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Executive Summary 
NOAA Technical Report NOS NGS 62 

Blueprint for 2022, Part 1: Geometric Coordinates 

In 2022, the entire National Spatial Reference System (NSRS) will be modernized.  This 
document addresses the geometric aspects of the NSRS.  Geometrically, the NSRS currently 
contains three reference frames (historically “horizontal datums”), known as NAD 83(2011), 
NAD 83(PA11) and NAD 83(MA11) which are used to define the geodetic latitudes, geodetic 
longitudes and ellipsoid heights of all points in the USA.  These three frames will be replaced 
with four new reference frames, called: 

• North American Terrestrial Reference Frame of 2022 (NATRF2022) 
• Pacific Terrestrial Reference Frame of 2022 (PATRF2022) 
• Caribbean Terrestrial Reference Frame of 2022 (CATRF2022) 
• Mariana Terrestrial Reference Frame of 2022 (MATRF2022) 

The time-dependent Cartesian coordinate of any point on Earth in any of these frames [x,y,z] 
will be defined as: (a) identical to (at epoch t0) and (b) relative to (at epoch t=t0+∆t) the time-
dependent Cartesian coordinates in the latest pre-2022 global reference frame [X,Y,Z] from the 
International GNSS Service (IGS).  The relative relationship over time will rely on an NGS-
determined plate rotation model for each tectonic plate associated with each frame.  This 
relationship will resemble a traditional 14 parameter transformation, but only three (time-
dependent rotations about the three IGS axes) will be non-zero. 

Such time-dependent coordinates will exhibit spatial stability in areas of the continent where 
motion of the tectonic plate is fully characterized by plate rotation.  All remaining velocities 
(including horizontal motions induced directly or indirectly by adjoining tectonic plates, 
horizontal motions induced by Glacial Isostatic Adjustment, other horizontal motions and all 
vertical motions in their entirety) will be captured by an Intra-Frame Velocity Model (IFVM).  
Such a model will allow users to compare time-dependent coordinates in any of the four 
terrestrial reference frames, across years.   

The use of the IFVM will allow NGS to provide, as a primary service, time-dependent 
coordinates at the highest levels of accuracy, while subsequently providing a secondary service 
of comparing those time-dependent coordinates across time at lower levels of accuracy.  
However, this document does not yet define the exact 'fabric' or delivery of the IFVM, only its 
definitive part in the NSRS and its expected initial role. 

The ellipsoid used to relate Cartesian coordinates to geodetic coordinates will be GRS 80. 
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Blueprint for 2022:  Part 1, Geometric Coordinates 

1 Purpose 
 

The intent of this document is to provide to the public the current status of plans by the National 
Geodetic Survey (NGS) to modernize the National Spatial Reference System (NSRS) in 2022.   This 
particular document covers the Geometric component; that is, the definition and determination of 
latitude, longitude and ellipsoid heights.   

This document does not attempt to be comprehensive, but it is being released with the express intent of 
stating what is currently known, while leaving some items “to be determined” (TBD).  As feedback is 
collected about this document, further refinements to this blueprint will be made.  It is expected that 
updated releases of the blueprint will occur both before 2022 and shortly thereafter as more details 
become codified. 

Therefore, a word of caution is appropriate:  Many portions of this document are purposefully vague.  
NGS requests and welcomes feedback from the user community, particularly on those aspects which still 
have vague, TBD information. 

2 Introduction 
 

The mission of the National Geodetic Survey (NGS) is to define, maintain and provide access to the 
National Spatial Reference System (NSRS), to meet our nation’s economic, social, and environmental 
needs.  The NSRS is defined by the Office of Management and Budget’s (OMB) circular A-16 
(Coordination of Geographic Information and Related Spatial Data Activities) as “the fundamental 
geodetic control for the United States” and is required to be used by all federal government agencies 
creating geographic information within the United States. 

In order to keep up with changing technology and improved accuracy, NGS has planned for a 
modernization of the NSRS by 2022.  In order that this modernization maintains the usefulness of the 
NSRS, the function of geodetic control should be clearly articulated first.  

 

3 “Geodetic Control” 
 

According to OMB A-16, “geodetic control provides a common reference system for establishing 
coordinates for all geographic data.”  That is, geodetic control is some system which allows users to 
determine the latitude, longitude, height, gravity or other coordinate at points in their geographic 
dataset in such a way that these coordinates are consistent with similarly derived coordinates prepared 
by other users using other datasets, but using the same geodetic control.  Therefore, geodetic control 
must be more accurate than any map or other data set built upon it.  There is no unanimous definition 
of threshold values that define “geodetic accuracy” or “mapping accuracy”; this is especially true 
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considering (for example) that the state-of-the-art positioning accuracy was about 1 meter just a few 
decades ago, but now it is in the centimeter and even millimeter range.  Therefore, while terms like 
“geodetic accuracy” or “mapping accuracy” (or “geodetic or mapping ‘quality’”)) may be used in this 
document, they should be taken relative to one another, rather than in an absolute sense.  Geodetic 
accuracy should be considered state-of-the art positioning accuracy, while mapping accuracy is anything 
less accurate than that, but still capable of providing useful information in many map applications or 
other geospatial products, such as boundary and engineering surveys. 

Unfortunately missing from this functional statement is the reality that geodetic control points (and 
their respective coordinates) can, and do, move over time.  A significant portion of this blueprint will be 
dedicated to addressing why this is true and what can be done about it. 

In order to fulfill its function, classical geodetic control was usually a network of metal disks or rods 
affixed to the surface of the Earth with some associated coordinates such as latitude, longitude, height 
or gravity, and where such coordinates are mutually consistent within the network.   Such points served 
as “starting points” for the users of geodetic control to begin their own surveys and thus create their 
own maps or other geographic datasets.  By requiring all federal creators of geographic data to use the 
same geodetic control network (the NSRS), all geographic data in the USA created at the federal level 
should therefore be mutually consistent. 

As technology has progressed, our ability to establish accurate positions has outpaced the accuracy of 
our underlying geodetic control.  Coordinates do change over time due to a variety of factors operating 
over different spatial and temporal scales.  In general, these scales were either spatially small or 
temporally very long, and were of a magnitude smaller than the accuracy of the surveys which created 
the coordinates.  For example, on a typical engineering timescale, coordinate drift is typically less than 
the aforementioned 1 meter state-of-the-art absolute accuracy of the mid-late 20th century.  Therefore, 
it was possible for geodetic control to function for decades with the assumption of “fixed” coordinates, 
only occasionally getting updated in certain locations when movement, exceeding the accuracy of 
existing surveys, was finally detected.  That all changed in the 1980s with the advent of the Global 
Positioning System (GPS) and other space geodetic techniques.  These new positioning technologies, 
with their ability to measure baselines thousands of kilometers in length to a few centimeters of 
accuracy, began to detect (and thus validate the theory of) tectonic plate drift.  A variety of approaches 
to providing geodetic control have been attempted since then, including: 

1) Global, plate-independent reference frames, such as the International Terrestrial Reference 
Frame (ITRF), which embraces time dependency as part of geodetic control.  1 

2) “Plate Fixed Frames”, such as NAD 83, which attempt to “affix” a coordinate frame (at least in 
latitude and longitude) to one tectonic plate so as to maintain unchanged coordinates on that 
plate.  This approach comes with its own assumptions, such as the rigidity of the tectonic plate. 

Neither of these approaches presents a perfect solution to reconcile the considerations and capabilities 
of the geodetic control provider with the practical expectations of the geodetic control user community.  
For instance, many surveyors still have equipment, software and other tools which presume that 
geodetic control remains “fixed” (constant) in time.  This simplifies project planning and computations 

                                                           
1 More recent global initiatives, such as the United Nations Global Geospatial Information Management (UN-
GGIM) have raised the ITRF from an independent scientific project to a UN supported global initiative. 
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significantly, and also aligns with the majority of geodetic control services historically provided by NGS 
within the NSRS.  But it ignores the true nature of the Earth by oversimplifying geospatial data collected 
at different points in time and limiting the ability to combine datasets that cover very large geographic 
areas.  Although this situation is changing, not all users of geodetic control can readily adapt to a system 
where coordinates change in time.  As such, some compromise is necessary for practical purposes when 
modernizing the NSRS. 

One type of compromise between the users of geodetic control and the providers of such control is 
through the definition of a “plate fixed” reference system, rather than a global (plate-independent) 
reference system.  Such a compromise breaks down in areas where a tectonic plate is not completely 
rigid, where it is not moving in a uniform or predictable manner, or where complex intraplate motion is 
present.  However, as a first approximation, a “plate fixed” system is an incredibly useful  compromise 
because it can cover large portions of a tectonic plate, provide accuracies over time which are 
acceptable to many geographic data providers, and it can be easily implemented.  As will be discussed 
later, once the plate rotation is removed, a significant portion of the country will experience small (to 
the point of being negligible) time dependent motions; and even those portions of the country which 
experience large motions besides the rotation of one particular plate will have those motions modeled 
separately (see Section 7).  As such, the use of “plate fixed” reference frames was chosen by NGS as part 
of the NSRS modernization.   

No matter its nature (passive or active), the purpose of geodetic control is to provide starting points by 
which geospatial users. may define positions with the consistency and reliability of the National Spatial 
Reference System.  Such starting points should have known coordinates at the epoch when the 
geospatial professionals are using that control.  If those coordinates have changed over time, then it 
would be convenient if some component of the geodetic control should allow for comparison of 
previously determined geospatial coordinates at different epochs. 

4 “Plate Fixed” and Euler Poles 
 

It was only a century ago that “continental drift” was first proposed (Wegener, 1915), but it wasn’t until 
the 1950s that enough evidence of “plate tectonics” began to accumulate that in the 1970s it became an 
accepted, proven theory.  Today, it is recognized that the motion of many plates is not best 
characterized by “drifting,”, but could more accurately  be described as “rotating”.   The horizontal 
motion of many points on a tectonic plate (relative to a global ideal reference frame like the ITRF) can be 
modeled as a rotation about a geocentric axis passing through a fixed point on Earth’s surface.  Although 
such models must make certain assumptions (such as the rigidity of the plate), the dominant motion of 
the majority of points on most tectonic plates is the rotation about a fixed point.  That point is known as 
an “Euler Pole”.  See Figure 1.  The determination of a plate’s Euler Pole location and the angular 
velocity with which a plate rotates can be empirically determined through the analysis of years (even 
decades) of GNSS observations distributed around the plate.  With longer time series, wider geographic 
distribution and the accurate modeling of non-Eulerian motions, the knowledge of the plate’s rotation 
improves.  

Under the presumption that plate-wide small (relative) magnitude horizontal motions like GIA are 
properly modeled and removed from the otherwise rigid parts of a tectonic plate, plates can be 
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assumed to have effectively non-deforming (rigid) portions.  These portions of the plate are generally in 
the interior, and if this part of the plate is truly rigid, points on these portions of the plate do not move 
relative to one another.  This discussion will restrict itself solely to that part of a tectonic plate which 
exhibits rigidity. 

If one examines the global motion of the rigid part of a tectonic plate, it is often the case that the 
motion looks like the plate is being rotated about some geocentric axis passing through a fixed point on 
the Earth.  The Euler Pole is usually not on the plate itself, but the rotation about that pole should be 
constant (often expressed in angular velocity units such as degrees of rotation per million years or milli-
arc-radians per year).  This means that, viewed from a purely horizontal motion standpoint, points 
nearer the Euler pole seem to be moving slower (in linear velocities, like centimeters per year) and 
points further from the Euler pole appear to be moving faster (again, in linear velocities like centimeters 
per year), but in truth, they are all moving at the same angular velocity. 

 

 
Figure 1: Vectors of horizontal velocity  at 114 Continuously Operating Reference Stations (CORS)  
used in the “repro1” solution at NGS, as well as its associated Euler Pole solution, for the North 
American Plate.  Also shown, for comparison, is the ITRF08 Euler Pole solution.  Error ellipses are also 
shown to represent the uncertainty in both the magnitude and azimuth of the velocity vector. 
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However, no tectonic plate is perfectly rigid.  When the motions seen in Figure 1 are removed from the 
measured horizontal velocities at any CORS station in North America, non-Eulerian motions are 
detected.  These non-Eulerian velocities are shown for the Eastern and Western parts of CONUS in 
Figures 2 and 3. 

 
 

 
Figure 2: Repro1 horizontal non-Eulerian velocities (observed – Euler-derived) to the east of 
longitude 110W. Their magnitude is smaller than 2 mm/year.  It is expected that those stations 
which were used to derive the Euler Pole will behave well (have small non-Eulerian velocities) 
while other stations may have larger non-Eulerian velocities. 
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Figure 3: Horizontal non-Eulerian velocities in the west of longitude 110W (the result of removal of 
the rotation of the North American plate).  The large vectors in Western California are points on or 
near the Pacific Plate while the larger vectors in Western Oregon and Washington show areas of 
deformation near plate boundaries, all of which therefore exhibit velocities which cannot be 
adequately captured just from the North American plate rotation.   
 

Figure 2 appears to have mostly random scatter, but a close look at some areas, such as the Northeast, 
shows that some of this non-rigid motion is systematic as well.  Based on the non-zero size of the 
resultant non-Eulerian vectors (random or systematic), real-world “plate fixed” coordinates cannot be 
simply defined as being affixed to a rigid plate.  Therefore, an interpretation of “plate fixed” coordinates 
may fall into one of two categories, one that treats the plate as entirely static and one that allows 
coordinates to follow some fixed characteristic motion that is specific to the plate    

In the first interpretation, a “plate fixed” coordinate system could mean that coordinates on a tectonic 
plate never change over time.  This interpretation carries some simplicity, as one need only fix the 
coordinates of all active and passive control in a frame at some reference epoch.  This then means that, 
by definition, all vectors between any two points are also permanently fixed in size and direction.  This 
immediately introduces some difficulties within the real world, including: 
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a) All points actually have some non-Eulerian motions (see Figures 2 and 3), so that actual 
measurements of vectors over the years between points will not agree with the fixed 
vectors nor with any other measurements at any other survey epochs.  However, these 
discrepancies may be caused by actual motion or by survey error.  Therefore, this definition 
requires either the surveyor or the maintainer of the frame provide geodetic quality models 
of time-varying 3-D motions at all existing geodetic control points, as well as future geodetic 
control points, so that true motion and survey measurement error may be distinguished 
from one another.  This ultimately means a 3-D motion model for the entire continental 
crust must be available, as one cannot ever know where future geodetic control might be 
installed, and a newly installed mark, tied to pre-existing control, will need to be relatable 
through time to the location of that pre-existing control at a previous epoch.   

b) Plate boundaries are not always obvious, so knowing whether a point should or should not 
be fixed to a particular plate may be difficult. 

In the second interpretation, one might assume that a tectonic plate is “rigid” and that points upon that 
plate only move due to rotation of that rigid plate.  This also presents additional difficulties for 
application in the real world, including: 

a) Points which are on any non-rigid part of the plate (usually near compression zones near plate 
boundaries; see Figure 3) will have significant velocities which are not captured by a plate 
rotation 

b) Small, but noticeable, horizontal motion may occur in association with significantly large vertical 
signals (such as Glacial Isostatic Adjustment). 

c) All points actually have some non-Eularian motions (see Figure 2), so removing just plate 
rotation will still yield points that move through time. 

d) The rigidity assumption also assumes that no vertical movement is happening.   

A word of caution before proceeding:  the assumption of a tectonic plate being “rigid” is a reasonable 
first approximation in the interior of many plates, but cannot be taken as absolute.  The most obvious 
deviation from this comes near the boundaries of two plates where non-rotational motion comes in the 
form of compression or other deformation.  But there is one other signal which can span large portions 
of an otherwise “rigid” plate, effectively nullifying true rigidity, and that is the horizontal signal 
associated with glacial isostatic adjustment (GIA).  To envision this, think of the North American Plate as 
a flat bedsheet.  If one pinches the sheet at Hudson Bay and begins lifting vertically, then all points on 
the sheet begin to slide horizontally (radially) toward Hudson Bay.  One such model of this motion is 
seen in Figure 4. 
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Figure 4: GIA-specific horizontal non-Eulerian velocities (Euler Pole Rotation Removed) using the 
MELD model (Blewitt, et al, 2016) 

 

Despite the fact that the overwhelming majority of horizontal motion on the North American Plate may 
be described by rotation about a fixed Euler Pole, the measurable amount of horizontal motion that is 
an artifact of GIA centered around a few nodes on the plate (the largest being at Hudson Bay) cannot be 
ignored.  However, it does not lend itself well to the simple mathematical description that comes with 
an Euler Pole rotation.  As such, it is worth remembering that to speak of a “rotation of a rigid plate” one 
must make assumptions about how potential plate-wide non-rotational motions will be handled. 
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Therefore, to best characterize the motion of geodetic control within the NSRS, we utilize a hybridized 
approach of the “fixed coordinates forever” and “the entire plate is rigid” interpretations described 
above. The modernized NSRS will contain four “plate fixed” terrestrial reference frames, one for each of 
four different plates (North American, Caribbean, Pacific and Mariana), for which the term “plate fixed” 
will mean that the Euler Pole rotation of the plate, uncorrupted by any other systematic or random 
horizontal motions, will be calculated and used to define the mathematical relationship of latitude and 
longitude between an ideal global reference frame (such as the ITRF) and each of the four terrestrial 
reference frames of the NSRS.  To put it another way, for each of the four plates, a rigid frame (of 
latitude and longitude) will be created which will rotate about the best determined Euler Pole for that 
plate at the best determined angular velocity for that plate.  NGS will work to re-establish an 
International Association of Geodesy (IAG) working group specifically to address the determination of 
the four Euler Poles needed.  While the North American and Pacific plates already have well determined 
Euler Poles, the estimates can be improved.  However the Euler Poles for the Caribbean and Mariana 
plates are poorly known, and will require substantial work to be at the proper accuracy for 2022. 

 

As such, within each of the four plate-fixed frames, every point will contain some non-Eulerian 
velocities, but the predominant horizontal signal will have been removed for the majority of each plate.  
This decision means that coordinates, whether in the global ideal (ITRF or IGS) frame or one of the four 
terrestrial “plate fixed” frames (of the NSRS) will have time dependencies.  Those time dependencies 
will, however, only reflect the deviation of the point’s coordinates from the rigid, rotating frame.  Those 
deviations, due to non-Eulerian velocities will manifest as velocities within a frame, or “intra-frame 
velocities” over time, and will be captured in a separate tool, to be discussed later in this report.   

 

 

5 Ideal frames and plate fixed frames  
 

The use of positioning technologies like GNSS rely upon orbits and/or global tracking stations which are 
expressed in some ideal frame, such as the IGS14 frame (Rebischung and Schmid, 2016).  Such frames do 
not attempt to minimize horizontal motions on any particular tectonic plate, and thus X, Y and Z (Earth-
centered, Earth-fixed or ‘ECEF’ Cartesian coordinates) are time-dependent in such a frame.  This means 
that latitude and longitude are also time-dependent (as well as ellipsoid heights, though they are driven 
by horizontal tectonic drift to a much lesser extent).  As such, for surveyors or other positioning 
professionals working on just one plate whose work relies on (preferably) constant horizontal 
coordinates, the ideal frame is not a preferred choice.  Rather, a plate fixed frame can be set up.   

Therefore, to sum up, a plate fixed frame can be defined in many ways, but the method chosen for the 
new terrestrial reference frames will be that two conditions will be met, defining the plate fixed frame in 
a way that is relatable directly to the ideal frame.   
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Condition 1:  The coordinates of all points in a plate-fixed frame should remain 
constant through time, provided all of those points rotate about the Euler Pole with 

the same angular velocity and otherwise have no other motions.2 

Condition 2:  The coordinates of all points in a plate-fixed frame are identical to their 
coordinates in the ideal frame at some initial chosen epoch t0. 

The use of these two conditions will be presented in the next section to form the mathematical 
relationship between the ideal frame and any of the four terrestrial “plate fixed” frames of the 
modernized NSRS. 

Expressing the mathematical connection between the ideal frame and a plate fixed frame 

As mentioned earlier, positioning could simply be performed entirely in the ideal frame, as long as a user 
were willing to accept that a coordinate determined on some fixed point at some time will be different 
than its coordinate at some other time, since all of the tectonic plates have motions within the ideal 
frame.  Thus we can assume that we will always have access to the time-dependent coordinates in the 
ideal frame, but a mathematical connection must be made to obtain time-dependent coordinates in a  
plate fixed frame. 

Let us begin by presuming that we have an ideal frame, which we call RF1, and whose ECEF coordinates 
are time-dependent and called (X1, Y1, Z1).   See Figure 5.  

 

Figure 5:  Ideal coordinate frame #1. 
 

                                                           
2 We already know that all points have some non-Eulerian motions.  This condition therefore can draw the 
corollary that if the plate were rigid, then coordinates in our plate-fixed frame wouldn’t change over time.   
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Also, assume that some rigid tectonic plate sits on the surface of the Earth, and is rotating about an 
Euler Pole3.  Assume that we know the co-latitude (θ0) and longitude (λ0) of the Euler Pole, in RF1, and 
also the angular velocity of the tectonic plate about that pole, 𝜔̇𝜔0.   .  See Figure 6.  

 

Figure 6:  A rotating tectonic plate (green) and its Euler Pole (dashed green arrow and red dot). 
 

We are going to create a new frame, called RF3, the reason for which will become clear soon.  To do so, 
requires first creating an intermediate frame, RF2. 

First, let us perform a counter clockwise rotation of ideal frame (RF1) about its Z1 axis by λ0, in order to 
create RF2 where the Euler Pole now lies in the X2-Z2 plane.   

 

Figure 7:  Creating RF2 by rotating RF1 about the Z1 axis by λ0. 
                                                           
3 For simplicity, a spherical Earth will be used in this report.  However, the ellipsoidal nature of the Earth does 
introduce a 2nd order effect and that will be accounted for in the modernized NSRS. 
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The mathematical relationship between coordinates in two Cartesian frames (related through a single 
rotation) is well known and will be presented momentarily.  However, before proceeding, a subtle, but 
critical point should be made: The Euler Pole’s location in RF1 (co-latitude and longitude of θ0 and λ0) is 
(for now) presumed to be not moving over time4.  Therefore, as we write the relationship between 
coordinates in RF1 and coordinates in RF2, any epoch may be chosen.  Therefore (and for reasons that 
will be clear later) )we will explicitly write out two equations; the first for the specific epoch t=t0, and the 
second for any generic epoch “t”. 
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Now proceeding to the creation of RF3, rotate RF2 counterclockwise about its Y2 axis by θ0 to establish 
RF3 which has its Z3 axis pointing along the Euler pole axis.  See Figure 8. 

 

Figure 8:  Creating RF3 by rotating RF2 about the Y2 axis by θ0. 
 
As before (with RF1 and RF2), we can now write the relationship between RF1 coordinates and RF3 
coordinates at any epoch, since the Euler Pole isn’t moving.   
 

                                                           
4 Like any modeled quantity, there is uncertainty not only in the Euler Pole’s location but possibly in its stability 
within the ideal frame itself.  Any such uncertainty or instability will be estimated by NGS and will propagate into 
the coordinates and uncertainties in the four terrestrial reference frames. 
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To be explicit:  RF1, RF2 and RF3 all have a fixed orientation to one another over time.  These frames do 
not rotate over time.  However, a point sitting on a rigid tectonic plate, rotating about the Euler Pole will 
have time-dependent coordinates in all three frames.  It just so happens that the computation of that 
time dependency, as described below, is much simpler in RF than in the other two, which is why RF3 was 
introduced. 

Since RF3 has its Z3 axis aligned with the Euler Pole, then the time-dependent RF3 coordinates (X3, Y3, Z3) 
of a point sitting on a plate which rotates about the Euler pole may very easily be computed simply by 
applying a rotation about the Z3 axis to those coordinates.  First, assume the time elapsed since epoch t0 
(when the ideal and plate-fixed frames were aligned) is ∆t, where ∆t=t-t0.  Then, assume the angular 
velocity of the plate rotation about the Euler Pole is 𝜔̇𝜔0 (in, say, milli-arcseconds per year).  Thus, in the 
time interval between t0 and t, the plate rotated by an angle “α” about the Euler Pole (or, equivalently, 
about the Z3 axis) where α=𝜔̇𝜔0∆t.  In order to visualize this, let us view frame #3 from the perspective 
that the Z3 axis points upwards, and we can see our continent.  Let us then identify some point on that 
continent.  See Figure 9: 

 

 

Figure 9:  New perspective of RF3.  Dot (black) is any point on the tectonic plate at t0. 
 

Now let us show the motion of the point on the tectonic plate by plotting its location at t0 and t.  See 
Figure 10. 
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Figure 10:  The simple motion of any point over time on the rotating continent, when seen in RF3. 
 

Then, the relationship between (X3, Y3, Z3) at time t and (X3, Y3, Z3) at time t0 is just a rotation about the 
Z3 axis by an angle of α: 
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𝑍𝑍3
�
𝑡𝑡

= �
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0 0 1
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𝑍𝑍3
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𝑍𝑍3
�
𝑡𝑡0

    (5) 

Note, that this rotation is not creating a new frame, but is expressly defining the Euler-Pole motion 
(time-dependence) of a point’s coordinates within RF3.  For this reason, the rotation matrix in equation 
5 is the inverse of the standard rotation matrix about a Z axis.  This represents the difference between: 

rotating a frame about its Z axis, and computing the effect on an unmoving point 

and 

 keeping the frame unmoving, while rotating a point about the frame’s Z axis. 

The former type of change was seen in equations 1 and 2.  The latter type of change is seen in equation 
5. 

See that in equation 5, unlike equations 1 through 4, the epoch on the left hand side (t) is different from 
the epoch on the right hand side (t0).   Now, invoking equation #3 and applying it to equation #5 allows 
us to express the time-dependent RF3 coordinates in terms of coordinates at t0 in RF2 but more 
importantly in the ideal frame, RF1: 
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�
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    (6) 

However, repeating equation 4 so it can immediately be compared it to equation 6: 
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     (7) 

Note that equations 6 and 7 have the same left hand side (time-dependent coordinates in RF3).  As such, 
let us set their right hand sides equal to one another: 
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  (8) 

Re-arranging equation 8 yields: 

�
𝑋𝑋1
𝑌𝑌1
𝑍𝑍1
�
𝑡𝑡

= �𝑅𝑅1
𝜆𝜆0�

−1
�𝑅𝑅2

𝜃𝜃0�
−1
𝑅𝑅3𝛼𝛼𝑅𝑅2

𝜃𝜃0𝑅𝑅1
𝜆𝜆0 �

𝑋𝑋1
𝑌𝑌1
𝑍𝑍1
�
𝑡𝑡0

  (9) 

Equation 9 shows the relationship between RF1 coordinates over time and RF1 coordinates at epoch t0 
(note its much more complicated nature than the frame 3 relationship from equation 5).  In other 
words, this is defining the Euler-Pole motion (time-dependence) of a point’s coordinates within the ideal 
frame (RF1). The right hand side, reading from right to left, may be interpreted as “start with RF1 
coordinates at t0, rotate into RF3, then let coordinates change over time ∆t through the plate rotation, 
then rotate back to RF1”.   

For the sake of brevity, combine the 5-rotation matrices on the right hand side of equation 9 into one 
matrix called “M”: 

𝑀𝑀 = �𝑅𝑅1
𝜆𝜆0�

−1
�𝑅𝑅2

𝜃𝜃0�
−1
𝑅𝑅3𝛼𝛼𝑅𝑅2

𝜃𝜃0𝑅𝑅1
𝜆𝜆0     (10) 

Where it should be remembered that M is dependent upon θ0, λ0, and α (or 𝜔̇𝜔0 and ∆t):  

 �
𝑋𝑋1
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= 𝑀𝑀�
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�
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  (11) 

Turning our attention now to the plate-fixed frame, let us refer to it with lower case letters (x, y, z).  
Earlier, we defined that “plate fixed” in the modernized NSRS, as each tectonic plate  having one “plate 
fixed” terrestrial reference frame, where the grid of parallels and meridians itself will be rigid, and rotate 
about the best computable Euler Pole for that plate (computed after accounting for, and removing, any 
other spurious horizontal motions).  To express this definition mathematically, two conditions were 
introduced and will now be invoked. 

The definition of “plate fixed” is expressed in independent equations, each of which fulfills one of the 
conditions mentioned earlier.  The first states, in brief, that “in any given plate fixed frame, the plate 
fixed coordinates do not change over time” (Condition 1 above).  Thus: 
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  (12) 

Before proceeding, it is critical to remember that equation 12 is only valid for a point whose entire 
motion (in the ideal frame) is that of rotation about the Euler Pole (i.e. it’s true only if the plate is as rigid 
as the grid of parallels and meridians being laid over it and there is no vertical motion at all).  The 
assumptions are likely not true in the real world, as all points are expected to have some intra-frame 
motion not fully described by the plate’s rotation (whatever their scale in time or space).  As such, we 
expand equation 12 to reflect this fact: 
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  (13) 

Equation 13 holds now for any point in our plate fixed reference system, the point doesn’t even have to 
be located on the plate to which the Euler Pole refers.  For example, one can define “North American 
Plate Fixed coordinates” for a point on the Pacific Plate, because the motion of the Pacific Plate relative 
to the North American Plate, can be accounted for in the “intra-frame velocity” vector.   

 

Because the dx, dy and dz motions can have many different scales in both time and space, no further 
attempt to clarify them is made here except to note that they translate into 3-dimensional intra-frame 
velocities (including changes to latitude and longitude that aren’t captured by the plate rotation model 
and the ellipsoid height velocity signal).  They will be carried forward in the following derivations and 
discussed later.  But remember that, for most points on the so-called “rigid” part of the plate, the dx, dy, 
dz vector are expected to be exhibit horizontal motions somewhere between “small” (1-2 mm / year) 
and “zero”, relative to the magnitude of the plate rotation (1- 3 cm / year).  Vertical motions may be 
significantly larger than this in any part of the plate that is experiencing rapid subsidence or uplift.  
Naturally, these magnitudes exclude those parts of the plate that are undergoing significant 
deformation (such as Southern California for the North American Plate). 

Equation 13 showed equivalence (and equation 12 showed dependence) over time of the plate-fixed 
coordinates to some chosen set of plate-fixed coordinates at some particular epoch t0, but does not 
state what the actual plate-fixed coordinates are at that epoch. That bring us to the second plate-fixed 
condition which states that “the plate fixed coordinates at epoch t0 are equal to the ideal frame 
coordinates at that same epoch” (Condition 2).  Mathematically: 
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 (14) 

Note that equation 14 does not suffer from the issue of rigid versus non-rigid location of points.  It 
simply sets all coordinates in the plate fixed frame equal to those in the ideal frame, without any regard 
for where, on the plate, such a point sits; it gives us an initialized set of plate-fixed coordinates. 

Equations 11-14 are used to derive the relationship between plate-fixed coordinates over time (which is 
the desired quantity) and ideal frame coordinates over time (which is usually the quantity first 
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computed when using GNSS).   Beginning with equation 11, and then invoking equations 14 and then 13, 
one can see the following: 
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Solving equation 15 for the time-dependent plate-fixed coordinates yields: 
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  (16) 

What equation 16 states is that, if there no intra-frame motions, then a simple rotation matrix, M-1, 
provides the connection between time-dependent ideal frame coordinates (which are usually output by 
a GNSS software package) and the time-dependent plate-fixed coordinates (which are often desired by 
geospatial professionals working on that plate).  What is not obvious from equation 16 is that, in the 
absence of intra-frame motions, time-dependent plate-fixed coordinates are constant over time (the 
desired outcome of adopting a plate-fixed reference system).  The derivation of this fact is presented 
below before proceeding. 

Begin by modifying equation 16 so that there are no intra-frame motions: 
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  (17) 

Our goal is to show that, the left hand side of equation 17 is actually time-independent for any point on 
the tectonic plate that is rotating about our given Euler Pole at the set rate of rotation of that plate with 
no intra-frame motions.   Begin by expanding the right hand side of equation 17, using equation 11: 
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  (18) 

Thus we can see that without intra-frame motions (assuming a rigid, rotating plate without any vertical 
signals), the “plate fixed” coordinates, expressed as a function of time, do not deviate; they are fixed at 
their initial values, as set at epoch t0 (see equation 14). 

6 The 2022 Reference Frames 
 

The National Geodetic Survey, in preparing for the 2022 replacement of the NAD 83 frames, received 
user feedback through multiple channels (including two National Geospatial Summits, in 2010 and 
2015).  In 2016, reflecting on that user feedback and considering the appropriate balance of science and 
stewardship, NGS held a number of internal discussions to rigorously define the new geometric 
reference frame approach for 2022.  The result of those discussions can be summarized as follows: 
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1) In 2022, the NSRS will contain four newly defined terrestrial reference frames, one for each of 
these four tectonic plates:  North American, Pacific, Mariana and Caribbean. 

2) The definitional relationship between the latest IGS frame and each of the four terrestrial 
frames will adhere to Conditions 1 and 2 from earlier. 

The intra-frame velocities will not be removed when NGS provides coordinates in the new reference 
frames.  Instead, they will be provided as a separate service by NGS as described below. 

NGS can, with a great deal of accuracy, provide users the ability to position themselves, at time “t” in 
the ideal frame.  NGS also knows that, with similar accuracy, the plate rotations of the North American 
and Pacific plates can be computed and removed, providing accurate positions in the “plate fixed frame” 
at time “t”.5  Therefore, NGS will, define four plate fixed terrestrial reference frames, each related to the 
ideal (IGS) frame through a simple plate rotation model.  Coordinates in each frame will be time-
dependent because any intra-frame velocities which points are experiencing will change the point’s 
coordinates in the plate fixed frame over time.  However, NGS will also model those intra-frame 
velocities and provide that model as a method for users to compare points at common epochs.  The 
level of accuracy of the intra-frame velocity (IFV) model remains TBD, but it will vary as a function of  
geophysical complexity and available geodetic control. 

Sustaining the accuracy of the IFV model grows increasingly difficult if the goal is to model every intra-
frame motion of every point on each continent through all time.  Even from a horizontal-only 
perspective, the task is daunting, as every earthquake, compression, GIA signal, coastal sloughing or 
other geophysical signal, in all scales of time and space would need to be completely and accurately 
modeled.  The situation is further complicated with the inclusion of the vertical, which has significantly 
more localized signals than the horizontal.  In an effort to be fiscally responsible, NGS intends to provide 
a service that can deliver the highest achievable levels of accuracy without attempting to model the IFVs 
an unwieldy and unsustainably complex continent-wide deformation model that is in constant flux.   

This is not to say that intra-frame motions are not important or that they will not be provided.  But the 
terrestrial (“plate fixed”) reference frames themselves will only be related to the ideal frame through 
the rotation of the plate.   

To re-iterate, and to repeat equation 17: By definition, each of the four terrestrial reference frames 
will have their time-dependent coordinates defined through a rotation matrix, M, in relation to the 
time-dependent coordinates in the ideal (IGS) frame : 

 �
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  (19) 

There will be one unique 3x3 “M” matrix determined for each plate, and the ideal frame #1 will be the 
most recent version of the IGS frame available by 2022.  The epoch “t0” remains to be chosen, but will 
be identical for all four frames.  Furthermore, while the determination of a plate’s Euler Pole and 
rotation rate are much easier today with decades of GPS data to work with, it is not a perfect process.  
As mentioned earlier, the current knowledge of the Caribbean and Mariana plates is fairly weak.    

                                                           
5 The current knowledge of the Caribbean and Mariana plate rotations is much weaker than the North American 
and Pacific plates, and NGS will strive to fix that situation before 2022.   
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Therefore, NGS will likely need to re-evaluate these determinations about every decade, and possibly 
update any of the four frames as needed, to ensure the frame and the plate are rotating as congruently 
as possible.  As such, NGS will be meticulous in providing a “version number” of each update to a frame, 
as well as metadata about what changes occur with any new version. 

Note that the epoch on the left hand side of equation 19 is the epoch of the survey “t”.  Previous 
incarnations of the reference frames of the National Spatial Reference System have attempted to 
connect frame #1 coordinates at “t” with unchanging coordinates at some chosen reference epoch “t0”.  
This is no longer the approach for the primary service NGS will provide.  Consideration of the time 
dependency of a point’s “plate fixed” coordinates, when it is  well known that such a frame relies on the 
unrealistic assumption that the tectonic plate is “rigid,” will allow users to observe the intra-frame 
motions associated with  “time-dependent plate fixed coordinates.”.  As a secondary service, NGS will 
provide a model of the intra-frame velocities (IFV) so that users may estimate the change in coordinates 
for any particular point at disparate survey epochs.    

Users of the NSRS in stable (rigid) parts of a plate may expect to see small (to negligible) intra-frame 
velocities.  If NGS determines that a point’s intra-frame velocities are measurably zero, through either 
repeat surveys or through an IFV model, that information will be provided.  NGS will provide the intra-
frame velocities on all points, even on points when the observed or modeled magnitudes of those 
velocities are zero.   

7 14-Parameter Transformation between IGS and four *TRF2022’s 
It will be instructive to actually derive the transformation between IGS and the four *TRF2022’s from 
equation 19.  However, this transformation will, of necessity, diverge slightly from the common form of 
a 14 parameter Helmert transformation due to the treatment of epochs when converting from IGS to 
the four TRFs of 2022.  By way of explanation, consider the form of equation 19, which has, on either 
side of the equals sign, coordinates in two different frames but at the same epoch, “t”.  In general terms: 

 �
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  (20) 

Contrast this with the common form of a 14 parameter transformation (Soler and Marshall, 2003; 
equation 3) which has coordinates, but no velocities, in one frame at a reference epoch “t0” while 
coordinates and velocities of those same points are in the second frame at survey epoch “t”: 
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The structure of these two relationships is different, as are their goals.  The goal of applying the Euler 
Pole rotation (M-1 matrix) to the IGS frame in equation 20 (or equation 19) is not to arrive at *TRF2022 
coordinates at a reference epoch, but to arrive in that TRF at the same epoch as the IGS frame.  Thus a 
1-to-1 correspondence between a standard 14 parameter transformation and equation 19 cannot be 
drawn. 

However, with a few modifications, equation 19 can be equated to a modified 14 parameter 
transformation.  For example, Stanaway, et al. (2014), claim that a simple 3-parameter transformation 
can be developed which will effectively apply the relationship seen in equation 19, where those three 
parameters are rotation rates about the three axes of the ITRF frame.  This is not terribly surprising since 
there are, in fact, three parameters in equation 19:  the two Euler Pole coordinates and the rotation 
about that pole.  But geodesists tend to prefer applying parameters only as translations, rotations about 
the ideal frame axes and scale parameters.  Such a transformation from the three parameters in 
equation 19 to three Cartesian axial rotation rates is not trivial without adopting the “small angle 
approximation”, at which point the derivation becomes much easier. 

Beginning with a quick refresher on Helmert Transformations, recall the general form for any 
7-parameter transformation.  The Bursa-Wolf version (Rapp, 1989), will be adopted (dropping the 
subscript “1” from the variables X, Y and Z): 

 �
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𝑦𝑦
𝑧𝑧
� = �

𝑇𝑇𝑥𝑥
𝑇𝑇𝑦𝑦
𝑇𝑇𝑧𝑧
� + (1 + 𝑠𝑠)𝑅𝑅𝑍𝑍(𝜔𝜔𝑍𝑍)𝑅𝑅𝑌𝑌(𝜔𝜔𝑌𝑌)𝑅𝑅𝑋𝑋(𝜔𝜔𝑋𝑋) �

𝑋𝑋
𝑌𝑌
𝑍𝑍
�  (22) 

 

where: 

 𝑅𝑅𝑋𝑋(𝜔𝜔𝑋𝑋) = �
1 0 0
0 cos𝜔𝜔𝑋𝑋 sin𝜔𝜔𝑋𝑋
0 −sin𝜔𝜔𝑋𝑋 cos𝜔𝜔𝑋𝑋

�  (23) 

 𝑅𝑅𝑌𝑌(𝜔𝜔𝑌𝑌) = �
cos𝜔𝜔𝑌𝑌 0 −sin𝜔𝜔𝑌𝑌

0 1 0
sin𝜔𝜔𝑌𝑌 0 cos𝜔𝜔𝑌𝑌

�  (24) 

 𝑅𝑅𝑍𝑍(𝜔𝜔𝑍𝑍) = �
cos𝜔𝜔𝑍𝑍 sin𝜔𝜔𝑍𝑍 0
−sin𝜔𝜔𝑍𝑍 cos𝜔𝜔𝑍𝑍 0

0 0 1
�  (25) 

 

These rotation matrices are consistent with a positive rotation in the counterclockwise direction of a 
right-handed coordinate system, when viewed down the axis from the viewpoint of its positive end 
(Leick and van Gelder, 1975). 

There are many variations on equation 22, for example with the scale factor (1+s) applied after the 
transformation vector is applied, or with the scale factor written “(1-s)”, or with the rotations positive 
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clockwise, rather than counterclockwise.  There is no right or wrong form of these equations, but it is 
imperative that one clarify which version is being used for which application. 

In order to create a 14, rather than 7, parameter transformation, one need only make each of the 7 
parameters time-dependent.  However, if both Cartesian triads are also made time-dependent this will 
create an alternative 14 parameter transformation, of a slightly different nature than that provided in 
equation 21: 

�
𝑥𝑥(𝑡𝑡)
𝑦𝑦(𝑡𝑡)
𝑧𝑧(𝑡𝑡)

� = �
𝑇𝑇𝑥𝑥(𝑡𝑡)
𝑇𝑇𝑦𝑦(𝑡𝑡)
𝑇𝑇𝑧𝑧(𝑡𝑡)

� + (1 + 𝑠𝑠(𝑡𝑡))𝑅𝑅𝑍𝑍(𝜔𝜔𝑍𝑍(𝑡𝑡))𝑅𝑅𝑌𝑌(𝜔𝜔𝑌𝑌(𝑡𝑡))𝑅𝑅𝑋𝑋(𝜔𝜔𝑋𝑋(𝑡𝑡)) �
𝑋𝑋(𝑡𝑡)
𝑌𝑌(𝑡𝑡)
𝑍𝑍(𝑡𝑡)

�  (26) 

where: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑥𝑥(𝑡𝑡)
𝑇𝑇𝑦𝑦(𝑡𝑡)
𝑇𝑇𝑧𝑧(𝑡𝑡)
𝑠𝑠(𝑡𝑡)
𝜔𝜔𝑋𝑋(𝑡𝑡)
𝜔𝜔𝑌𝑌(𝑡𝑡)
𝜔𝜔𝑍𝑍(𝑡𝑡)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑇𝑇𝑥𝑥(𝑡𝑡0) + (𝑡𝑡 − 𝑡𝑡0)𝑇̇𝑇𝑥𝑥
𝑇𝑇𝑦𝑦(𝑡𝑡0) + (𝑡𝑡 − 𝑡𝑡0)𝑇̇𝑇𝑦𝑦
𝑇𝑇𝑧𝑧(𝑡𝑡0) + (𝑡𝑡 − 𝑡𝑡0)𝑇̇𝑇𝑧𝑧
𝑠𝑠(𝑡𝑡0) + (𝑡𝑡 − 𝑡𝑡0)𝑠̇𝑠

𝜔𝜔𝑋𝑋(𝑡𝑡0) + (𝑡𝑡 − 𝑡𝑡0)𝜔̇𝜔𝑋𝑋
𝜔𝜔𝑌𝑌(𝑡𝑡0) + (𝑡𝑡 − 𝑡𝑡0)𝜔̇𝜔𝑌𝑌
𝜔𝜔𝑍𝑍(𝑡𝑡0) + (𝑡𝑡 − 𝑡𝑡0)𝜔̇𝜔𝑍𝑍⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

   (27) 

For simplicity, combine the three rotation matrices into one: 

𝑅𝑅𝑍𝑍𝑍𝑍𝑍𝑍(𝑡𝑡) = 𝑅𝑅𝑍𝑍(𝜔𝜔𝑍𝑍(𝑡𝑡))𝑅𝑅𝑌𝑌(𝜔𝜔𝑌𝑌(𝑡𝑡))𝑅𝑅𝑋𝑋(𝜔𝜔𝑋𝑋(𝑡𝑡))  (28) 

so that: 

�
𝑥𝑥(𝑡𝑡)
𝑦𝑦(𝑡𝑡)
𝑧𝑧(𝑡𝑡)

� = �
𝑇𝑇𝑥𝑥(𝑡𝑡)
𝑇𝑇𝑦𝑦(𝑡𝑡)
𝑇𝑇𝑧𝑧(𝑡𝑡)

� + (1 + 𝑠𝑠(𝑡𝑡))𝑅𝑅𝑍𝑍𝑍𝑍𝑍𝑍(𝑡𝑡) �
𝑋𝑋(𝑡𝑡)
𝑌𝑌(𝑡𝑡)
𝑍𝑍(𝑡𝑡)

�  (29) 

 

Now, if equation 29 is compared to equation 19, a few things become immediately obvious: 

1) There is no translational vector in equation 19, so the time-dependent translation vector in 29 
must be zero, and thus 6 of the 14 parameters are zero:   

�
𝑇𝑇𝑥𝑥(𝑡𝑡)
𝑇𝑇𝑦𝑦(𝑡𝑡)
𝑇𝑇𝑧𝑧(𝑡𝑡)

� = �
0
0
0
�       (30) 

or 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑇𝑇𝑥𝑥(𝑡𝑡0)
𝑇𝑇𝑦𝑦(𝑡𝑡0)
𝑇𝑇𝑧𝑧(𝑡𝑡0)
𝑇̇𝑇𝑥𝑥
𝑇̇𝑇𝑦𝑦
𝑇̇𝑇𝑧𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎤

  (31) 

 

2) There is no scale factor in equation 19, and so the time-dependent scale factor in equation 29 
must be zero, and thus two more of the 14 parameters are zero: 
 

𝑠𝑠(𝑡𝑡) = 0    (32) 

 or 

�𝑠𝑠(𝑡𝑡0)
𝑠̇𝑠 � = �00�  (33) 

 

3) Rotation matrix “M-1” must therefore be identical to rotation matrix RZYX.  As such, it should be 
possible to equate the time-dependent axial rotation angles, ωX(t), ωY(t) and ωZ(t) to the fixed 
angles of θ0, λ0 and the time-dependent angle α(t) (or its components 𝜔̇𝜔0 �∆t).  That is: 

𝑀𝑀−1 = 𝑅𝑅𝑍𝑍𝑍𝑍𝑍𝑍   (34) 

Without some simplifying approximations, the relationship implied by conclusion #3 above is more 
difficult to derive than equation 34 would imply.  This is because both the M-1 and RZYX matrices are fairly 
complicated.  Some simplifications can be made to help solve the problem.  The first is that the angle 
α(t) will be “small”.  To apply that approximation, first let’s express the exact formulation for the M-1 
matrix, which can easily be inferred from equation 10 by noting that all five component matrices of “M” 
are invertible: 

𝑀𝑀−1 = �𝑅𝑅1
𝜆𝜆0�

−1
�𝑅𝑅2

𝜃𝜃0�
−1

[𝑅𝑅3𝛼𝛼]−1𝑅𝑅2
𝜃𝜃0𝑅𝑅1

𝜆𝜆0  (35) 

The [𝑅𝑅3𝛼𝛼]−1 matrix is: 

[𝑅𝑅3𝛼𝛼]−1 = �
cos𝛼𝛼 sin𝛼𝛼 0
−sin𝛼𝛼 cos𝛼𝛼 0

0 0 1
�   (36) 

Then, these small angle assumptions can be made: 

 cos(𝛼𝛼(𝑡𝑡)) → 1   (37) 

sin(𝛼𝛼(𝑡𝑡)) → α(t)   (38) 

Applying equations 37 and 38 to 36 yields: 
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[𝑅𝑅3𝛼𝛼]−1� = �
1 𝛼𝛼 0
−𝛼𝛼 1 0
0 0 1

�=�
1 0 0
0 1 0
0 0 1

� + �
0 𝛼𝛼 0
−𝛼𝛼 0 0
0 0 0

� = (𝐼𝐼 + 𝐴𝐴)    (39) 

Where the tilde is used to indicate “approximation”.  The reason for splitting the matrix into I and A 
components will be obvious soon. 

Applying equation 39 to 35: 

𝑀𝑀−1� = �𝑅𝑅1
𝜆𝜆0�

−1
�𝑅𝑅2

𝜃𝜃0�
−1

[𝑅𝑅3𝛼𝛼]−1� 𝑅𝑅2
𝜃𝜃0𝑅𝑅1

𝜆𝜆0 = �𝑅𝑅1
𝜆𝜆0�

−1
�𝑅𝑅2

𝜃𝜃0�
−1

(𝐼𝐼 + 𝐴𝐴)𝑅𝑅2
𝜃𝜃0𝑅𝑅1

𝜆𝜆0

=  �𝑅𝑅1
𝜆𝜆0�

−1
�𝑅𝑅2

𝜃𝜃0�
−1

(𝐼𝐼)𝑅𝑅2
𝜃𝜃0𝑅𝑅1

𝜆𝜆0 + �𝑅𝑅1
𝜆𝜆0�

−1
�𝑅𝑅2

𝜃𝜃0�
−1

(𝐴𝐴)𝑅𝑅2
𝜃𝜃0𝑅𝑅1

𝜆𝜆0 

=  𝐼𝐼 + 𝛼𝛼(𝑡𝑡) �
0 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 −𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0

−𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 0 𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0
𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 −𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 0

�  (40) 

See now that by splitting into I and A, the I portion of the equation collapses into another I, while the A 
component collapses into a simple skew symmetric matrix.   

Acknowledging that the effect of the total rotation, α(t) must be split into rotations among the three 
axes of the ideal frame, and since α(t) is “small”, it can be concluded that the axial rotations must also 
be small.  Thus, matrix RZYX reduces to: 

𝑅𝑅𝑍𝑍𝑍𝑍𝑍𝑍� = �
1 𝜔𝜔𝑍𝑍 −𝜔𝜔𝑌𝑌

−𝜔𝜔𝑍𝑍 1 𝜔𝜔𝑋𝑋
𝜔𝜔𝑌𝑌 −𝜔𝜔𝑋𝑋 1

�  (41) 

Now equate the approximations of M-1 and RZYX to one another (applying equations 39 and 40 to 
equation 34):   

𝐼𝐼 + 𝛼𝛼(𝑡𝑡) �
0 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 −𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0

−𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0 0 𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0
𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 −𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0 0

� = �
1 𝜔𝜔𝑍𝑍 −𝜔𝜔𝑌𝑌

−𝜔𝜔𝑍𝑍 1 𝜔𝜔𝑋𝑋
𝜔𝜔𝑌𝑌 −𝜔𝜔𝑋𝑋 1

�    (42) 

Equation 42 allows for an easy solution to the three axial rotations in terms of the Euler Pole’s location 
and angular velocity: 

𝜔𝜔𝑋𝑋 = 𝛼𝛼(𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0  (43) 

𝜔𝜔𝑌𝑌 = 𝛼𝛼(𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0  (44) 

𝜔𝜔𝑍𝑍 = 𝛼𝛼(𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0  (45) 

Recall, however, that the ωX, ωY and ωZ values are time-dependent (see equation 27).  Applying equation 
27 and also applying the expansion of α(t) into its components, yields: 

𝜔𝜔𝑋𝑋(𝑡𝑡0) + (Δ𝑡𝑡)𝜔̇𝜔𝑋𝑋 = [𝜔̇𝜔0Δ𝑡𝑡]𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0   (46) 

𝜔𝜔𝑌𝑌(𝑡𝑡0) + (Δ𝑡𝑡)𝜔̇𝜔𝑌𝑌 = [𝜔̇𝜔0Δ𝑡𝑡]𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0  (47) 

𝜔𝜔𝑍𝑍(𝑡𝑡0) + (Δ𝑡𝑡)𝜔̇𝜔𝑍𝑍 = [𝜔̇𝜔0Δ𝑡𝑡]𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0  (48) 
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The first term on the left hand side of equations 46, 47 and 48 are all constants.  There is no 
corresponding constant value on the right hand side of those equations.  For the purposes of 
convenience, it would be best to invoke Condition #2 from earlier, which means that there should be no 
constant difference between the plate-fixed frame and the ideal frame.  Thus the constant terms on the 
left hand side of equations 46-48 should be set to zero.  As such, there is no constant rotation about the 
ideal frame axes present in equation 19.  That is: 

�
𝜔𝜔𝑋𝑋(𝑡𝑡0)
𝜔𝜔𝑌𝑌(𝑡𝑡0)
𝜔𝜔𝑍𝑍(𝑡𝑡0)

� = �
0
0
0
�  (49) 

Thus, equations 46-48 simplify to: 

(Δ𝑡𝑡)𝜔̇𝜔𝑋𝑋 = [𝜔̇𝜔0Δ𝑡𝑡]𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0    (50) 

(Δ𝑡𝑡)𝜔̇𝜔𝑌𝑌 = [𝜔̇𝜔0Δ𝑡𝑡]𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0  (51) 

(Δ𝑡𝑡)𝜔̇𝜔𝑍𝑍 = [𝜔̇𝜔0Δ𝑡𝑡]𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0   (52) 

Dividing by the common term, ∆t, on both sides of equations 50-52, they also simplify further.  Applying 
this simplification, and returning to the use of the “X1” “Y1” and “Z1” terminology yields the relationship 
between the rotation rates (radians/year) around the three ideal frame axis (𝜔̇𝜔𝑋𝑋1 , 𝜔̇𝜔𝑌𝑌1 , 𝜔̇𝜔𝑍𝑍1) and the co-
latitude and longitude of the Euler Pole in the ideal frame (θ0, λ0) and the rotation rate (radians/year) of 
the plate about the Euler Pole (𝜔̇𝜔0).   

𝜔̇𝜔𝑋𝑋1 = 𝜔̇𝜔0𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0    (53) 

𝜔̇𝜔𝑌𝑌1 = 𝜔̇𝜔0𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆0𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0  (54) 

𝜔̇𝜔𝑍𝑍1 = 𝜔̇𝜔0𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0   (55) 

Inverting equations 53-55 yields the following relationships: 

𝜃𝜃0 = 𝜋𝜋
2
− 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �

𝜔̇𝜔𝑍𝑍1

��𝜔̇𝜔𝑋𝑋1
2 +𝜔̇𝜔𝑌𝑌1

2 �
�  (56) 

𝜆𝜆0 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
𝜔̇𝜔𝑌𝑌1
𝜔̇𝜔𝑋𝑋1

�  (57) 

𝜔̇𝜔0 = �𝜔̇𝜔𝑋𝑋1
2 + 𝜔̇𝜔𝑌𝑌1

2 + 𝜔̇𝜔𝑍𝑍1
2    (58) 

These relationships are identical (but for the difference in latitude vs co-latitude) to those expressed by 
Stanaway et al (2014).   Similar equations are given in Ali Gourdarzi et al (2014).     

In summary, the official relationship between IGS and the four TRFs of 2022 is expressed in equation 19.  
However, that relationship can be transformed, using small angle approximations, to a slightly modified 
14 parameter transformation (equation 26) where time dependency exists on both sides of the 
equation.  Of the 14 parameters in equation 26, eleven are zero.  The remaining three are the rotation 
rates (radians/year) around the three ideal frame axes, as expressed in equations 53-55. 
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8 Intra-frame 3-D Velocities in 2022 
 

Of all the components of this Blueprint document, this section is the least “final”.  That is, NGS has 
shown, in a fairly finalized form, how it will provide time dependent plate-fixed coordinates in the 
modernized NSRS.  And NGS knows it will be providing a service to relate such coordinates through time, 
with an emphasis on comparing coordinates at epochs of convenience, by modeling intra-frame 
velocities.  But many of the details about how such services are actually going to look remain under 
development.  Therefore, readers are cautioned to view the following section in that light. 

With that in mind, there are many ways to determine velocities, besides GIA models or plate rotation 
models.  Directly measuring movements of points can be categorized as geokinematics (basically 
“determination of things relative to Earth in space and through time”), and it is highly data driven.  
Contrast that with the field of geodynamics which attempts to model geophysical processes and express 
the motion of the crust through a more mechanistic method.  Both approaches have advantages and 
disadvantages, and the adoption of one over the other depends on data availability, accuracy 
requirements, and intended applications of the end user.  This section will address the NGS approach to 
determining intra-frame 3-D velocities. 

To reiterate, in the four new terrestrial reference frames of 2022, every active or passive geodetic 
control point is expected to have some intra-frame 3-D velocity.  With the tectonic plate rotation 
removed, the dominant horizontal signal on the majority of the plate should be gone, leaving small 
horizontal intra-frame motions in those regions.  But GIA, subsidence and the parts of the plate that are 
not rigid and/or not rotating at the plate’s computed rate, will result in intra-frame motions that are not 
small.     

When the Euler Pole is computed for each of the four terrestrial reference frames, it will be 
“uncorrupted by GIA”.  While GIA is mostly a vertical signal, it does have a horizontal component, and 
that horizontal component will be separated from the plate rotation itself, so that the Euler Pole only 
reflects actual rotation of the (not so rigid) plate. 

Additionally, while horizontal velocities will be separated into “Euler Pole Rotations” and “intra-frame 
velocities” (including the horizontal GIA signal), all vertical velocities will fall into the category of “intra-
frame velocities” since the horizontal Euler Pole rotation has no vertical manifestation. 

Historically, NGS has provided a model of horizontal motions (both plate rotational velocities and 
horizontal intra-frame velocities) through the Horizontal Time Dependent Positioning (HTDP) computer 
program.  However, HTDP has never supported vertical velocities, except in central Alaska. 

The general purpose of HTDP in the past has been to provide a method by which two surveys of the 
same GNSS vector (baseline between two points) might be compared, when they were performed at 
different time epochs.  That approach supported the philosophy that geodetic control should be 
provided at a single reference epoch:  that each point should have a singular set of fixed coordinates, 
and that multiple surveys before or after that epoch could have their vectors “moved through time” to 
support the creation of a consistent coordinate set on that point.  Thus, multiple surveys, each showing 
unique location information on a point, would have that vast quantity of information reduced to a 
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singular coordinate set.  This required that HTDP provide geodetic quality models of temporal 
movements at control points.   

To provide such a service, HTDP relied on geophysical models of crustal dynamics including some 
compressions and earthquakes.  That is, aside from using actual geodetic measurements at geodetic 
control points, additional information (models of the entire crust in several western states and Alaska) 
were necessary to support the proper functioning of HTDP.  Failure to completely model a seismic event, 
for example, meant that HTDP could not fully model (at geodetic accuracies) the horizontal motion at 
geodetic control points.  Further, HTDP includes no model of vertical motion at all (in most areas) and 
most of the data coming to NGS for the creation of HTDP came from disparate external sources, such as 
universities. 

NGS will adopt a different approach in 2022.  Because geodetic control is mostly about knowing where 
geodetic control points are (and to a lesser extent, about knowing where they were and predicting 
where they may be in the future), it is not necessary to maintain models about the entire crust to 
perform this essential function.  A new survey on a passive control point yields new information about 
where that point is.  If those new coordinates are computed in the same frame as previously determined 
coordinates, then the difference in the two coordinate sets is direct evidence of errors in one or the 
other survey, differences in data quality, differences in processing strategy or possibly actual movement.  
There is no compelling reason why a geophysical model is needed to compare the two sets of 
coordinates, though such models may be used to attempt to explain the cause observed difference.  
NGS does not view the explanation of why two different geodetic quality surveys yield different 
coordinates at different times as a mission-essential function of the NSRS.  Chasing down the “why” of 
such changes is a serious drain of resources without accomplishing the goal of geodetic control itself.  
Consider:  If such a model fails to explain the difference in coordinates, what can be concluded?  
Possibly that some error was made in one survey or the other (or both); possibly that some geophysical 
motion was not properly accounted for in the model; possibly both of these, or neither.  The point is, 
from a geodetic control standpoint, each survey showed where the passive control was at the time of 
the survey, and such knowledge of its position was good and useful information for some indeterminate 
time afterwards.  Nonetheless, there is value in providing some service, with a low cost/benefit ratio, 
which can attempt to describe the actual motion of the point through time, even if such a service does 
not attempt to explain why the motion occurred.  Such a model of intra-frame velocities (IFV) will be 
provided by NGS as an intra-frame velocity model (IFVM), but the exact nature of it remains to be 
determined.   

The continuous monitoring of active control points (CORS) yields continuous information about where 
they are as well as their history.  As stated in the NGS Ten Year Strategic Plan (2013-2023), the primary 
access points to the new terrestrial reference frames will be through CORS.  Passive control will be 
reduced in function to a secondary access.   

Passive control will be useful for monitoring change in the new frames.  This is different from the 
current philosophy which presumes that NGS will model change through HTDP, and that new surveys 
will continue to match old, epoch-specific coordinates by applying HTDP or by making adjustments to 
coordinates from passive marks that have moved since a past epoch but are defined as fixed.  To 
summarize:  To test the velocity models, if repeated surveys occur, NGS will use those repeated surveys 
at passive control points to yield the history of 3-D coordinates on such points (e.g. for comparison 
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against a CORS-based IFVM rather than presuming to model such a history using geophysical models.  
However, the overwhelming majority of points with survey data in the NGS archives have been surveyed 
only a single time in their history.  This obviously does not allow for any monitoring of those points at 
this time.   

The absence of repeated occupations on most passive control means that such points will have 
coordinates so old that they may not be reliable.  In order to help understand the potential movements 
of points, a CORS-data-driven velocity model will be available from NGS.  While such a model breaks 
down in areas of significant localized intra-frame motions, or lack of CORS coverage, it is nonetheless a 
simple model to produce and is easily set up in production mode, by (for example) gridding CORS 
velocities and discontinuities through their history, and completing a 3D interpolation of the grid 
between CORS stations.  With no reliance upon external geophysical models, such a model will be easy 
to produce from validated, in-house CORS data.  This is not to say that no other 3-D intra-frame velocity 
models will be available through NGS products.  It only means that the CORS data-driven velocity model 
will be the first and easiest to produce. 

However, if the purpose of geodetic control is to provide knowledge of where a point is, based on 
geodetic data collection at that point, what would be the purpose of such a 3-D intra-frame velocity 
model?  The purpose of such modeling is that it will significantly assist the engineering and mapping 
community (a much larger user base then the geodetic surveying community) by providing coordinates 
(at mapping-level accuracies) at a common epoch.  Thus, positions at different epochs can all be 
compared at a single “epoch of convenience”.  Unlike the gridded velocity component of HTDP, which 
was used as a way to move multiple geodetic surveys through time so that a geodetic quality coordinate 
might be stated as the target, this intra-frame motion model will be used to move multiple geodetic 
quality coordinates through time and produce mapping-accuracy coordinates.  

In many ways, this philosophy is very similar to coordinate transformation software like NADCON.  NGS 
has stated, since the inception of NADCON, that using a model to transform a map or survey from one 
datum to another is not equivalent to re-adjusting the original observations to new geodetic control.  
Similarly, a model of crustal motion which attempts to move a coordinate from one point in time to 
another is not the same as actually performing a geodetic survey at the target epoch.  As such, NGS 
views the coordinates coming from such a “temporal transformation”6 as not accurate enough to be 
called “geodetic control”.  Nonetheless, such temporally transformed coordinates can be used to: 

A) Move a map from one epoch to another 
B) Produce coordinate transformation software between epochs 
C) Move survey positions from one epoch to another, at the cost of a loss of accuracy 

Therefore, NGS currently is investigating how to provide an intra-frame 3-D velocity model that is driven 
by CORS data directly to express all velocities left over after the removal of horizontal plate rotation, in 
three dimensions.  This will allow NGS to provide epoch-specific mapping-accuracy coordinates at 
passive control for the purposes of transformations and other non-geodetic-quality uses of NGS data.  
Such coordinates will likely be updated every 5 or 10 years; such an interval is yet to be determined. 

                                                           
6 As opposed to NADCON which would be called a “datum transformation” 
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However, the creation of an NGS intra-frame velocity model does not preclude other models from being 
created and applied to the time-dependent coordinates in the four new plate-fixed terrestrial reference 
frames of the modernized NSRS.  NGS will support interactions of such models with time-dependent 
NSRS coordinates, but NGS is not currently planning to provide a service to “move data through time 
and then adjust it all together at a common epoch” as is the current methodology.  Rather, OPUS 
products and services will only yield adjusted coordinates at survey epochs as the primary service, and 
then NGS will apply IFV models to relate those coordinates to others at a common epoch as a secondary 
service.  

The obvious question to ask next is “how well can velocities gridded from CORS perform?”  As 
mentioned, intra-frame velocities will not be provided to users attempting to perform least squares 
adjustments of data ranging across large spans of time, but rather to provide a secondary service and for 
that reason, the question of how well they perform can be considered under the application of “moving 
a map from one epoch to another”.  This allows some flexibility in accuracy restrictions.   

In such a case, examining the most egregious locations of intra-frame motion should help.  Jarir Saleh 
(personal communication) gridded CORS linear velocities and compared them against the CORS 
themselves and found that, aside from occasional outliers (which need to be checked and possibly 
removed if the CORS data are erroneous), a grid of CORS velocities yields small residual intra-frame 
velocities.  See Figure 11 for a horizontal example in the western USA: 
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Figure 11:  Residual intra-frame horizontal velocities (tectonic plate rotation removed, followed by a 
removal of gridded intra-frame CORS-based horizontal velocities) 

What Figure 11 exemplifies is that, for the purposes of providing temporal transformations for maps and 
other geospatial products with accuracies looser than geodetic quality, a simple grid of CORS intra-frame 
velocities provides residuals that are small enough not to exceed 1-2 cm over about a decade.  And if 
such CORS-based intra-frame velocity grids are updated on a 5-10 year interval, then these residuals will 
not necessarily grow to a level that has any significant impact on users work.  That said, Figure 11 also 
shows several points (affected by earthquakes, deformation zones, rotating blocks along the plate 
boundary, etc.) that can exceed 2 mm/year for their residual intra-frame velocities.  Such problem 
points will always prove difficult to model. 

Mathematically speaking, these CORS based intra-frame velocities represent the [dx, dy, dz] vector of 
equation 13.   
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Therefore, as a service to the public, NGS will allow for the following steps for each of the four new 
terrestrial reference frames: 

1) Cartesian coordinates (X1, Y1, Z1) of a point occupied with a GNSS receiver will be computed 
using OPUS in an ideal frame (ITRF or IGS) at the epoch of the survey: 
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2) Using the GRS 80 ellipsoid, these coordinates will be transformed into geodetic coordinates at 
the epoch of the survey: 
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3) All four Euler Pole rotations will be applied to the Cartesian coordinates (see equation 19), 

yielding four sets of Cartesian coordinates, one for each terrestrial reference frame, at survey 
epoch.  (While the software could be forced to try to “pick” the right frame, such choices seem 
best left to the user.  At best the code might suggest which plate the user is on): 
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4) Using the GRS 80 ellipsoid, these four sets of coordinates will be transformed into geodetic 
coordinates at the epoch of the survey: 
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At this point, NGS has produced what it considers “geodetic quality” coordinates.  The next set 
of coordinates, while provided as a service, should not be used as geodetic control for anyone 
actually performing geodetic control surveys. 

 
5) Using the CORS-based intra-frame velocity model, these geodetic latitude, longitude and 

ellipsoid height coordinates will be moved backwards in time to the most recent “epoch of 
convenience”, designated “tc” for now.  Such an epoch of convenience is likely to occur every 5 
to 10 years.  Also note that there is no relation between any of these “epochs of convenience” 
and the value “t0” at which the ideal frame and the four terrestrial frames are identical.   
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𝜆𝜆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2022
ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2022

�
𝑡𝑡

− �
𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2022
𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2022
𝑑𝑑ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2022

�
𝑡𝑡,𝑡𝑡𝑐𝑐

  (71) 

�
𝜙𝜙𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2022
𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2022
ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2022

�
𝑡𝑡𝑐𝑐

= �
𝜙𝜙𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2022
𝜆𝜆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2022
ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2022

�
𝑡𝑡

− �
𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2022
𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2022
𝑑𝑑ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2022

�
𝑡𝑡,𝑡𝑡𝑐𝑐

  (72) 

 

In the above equation, the dφ, dλ and dh values come from interpolation from a CORS-based grid of 
intra-frame velocities.   

It cannot be stressed strongly enough that the values provided in equations 69-72 should not be used as 
geodetic control by anyone performing geodetic surveys.  They will, however, be very valuable for 
creating datum transformation tools such as NADCON. 
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9 Summary 
 

Four new terrestrial reference frames, each one mathematically defined so that its latitude/longitude 
grid is rigidly rotating about an Euler pole for a specific tectonic plate, will be defined relative to some 
future IGS frame prior to 2022.  These frames, being rigid and laid over a non-rigid crust mean that any 
velocities measured at geodetic control points which differ from plate rotation will be provided as 
residual intra-frame velocities on those points.  Geodetic control in 2022 will be time-dependent, and 
coordinates can get “stale”.  In order to provide some (non-geodetic) information about these 
movements, NGS will provide a data-driven intra-frame velocity model, updated every 5-10 years (at 
“epochs of convenience”) which will allow users to compare surveys and maps at different epochs, but 
only at non-geodetic accuracies. 
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