45), and (46) do not include cr0 or cr
0

, the blunder estimates 

are independent of the type of data snooping test applied. 

For the least-squares estimate of a blunder in observation L., Forstner (1979) 
l. 

gives 

where ri 

" V'L. = 
l. r. 

.1. 

= (Q P)., which is called "Redundanz-AnzahL" 
v l. 
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considering only uncorrelated observations {Pis diagonal), then formula (46) 

yields the same 

-v. - (PV). -V. -v. 
" l. l. l. l. 
'VL. = = = =-

1 Q- (PQ P) . (~P)i r. 
vi v 1 l. 

3. RELIABILITY OF NETWORKS 

3.1. The Concept 

(47) 

When applying tests for the detection of outliers to a network adjustment, the 

choice of the level of significance of the test (a) determines the probability 

for the occurrence of type-I errors, i.e., the rejection of the null hypothesis 

H0 when it is true. By the choice of ~ we control the probability that remeasure­

ments or investigations for error sources will be performed when there is no 

error present. 

Ideally we also wish to have control over the type-II errors, i.e., the 

acceptance of the null hypothesis H whenthe alternative hyoothesi9 H is true. o - a 
Probability of making type-II errors (8) is computable for a specified size of a 

model error, and it establishes the power of each test (1-S). The power describes 

the probability that model errors of specific size will be detected when present. 

The concept of reliability of networks as defined by Baarda (1960, 1968, 1977) 

can be described as a quantification and analysis of the probabilities of type-II 

errors, when applying tests of one-dimensional conventional hypotheses (data 

snooping) to the observations in a network. 

By fixing the power of all one-dimensional data snooping tests on a chosen level 

(usually 1-8
0 

= o. 80), the size of so-called "marginally detectable errors" can 

be computed for each of the conventional Ha., i.e., for each of the observations 
l. 

contributing to the adjustment. Essential for the B-method of testing is that we 

use the same level of power (1-13
0

) for one-dimensional tests as for the "global" 

test of the variance of unit weight a2 , by use of the statistic 
0 

"2 2 

VtPV a xr 
T = = _.Q_ - (48) 

2 2 r r.o a 
0 0 
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Also it is essential that the size of A (non-centrality parameter) be fixed at a 

common level. As a result of these choices the levels of significance of the 

one-dimensional data snooping tests a
0 

and that of the ·r-dimensional test of the 

variance of unit weight a become interdependent. 

The sizes of marginally detectable errors, computed for all observations, ~re 

measures of the capability of the network to detect outliers of that size in an 

observation with a probability (power) of 1-8
0

• They constitute the "internal 

reliability" of the network. The influence of each of the marginally detectable 

errors on the unknowns in the adjustment (usually only on the coordinates) is 

called the "externa~ reliability." For a given network configuration (geometry) and 

stochastic model (covariance matrix of the observations) , the reliability is com­
putable, but it can then only be controlled by changing the level of significance 

a , which means also changing the control over type-I errors. 
0 

Changing the network configuration and/or the stochastic model (choice of 

instruments, measurement procedures), however, will influence the type-II error 

control, because reliability changes. Consequently, reliability of networks can 

be an important tool in the process of optimal network design. Baarda developed 

the concept of reliability of networks using the un-Studentized conventional 

hypothesis tests of eq. (40c). So far it is not available for Studentized types 

of data snooping in an operational form. The review of computation of reliability 

in sections 3. 2 and 3. 3 is thus restricted to the un-Studentized ca-se. 

3.2. Internal Reliability 

For one-dimensional un-Studentized tests ir. data snooping, we have eq. (40c), 

which is applied successively for each conventional alternative hypothesis 

H 
a. 

l. 

with statistic 

w = t3 i 
=-

a 
v. 

l. 

- n[ 0, 1] • 
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The following tests are made: 

If lw.I >x 
1 

then reject H. 
1 -a

0 
o 

In figure 1 the test is depicted for a certain value of w. 

N(0.1) 
E(w1H0 J = w = 0 

CT =CT= 1 w 

'kCl 
0 

Figure 1.--un-Studentized w-test. 

- -If the Ha is true (observation L. is an outlier L. + 9L.), then we have the non-
i l. l. l. 

central normal distribution, indicated in figure 1 under Ha· The normal distribu-

tion is shifted over a distance If", which is called the non-centrality parameter. 
0 

Under the null hypothesis the mathematical expectation of w. is zero 
l. 

E {w.l!i} = 0. 
l. 0 

Under the alternative hypothesis this is 

E { w. I H } = 9w = lf 
i. a 

If A is known, then the power of the test is determined, for a certain level of 

significance a
0

, by 

P {w. > c I H } 
i. a 

1 -(c+r'rl 2 

= 1-~ = l2iT" f e -'2xdx 
-co 
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f -'2 2 +-:=- e xdx 
r2Tr 

- ( fi-c) 

(49) 



The first integral in eq. (49) is that part of the "left tail" of the normal 

distribution under H , that falls in the left rejection reqion. :For large v~lues a 
of l-6 it is very small, and in practice it is usually neglected. The second inte-

gral in eq. (49) can be written as 

or 

+oo 2 0 2 +oo 2 

- e dx 1 f -~x 

.fiTr -(/r-c) 

= _]._ re -~x dx + _!_ fe -~x dx 

/21T .:{t'X-c> h.rr o 

0 2 
1 f -~x r.:- e dx + 0.5. 

v2ir -
-(h,-c) 

We have then for the power 

1 lo -~x2 
1-8 = a. 5 + - e dx. 

.ffi -
({A-c) 

(50) 

(51) 

Specifying a certain level of errorsl9L. I =l~LI for all observations of the same 
l. 

type, e.g_., as a function of their standard deviation, would make it possible to 

compute (1-8). for each H and it would give an impression of internal reliability 
l. ai 

in terms of probabilities. For such computations (involving as many integrals of 

eq. (51) as there are observations in the adjustment), it is necessary to 

standardize the error level lvr.I for each Ha. by 
l. 

(52) 

where V. = (PV). and Q- = (PQ P) .. = (P-PA(AtPA)-
1
AtP) ..• If values (1-S). are of 

l. l. vi v l.l. l.l. l. 

the same order of magnitude for all observations, then the internal reliability is 

homogeneous. Otherwise it is not. 

In practice the process is turned around by choosing a common level of power 

(1-6
0

1 for all tests, usually 1-8
0 

= 0.80. Then eq. (Sl) becomes 
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0 2 

1 f -'ix - e dx = 0.30. 

Iii -<l'f -c) 
0 

(53) 

In this formula A0 is the only unknown quantity, because the critical value c 

is a function of a
0 

and n [ 0, 1] only, so ff;, can be computed by inteqration. 

Because of the common level (1-S
0

> and the use of standardized statistics, ~ has 

to be computed only once for the whole adjustment. 

Instead of computing the power of each individual one-dimensional data snooping 

test, one can now compute the magn~tudes of blunders that can be detected with the 

same probability (1-8
0
). Considering eq. (46} for the least-squares estimate of a 

blunder in the i-th observation 

-
-V. 

l. 

=~ 
i 

and using 

-v 
i 

or 
- ... i, 2 - v. = w .• o-. cr

0
, 

l. l. -v. 
l. 

we can also write 

A I:! 
w •• Q- .cr

0 l. v. 
... l. 
VLi = -----= 

Q­
v i 

... 
w .• 0 

l. 0 

Q-i, 
v. 

l. 

(54) 

(54a) 

(55) 

Equation (55) can be considered as a transformation of the standardized statis­

tic w to the sample space. 
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,. 
Replacing the "distance" wi by lf

0 
(see fig. 1) yields 

VL = Ei • ~ • ao 
1 

csGa> 

or 
(56b) 

which is given in Baarda ( 1968) as 

- i ·~ ( "lx ) = (ci). ....£ (56c) 
(J P n p 

i t -1 t i -i 
where n = (c) • (P-PAN AP) (c ), and ~x 

p p p 
- VL = (~L) .. In vector ---of eq. (56) only 

1 a0 
the i-th component is nonzero because of Ei being the i-th unit vector. So we 

obtain 

(57) 

which is defined as the marginally detectable error of observation L .• These 
1 

marginally detectable errors can be computed for all the observations contributing 

to the adjustment (redundant observations) , to provide measures of internal relia­

bility. In other words: 

-
"A blunder in observation L. of size IVL. I will cause 

1 1 

lwil> x 1-a 

lity (1-S
0

)
0

, 

(rejection of H0 .) with the specific probabi-
1 

~nder the assumption that the other redundant 

observations are free of blunders." 

Since the marginally detectable errors IVLil in eq. (57) do not depend on the 

vector of observations, nor on the residuals, they can be computed as soon as the 

configuration of the network and the stochastic model is known. 

The relation between the power of the tests and marginally detectable errors is 

illustrated in figure 2, for a certain convention H . From this figure it can 
ai 
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1-11
0 

1.01------ - - - - - - - --==---
0.8 

Figure 2.--Power of an individual w-test. 

be seen ~hat errors smaller than IVL. I have a decreasing probability of 
l. -

discovery, and that for errors larger than IVLil this probability increases. 

The definition of internal reliability of networks, using conventional Ha and 

marginally detectable errors, was first introduced by Baarda (1968) as a feature 

of his a-method of testing. Essential for the B-method is the interdependency of 

the levels of significance for these one-dimensional data snooping tests and the 
"2 

r-dimensional test of the variance of unit 1."1eight o
0

• By use of the statistic 

"2 2 

Vt?t! a xr 0 
(= ·r = ---"2 = -2- - Fr ,co -> , 

r.a
0 

a r 
0 

.,z 
the test of a

0 
is the following: 

If 

"2 
ao 

T - -> 
2 

a 
0 

F 
1 

, then reject H . r, 00 ; -a o 
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Figure 3.--Central and non-central F-distribution. 

Applying the same power (1-6
0

) as was used for the data snooping tests, and 

fixing the non-centrality parameter A at the same level as A of the one-dimension­
o 

al case, establishes a relation between a (one-dimensional) and a Cr-dimensional) 
0 

levels of significance. This is symbolically denoted as 

(59} 

When the power C1-B
0
> is chosen (usually 1-B =a.so>, then a and a are the only 

0 0 
free variables in eq. (59). Having chosen one of them, the other can be computed 

through A = A • 
0 

By using this procedure a single outlier has the same probability 

of discovery (rejection of H0 ) in both types of tests. 

In case the tests with statistics in eq. (36), 

-t t -1 t -
V I (I Q-I ) I V c c v c c 

2 
c. a

0 
c 

are used for testing c-dimensional ("conventional") hypotheses concerning the 

coordinates of known stations treated by weighted constraints in an adjustment of 

densification networks or of deformation networks, re.liability regions can be 

computed (see Kok 1982) . These are established by the invariant quadratic form 

Q = (ItQ-I ,-1 Ao. cro2 
c v c 
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where 

>.
0 

= >.<a , B , 1 , oo) 
0 0 

(ItQ-I ) is a selected (c x c) submatrix of Q-. 
c v c v 

If the network (coordinate system) is one-dimensional, the test and consequently 

the reliability region coincide with ( c = 1) the square of the one-dimensional 

data snooping test and its marginally detectable error: 

and 

-t 
v .• 

l. 

-1 -
Q- . v. 

v. l. 
l. 2 

If w = ------

-
Q 

\ 
Q-

v. 
l. 

2 

ao 
- 2 
'ilL .• 

l. 

> F 
l •°"; i -a 

0 

then reject H 
oi 

(61) 

(62) 

For two-dimensional networks (c = 2) the test of each known station is as follows: 

with reliability·region 

t -I 2 
Q = (I Q- I ) • >. 

0
• a , 

c v c 0 

> F2 
, m; 1-az then reject H

0
., 
l. 

which is a 2 x 2 submatrix (inverted) of Q-, and it establishes an ellipse 
v 

describing the sensitivity of the test with respect to a disturbance of the 

station in all possible directions. In the case of three-dimensional networks 

(c = 3) we use the test: 

-t t -I -
V I (I Q-I ) IC V c c v c ---------->F 2 3 1 m ; l-a 3 

3 • CJ 0 
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then reject H 
o. 

1 
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with reliability region 

now being a 3 x 3 submatrix (inverted) of Q- establishing an ellipsoid with the 
v 

same meaning as the ellipses for two-dimensional cases. 

3.3. External Reliability 

Internal reliability is described by the errors that are marginally detectable 

with a specific probability. It is used during the design of networks and it 

predicts the effectiveness of the tests that will be used during the adjustment. 

Usually, however, the final results of network adjustments are not adjusted 

observations, but coordinates in a one-, two-, or three-dimensional coordinate 

system. A good and homogeneous internal reliability does not automatically 

guarantee reliable coordinates. Generally the influence of each observation - and 

thus of each error in an observation - on the coordinates is different. The 

influence that each of the marginally detectable errors !Ur.ii has on all 

coordinates of the network.is known as external reliability. 

The vector of marginally detectable errors VL(i) for one conventional Hai' 

computed by use of eq. (56a),is 

VI.Ci) " 'i J :· · 0a· 

Let L1 
= L + 'i/L be a vector of observations under Ha., then the vector of 

1 
differences between solutions 

is 

or 

"' t -1 t - " t -1 t 
X = (A PA) A P(L + ~L(i)) and X = (A PA) A PL 

~x<i> 
"I 

= x 

t -1 t 
= (A PA) A P Ei 
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" This is the general formula for computation of one vector VX of influences of 

marginally detectable errors VL, under hypothesis Ha.' on all unknowns. Since 
l. " 

there are n (=number of observations)hypotheses Ha. possible, then n vectors Vx 
l. 

must be evaluated. If part of the unknowns are not coordinates, but "nuisance 

parameters" such as orientation unknowns and scale factors, the total system of 

normal equations can be partitioned as 

r 
"' At N 11 N 12 x1 1 1 

l N2 l 

= . PL , 

"' t 
N22 x2 Al 2 

(67) 

"' where x1 are the coordinates and x2 the nuisance parameters. 

We now have for each Ha.: 
l. 

r ~~, -1 t 
N 11 Nl 2 Al 1 

1. vx2 At 
p • 'i7L ( i) 

N N 2 1 22 1 2 

(68) 

The influence of 'i7L(i) en coordinates only is 

(69) 

where 

f M11 
-1 

:_1112 N 1 1 Nl 2 
I 
I 
l :12 1 M22 N21 N22 

"' The computation of n vectors VX 1 , to depict the external reliability of a 

network, is a large computational effect, and for networks of substantial size it 

is difficult to judge this information properly. Another disadvantage is the fact 

that vectors vxl are dependent on the coordinate definition, which is determined 

by the actual choice of minimum constraints (datum) that has been made. 
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Baarda (1977) introduced a distortion ·parameter 1i~' which is the length of the 

normalized vector 'ilx(i)' computed by 

-1 -1 -1 t 
where QA = (N ) = A PA. For the influence on coordinates only, we use 

x 

-'2 
c9xt -1 A '2 1 A. = Q" 'ilx1>. -

l. 1 • xl 00 

-1 -1 -1 - _1 
where Q" = (N ) 1 1 = N 11 = Nl 1 - N N22 N2l 0 The amount of information 

xl • 1 2 

depicting the extern~l reliability is now reduced to n parameters /xi, one 

(70) 

( 71) 

for 

each hypothesis Ha.· If these parameters are of the same order of magnitude, then 
l. 

the network is homogeneous with respect to external reliability. 

Because eq. (71) still necessitates the computation of all vectors vx 1 first, 

this formula is not recommended for actual computation. A more computer-oriented 

formula is 

- t -1 - 1 - t -1 - 1 5: . ('i]L (i) Qi . IJL ( . ) ) • ~ - >.. (IJY (i) • N22' ryy ( i) ) • -2-
l. i a o a 0 0 

AtP - -1 
where I]'{ (i) = IJL(i); A = A (CL I Bo' 1 I co) and QQ. = P. 

0 0 

In cases where there are no noise parameters, but instead all unknowns are 

coordinates (e.g., leveling networks), we simply use 

- t -1 
):i = {'i]L {i) Qi 

(72) 

{ 73) 

which does not even require the (partial) inverse of the normal equation matrix. 

For certain purposes it may be useful to compute influences of marginally 

detectable errors on functions of the unknowns. This may also be considered a 

form of external reliability. For example, one can compute the influence on the 

adjusted observations by 
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,.. 
'lL (i) 

t -1 t -= A(A PA) AP. QL(i)' (74) 

or even on the residuals to the observations by 

(75) 

:eplacing vector QL(i) in eq. (75) by the vector of least-squares error estimates 

QL(i)' for the same hypothesis Hai , computed by use of eq. (45) yields the 

following: 

,.. 
Because the vector QL(i); computed by 

,.. 
QL (i) 

--v 
i = e: .• -Q 

l. -v. 
l. 

(76) 

has only one nonzero component l~L. I and this is the least-squares estimate of 
l. 

an isolated blunder in observation L., eq. (76) gives us the influence of a 
l. 

single error estimate on all the residuals in the adjustment. Quantities ~V will 

be used in section 4.2 for iterated data snooping. 

4. MULTIPLE OUTLIER TESTING 

4.1. Some Difficulties of Data Snooping 

It is known that in least-squares adjustments one gross error in the observations 

may mask other gross errors, in the sense that the influence of that error can 

be such that the residuals to other erroneous observations V, and also V = PV, 

do· not reveal these other errors. The residuals are not robust with respect to 

errors in the observations. This is also illustrated by eq. (76), which gives 

the influence of one (estimate of an) error on the vector of residuals 

~V = (A(AtPA)-lAtP - I) ~L(i), 

as a result of the least-squares adjustment itself. 
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others (e.g., Meissl 1980, Fuchs 1981) have successfully located outliers by use 

of adjustment by minimizing the sum of absolute residuals Ct 1-no:rm). If we wish 

to maintain the property of minimum variance of results of the adjustment, however, 

then a subsequent adjustment by the method of least-squares Ct2-norm) must still be 

performed. The so-called "Danish Method" has the effect of "robustizing" the resid­

uals by use of a reweighting strategy (Krarup et al. 1980). This also means the 

normals have to be formed and solved repeatedly. 

A second difficulty with data snooping procedures is the fact that, in practice, 

the largest statistic does not always coincide with an outlier. This may be caused 

by incorrect relative weights of observations in spite of all the care taken. 

A third difficulty is the fact that a large blunder can easily cause the 

statistics of other observations to exceed the rejection limit also (critical 

value of the one-dimensional data snooping tests), especially if un-Studentized 

tests are used. 

At Delft University it has become standard procedure to combine data snooping 

of observations with testing of condition equations, in order to decide which 

observation is indeed an outlier. For this purpose a separate adjustment is 

performed with the method of condition equations. In the case of outliers 

spatially not very close to each other, it is possible to localize more than one 

of them in a single adjustment run. It is known from experience that only part of 

the conditions, .in the vicinity of the observations flagged for rejection in 

data snooping is actually used in the decision process. 

The following may be of use for testing individual condition equations or groups 

of them without using a program for adjustment by condition equations, but instead 

using the nominal adjustment results of the parametric method. Consider an enhanced 

constrained adjustment (sec. 2.1) with observation equations 
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Choose 

= (0 I ) and 
r 

U = the coefficient matrix of r independent (linearized) conditions. 

Then following the line of thought of section 2.1, we have after least-squares 

adjustment of the nominal adjustment, 

or 

,... -1 t t -1 
X 2 = (U(Q-AN A )U ) (-UV) •. 

Using the identity 

where 

-1 t t -1 
Q- = P-PAN A P = U M U, 

v 

M = UQl::,t I 

and also using for the misclosures 

- UV = W, 

eq. (78) can also be written as 

,... t -I t -1 
X2 = (UQ(U M U)QU ) W 

,... t -I t -1 
){2 = ((UQU ) M (UQU )) W 

-1 -1 
x2 = (MM M) w 
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or 

" _1 
X2 = M W (correlates). 

Then 

t -1 = QU M W = V. 

The statistic T3 for an un-Studentized r-dimensional test becomes 

also 

-t t -1 t t -1 -= V QU (UQ(P-PAN A P)QU ) UQV ... F 
~ 2 , r, oo 

r • cro 

-t t t -1 t -1 
T 

3 
= V U ( UQU M UQU ) UV = 

2 
r. <J 

0 

t -1 
WM W 

2 
r. <J 

0 

= 

"2 
<Jo 

2 
<J 

0 

F r, oo 

(79) 

(79a) 

(80) 

If we use an individual colwnn of Ut in eqs. (77) and following, denoted as u~, 
l. 

then 

or 
... -1 
X2 =-M .. U. V 

l. l. l. 

Equation (79a) yields 

= u-1 w 1•1ii i. (81) 

t -1 
= QU. M .. W. = V( i") 

l. l. l. l. 
. (82) 

and V(i) are then the residuals due to the i-th condition only. 

Statistic T3 is now 

t t t -1 t -1 
V U . ( U . QU M UQU . ) U . V 

l. l. l. l. 
T3 = ------2----- = 

ao 

t -1 
W.M .. W. 

l. l.l. l. ... F 

a 2 1 , 00 

0 

and it can be used to test this individual condition, while actually T can be 
3 

computed from the nominal adjustment (parametric model) by 

tt -lt t-1 
V U. (U. (Q-AN A ) U.) U. V 

l. l. l. l. 
T3 = ------2------... Fl 

a 
0 
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4.2. A Heuristic Procedure for Multiple Outlier Detection 

(Iterated Data Snooping) 

Considering eq. (76) for the influence of a single error (least-squares 

" estimate) \7L. on the vector of residuals in a nominal adjustment 
l. 

" -1 t " VV = (AN AP - I) E .• \7L,, 
l. l. 

We can update the vector of residuals by 

-1 t " 
V' = V - (AN AP - I) Ei. '\l'Li 

and 

" v' - -1 t = V - (PAN A P - P) '\7L •• 
l. 

(84) 

(84a) 

This means that the estimate of the isolated blunder in the i-th observation is 

removed, including its influence on all the .residuals. Pope pointed out that apply­

ing eq. (84) is identical to removing observation Li by a sequential adjustment 

technique, and consequently the co-factor matrix of weighted residuals Q- should v 
also ·be updated by a corresponding sequential formula (see Creusen 1965, Whiting 

and Pope 1976): 

or 

t -1 t 
Qv-' = Q- - Q- £. (E.Q-E.) E.Q-v v l. l. v l. l. v 

Q-1 
v 

-1 t = Q- - Q- E. (Q- ) .. E.Q-. v v l. v l.l. l. v 

" " Suppose that the estimate gLi = gLk was computed for the observation with 

cas: 

t
3 

= lwkl = lw. I . Then applying eqs. (84a) and (85) allows us to test for the 
J. max 

presence of other outliers after observation Lk has been removed from the 

adjustment. The standardized residual V~ will at that time be zero, as well as the 

co-factor Q~', because 
k 
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-
or 

- vk -· - - -
vk = vk - Q- • -= vk - vk = o, 

vk Q-
VK. 

and 

-1 
or = Q- - Q- (Q- ) Q-

vk vk v kk vk 
= o. 

Repeating the standard data snooping, using the updated vector of weighted 

residuals v' and the updated c~factor matrix Q-, of eqs. (84) and (85), will 
v 

result in updated statistics w', of which lw~I can no longer be the largest, 
because of v'=O and Q-'=0 Instead, another observation will now have the largest 

k vk • 
statistic, say 

(i = 1, 2, •••• , n and Q-• f:. O). 
v. 

1 

(86) 

Consider observation Lk as the first candidate for being an outlier; then 

observation L is the next candidate,provided that in the updated situation the 
m 

one-dimensional data snooping test for L still gives rejection of H • 
m o 

During the first data snooping the statistic w for observation L was not 
m m 

necessarily the second largest of the statistics w.; it even may have been smaller 
1 

than the critical value for the test, due to the masking effect of the adjustment. 

We will call the process of repeatedly updating, and testing by standard data 

snooping subsequently on the updated results, a method of "iterated data snooping." 

The recursive formulas for such a process are 

-i(n+1) 
v = 

Q- (n+1) 
v' = 

where 

- I (n) -1 t f7L(n) v - (PAN A p - I) £k. k 

Q.i?) 
v 

- Qjn)£ 
v' k (Q~~)-l)kk t Q(n) 

£k v.· 

- v' (n) 

Q- • (n) 
v 

. I ' (n) I for Lk with wk = 

34 

(87) 

(88) 

I , <n) I w. 
i max (89) 



and ./ F 
} CO• 1-a , , 0 

(90) 

- (n) - (n) 
For the start of the process (.n = o) we have V' = V and ~· = Qv. 
At each step of this process the maximum test statistic and the estimate of the 

preswned outlier will not be influenced by masking effects of errors that were 

removed at preceding steps. 

Because each deletion of a (suspected) observatio_n uses one degree of freedom 

and the rank of matrix Q- is r, we can repeat the deleting and updating r times 
v 

maximally. After r deletions of observations, the remaining set of observations 

is just sufficient to determine the network without redundancy, and all residuals 

v. and cofactors Q- will be zero. 
1 vi 

If a fixed level of significance a
0 

is used, the rejection procedure and updating 

will be terminated as soon as eq. (90) is no longer satisfied. 

At each step of the process a candidate is added to the list of suspected 

observations. However, at such a step there may be more than one candidate with 

maximum w~, and at the same time these candidates can have equal cofactors Q-•. 
1 vi 

This is a tie-breaking problem for the procedure, and in order to proceed with 

the search for other candidates with smaller errors, one of those candidates 

has to be removed, but this is not necessarily the erroneous one. In fact the 

(conventional) alternative !-dimensional hypotheses for these observations cannot 

be separated, and if one of them is removed by the updating, the others will also 

get values v'. = 0 and Q- I = 0. They should also be added to the list of suspected 
l. vi 

observations. Also they cannot become candidates in later steps any more, because 

they become nonredundant ("no check") observations after the updating. 

The process, as described above, has the following drawbacks. 

(1) Although a list of estimates of the sizes of possible errors is built up by 

applying eq. (89) at each successive step, previous est~mates have already 

been computed without knowledge about suspects that are found later. 

(2) Matrix Qv has to be computed completely and also will be updated for all its 

elements, because of eq. (88); consequently it must be kept in storage as a 

n x n full matrix. 
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(3) Good observations may have had I w~ I at a certain step, and then be.en 
1 max 

added to the suspect list and removed from the adjustment. 

For computational reasons, especially with respect to the second drawback 

mentioned, iterated· data snooping can also be formulated differently. This will 

result in the same suspect list, and also the first drawback mentioned will no 

longer exist. 

Instead of using the recursive formulas (87) and (88), the updated v' (n+l) and 

0
_ Cn+l) 

-v' can also _be found by updating the "original" V and Qv of the nominal 

adjustment. Each "new" suspect then increases the "conventional" hypothesis by 

one dimension, supposing c simultaneous outliers of unknown sizes. 

We have 

" -1 t " 
Vv = (AN AP - I )VL, 

" where the vector of error estimates ~L has been computed from 

" " i;JL = I X2 c 
t -1 t­

= I ( I Q- I ) ( .- I V) , 
c c v c c 

(91) 

(92) 

and I is a n x c matrix composed of columns of unit vectors, each referring to 
c 

an observation having lwk'I = lw'. I at one of the subsequent steps, which are 
.l. max 

the entities in the list of suspects. 

The updated vector of weighted residuals (for c suspects) is now computed by 

and the updated co-factor matrix by 

or 

-1 t 
Q-• = Q- - Q-I Q= I Q-v v y c v c v 

where ~1 = (ItQ-I )-l is a selected c x c submatrix of Q-, inverted. 
v c v c v 

Because of the one-dimensional data snooping in each step, applied to the 
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current updates V' and Q-', only (Q-') .. = diag. {Q-'} is actually needed. 
v v 11 v 

Equation (94) can then be simplified to 

Q-· = (Q::·•) .. 
v. v l.l. 

-1 t 
= (Q-) .. - (Q-I Q=.IcQ-) .. v l.l. v c v v l.l. 

l. 

Equations (93) and (95) can be evaluated effici"ently by use of the sparse 

Cholesky factor of the normal matrix of the nominal adjustment (see sec. 4.4), 

and storage of matrix Q- respectively Q-• , can be avoided. Now at each step 
v• v 

c error estimates are solved simultaneously as additional unknowns in eq. (92), 

and c suspects are deleted from the nominal results. Consequently the residuals 

ItV, and cofactors 
c 

It should be noted 

t 
I Q-•.I are zero for those c suspects after the updating. 

c v c 
that deletion of observations during iterated data snooping 

is only performed for building a list of suspects and computing estimates of 

possible outliers. The solution of the nominal adjustment X
1 

itself is not 

updated explicitly. 

(95) 

In the author's opinion it is "dangerous" to update the solution, thus creating 

automatic deletion of the suspects from the total adjustment, especially in 

low-redundant situations as in geodetic networks. It should be left to the 

user of the adjustment program to decide - after proper investigation of the 

observational data - which of the entries in the suspect list that is provided 

by the procedure is actually a blunder. 

Figure 4 illustrates the procedure of iterated data snooping, computationally 

perfonned by repeatedly updating the nominal adjustment results. 

The multi-dimensional test of &~la~ has also been incorporated CB-method). The 

critical value for this test depends on the degrees of freedom in the adjustment. 

As a consequence of the decrease in the degrees of freedom during successive 

steps in the iterated data snooping, this critical value is Fr-c, ~;l-a' 

The value a' is then computed for each step from the relation 

where a constant level of a is used. 
0 
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yes 

yes 

I.D.S. 

choose a0 

-2 
C'o 

T " -
a2 

0 

end 

no 

ii•: = V = PV 
[

c = 0 

Ovi= = ovi = (P-PAN- 1AtP)ii 
lie not yet existing 

{tori = 1, 2, ... ,n and Ovi ~ O 

{cw = IF1 1 ,mi ·ao 

[enhance matrix I 1 with 
J c-
lC-th column Ek (unit vector) 

!cf = Fr-c,m,l-a' 
a' evaluated through 
A = A(a',B ,r-c,m) a A(a ,B ,l,m) 

0 0 0 0 

Figure 4.--The process of iterated data snooping (un-Studentized) 
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A source listing of subroutine HEROB3 (Heuristic Robustizing, version 3) is 

given in the appendix. It is listed for illustrative purposes only, because for 

the updating computations with sparse matrices the subroutine library SCAN-II is 

used, which is implemented on the IBM system of the National Geodetic Survey. 

4.3. Some Experimental Results 

The process of iterated data snooping, by use of subroutine HEROB3 in the 

subset for two-dimensional networks of the SCAN-II adjustment system, was tried 

experimentally on two different networks. 

(1) Network 1 (fig. 5) is a triangulation network of 16 stations with generated 

observations, which were made iiVailahle by Heck ( 1982). There are no 

outliers simulated in the original data set. 

(2) Network 2 (fig. 6) is a traverse network of 29 stations with real data, 

made available by the Geodetic Computing Centre of the Delft University of 

Technology. 

Several combinations of blunders were simulated in the observations of the 

networks, for testing the iterated data snooping procedure. The largest 

combinations for both networks (eight blunders of different magnitudes in Network 

1, and six blunders of different magnitudes in Network 2) are sununarized in 

tables 1 through 4. Additionally a simulation with two extra blunders in Network 

2 was perfonned(table 5). 

Table 1.--Simulated errors in Network 1 

Obs.No. st.-tg. Observation Error 2 first run 3 w. 
l. 

1 26 35-41 51. 3642 + 500 318.53 

2 48 41-11 269.9067 99 1.90 

3 2 3-7 38.6994 30 27.01 

4 27 35-13 134.4900 20 88.83 

5 50 43-21 0.0025 + 25 0.98 

6 61 47-37 118. 1463 + 14 4.25 

7 59 47-35 39.2156 11 31.70 

8 42 39-45 246.5389 8 21. 85 

1units are grades. 
2units are lo- 4 grades. 
3c · · 1 1 IF1 ritica va ue for a0 =0.001 is ... 3.29 ,"°;1-ao 
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17 TEST NETWORK: TRIANGULATION 
70 Observations 
16 stations 

crtj = 1 gr • 10-• 
Figure 5.--Network l. 
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Table 2.--Results of iterated data snooping (Network 1) 

Iterated data snooping F-tests 

- - A - a21a2 VL1 VL2 VL3 VL:+ 'VL5 VL6 VL7 VLa a' F-value 
0 0 

STEP lwilmax i 35-41 41-11 3-7 35-13 43-21 47-37 47-35 39-45 

l 318.5 26 487.5 0 .14 4042.1 1. 30 

2 51. 8 48 500.2 -99.6 0 .14 137.6 1. 31 

~ 3 20.6 2 499.6 -100.9 -28.4 0.13 36.0 1. 33 .... 

4 13.8 27 494.4 -102.0 -28.7 -22.7 0.13 21. 7 1. 34 

5 11.1 50 494.8 -102.0 -30.4 -22.5 22. 8 0 .12 14.4 1. 36 

6 11. 0 61 495.3 -101. 7 -30.4 -22.0 23. 0 16.4 0 .11 9.5 1. 38 

7 7.2 59 497.4 -101.6 -30.5 -19.5 22. 5 14.8 -10.2 0. 11 4. 14 1. 41 

8 3.8 42 498.3 -101. 7 -30.6 -18.4 23.1 15. 1 -11. 2 -6.0 0.10 1. 79 1. 43 

9 2.9 14 STOP
1 

0.09 1. 13
1 

1. 46 

1 
lwilmax < 3.29 and 02;0 2 < F (=1. 46) 

0 0 r-8,m;l-a' 



The results for Network 1, which is a "monolytic" network (only one type of 

observation) with a high local redundancy, is very satisfying. 

All simulated errors are recovered, and in the final list of estimated errors of 

the suspects (table 2) the largest difference with the actually simulated error 

is less than three times the standard deviation of the observation. 

Note that the masking effect can very well be recognized in observation 48 

where the test statistic w. of the first run - in spite of a blunder of 99.10-4 
1 

grades - does not exceed the critical value of 3.29. Due to the relatively large 

errors in observations 26 and 48, out of a total of 70 observations 54 had a test 

statistic lw. I > 3.29 in the naninal adjustment. 
l. 

Network 2 involves two different types of observations, distance measurements 

and direction measurements. The results of two trials of iterated data snooping 

will be summarized. For the first one, six errors of various sizes were applied 

to the data, four errors in distances of respectively 10 meters and 1 meter, and 

two errors in directions of 0.010 qr and 0.007 qr. (See table 3}. 

Table 3.--Simulated errors in Network 2 

Obs. No. Type St.-tg. Observationl Error 

1 4 distance 183-185 921.495 - 10.00 

2 2 distance 105-213 1224.685 - 10.00 

3 8 distance 189-239 936.965 1.00 

4 13 distance 195-199 693.027 + 1.00 

5 88 direction 237-251 168.3218 + 0.0100 

6 80 direction 233:..241 289.7501 + 0.0070 

Units of distances are meters; units of directions are grades. 

In six steps of iterated data snooping, all simulated errors are detected, and 

the error estimates,which are solved in the last step, are close to the values 

of the simulation. The results of these six steps are sulllJ!larized in table 4. 

However, in spite of these results we still must treat the outcome of the 

procedure as a list of suspects only, that hopefully is in agreement with actual 

errors. The list is built on the assumption that at each step of the procedure the 
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maximum updated test statistic lw. I coincides with a blunder. We cannot prove 
l. max 

that this will always be true. An extension of the method, which is indicated in 

section 5, may improve the reliability of the suspects list, but is not 

progranuned and tested yet. 

Table 4.--Results of iterated data snooping (Network 2) 

VL1 VL2 VL3 VL4 VL5 VL6 

Step lwil max i 183-185 105-213 189-239 195-199 237-251 233-241 

1 335.53 4 -10.13 m 

2 103. 68 2 -10.23 m - 9.99 m 

3 15.43 8 -10.06 m -10.14 m -1.04 m 

4 16.57 13 - 9.95 m 9.92 m - 1. 14 m 1.03 m 

5 6.91 88 9.95 m 9.90 m -1.04 m 1.05 m 0.0111 gr 

6 5.34 80 - 9.95 m - 9.89 m - 1. 07 m 1.05 rn 0.0101 gr 0.0082 gr 

7 2.81 74 STOP (<3. 29) 

The following may illustrate the fact that the list of suspects, resulting after 

the iterated data snooping as presented here, sometimes will not be in complete 

agreement and may find another pattern of error estimates which fulfills the 

enhanced adjustment model. We added two more errors to the list of simulated errors 

of Network 2 (table 3): 

- in distance 189-191 an error of+ 1.00 m, and 

- in direction 207-213 an error of + 0.0200 gr. 

The process is now terminated after seven steps (instead of eight, which could 

be expected) and the resulting list of suspects and error estimates is given in 

table 5. 

We see that two simulated errors are not detected now: 

- in direction 233-241 of 0.0070 gr, and 

- in distance 189-191 of 1.00 m. 

Also one entity in the list of suspects (table 5) is not really an outlier 

(distance 191-193) and one of the estimates is not in good agreement with the 

simulated error (distance 105-213). Still the list of suspects includes six out 

of the eight outliers that were simulated, and this is performed in one single 

run of the adjustment program. 
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Table 5.--Results of the third simulation (Network 2) 

Obs. No. St-tg. Error estimate Simulated error? 

1 4 183-185 - 9.99 m yes 

2 2 105-213 - 7.54 m yes 

3 13 195-199 + 0.95 m yes 

4 8 189-239 - 1.07 m yes 

5 64 207-213 + 0.0202 gr yes 

6 10 191-193 + 3.20 m no 

7 88 237-251 + 0.0078 gr yes 

4.4. Computational Remarks 

The second· variant of iterated data snooping, described in sec. 4.2, is 

computationally attractive, because it is repeatedly using the Cholesky factor 

of the nominal adjustment. Most modern programs for least-squares adjustment of 

networks utilize the sparsity of the nonnal matrix, and of the triangular matrices 

obtained after factorization of the nonnal matrix by the method of Gauss or of 

Cholesky. Supposing the Cholesky factorization performed: 

t t A PA = N = u u, where u is the sparse Cholesky factor; 

then in each step of iterated data snooping we have to evaluate the equations 

,., ,., 
I (It~I ) 

-1 ItV) -1 
l/L = I x2 = . (- = I Q:: - v, 

c c c c c c v . 

where 
-1 t 

Q- = p - PAN A P, 
v 

v• - ,.,_ - _1 
AtP 

,., 
= v - l/V = v - (PAN - P) VL, 

and -1 t 
Q- ' = ( Q- .) . . = ( Q-) . . - ( Qv- IcQ::v I •.2::) ..• 

V, V ii V ii CV ii 
i 

In all three equations selected ele~ents of Q- of -the nominal adjustment, 
v 

computable by use of the Cholesky factor U, are used. 
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For standard data snooping procedures, where only the diagonal elements of Q-
v 

are needed for the test statistics t
1

, t 2 , or t 3 of eqs. (40a), (40b), and (40c), 

there are different ways for an efficient computation of these quantities by 

using sparsity and avoiding complete inversion of N. 

In SCAN-II.3 (the software system used for the test computations of sec. 4.3) the 

dia9onal of Qv is caqputed as follows: Let the factorization of N in N = utu be 

performed in sparse matrix technique, with storage of U in a profile structure or, 

as in SCAN-II, in a general sparse matrix storage scheme. Then we have to compute 

the diagonal elements 
-1 t -1 t 

Q- = (P - PAN A P) .. = (P) . . - (PAN .A P) .. 
V. 11 11 11 

1 

Suppose that PA = B is already computed, then 

Q-
v. 

1 

-1 t 
= (P) I • - (BN B ) . I 

11 11 

-1 t 
= (P) .. - (B.N B.), 

11 1 1 

where B. is the i-th row of B. 
l 

-1 t . 
The second part,B.N B.,involves the inverse of matrix N. 

1 1 

Then let 
-1 t 

N B. = z, 
1 

or z is the solution of the system 

N.z t t = B. or (U U) 
1 

z = t 
B .• 

1 

Now let U.z = Y; then this system can be written also as 

t 
B. ' 

1 

which is a lower triangular (sparse) system of equations, to be solved by forward 

substitution 

y 
-t t 

U B .• 
1 

t 
The vector product y.y now yields 

t 
y.y = -1 -t t 

a.u .u B. = 
1 1 

-1 t 
B.N B., 

1 1 
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so Q- can be found by 
vi 

Q-
V, 

1. 

t = (P)ii - y.y 

The normal matrix has not been inverted explicitly. This technique is known as 

successive one-column bordering of the reduced normal matrix. 

-1 
However, for evaluating diagonal elements of the inverse N , as we:l as 

functions thereof, such as Q- , Hanson (1978) showed that for sparse 
V, 

normal matrices his techniquel.with computation of the elements of the inverse 

N-
1 

within the band or profile only, is superior. The number of multiplications 

(and thus of computing time) is significantly smaller. 

The algorithm for computing the part of the inverse within the band (in-place 

recursive partitioning) can be adapted for general sparse matrix storage schemes. 

Then the elements of the inverse that are needed (and computed) only, do replace 

the nonzero elements of the Cholesky factor itself, so no additional storage is 

needed. For details on the computation of "sparse inverses" the reader is 

referred to Hanson (1978). 

Let N- 1 be the sparse inverse of the normal matrix N, then Qv can be evaluated 
i 

through 

Q-v. 
1. 

--1 t 
= (Q-) .. = (P) .. - (B.N B.). 

v 1.1. 1.1. 1. 1. 

It can be shown (see, e.g., Kok et al. 1980) that the elements of the sparse inverse 
-- l --1 t N are the only ones needed in thP. vector-matrix-vector products B.N B .. 

l. l. 

Release 4 of the SCAN-II system is now also using this sparse inverse algorithm 

for standard data snooping and for the computation of standard ellipses. Computing 

times improved considerably, because the in-place recursive oartitioning for the 

sparse inverse computation fully utilizes the symmetry and the sparsity (by 

avoiding zero products) and the method of successive one-column bordering does 

not. 

For iterated data snooping, proposed in this report, the situation is slightly 
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more complicated, because only in the first step we have the situation of Q-
v· 

being the diagonal elements directly of P - PAN-1AtP. During the updating in
1
the 

following steps, we have to deal with multiple outliers (estimates), and eqs. (92), 

(93), and (95) involve then selected submatrices of Q-, denoted as Q:: = rtQ I v v c v c' 
so we also will need off-diagonal elements of the matrix Q-. So far we have used 

v 
the bordering method, in sparse matrix mode, to perform the process efficiently. 

In short, the three main computations during each step of iterated data snooping 

are as follows: 

Equation (92) involves the matrix Q::, which is a selected c x c submatrix of 
v 

Q-, where the elemerrts are to be selected according to suspects that are 
v 

indicated through the statistical tests in successive steps. 

Let Li and Lj be two subsequent suspects; then ~ is a 2 x 2 matrix. 

Q-v .. 
11 

Q-
V •. 

)1 

~ .. 
1) 

Q-
v .. 

JJ 

P .. P .. 
11 1) 

P .. P .. 
J 1 J J 

Both matrices are symmetric, and often P is a <liagonal matrix, so then 

Let 

p .. = p .. = 0. 
1) )1 

t 
Q= = I (P -

v c 
-1 t 

BN B )I 
c 

For Q- we use again the system N.z 
vii 

Again let U.z = y, then 

t 
u y 

t 
= B. I 

l. 

t -1 t 
-IBN BI 

c c 

t t t 
B., or (U U).z = B .. 

i i 

with solution y computed by forward substitution 

-t t 
y = U B .• 

l. 

The vector product 

t y.y 
-1 -t t 

B.U .U B. 
1 1 

- I t 
I3.N 3. 

l l 
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is used for 2; .. , through 
l.l. 

t 
Q- = p - y.y 
V,. ii 

l. l. 

-1 t 
= P .. - B.N B .• 

11 1 l 

For Q- the computation is similar. The system to be solved is now 
v .. 

JJ 

N.Z = Bt or (UtU)Z = Bt 
j' j 

t t t t t 
where Bj =A P.Ej, or the j-th column of AP. Let uz = x, then u x = Bj' with 

solution x = u-ts~. The vector product x:x yields the diagonal element Qvj by 

Q- = PJ. J' v .. 
JJ 

t -1 -t t 
- x.x = P .. - B.U. U B. 

JJ J J 
-1 t 

= P . . - B .N B .• 
JJ J J 

The off-diagonal element Q­
Vij 

t = Q- is found by use of the vector product y.x, 
Vji 

which then is used for 

t 
Q- = P - y.x 
V,, ij 

l.J 

-1 -t t = P. I - B.U .u B. 
l.J l. J 

-1 t = P .. - B~N B .• 
l.J l. J 

For later steps in the procedure, when c > 2,a similar strategy is followed. 

The error estimate vector x2 follows as the solution of the system 

t " (IQ-I). X2 c v c 

or 

" Q=. X2 = - V, 
v 

= - I V, 
c 

by using full matrix technique, because Q= is always a (snall) full matrix. 
v 

A 

Then the vector of error estimates for all observations ~L follows from 

VL = 

A 

with 91.i and ~Lj as the only nonzero components. 

The updating of the vector of weighted residuals V, by eq. (93) again uses 
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the bordering method. We write 

-· - -lt " -lt" " V = V - (PAN AP - P)'i/L = V - BN B.'i/L + P.'i/L. 

- l t" 
Consider the matrix-vector product BN B.'i/L which is the most important part. 

t" " Let B.V'L ='VY., a vector; then we have 

- l" - l -t " 
B(N .'i/Y) = B(U U ).'VY.. 

-1 -t " 
The part (U U ).'VY.= z is the solution of the system 

t 
(U U).z = 

Then again using U.z 

t " U.x = 'iJY 

" 
'iJY. 

= x, we can solve 

by forward substitution, resulting in 

-t" x=U.IJY. 

Solving z, by applying back substitution on the system 

results in 

U.z-.y, 

-1 
z = u y 

-1 -t"' -1" 
U U .'i/Y = N. ~Y. 

Premultiplying z by matrix B, then finally yields the vector 

-1" -1 t" 
Bz = BN. 'iJY = BN B.?L, 

which can then be applied in eq. (93a). 

(93a) 

The computational effort for updating of V is mainly established by performing 

one forward and one backward substitution process, using the sparse Cholesky 

factor U of the nominal adjustment and some additional sparse matrix products. 
so 



The updating of the diagonal of Q-, as in eq. (95), is done by essentially the 
v 

same method, but now applying it repeatedly for more ·right hand sides. The final 

result of eq. (95): 

-l t 
(Q-1) .. = (Q-),. - (Q-I Q== I Q-),, 

v 11 v 11 v c v c v 11 

is the diagonal of matrix Q-' , but intermediately the matrix Q-I is needed. This 
v v c 

n x c matrix is built up by selected columns of Qv (or rows, because of symmetry). 

The procedure, described for an element Q- , is followed until 
Vjj 

substitution, resulting in· 

-t t 
= U A PE .• 

J 

Now backward substitution is performed on U.z = x, which yields 

. -1 -1 -t t 
z = U .x = U. U A PE. 

J 

_l t 
= N A PE I. 

J 

Premultiplying z by matrix B = PA, finally results in 

B.z = PA.z = PAN-lAtPEj 

Q~ · Ej = P · Ej - PAN- 1At PEj 

the forward 

which is the j-th column of matrix Q-· These steps are repeated for each column of 
v 

matrix Ic' thus building up Qv·Ic by successive columns. For eq. (95) matrix Qv' 

which was already computed, must be inverted as a (small) full matrix. Th& diagonal 

of Q~' is then 

-1 t 
Of the matrix product (Q-I ). Q:: .(IQ) only the diagonal is actually needed, v c v c v 
so this can be done efficiently as well. 

Because Ic is built up during the interated data snooping, by columns of 

unit vectors for new suspects successively, it is no~ necessary to compute 

Q-I completely in each step. Always the last column is needed and it can be 
v c 

added to the previous columns, which were computed in preceding steps, provided 
these were kept in storage. 
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5. FINAL REMARKS 

It is obvious that, because of the close relationship between Studentized and 

un-Studentized tests for outliers as derived from general linear hypothesis 

tests as shown in sec. 2, the method of iterated data snooping can also be 

adapted for Studentized tests. 

Some aspects of iterated data snooping need further attention and possibly 

improvements can be made. The third simulation in sec. 4.2 showed clearly that 

in the procedure presented, the risk of rejecti.nq 'good" observations is 

still present. A possibility to improve the procedure could be the following 

extension, which is an idea that i~ used by BenciolinLMussio and Sanso (1982). 

First apply iterated data snooping as described in sec. 4.2, and use a relatively 

large value of the level of significance for the one-dimensional tests (e.g. 

a = 0.05 or a =0.10 ), to ensure that the remaining set of observations is 
0 0 

virtually free of outliers. 

Then, as a second step, apply the procedure again, starting with the last updated 

results, and re-enter each of the suspects in the same order as it was found 

in the first step. In this second step, each of the suspects is tested without 

the presence of other outliers. In case a suspect is not an outlier but has been 

rejected in the first step as a result of the influence of other outliers, it 

will now be accepted by the data snooping test. The second step should be applied 

with a smaller value of a (e.g., a = 0.001). 
0 0 

An aspect that also needs more attention is the definition of the reliability 

of a network, if iterated data snooping is used. Can the same quantification, 

based on conventional hypotheses, as given in section 3, be used when applying 

iterated data snooping? 

Also during the procedure, as the degrees of freedom become smaller because 

they are used for the estimation of possible outliers, reliability of the 

remaining (current) subset of observations is changing. Computing updated values 

of marginally detectable errors VLi during the process, which is relatively 

simple because Q- 1 as diagonal elements of Q-• are already computed for the 
vi v 

test-statistics, can give an indication of the effectiveness that can be 
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expected in following steps of updating and testing. If observations other than 

the entries in the current list of suspects, which were testable originally 
" (VL # oo and Q- # 

i Vi 
0) becane untestable (VL~ = oo and Q-' = o) because of in-

' l. vi 
separability, then an error in these observations cannot be found. But also in 

- I case Q-i ; O, the value of VL. may be so large that errors will not be detected 
vi l. 

any more. 

The examples of iterated data snooping in section 4.2 are an indication that the 

method may be useful in practical applications. Certainly we need more experience 

in using it in practice, to see if lists of suspects resulting from the procedure 

are really helpful for the detection of multiple outliers in different types of 

geodetic networks. Also the lists of suspects could possibly be a start for other 

more refined methods for multiple outlier testing. 
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APPENDIX ... -SOURCE I.I STING OF A SUBROUTINE FOR ITERATED DATA SNOOPING 

******************************************************************** 

*** SOFTWARE SYSTEM S C A N - II SUBROUTINE *** 

1982: ~.~.KOK I NATIONAL GEODETIC SURVEY NOAA/NOS 

* 
* 
* 
* 
* 

*****************************************************************~** 

***ITERATED DATA-SNOOPING, USING L.S. BLUNDER ESTIMATES *** 

THE SUBROUTINE USES THE FOLLOWING EXTERNAL ROUTINES 
FROM THE SCAN-II SUBROUTINE LIBRARY: 

SAF005 - MATRIX PRODUCT: SPARSE SYM.MATRIX *VECTOR 
SAF043 - VECTOR PRODUCT: VECTOR * VECTOR CTRANSP> 
SAF105 - MATRIX PRODUCT: SPARSE MATRIX * VECTOR 
SAF114 - MATRIX INVERSION <FULL.> AND SOLUTION, 

BY THE METHOD OF GAUSS/~ORDAN 
SAF222 - COMPUTATION OF CONFIDENCE LEVELS AND CRITICAL VALUES 
SAF341 - FORWARD SUBSTITUTION OF SYSTEM: U<TRANSP>. Y = B, 

WHERE U<TRANSP > IS THE SPARSE CHOLESi.<.I FACTOR TRANSPOSED, 
OBTAINED BY SUBROUTINE SAF340, 

B IS A SPARSE VECTOR, 
Y IS THE SOLUTION VECTOR OF U<T>.Y = B 

SAF142 - BACKWARD SUBSTITUTION OF SYSTEM: U. X = y, 
WHERE U IS THE SPARSE CHOLESKI FACTOR, 

Y IS THE SOLUTION VECTOR OF THE LOWER-TRIANGULAR 
SYSTEM: U<T>. Y = B, COMPUTED BY SAF341, 

X IS THE SOLUTION VECTOR OF SYSTEM: U. X = V, AND 
ALSO THE SOLUTION VECTOR OF THE TOTAL SYSTEM: 
CUCTRANSP> U>. X = B 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SUBROUTINE HEROB3<NA.A.NG.GBA.NB.B.v.w.NP.VR,l\PI,PI.NABL.VEC.VEC2. 
+ V~.MAT,QV, ISEG,SIGM,CV,NS,KL.DS06> 

DOUB LE p REC Is I ON A ( 1 ) I GB A ( 1 ) I B ( 1 ) I v ( 1 ) I w ( 1 ) . NP ( 1 ) . VR ( 1 ) I p I ( 1 ) I 
+ V~(1),NABLC1),VEC<1>,VEC2<1>,SIGM,CV,LW,WW,WM,NAB,X, 

+ MATC1>.GVC1>,VPV 

INTEGER NA ( 1 ), NG ( 1) I NB ( 1 ) I NP I ( 1) I I SEQ ( 1 ) I ABC I 0506. NS. KL. OF 
LOGICAL INT 
REAL ALFA,ALFO,BETA,LAMOA,CF~CW 

C INITIALISING: 
N=NA<2> 
NE=NS+1 
NL=NAC3) 
DF=N-NL+NS+l 
BETA=O.SEOO 
INT= FALSE. 
KL=O 
CALL SAFOOS<NPI,PI,V.V~> 
DO 10 I=1.N 
IF < NP < I > . LT. 1 . D-10 > NP < I > =O. DO 

56 



10 NABL<I>=O.DO 
c 
C STANDARDIZED RESIDUALS PV AND VPV: 

DO 100 I•1,N 
c 
C MULTI-DIMENSIONAL F-TEST: 

DF=DF-1 
ALFA=O.EOO 
ALFO=l.E-03 
CALL SAF222<ALFA.ALFO,BETA,CF,CW.LAMDA,DF.DSOb> 
WRITE<DS0611111> ALFA1ALF01BETA1CF 

1111 FORMAT (I I ALFA =I I FB. 3, I ALFO =I I FB. 3, I BETA =I I FB. 3, 
+ I CF' =I. FB. 3) 

IF <VPV.LE.CF> GOTO 200 
c 
C DATA SNOOPING <FIND W-MAX>: 

c 

WM=O.DO 
DO 20 .J=L N 
WW=DABS<W<.J>> 
IF <WW.LE.WM> GOTO 20 
K=.J 
WM=WW 

20 CONTINUE 
IF <WM.LE.CV> GOTO 200 
KL=KL+l 
IS.EG<KL > =K 

C COMPUTATION OF L.S. ERROR ESTIMATES AND UPDATING OF VARIANCES O<V>: 

c 

CALL ES~2<NG,GBA,NB,B,NPI,PI,V.J, ISEO,NABL,KL,NS,VEC, 
+ VEC2,VR,MAT,NP,SIGM,ABC,DSOb> 

IF <ABC.LT. 500> STOP 
DO 25 .J=l,N 
NP<.J>=GV<.J>-NP<.J> 
IF <NP<.J>. LT. 1. D-10) NP<.J>=O. DO 

25 NP<.J>=DSGRT<NP<.J>> 

C COMPUTATION OF UPDATED RESIDUALS V': 

c 

CALL SAF105<NB,B,NABL,VEC> 
DO 40 .J=l,NS 

40 VEC<.J>=O.DO 
CALL SAF341<NG,GBA,VEC,NE,NL, INT,ABC,DS06> 
CALL SAF142<NG,GBA,VEC,NE,NL> 
CALL SAF105<NA,A,VEC,VR> 
DO 50 .J=L N 
X=VR<.J> 

50 VR<.J>=V<.J>-X+NABL<.J> 

C COMPUTATION OF VPV AND W-STATISTICS <UPDATED>: 

c 

CALL ZSVCNPI,PI.VR,W, ISEQ,KL> 
CALL SAF043<VR,W,VPV, 1,N) 
VPV=VPVl<DF*SIGM*SIGM> 

1060 FORMAT</' DEGR. OF FREEDOM =I' I4. I 
DO 60 .J=l,N 
IF CNP<.J>.NE.O.DO> GOTO 55 
WC.J>=O.DO 
GOTO 60 

55 W<.J>=-W<.J>l<SIGM*NP<.J>> 
60 CONTINUE 

100 CONTINUE 

57 

F-VALUE =',F15. 3> 



c 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

200 WRITE<o. 1030> KL 
1030 FORMAT</' #OF ERROR-ESTIMATES='• 14> 

500 RETURN 

END 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

**** INTERNAL SUBROUTINE FOR HEROB3: ESTIMATES AND VARIANCES *** 

* * *"* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SUBROUTINE EST2<NG,GBA.NB.B.NPI,PI,VJ, ISEQ,NABL,KL.NS.RSJ,RSK, 
+ H.MAT,QV,SIGM.ABC,DSOo> 

DOUBLE PRECISION GBAC1>.BC1>,PIC1),VJ<1>.NABLC1>,RS.JC1>,RSKC1>, 
+ HC1>,TRAP<1300>,VEC<50>,ELM,MATC1>.GVC1>.SIGM 

INTEGER NG<1>,NB<1>.NPI<1>, ISEQ<1>,ABC,DS06,RANK 
LOGICAL INT.BBC50) 

C INITIALISATION: 

c 

c 

ABC=500 
INT=. FALSE. 
N=NB<3> 
NL=NBC2> 
NE=NS+1 
NN=<KL+1>*<KL+2)/2 
DO 02 K=l,NN 

02 TRAP<K>=O.DO 

DO 100 I=l,KL 
IE=I*<I-1>12 
JJ=ISEG<I> 
VEC C I >=VJ< .J.J > 
DO 05 K=l. N 

05 H<K>=O. DO 
H C JJ > = 1. DO 
CALL SAF105<NB,B,H,RSJ> 
DO 06 K=l,NS 

06 RSJ<K>=O.DO 
CALL SAF341<NG.GBA.RSJ,NE,NL, INT,ABC,DSOo> 
IF <ABC.LT. 500) GOTO 500 
JE=NPICJJ+3>+1 
JL=NPI<JJ+4> 
DO 50 J=L I 
DO 20 K=JE,JL 
IF CNPICK>.NE. ISEGCJ>> GOTO 20 
TRAP<IE+J>=PICK-N-4> 
GOTO 21 

20 CONTINUE 
21 KK=ISEGCJ) 

IF <KK.NE . .JJ> GOTO 40 
CALL SAF043CRSJ,RSJ,ELM,NE,NL> 
IF CI.LT.KL> GOTO 45 
CALL SAF142<NG,GBA,RSJ,NE,NL> 
CALL ZTV<NB,B,RSJ,H,NE> 
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c 

c 

c 

c 

c 
c 

KE=NPI<JJ+3>+1 
KLA=NPI<JJ+4) 
DO 22 K=KE,KLA 
II=NPI <K> 

22 H<ll>=H<II>-PI<K-N-4> 
KF=JJ+1 
DO 24 K=KF,N 
KE=NPI<K+3>+1 
KLA=NP I < K+4· > 
DO 23 KJ=KE,KLA 
II=NPI<KJ> 
IF <II.EQ. JJ) H<K>=H<K>-NPI<KJ-N-4> 
IF <II.GT.JJ> GOTO 24 

2!3 CONTINUE 
24 CONTINUE 

JE=CKL-l>*N 
DO 30 JJ=l. N 
Il=JE+JJ 

30 MAT<II>=-H<JJ) 
GOTO 45 

40 DO 25 K=l. N 
25 HCK>=O.DO 

H<KK>=l. DO 
CALL SAF105<Ne.e.H.RSK> 
DO 26 K=1,NS 

26 RSKOO=O. DO 
CALL SAF341<NG,GBA,RSK,NE,NL, INT.ABC.DS06> 
IF <ABC.LT. 500> GOTO 500 
CALL SAF043CRSJ,RSK,ELM,NE.NL> 

45 II=IE+J 
TRAP<II>=TRAP<II>-ELM 

50 CONTINUE 
100 CONTINUE 

IE=KL*<KL+1>12 
DO 110 I= 1 , KL 
II=IE+I 

110 TRAP<II>=VEC<I> 
RANK=KL. 
NR=KL+l 
CALL SAF114CTRAP,NR,NR, 1,RANK,RSJ,RSK,BB> 
IF CRANK.EG.KL> GOTO 115 
WRITE<DS06, 1000> KL.RANK 

1000 FORMAT(//' *** WARNING: MATRIX GV IS SINGULAR'/ 
+ OR DER = ' , I 4, ' RANK = ' , I 4 / I 
+ EXEC OF SUBROUTINE HEROB3 TERMINATED'//) 

ABC=1 
GOTO 500 

115 DO 120 I=1,KL 
II=IE+I 
K=ISEG<I> 

120 NABL<K>=TRAPCII> 
CALL MTMCMAT,TRAP,QV,RS~.RSK,KL,N> 

500 RETURN 

END 
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c 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
c 
C *** SUBROUTINE ZTV <MAT-PRODUCT>: SPARSE MATRIX <TR> * VECTOR 
c 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
c 

c 

c 

c 

c 

c 

SUBROUTINE ZTV<NZ.z.v.RES.NE> 

DOUBLE PRECISION ZC1>.V<1>,RES<1> 
INTEGER NZ<1>,NE 

NR=NZ<3> 
NC=NZ<2> 
DO 10 J=l. NR 

10 RES<J>=O.DO 

DO 100 I=NE,NC 
IE=NZ<I+3>+1 
IL=NZCI+4> 
DO 20 K=IE, IL 
J=NZ<K> 

20 RES<J>=RES<J>+Z<K-NC-4>*V<I> 
100 CONTINUE 

RETURN 
END 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
c 
C ***SUBROUTINE MTM <MAT-PRODUCT>: 
C DIAG< MAT<TR> * SYM.MAT *MAT> 
c 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
c 

c 

c 

c 

c 

c 

SUBROUTINE MTM<MAT.TRAP,DIAG,VEC.W,N,M> 

DOUBLE PRECISION MAT<1>.TRAP<1>,DIA0<1>,VEC<1>,W<1>,SUM 

DO 100 I=l. M 
DO 10 ...1=1. N 
Il=<J-1>*M+I 

10 VEC<J>=MAT<II> 

DO 50 .J=l. N 
SUM=O DO 
DO 30 K=1,N 
.J.J=.J*<.J-1>12+K 
Ir CK.GT J> .J.J=K•<K-1)/2+.J 

30 SUM=SUM+VEC<K>*TRAP<.J.J> 
50 W(.J>=SUM 

SUM==O.DO 
DO 60 .J=l. N 

60 SUM=SUM+W<...l>*VEC<.J> 
DIAG<I>=SUM 

100 CONTINUE 

RETURN 
END 

60 



c 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
c 
C ***SUBROUTINE ZSV <MATRIX-PRODUCT>: 
C SYM.SPARSE MAT* VECTOR, OMITTING SPECIFIC ROWS OF MAT 
c 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
c 

c 

c 

c 

c 

c 

c 
c 

SUBROUTINE ZSV<NZ,Z,VEC,RES, ISEG.KL> 

DOUBLE PRECISION Z<1>,VEC<1>.RES<1>,SUM 
INTEGER NZ<l>, ISEG<l> 

NR=NZ<2> 
NC=NZ<3> 

DO 100 I=l,NR 
SUM=O.DO 
DO 10 .J=l,KL 

10 IF< ISEO<.J>. EO. I> GOTO 90 
IE=NZ<I+3)+1 
IL=NZ<I+4) 
DO SO K=IE. IL 
J=NZOO 

SO SUM=SUM+Z<K-NR-4>*VEC<J> 
IF <I.EQ.NR> GOTO 90 
IE=I+l 
DO 80 II=IE,NR 
JE=NZ< II+3>+1 
.JL=NZ<II+4> 
DO 70 K=.JE,JL 
J=NZOO 
IF <.J.GT. I> GOTO 80 
IF (J.LT. I> GOTO 70 
SUM=SUM+Z<K-NR-4>*VEC<II> 

70 CONTINUE 
80 CONTINUE . 
90 RES<I>=SUM 

100 CONTINUE 

RETURN 

END 
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