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PREFACE

This publication presents results of a project which originated with efforts by Dr.
F. Webster McBryde, of the Bureau of the Census, to produce a world projection for
international census preparation and plottings, especially for use in the 1950 Census of
the Americas, on the program of which he is geographer-consultant.!

McBryde considered Eckert’s No. 6 to be the best of any existing type of projection
for fulfilling the requirements,? but he desired to improve the scale and general propor-
tions of regions in high and low latitudes.

For the mathematical formulas of flat-polar designs similar to Eckert’s projections
but with shorter polar lines and, in most cases, meridians of greater curvature, he is
indebted to Mr. Paul D. Thomas of the Division of Geodesy, United States Coast and
Geodetic Survey. The mathematics involved in deriving formulas for the correct
poleward diminution of the intervals between parallels is outside of the general geogra-
pher’s field of training. '

The formulas developed by Thomas not only provide the specifications requested
by McBryde for statistical use but also can be employed in producing any desired
shapes and proportions in this type of projection. Thomas, in addition to deriving the -
formulas, computed the tables for construction and plotted some of the projections.

MecBryde, as representative of the Inter-American Statistical Institute,® presented
the flat-polar quartic authalic projection (fig. 26 in this publication) in Buenos Aires at
the Fourth Pan American Consultation on Cartography, sponsored jointly by the
Pan American Institute of Geography and History and the Government of Argentina,
in October-November 1948, with the following proposal: :

“Tt would seem desirable to adopt & common base for a general map of the Americas,
especially for census purposes. Such a base map must be equal-area. It should show
areas with minimum distortion of shape, and should also indicate true east and west
for purposes of latitude comparisons and for ease of construction. For world compari-
sons, it would be well to use a single, uninterrupted world -graticule. The use of a
central meridian of 90° west longitude would distribute the distortion equitably through
the Americas. ’

“On such a map a country could determine with considerable accuracy the territorial
extent of its political subdivisions through the use of a planimeter. Population densi-
ties and other data could be plotted correctly. If each country were mapped on such
a base, the maps could all be placed contiguously to form a single equal-area map of
the Americas. If possible, it would be well to agree upon a common ultimate scale;
preferably 1:1,000,000. Larger scales could be used for plotting minor civil divisions.”

Though considerable interest was manifested in this proposal when it was presented
before the Committee on Special Maps (Cartas), no formal action was taken by the Pan
American Institute of Geography and History towards the adoption of a statistical

1 Cooperation with the American Republics program of the Interdepartmental Committee on Scientific and Cultural Coopera-
tion, operated by the United States Bureau of the Census.

$F. W. McBryde. A Map of the World in Perspective. Ohio Journal of Science, Vol. 42, No. 2, pp. 63-64, March 1942,

3 Report in press, Estadistica No. 23, Vol. 7, June 1949.
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base map. The proposal, however, led to the formulation of Resolution 68 of the Final

Act of the Fourth Pan American Consultation on Cartography, which isas follows:
“That the members of the Committee on Special Maps (Cartas) look into the matter

of a special projection which in the future might be used as a Base Map for census

purposes.”
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EQUAL-AREA PROJECTIONS FOR WORLD
STATISTICAL MAPS

EVOLUTION OF WORLD STATISTICAL MAPS
F. Wesster McBRYDE

PROJECTION REQUIREMENTS

A graticule for a world statistical base map should be authalic, or equivalent (equal-
area, preserving areas in true proportions as to size), in order to bring out correct ter-
ritorial relationships, isorithms, and all distributionsal aspects of regional phenomena.
Data such as population densities and producing areas cannot be graphically depicted
for comparative purposes unless the base map shows the correct relative sizes of political
units. _

A statistical map for the Americas, or any comparable portion of the earth, should
be drawn on a projection having (1) world scope, to indicate world distributions and
inter-relations when desired; (2) equivalence, for regional measurements and size com-
parisons; (3) equal-spaced meridians and straight parallels, so as to show true scale
and directions along east-west lines, in addition to comparable latitudes, and to facili-
tate construction; (4) equitable distribution of scale and shape distortions over the
entire map; (5) unbroken graticule lines, so that maps of different countries on the
same scale can be placed side-by-side to form one continuous map.

A common base to satisfy each country would have to be one which represented
good scales and shapes for equatorial as well as middle-latitude regions, since most of
Latin America lies within the tropics. Tropical proportions comparable with those
on the globe cannot ordinarily be obtained without greatly compressing and distorting
high-latitude regions (as on the sinusoidal) or excessively shortening the longitudinal
axis (as on Lambert’s equivalent cylindric), or both.

THE PROBLEM OF WORLD REPRESENTATION ON A PLANE

The problem of representing the entire surface of the spheroidal earth on a plane
surface is one of the oldest and most difficult with which geographers have had to
contend. Few will question the importance of having some sort of flat map of the
world on one continuous projection for plotting world data. Not only is the terrestrial
globe limited of necessity to small size, but for navigation, for scientific and educational
displays on wall, screen, or book page, and for similar purposes, a map on a plane
surface is needed. Not even a full hemisphere can be shown in a photograph or can
be seen at one time while viewing a globe at close range, and distortion due to fore-
shortening is great in all directions away from a small central area; this is also true on
the orthographic projection (representing the globe as seen from infinity), as in figure 1.

No representation of the whole sphere on a plane is without various distortions,
such as those of azimuth, scale in various directions, size of areas, and shape of areas,
and no one flat map can show correctly both areal and angular data. Most errors
increase with the size of the territory included, so that distortions reach a maximum on
world maps, all of which show great aberrations of scale and over-all shape of surface

features.
1
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Fieure 1.—Orthographic projection.

SPECIAL-PURPOSE PROJECTIONS NOT SUITABLE FOR GENERAL STATIS-
TICAL USE

Mercator’s chart (fig. 2), which alone shows rhumb bearings as straight lines
throughout, is invaluable for navigation and is approximately correct for plotting
angular data. It is not adaptable to maps of the entire earth for general statistical
purposes, because large areal plottings, such as of continents which extend into high
latitudes, are so distorted in shape and size as to be misleading.

[ e " |

F1cURE 2.—Mercator projection.

The gnomonic projection (fig. 3) alone shows the orthodrome, or great-circle
sailing route, as a straight line on any part of the map, but distortions of shape and
size of areas are even far greater than on the Mercator, and it can be used only for
portions of a hemisphere. Such special projections as the two mentioned above were not
intended for world areal plottings and should not be used for general statistical maps.
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FI1GURE 3.—Gnomonic projection.

WORLD PROJECTIONS WHICH ARE NOT EQUAL-AREA

Intermediate cylindrical projections such as Gall’s and Miller’s (figs. 4 and 5), on
which meridians as well as parallels are straight parallel lines, have been devised for
better representations of high-latitude regions, with parallels spaced much closer
together than on Mercator’s, to reduce excessive latitudinal expansion, and farther
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» FI6URE 4—Gall’s projection.
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apart than on the Lambert’s equal-area cylindrical, to avoid extreme polar flattening,
Obviously these cannot be equivalent, and hence they are not suitable for general
statistical use.
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F16URE 5.—Miller's projection.

Van der Grinten’s projection (fig. 6) is another type which develops somewhat
better shapes for small high-latitude areas, but it shows enormous distortions of size
and over-all shape of continents, as well as scale and bearing, and it is more difficult to

\

FI6URE 6.—Van der Grinten’s projection.
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construect than a straight-line graticule. It has none of the properties desired in map
projections for scientific uses, and there is no real justification for its widespread
popularity.

Denoyer’s semielliptical projection (fig. 7) is a flat-polar parabolic type, somewhat
similar to figures 22, 24, 26, and 27 in this publication. It has been used frequently
in text books and for wall maps. The poles are shown as lines one-third the length of
the equator, but parallel spacings do not diminish poleward to maintain equivalence,
and meridian spacings widen toward the edges of the map in high latitudes. Though
the representation of the continents on this projection is of pleasing appearance, the
projection is not equivalent, and so is of limited value for statistical plottings.

FI1GURE 7.—Denoyer’s semielliptical projection.

SOME COMMONLY USED EQUAL-AREA MAPS AND THEIR LIMITATIONS
FOR WORLD STATISTICAL PLOTTING

A requisite property of dany general world statistical map of the type discussed
here is equivalence. On such a map, all areas appear in their true proportions as to
size, though in order to have this quality they must be variously compressed in some
directions and expanded in others. The number of square miles within a country’s
limits and the general relationships with other countries are, from a statistical stand-
point, of greater value than approximation of the true form of the country; the latter
characteristic is needed where esthetic interests and over-all scale are important,
and it cannot be approached on any world equivalent projection without breaking
the continuity of the graticule.

HEMISPHERICAL PROJECTIONS

A hemispherical equal-area projection, even though it may preserve excellent
shapes for the continents, as Lambert’s azimuthal (fig. 8) does, cannot be used satis-
factorily to present distributions of world data, trade routes, and the like, for relation-
ships between hemispheres are not well portrayed.

OVALOIDAL AND ANALAGOUS WORLD PROJECTIONS

The several equal-area ovaloidal and analagous world projections offer the most
desirable compromises for general statistical purposes.

Oldest of this group, and still one of the best, is the sinusoidal (fig. 9), first used
by Mercator in 1538, but usually credited to Sanson and Flamsteed, much later users
of it. Since the midmeridian and all parallels are straight lines drawn to correct
scale, map properties are excellent near the central portion along both axes, but main-
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tenance of true spacing of all parallels results in the poles being pulled out to distinct
points, with steep meridian sine curves joining them. This means excessive longitu-
dinal crowding in high latitudes.

o

Fieure 8. —Lambert’s azimuthal projection.

1

F16URE 9.—Sinusoidal equal-area projection.

At the opposite extreme from the sinusoidal is Lambert’s cylindrical equal-area
projection (fig. 10), in which polar regions are shown with great latitudinal crowding,
caused by successive narrowing of spaces between parallels.
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FIGURE 10.—Lambert’s cylindrical equal-area projection.
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Mollweide’s homalographic projection (1805), similar to the sinusoidal but with
ellipses instead of sine curves to represent meridians (fiz. 11), develops high-latitude
quadrants much more amply, though there still is excessive crowding in polar margins.
In addition to this, parallel intervals are arranged to diminish poleward and expand
equatorward, so that the ratio of 10° of longitude to 10° of latitude at the Equator is

T &N
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F1cURE 11.—Mollweide’s homalographic equal-area projection.

only about 0.75 to 1.00 as against approximately 1 to 1 on the globe. For plotting
countries within the Tropics, this means scale and shape distortion along the full length
of the Equator. Africa, for example, is much elongated to the north and south, even
when plotted in the. center of the projection.

OTHER OVALOIDAL TYPES

In recent years improvements in this type of projection have been made through
using various algebraic curves similar to the parabolic to represent meridians, with
less high-latitude compression and better shape than on the older types. Craster,
Boggs, and Adams haye contributed notably in this regard. (See figs. 12, 13, and 14.)

F1eure 12.—Craster parabolic authalic projection.
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Fi16URE 14.—Adams quartic authalic projection:

Another variation of the elliptical type of projection (fig. 15) was produced by
Aitoff and Hammer, employing the same outer dimensions as on the Mollweide, but
with parallels as curves derived from Lambert’s azimuthal projection. Though this
makes possible better representation of high-latitude land masses, while preservmg
equal-area; there is nevertheless excessive stretching of latitude along all margins, with
the additional objection of curved parallels which are not true to.scale, whereon com-
parisons are much more difficult and the construction is far more complicated.

F1cUReE 15.—Aitoff-Hammer authalic projection.
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GOODE’S “INTERRUPTED”’ PROJECTIONS

Goode hit upon a technique for remedying the excessive compression of high-
latitude margins. He repeated the pole at intervals, establishing two points at the
north and four at the south, extending independent midmeridians to each, and drawing
meridians on either side to converge at these points from breaks at the Equator; so
that the earth was represented on six broad lune-like sections extending poleward.
The first published example of this type was the ‘“interrupted homalographic’ (fig. 16),

F16UReE 16.—Goode’s interrupted homalographic projection.

which appeared in 1916, followed by the similarly interrupted “homalosine,” a composite
of the homalographic and sinusoidal designed to retain the best qualities of each.
Meridians are sine curves from the Equator to 40° latitude, and ellipses from 40° to
the poles. .

Goode’s basic idea of interrupting the graticule has been widely adopted by
American geographers, who have made frequent use of the sinusoidal and of the Aitoff
in breaking the entire graticule into the same six segments employed by Goode, but
keeping uniform meridian curves throughout.

Though much better continental shapes are obtained by interrupting the graticule,
the wide gaps in high latitudes cannot be effectively bridged by the eye.

INTERRUPTED AND CONDENSED MAPS

A common space-saving device consists in the partial deletion of oceans and
piecing together of the major groups of land masses as in figure 17. This permits
larger scale in a given area, but transoceanic relationships are destroyed so that no
continuous distribution lines can be drawn, and a misleading picture results. ‘Such a
map is desirable only where local regional details are more important than entire world .
patterns, which require a continuous and unbroken world projection.
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FIGURE 17.—An interrupted and condensed projection.

ECKERT’S PROJECTIONS

A different approach to the problem of developing high-latitude margins without
sacrificing equivalence was that of Eckert, who in the early twentieth century used the
principle of opening up the poles as straight lines one-half the length of the Equator.
This represents a compromise between the ovaloidal types, with curved meridians
converging at the poles, and the cylindrical graticules, on which the poles are lines as
long ds the Equator, and all lines are straight with right-angle intersections. The best
known of Eckert’s projections are his No. 4 (fig. 18), on which the bounding meridians
are ellipses (a modification of the Mollweide) and No. 6 (fig. 19), derived from the
sinusoidal, with meridians as sine curves.* On both, the midmeridian is one-half the
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Fi1cUure 18.—Eckert’s No. 4 authalic projection.

¢ M. Eckert, Neue Entwiirfe fiir Erdkarten—Petermanns Mitteilungen Aus Justus Perthes’ Geographischer Anstalt—52. Band
1906.
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Fi1cure 19.—Eckert’s No. 6 authalic proj'ection.

length of the Equator, as on the ovaloidal prototypes, and parallel spacings diminish
poleward as they do on the Mollweide, at rates by which equivalence is maintained.
Eckert’s No. 4 has been used. widely in Europe, and also to some extent in the
United States during recent years; No. 6 is somewhat less common in Europe, and
occasionally appears in South American atlases, and as a base map in this country.
Though good for the upper middle latitudes, as of Eurasia and North America, Eckert’s
projections show excessive longitudinal expansion in higher latitudes, because the
poles are represented as extremely long lines and, owing to compensatory latitudinal
stretching near the Equator, have equatorial distortions comparable with those of the
Mollweide. '

SOME NEW FLAT-POLAR PROJECTIONS BASED ON THE ECKERT PRIN-
CIPLE

By inspection it seemed to the writer that a shortening of the lines representing
the poles on Eckert’s maps, to one-third the length of the Equator instead of one-half,
might reduce the latitudinal distortion near the Equator by as much as one-half. At
the same time it would diminish the longitudinal stretching in high latitudes. As the
length of the line representing the poles is reduced, steep meridian curves should be
avoided in order to prevent high-latitude crowding such as that seen on the sinusoidal.
Sine curves would thus appear less desirable on world projections having narrow polar
regions. Nevertheless, a modification of the Eckert 6 (itself a modified sinusoidal)
was decided upon as a point of departure. It was evident at the outset that a similar
projection with parabolic-type curves, preferably the fourth-degree (quartic) curves
of Adams’ projection, to represent meridians, would give a more satisfactory over-all
compromise. A further reduction of north-south stretching in low latitudes seemed
desirable through shortening the midmeridian and lengthening the map Equator, even
though this increases the conventional true-to-scale 2-to-1 ratio of Equator to polar
axis. It is not necessary to maintain this relationship by showing the Equator as
twice the length of the midmeridian semicircle. Linear scale is incorrect on most parts
of all equal-area world maps, whether or not the correct axis ratio is preserved. For a
modification employing the meridian curves of the projection shown in figure 20 of this
publication, polar lines one-fourth the length of the Equator were used, producing the
flat polar graticule herein presented in figure 22.

838437°—49——3



12 U. S. COAST AND GEODETIC SURVEY

Although the flat-polar quartic (fig. 26) was selected as the base for plotting hemi-
sphere census maps, it is believed that the other four new projections presented in
this publication (figs. 20, 22, 24, and 27) will provide useful bases for world statistical
maps.

Figure 28 shows the evolution of equal-area world projections as generated from
the sine and tangent functions. Although this publication contains an independent
mathematical development, these series are mentioned in an article by E. J. Baar.?

The following section, by P. D. Thomas, contains the mathematical development
for the new projections.

DERIVATION OF FORMULAS

Pavr D. TrHOMAS

A complete mathematical discussion of authalic projections is presented by O. S.
Adams in United States Coast and Geodetic Survey Special Publication No. 236,
General Theory of Equivalent Projections. References in the following development
and the bibliography indicate other sources. Since we are concerned here only with
orthembadic (equal-area) projections whose parallels are straight lines, the subsequent
mathematical development is restricted to this class of authalic projections.

The element of area on the sphere, when referred to its meridians, A\, and
parallels, ¢, is B? cos ¢dgpdN where B is the radius of the sphere. If z=z(), ¢), y=

y(\,¢), then the corresponding element of area in the plane is J ()\’ ¢> dpdX, whence

the condition for equivalence i is the partial differential equation

( ) R? cos ¢, 1)
22 3y
x,y ONON| . . .
where J (X’——) is the Jacobian functional determinant.
#/ | oz dy
d¢ 0¢
If the map parallels are to be straight lines, then ¥ must be a function of ¢
alone, y=vy (¢) and ——y (¢), oy , 50 that equation (1) becomes
g:g_‘R“’ cos ¢
DNEAON 2
. . R2\ cos ¢ Cye .
Integrating (2) gives x=7@——|—A(¢). If the central map meridian is to be

the y-axis, then =0 when A=0, so that 4 (¢)=0. The mapping equations are then,

) ,
=R;—,Z§)S~¢; y=y(¢), which may be written in the equivalent form
__RBXcos ¢

e

5 E. J. Baar, The Manipulation of Projections for World Maps. The Geograplical Review, American Geographical Society of
New York, January 1947,

—~ y=R/(¢). (3)
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From (3), if the z-axis is t0 be the map Equator, then y=0 when ¢=0, hence
7 (0)=0. TFor z to be finite /' (¢) #0. If the parameter ¢ is eliminated in (3), there
results the equation of the map meridians which is of the form F (% y>=0.

From equations (3), with the pairs of values ¢=%7 A=0; =0, A== we have the

ratio of the axes of the projection which is
J (3) -1 (0)
0 ™

If equations (3) are to be modified, maintaining the equal-area property, so that
the poles of the projection will be replaced by lines of given length parallel to the map
Equator, the mapping equations are of the form

2=RO(k+525) ), y=Rs(), ®)

/()
where 7(0) =0, /() #0. _
The area of the zone of the sphere from the Equator to latitude ¢ is 27R? sin ¢.

From (5), with A==, we have 27R? sin ¢=2ﬁy zdy=21r0sz;a ks’ (a)+cos a]da, or

sin ¢=C[kf(a)+sin of. = (6)
Placing ¢=a=7§r in equation (6) gives 0=—;— and (6) may then be written
b (5)+1
n sin ¢=kf(a)+sin o, n=%,=kf (g)—l—l. 4]
Consequently equations (5) may be written as
B
o=t (5% ) y=EM (@), Q

where M and k are arbitrary parameters, f(a) is the same function asf (¢), but the
values of the auxiliary parameter o must be obtained by solving equation (7) for .

For the pairs of values a=7§r, A=0; a=0, A== we have from (8) the ratio of the
axes of the modified projection, namely

go_ ™M1 (3)1'0

Zo mr

(9)

where m=ks’(0)+1. ‘
If it is desired that the ratio of the axes in .the modified projection be the same
as in the original projection, we find from (4) and (9) that
="K O)+1
" kf(g)ﬂ (10)
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With condition (10) we may write equations (8) as -

RM)\ Ccos «
e (k45 @

y y=RBMj(a). (11)

From the z-coordinate in (11), with A=7; =0, 5 We have

5O

% m (12)

which is the ratio of the line segment, which has replaced the pole, to the map-Equator
length.
APPLICATION TO AUTHALIC PROJECTIONS

Consider the two functions f(¢)=p sin g; F(¢)=p tan g We have f/(¢)= % cos %,
F (¢) =% sec? ;;, These functions satisfy the requirements that s’(¢)=0, 7(0)=0.

However F(¢) =« for ¢=1, ¢=%hence if g=1 in F(¢) the map poles are infinitely
distant.

Equations (3) become respectively

Z;Q ) cos ¢ sec %; y=REp sin 2 (13)
x=1% \ cos ¢ cos? 7 y=Rp tan Sqf (14)

From (4) the ratio of the axes in each case respectively is

;0=§; sin 2’ (15)
Yo P o T
7 gr M 2g (16)

Since we have two arbitrary parameters p and ¢ in equations (13) and (14) it is
seen that any number of projections may be constructed of these types. Imposing
arbitrary desired conditions on certain of the elements of the projection will usually
cause p and ¢ to be irrational. Examples will be subsequently given of such projections
as well as those in which p and ¢ are rational or integral. These will then, in some
cases, be modified according to the development of equations (7) through (12). Pro-
jections based on equations (13) will be designated the sine series; those based on
equations (14) the tangent series.

As ¢ becomes large, it is seen that for both types (13) and (14) a limiting case is
obtained by placing sin §=tan Z?:Sqé’ cos 2=1 whence z=R % A cos ¢, y=R gd)-

q
If the ratio of the map axes, %’: is to be ¥, then from either (15) or (16) one finds
]

that p=¢, whence we have the mapping equations of the Mercator sinusoidal authalic
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projection,$ z=RX\ cos ¢,y=R¢. The equation of the meridians is z=R\ cos % In

this case f(¢p)=¢, /' ($) = 1,7(0)=1,s <%>=§ For the modified projection, equations
(7, (10), (11), and (12) become

n sin g=ka-tsin @, n= (kr+2)- a7
Mzzlf_'_:_l. (18)
x=%‘§1§ (k+cos a), y=EMa. | (19)

To solve equation (17) for a« we may use the Newton-Raphson Method.? For the
first approximation we may use the first few terms of the series expansion for « in
terms of sin ¢. This may be obtained by writing the series expansion of sin « in (17),
then reverting ® the resulting series (see the appendix for the formulas) to obtain

w? O—k . | 225—5ak+k? . 11,025—4,131k - 243K —
e=vtsm Iy T EgF Y T e YT I 1) wt

@1
where
. o .
u:”ksjfl%%", n=y (kr-+2).

An alternative method of obtaining a first approximation is te graph the simultane-
ous equations y=—ka+n sin ¢=sin @ on millimeter paper. This gives intersections of a
family of parallel straight lines with the sine curve, three-significant-figure estimates of
the abscissae of the intersection points being the estimates for a.

4
T+2

and equations (19) become x=R%4§ (1+4cos @), y=RMoa which are the mapping

If we demand that the ratio (20) shall be 14, then k=1, M?=

, M=0.8820,

equations of Dr. Max Eckert’s No. 6 authalic projection.’

Note: The appendix gives a special development for a general flat-polar sinusoidal authalic projection which avoids approxi-
mation methods.

THE SINE SERIES PROJECTIONS

Consider first equations (13) with p=¢=1. We have z=R\, y=R sin ¢. The
meridians and parallels are straight lines parallel to the coordinate axes. The result-
ing projection is the Lambert authalic cylindrical projection ® and the modification

¢ Oscar S. Adams, General theory of equivalent projections, U. 8. Coast and Geodetic Survey Special Publication No. 236, p. 17.
"Fr. A. Willers, Practical analysis, p. 222; J. B. Scarborough, Numerical mathematical analysis, p. 178.

8 T.J. Bromwich, An introduction to the theory of infinite series, p. 156,

8 Dr. A. Petermann, Mitteilungen Aus Justus Perthes’ Geographischer Anstalt, 52. Band 1906, p. 106.

10 Oscar 8. Adams, General theory of equivalent projections, U. 8. Coast and Geodetic Survey Special Publication No. 236, p. 9.
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devised here does not apply. Since _.22_" 262 g this projection is the upper limit-

ing case for the function sin g We have seen that for ¢ very large (for g=30,

sin §=§ in radians to five decimals approximately), the form of the meridian is the sine

curve. For ¢=1, the form of the meridian is a rectangle. Between these limits lie a
number of curves of varying degree given by AS¢>>1, where A= «. Hence it is seen
that the modification devised here and represented by equations (7) through (12)
actually accomplishes a combination of the Lambert authalic cylindrical projection and
a given authalic projection whose parallels are straight lines.

Placing p=¢=3, equations (13) become z=RX\ cos ¢ sec %, y=3R sin % The

2 o
equation of the meridians is R%= 1 —3—%—2 which represents a family of parabolas. A

particular case is obtained by placing ¢=3 and demanding that the ratio given by (15)

shall be %. We find that p=+/37 and equations (13) become then z=RE\ \/ % cOS ¢ sec %5;
y=R./3z sin% which are one form of the mapping equations of the Craster para-

_ , 1 — 1
bolic authalic projection.” Here f(¢) =+/37 sin %’ () =§>\/3ﬂ' cos %)’ b (%)2'2- <3,
£7(0) =% +3w. Equations (7), (10), (11), and (12), become '

7 8in ¢=2(h— 1) sin %—}-sin a, n=% k+/3r+1. (22)
2n+41
I L )
M= n (23)
3RMX(,, -[3 — :
=011 (k-}—\/; COS o Sec %); y=+/37 RM sin %- (24)
xﬂ
z__2(n—1)
2 2n4-1 (25)
With the substitution sin a=3 sin ‘—;——4 sin® ‘—; placed in (22) one obtains the cubie
403 — (2n+ 1)z} sin ¢=0, where x=sin %- (26)

To solve (26) one niay employ Horner’s contracted method, or some other numer-
ical method,!? after three-significant-figure estimates are obtained from the abscissae
of the intersection points of the graphed simultaneous equations

1t Geographical Journal, November 1929,
12 Mathematical tables and other aids to computation, National Research Council, Vol. I, p. 441f; Vol. 2, p. 28f.
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_2n+1 msing_

However, it is possible to avoid approximation methods in solving equation (26).
The discriminant of equation (26) is

27n° sin? ¢— (2n+1)3
1,728

<0 for all »>0 and for all ¢.

Hence a trigonometric solution may be used. If we let -

sin u= on + BT 1)’ V3@2n+1) sin ¢, @7
then &= sin g V3@nt1) (2:? +1) sing 28)

is the required solution of equation (26).

If we demand that the ratio given by (25) be %, then n=g- With this value of n

and placing x=é—/}—b we find that equations (26), (27) and (28) become respectively

3 o
(£)' =6 }+5 sin 9=0, sin u=5T‘/§ sin ¢, f=2+2sin g

These last three equations are given, for this particular case, on page 9 of a paper by
W. Werenskiold entitled A Class of Equal Area Map Projections, Oslo 1945. How-
ever, Werenskiold credits R. V. Putnins with the invention of this particular case citing
Putnins’ two papers, Jaunas projekcijas pasaules kartem and Nouvelles projections
pour les mappemondes, Geografiski Raksti, Folia Geographica, IIT un IV, Riga 1934.

¢

If ‘p=g=2, equations (13) become z=R\ cos ¢ sec %, y=2R sin§ which are the

mapping equations of the Adams orthembadic projection.!* The equation of the
2

2
meridians i 8 33 x igg yz' Hence the meridians are curves of fourth degree.

For this projection f(¢)=2 sin %, 7/ (¢)=cos %) 70)=1,s (§>= v2. Equations
(7), (10), (11) and (12) become respectively

n sin ¢=2k sin %-I—sin a, n=k+/241. (29)
M2=I%. (30)

x=§MI\ (k—l—cos a sec %); y=2RM sin %- (31)
%=%o (32)

13 Oscar 8. Adams, General theory of equivalent projections, U. 8. Coast and Geodetic Survey Special Publication No. 236, p. 46.
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If sin a=2"/ 1—sin2%-sin% is placed in (29) and the resulting equation is
rationalized one obtains the quartic

. . . . n . 2 .«
2t (k*—1)2>— (nk sin ¢)x+<—2- sin ¢ ) =0, v=sin 5- (33)

Equation (33) may be solved by Horner’s contracted method!* (which is .easily
adapted to machine computation) or by other numerical methods,’ after three-signifi-
cant-figure estimates have been obtained by graphing the simultaneous equations

y=—kw+% sin ¢=1u+/1—2? analogously as described for the sinusoidal projection.
If the series estimate is desired, one may write (29) with sin a=2z/1—2%, as
2 sin ¢=kz+z+/1—27, and expanding 41—22 by the binomial formula, reverting the

2
resulting series in x, one obtains finally

W kT E10k33 ) S(0413K24-67k143)
SEFD TEEF Y T oG YT ST 1) +...,

‘ ) (34)
where u=g(781_-1;—1¢)- =521—R[%55 n=k+/2-1.

x=sing u+

If p= g=§» in équations (13), one obtains the mapping equations x= KX cos ¢ sec %‘é;

2 f0,2) 2 2
y—— R sin & 2¢ The equatlon of the meridiansis 9R? %{i—y)—x —,9R2:| =(OR*— 49
OR*— 16y2)2. ‘ Thus the meridians are curves of eighth degree. f(¢) = § sin —232 )

f’(¢>)_cos ;f (0)=1, f(2>~3—£ Equations (7), (10), (11), and (12) become

respectlvely

n 8in ¢#% k sin 2éx—i—sin a, n=3—l/—3 k41 (35)
_ k41
M2—-————n . (36)
x_ FE1 (lc+cos a sec ) 1 Y=3 RMsm a- 37
x, ,
2
% BT (38)

With the identities sin 2304: 2\/ 1—sin?$ 3 sin 3; sin a=3 sin g—-—4 sin® g; equation (35)

14 H. B. Fine, College algebra, p. 457.
15 J, B. Scarborough, Numerical mathematical analysis, Ch, IX.
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may be written
n sin ¢—3r+42P=3kz+1—22, z=sin g' | (39)
Rationalizing (39) leads to-the sextic equation
16284+ 3(3k2—8)a*+8n sin ¢-*+9(1—Ek%)x?—6n sin ¢-x-+n? sin? ¢=0. (40)

Equation (40) may be solved by Horner’s contracted method, or some other
numerical method, after three-significant-figure estimates are obtained from the

abscissae of the intersections of the graphed simultaneous equationsy=—3x +n sin ¢=
3kx+1—a?— 42,
For the series estimate, we may expand 1—2? by the binomial formula to obtain
7 sin ¢ 3k+8 ks k2’ 5ka?

ey

from (39) the series u=gm S =2— g0 Ty ¥ ~gEF1) 6L D) 128G
and then revert this series to get the expansion

k48 | 2UkH00k-L128 . . 297kS+ 2010k 44809k 44096
z=sin g=utgaigy W+ sy vt T4 1)° ut ..
(41)

_msing =sin ¢
where u~—3(k+1) SME
With p=¢= —; equations (13) give the mapping equations z= R)\ cos ¢ sec ﬁ;

3 4
. 3¢ . e
y=§ R sin i The equatlon of the meridians is

4z? 2 .
RZ)\2< 16R2>[R29;\2( 16R2> 3:| [8(2 16R2) —l:l- The meridians are thus

seen to be curves of twelfth degree. f(¢)-— sin A; f’(¢>)—-cos f’(O)-—l f <2>—

%— \/2+ V2. Equations (7), (10), (11), and (12) become respectively

n sin ¢=§k sin 3740‘-i-sir'1 a, n=§ V242 k1. (42)
E+1
2:——-
M p (43)
RM)\ 3 4 . 3a
~F¥1 <k+cos a sec Z)’ y—g RM sin % 44
z, v
2" (4R
k+1
With z=sin 4; we write the following identities: sin %a=3 sin g—l}
4 sin a2 sin & cos Ed /1—sin? & (1—2 sin? @) sin E=4z(1— 27
3r—42%, sin a=2 sin 5 COS 5 4#1 sm 4<1 2 sin 4)sm i 4z(1—2x

838437°—49——4
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With these values of sin « and sin :%a placed in equation (42) one obtains
3n sin p=4ke(3—4a?) +122(1 —22?) /1—2?, z=sin g- (46)
Rationalizing (46) leads to the octic equation
576x°+ 128 (2k*—9) 28448 (15— 8kt + 96 (kn sin ¢)a* -
144 (k>— 12— 72(kn sin ¢)z-+9(n sin ¢)°=0. (47)

Equation, (47) may be solved by Horner’s contracted method, after obtaining
three-significant-figure estimates from the abscissae of the intersections of the graphed
[24
T

For the series estimate we may expand y1—z2 by the binomial formula to obtain
from (46) the series

simultaneous equations y=—12kz+3n sin ¢=12x(1—2a%) +/1—2°—16k2?, z=sin

_nsin¢ 8k4-15 728 37 .
V=D D C TSGR TTeGLD T
Reverting this series one finds that
o 8k+4-15 128k2+ 459k +429
#=sin g=vtge 1) Ut wugrnr YT
4096k° 21669k + 39282k 124453 i
144 (k1) wH. .., (48)

_mnsiné_sin ¢
where Y= T1) Al

The evolution of the sine series from the Lambert authalic cylindrical projection
to the Mercator authalic sinusoidal projection is shown in figure 28. The inter-

1 1 112

. . : B 3
mediate projections shown are those discussed above for 2 ¢ 3231

THE TANGENT SERIES PROJECTIONS

The meridian curves for the tangent series have inflection points, and although
partially concave toward the z-axis, the net result is a convex appearance which dis-
torts the continents in higher latitudes. This would necessarily be so, since we have
seen that the Mercator authalic sinusoidal projection is the upper limiting case.

We have arranged in a tabular manner the corresponding projections for the same
values of p and ¢ as used for the sine series. The mapping equations are obtained from
equations (14). The modification, equations (7) to (12), will be subsequently illus-
trated on only one example of the tangent series.
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p=q| Mapping equations Axes Equation of meridians Degree
’ z=RX cos® ¢ =Rm 22 (1+£)3=1 g
y=R tan ¢ Yo— © R2\2 R2?
3¢
— 2 X =
" z-—R)\ cos ¢ cos? 7 2o=Rw 4(1+16R2> YO 3(1+16R2) R)\ 3
_4 3¢> _4 3x - 922 \?
Y= 3R tan —/- yo——3Rtan§ (1+16R2) 2(1 16R2>
. 2¢ 42\ 222 442 \? 2
= 2 29 — 29 =7 ) _ =
42 =R\ cos ¢ cos 3 ro=Rx (1+9R2> [R2>\?(1+9R2> l] s
9 24 _3 .3 L4 '
2Rtan 3 yo_—2w/3R ( 3R2>
=R cos ¢ cos? ¢ To=Rw
2 ‘ 2 ( B ) v 5
y=2R tan% y0=2R 4R? Rk . 4R2
=R\ cos ¢ cos? (_; zo=Rmw s
3 (1+ 2 T2 ( 2) 12
=3R.tan'§ vo=+v3R 9R2 ) R2N 3R

-As a special case of the above tabulated projection for ¢=2, let p=1 instead of

p=2. 'The mapping equations (14) become then

2¢,y Rtanf

r=2RX\ cos'¢ cos 5

which are the mapping equations of the Foucaut stereographic authalic projection.’

For this projection F(¢)=tan g, ' (¢) =% sec? g; F’(0) r—-%y F <7-2T>“~ 1.

Bquations (7), (10), (11), and (12) become respectively

(k+1) sin p=k tan g—}-sin o

_ k+2
M=3011
x:%ﬁ—)\ (k+2 cos a cos2% > y=RM tan %
Gk
To k+2

16 Norbert Herz, Eehrbuch der Landkarténprojektionen, p. 167,

(49)
(50)

(51)

(52)
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2

2 tan %
Let sin a=— in (49) to obtain
1+tan2 §
k+ 1
D gn g=24 2, (53)
which, clearing of fractions, becomes
kr*— (k+1) sin ¢-224 (k+2)z— (k+1) sin =0, z=tan 5 (54)

Equation (54) may be solved by Horner’s contracted method or by some other
numerical method'” after three-significant-figure estimates are obtained from the
abscissae of the intersections of the graphed simultaneous equations

_ka (Ic—l— 1) z
5t sin ¢=7 F&

If a series estimate is desired we may write from (53) e+ 1) sin ¢=kr+22(1—2°+
*—af+28—. . )), and reverting this series obtain

2a—k) . 200-k)@=k) ., 2012—112k424k"—k)
s—tan §=ut ZE5H Rt ()i EE u't
(55)
k +1) © sing

where u=-—5——=

k3 S =
The relation of the tangent series of projections to the sine series of projections
through the Mercator authalic sinusoidal is shown in figure 28.

AUTHALIC PROJECTION OF THE SPHEROID

Thus far, only the authalic projection of the sphere has been considered. If it is
desired to apply the modified projection to the oblate spheroid one has only to sub-
stitute for the geodetic latitude, ¢, the authalic latitude B. The authalic latitude, B, is
obtained by projecting the spheroid authalically upon a sphere of equivalent surface.
The area of a zone of the oblate spheroid is 27b [2—(1—% Iy <1+z Ziﬁ z>:|
where b and e are the semi-minor axis and eccentricity respectively of the meridian
ellipse. The area of a zone of the authalic sphere is 27 R? sin 8. Demanding these two
zones be equal gives

sin ¢ 1+esin ¢
B? gin =¥ [2(1 ¢? sin? ¢) 4@1 (1—e sin ¢):| (56)
sin ¢ sm ¢

Now we have (1+4¢? sin? ¢+e* sin* ¢+ sin® ¢+ . .); and

2(1—& sin’ ¢)
;11; In 1tesné) sm ¢ <1+ sin? ¢+— sin ¢ + = sm“d> + . ) These expan-

l1—e sm ¢
sions placed in (56) glve
R? sin g=05* (1+§ e? sin? ¢+g e* sint ¢+% e sin® o4 . . ) sin ¢- (57)

17 See footnote 12 on p. 18, -
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Placing = ¢—— in (57) gives II; 1 so that (57) may be writ-

2 243 404 s
1+3e+5e+7e+ ..

1+§ ¢ sin? ¢+§ ¢* sint ¢+$— e sin® o4 |
ten finally as sin = ’ sin ¢-

2 213 14 6
1+3e+5e+7e+

For specific applications, the values of the authalic latitude do not have to be
computed. It has been done and tabulated in 30-minute intervals.'®

SUMMARY

The modification of authalic projections devised here and represented by equations
(7) to (12) may be applied to any equal-area projection whose parallels are straight
lines. It actually accomplishes a type of combination of the given projection with
the Lambert authalic cylindrical projection,’® whose parallels and meridians are straight
lines. It may be considered a generalization of the method of Dr. Max Eckert in
obtaining his No. 6 projection, although he derived mapping equations of this kind
for only a particular case of the modified sinusoidal projection.

EXAMPLES OF MODIFIED AUTHALIC PROJECTIONS
PROJECTION NO. 1

. From equations (13) we have the mapping equations of an authalic projection
with two arbitrary parameters p and ¢. Let us compute the values of p and ¢ for a
projection where we impose the following conditions:

The z-coordinate at ¢==80° shall be %.the equatorial x—coordmate The ratio
z/y for $=0, A\=20°; $=20°, A=0 shall be 0.85.
From equations (13) and the first given condition we have, for ¢=0, that

o] o
x—E— \; for $=80°, that z—msggg—; whence El}‘—co%(%‘ﬁ)—:% Rq A, which reduces
p P COS — P cos —- P
80° q q
to 3 cos 80°=cos i and solving for ¢
(o]
80 — 1.365086. (58)

1= cos™1(3 cos 80°)

Again from equations (13), with the second of the given conditions and the value

of q from (58) we have (with the value of 20°=0.3490659 radian) placing z/y=0.85,
. 20° _R _ .. 1.365086<0.3490659

0.85 Rp sin m-—; 1.365086X0.3490659, whence = 0.85 sin 14.65109°

2.2163809, and

=+/2.2163809=1.488751. (59)

With the values of ¢ and p from (58) and (59) the mapping equations (13)
become

» y=1.488751R sin (60)

L
1.365086

— ——2—_—
£=0.9169337RX\ cos ¢ sec 1.365086

Coordinate table I and figure 20 correspond to mapping equations (60).

18 Oscar S. Adams, Latitude developments connected with geodesy and cartography, U. 8. Coast and Geodetie Survey Special
Publication No. 67.
1 See footnote 10 on p. 15,
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TasLe I.—Projection No. 1

= - in ——2 __
[1—9.169337)\ cos ¢ sec » ¥y=14.88751 sin 1.365086]

_®
1.365086
Area ratio 1 to the square of 60,000,000

(4 z Y

° cm. cm.

0 28. 806 0. 0000
5 28.755 | 0.9511
10 28. 602 1. 8983
15 28, 344 2. 8377
20 T 27.979 3. 7655
25 27.500 4. 6780
30 26. 902 5. 5713
35 26. 174 6. 4419
40 25. 305 7. 2862
45 24.278 8. 1007
50 23.072 8. 8821
55 21. 661 9. 6272
60 20. 007 10. 333
65 18. 060 10. 997
70 15. 750 11. 615
75 12. 980 12. 186
80 9. 6021 12. 708
85 5. 3952 13. 177
90 0. 0000 13. 593

PROJECTION NO. 2

We now apply the modification given by equations (7) through (12) to the auth-
alic projection given by equations (60). From equations (60) it is seen that s(¢)=

1.488751 sin ¢/1.365086. 1/ (¢)=1.090591 cos ¢/1.365086 , 7/ (0)=1.090591, and / (125)=

1.359300. We will demand that the ratio given by (12) shall be %, which gives

1 ne=ler( T Y1 = 9 =k -4
k—m—3'271773—0.3056447,whencen-k/(z)—{—l—1.41546~8,andm ks (OH-I—3
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Demanding that the ratio of the axes in the modified projection shall be the same
as in the original projection (60), we have from (10) that

m_ 1.3333333

2 220999999
M= n  1.4154628

=0.94197693,

M =+/0.94197693=0.9705550.

The mapping equations (11) become with.the above values

o . . o
2=0.2224837RE\ (1+3 COS o Sec m); y=1.444915K sin 1365086 (61)
The equation (7) becomes

+sin a. (62)

1.415463 sin ¢=0.4550289 sin 1“365086

In order to solve equation (62) for @, we will use a numerical method, with the
aid of a desk calculator, after obtalmng estimates from: the abscissae of the intersec-
tions of the graphed simultaneous equations

y=1.415463 sin ¢—0.4550289 sin =sin a,

1. 365086
Figure 21 shows the graphical solution, the estimates being listed in table II with the
computed values of « for 5° interva]s of 0<Cp<C90°. ,

To illustrate the Regula Falsi ? method used to compute «, we Wiil compute its
value for ¢=>55°. With this value of ¢ we may write equation (62) in the form

(@) =1.159479—0.4550289 sin —sin @ 63)

_*
1.365086

From table II, the graphic estimate is «;=58°18’. Now sin 58°18'=0.8508111
O ’
and sin +— I 386 510886—0.6782614. With these values equation (63) gives

) =1.159479—1.159440=0.000039.

2 Numerical Mathematical Analysis—J. B. Scarborough—p. 174.
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FIGURE 21.



“WORLD STATISTICAL MAPS 27

TaBLE IL.—Graphic and computed values of « for Projection No. 2.

¢ a (Graph) a (Computed)
o [+] ¥i [«] ’ 17
0 0 00 0 00 00.0
5 5 18 5 18 28.7
10 10 36 10 36 56.8
15 15 54 15 55 237
20 21 12 21 13 48.7
25 26 24 26 32 10.5
30 31 48 31 50 27.4
35 37 00 .87 08 37.0
40 42 24 42 26 355
45 47 36 47 44 17.5
50 53 00 53 01 34.0
55 58 18 58 18 10.5
60 63 30 63 33 43.6
65 68 42 68 47 30.1
70 73 54 73 58 05.5
75 78 48 79 02 25.4
80 84 00 83 52 27.1
85 88 00 88 02 OLO
9 | 90 00 90 00 00.0

From an examination of the differences in the trigonometric table being used, it
is seen that a close value will be given by «,=58°18'11"".  With the wvalues
[+] ’ ” -
sin 58°18’11"/=0.8508391 and sin 51831T§0181_6_ =0.6782900, we have from (63) that
flag) =1.159479—1.159481==—0.000002.
(az—al)lf(al)l

By the Regula Falsi method a better value of a isgiven by cy=o, + D+ /@)’
. 2
the process being repeated until the desired accuracy is obtained. Using the above

. 0.000039 rian
values of a;, ay, f(a), f(as) We obtain a3=58°18’—']—11”><m=58°18 1075
58°18'10%

: °18/10"5== : _____é
Sin 58°18'1075=0.8508379, sin 1365086 )—0 6782887, and with these values we

have from (63) that f(aa)_l 159479—1.159479=0, hence the correct value is
a=>58°18’10"5. 'This accuracy is sufficient since we are computing our table for this
prO]ectlon to only five significant figures.

It will be noticed that only one Regula Falsi estimate was necessary since the
graphic value, «,, was close and a judicious choice of a,, by use of differences in the
trigonometric table, was made. Hence a careful graphic solution should be con-
structed, preferably on millimeter paper, and careful use should be made of the tables
in choosing the next-best estimate for a.

Table II1 and figure 22 correspond to mapping equations (61) and the computed
values of « from table II.

838437°—49——5
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Tasre III.—Projection No. 2

[24 . ax
['.C= 2.224837 <1+3 €OS a sec 1—3_65.68_6) N y=14.44915 sin Tm]
Area ratio 1 to the square of 60,000,000

¢ ‘ a z y

° ° ’ " cm, cm.

0 0 00 00.0 27. 958 0. 0000

5 5 18 28.7 27.916 0. 9798
10 10 36 56.8 27. 791 1. 9552
15 15 -55 23.7 27. 579 2.9214
20 21 13 48.7 27. 278 3. 8741
25 26 32 10.5 26. 883 4. 8088
30 31 50 27.4 26. 388 5.7211
35 37 08 37.0 25. 784 6. 6069
40 42 26 35.5 25. 059 7.4617
45 47 44 17.5 24. 199 8. 2817
50 53 01 34.0 23. 182 9. 0626
55 58 18 10.5 21.983 - 9. 8007
60 63 33 43.6 20. 568 10. 492
65 68 47 30.1 18. 888 11. 132
70 73 58 05.5 16. 886 11. 717
75 79 02 25.4 14. 492 12. 240
80 83 52 27.1 11. 670 12. 691
85 88 02 010 8. 660 13. 040
90 90 00 00.0 6. 990 13. 193

PROJECTION NO. 3

, For an example of the modified sinusoidal authalic projection we demand that

the ratio given by (20) be %, whence k=%. Demanding also that the ratio of the axes
be the same as in the original sinusoidal projection, we have from (18) that
M?*=6/(n+4)=0.84014872, ,whence M=+0.84014872=0.9165963. The mapping
equations (19) become

2=0.3055321 RA(1+2 cos &), y=0.9165963Re. (64)

Equation (17) becomes

1.785398 sin ¢=0.5a+sin a. (65)
The series (21) becomes
117 793 ., 72,161
e=utgut s w000 ¥ T 4,606,640 Y T 0 (66)

' sin r+4 . .
where u= Mf= g Sin ¢=1.190265 sin ¢.
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The series (66) may be used to obtain first estimates for «, or a graph of the simul-
taneous equations ¥y=—0.5a+1.785398 sin ¢==sin «, as shown in figure 23, may be
made, three-significant-figure estimates of the abscissae of the intersections being the
first estimates for e. In either case a variation of the Newton-Raphson method may
be advantageously employed, with the aid of a desk caleulator, to complete the solution
to the required accuracy.

The Newton-Raphson Method. If ais an approximation to the required value
of the root of an equation f(x)=0, and A« is a small correction which must be
applied to « to give 8 more accurate approximation to the required accuracy of the
root, then z=a-+Awa and f{(a+Aa)==0, very nearly. Expanding f(a+Aa) by Taylor’s
theorem one obtains

2
Jat By =7(@) -+ (@) Bat (@) 5 4771 (@) B2+ . . = (67)
Now consider Aa to be expanded in a power series in f(a), namely
Aa=af(c)+br2(e)4c/? )+ . . .. . (68)

Substituting the value of A« from (68) in (67) one obtains

3?77
S(atbytest+ . )i+ (etbitert+ )2f +@+b/+es )”f;, + . =0
' (69)

In equation (69) we now place the sums of the coefficients of like powers of 7 equal
to zero, and solve for the values of a, b, c—as follows:

Ji 14a/'=0,a= -—%,-

2.. ’ C_lf " __ __.___azf"~ lli_
f~ bf+2f ~Oab"‘ 2f,—_ 2f,

3 2 1
f32 Cf'—l-abf”+%f”’=0» c=.__.% (bf,/+%f”’):_€j75 (3]’”2'—/"_/”')

EE R I S R I T I T T R T T T T T T I T T I S RS R R T

The values of @, b, c—returned to equation (68) give

2017 3 N
Aa= _ji,ufz{ﬁ — gfﬁ Bf2—f ) — . , whence
2,77 !
al=a+Aa=,a—fi'“[zT{ﬁ~6p5 G P=f1")— (70)

For practicable use of the higher order terms of (70), the derivatives 5/’ f//’—
must be easily computed. Otherwise all terms involving higher-order derivatives
than the first in equation (70) may be ignored and successive approximations made
with the resulting formula, which is the Newton-Raphson Method.? Of course the
aceuracy required may not warrant use of the higher-order terms in any event.

2 Practical Analysis, Fr. A, Willers, p. 222,
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For the solution of equation (65), the successive derivatives are easily obtained.
We may write (65) in the form f(a)=0.5a+sin a—1.785398 sin ¢, whence ;' (a)=
0.5+cos «a, f''(a)=—sin «a, etc. We will not need s'’/(e) since we are going to use
seven significant figures in the computations in order to obtain five-significant-figure
values to be listed in the coordinate table for the projection.

With the above values of s/(a) and s’/ (), ignoring all terms involving derivatives
higher than the second, we may write equation (70) as

7 ’sin &
ay=ua

~0.5%cos & 2(0.5+cos @) (1)

where 7 (a)=0.5a-+}sin «a—1.785398 sin ¢.
Table IV lists the graphical estimates from figure 23, and the computed values
obtained by means of equation (71).

TasLe IV.—Graphic and computed values of o for Projection No. 8

¢ a (Graph) a (Computed) « (Radians)
o o ! [+ ’ Hr
0 0 00 0 00 00.0 0. 0000000
5 6 00 5 57 03.3 0. 1038629
10 11 54 11 53 57.2 0. 2076805
15 17 48 17 50 31.3 0. 3114023
- 20 23 42 23 46 32.9 0. 4149662
25 29 42 20 41 45.2 0. 5182910
, 30 35 30 ) 35 35 45.5 0: 6212667
35 41 30 41 28 02.2 0. 7237403
40 47 18 47 17 50.7 0. 8254955
45 53 .00 53 04 07.1 0. 9262224
50 58 42 58 45 18.6 1. 0254711
55 64 12 64 19 09.0 1. 1225813
60 69 42 69 42 15.6 1. 2165699
65 74 54 74 49 34.9 1. 3059662
70 79 36 79 33 32.4 1. 3885665
75 83 36 83 43 01.2 1. 4611375
80 . 87 00 87 02 39.2 1. 5192084
85 89 12 89 13 54.3 1. 5573879
90 90 00 90 00 00.0 1. 5707963

As an example of the use of (71), we now compute the value of a for ¢=>50°.
Sin 50°=0.7660444, and we have from (65)

f(@)=0.5a+sin a—1.3676941. (72)

From table IV the graphic estimate is o;=58°42'=1.0245083 radians. Sin 58°42'=
0.8544588 and cos 58°42/=0.5195191. Equation (72) gives with these values f(ay)=
—0.0009812=—9.81210"*. With this value of yf(a;) and the other above-needed
values equation (71) becomes
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9.812X10~*, 0.8544588<(9.812)2 1073

02=1.0245083+ 1.0195191 + 2(1.0195191)3

a,=1.0245083+9.624 X1074+4.0X1077
a;=1.0254711 radians=58°45"18"6.

Sin 58°45’ 876=0.8549586, and equa‘mon (72) gives f(ax)=0.51273554-0. 8549586
—1.3676941=0. Hence the correct value is a,=58°45"18"6.

It will be found that no repetitions are necessary for 0<¢<<90° if equation (71)
is used with the graphic estimates as listed in table IV. If available, a seven-place
table giving the natural trigonometric functions for radian arguments is very useful.
However, it is not difficult to convert degrees to radians by the formula
1°=0.0174532925 radian, since it is assumed that a desk calculator will be used.

Table V and figure 24 correspond to the computed o values of Table IV and to
the mapping equations (64) for this example of the modified sinusoidal projection
which we will call the flat-polar sinusoidal authalic projection.

‘TasLe V.—Projection No. 3, flat-polar sinusoidal authalic prbject’ion

[t=3.055321(14+2 cos a)\; y=9.165963«]
Area ratio 1 to the square of 60,000,000

(4 o z Y

° ° ! " radians cm. cm.

0 0 00 00.0 0. 0000000 28. 796 0. 0000

5 5 57 03.3 0. 1038629 28. 692 0. 9520
10 11 53 57.2 0. 2076805 28. 383 1. 9036
15 17 50 31.3 0. 3114023 27. 872 2. 8543
20 23 46 32.9 0. 4149662 27. 166 3. 8036
25 29 41 45.2 0. 5182910 26. 275 4. 7506
30 356 35 45.5 0. 6212667 25. 209 5. 6945
'35 41 28 02.2 0. 7237403 23. 984 6. 6338
40 47 17 50.7 0. 8254955 22. 618 7. 5665
45 53 04 07.1 0. 9262224 21. 133 8. 4897
50 58 45 18.6 1. 0254711 19. 556 9. 3994
55 64 19 09.0 1. 1225813 17. 918 10. 290
60 69 42 15.6 1. 2165699 16. 257 11. 151
65 74 49 34.9 1. 3059662 | 14.623 |- 11.970
70 79 33 32.4 1. 3885665 13. 078 12. 728
75 83 43 01.2 1. 4611375 11. 699 13. 393
80 87 02 39.2 1. 5192084 .| 10. 588 13. 925
85 89 13 54.3 1. 5573879 9. 8560 14. 275
90 90 00 00.0 1. 5707963 9. 5986 14. 398
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PROJECTION NO. 4

For an example of the modification of the Adams authalic projection, we make the
same requirement as for the sinusoidal, namely, that the ratio given by (32) be ¥ and
that the ratio of the axes in the modified projection be the same as in the original
Adams projection. Hence from (32) we find k=) and with this value of %, equation
(30) gives M?=3/({/2-+2)=0.878679657, whence M=0.93737914. The mapping
equations (31) become

£=0.31245971 RN(1+2 cos a sec o/2), y=1.87475828 R sin o/2. (73)
Equations (29) and (33) become respectivgly, since n=\/72—'—|—1=1.70710678,

170710678 sin $—sin S+sin a, (74)

2*—0.75 22— (0.85355339 sin ¢)x-+0.72855339 sin? =0, (75)

. [s 4
where z=sin 5

The series estimate from (34) is

x—sm——u-l- 3+T52u5+1— ’—I—gigi w+..., (76)

where u=(n sin ¢) /3=0.56903559 sin ¢.

Figure 25 is the graphic solution of the simultaneous equations y=—0.52+0.85355.
sin ¢=xv1—x2 - The curve y=x+1—2a* is easily constructed from a table of natural

trlgonometrlc functions since z=sin ;y—z1/1 2?=sin 35 2 s 2 ;sm «. It needs to

be constructed only from the origin to its maximum point x=§; y=%~

While the series (76) will give good estimates for a for $<<45°, it is evident that
as ¢ becomes large and as ¢—90°, too many terms of the series would be needed. The
graphic estimates are consistent over the entire range of ¢, although only three-signifi-
cant-figure estimates are obtainable from a graphic solution carefully constructed on
millimeter paper.

~ In table VI are listed the graphic estimates, at 5° 1ntervals, with the computed
values of a.

Since Horner’s contracted method is well known and described in most college .
algebra textbooks,?” the mechanics of the method will not be described here. It is a
good machine method for use with the graphic or series estimates to solve equation (75).
We will describe a comparable method based on equation (70) to solve equation (74)
for a. It is assumed that a desk calculator and eight-place tables of natural sines and
" cosines are available.

2 H, B. Fine, College Algebra, pp. 456-457.
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From equation (74) we have f(a)=sin —g—l—sin a—1.70710678 sin ¢.

’ __1 o ’r ____1_ N 24 _~1 @
f(a)—icosi-l-cosa,f ()= 7 Sin 5—sin a, " ()= g Cos 5 —cos a.

values of s ' 7", /7" we may write equation (70) as

A C)) +27f2(a)_ (Bv*+wt)/*(a)
n=CT T, 2uA 6w? ’

where j(a)=sin %—\—s’m a—1.70710678 sin ¢, v=0.25 sin %-}-sin o,

w=0.5 cos g—i-cos a, 1=0.125 cos g—!—cos o,

35

With these

77

TaBLE VI.—Graphic and computed values of a for Projection No. 4.

.
. . a
® Sin 7 Sin 5 /2
(Graph) (Computed)
[+] I r o ’ 24

0 0. 000 © 0. 00000000 . 0 00 00.000 0 00 00.000
5 0. 049 0. 04963551 2 50 42 267 5 41 24.534
10 0. 099 0. 09913758 5 41 22.238 11 22 44. 476
15 0. 149 0. 14837208 8 31 57 353 17 03 54.706
20 0. 198 0. 19720334 11 - 22 24.476 22 44 48. 952
25 0. 246 0. 24549317 14 12 39.530 ’28 . 25 19. 060
30 0. 294 0. 29309936 17 02 36.965 |- 34 05 13.930
35 Q. 340 0. 33987360 19 52 09.024 39 44 18.048
40 0. 386 0. 38565828 22 41 04. 608 45 22 09. 216
45 0. 431 0. 43028132 25 29 07.-494 50 58 14. 988
50 0. 474 0. 47354791 28 15 53. 448 56 31 46.896
55 0. 516 0. 51522630 31 00 45.295 62 01 30.590
60 0. 555 0. 55502285 33 42 44.237 67 25 28.474
65 0. 593 0. 59253633 36 20 13.924 72 40 27 848
70 0. 628 0. 62717148 38 50 30.286 77 41 00.572
75 0. 658 0. 65797562 41 08 44.392 82 17 28.784
80 0. 684 0. 68335568 43 06 23.138 86 12 46.276
85 0. 7Q0 0. 70976993 44 29 19.710 88 58 39.420
90 0. 707 0. 70710678 45 00 00. 000 90 00 00. 000

As an example of the use of (77), we compute the value of « for ¢=45°

Sin 45°=0.70710678, whence f(a)=sin g+sin a—1.20710678. From table VI, the

graphic value is sin 2—=0.431, whence o=51°03/43"484=0.89120140 radians.

2
Sin «=0.77782737, cos a=0.62847800, cos g=0.90235193,

7(2)=0.431+0.77782737—1.20710678=+1.72059 102,
£2(a) =2.9604 X 10, *(a) =5.0936 X 10",
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w=0.5 cos g+cos a=1.07965396, w*=1.259, w'=1.5,
»=0.25 sin g+sin a=0.8856, 3v?=2.353,

t=0.125 cos g-I-cos «=0.7413, and 302—!—wt=3.2.

With these values equation (77) becomes
. -3 -6 -9
. 0.89120140—1'72059X10 0.8856X2.960X107% 3.2X5.1X10

2

1.07965396 2X1.259 6X1.5
a;=0.89120140—1.59364X10734-1.04X 1078~ 2X107?,
;=0.88960880 radians=50°58"14"988, %=25°29'07’.’494.

sin a;=0.77682546, sin 92—1=O.43028132, and we have f(a;)=0.43028132-0.77682546 —

1.20710678=0. Note that the last term of (77) was not necessary to give an eight-
place check. In general, if the graphic estimates from table VI are used, equation (77)
will give a check to eight significant figures without the use of the last term. The
values of a« thus computed will give, when used in the mapping equations (73), co-
ordinates to six significant figures.

After the 5° intervals have been computed, the estimates for the 1° intervals may
be obtained by differencing and interpolation, the values then being computed to the
required accuracy by equation (77).

TasLe VII.—Projection No. 4, flat-polar quartic authalic projection
[t=38.1245971(1+2 cos @ sec § a)); y=18.7475826 sin 1 «]
Area ratio 1 to the square of 60,000,000.

@ a ) z Ty

° ° ! " cm. cm.

0 0 00 00.000 29. 4486 0. 00000
5 5 41 24.534 29. 3760 0. 93055
10 11 22 44.476 29. 1580 1. 85859
15 17 03 54.706 28. 7943 2. 78162
20 22 44 48.952 28. 2843 3. 69709
25 28 25 19.060 27. 6273 4. 60240
30 34 05 13.930 26. 8224 - 5. 49490
35 39 44 18.048 25. 8686 6. 37181
40 45 22 09.216 24, 7651 7. 23016
45 50 58 14.988 23. 5117 8. 06673
50 56 31 46.896 22. 1093 8. 87788
55 62 01 30.590 20. 5614 9. 65925
60 67 25 28.474 18. 8767 10. 4053
65 72 40 27.848 17. 0741 11. 1086
70 77 41 00.572 15. 1929 11. 7579
75 82 17 28.784 13. 3133 12. 3355
80 - 86 12 46. 276 11. 5923 12. 8113
85 88 58 39.420 10. 3073 13. 1377
90 90 00 00.000 9. 8162 13. 2565
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Table VII and figure 26. correspond to the computed values of « listed in table VI
and to the mapping equations (73) for this example of the modified Adams projection
which we will call the flat-polar quartic authalic projection. In table IX, computed
in 1° intervals for this example of the modified Adams authalic projection, the corre-
sponding authalic latitudes # were used, thus taking into account the spheroidal shape
of the earth to improve the accuracy in compiling large-scale maps.

PROJECTION NO. 5

For a final example of the computation of the coordinates for a flat-polar projec-
tion we choose the parabolic type of the sine series given by p=¢=3 in equations (13).
This is not the Craster parabohc projection. In the Craster projection ¢=3,p=+/37
so that the ratio of the axes is %. If the Craster projection is opened at the poles to
produce the flat-polar type projection, it naturally shows greater north-south stretch-
ing in equatorial regions as did the sinusoidal whose axis ratio is also %.- (See fig. 24.)

The sine series parabolic projection, whosegnapping equations are z=E\ cos ¢ sec ¢

3

. o - x 4 92 ..

=3R sin 3 whose meridians are the parabolas py=1 —9 B and whose axes ratio is

23—11-’ or < %; gives less north-south distortion in equatorial regions when opened at the
poles.

For this projection f(¢)=3 sin —; 7! (¢)_cos 3 J (2) 5 //(0)=1. We may use
equations (22) to (28) but with a dlﬁerent value of n. Requlrlng that the ratio given
by (25) be % ‘and with n=ks <g>+1=% k-1 we have kzé: n=1.75. From (23)

M2=2gj;1=g=0.857142857, whence M=0.92582010.

The mapping equations become

2 cos «
£=0.30860670R\ < 14—~
COS

> y=2.7774603R sin 2 3 (78)
3

Equations (26), (27), and (28) become respectively

2*—1.1250+0.4375 sin ¢=0, z=sin % (79)
sin u=—118 +/6 sing, (80)

—gin 2= V6 gn¥.
T=sin 5 5 sing 81

To illustrate the computations by means of equations (80) and (81), the value
of sin g for ¢=65° will be computed. From (80), with +/6=2.44948974 and

sin 65°=0.90630779, we have sin u==1—78><2.44948974 % 0.90630779=0.86333008, whence

u=59° 41’ 33".237, 5=19° 53’ 51"7.079, sin 5=0.34033888. From (81) z=sin 5=
1.22474487 X 0.34033888=0.41682830.

23 See footnote 18 on p. 23.
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Table VIII gives the computed values of « and the mapping coordinates computed
from (78) for this modified parabolic projection which we will call the flat-polar para-
bolic authalic projection. Figure 27 illustrates this projection.

TasLe VIII.—Projection No. 5, flat-polar parabolic authalic projection
[z=3.0860670 (1+2 cos a sec %)x y=27.774603 sin %]

Area ratio 1 to the square of 60,000,000

¢ sin ‘31 /3 a z - y

[} © ’ 1’ < ! 1 cm. cm.

0 ‘0. 00000000 0 00 00.000 0 00 00.000 29. 0855 0. 00000
5 0. 03392862 1 56 39.623 5 49 58. 869 28. 9962 0. 94235
10 0. 06780697 3 53 16.930 11 39 50.790 28. 7289 1. 88331
15 0.10158364 5 49 49. 336 17 29 28 008 28. 2851 2. 82145
20 0. 13520480 7 46 13.667 23 18 41.001 27. 6676 3. 75526
25 0. 16861261 9 42 25787 29 07 17.361 26. 8804 4. 68315
30 0. 20174312 11 38 20.078 34 55 00.234 25. 9287 5. 60334
35 0. 23452334 13 33 48.699 40 41 26.097 24. 8195 6. 51379
40 0. 26686694 15 28 40.499 46 26 01. 497 23. 5617 7. 41212
45 0. 29866761 17 22 39. 339 52 07 58.017 22. 1668 8. 29537
50 0. 32978893 19 15 21.474 57 46 04. 422 20. 6499 9. 15976
55 0. 36004757 21 06 11.223 63 18 33. 669 19. 0309 10. 0002
60 0. 38918631 22 54 13.962 68 42 41.886 17. 3376 | 10.8095
65 0. 41682830 24 38 04.222 73 54 12. 666 15. 6095 11. 5772
70 - 0. 44240196 26 15 26.051 78 46 18.153 13. 9052 12. 2875
75 0. 46502555 27 42 42 753 83 08 08.259 12. 3130 12. 9159
80 0. 48336972 28 54 20.578 86 43 O01.734 10. 9636 13. 4254
85 0. 49563642 29 42 42.211 89 08 06.633 10. 0321 13. 7661
90 0. 50000000 30 00 00.000 90 00 00.000 9. 6952 13. 8873

It will be noted that the computed values of the coordinates, in all the tables
except table IX, have been multiplied by 10. Then the coordinates as listed in the
tables if taken in centimeters give a projection whose area ratio is 1 to the square of
60,000,000. This is assuming that the radius of the earth, considered a sphere, is
R=6,000,000 meters. In table IX, since we used the authalic latitudes in the com-
putations, we should in scaling use the radius of the authalic sphere which is
R=6,370,997.2 meters with respect to the Clarke 1866 spheroid. In addition, it
should be noted that for all the tables, except table IX, only the coordinates of the
bounding meridian have been computed, since the meridians are equally spaced for
each parallel of latitude in all the authalic projections for which tables are given.

The choice of numerical method used above for any particular projection was of
course arbitrary and we have by no means exhausted the methods by which coordi-
nates may be computed for modified projections as described here. Obviously there
are functions other than the sine and tangent which may be employed to generate
series of such projections.
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FLAT-POLAR QUARTIC AUTHALIC PROJECTION TABLE FOR WORLD OR SECTIONAL
MAPPING

Table VII was computed for 5-degree intervals only, without using authalic lati-
tudes, the earth being considered a sphere whose radius is 6,000,000 meters.

The following table, in 1-degree intervals, for the construction of the flat-polar quar-
tic authalic projection (Projection’ No. 4, fig. 26) for world or sectional mapping was
computed with the corresponding authalic latitudes 2 to take into account the spheroidal
shape of the earth, the spheroid of reference being the Clarke 1866. For this spheroid
the radius of the corresponding authalic sphere is 6,370,997.2 meters. The coordinates
as listed are in centimeters and give a map whose arearatio is 1 to the square of 1,000,000.

# See footnote 18 on p. 23.
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TaBLe IX.—Flat-polar quartic authalic projection (1° interval).
[£=199.06799 (14 2cos a sec «/2)\; y=1,194.4080 sin «/2]

- z coordinate
Lati- N - ;
tude a Longitude from central meridian 4 %(;%Zdl'
¢ 180° 90° 60° 30° 5° 1°
° ° 7 &4 cm. ~cm. cm. cm. cm. cm. cm.
0 0 00 00.000 | 1,876. 172 | 938.086 | 625. 391 | 312.695 | 52. 116 | 10. 423 0. 000
1 1 07 58.538 | 1,875.988 | 937.994 | 625. 329 | 312. 665 | 52. 111 | 10. 422 11. 809
2 2 15 57.064 | 1,875.438 | 937.719 | 625. 146 | 312. 573 | 52. 096 | 10. 419 23. 616
3 3 23 55. 558 | 1,874,521 | 937.261 | 624. 840 | 312. 420 | 52. 070 | 10. 414 35. 421
4 4 31 54.018 | 1,873.237 | 936.619 | 624. 412 | 312. 206 | 52. 034 | 10. 407 47. 222
5 5 39.52.427-| 1,871. 586 | 935.793 | 623. 862 | 311. 931 | 51.989 | 10. 398 59. 019
6 6 47 50.764 | 1,869. 568 | 934.784 | 623. 189 | 311. 595 | 51. 932 | 10. 386 70. 809
7 7 55 49.020 | 1, 867. 182 | 933.591 | 622. 394 | 311. 197 | 51. 866 | 10. 373 82. 593
8 9 03 47.176 | 1,864.429 | 932 215 | 621. 476 | 310. 738 | 51.790 | 10. 358 94. 368
9| 10 11 45.210 | 1, 861. 309 | 930. 654 | 620. 436 | 310. 218 | 51. 703 | 10. 341 | 106. 133
10 | 11 19 43.106 | 1,857.820 | 928.910 | 619. 273 | 309. 637 | 51. 606 | 10.321 | 117. 888
11 | 12 27 40.842 | 1,853. 963 | 926.981 | 617. 988 | 308. 994 | 51.499 | 10. 300 | 129. 631
12 | 13 35 38.394 | 1,849. 737 | 924.868 | 616. 579 | 308. 289 | 51.382 | 10.276 | 141. 361
13 | 14 43 385.744 | 1,845,142 | 922.571 | 615. 047 | 307. 524 | 51. 254 | 10.251 | 153. 076
14 | 15 51 32.848 | 1,840. 178 | 920.089 | 613. 393 | 306.696 | 51.116 | 10. 223 | 164. 775
15 | 16 59 29. 678 | 1,834. 844 | 917. 422 | 611. 615 | 305.807 | 50. 968 | 10. 194 | 176. 458
16 | 18 07 26.216 | 1,829.140 | 914. 570 | 609. 713 | 304. 857 | 50. 809 | 10. 162 | 188. 123
17 | 19 15 22.406 | 1,823.065 | 911. 532 | 607. 688 | 303. 844 | 50. 641 | 10. 128 | 199. 768
18 | 20 23 18.218 | 1,816. 619 | 908.309 | 605. 540 | 302. 770 | 50. 462 | 10. 092 | 211. 392
‘19 | 21 31 13.602 | 1, 809. 801 | 904. 900 | 603. 267 | 301. 634 | 50. 272 | 10.054 | 222. 995
20 | 22 39 08.506 | 1,802.611 | 901. 306 | 600. 870 ! 300.435 | 50.073 | 10. 015 | 234. 575
21 | 23 47 02.882 | 1,795.048 | 897. 524 | 598. 349 | 299. 175 | 49: 862 9.972 | 246. 130
22 | 24 54 56.664 | 1,787. 112 | 893. 556 | 595. 704 | 297. 852 | 49. 642 9. 928 | 257. 660
23 | 26 02 49.800 | 1,778. 802 | 889.401 | 592. 934 | 296. 467 | 49. 411 9. 882 | 269. 162
24 | 27 10 42,204 | 1,770. 118 | 885.059 | 590. 039 | 295. 020 | 49. 170 9. 834 | 280. 637
25 | 28 18 33.812 | 1,761. 058 | 880.529 | 587. 019 | 293. 510 | 48. 918 9.784 | 292. 081
26 | 29 26 24. 526 | 1,751. 622 | 875.811 | 583. 874.| 291. 937 | 48. 656 9. 731 | 303. 495
27 | 30 34 14.272 | 1,741. 810 | 870. 905 | 580. 603 | 290. 302 | 48. 384 9. 677 | 314. 877
28 | 31 42 02.940 | 1,731. 621 | 865.810 | 577. 207 | 288. 603 | 48. 101 9. 620 | 326. 225
29 | 32 49 50.422 | 1,721. 054 | 860. 527 | 573. 685 | 286. 842 | 47. 807 | * 9. 561 | 337. 538"
30 | 33 57 36.602 | 1,710. 108 | 855.054 | 570. 036 | 285.018 | 47. 503 9. 501 | 348. 814
31| 35 05 21.356 | 1, 698. 783 | 849.392 | 566. 261 | 283. 131 | 47. 188 9. 438 | 360. 053
32 | 36 13 04.550 | 1,687.079 | 843.539 | 562. 360 | 281. 180 | 46. 863 9. 373 | 371. 252
33 | 37 20 46.016 | 1, 674. 993 | 837.497 | 558. 331 | 279. 166 | 46. 528 9. 306 | 382. 411
34 | 38 28 25.606 | 1, 662. 527 | 831.264 | 554. 176 | 277. 088 | 46. 181 9. 236 | 393. 527
35| 39 36 03.136 | 1, 649. 680 | -824. 840 | 549. 893 _274. 947 | 45. 824 9. 165 | 404. 600
36 | 40 43 38.420 | 1, 636. 450 | 818. 225 | 545. 483 | 272. 742 | 45. 457 9. 091 | 415. 627
37 | 41 51 11.244 | 1,622.837 | 811.418 | 540. 946 | 270. 473 | 45. 079 9.016 | 426. 608
38 | 42 58 41.376 | 1,608. 841 | 804. 421 | 536. 280 | 268. 140 | 44. 690 | 8. 938 | 437. 540
39 | 44 06 08.580 | 1, 594. 462 | 797. 231 | 531. 487 | 265. 744 | 44. 291 8. 858 | 448. 422
40 | 45 13 32.584 | 1,579. 699 | 789. 849 | 526. 566 | 263. 283 | 43. 881 8. 776 | 459. 253
41 | 46 20 53.096 | 1, 564. 551 | 782,276 | 521. 517 | 260. 759 | 43. 460 8.692 | 470. 030
42 | 47 28 09.800 | 1,549.020 | 774. 510 | 516. 340 | 258. 170 | 43. 028 8. 606 | 480. 752
43 | 48 35 22.356 |1, 533. 105 | 766. 552 | 511.035 | 255. 517 | 42. 586 8. 517 | 491. 417
44 | 49 42 30.380 | 1, 516. 805 | 758. 403 | 505. 602 | 252. 801 | 42. 133 8. 427 | 502. 023
45 | 50 49 33.474 | 1, 500. 122 | 750. 061 | 500. 041 | 250. 020 | 41. 670 8. 334 | 512. 568
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z coordinate

y coordi-~

nate

Lati- - e
tude @ Longitude from central meridian

¢ 180° 90° 60° 30° 5° 1°

e ° ! & cm. cm. cm. cm. cm. cm.

45 | 50 49 33.474 | 1, 500. 122 | 750. 061 | 500. 041 [ 250.020 | 41. 670 | 8.334
46 | 51 56 31.188 | 1,483.056 | 741. 528 | 494. 352 | 247. 176 | 41. 196 | 8. 239
47 | 53 03 23.036 | 1, 465. 608 | 732. 804 | 488. 536 | 244. 268 | 40. 711 8. 142
48 | 54 10 08.490 | 1,447.779 | 723.890 | 482.593 | 241. 297 | 40.216 | 8.043
49 | 55 16 46.978 | 1,429. 571 | 714. 785 | 476. 524 | 238.262 | 39. 710 | 7. 942
50 | 56 23 17.858 | 1,410. 984 | 705.492 | 470. 328 | 235. 164 | 39. 194 | 7. 839
51 | 57 29 40.438 | 1,392.023 | 696.011 | 464. 007 | 232. 004 | 38. 667 | 7.733
52 | 58 35 53.962 | 1, 372. 688 | 686.344 | 457. 563 | 228.781 | 38.130 | 7.626
53 | 59 41 57.604 | 1,352. 983 | 676.492 | 450. 994 | 225.497 | 37.583 | 7.517
54 | 60 47 50. 436 | 1, 332. 913 | 666. 457 | 444. 304 | 222. 152 | 37.025 | 7. 405
55 | 61 53 31.464 | 1,312. 482 | 656. 241 | 437. 494 | 218. 747 | 36. 458 | 7.292
56 | 62 58 59.572 | 1,291. 695 | 645. 848 | 430. 565 | 215.283 | 35.880 | 7.176
57 | 64 04 13.522 | 1,270.560 | 635. 280 | 423. 520 | 211. 760 | 35.293 | 7.059
58 | 65 09 12.000 | 1, 249. 082 | 624. 541 | 416.361 | 208. 180 | 34. 697 | 6. 939
59 | 66 13 53.476 | 1,227. 272 | 613. 636 | 409. 091 | 204. 545 | 34.091 | 6. 818
60 | 67 18 16.316 | 1,205. 140 | 602. 570 | 401.713 | 200. 857 | 33.476 | 6.695
61 | 68 22 18.672 | 1, 182. 697 | 591. 349 | 394. 232 | 197. 116 | 32.853 | 6.571
62 | 69 25 58.508 | 1,159. 958 | 579.979 | 386. 653 | 193.326 | 32.221 | 6.444
63 | 70 29 13.546 | 1, 136. 939 | 568.469 | 378.980 | 189.490 | 31.582 | 6.316
64 | 71 32 01.256 | 1,113. 658 | 556.829 | 371.-219 | 185. 610 | 30. 935 | 6. 187
65 | 72 34 18.814 | 1,090. 137 | 545. 069 | 363.379 | 181.690 | 30.282 | 6. 056
66 | 73 36 03.040 | 1,066. 402 | 533. 201 | 355. 467 | 177.734 | 29.622 | 5. 924
67 | 74 37 10.412 | 1,042. 481 | 521. 240 | 347. 494 | 173.747 | 28. 958 | 5.792
68 | 75 37 36.960 | 1,018.407 | 509.203 | 339. 469 | 169. 734 | 28.289 | 5. 658
69 | 76 37 18. 206 994. 219 | 497. 110 | 331.406 | 165.703 | 27. 617 | 5. 523
70 | 77 36 09. 166 969. 962 | 484. 981 | 323. 321 | 161. 660 | 26. 943 | 5. 389
71 | 78 34 04. 214 945. 686 | 472. 843 | 315.229 | 157. 614 | 26.269 | 5. 254
72 | 79 30 56.992 921. 450 | 460.725 | 307.150 | 153.575 | 25.596 | 5. 119
73 | 80 26 40. 410 897. 322 | 448. 661 | 299. 107 | 149. 554 | 24. 926 | 4. 985
74 | 81 21 06. 486 873.379 | 436. 689 | 291. 126 | 145. 563 | 24. 261 4. 852
75 | 82 14 06. 202 849. 708 | 424. 854 | 283.236 | 141. 618 | 23.603 | 4.721
76 | 83 05 29. 552 826. 410 | 413.205 | 275.470 | 137.735 | 22.956 | 4. 591
77 | 83 55 05. 312 803. 598 | 401.799 | 267.866 | 133.933 | 22.322 | 4. 464
78 | 84 42 41. 032 781.400 | 390. 700 | 260. 467 | 130.233 | 21.706 | 4. 341
79 | 85 28 02. 962 759. 959 | 379.980 | 253.320 | 126. 660 | 21. 110 | 4.222
80 | 86 10 56.088 739.432 | 369.716 | 246.477 | 123.239 | 20. 540 | 4.108
81 | 86 51 04.098 719.992 | 359.996 | 239.997 | 119.999 | 20.000 | 4. 000
82 | 87 28 09. 596 701. 824 | 350.912 | 233.941 | 116.971 | 19.495 | 3.899
83 | 88 01 54. 388 685. 126 | 342. 563 | 228.375 | 114. 188 | 19.031 | 3. 806
84 | 88 31 59.762 670. 099 | 335.049 | 223.366 | 111.683 | 18.614 | 3.723
85 | 88 58 07.078 656. 947 | 328.474 | 218.982 | 109.491 | 18.249 [ 3. 650
86 | 89 19 58. 488 645. 866 | 322. 933 | 215.289 | 107.644 | 17. 941 | 3.588
87 | 89 37 17.678 637.035 | 318.518 | 212 345 | 106. 172 | 17.695 | 3. 539
88 |. 89 49 50.784 | . 630.607 | 315. 304 | 210.202 | 105. 101 | 17. 517 | 3. 503
89 | 89 57 27.126 626. 701 | 313.351 | 208.900 | 104. 450 | 17. 408 | 3. 482
90 | 90 00 00. 000 625. 391 | 312. 695 | 208. 464 | 104. 232 |. 17.372 | 3.474

cm
512.
523.
533.
543.
554.

564.
574.
584.
594.
604.

614.
623.
633.
643.
652.

661

568
051
468
819
101

311
447
507
488
387

201
927
562
102
544

. 883
671.
680.
689.
698.

706.
715.
723.
732.
740.

748.
756.
763.
771
778.

| 785.
792.
798.
804.
810.

815.
821.
825.
829.
833.

836.
839.
841.
843.
844,
844.

114
234
237
117

869
486
960
283
447

441
256
878
295
491

450
153
581
710
516

973
050
718
944
695

938
643
780
326
261
574




APPENDIX

ALTERNATIVE DEVELOPMENT FOR THE FLAT-POLAR SINUSOIDAL AUTHALIC
PROJECTION

The following development for a general flat-polar sinusoidal authalic projection
was suggested by a particular case developed by W. Werenskiold in his paper, A Class
of Equal Area Projections, Oslo 1945.

The meridians of the Mercator smusoxdal authalic projection are the sine curves

given by the equation z=R\ cos R‘ (See p. 15.) Let us introduce an arbitrary
parameter ¢ into this equation and write

- ¢
z=RX\ cos Fy (82)

From (82), with A== and y=0, it is seen that the map equatorial semiaxis is z,=R.
If we desire the length of the map polar semiaxis to be some factor m(0<m<1) times
the length of the map equatorial semiaxis we must have

Yo=mT,=mEBr. (83)

If we desire the 2-coordinate at ¢=90°, A=m, to be some factor n(0<(n<1) times the
length of the map equatorial semiaxis, then placing the value of ¥, from (83) in (82)
we must have

=R cos (cmr) =nz,—nkr. (84)
2 N
Solving (84) for ¢ we find
_cos”!n
= Tmr (85)

The area of the sphere from the Equator to latitude ¢ is known to be 27 R? sin ¢.
Hence to maintain the equal-area property we must have from (82) and (85)

-1 20 2 -1
27R2A? sin ¢= 2R7rf cos (y 008 n) dy=2R 72” sin (?/ cos™my
(3 Rmr

cos
~1
or A? sin ¢=_ Zrln sin (¥ ICZ(;rSm n), (86)

where A? is the area scale factor.

Now when y=y,=mRx, then ¢=g and with these values equation (86) gives

s Mmm
cos™'n

sin (cos™'n)- (87

With the value of A? from (87), equation (86) becomes

-1
sin (ylczo—niwn):sin (cos™!n) sin ¢. (88)
-1
Now let == (89)
and (88) becomes
sin a=sin (cos™'n) sin ¢. (90)

42
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From (82), (83), (85) and (89) the mapping equations become

x Y Yy
vo mr % %y, T cosn O

Consider the particular case m=n=1/2. Equations (87), (90), and (91) become

343

respectively A?= o sin a=sin 60° sin ¢, il 900 cos « 3 Eg_‘" This is the case
0 o

discussed on pages 9 and 10 of Werenskiold’s paper.

The obvious advantage of equations (90) and (91) is that the parameter a may
be computed without recourse to approximation methods.

The coordinates as computed by equations (90) and (91) will vary slightly from
those found by using equations (17) and (19) where the same conditions are imposed
on each set of equations with regard to axes ratio, etc. However, the difference in
shape of the two projections so produced is negligible.

Werenskiold uses advantageously the above method of beginning with the alge-
braic equation of the meridian curves to obtain particular cases of the flat-polar para-
bolic and flat-polar ellipsoidal projections, but does not avoid approximation methods
for the ellipsoidal type. Where the degree of the meridian curves is greater than the
second, the method would be impracticable except for some special cases.

FORMULAS ¥OR REVERSION OF SERIES

The formulas for reversion of series whose terms are in ascending order of odd
powers of the variable are included here for convenience.

If the series u=x—bs®— b5’ —ba"—bg2®—
is reverted to obtain the series

r=u-+au’+au’+au+aeu’+ . .
then the formulas for the ¢’s in terms of the b’s are

as=b;

a5=3b5-+bs

;=123 8b3b5-1 b,

Q9= 55b§(b§+65) + 1063b7+5b§+bg.



44 U. S. COAST AND GEODETIC SURVEY

BIBLIOGRAPHY

Apams, 0. 8. General Theory of Equivalent Projections. U. 8. Coast and Geodetic Survey Special
Publication No. 236. ‘

Apawms, 0. S. Latitude Developments Connected with Geodesy and Cartography. U. S. Coast and
Geodetic Survey Special Publication No. 67.

Apaums, 0.;S. and Deetz, C. H. Elements of Map Projection. U. 8. Coast and Geodetic Survey
Special Publication No. 68. .

AnEsi, J. Aspectos Graficos De La Cartografia. Revista Geographica Americana, Octubre 1948.

Baar, E. J. The Manipulation of Projections for World Maps. Geographical Review, American
Geographical Society of New York, January 1947.

Boges, 8. W. A New. Equal-Area Projection for World Maps. The Geographical Journal, March
1929.

BromwicH, T.J. An Introduction to the Theory of Infinite Series. Cambridge 1926,

CuamBERLAIN, W. The Round Earth on Flat Paper. National Geographic Society, Washington,
D. C,, 1947.

CrasTER, J. E. Some Equal Area Projections of the Sphere. The Geographical Journal, November
1929.

Eckerr, M. Neue Entwiirfe fiir Erdkarten. Petermanns Mitteilungen Aus Justus Perthes’ Geo-
graphischer Anstalt. 52. Band 1906. '

Fing, H. B. College Algebra. Princeton 1905.

Herz, N. Lehrbuch der Landkartenprojektionen. Leipzig, 1885.

McBrypE, F. W. A Map of the World in Perspective. Ohio Journal of Science, March 1942,

MiLLer, R. Map Projections of the Entire Sphere. The Scottish Geographical Magazine, Edin-
burgh, December 1948. .

Purnins, R. V. Jaunas projekeijas pasaules kartem. Nouvelles projections pour les mappemondes.
Geografiski Raksti, Folia Geographica, III un IV. Riga 1934.

ScarBOROUGH, J. B. Numerical Mathematical Analysis. Annapolis 1930.

WERENsKIOLD, W. A Class of Equal Area Map Projections. Oslo 1945.

WiLLERs, Fr. A, Practical Analysis. Graphical and Numerical Methods. Dover, N. Y. 1948.

O



¥ W

i
e

pife:

LAMBERT CYLINDRICAL
x=RX
y=Rsin¢

x=R\cos’¢

x=RXcos ¢ sec,%4> y=§9Rs/h,%¢

x=RXcospcos*ie ‘V' / y=£RtonZ¢

SINE

SERIES

NN\ L

x=R\cospsecad y=4Rsinid

x=chos¢sec§¢ y=§ﬁ’s/n32¢

/| TANGENT SERIES

A
g 5; llll ,‘
&
7 T

=

=

NN
SRR
}l“l‘\

AN

[
s G NN R TR by | | I,
5 3@\\\ i Y,/ 7 v 4

N

N\
¥
x=chos¢cos’§¢ N

y=§/~?fan§¢

FIG. 28.- GENERATION OF EQUAL-AREA PROJECTIONS FROM THE SINE AND TANGENT FUNCTIONS.

“\l

ADAMS QUARTIC

x=R\cospsectd y=2Rsing

TN
/ﬁy/ \\\\\\\

- /o

AR R,
\\\\\\\\\
\N

e
\\\\‘§

x=R\cos$cos®s ¢ y=ZRfané£¢
FOUCAUT STEREOGRAPHIC ¥

1111
e, &
’ﬂa o A- 3“‘
33 / ,‘,L-

11
1

X=R )\cos¢cos’3’4> y=3R tan 3/-4:

*Note that the names Craster and Foucaut have been used to show the positions of their projections in the series, the actual mapping equations differing slightly from those given above.

CRASTER PARABOLIC*

x=RXcos¢ sec;’-«ﬁ y=3/?sin§'-¢

Vel

x=R\cos¢ Yy=R¢
MERCATOR SINUSOIDAL

838437 O - (Face p, 44)



