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FOREWORD 
The conformal projections used most in mapping and in geodetic computational 

work of the U.  S. Coast and Geodetic Survey are the Lambert conic, the stereographic, 
the Mercator, the transverse Mercator, and oblique Mercator. 

The mathematical development of the Lambert conformal conic projection is given 
by 0. S. Adams in Special Publication No. 53. The development, of the Mercator 
projection with tables is given in Special Publication No. 68, by C. H. Deetz and 
0. S. Adams. The development of the transverse Mercator and the stereographic 
conformal projections may be found in various Coast Survey publications, for instance 
in the “Manual of Plane-Coordinate Computation,” Special Publication NO. 193, by 
0. S. Adams and C. N. Claire, and in “General Theory of Polyconic Projections,” 
Special Publication No. 57, by 0. S. Adams. 

The purpose of this publication is to bring together in one volume and to give in 
detail the mathematical development of the formulas (or source references) for these 
projections in their various forms for the convenience of the geodetic computers and 
cartographers of the Coast and Geodetic Survey. It will supersede Special Publication 
No. 53, since it will incorporate the essential material contained therein. 

The format, differing somewhat from that of previous Coast Survey publications 
on projections, has been designed for the convenience of the computer or engineer. All 
the formulas for the projections are listed first. The mathematical developments or 
references to their source have been placed last for the convenience of those who would 
like to check the derivations of the formulas. 

LANSING G. SIMMONS, 
Chief Mathematician, 
Division of Geodesy, 
U. S. Coast and Geodetic Survey. 
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PREFACE 

In  many of the published treatises on map projections, the autogonal or conformal 
projections are conceived as conical or cylindrical, the idea being that the ellipsoid is 
conformally developed on a cone or cylinder which is then in turn developed in the 
plane, i. e., cut along an element and “rolled out” in the plane. The stereographic and 
the Mercator are then conceived as being the two limiting positions of the Lambert 
conformal conic projection. That is, beginning with a tangent cone whose vertex is on 
the minor axis of the ellipsoid, the vertex is moved away from the spheroid along the 
axis to an infinite distance which generates in the limiting position a cylinder tangent 
to the Equator and under the conformal property results in the Mercator projection. 
If the vertex is moved toward the ellipsoid along the minor axis until it lies on the 
surface, the tangent plane a t  the pole is the limiting position and under the conformal 
property the stereographic projection results. The diffculty with this type of presenta- 
tion is that these projections are not all perspective, hence the actual point-to-point 
correspondence is not exhibited and often an erroneous idea is conveyed. Then in some 
of the transverse or oblique positions of these projections with respect to  the ellipsoid, 
the transition is not easily conceived or obtained. 

I n  most conformal projections the point-to-point correspondence between points 
on the ellipsoid and points on the plane is not perspective. In  fact it  would be difficult 
if not impossible to describe geometrically the method of projection in each case. It 
is true that by using limiting procehses or transformations on the mapping coordinates 
themselves one can make the transition from Lambert conformal conic to stereographic 
or Mercator. 

It seems better, since the properties of an analytic function of a complex variable 
lend themselves so admirably to derivation of conformal mapping equations, to  discuss 
autogonal projections from this standpoint, classifying the projection according to the 
conditions which the map must satisfy as to form and scale of map elements. In  this 
manner, through the medium of the analytic function of a complex variable, we obtain 
a one-to-one correspondence between points on the ellipsoid and points on the plane 
without regard to the intermediate or developable surfaces implicitly involved. This 
method, which is not new, will be followed here in deriving the mapping equations for 
the autogo_nal projections. 

It should be noted that most of the conformal projections in use today were in 
existence before complex variable theory had been developed. Deriving the mapping 
coordinates by this theory is not necessary, but is more elegant from a collectivization 
standpoint, since we can write down a general analytic function of a complex variable 
from which all conformal maps of the ellipsoid may be obtained. 

The concept, often introduced, of the conformal sphere, that is, the mapping of 
the ellipsoid upon the conformal sphere and this sphere in turn mapped conformally 
upon the plane, leading to the development of the conformal latitude, is a useful one 
and will be demonstrated in some cases in the subsequent developments. It is possible, 
in some cases, to develop only the sphere conformally upon the plane, the ellipsoid 
then being taken into account by using the conformal latitudes which have been exten- 
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PREFACE V 

sively tabulated by the War Department, Corps of Engineers, U. S. Lake Survey, 
Military Grid Unit, for several spheroids. 

An attempt has been made to keep the mathematical procedure in derivation of 
formulas as simple as practicable. It was thought necessary to give some account of 
the elementary parts of complex variable theory since few cartographic engineers are 
familiar with it and since it is the basis here for the development of the conformal 
projections. Some of the more essential theorems of the differential geometry of 
curves and surfaces have been included. 

In -this publication I have 'made free use of material in other publications. 
Particular references in most cases are avoided for sake of continuity but the publica- 
tions consulted are listed in the bibliography. 

Short historical accounts are given with each projection and other sources are 
.indicated in the text or included in the bibliography. 

I wish to gratefully acknowledge the valuable assistance given by Erwin Schmid 
who checked the mathematics of the manuscript, C. N. Claire who edited the manu- 
script and illustrations, Marjorie L. Moffett who typed the manuscript. 

(See the bibliography.) 

PAUL D. THOMAS. 
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CONFORMAL PROJECTIONS IN GEODESY 
AND CARTOGRAPHY 

MAPPING FORMULAS 

MERCATOR PROJECTION 

The spheroid. Mapping equations, 

x=aX 

1 - E sin 4 
M 

a n x  a 2 -- log tan (z+5)=z log cot -; 2 - M  
Magnification, 

k=- sec 4; 

where 4, x, and z are respectively the geodetic latitude, the conformal latitude, and 
the conformal colatitude; e is the eccentricity of the meridian ellipse; a is usually 
expressed in units of minutes on the Equator, a=3,437!7467708; M is the modulus 
of c o w o n  logarithms, M=0.4342944819; hence a/M=7,915!704468. With X expressed 

10 800 in radians we have x = A  X (radians). If X is expressed in minutes, x=X'. Nis  the 

radius of curvature normal to the meridian in latitude 4, N = a / d w 4 .  
Series approximation for y in terms of 4 and E: 

a 
N 

n 

y=7,915I704468 log tan (;+:) 
-3,4371747 [ ( E Z + ~ + ~ + ~ +  € 4  € 6  5 2  . . .)sin 4 

-(-+-+-+ € 4  € 6  3E8 . . .)sin 3 4  
1 2  16 64 

+(;+&+ . . .)sin 54-(&+ . . .)sin 741- 

Series approximation for y in terms of 4 and j: 

y=7,915!704468 log tan (:+:) 
7 2 - j  -6,875!494 j [sin 4-- - f sin 3 4 + l  (-y f sin 5 4 - i  (">a sin 7 4 1  3 ( 2 - 3  5 2 - j  

where j= 1 - b/a= 1 - qm=f la t t , en ing  or the compression. 



2 U. S. COAST AND GEODETIC SURVEY 

The sphere. Mapping equations, 

x=aX, y=- log tan a log cot -; P 2 
a 
M 

Magnification, 

k=sec 4; 
I 

where p is the colatitude; the constants a and M are the same as for the spheroid. 

TRANSVERSE MERCATOR PROJECTION 

Spheroid. 
Conversion of geographic coordinates to rectangular coordinates. 

Band size, 10 to 12 degrees in longitude-61 degrees latitude north. 

(1 - t2+ 773 + AX3 cos3 4 

(61-479t2+179t4-t6) AX7 cos’ 4 
5,040 p’ 

e 2  

1--e 
where p=cosec l”, t=tan 4, q 2 = 6  cos2 4=-2 cos2 4, S,=meridian arc from the 

Equator to latitude 4, AX=X--Xo=longitude difference from the central meridian A,,, 
N=a/  J1 - -e2  sin2 4=the radius of curvature normal to  the meridian. 

Latitude and longitude from rectangular coordinates. 

61 + 9023-467 :$45t:-252t:7 ~-374:$1007~-- 66t374: 
7 2 0 26 R i x  ( - 90tfq :+ 887; + 225Gq: + 841:~; - 192t:v ; - 

2 8  
(1,385+3,633t~+4,095t4:+ll574t~), ‘4 0 , 3 2 ORIN:# 

7 -L ( ”> (61+662t:+1,320~+720t~), 5,040 x 
where 4,1=footpoint latitude (see fig. 27,p. loo), R1=radius of curvature of the meridian 
corresponding to &, Nl=radius of curvature normal to the meridian in latitude +1, 

tl=tanqjl, r]:=6 cos241=---? cos2+1, p=cosec 1”. € 2  

1--e- 



CONFORMAL PROJECTIONS 3 

For formulas with higher-order terms in the coefficients see equations (288), (289), 

Meridian convergence from geographic coordinates. 

(314), and (324). 

(1 +3s2+2q4)+ 
AX2 cos2 4 =1+ 

AX sin 4 3 P2 

tos4 (2-t2+ 15~2+35q4-15q2~f33q6-50q4t2+llqS-60t2q6-24t2q8j+ 
i O p 4  

"' 'Os' ' (17-26t2+2t4). 3 1 5 ~ '  

Meridian convergence from rectangular coordinates. 

1 ( ' >I (17+77t;+105t;f45t:). 
315 

The scale from geographic coordinates. 

(I++?+ 
AX2 cos2 4 

2 

AX4 cos4 4 
24 

'OS6 (61-1488t2$16f4). 

k=1+ 

(5-4t2+ 14q2$ 1 3 q 4 - 2 8 t 2 ~ 2 + 4 q 6 - 4 8 t 2 ~ 4 - 2 4 t 2 ~ 6 ) +  

720 

The scale from rectangular coordinates. 

Reciprocal of the scale from rectangular coordinates. 

The ( t -T)  corrections. (See fig. 25, p. 75.) 
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(22--21)(532+22221+353$1 . . , 7% 
6Ri 

-- 

1 9 3 1  (Y1- YZ)(XI+ 2 22) - 

(x~-rz)(59+2212z+3r9+ * e ,  

(Y 1 - Y2)2(rl + 3x2) ___- _-- ( t z  - Td 
P 6R: 

9 3 1  

6Ri  
-- 

where R,= m, mean radius at  the point Pi; p=cosec 1”. 

For examples of the tabulation of coefficients in the above equations and applica- 
tions of the formulas see the following publications: Army Map Service Technical 
Manual No. 19, Universal Transverse Mercator Grid, Corps of Engineers, Department 
of the Army, Washington, D. C.; Ordnance Survey, Constants, Formulae and Methods 
Used in Transverse Mercator Projection; Projection Tables for the Transverse Mercator 
Projection of Great Britain, London, 1950. 

The following more simple formulas are for smaller bands, about 2 degrees each 
side of the central meridian, as used for computing triangulation and for State plane 
coordinate systems. 

Transverse Mercator coordinates, scale, and convergence from geographic 
coordinates. 

AX5 cos5 4 (5 - 1 8t2+t4), 
x AX cos 4+AX3 cos3 4 

(1-t2fT2)+ 1 2 0 p 5  x=7 6P3 

y S,+ AX2 AX4 
~ = ~ + ~ 2  sin 4 cos 4 + 7  (sin 4 cos3 4) ( 5 - t 9 ,  

P 24P 

AX4 cos4 t$ 
1 5 p 4  

Geographic coordinates, scale, and convergence from rectangular coordinates. 



CONFORMAL PROJECTIONS 

The (t- T )  corrections. 

5 

Coordinates from bearing and distance. 
From figure 25 (p. 75) we have x2=xl+d sin tl, y2=y1+d cos t l .  For a first approx- 

imation assume the projected geodesic and its rectilinear chord to be coincident. 
We have then x2=x1+ S sin a, y2=yl+S cos a where S is the spheroidal geodesic dis- 
tance. With approximate values of x2 and y2 computed from these formulas we then 
compute s and j3 from the formulas 

Then 

and 
x2=x1+s sin j3, y2=yl+s cos j3 

Bearing and distance from coordinates. 

2 

The bearings in the above formulas are taken from true north. 
Examplesof the above formulas are found in Plane and Geodetic Surveying,D. Clark, 

Fourth Edition, 1951, Chapter V. The application of the transverse Mercator projec- 
tion to computation of State plane coordinate systems is found in the Manual of Plane- 
Coordinate Computation and the Manual of Traverse Computation on the Transverse 
Mercator Grid by 0. S. Adams and C. N. Claire, U. S. Coast and Geodetic Survey 
Special Publications Nos. 193 and 195. 

Formulas for the sphere. 
€ 2  

1 - € z  
When e=O,  q2=- cot2 rp=O, N=R=a. Hence the spherical formulas are 

easily obtained from the spheroidal formulas above by placing q2=0, N=R=a. 
Therefore only the spherical formulas in closed form will be listed' here. 
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Mapping equations and scale in closed form. 

)=a tanh-' (cos + sin X), 

y=u tan-' (t,an + sec X). 

k= 1/41 -cos2 + sin2 A .  

Equations of meridians and parallels. . 

X sin2 X cot,h2 -- cos2 X tan2 y= 1, (meridians) a a 

sec2 + tanh2 E+ tan2 + cot2 y= 1, (parallels). a a 

OBLIQUE MERCATOR PROJECTION 

The sphere. Formulas in closed form. 
Mapping equations, and scale. 

a x=- In 2 
1 +sin +, sin ++cos 4, cos + sin AX 
1-sin 4, sin +-cos 4, cos + sin AX 

=a tanh-'(sin +o sin ++cos 4, cos #I sin AX), 

sin +o cos 9 sin AX-cos +, sin + 
cos + cos AX y = a  tan-' > 

k= 1/J1 -(sin 6, sin +$cos 4, cos Q sin AX)2, 

where AX= io- A, Xo being the central map meridian. 
Coordinates of the pole of the great circle of true scale, (+,, A,). 
Origin of coordinates + = O ,  AX=X,-X=O.  
Equations of meridians and parallels. 

sin AX-sin 4, cos AX tan sin +o sin AX-cos AX tan y =cos2 +o, 

(meridians) 
a )e 

(parallels) 
If Xo=O, then AX= -X and we must therefore replace in tfie above formulas sin AX 

by -sin X and cos AX by cos A. Longitude is then measured from the point where the 
true scale great circle crosses the Equator, i. e., the point 0' in figure 28 (p. 110). The 
required changes in the above formulas are easily made so no relisting of the formulas 
is necessary. 

Great circle through two given points. 
When the great circle to be held true to scale is that joining two given points 

Q1(+l, Xl> and Q2(42, X2) as shown in figure 29 (p. 113), we must compute the coordinates 
Xo and +, of the vertex or the point where the great circle is orthogonal to a meridian, 
i .  e. the point 0(4,, X,) in figure 29 (p. 113) or the point &(+,, &) in figure 30 (p. 114). 
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Equations for Xo and +o. 

7 

tan cos X1-tan 41 cos X2 
tan 41 sin X2-tan 42 sin x l f  tan Xo= 

cot &=cot 41 cos (X1--Xo)=cot 42 cos (Xz-Xo). 

Equation of the great circle Q1 Q2. 

cos (X-X0)=cot tan 4. 

Mapping equations referred to the vertex Q(+o, X,) of the great circle as shown in 
figure 30 (p. 114). 

cos 4 sin AX 
sin 4o sin  COS +o cos 4 cos AX' x=a tan-' 

a ' 1 +sin cos C#I~-COS 4 sin 4o cos AX 
2 1 -sin C$ cos rpo+cos I#I sin cos AA y=- In 

= a  tanh-' (sin 4 cos C$~-COS 4 sin 4o cos AX), 

where x and y axes have their orientation as shown in figure 30 (p. 114). 
The following formulas are essentially those developed by Briga- 

dier M. Hotine and published in the Empire Survey Review, Vol. IX, No. 64. This 
approximation to the oblique Mercator projection of the spheroid is called the rectified 
skew orthomorphic projection. 

Computation of constants. 
Two widely spaced points are selected on a line running centrally with respect 

to the skewed area to be mapped. The geographic coordinates of these two points 
are then determined. The corresponding isometric latitudes are computed or obtained 
from tables. Suppose the coordinates of the two points are (rl, A,), (r2, X2) where r is 

isometric latitude, i. e. r=ln [ tan (i.3 (t le 'in 'y], and X is longitude (positive 
E sin q5 

westward from Greenwich). 

The spheroid. 

The constants yo and Xo are then computed from 
sin [B(Xl-Xo)] sin [B(X2-Xo)] 
sinh (BT'Sc) = s i n h  (BT~+C)' -tan yo= 

tan - B(X,-X,)] tanh {f B ( T ~ + ~ ~ ) + C )  

tanh - B(r1--7J 1 f 
c: tan - B(Xl+X2)-BXo =-- 

[: K 1 
where B=(l+e;  COS* +o)o, A=B(RJVo)*, C=cosh-'(A/r0)-Br0, ~ : = e ~ / ( l - ~ ~ ) ,  r is 
the eccentricity of the meridian ellipse, and c$~, No, Rot ro=No cos c$~, ro are evaluated 
for the particular latitude where minimum distortion is required. 
The projection formulas. 

With the constants A, B, C, yo, Xo and the scale k the projection formulas are: 
kr By Bx 
- COS  COS yo COS - cash -> A A A 
kr By Bx - sin y = sin yo -cos yo sin - sinh -n A A A 
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A 
- COS  COS yo COS[B(X - A 3 1  cash (BT+C), kr 

A 
- sin y=sin yo -cos yo sin[B(X-Xo)] sinh (BT+C), kr 

tan [B(X -Xo)]=(cos yo sinh Bx --sin yo sin $)/cos BY 
A 

Bx 
- A  

tanh (BT+C)= cos yo sin BY -+sin yo sinh 
A 

Bx 
A tanh -={cos yo sin [B(X-h,)]+sin yo sinh (B~+G')}/cosh (BT+G'), 

tan-={cos BY yo sinh (B~+C)-sin yo sin [B(X--&)l}/cos [B(X-Xo)l. A 

Tabulated functions. 

were tabulated a t  suitable intervals for the Malaya and Borneo projections: 
To effectively employ the above projection formulas the following 16 functions 

For argument 4 For argument X 

I cosh (BT+C) 
I1 tanh (BT+G') 

IV sin yo sinh (BT+C) 
111 COS yo Sinh (BT+C) 

v cos [B(X-Xo)] 
VI tan [B(X-&)] 
VI1 cos yo sin [B(X -A0)] 
VI11 sin yo sin [B(X -A0)] 

Functions of y Functions of x 

I X  cos (By/A) 
X tan (By/A) 
XI cos yo sin (By/A) 
XI1 sin yo sin (By/A) 

XI11 cosh (Bx/A) 
XIV tanh (Bx/A) 
XV COS yo sinh (Bx/A) 
XVI sin yo sinh (Bx/A) 

In  the following formulas the roman numerals refer to the above tabulated functions. 
Rectangular coordinates from geographic coordinates. 
z is found by interpolation from XIV= (VII+IV)/I, 
y is found by interpolation from X= (I11 -VIII) /V. 
Geographic coordinates from rectangular coordinates. 
,#, is found by interpolation from 11= (XI+XVI)/XIII, 
x is found by interpolation from VI= (XV -XII)/IX. 
Skew convergence of meridians. 

rectangular coordinates tan y= [tan yo -sec2 yo (XI) (XV)]/(IX) (XIII). 

The scale factor. 

From geographic coordinates tan y=[tan yo -wcZ yo (111) (VII)]/(I)(V). From 

A cosh(Bx/A) - A XI11 A cos (By/A) . 
N COS 4 cash (BT+C) N COS 4 I N COS 4 COS B(X-X0) 

A t  any point, k=-. --.-=-. 

The scale factor for a line may be computed by k=(1/6)(k,+4k,+kz) where k ,  and k, 
are the scale factors a t  the ends of the line and k ,  the scale factor a t  the midpoint. 



CONFORMAL PROJECTIONS 9 

An over-all scale factor to reduce the extreme scale error may be incorporated in the 
value of the constant A. For any line we may take the scale factor as 

A 1 B2 
N ,  cos 4, cosh (BT, +C) 

where the subscript m signifies the values of the functions a t  the midpoint of the line. 
The ( t  - 2') correction. 

where 
of. the second term is 0'1007. 

-xz is in seconds. For lines not over 70 miles in length the maximum value 
It can therefore usually be neglected and placing 

ta& -~ 2x1+x2 --.- 2x1+x2 we obtain for subsidiary work, the formula 
{ A  3 ] , -A 3 

Rectified coordinates. 

If N is the Northing map coordinate and E the Easting map coordinate we have 
by the ordinary rotation formulas for a plane rectangular coordinate system that 

N= y cos yo+x sin yo X= -E COS yo+N sin yo 
E=y sin yo -x cos yo, or y= E sin yo+N cos yo 

where yo is the skew convergence of the meridian through the origin or the angle which 
the center line of the skew projection makes with the meridian a t  the origin. The 
formulas for the computation of yo are given above under computation of constants. 
Note that false Northings or Eastings may be added to the above rectified coordinates 
as is usually done to avoid negative plane coordinates. 
Convergence of map meridians. 

The convergence of map meridians is defined as the angle, measured positively 
clockwise, from true North to rectified grid North and is denoted by yR. 

yE=y-yo, where y is computed by the formulas given above under skew con- 
vergence of meridians. 

For examples of the application of this projection to  actual skew areas see the 
publications entitled Projection Tables for British Commonwealth Territories in 
Borneo (Malaya), prepared by Directorate of Colonial Surveys, Teddington, Middlesex, 
England. 

For tabulating the expressions above involving hyperbolic functions, there are 
available the following useful tables: Tables of Circular and Hyperbolic Sines and 
Cosines for Radian Arguments, National Bureau of Standards, U. S. Government 
Printing Office, 1949; Tables of Circular and Hyperbolic Tangents and Cotangents for 
Radian Arguments, Columbia University Press, New York, 1943. 
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LAMBERT CONFORMAL CONIC PROJECTION 

Spheroid. One standard parallel. 
Mapping Equations-origin a t  the pole. 
x=r cos ZX, y=r sin ZX. 
Coordinates plotted from the intersection of the parallel in latitude + with the 

central meridian. 
ZX x=r sin I),, y=r( l  -cos ZX)=x tan - a  2 

z z 
2 2 r=Ke+=K tan' - j  K=eZro No cot +o=cot' 2 No cot +,, l=sin +o. 

Magnification 

where 
k=rl/N cos 6, 
+,=standard parallel 
),=longitude from the central meridian 
Z= the conformal colatitude, i. e. 

Mapping Equations-origin a t  the intersection of the fixed parallel 4, with the 
central meridian. 

where for + # 4, we have 
x=r sin ZX, y=r,-r cos ZX, 

r = ro F Ar, 

S3 *S4(5Ro-4N0) tan Q0+S5(5+3 tan2 +o)*S6(7+4 tan2 4,) tan +,, 
A r = s + -  6 R 8 0  24R:Ni 12ORoNt 240RoNt 

ro=No cot +o, 

S = meridional arc of the spheroid measured from the parallel +,-positive with 

),=longitude from the central meridian. 

R,, N,=principal radii in latitude +o, 

decreasing latitude; obtained from tables. 

NOTE: For the rigorous series for A r see equation (402) on page 120. 
Spheroid. Two standard parallels. 
Mapping equations-origin a t  the pole. 

x=r cos ZX, y=r  sin ZX. 

Coordinates plotted from the intersection of the parallel in latitude + with the 
central meridian. 

ZX z=r sin ,?A, y=r(l-cos ZX)=x tan -- 2 

Z N1 COS +I-Nz COS 42 - 
2 2 '  1 tan' - 2 

21 
r = K f a n ' - , K =  

I tan'- 2 
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log COS +,-log COS +Z+log Nl-log Ni 
21 2 2  log tan --log tan - 2 2 

k=Zr/N cos 4. 

I= 

Magnification 

Mapping Equations-origin a t  the intersection of the central meridian and the 
parallel $o of the corresponding one-standard-parallel projection. 

log COS &--log cos .&+log Nj-log N 2  
2 1  2 2  Iog tan --log tan - 2 2 

40= arc sin 1 = arc sin 

x=r sin ZX, y=ro-r cos IX, 

ro=N0 cot 40; for +#+o, r=rO=i=kS Ar, where Ar is the same as given above 
for the one-standard-parallel projection, and k ,  is the scale reduction for AT a t  do given by 

NOTE: For the rigorous formula for k, see equation (424) on page 123. 

Conversion of geographic to Lambert rectangular coordinates. 

S3 *S4(5Ro-4No) tan +o 
24RiNi To=r (+o)=No cot q0, A r = s + - - - -  

6 RoNo 

1 
2 AX=X-Xo,  ?=AX sin 40, x=(r,=FAr) sin y,  y=Ar+x tan - y. 

AX is positive east of the central meridian, negative west of the central meridian. 
the meridian distance between latitudes 4o and 4. 

S is 
Ar is tabulated for suitable intervals 

Conversion of Lambert rectangular coordinates to geographic coordinates. 
of 6,. 

X 1 tan y=-, Ar== y -x tan - y, AX=y cosec +o. 

Knowing AT, the corresponding latitude can be obtained by interpolation from the 
table giving Ar for different values of 4. Alternatively, S can be obtained by successive 
approximations from the formula above for AT ind  6, then found from a table of merid- 
ional distances. 

Computation of Lambert rectangular coordinates from bearing and distance. 

To-y 2 

ylS2 sin2 a S cos a.S2 sin2 a yi- y: S y i  cos a sec3 6 cos 3.6 tan +o 
6 R i  y2-y1=S cos a- 2 R i  - 6 Ri  +%E- + 

S4 cos 4a tan +o S2yT sec2 6 cos 2(a+6) tan +o S3y, sec 6 cos (30~+8) tan +o 

6 R: 4 R i  + + + 24R: > 

yi S sin a S2 cos2 a. S sin a S yf sin OL sec3. 6 cos 3 6 tan +o 

6 R i  + - 
2 Ri  6 Ri xz-xl=S sin a+ 
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S2y: sec2 6 sin 2(cr+6) tan 4o S3y1 sec 6 sin (3a+6) tan 4o S4sin 4a tan 4o + 4R: + , 6 R: -k 24R: 

2 where tan &=A, 40=latitude of the origin, R;=RP.. 
Yl 

When a line is only a few miles in length and not more than about 150 miles from 
the origin, coordinates may be computed from: 

m2 m3 tan 4o m4(5+3 tan2 40) s=s l+- [ 2RoNo' 6RoNi.' ' 24RoNi 

x2=xl+s sin p,  

where m is the true meridian distance of the midpoint of the line and B is the grid bearing. 
When the limes are long or the x's and y's are large we compute s from the above 

formula, using the scale factor for the midpoint of the line and the angle 0 computed 

1 s sin a(yl+zs  cos a) 
from e=a+ 2R: sin 1" 

Then z2=z1+s sin 0, yz=yl+s cos 0 

For lines about 30 miles in length the latter formulas will give accuracy to about 
1/100,000. For much longer lines where highest degree of accuracy is required no 
really satisfactory formulas hade been derived for point-to-point working directly in 
terms of Lambert conformal coordinates. In  such cases one may compute geographic 

' coordinates by Puissant's or Clarke's formulas and then transform these geographic 
coordinates into Lambert conformal coordinates. 

Distances and bearings from Lambert rectangular coordinates. 

Lambert conformal coordinates from bearing and distance. 
One may use successive approximations in the formulas above for computing 

A first approximation from these gives 

tan CY=- 22-21, s=(y,--y,) sec a=(z2-z1> cosec a. 
Yz-Y1 

These values are used in the second and succeeding terms to get new values for 
S sin CY and S cos CY. 
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5 2 - 2 1  For short lides not too far from the origin calculate B and s from tan p=- 
Y2-Ylf 

S= (yz -yl) sec p= (x2 -zl) cosec 8. 
Calculate S and CY from 

Scale and scale error. 
For long lines mz=ml+S cos A, where m, is the approximate meridional distance of the 
end point of the line, ml that of the beginning, and 

40 is the latitude of the origin, 4 that of the initial point of the line and A the azimuth 
a t  that point. For appropriate length lines, any of the above formulas connecting 
s and S may be used. 

Reduction of scale error. 
If a negative scale error is introduced along the central parallel, there will be two 

parallels, one north, the other south of the central parallel along which the scale error 
is zero. Between the two standard parallels thus introduced the scale error is negative. 
Outside them it is positive. If the scale error is to be reduced in this way by the factor 
1 

-Y all measured distances, meridian distances and geodetic functions must be reduced F 
by multiplying ,them by 1 - 1/F. 

Formulas for the Lambert conformal conic projection of the sphere. 
I n  all the above formulas for the spheroid we have but to place e=O; N = R = a ,  

Z (conformal colatitude) = p  (geodetic colatitude), to produce the corresponding for- 
mulas for the sphere. Hence it is not necessary to relist them here. 

~ Most of the above formulas’are found in Clark, Plane and Geodetic Surveying, 
Volume 11, Fourth edition, London, 1951, pages 370-376, where numerical examples 
of applications are given. 

The application of Lambert conformal coordinates to State plane ‘coordinate 
systems is found in the Manual of Plane-Coordinate Computation, U. S. C. and G. s. 
Special Publication No. 193 by 0. S. Adams and C. N. Claire. 

The computation of traverse in Lambert conformal coordinates is explained in the 
Manual of Traverse Computation on the Lambert Grid, U. S. C. and G. S. Special 
Publication No. 194 by 0. S. Adams and C. N. Claire. 

4 



14 U. S. COAST A N D  GEODETIC SURVEY 

STEREOGRAPHIC PROJECTION 
POLAR STEREOGRAPHIC PROJECTION OF THE SPHEROID 

Mapping equations. 
x=r cos A, y=r sin X, 

Scale factor. 

k =  

Series exDansion for r. 
1 - 7 e 2  1 -2e2f46e4 

2 P 5 t  
p3+ 120(1--e2) 

P9+ 17-93ez-1,335e4-4,889~6 31-184~2+3,831~4f41,906~6+53,641~s 
20,160(1-~2)~ P7+ 362,880(1 

691 -4,841~~-44,966e~-2,420,926Ee- 10,194,43 6 ~ ~ - 6 , 9 8 2 , 0 i 2 ~ ' ~  
79,833,600(1 

where z=conformal colatitude, 
a, b, €=semimajor axis, semiminor axis, eccentricity of the meridian ellipse 

ko=scale factor at the pole; an arbitrary reduction applied to all geodetic 
lengths to reduce the maximum scale distortion of the projection, 

4, X=geodetic latitude and longitude, 
p=geodetic colatitude, 
N=principal radius of curvature orthogonal to the meridian in latitude 4 

(the great normal). 
NOTE: See equations (438) and (439) on page 129 for formulas with the coefficients in the 
expansion of T above evaluated for the international spheroid of reference. 
Geographic coordinates from rectangular coordinates. 

Y tan A=--, or X= tan-' 2, r=x sec ~ = y  csc A, 

where 4 for the corresponding value of r is interpblated from computed tables of r 
with 4 or p as ai-gument. 
Polar stereographic projection of the sphere. 

which will not be listed separately here. 

X X 

In  the above formulas place E=O, N=a=b, Z=p to obtain the spherical forms 

STEREOGRAPHIC MERIDIAN PROJECTION 

The sphere. Mapping equations. 
a cos 4 sin A a sin 4 

l+cos 4cos A' y=1+cos 4 X= cos X 
Scale factor. 

Equation of meridians. 
k=l/(l+cos CjJ cos A). 

. Circles 
(xfa cot X)z+y2=az cscz X, 

with centers x= -a cot A, y=O; radii rx=a_ csc X. 
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Equation of parallels. 
Circles 

x"(y-a csc 4)"a' cot2 4, 
with centers 

sphere see U. S. C. and G. S. Special Publication No. 57, page 34. 

x=O, y=a  csc 4; radii r+=a cot 4. 
For the graphical construction of the stereographic meridian projection of the 

The spheroid. Replace 4 by the conformal latitude x. 
Mapping equations. 

a cos x sin A x=-- > y =  
1 +COP x cos x 

a s i n x  
1 +cos x cos x' ' 

k=a cos x/ [N cos 4 (l+cos x cos A)]. 
Scale factor. 

STEREOGRAPHIC HORIZON PROJECTION 

Sphere. Mapping equations. 

a sin X cos 4 
1 + sin 4 sin +,+cos 4 cos 4o cos X' 

X =  

a (sin 4 cos 4,-sin 4, cos 4 cos X) 
'=I +sin 4 sin +,+cos 4 cos 4, cos X' 

Scale factor. 

where 4,=latitude of the origin. 
Equation of meridians. 

x= --a sec 4, cot X, y =  --a tan 4,; radii rx=u sec 4, csc X. 

Equation of parallels. 

k = l / ( l + s i n  4 sin 40+cos 4 cos 4o cos X), 

Circles (x+a sec 4, cot X)'+(y+a tan 40)2=az sec2 4, csc2 A, with centers 

a cos 4, a cos 4 ; radii r4= sin 40+sin 4 sin +,+sin 4' with centers x = 0, y = 

POLAR COORDINATES FOR THE STEREOGRAPHIC PROJECTIONS OF THE SPHERE 

1 
2 Horizon. O=a, p = a  tan - Dj 

cos 40 tan 4 -sin 4, cos X tan a= sin D= 

For the meridian and polar stereographic projections we have but to  place &=0,2 
in these equations. 

The graphical construction of the -stereographic horizon projection is described in 
U. S. C. and G. S. Special Publication No. 57, page 48. 

cos 4 sin X 
sin x cos CY 

?r 
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DERIVATION OF MAPPING FORMULAS 

ELEMENTS OF COMPLEX VARIABLE THEORY 
Before proceeding to the derivation of the formulas for the conformal projections we 

will give a short account of complex numbers, some of the properties of a complex 
variable and of analytic functions of a complex variable. No attempt is made to give 
rigorous proofs, the idea being to enable the reader to grasp a working knowledge by 
demonstrating the properties of an analytic function of a complex variable which allow 
the development of all conformal projections from such a function. .Those who may be 
interested in further investigation of the theory will find the presentations whose titles 
are included in the bibliography most helpful. 

Usually the first time one encounters the quantity i=m is in obtaining the 
solutions of quadratic equations. The solution of the quadratic az2+2bx+c=0 is 

given by the well-known formula z= -" Jb2--ac. Now if the quantity under the 

radical sign (the discriminant) is negative, i. e., 
U 

b *,/-k b2-ac<0, the solution is x=--&-where k=l b2-acl. a a  

We may then write 

and we say the equation has complex roots and that i is the imaginary unit. Conse- 
quently the roots are also said to be imaginary. 

First let us demonstrate an important property -~ of the imaginary unit i=m. 
If we multiply this unit by itself we have i2= 4- 1 J- 1 = - 1. Multiplying both sides 
of this last by i we have i3= 4. Continuing i4= -i2= $1, i5=i, i6=i2=-1, etc., 
so that regardless of how many times we repeat the operation of multiplication of i 
by itself only four values are obtained and always in the same order each time, that is, 

(2) i4n-4,+ 1, ~ 4 n - 3 , f ~ , j 4 n - 2 , _ ~ , ~ 4 n - l , _ ~ ,  

for all integral values of n. 
Now think of an ordinary pair of orthogonal axes, x and y as shown in figure 1. 

Let distances along the y-axis be multiples of the imaginary unit i, and those along the 
z-axis be the real numbers. The y-axis is then the axis of imaginaries, the x-axis is the 
axis of reals. By 
examining the relations (2) as one places n=1,2,3 . . . . it is seen that the effect of 
repeated multiplication of i by itself may be interpreted geometrically as a rotation of 
the unit vector R=OT through increments of 90'. We see also-from this operation that 
multiplication by - 1 corresponds to  a rotation through 180' leaving lengths unchanged. 
Hence multiplication by -k would correspond to a rotation through 180' and a magni- 
fication in length in the ratio k to 1. 

From figure 1 it is seen that 
the regular Cartesian coordinates of P are x,y. But we say the point P in the complex 
plane corresponds to the complex number x+iy. That is, we have a double coordinate 

The plane determined by these axes is called the complex plane. 

But what about some other point P on this circle? 
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system but referred to the same orthogonal axes. 
plane superimposed upon a real plane. 
then O+iy=iy is said to be a pure imaginary. 

One might think of it as a complex 
When x=O, 

When y=O, x+O.i=x is a real number. 
x and y are both real numbers. 

Y 

FIGURE 1.-Continued multiplication of i = a  by itself interpreted as rotation of a unit vector in the complex plane. 

Hence it is seen that the formulation of the complex number system is a generalization 
of the real number system since it includes it. Clearly if the complex number x+iy=O, 
then x=y=O. 

Now it is 
seen that we do not need to limit P to the unit circle or to any circle. We.may say 
that R = d W = I x + i y I  is the numerical value of the complex number z=x+iy as 
represented geometrically by the length of the line OP. In  the formal terminology 
R is called the modulus. R always has a unique direction specified by B=tan-'y/x. 
0 is called the amplitude or the argument of z. If we impose the condition R= dx2+y2= 
Ix+iyyl Sk the point P (x+i?~) .is confined to the interior and the bounding circle of 
radius k. If we mite  R= d2+y2=Jx+iyl<k then P is confined to the interior of the 
circle of radius k but excluded from the points of the circle itself. This idea of limiting 
a complex variable to a circle, to an area enclosed by a circle, or to  the area contained 
between two circles is fundamental in the study of analytic functions of a complex 
variable, particularly in discussing the convergence of their power series expansions.' 
Series expansions will be used later in connection with the derivation of some of the 
autogonal projections. 

Again from figure 1 we have OP=d=-=R=l and tan B=y/x. 

1 R. V. Churchill, Introduction to Complex Variables and Applications, p. 98. 
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From the above discussion it is seen that we have at  once the polar or vector 
representation of complex numbers, namely 

R = d m =  I x + i y I = I z I , O= tan-' y/x, 

x = R  cos 6, y = R  sin 6. (3) 

The vector nature of complex numbers may be demonstrated in performing the 
elementary arithmetical operations on complex numbers. For instance consider the 
sum of the complex numbers 3+i ,  and 4+6i.  We have 3+i+4+6i=7+7i .  Now in 
figure 2 it  is seen that OP=7+7i is the vector sum of OQ=3+i and OS=4+6i, 
since OP is the diagonal of the parallelogram OSPQ. The other arithmetic processes 

I 

FIGURE 2.-The vector nature of complex numbers. 

are as validly performed with complex numbers as with real numbers making, use of 
relations (2) to reduce powers of i, and these processes always lead to another complex 
number. As an example of multiplication of complex numbers we have 

(24- 3i)(3+4i)=6+ 1 7 i +  1 2 i 2 = 6 +  1 7 i -  1 2 =  -64- 17;. 

Division is performed by rationalizing the denominator (since i is a radical), i. e., 

6 f 7 i  (6+7i)(3+5i) 1 8 + 5 1 i + 3 5 ~ Z _ 1 8 $ 5 1 i - 3 5  1 51 . -- - '-z+j4 2. 
3 - 5 i  - (3 - 5i)(3 + 5i)= 9-25i2  9 + 2 5  

It is easy to show that the distributive and commutative laws hold in arithmetical 
operations on complex numbers. 

We saw that multiplying i successively by itself corresponds to the four intercepts 
of the unit circle on the axes of the complex plane, giving in effect the cyclic rotation 
from one intercept to the other-that is, through 90° hcrements.< Suppose that we 
multiply the complex number z=x+iy by i to get zl=--y+ix. If 0 and O1 are the 

Y X amplitudes of z and z1 respectively we have tan e=-, tan el= -- and since tan el is the 
X Y 
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negative reciprocal of tan 8, the line OP has been rotated through 90° as shown in 
figure 1. 

In figure 1, the point P‘ is the symmetric of P with respect to the axis of reals or 
the reflection of P in the axis of reals. We have then the two complex numbers 
z=x+iy, Z=x-iy which are called conjugate complex numbers. They have, among 
many other interesting and useful properties, the property that their product is always 
a real number, that is, 

(4) 
- 

z*z= (x+iy)(x-iy)=x2-i2y2=x2+y2=R2= 1212. 

We note that, in division of complex numbers, the rationalizing factor is the 
See the illustration above. 

Returning now to equations (I), it  is seen that the solutions of our quadratic 

Now le t ,w=x+iy ,  and z=X+ir and suppose that the complex variable w is a 

conjugate of the denominator. 

equation represent a pair of conjugate complex numbers in the complex plane. 

function of the complex variable z ,  that is, 

w = x +i y =f(z) =f(x+ i r ) .  (5) 

Then x and y are real functions of the real variables X and 7, that is, x=x(X, r ) ,  
y=y(X,r) and they are obtained by equating the real and imaginary parts of (5). 
For example if f ( x + i r ) = X 2 -  r2+ 2iXr then x + i  y= h2- r2+2ixr  and consequently 

Since w is a function of two variables 
bW bW 

x = x 2 -  72, y= 2x7. 
Let us write the differential form of ( 5 ) .  

x and y we must use the differential form dw=- dx+- dy. We have then 
ax bY 

bW bW bZ bZ dw=- dx+- dy=f ’ ( z )dz=f ’ (X+ir )  (- bX dX+- b7 d r ) .  
ax bY 

bw az aw a z  
bx bX b y  br 

But -=-=I, -=-=i so that we have from (6) 

dw = d x  +id y = f’( 2)dz  =f’ (x  + i r )  (dx + id r ) .  

Similarly for the conjugate complex function x-iy=f(h-ir), 
we have 

d ~ = d X - i d y = f ’ ( ~ d z = f ’ ( X - i r )  (dx- id^). 

Now multiply respective members of (7) and (8) together to obtain 

dx2+ dyZ=f’(X - ir)f’(X + i r)(dX2+ d r  Z). 

If the derivative f’(z) exists at  the point z ,  it may be proved that 

bx . by‘ by is, f’(z)=f’(x+ir)=-+% -=-- bX bX br br  

R. V. Churchill, Introduction to Complex Variables and Applications, p. 29. 
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The following demonstration will make equations (10) meaningful. I n  figure 3, 
the point A in the z-plane is the point z=X+ir and the corresponding point in the 
w-plane for w=z+iy=f(z)=f(X+ir) is the point C. Suppose that z is given the 

Z-P/une w-P/une 

9 

\ / 

FIGURE 3.-Derivation of the derivative of an analytic function. 

increment AB=Az=AX+iAr as shown in the z-plane. Then w=f(z) will get the 

increment CD=Aw=Ax+iAy as shown in the w-plane. Now j'(z)=lim - in the 

notation of the differential calculus and if the limit exists the value should be unique. 
Since w=x+iy  and x=x(X, T ) ,  y =  y(X, T ) ,  then 

Aw 
Az-0 Az 

where we have ignored additional infinitesimal terms which vanish when A T  and AX 
tend to zero. 

With Az =AX +  AT we may write (1 1)  as 

whence 

or 

. AT 
1+a -. AX 

-+i-+ ax  by -+a- ' a y  A~ - 
AW bX bA (:: * ~ T ) A A  

j ' ( z ) =  lim -= lini . A T  
1 + a -  (S> A A 

AZ-+OAZ ~ z - 4  

ax by by d r  
-+i-+ bX (:: -+a- ' br)dX. - bX 

1 + a x  
. dr f'(z, = 
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where J - = (3 

d r  But clearly the right member of (13) depends on the value of - which in figure 3 dX 
is seen to be the slope of the line AB in the limit, i. e., lim -=-. Hence the derivative 

f ’ ( z )  as defined by (13) would not be unique a t  the point A(z=X+ir), since the point 
B may be any point on the circle about A of radius Az, each point determining a dif- 

d r  ferent value of -- We must, therefore, impose some conditions on x and y which will d h  
d r  cause equation (13) to be free of -. This will also cause the representation to be dX 

conformal. We note that if we place - = O ,  -= 03 (equivalently take the directions 

of AB parallel to the X and r axes) we will obtain from (13) 

A T  d r  
m-oAX dX 

d r  d r  
dh  dX 

is the Jacobian functional determinant. Hence the product 
2 %I 
- by y/ 
bX br 

d r  which are free of - a  dX 

But iff’(%) is to be unique a t  the point z, then the two values off’(z) as given by 
(14) must be equal, and equating them we obtain the first of equations ( lo) ,  namely 

Analogously we max give a demonstration of the second of equations (10). 
If we equate real and imaginary parts in equations (lo), we obtain 

which are known as the Cauchy-Riemann equations. They are the conditions which 
must be satisfied by the real functions x ( X , r ) ,  y(X,r) if f ’ ( z )  o r f ’ p )  exists a t  a point z, 
the existence of the derivative through (15) imposing, a t  the same time, the con- 
formal mapping of one plane upon the other. This will be subsequently demonstrated. 

Multiplying the right members of (10) together in all possible ways, making use 
of equations (15), we have 

f ’ ( z ) - f ’ O  =f’(X + i T > . f ’ ( A  - i 7 ) =  (gy+($y=($>’+(g>’= J (F), (16) 

- w = x - i y = f ( 7 )  = j ( X  - i T )  = f [R(cos 0-  i sin e)] = f(Re - *  3. 
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I n  (17) we have used the identities eie=cos O + i  sin 8, e-fe=cos 8 - i  sin 0 which 
may be easily demonstrated by means of the Maclaurin expansions for the functions 
ee, cos e, and sin e as follows: 

=cos e + i  sin e. 

=cos e--i sin e. 
The Cauchy-Riemann equations (15) become for the polar form 

Let us derive equations (18) as follows: 
From (5) w=x+iy=f(X,r), where x = x ( X , ~ ) ,  y=y(X,r) and we are changing to 

Then 
polar form by means of the transformation X=R cos 0, T=R sin 0. 

(1 9) %--%+i-=- b y  b j  -+- a j  -=-(-R a7 bf sin e)+-(R bf cos e) .  
be-de  be b~ be b7 be bx bT 

But -=-=-+i- dw by l  df=*=s+i3 and these values placed in the right ax bX bx bX b7 b7 b7 b7 
members of (19) give 

Now multiply the second of equations (20) by ilR and then add respective members 
of the equations to obtain 
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b x  1 by 
_-- bR - ,,+i(g+$ g)=[(g-g) cos @+(E+%) sin e]+ 

i[(g+g) cos o-(&-g) sin e ] .  

Equating real and imaginary parts in (21) we have 

a x  by :; X _- ::--($%)cos sin e, 

(;: 2) b y  1 b x  b x  by 
d~ R be --+- -=(z+x) cos e- --- sin e. 

The right members of (22) are identically zero 

But these last are the Cauchy-Riemann equations (15), hence from the left members of 
(22) we have equations (18). 

A function of a complex variable is said to be analytic in a region if its derivative 
exists a t  every point of the region. Let us now state the conditions under which (5) 
is an analytic function. If x=x(X,r), g=y(X,r), together with their partial derivatives 
of first order, are continuous, single-valued and satisfy the Cauchy-Riemann equations 
(15) throughout some open two-dimensional region, then the function (5) is analytic 
a t  all points of the r e g i ~ n . ~  

The properties of an analytic function of a complex variable which make it a natural 
medium for the development of the formulas for conformal maps are: (1) a t  each point 
where a functionf(z), as given by equation (5), is analytic andf’(z)#O, the mapping 
w=f(z) is conformal and; (2) the curves z(X,r)=cI, y(X,r)=c2 that intersect a t  that point 
under the above conditions are mapped into the lines x=cl, y=c2 in the w-plane. Since 
these lines in the w-plane are oi*thogonal, the curves z(X,r)=cl, y(X,r)=c2 are orthogonal 
in the z-plane, and conversely. 

Since the mathematical figure of the earth, considered a sphere or spheroid, is 
referred to its orthogonal system of meridians and parallels, we recognize the importance 
of these properties. This will be discussed in more detail when we show that the 
spheroid can be mapped conformally upon a plane. 

We will now demonstrate these properties by an example. 
Suppose that equation (5) is given by w=z+i~=f(z)=e+a~’X-’r’=f(X--ir). 

Equating real and imaginary parts we have 
We have then that x+iy=ere+ah, and from (17), e+’X=cos X + i  sin X so that x + i y =  
eT (cos X + i  sin A). 

x=eT  cos A, y=+eTsin X. (2 3) 

b X  b X  bY b y  From (23) we have-=er cos X, -= -eT sin A, -= +er sin A, -= +er cos X, whence d7 dX b7 bX 
b x  by er  sin X, -= +-=eT cos X and the Cauchy-Riemann equations (15) are bX- br br  ax 

thus satisfied, the sign reversals being due to the use of the conjugate function f ( X - i r )  
instead of f ( X + i r ) .  

Squaring and adding, then dividing respective members of (23) we obtain the 
equations 

(2  4) 

---*=- b X  

x2+ y2= e’‘, y= + x tan X. 

3R. V. Churchill, Introduction to CornpleT Variables and Applications. P. 32. 
953903-53-3 
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In  figure 4 it is seen that T=C1,  A=c2, which are lines parallel to the coordinate 
axes in the z-plane as shown, define the point P at their intersection. The values 7=cl, 
h=c2 placed in (24) give the corresponding point P’ in the w-plane as the intersection 
of the circle x2+y2=eZcl and line y=+x tan c2. That is, for every line 7=c1 in the 
z-plane (parallel to the h-axis) we have a circle x2+ y2=eZc1 in the w-plane. For every 
line A=c2 in the z-plane (parallel to the 7-axis) we have a line y=+z tan c2 in the 
w-plane. I t  is clear that every line y= +x tan c2 is orthogonal to every circle x2+y2=ezCl 
since the lines coincide with radii of the circles. 

Z- P / h  e w-Phne 

FIGURE 4.-Corresponding curves in conformal mapping. 

We will now show that angles are preserved in the mapping of the z-plane upon the 
w-plane. In  the z-plane of figure 4 we have the curves r=fi(A), ~= f i (X )  which pass 
through the point P if cl=fi (c2)=f2 (e2). The tangents to these curves at  the point P 
make the angles t1 and t 2  respectively with the X-axis, and we have tan t1=fl’(c2), 
tan t2=fz’(cz). The angle between these tangents is q and q=&-&, whence 

Now in the w-plane, the curves 81 and s2 correspond respectively to the curves ~=f i (X),  
~ = f i ( A )  in the z-plane, and the parametric equations of the curves are obtained from 
(23) by replacing T byfl(A) andj2(A) respectively, that is, 

To show that the curves s1 and sz pass through P‘ in the w-plane when the curves 
7=j1(A), ~ = f i ( A )  pass through the point P in the z-plane we have only to recall our 
condition for these last two curves to pass through the point P, namelyfl(c2)=f2(c2) =cl. 



CONFORMAL PROJECTIONS 25 

If we place X=cz andfl(c2)=fz(c2)=c1 in equations (26) we obtain in each case x= 
ecl cos cz, y=+ecl sin cz which are the coordinates of the point P‘. 

If a1 and 62 are the angles which the tangents to s1 and sz in the w-plane make with 
the x-axis then 

tan al=-/-- dy dx tan B=-/- dy dx dh d x  Si(X=Cz), dx d x  sZ(X=CZ).  

Forming from these values the ratios in (27) and placing X=c, to evaluate at  the 
point, P’ we find that equations (27) become 

Now if p is the angle between the tangents to s1 and s2 then /3=Sz-Sl and 
- With the values of tan &, tan 82 from (28) this becomes tan &-tan 61 

1 +tan 61 tan 62 tan p= 

From (25) and (29) we have that tan 9 =tan p, or 7 = p  and corresponding angles 
are thus preserved in the mapping. 

Figure 5 is a numerical example of the general case treated in figure 4. We have 

chosen fl(X) and f&> to be f1(X)=;;, X2- 1, f2(X)=- X2+-, that is, we have chosen 

for the point P in the z-plane the intersection of r =cl= 1, X=cz=x and the two para- 

32 8 1  64 bolasr=-Az- 1,r=-XZ+-, through thepointP. From these wehaverl‘=fi‘(X)=-X 
7r2 7r2 2 7r2 ’ 

~ i = f i ( A ) = -  X and at  X=cz=-, 4 these become respectively r1)=j;(;)=-=tan 7r &, 

32 8 1 
7r2  2 

7r 

16 7r 16 
7r2 
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4 -tan E2. Hence from (25) 

.16 4 
a a - 1 2 a  -0.51035. 16 4 ~ ~ $ 6 4  tan q = 

1 -I--.- 

From (24) the corresponding point. P’ in the w-plane is the intersection of thecircle 
x 2 + g 2 = e 2 ,  and the line g=s.  

, 16 4 ’+, - 1 6 + a  t,an 62=4-- l+?,-4+* From (2 8) tan 61 =- - ____ 16-a’ 4-a’ -- 1 L- 

a 
l6  1 
a 

and 4 f a  1 6 + a  
tan62-t.an61 - 4-a 16-a 1 2 a  tan p = - 

l t t ( a n 6 ,  tan&? 

idience p=q=27°02f15’f as was t.0 be shown. 

Z-P/ane W-Plane 

FlcvRE~~.-Correspon~ing curves in conformal mapping. 
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We could have mapped both corresponding families of curves on the same com- 
The use of two planes is for convenience in depicting the point-to-point 

Finally we can exhibit the autogonal property by considering the respective for- 
In the w-plane the element of arc is ds12= 

Now from equations (23), using the 

plex plane. 
. correspondence in the conformal transformation or mapping. 

mulas for arc length in the two planes. 
d x 2  +dy2. In  the z-plane it is ds,2=dX2+dr2. 
formulas dx=- bX dx+- bX dr ,dy=-  a?J dA+- b y  d r  with the values already obtained for 

dx ar  ax d7 
a x  b y  " - - eT  sin 1, -=+-=eT cos A, we have d x =  the partial derivatives, -- --- bX 

ax- br a7 bX 
er (-sin X dX+cos X d r ) ,  dy=+er (cos X dX+sin X d r )  whence dsla=dx2+dyy2= 
eZr (dX2+dr2). Now forming the ratio dslZ/ds; we have 

Since the right member of (30)  is free of the direction in which ds, is measured 
and has a unique value for each value of The ratio 
ds,/ds, is called the magnification or the scale of the projection. The method by which 
(30) was derived will be essentially the one used in obtaining the scale for the auto- 
gonal mapping of the spheroid. 

the mapping is autogonal. 

PARAMETRIC REPRESENTATION OF SURFACES AND CURVES 
A surface in three dimensions is given by an equation of the form F(x,y,z)=O, or 

It may be given a parametric representation in terms of two parameters z=f(x,y). 
and in many ways. That is, we may write 

X = X ( r , X ) ,  y=y(r,X), z=z(r ,X) ,  0 (31) \ 
where r,X are the arbitrary parameters. But we may change to other parameters by 
writing r=r( t ) ,  X=x(6), etc. The two parameters, of course, when eliminated among 
the three equations (31 )  must leave the equation of the original surface in the form 
F(z,y,z)=O or z=f(x,y).  

For example, consider the sphere zz+y2+z2-r2=0 which is in the form F(z,y ,z)  
=O. 

(32) 

where the parameters are the latitude, 4, and longitude, X. Squaring respective mcm- 
bers of (32) and adding we have again z2+y2+z2-rz=0. Now in equations (32) 
place b=tan-'t, X=cos-'6 and obtain z=r6/(l+f2)'/2, y=r(l-6z)1/2/(1+~2)1/2,  z= 
rt/( l+i2)1/2,  which is a new parametric representation of t,he sphere, since squaring and 
adding respective terms again produces x2+ y2+z2-rz=0. Again in (32) place 
cos 4=eul cos X=eu, whence sin x=d1-e", sin +=J1-e2" and we have x=re"+O, 
y=reUJ1-ez0, z = r w  which is still another parametric representation of the 
sphere. We could continue this process indefinitely, obtaining each time a different 
parametric representation of the sphere. 

From figure 6 we have clearly that 

x=r cos 4 cos A, y=r cos 4 sin A, z=r sin 4, 
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Y x = r c o i #  c o d ,  y = r c o s +  5/i7n, z=rsin@ I 

ds2 =rVd@P+ COS”#dA‘) 

FIGURE B.-Derivation of parametric equations for the sphere. 

In  the equation z=f(z,y), place y=c (constant). We have then the curve Z= 

f ( z ,c )  which is the intersection of the plane y=c and the surface z=f(z,y). Any point 
on this plane curve has coordinates x=x, y=c, z=f(z,c) as shown in figure 7. 

If we place y=u(z), where u(2) is an arbitrary function of z, we have a curve on 
the surface which is the intersection of the cylinder y=u(z) and the surface z=f(z,y). 
(l3y a cylinder is meant the locus of a straight line which intersects a given fixed curve 
and moves always-parallel to a given fixed straight line. In  this case the given h e d  
line is the z-axis and the fixed curve is y=u(z), z=O as shown in fig. 8.) The coor- 
dinates of any point on this curve, which is clearly a twisted or space curve since it 
does not lie in any plane, are 

2=2, y==u(z), z=j[x,u(z)].  (33) 

From (33) we see that the coordinates are expressed in terms of the single parameter 2. 

The curve of intersection of any two surfaces z=fl(x,.y), z=fi(x,y) may be considered 
as the intersection of a cylinder and a surface from the following considerations: 
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We have along their common curve of intersection z=fi(z,y) =fi(x,y), or jl(x,y)- 
f2(2,y)=@(x,y)=0, or y=u(x). Then x=x, y=u(x) and with either z=fi[x,u(x)]= 
f2[z,u(jG)] awe have the coordinates of the curve of intersection in the form (33). For 

z 

/ 
/ 

, 

9' 
FIOUBE 7.-Parametric equations of a plane curve on a surface. 

example, consider the surfaces 2=22+y2- y, z=2'+y2. We have 22+y2-y-2-y2= 
$-y=O, or y=2. Hence the coordinates of the curve of intersection are x=x, y=2, 
~ = 2 2 ~ + 2 ~ - 2 = 2 ~ + ~ ~ = 2 ~ ( 1 + 2 ) ,  the curve being evidently a space quartic. 

Y 
FIGURE 8.-Parametric equations of a space curve on a surface. 

Now in equations (31) if we place X=c, then the coordinates are a function of the 
single parameter 7 ,  and similarly for T=C.  



30 U. S. COAST AND GEODETIC SURVEY- 

From figure 6 and equations (32) with X=c we have the coordinates as a function 
of 4 or latitude only, whence the curve is the meridian section in longitude X=c, or the 
intersection of a plane through the z-axis with the sphere. 

Similarly with 4=c, we have a parallel of latitude, or the intersection of the plane 
Z = T  sin c with the sphere. Hence #=c,  X=c represent intersections of planes with the 
sphere giving curves on the surface which are called curvilinear coordinates. If we 
place X=X(+) orf(X,4)=0 we get a twisted or space curve on the surface passing through 
the intersection of the curves +=c, X=c. Analogously for the general surface given by 
(31), T = c ] ,  X=c2 are parametric curves of the surface, whence T = T ( X )  or @(T,X)=O 
represents a curve on the surface through the point P(x,y,z), P being the intersection of 
the parametric curres r=clr  X=c2 as shown in figure 9. Note that the parametric 

/ \ 

FIGURE 9.-The angle between two curres on a surface. 

curves are not necessarily plane curves. We may discuss the 
geometry of t>he surface with reference only to the parametric curves, knowing of course 
that the space coordinates z,y,z are functions of the parametric curves or parameters. 
We are familiar with this from the concept of latitude and longitude-a point is uniquely 
determined (except for the poles) by the intersection of the meridian in longitude, X, 
and the parallel in lat.itude, 4. Such a point has also a rectangular representation, the 
coordinates being functions of the latitude and longitude. (See equations 32.) 

We often espress the coordinates of a curve on a surface in terms of arc length along 
the curve. This is especially convenient in the development of the differential geometry 
of curves and surfaces. 

In fact they seldom are. 

THE LINEAR ELEMENT OF A'SURFACE 
The linear element or differential of arc length of a curve @(T,X)=O on a surface 

through a given point P(z,y,z) of the surface, where x,y,z are obtained from (31) by 
placing T = c ~ ,  X=c2 is 

(3 4) ds2= d x 2 +  dy2+ d 5: 

From figure 10 we see that the chord AZ=PQ of the curve (e) is given by AZ2= 
Ax2+ Ay2+ Az2, hence 
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In the limit as Q+P, the chord A1 becomes the tangent a t  P, Al+As, so that we have 

d x  d y  d z  
ds d s  d s  whichIstates that -1 -9 - are direction cosines of the tangent to the curve (e) at P. 

Multiplying t$hrough by:ds2 we hdve the differential of arc length of the arbitrary curve 

;c 

I 

Y 
FIGURE 10.-The linear element of a surface. 

( e )  through P on the surface as given by (34) which is also called the linear element of 
the surface. 

From (31), since the coordinates are functions of two parameters, me have 

If the expressions in (35) are squared and placed in (34) there results the equation 

ds2=Ed r2+2Fd 7 dX+ GdX2, 
where 

b x  dz b y  b y  b z  bz 
b7 bX d7 bX b7 bX 

-, (3 7) 

Equation (36) gives the linear element of the surface in terms of the curvilinear 
coordinates 7,X. 
is called the first fundamental form of the surface, and the quant,ities E, F, G the funda- 
mental coefficients of the first order. 

The quadratic differential form given by the right member of (36) . 

953903-53-4 
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THE ANGLE BETWEEN THE PARAMETRIC CURVES 
Consider the parametric curve r = c l .  We have then d r  = O  and (36) becomes ds,= 

For the parametric curve X=c2,dX=0 and (36) gives dsx=@ d r ,  or the 

(38) 

@dX. 
elements of arc for the parametric curves r=c l ,  X=c2 are respectively 

dS,= &dX, dSK= f l d  7 .  

From (35) with r =cl, X=c2 we have respectively 

(39) 

If (L1, MI, Nl),  (L2, M2, N2) are direction cosines of the tangents to the curves 

d x  dY d z  L1=-, Mi=--, NI=- 
ds, d s ,  as, 

d x  dY d z  
dsx 2-dsx dsx 

r=c l ,  X=c2 then \ 

(40) 
L2=-) M---, N,=--. 

Forming the ratios from (38) and (39) we find that equations (40) become 

a x  a y  
ar ar ar  

@ 
(41) 

If B is the angle between the parametric curves r =cl, X=c2 we have from (41) that 

, -2 - - a x  a y  az 
ax’ bX’ bX 

4G 
- 

L2, M2, N2= Li, Mi, Ni= 

But by (37) the iiumerator of this fraction is F, hence 
~- 

cosB=FJFG; sine=~1-cos28=JEG-F2/JEG. (42) 

From (42) it is seen that the parametric curves are orthogonal if F=O. 
For an example let us continue with the sphere. From equations (32) we have 

2 = - r  sin cp cos X, k = - r  cos cp sin A, ---r b y -  sin cp sin X, *=r cos + cos A, acp . ax acp ah 
az 

34 b X. *=r cos cp, -=o. 

Forming the quantities E, F, G from equations (37) we have 

E=r2 sin2 4 cos2 X+r2 sin2 cp sin2 X+r2 cos2 4=r2, 
F=r2 sin 4 COS 4 sin X COS X-r2 sin + COS 4 sin X COS X=O, (4 3) 
G=r2 cos2 cp sin2 X+r2 cos2 cp cos2 X=r2 cos2 9. 

Since F=O, the parametric curves are orthogonal. This we knew since the para- 
metric curves are meridians and parallels on the sphere. 
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With the values of E, F, G from (43) the linear element as given by (36) is 
dS2=~Z(d42+COs2 C#J dXz) 

=r2 cos2 4(sec24d+2+dXz). (44) 
Note in figure 6 (p. 28) that from the differential triangle PAB, considering it to 

be a plane right triangle with hypotenuse equal to ds, we have a t  once d.s2=r2d4’f 
r2 cos2C#JdX2. 

THE ANGLE BETWEEN TWO CURVES ON A SURFACE 
The direction cosines of the tangents to two curves a(., x ) = O , f ( ~ ,  X)=O through 

P ( x ,  y ,  z ) ,  the intersection of the parametric curves r=cl, X=c2, are respectively 
- d x  , 2, e; @! 1 !% where differentiation is with respect d s  d s  d s  d s l  d s l  ds1 
discussion following equation (34).) If B is the angle between 

d x  dxl  + d y  - dyl +dz  * d z l  
d s  ds1 cos p= 

With the values from (35) placed in (45) we have by (37) 

to arc length. (See the 

the tangents then 

(4 5 )  

E d .  d q  + F(dr * d X I  + d.7, - d X) + Gd X - d XI 
d s  * dsl cos p= 

THE ANGLES BETWEEN A CURVE ON THE SURFACE 
AND THE PARAMETRIC CURVES 

If the curvef(r,X)=O is the parametric curve X=c2 through P ,  then dX1=O and, 
from (36) or (38), dsl=@dTl. With these values of dXl and dsl, equations (46) 

become 
FIGURE 11.-The angles made by a curve with the parametric curves. 
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where 6 is now the angle between the curve @(r,X)=O and the parametric curve X=cz. 
See figure 11. . 

If Y is the angle which the curve @(r,X)=O makes with the parametric curve r=c1 

and 0 is the angle between the parametric curves (see fig. 11) we have r=e-P, whence 

(4 8) 
cos y=cos (e-p)=cos 8 cos p+sin e sin p, 

sin y=sin (e-p)=sin e cos p-cos 8 sin p,  

With the values of sin e, cos 6, sin p, and cos p from (42) aild (47) placed in (48) 
we have 

&!ZFF2 -. d r  
.JG ds 

(4 9) 

FAMILIES OF CURVES ON A SURFACE 
We have seen that f (r,X)=O represents a curve on a surface. A family of curves on 

a surface is given by 
f (7, 1) = c ,  (5 0) 

where c is an arbitrary constant. 

first degree 
NOW (50) is tfhe solution of the ordinary differential equation of first order and' 

M (  r , X) d r +N(r , A) d X = 0. (5 1) 

TO show that any solution of (51) defines the same family of curves we suppose that 
Now if~both (50) andfl(r,X)=cl define the same family of fl(r,X)=cl is also a solution. 

curves on the surface, fl must be an arbitrary function off. 
From (50) andfl(r,X)=cl we have by differentiation 

From (51) and ( 5 2 ) ,  solving for dX1d.r in each case we have 

(5 3) 

From (53) w e  have f fi-dfi 2 = 0 ,  or J ( j f ) = O ,  which is the condition that fi a7 ax ar 
should be a function of f and hence all the solutions of (51) define the same family of 
curves on the surface. 

ORTHOGONAL TRAJECTORIES 

If a curve is orthogonal to every curve of a given family of curves, (50), it  is called 
an orthogonal trajectory of the given family. (Two curves on a surface are orthogonal 
to each othcr if, a t  each point of intersection of the curves, the corresponding tangents 
to t,he curves are' orthogonal.) 

Prom (46) the condition that 
two curves on a surface be orthogonal is 

Let the given family of curves be defined by (51). 
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Placing the value of dXl/dT1 = - M / N  from (53) in (54) we obtain 

(NE- MF)dT+(FN-GM)dX=O,. (5 5 )  

which is the differential equation of the orthogonal trajectories of (51). 
A differential equation of second degree of the form 

ax 
d T  

may be solved as a quadratic in -, giving then two differential equations of first de- 

gree. The integrals of these two differential equations will give then two distinct 
iamilies of curves on the surface provided the discriminant of (56) does not vanish. 

2s With these If -7 -' are the roobs of (56), we have - + - = - -) -.-=--. dA dX d k  dX, 
dT . d T 1  dT dT1 T d T d T 1  T 

values placed in 154) we obtain 

E T - 2  SF+GR=O, (5 7) 

which is the condition that one of the families of curves given by (56) shall be the 
orthogonal trajectories of the other. 

CONFORMAL REPRESENTATION OF ONE SURFACE 
UPON ANOTHER 

A surface has conformal representation on another if a one-to-one correspondence 
is established between their points in such a way that the angles between corresponding 
lines on the surface are equal. 

To obtain the condition for this we assume that both surfaces, S and S1, are re- 
ferred to a corresponding system of real lines in terms of the same parameters T ,  X and ' 

that corresponding points have the same. curvilinear coordinates. The respective 
linear elements may then be written 

(58)* 

From (42) the cosines of the angles e, O1 between the respective parametriccurves. 

on the two surfaces are -7 -=== and if the representation is to be conformal then 

(S)  as2= E d T'$ 2 Fd T dX+G d X2, 
(SI) ds:= E1dr2+2 Fldr dA+G1dX2. 

F Fl 
J E G  J E I G 1  

In  figure 12, p J  p1 are the angles which corresponding curves @ ( T ,  X)=O, @ I ( T ,  A)=@ 
on S and SI respectively make with the parametric curve X=c2 at corresponding 
points P and Pl. From ( 4 7 )  and (49) we have 

. - JEG-F2 dX . ,_ - 
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If the representation is to be conformal we must have 8= f e l l  p= f p l  according 
as the angles have the same or the opposite sense. From (60) we have then 

where the signs are chosen according to the sense of the angles in the correspondence. 
From (61) we have 

From (59) we have -=- F1 &% - '% which with (62) gives 
F O J G  

Solving (63) for El, Fl,  GI and combining with equations (58) we have ds?= 

"- F12 ds4, or finally EG--F2 

Since E, F,  G, El, Fl, GI are, in general, functions of 7, X then k2 may be a function 

From the above it is seen that (64) is the condition to be satisfied by the linear 
elements of the two surfaces in order that the representation shall be conformal. Note 
that we have used this condition in the discussion of the conformal representation of 
one plane upon another by means of the complex variable. 

of 7, X. 

See equation (30). 

FIGURE lz.-Corresponding angles at corresponding points of two surfaces having the same curvilinear coordinates. 

The conformal representation is direct or inverse according as the relative posi- 
tions of the positive half-tangents to the parametric curves on the surface are the 
same or symmetric. 
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Referring to figure 12, note that the elements of area on the surfaces S and S1 are 
respectively d A = s i n  8 dsx ds,, dAl=sin el dsx ds ,  which become from (38) and (42) 

d A= Jm2 d X  d 7, d A,= 4- dX d r  . Hence -= d A 1  E1G1-F12 =-$ k that 

is, 7 is the ratio of the elements of area on the two surfaces. 
d A  JEG-F2 

1 
k 

CONFORMAL REPRESENTATION OF A SURFACE UPON A PLANE 

If we consider the surface (S) ,  equations (58), to be a plane, then the linear ele- 
ment, or difFerentia1 of arc, must be given by 

ds2  = d r + d X2, (6 5 )  

where 7, X are rectangular coordinates in a plane. We have thus E=G=l ,  F=O. 
Then because of equation (64) we must have the linear element of the surface (SI) 
in the form 

d s l 2 = m ( d r 2 f d X 2 ) ,  where now m = k2. (66) 

This means that the parametric curves must be orthogonal since Fl=O. Suppose 
the linear element of the given surface (SI) is then ds12=Eldu2+Gldv2. If El is a func- 
tion of u alone and GI is a function of v alone we may place dr2=Eldu2, dX2=Gldv2 
and the linear element becomes ds12=dr2+dX2, that is, m=l, whence there is no dis- 
tortion in the representation. Surfaces having such linear elements are developable 
surfaces-surfaces such as cones or cylinders which can be “cut” along a linear element 
or “generator” and made to coincide with a plane by “rolling out” without stretching 
or tearing. 

Suppose the linear element ds12= El du2+ Gl d v 2  can be written 

d u 2  d v 2  m m 
ds12=m (r+v), where El=-, u GI=-,  V 

and we place 

The linear element will then be in the required form (66) but in order to integrate 
equations (68), U must be a function of u alone and V must be a function of v alone. 
From (67) we have 

(69) u GI m = U E I = V G l  or -=-a 

V E1 
The conditions then for the conformal representation on a plane of a surface which 

is not developable are that the parametric curves must be orthogonal, Fl=O, and that 
El and GI must satisfy a relation of the form (69) where U is’ a function of u alone and 
V is a function of v alone. 

ISOMETRIC ORTHOGONAL SYSTEMS 
When the linear element is in the form (66) we have seen that the parametric 

curves are orthogonal. Note also from (66) that the elements of arc of the parametric 
curves r=cl ,  X=c2 are respectively 6 dX, 6 dr. Hence when the increments dr ,  
dX are taken equal, the four points ( r ,  X), (r+dr,  A), (r,  X+dX), ( r f d r ,  X+dX) are the 
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vertices of a small square as shown in figure 13. Hence the parametric curves divide 
the surface into a network of small squares, not necessarily all of the same size. On 
this account these curves are called isometric curves and r ,  X isometric parameters. 

FIGURE 13 -1sometrw orthogonal nct on a surface. 

Thus it is seen that a surface to be mapped conformally upon a plane must be referred 
to an isometric orthogonal system. 

DIFFERENTIAL GEOMETRY OF A CURVE ON A SURFACE 
I n  figure 14 we have a curve (c) on a surface (8). At any point P(z,y,z) of this 

curve (c) me have always associated three mutually perpendicular lines, namely the 
tangent PT,  the principal normal PAT, and the binormal PU. 

If Q is a neighboring point of P on (e), then the chord PQ and the tangent PT 
determine a plane which as Q-+P assumes a limiting position a t  P, the chord PQ 
coinciding with the tangent PT.  This plane is called the osculating plane of the 
curve (c) a t  the point P. 

A plane perpendicular to the tangent Pi" a t  P is called the normal plane, and its 
intersection with the osculating plane determines the principal normal PN. The 
binormal PU orthogonal to PN and lying in the normal plane determines with the 
tangent the rectifying plane as shown in figure 14. 

The curve (e), considered a space curve, has two radii of curvature associated 
with it a t  every point. p l ,  the first radius of curvature, lies along the principal normal. 
The second radius of curvature, pz, called the radius of torsion, lies along the binormal. 

I n  order to find the equation of the osculating plane we need to find under what 
conditions a curve and surface have contact of a given order. 

CONTACT OF A CURVE AND SURFACE 

If P, PI ,  P2, . . . P,  are points of a given curve which also lie on a given surface 
and the points PI ,  P2, . . . P, tend to P, then in the limit, when PI ,  Pz, . . . P, 
coincide with P, the curve and surface have contact of the nth order a t  P. 

Assuming that the coordinates of P are z=z(s), y=y(s), z=z(s) and that the 
equation of the surface is of the formj(X,Y,Z) =O,  so that a t  a point P, common to the 
surface and curve, f(z,y,z)=f(s)=O, then the roots of f ( s )=O are values of s which 
correspond to the points of intersection of the curve and surface. If the curve and 
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surface have contact of the first order at  the point for which s=sl, the equation f (s)=o 

af af d x  a f &  a f & ‘  has two roots equal to sl, and therefore f(sl)=O, and -=- -+- -+- -=o. 
This may be extended. That is, if the contact is of the second order, the equatioll 

d S 1  b~ ds1 b y d s ,  ds1 

d f  d2f f ( s )=O has three roots equal to sl, therefore we must have f(sl)=O, -=o, -- 
ds, ds:-O. 

I n  general, if the contact is of nth order, thenf(sl) =O,f’(sl) =f” (sl) = . . . =f”(sl) =o. 
(Note that we are using here essentially the theorem that an n f l  fold zero of a funct,ion 

P m  c /poi Norma f 

FIGURE 14.-The three planes and three axes associated wlth a space curre at  each of its points 

is also a zero of its nth derivative. This is easily seen from the fact that if s1 is an n + l  
fold root of f(s)=O, then s-sl is an n+l fold factor, or f (s )=g(s) (s  -sJn+’. Thus 
s -SI will be in every term of every derivative up to and including the nth derivative.) 

THE OSCULATING PLANE 
In  figure 14, the osculating plane is determined when the chord PQ coincides with 

This implies that the curve and plane have contact of second order the tangent PT. 
a t  P(x,y,z), since the tangent requires cont,act of 
AX+BY+CZ+D=O is a general plane we must have 

f ( s )  =Az+By+Cz+D =o 
f ’ ( s )  =Az’+By’+Cz’=O 

f” ( s )  =AX” +By”+Cz” =O. 

first order. Therefore if 
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Eliminating A, B, C, D from these four equations by writing the eliminant we have 

Z-Z 

zf 

2‘‘ 

X Y Z 1  

x y z l  

2’ y’ 2’ 0 

2‘‘ Y” 2’’ 0 

x - x  

X’ 

2‘‘ 

- - =(X 
Y-Y 

Y‘ 

Y” 

-2) (y’z’’ -2””) 
+ (Y-y) (dx” -X’Zf’) 
+(Z“z)(x’y’’ -y’xf’)=0, 

which is the equation of the osculating plane a t  P(x,y,z). 

THE NORMAL PLANE 

From the discussion following equation (34), the direction cosines of the tangent 

Hence a plane through P(x,y,z) normal a x  ,-dy d z  PT were noted to be x‘=-, y --, z’=--. a s  a s  d s  
to the tangent would have the equation 

(X -x)x’ + (Y - y) y’ + (Z  - 2) z’ = 0. 

Since x’,y’,zf are direction cosincs we have also x’2+y’2+~f2= 1, and by differentia- 
tion X‘X‘‘+ ,’”’+ z’z’’= 0. 

DIRECTION COSINES OF THE TANGENT, PR~NCIPAL NORMAL, 
BINORMAL 

We now develop the formulas for some of the fundamental differential relations 
among the associated geometric elements of the curve in the neighborhood of the 
point P (x ,  y, z ) .  

Let 11, ml, nl;  lz ,  mz, nz; 1 3 ,  m3, n3 be the direction cosines of the tangent, principal 
normal, and binormal respectively. Then these direction cosines must satisfy the 
following two sets of conditions: 

, From these we have the following relations among the direction cosines: 

ll = m2n3- n2m3, m1 = n213- Z2n3, n, = Z2m3 - m2Z3 
12= m3n1 -n3m1, mi=n311 -Z3n1, n2=13m1 - m311 (74) 
13=mlnz-nlmz, m3=n112-11n2, n3=llmz-mllz. 

PRINCIPAL CURVATURE OF A SPACE CURVE 

Since the principal normal, PN in figure 14, is the intersection of the osculating 
plane and the normal plane we may obtain the direction cosines of the normal directly 
from the coefficients of equations (70) and (71). That is, 
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‘ (75) 

By means of the relations following equation (71) we may m i t e  Z2,h2,n2 from (75) as 

12=p1(2 ‘2 x ‘ I -  z I z I’ x I -  2 I y 1 y I f  +x’”2)“1[-x”y””’”’’(yr2+2’2)] 

=p1“2x”+ (y’”””’’] 
=p1x”(x’2+y’2+z’2) 
= P I X ” ,  

m2= PlY”, 
n2=p1z”. 

Squaring and adding we have l ~ + ~ ~ + n ~ = p ~ ( x ” ’ + y ‘ ’ 2 + 2 ” 2 )  =1, whence 

L = x ‘ / 2 ~ y ‘ f 2 + z ‘ ’ 2 =  (Z;l2+ (mi l2+ (n;I2, (76) 
P? 

that is, p1 is the first radius of curvature of a space curve. 

From (72) and (74) we must have for the binormal 

Z32+m~+n32=(m1n2-n1m2)2+(n1l2-11n2)2+(Z1m2-m1Z2)2= 1. (7 7 )  

I f  With the values of l l = x f ,  ml=y’, nl=z’; 12=plx , m2=p1y“, n2=plz“equation 

(77) becomes ( y ~ z ” ~ ~ ’ y ’ ’ ) ~ +  ( z ~ x ” - x ’ z ’ ’ ) ~ +  ( x ’ ~ ’ ’ - y ’ x ’ ’ ) ~ = ~ )  which may be mitten 

(78)  

la)  so that p1 is From (73))  (74))  and (76) it is seen that (78) becomes 1 * T - O = -  

the factor of proportionality for the direction cosines of the binormal which may now 
be written 

1 
P 1- 

( 2 ’ 2 + y ’ 2 + z ’ 2 )  (x”2)“~’x’ ’+y’ y”“Z”)2=_2. 1 
P1 

1 
P1 P1 

Z3 = p 1( y ’ 2”- z ’ y”), m3= p (2’ x” - x’ z”) ,  n3 = p (2’ y” - y ’ 2”). (7 9) 

SECOND CURVATURE OR TORSION OF A SPACE CURVE 

The torsion, l / p z ,  or second curvature is defined analogously as the first curvature, 

(80) 

that is, 
1 -=(Zi)2+ (m3’)2+ ( 7 ~ ~ ’ ) ~ .  

PZ2 0 

THE FRENET-SERRET FORMULAS 

We may express the derivatives of the direction cosines of the tangent, principal 
normal, and binormal as functions of the direction cosines and the two radii of curva- 
ture, p1 and p2, as follows: 

We have Z1=x’, ml=y ’ ,  nl=z’ whence Z1’=x”, ml f=y ” ,  nl‘=z‘‘. 
But 12=p1x”, m2=plyyn, n2=p1z” whence 
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From the third of equations (72) and the second of equations (73) we have by 

(8 2) 

By placing the values of 11’, ml’, nl’ from (81) in the second term of the second 

equation of (82) we get for that term - (Z213+m2m3+n2n3) which is zero by the third 

of equations (73). 

differentiating 
1313’+m3m3‘+n3n3’= 0 ,  

(U31+ m m ’ +  nin3’) +(&’&+ m1’m3+nl’nJ= 0. 

1 
P1 

Hence we have 

1113’+m1m~+nln3/=0, 

l,l,’ + m 3 m i  + n3n3‘ = 0 , 
We find 

1,’: m,’: n3’=(nlm3-mln3): (Zln3-nl13): (m1Z3-11m3) 

(83) 

from which to  determine 131, m;, n;. 

and from (80) the factor of proportionality is pz,  that is, 

From (74) it is seen that the numerators of these last equations are respectively 
1 2 ,  m2, n2 so that 

To obtain the derivatives of 12, mz, n2 we diffcrentiate the expressions in (74) for 
them as follows: 

12’=n1’m3+n1m3’ -m1‘n3- m1n3’. (85) 

In  (85) place the values ml’, nl’; m,’, n,’ from (81) and (84) to obtain 

But the numerators of (86) are, by (74), l1 and 1, so that 12’= - (:+:). TiQe find 

similar espressions for m2’ and nz’ and group all these rcsults together for easy rcfer- 
ence. 

Direction cosines: 
Tangent: Z1=x’,ml=y’,nl=z’ 
Principal Normal: lZ=p1 xn7 m2=pl y”,nz=pl Z” 
Binormal: 

(87) 
(~ ’Z ’ ’ - ” ”Z ’ ) ,  m3=~1 (z ” ” -z ”x ’ ) ,  n3=p1 (x ’y ’ ’ -~”y ’ ) .  

First derivatives of the direction cosines of the tangent, principal normal, and binormal 
(known as the Frenet-Serret formulas): 

12 m2 n2 Tangent: l1’=-, mi‘=-, nl ’c- 
P1 P 1  P1  
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Binormal: la’=? 1 1 m3’=-, mz n3’=- nz , 
P2 Pz P?  

where p1 and pz are the first and second radii of curdature of the given curve (c) a t  the 
point P .  

We now derive a formula for the torsion in terms of the first radius of curvature 
and derivatives of the coordinates of the point P(x,y,z). 

In  (87) take the derivatives of the direction cosines 13,m3,n3 of the binormal to get 

&’= PI‘ (y””-- 2‘“’)f p1 (y’z’’‘ - 2’“’) 

ma’= pl’“’x’’- x’z”)+ pI(z’x’’’- x’z”’) 

n3’=pI’(X’y’’- y’x’’”(z’y’’’- y’x”’). ‘ 

(89) 

With the values of the derivatives Z3’,m3’,n3’ from (88) placed in the left members 
of (89) and the factors (y’z”-z’y’’), etc. of the second members replaced by their 
values in terms of Z8, etc. from (87) we may write (89) as 

-_ m 2 - d  ma+ p1(z’d’’- 2’”’’) 
Pz P l  

723 + p1(x’y ”‘ - y ’2” ‘). n2= PI‘ 
Pz P1 

If we multiply the first of equations (90) by 12, t,he second by mz, the third by n2 
and add respective members we obtain 

122+m’+n’=~ ( ~ ~ ~ ~ + m ~ ~ ~ + n ~ n ~ ) + p ~ ~ ~ ( y ~ z ~ ~ ’ - z ~ y ~ ~ ’ ) +  pImz“’x”’-x’z’’’)+ 
P2 P1 

plnz(x‘y’f~- Y X  ; ‘11 1. (9 1) 

The numerator of the left side of (91) is unity because of the second of equations (72). 
The first member of the right side of (91) is zero because of the third of equations (73). 
In  the last three members of (91) replace Zzl mz, nz by their values from (87) and we 
may write (91) as 

(9 2) -= 1 plz  [x”y’”’’- z’”’)+ y”( z’x”’- x’z”’)+ ~”“y’”- y’”’)] , 
PZ 

or in determinant form I x’ y’ 2’ 

I x“‘ Y”’ 2‘’’ 

Equafion (92) gives the torsion, or second curvature in terms of the radius of first 
curvature and the first three derivatives of the coordinates of the point P(x,y,z) of the 
curve (c) OD the surface. 

Note that in obtaining the differential formulas of this section the parameter was 
t,he arc length along the given curve (c) measured from the point P ( X , ~ , Z )  on the 
surface (S),  figure 14. 
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EQUATIONS OF THE TANGENT PLANE AND 
NORMAL TO A SURFACE 

To develop these equations we will consider.the surface given by the parametric 
representation (31). In  figure 15 we have the tangents tl and h to  the parametric 
curves T = C ~  and X=c2 at the point P(z,y,z) or P(T,X) of the surface (8). These tangents 
determine the plane tangent to the surface at  the point P .  

I 

Recr/ar?yuhr Loordinufes o f  Pond E are 
Pi x( r ;~? ,  9ma) , z m i j  
F C x(irtsl; t d l  y(rM'r, /I +da ) z (no, A td/) 13 . 

Y 

From (41) the direction cosines L1, Mi, Ni and Lz, M,, Nz of the parametric 

FIQURE 15.-The distance from a neighboring point on a surface to the tangent plane at a given point. 

curves r=cl, X=ca are respectively 
by bz , - 9  - 

b T  b7 b7 
- ax by a z  

> - J -  - 
bX bX bX and 
4a 8 

x-x Y-y 2-2 x--2 Y - y  2 - 2  

Li Mi Ni L Mz Nz 

From a well-known theorem of solid analytical geometry, the plane containing the 
two lines 

---=- ____-- - 1-- - 
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x-x Y-y 2-2 

Lz_ Mz Nz 

L, MI NI 

45 

= O s  

having the common point P(x, y, z )  is given by the determinant 

or 

From (93) it is seen that the direction cosines Z,m,n of the normal to the surface 
a t  P(x,y,z) are proportional to the three determinants in (93), the square of the factor 
of proportionality, p ,  being of course the sum of the squares of the three determinants. 

If we compute p,  we find that 

1 1 and from (37) and (94) we have >=EG-F2, or -=JEG-F2; hence the direction 
P P 

cosines of the normal to the surface are 

bz 
bX 

bz 
b7 

- 

m = p  
- 

bX 
bX 

b X  
b T  

- 

n = p  

- 
(9 5) 

where p = 1 / J E m .  

In figure 15, t3 is the tangent to an arbitrary curve (c) through P(x, y, z) on the - - 

dx dy d z  
ds ds ds surface, and the direction cosines, being -7 -7 -’ are 

x, y, z are functions of the parameters 7, X. Hence the 

given by equations (35) since 

equations of the tangent line 
are x--2 Y-y-2-2 -- _-_-. 

dx d y  dz 
d8 ds ds 
- - - 
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To show that the tangent line (96) lies in the plane tangent to  the surface at  P, 

we have only to substitute the valuesX-x=v-,Y--y=v-, Z-z=v-from (96) 

with the values of -, -, - from (3'5) in the determinant (93) which will vanish, since 

the elements of the first row are then the sums of the elements of the second and third 

rows after the latter have been multiplied by -9 - respectively. 

In  figure 15, PIQ is the distance from a point Pl(r+dr, X+dk)  on the surface to 
the tangent plane determined by the tangents tl and tz to the parametric curves r =c1, 

X=c2 a t  the point P(r,X). 
To approximate this distance we express the rectangular coordinates of the 

point Pl in terms of power series in r and X. 
In  any standard treatise on the calculus * one may find the derivation of Taylor's 

formula for functions of two variables which may be written in the following form to 
correspond to our notation: 

d x  dY d z  
d s  d s  d s  

d x  d y  dz 
d s  d s  d s  

dX d r  
d s  d s  

where df=- 3.f d7 +- bf  d k .  
dT a h  

From (31) the rectangular coordinates of Pl on the surface in terms of r ,  X, d T ,  d A  are 
x = x ( T + d T , X f d X ) ,  y=y(r+dr,X+dX), z=z(r+dT,X+dX) and by (97) we may write 
the difference of the coordinates of the points P(r,X), Pl(T+dT,X+dX) in the form 

SECOND FUNDAMENTAL QUADRATIC DIFFERENTIAL FORM 
OF A SURFACE 

The normal form of the tangent plane (93) is 

p=l(X- x)+ m( Y -  y)+n(Z- z ) ,  

where I ,  m, n are the direction cosines of the normal as given by (95). Hence the 
distance P I Q  from the point PI on the surface to the plane tangent to the surface a t  
the point P is obtained by substituting the values of the left members of (98) in (99) 
respectively for the terms X-x, Y-y, 2 - 2 .  We obtain thus 

p=PIQ=(l g + m  ( D d r 2 + 2  D'd.rdA+ D"dX2)+. . . , (100) 
where 

I 

4 I. S. Sokolnikoff, Advanced Calculus, pp. 317-320. 
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dx d y  d z  
ds ds d s  

are the direction cosines of the normal to the surface. 
is zero since the normal is perpendicular to any line in the tangent plane. 
have from (100) to terms of second order in d x  and dr 

Now the direction cosines of a line in the tangent plane are -7 -) -; and 1, m, n 

Hence the first term of (100) 
Hence we 

@=2p= Ddr2+2D’dr dX+D”dX2, (102) 

where D,  D’, and D” are given by (101). 
The quadratic differential form (102) is called the second fundamental form of the 

surface and the functions D, D‘, D” the fundamental coefficients of the second order. 
In  figure 15, it is seen that the direction of the tangent ta to the arbitrary curve 

(c) through P may be considered to  be determined by drldh. The angle between PN 
(the normal to the surface) and PC (the principal normal to (c)) is E .  From (87) and 
(95) we have 

’ 

cos E =  112+ mm2 + nn2 = p 1(1 2‘’ + m y” + n z ’I). (103) 

Differentiating equations (35) we find 

Now multiply equations (104) through by I, m, n respectively and add-ignoring 
differentials of second order in X and r-obtaining by means of (101) 

(105) 
D d r2+ 2 D’d r d  X+ D”d X2 

ds2  1x”+ my ” + nz“ = 

With the value of ds2 from (36) and the right member of (105) placed in (103) we 
have 

COS .$ 
p1 

Ddr2+2 D’dr dX+ D”dX2 - 
E d r 2 + 2  F d r  dX+Gd X2 ’ (106) 

where p1 is the principal radius of curvature of the curve (c). 
The right member of (106) depends only on the curvilinear coordinates 7, X and 

the direction of the tangent t 3 ,  hence i t  is the same for all curves on the surface having 
the same tangent, ta. Consider the plane curve which is the intersection with the 
surface of the plane determined by the normal PN to the surface and the tangent t 3  

to the curve (c). This plane curve or normal section will be tangent to the curve (c) 
a t  P since they have the same tangent a t  P, and its curvature will be given by the left 
member of (106) with [ = O ,  that is, we have 

cos E 1 
- 

P I  P n  

where pn is the radius 0.f curvature of the normal section. Equation (107) written as 
pI=pn cos .$, states that the first radius of curvature of a curve (c) through P is the 
projection of the radius of normal curvature upon the osculating plane at P of the 
curve (c), as shown in figure 16. 
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z h 

Y 
FIGURE 16.-Illustration of the relation cos E, and its special case, Meusnier’s theorem. 

MEUSNIER’S THEOREM 

For the plane curve, which is the plane section of the surface determined by the 
tangent t 3  and the normal to the curve (c) at P, equation (107) gives its curvature. 
That is, pl=pn cos 5 gives the radius of curvature, p,, of the plane section which makes 
an angle I: with the normal section whose radius of curvature is pn. This is usually 
known as Meusnier’s theorem. 

PRINCIPAL RADII OF NORMAL CURVATURE OF A SURFACE 
Clearly there are many normal sections of a surface a t  a point P, generated by a 

We now determine the variable plane containing the normal to the surface a t  P. 
1 two among these for which - is respectively maximum and minimum. 

P n  
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From (106) and (107) we have 

-= 1 D+ 2 DIU+ DNu2 
Pn E+2Fu+Gu2 ' 

where u=dX/dr. 
Differentiating (108) with respect to u and placing the result equal to zero gives 

(D'+ D"u) (E+ 2 FU + Gu2)- (F + Gu) ( D f  2 D'u + D"u2)=0. 
or 

(F D" - G 0') u2+ ( E  D"- G D)  u + (ED'- F D) = 0. (1 09) 

Comparing (56) and (109) we see that 

T = F D" - G D', 2 5  =ED'' - G D, R =E D'- F D. (1 10) 

The values of (110) placed in (57) give EFD"-EGD'-EFD"+GDF+GED'-GFD= 
0, which shows that the two families of curves given by (109) are orthogonal. That is, 
the two normal sections given by (109) at  each point of the surface, and whose curva- 
tures are respectively maximum and minimum, are orthogonal to each other. 

The radii of curvature of these two normal sections are called the principal radii 
of norma1,curvature of the surface at  a given point. They are equal to each other 
for the trivial cases of the plane and sphere. (For these two trivial cases the discrimi- 
nant of (109) vanishes, otherwise it is positive and.the equation has two real and 
distinct roots provided E # 0.) 

TOTAL AND MEAN CURVATURE OF A SURFACE 

From (108) and (109) we have 

1 D+ D'u+u(D'+ Dl'u) D+ D'u- D ' f  D"u 
pn E+Fu+u(F+Gu) E+Fu F f G u  ' 

E + FU = pn( D + D'u) 

F + GU = p ,, (0' + D"u). 

- - - _- - 
whence 

Eliminating u between equations (111) we obtain the equation 

1 1 
-2 ( E G  -F2) - -(ED"+ G D- 2 F 0') + ( DD" - D") = 0. 
Pn P n  

1 1 
R N  If - and - are the roots of (112) then 

t 

RT is called the total curvature of the surface at  the given point and R, the mean 
curvature of the surface at  the given point. . 

From (36) and (102) it is seen that RT in (113) is the ratio of the negatives of the 
discriminants of the fimt and second fundamental quadratic forms. 
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Prom (108) the normal curvature is zero if D+2D'u+D"u2=0, where u=dA/dr. 
In the directions determined by this differential equation we have from (102) that the . 
distances of nearby points of the surface from the tangent plane are a t  least of the 
third order in dA, dr. Hence the lines ,D+2Dfu+ D"u2=0 are the tangents a t  a given 
point to the curve in which the tangent plane a t  that point meets the surface. Now 
according to the discussion, equation (56), the integral curves of the differential equa- 
tion D+2D'u+D"u2=0 are two distinct families of curves. These integral curves are 
called the asymptotic lines of the surface. From (113), the numerator of R, is the 
negative of the discriminant of the quadratic D+2D'u+D"u2=0. We now consider 
the values of this discriminant and its characterization of the asymptotic curves and of 
the surface. 

For 00"-D">O a t  every point of the surface, R, is positive and there are two 
distinct families of imaginary asymptotic curves on the surface. But from (113) we 
must then have'both R and N positive a t  every point of the surface, which means that 
both centers of principal curvature lie on the same side of the tangent plane a t  each 
point. Such surfaces of positive curvature at  each point are exemplified by the ellipsoid 
and the elliptic paraboloid.. This will be illustrated later when R,  is computed for the 
spheroid. 

If DD"-D'2<0 a t  every point of the surface, R, is negative and there are two 
distinct families of real asymptotic curves on the surface. Prom (113), R and N must 
differ in sign and therefore the surface lies on both sides of the tangent plane. Surfaces 
of such negative curvature at each point are exemplified by the hyperbolic paraboloid 
and the hyperboloid of one sheet. 

If DD"-D''2=0 a t  every point of the surface, then R, is zero at  every point and 
the differential equation of the asymptotic lines D+2D'u+ D"u2=0 becomes 
(\/D+ 40" u ) ~ = O  and there is only one family of real asymptotic curves. Since there 

is no change of sign as u passes through the value u= -- 7 the surface lies on one side 

of the tangent plane and is tangent to it along t,he direction o+ 4p u=O. From 
(113), if R, is zero a t  each point, then R or N must be infinite, which means that one 
family of lines of curvature on the surface must be straight lines. Such surfaces are 
called developable surfaces, such as cylinders or cones which by cutting along a straight 
line element can be brought into coincidence with a plane without stretching or tearing. 
We discussed the linear element of such surfaces following equation (66). We shall 
show that R, is zero a t  each point of a developable surface after we have expressed R ,  
in terms of the first fundamental coefficients E, F,  G and their derivatives. 

LINES OF CURVATURE ON A SURFACE 
Equation (109) is the differential equation of a pair of orthogonal curves, called the 

lines of curvature on the surface a t  each point, the directions of whose tangents are 
those for which the radii of normal curvature have their maximum and minimum values. 
If these lines of curvature are to be the parametric curves, ;=clJ x=cz, then from (108) 
we have, replacing u by dxldr and then placing dr=O, dA=O in turn, 

- 

\ I F  

From (113) and (114) it is seen that this is equivalent to placing D'=F=O. 
is, the lines of curvature are the parametric curves for the surface if D'=F=O. 

That 
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From (47), j3 is t,he angle between the curve ( T , X ) = O  and the .parametric curve 
X=c2, but since the lines of curvature are to be parametric, we have F=O and therefore 

d r  dX 
COS p = J E  -, sin j3= r ds lGds  

01' 

EULER'S FORMULA FOR THE CURVATURE OF A NORMAL 
SECTION OF A SURFACE 

Now with D'=F=O, we may write (108), remembering the denominator is ds2, as 

From (114) and (115) we have 

From (116) and (117) me have finally 

1 
P n  

Equation (118), known as Euler's equation, gives the curvature - of any normal 

section a t  a given point in terms of the curvatures of the principal normal sections, j3 
being the angle which the arbitrary normal section makes with the parametric curve 
h=c2, the lines of curvature being parametric. 

THE GEODESIC CURVATURE OF A CURVE ON A SURFACE 
In  figure 17 we suppose that a variable line, meeting the curve (c) on (S) ,  movcs 

parallel to the normal to (8) at P generating a cylinder which is met by the plane 
tangent to (8) a t  P in the curve (c') as shown. The curve (c') is then a normal section 
of t8he cylinder. Obviously the curve (c) lies also on this cylinder and the curves (c) 
and (c') are tangent to each other at  P as shown. Hence we may use Meusnier's 
theorem with respect to the cylinder, where pg is the radius of curvature a t  P of the 
plane curve (c') and p1 is the principal radius of curvature of (c) a t  P. From figure 17  
and equation (107) we have then 

(1 19) 
1 cos* -=-. 

P s  P I  

If f is the angle between the normal to the surface and the principal normal to (c) 
.rr as shown in figures 16 and 17, t,lien +=-- t and 2 

cos (;- f )  --. sin f - - 1 -_ 
P s  P1 P I  
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Clearly the principal normal to (c) may lie exterior to the plane quadrant between 
the normal to the surface and the normal to the cylinder, but is always coplanar with 
these normals. Hence we make the convention that the positive directions of the 
tangent, the normal to (c’), and the normal to the surface shall have the same mutual 
orientations. as the positive x7y, and z axes as shown in figure 17. 

FIGURE l’i.--Qeodesic curvature of a curve on a surface. 

A geodesic on a surface may be defined as a curve such that at  each of its points 
the principal normal to the curve coincides with the normal to the surface. l /p,  as 
defined by (120) is called the geodesic curvature of the curve (c), p ,  being then the- 
radius of geodesic curvature. If the curve (c) is a geodesic, then the angle E, as shown 
in figure 17, is 0 and from (120) the geodesic curvature is 0. We might then equiva- 
lently define a geodesic as a curve for which the geodesic curvature is 0 at each of its 
points. 

dx dy dz We have from equation (87) that 21=&) ml=--l nl=- are direction cosines of ds ds 
the tangent to (c) at  P. The direction cosines of the normal to (8) are I, m, n as given 
by (95). If I,, m,, n, are the direction cosines of the normal to (c’), then from the last 
of equations (74) with the direction cosines of the tangent and normal, ZI, ml; n1 and 
I, m, n we have 

(121) 

From figure 17, J. is the angle between the principal normal to ( c )  and the normal 

1,= mn, -rLml, m, = n2, - Inl, n, = 2ml - mll . 

to (c’) and we have therefore from (87) and (121) 

cos J.= l2 I,+ m2 m,+ n2 n, 

=12(mn1-nml)+ m2(nll -2nl)+n2(Zml- ml,) 

= p , z ” ( m z ’ - n y ’) + p , y ” (nx ’ - I z ’) + p , d’(1 y ’ - m z ’), 
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or from (119) and this last equation 

( 1 2 2 )  
1 cos* -=-- - x“( mz ’ --n y ’) + yN(?&x’ - zz ’) + z”(Zy’ - ml). 

P s  P1 

To save space in the developments to  follow, we will shorten our notation by 
writing sums in the form 

From (37) we have 

From these by partial differentiation we have 

From (37) and (95)  we find that 

Identities analogous to (124)  are found by permuting the letters x, y, z ;  I ,  m, n. 
Placing the values of XI, y’, z’ ;  x”, y“, 2‘’ from (35 )  and (104)  in (122)  and reducing 

by means of (123)  and (124)  we find 

U 
9 

V 
where 

From (125)  we note that the geodesic curvature of a curve depends upon the 

From (38), the elements of arc length of the parametric curves are ds,= @ dA, 
With these 

fundamental quantities of first order E, F, G and their partial derivatives. 

dsx= 0 d r .  From ( 4 2 )  the parametric curves are orthogonal if F=O. 
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values placed in (125) we find the geodesic curvatures l/pEx, l / p E r  of the parametric 
curves r=cl,  X=c2 to  be 

1 1 

t 

We have noted that a geodesic may be defined as a curve for which the geodesic 

are each From (126) we note that -9 - 

That is, when the 

bdi7 curvature a t  each of its points is zero. 

zero if E is a function of r alone and if G is a function of X alone. 
parametric curves form an orthogonal system then r=cl or X=c2 are geodesics if G is , 
a function of X alone or if E is a function of r alone. 

dX br  

THE GAUSS CHARACTERISTIC EQUATION 

We will now express the total curvature as given by (113) in terms of the funda- 
mental quantities of first order‘ E, F, G and their partial derivatives. ‘ To do this we 
will express the numerator, DD”-D’2 of R ,  as given by (113) in terms of E, F, G and 
their partial derivatives. The resulting equation for DD”-D’2 is called the Gauss 
characteristic equation. 

From (123) we may write 

B =p’(JE-MF) 

B’ = p2( J’E - M’F) 

B”= p2(J”E - M”F), 

J =FA+GB 

J‘ =FA’+ GB’ 

J” =FA” + GB”. 
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A= 

From (101) we have 

1 

bX 
br  

bX 
bX 

- 

- 

From (127) and (130) let us solve the three equations 

for 

The 

55 

(130) 

of the coefficients 
m' n I 

I 

hY 32 
br b r  = I  
- -I 

b2x b2y b2z . 
of -, -7 7 ln 

a r 2  a r 2  a r  

bX bX 

these three equations 

bx b y  

ax  by 
bX ah 

- -  
b7 br 

+n 
- 

is 

1 1 
EL EL 

From(95)it igseen that thismaybewrit,tenA=-(l2+ m2+n2)=-, where12+ m2+n2=1 

Hence the solutions since I, m, n are direction cosines of the normal to the surface. 
b2x b2y 3 2 2  

372 br2 d r  for -7 -7 may be written 

/ M & &  b y  bz 

by bz l J  b X d X  

b2y 
372 

1 D n  

dX a z  - M -  b T  b7 

bX bz - J -  ax bX 

From the first of equat,ions (131) we have 

I D  n l  Ibu bzl n 

bz 
d7 
- 

or 

From (95) and (124), equation (132) becomes 

b2X 
b7 
--,=1D+i2M 

b X  bX =lD+p2 (MG- JF) -+p2(JE-MF) b ~ '  b7 
. 953903-53-5 

(133). 
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From (128) we may write (133) finally as 

ax bx 
G- b7 bX b 2 t - ~ ~ +  A-+B -. (1 34) 

a2y aZz If we solve the second and third of equations (131) for - 9  ~ we find expressions 
b72 372 

similar to (134) and group them together for reference. 

(135) _- a" mD+A-+BdX by by 
b72- a7 

(136) ' 

?=nD+ A ,+B bz a- bz 
b7 

From (127) and (130) if we solve the equations 

bTdx> b2X 
M ' = C  - dx - 9  b Z X  J ' = C  ax - - vX ax brax a r  araX D ' = C l -  

for - - a2y - we find analogously as above arax' a T a t  a r a i  
bx a x  -- a" -ZD'+A' -+B'- 

b T b X  a r  

GbX = b7 

a Z z  az a z  

mD'+A' - + B ' z  bY dY 

-=nD'+ A' -+B' -. 
b7bX d r  bX 

From (127) and (130)) if the equations 

D"=ZI--,  aZx M"=X----, ax vX Jf'=E--  bx b2x 
b XZ a r  aX= ax2 

a22 a2y a22 

ax2 ax2 ax2 
are solved for ---! -) - as above we find 

bX b X  
a x2- b T  bX 
_- a" ID"+ A'' -+B" - 

_- i D " f  A" -+Bff az 

(137) _- "Y ,,,Dl;fAIf -+BtI by - by 
bX2- b7 a h  

_. bz 
bX2- b7 dX 

Squaring respective members of (136) and adding we obtain 

b2x m2+n2)D'2+A'2C + 2 A ' B ' C z z +  a x  
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Since I ,  m, n are direction cosines of the normal to the surface and this normal is 

orthogonal to the tangents to the parametric curves whose direction cosines are given 
by, (41), me have Z2+m2+n2=1; and the last two terms of (138) are zero. 

bx a x  
br  bX -F so that we may write (138) as ax From (37), C (b) =E, =G, - -- 

E (""y= dTbX D'2+A'2E+B'2G;2A'B'F 

= D"+A'(A'E+B'F)+B'(B'G+ A'F). (139) . .  

From (129) we see that (139) may be written finally as 

If me multiply respective members of (135) and (137) together and add the products 
we obtain 

b2x b2x 2 

. C ( p) =(P+ m2+ n2) D D" + A A" E (gy+ B B " x  (2) + 

(BAN + AB")x b~ bx &+(AD" a x  + A" D)  (1 g+ m 2 + n g)+ 
(141) 

a x  az (B D" +By D)  (E bX + m + n =)a 

Analogously as for (138), we may write (141) as 

=DDff+AAffE+BB"G+(BAff+ABff)F 

= D D"+ A" ( AE + B F )  + B" ( AF+ BG). (142) 

By (129) we may write (142) as 

Now from (140) and (143) we have 

From the second and last of equations (123), by partial differentiation we have 
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From (127) ,  (128) ,  and (129)  we find 

bE bG 

With the values from (146)  and (147)  placed in (144)  and with the value of 
p2= 1 / ( E G - F 2 )  we have finally the Gauss characteristic equation 

b2F b2G b2E 1 bG b E b G  
~ ~ 1 f - ~ f ~ = -  2 ~ _ ~ _ -  ( bhbr br2 bX2)+4(EG-Fz)  [. (5;) - F  bX d7' 

b F b G  

' b E  ax "I ax 
b F b F  b F b G  b E b G  4 F  - - - 2 F  - - -+E - -- 2 F -  - . a r  ax br aT ax ax 

Equation (148) may be expressed equivalently as 

The Gauss characteristic equation (149)  is significant in the theory of the differen- 
tial geometry of surfaces, since it is the condition that the quantities E, F ,  G, D,  D', 
D" must satisfy in order to be the fundamental quantities for a surface. 

Now the linear element of a developable surface may be reduced to the form ds2= 
dT2+dX2. (See the discussion following equation 66 . )  Hence E=G=1, F=O. From 
(149) we have therefore that DDf'-D'2=0 and from (113)  that R,=O a t  every point 
of a developable surface. 

We shall need equation (149) subsequently to prove an important property of the 
spheroid, namely that the only geodesic isometric orthogonal system on the spheroid 
is that formed by the meridians and parallels. 

THE SPHEROID 
The theorems we have discussed apply to surfaces in general, hence to surfaces of 

revolution, and therefore to the sphere and spheroid. We avoid discussion of surfaces of 
revolution as such but proceed directly to the spheroid. 

I n  figure 18, AP=N is the normal to the meridian ellipse at P(r ,  z )  and clearly 
r = N  cos+. The equation of the meridian ellipse is r2(1-ec2)+z2=a2(1-e2), where 
a is the semimajor axis, e the eccentricity. a ,  e ,  and b ,  the semiminor axis, are 
connected by the relation bZ=a2(1 -e2 ) .  Since the slope of the tangent at P is 

(1-e2), the slopc of the normal a t  P, being the negative reciprocal of the dz  r 
d r  z 
-=-- 
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d r  Z 

dz r(1-2) slope of the tangent, is,--===tan +, hence 

z=r(l-e2) tan +=N(l--e2) sin+. 

I? 

1; 
A 

\ 
\% 

(1 50) 

FIGURE 1s --Meridian ellipse of the spheroid. 

Returning the value of z in terms of T given by (150) to the equation of the ellipse 
we have r2+r2(1-e2) tan2+=a2, or r2(1-e2 sin2+)=a2 cos2+, whence 

(1 5 1) r=a cos+IJ1-e2 s in2+=N cos+. 

PRINCIPAL RADII OF NORMAL'CURVATURE OF THE SPHEROID 

' From the latter of the tlwo equalities of (151) we have 

N=a/JI -e2  sin2+. 

. 

formula for the radius of curvature of a plane curve, 
The radius of curvature of the meridian ellipse may be found from the usual 

r 
From the equation of the ellipse, r2(l-e2)+z2=a2(1-e2), we have z'=--(1--ez), 

Since the slope of the normal is tan 6, that of the tangent is-cot 4. 

From (150) and (152) we have 

Z 

z"= - (1 + 2'') - e 2  

Z 

. l+cot2+-eZ -- CSC2lj-€2 Hence z'=-cot+,and z"=- - 
Z Z 

a(1-e2) sin+ . 
J 1 - € 2  sin24 z =N(1- e') sin += With these values of z', z", .  and z placed in (153) 

we have 

NOW in figure 19, the ellipse of figure 18 has been revolved about its minor axis 
through an angle A, the point P moving to the point P', and the spheroid being gener- 
ated has been referred to the x, y, z coordinate system as shown. It is seen that T= 
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Ncos 4 is the’radius of the parallel in latitude 4 and we have Z=T cos!X=N cos cos X, 
y=r sin X.=N cos 4 sin X, and z is still given by (1 50), so that we have the parametric 

1 

FIGURE 19.-Generstion of the spheroid from the rotation of the 
meridian ellipse. 

representation of the spheroid in terms of geodetic latitude, 4, and longitude, A, namely 

(155) 

where N is given by (152). 
If we divide the members of (155) by a, a, and b ,  respectively, then square and 

add, making use of the relation b2=a2(1-e2), we obtain the well-known rectangular 
equation of the spheroid, . 

x=N cos 4 cos X ,  y = ~  cos3 sin A ,  z =N(I -e2)  sing, 

MEAN RADIUS OF THE SPHEROID AT A GIVEN POINT 

From the reciprocal of equation (118) we have the radius of curvature of a normal 
section in given latitude 4 for any azimuth a, namely 

To find the mean value of pn about a point in latitude 4, we make use of the theorem 
of the mean for a function. The theorem is easily demonstrated by means of figure 20. 
The slope of the tangent to the curve y=f(x) is given byy(s),  where the prime denotes 
differentiation, and at  the point Q [ t ,  f(t)], the slope is f’(t). The slope of the chord 

PS isf(d)-f(C) and there exists a point Q as shown such that the slope of the tangent - 
at Q is equal to the slope of the chord PS where c<[<d. 

d-e 
That is, a value t can be 

found such that 
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At such a point f(f) is defined as the mean value of the function f(z), csxsd. 
By definition of the definite integral we have 

Idf ’(zMJ:=f(d)--f(c). 

With this value of f ( d ) - j ( c )  placed in (158) we have 

FIGURE 20.-The mean value of a function. 

which allows us to compute the mean value of the functionf(z), c S z 4 d  by evaluating 
the definite integral of this function with limits c and d. (The primes denoting differ- 
entiation may be omitted in equation 159.) 

Denotingf([) by R, and the limits of a by c=O, d=27r we have from (157) and 
(159) 

R m = % l u  1 f RN d a  

* I 2  R sec2 a d a  

= z m [ a r c  lr tan(-& tan 0 

Thus the mean value of the radius of a spheroid a t  one of its points is the geometric 
mean of the principal radii of curvature a t  the given point, or from (113) it is the square 
root of the radius of total curvature of the surface a t  the given point. Placing from 
(152) and (154) the values of R and N in equation (160) we have 
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LINEAR ELEMENT OF THE SPHEROID 

Let us compute the fundamental quantities E ,  F ,  G and D ,  D', D" as given by 
(37) and (lol), namely 

where I, m, n as given by (95) are 

p= 11 J E F F .  
From (155), by partial differentiation with respect to 4 and X, we have 

'Os [(2N-3R) sin2 44-N], -=-R sin 4 cos X, ---cos X (Rsin +)'=-- a4 a42- Ncos 4 
bX a22 

hY -R sin 4 sin X= --7 
ax b2X b 2 X  

a4 -=-Ncos 4 sin X=-y, --=-Ncos 4 cosX=-x, -- . ax bX2 a4ax 

From (162) and (163) we find 

E=R2, F=O, G=N2cos2+, l=-, X m=-, Y n=sin 4, D=-R, D'=O, D"=-N cos2+. 
N N  

(1 64) 
Since F=O, we know from (42) that the parametric system is orthogonal. We 

knew this anyway since the meridians are orthogonal to the parallels. Since D'=O, we 
know from (113) and (114) that the parametric curves, the meridians and parallels, 
are also the lines of curvature for the surface, D'=F=O being the required condition. 
We knew this also from an elementary property of the lines of curvature, which we 
have not proved in general here, namely that consecutive normals along lines of cur- 
vature intersect. Hence N and R, as given by (152) and (154), are the principal radii 
of curvature of the spheroid at  a point P in latitude 4. We will find Nand R entering 
all the mapping formulas to be obtained. As has been shown, R is the radius of curva- 
ture in latitude 4 of the meridian ellipse, while N is the distance along the normal from 
the point P in latitude 4 to the minor axis of the spheroid. 

With the values of E, F, G from (164) placed in (36) we have the linear element of 
the spheroid, 

(1 65) 
R2 ds2=R2dqP+N2 cos24dX2=N2 cos2$ (F sec2+d42+dX2). 
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CURVES ON THE SPHEROID 

Curves on the spheroid will be represented by the integrals of differential equations 
That is, any integral curve 

on the spheroid, expressed in terms of the curvilinear parameters (b and X, is of the 
form f(#~,h)=O. We will be interested here in the following three curves on the 
ellipsoid and in their projections on a plane: The geodesic, or the geodetic line; the 
loxodrome, or the rhumb line; the curve of alinement. 

. as given by (51) and (56), where T has been replaced by 4. 

. 
THE GEODESIC 

The geodesic is fundamentally defined as the curve of shortest distance between 
two points on a surface. From the integral for arc length we may, by the calculus of 
variations, determine the conditions on the integrand for the arc length to be a mini- 
mum. From these conditions may be deduced the property that the osculating plane 
a t  each point of a geodesic contains the normal to the surface, or equivalently that 
a t  each point of a geodesic the principal normal to the curve coincides with the 
normal to t6e surface. We will adopt this last property as the definition of the geodesic 
on the spheroid, find the differential equation of the curves and show that the in- 
tegral curves depend on the evaluation of an elliptic integral. 

If the principal normal to a curve on a surface is to coincide with the normal to 
the surface a t  each point of the curve, then the corresponding direction cosines of the 
two normals must be equal. 

From (87) and (164) the direction cosines of the principal normal and of the normal 
to the surface are respectively Z2=plx", mz=ply", n2=p1z" and Z=x/N, m=y/N,  
n=sin 4. Hence we must have 

Now the two equations (166) are not independent as can be easily shown. From 
the first two members of (166) we have the differential equation xy"-yx"=O, a first 
integral being a t  once 

xy'-yx'=c. (167) 

Since the derivatives of (167) are with respect to arc length, s, then 

a x  bx  by by With the values of -7 -t -, - from (163) we have b+ bX dr$ bX 

a4 ax x'= -R sin .+ cos X --N cos + sin X -7 
a s  d s  

a4 ax y'=-R sin 4 sin X -+N cos + cos X - a s  d s  

and these values of x' and y' with those of x and y from (155) placed in (167) give 

983903-83-6 
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where, as noted before, r=N cos 4 is the radius of the parallel of the spheroid in lati- 
tude 4. 

Eliminating ds between (165) and (168) we obtain the differential equation of the 
geodesics on the spheroid, 

C2R2dCp2 + N2 cos2+ (c'- N2 Cos24)dX2= 0. (169) 

From (169) we have 
, 

(i 70) 

I n  figure 21, if a is the angle which the element of arc length, ds, makes with-the 

With this value of - placedIin dx sin a dx 
ds meridian, then N cos 4dA=ds sin cy, or -=-e d s -  N cos 4 

(168) we obtain 
N cos 4 sin a=c,  (171) 

which is the fundamental characteristic of the geodesic on the spheroid or on any 
surface of revolution. That is, a t  each point of a geodesic the product of the radius 

FIGURE 21.-l'he linear element of the spheroid as obtained from a differential right triangle. 

of the parallel and the sine of the angle which the geodesic makes with the meridian 
is constant. When a=90*, the geodesic is orthogonal to the meridian and c=ro= 
NO COS 40. When the geodesic crosses the Equator, 4=0, and r=u, so that c=a sin (YO, 

where a. is the angle which the geodesic makes at  the Equator with the meridian. 
I n  (170) we note that for the geodesics to be real N2 cos2 +--c22 0 or N-COS 41 

c=No cos 4o and that c=ro=No cos (rtdo)=N0 cos 40. This means that the geodesic 
oscillates between two parallels which are symmetric with respect to the Equator, the 
geodesic being tangent alternately to each parallel as shown in figure 22. 

From (170) we have 

and with the values of N and 1 U 2 - - C 2 2  The transformation sin +=k sin e, with -i=- k a2-c2 
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RIfrom:(152) and (154), reduces (172) to 

or 

where n is the elliptic integral of the third kind in Legendre's notation. 

From (169), if c=O, and 4<", we have dA=O,  or A=c2. But c=a sin ao, and 

c=O when aO=O which is t,he condition on a. if the meridian is to be 'a geodesic. 
Thus the meridians on the spheroid are geodesics. W e  knew this from geometrical 

2 

considerations. 
Equator would 
knew this from 

FIGURE 22.-A nonmeridian geodesic of the spheroid, 

That is, the shortest path between the ends :of a diameter of the 
Again we 

If we climinate 
obviously be the plane elliptic path through the poles. 
equations (126) since E=R2 is a function of cp alone. 

dcp Jr2-a2 
ds Rr dA between (165) and (168) we obtain -=- , where r=N cos 4 is the radius of 

the parallel in latitude cp and we have placed c=a sin -=a, for ao=- is the required 

condition on a. if a parallel is to be a geodesic. If a parallel is a geodesic then 4=c1, 

*=O and we have Jr2-a2=0,  since Rr#O for cp<"- Thisgivesr=a. Thatis, the 
d s  2 
only parallel which is a geodesic is the Equator. Again this was clear geometrically 

a a 
2 2 
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3 

since the normal (the radius) of a parallel makes the angle 4 with the normal to the 
surface in latitude + except at the Equator where 4=0. Thus the only plane geodesics 
on the spheroid are the meridians and the Equator. 

THE RHUMB LINE OR LOXODROME 

This curve on the spheroid is such that it meets consecutive meridians at  the 
same angle. Prom-figure 21, we have 

N cos + dA 
Rd+ 

tan a= (174) 

With a constant, equation (174) is the differential equation of the family of curves. , 

Writing (174) in the form dx= tana- - sec + d+, the integral curves are R 
N 

X-A,,=I tan a,, 
where 

I = l $ s e c +  d+=ln tan -+- 4 l-esincj~ >'"I. [ (I 2)(l+csin 4 

(175) 

The integral, I ,  of (176), as will soon be shown, is the key to the conformal repre- 
sentation of the spheroid upon the plane. 

THE CURVE OF ALINEMENT 

The curve of alinement is the locus of a point on the spheroid which moves so 
that the plane through it and two fixed points on the spheroid is normal to the surface 
at the moving point. 

If the point P(x, y ,  z )  on the spheroid lies in a general plane, its coordinates satisfy 
an equation of the form' 

AX + By+Cz = 1. (177) 

If the plane (177) is to be normal to the surface then A, B, C are proportjonal to 
the direction cosines of a tangent to the surface at  P, and since the normal to the 
surface a t  P is orthogonal to every tangent to the surface at  P, we must have 

1 A+ mB + nC = 0. (178) 

From (156), placing b2=u2 (1--~2), we have f(x, y ,  z)=(l-e2) (x2+y2)+z2- 
Since the direction cosines of the normal u2 (1  --e2)=0, as t'he equation of the spheroid. 

df df af df . df. 
dx by bz bX bY dZ 

to the surface are proportional to -7 -7 -- we have l = v  df, m= v -, n= v - 

Now-=2 af (1-ez)x, -=2 bf ( 1 - 2 ) ~ ~  -=22. bf Hence 1=2v (l-ez)x, m=2v (1-e2)y, 
ax dY b2 

n=2vz. Since z=N(l-r2) sin 4, 
wehavesin4=z/N(l-e2) and thenfrom (164) we have l=x/N, m=y/N, n=z/N (1-2). 
Whence multiplying these last through by 2Nv(l-2) we have 1=2v (1--e2)x, m=2v 
(1-e2) y, n=2vz. 

We could have obtained these directly from (164). 

These values of I ,  m, n placed in (178) give 

( I - - E ~ ) x  A+(1-e2)y B+zC=O, (1 79) 

which is the condition that the plane (177) at  the point P(x,  y, z )  shall be normal to the 
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surface. 
yl,  zl), and P2(x2, y2, z2), on the surface and the conditions for this are 

But the plane (177) must also pass through two arbitrary points, Pl(zl, 

From (177), (179), apd (180) we have enough equations to eliminate A, B, and C. 
We accomplish this by writing the eliminant of the four equations as follows: 

X Y 2 1 

(1-2)x (1-2)y z 0 

5 1  Y1 21 1 

5 2 '  Y2 2 2  1 

Expanding (181) we obtain the equation 

CX z - Hy z - U x - Vy - WZ = O ,  

where C=r2(y2-y,), H=E2(z2-x1), U=( l  - ~ 2 ) ( ~ 1 ~ 2 - - y 2 ~ l ) ,  
v= ( 1 - 2) (2 1x2 - z ZXl), w = (XI y2- 2 2  y1). 

Equation (182) represents a hyperbolic paraboloid and is the envelope of the 
plane (177) under the given conditions. That is, the curve traced by P(x,y,z) on the 
surface, the curve of alinement between the points PI and P2, is the intersection of the 
hyperbolic paraboloid (182) and the spheroid. 

By means of (155) the coefficients C, H ,  U ,  V ,  Wof (152) may be expressed in 
terms of the latitude and longitude of t,he points P1(xl, yl, zl) and P2(z2, y2, z2 )  since 

xl=Nl cos41 cosX1, yl=N1 sinh,, zl=Nl(1-c2) sin41 

x2=N2 cosX2, y2=N2  COS^^ sinX2, z2=N2(1-c2)  ~ i n 4 ~  

and (182) may be written as 

N(l -e2)(C cos A-H sin X) sin 4-U cos X- V sin A- W(1 --E') tan +=O.' (1 83.) 

If we place cos X=1/1-sin2X in (183) we obtain the quadratic (P2+Qz) sin2X+ 
2&S sinX+S2--P2=0, whose solution is 

-&S& P ~ P 2 + Q 2 - S 2  
P2+ Q2 

sin X= 7 

where P, Q, S are functions of 4 alone, given by the relations P= [CN(1 --e2) sin 4-U], 
(185) 

The curve of alinement may be described physically as the path of a theodolite, in 
adjustment, which is placed so that the plane of its vertical circle always passes through 
two fixed points. It is very near the geodesic between the two points. 

Q=[HN(1-e2) sin4+V], S= W(1-c2) tan+. 

CONFORMAL PROJECTION OF THE SPHEROID UPON A PLANE 

We have already found that in order for a surface to be mapped conformally 
upon a plane, we must have, from (66), ds12=m(dT2+dX2). Prom (165) we have 

dSZ2=N2 cos24 ($ sec2 rpdrp2+dX2 . ) 
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R 
N Hencewe must havedT=-sec 4d4, and m=N2cosZ 4, that is, mis  the square of the radius 

of the parallel in latitude 4. Note that dr may be written dr=- which is the 

ratio of the element of arc along the meridian to the radius of the parallel in latitude 4. 

(See fig. 21 on p. 64.) The value of the integral, r=.(6” $ sec 4 d4, as noted before, 

is given by (176), and we mentioned in connection with (176) that this integral was 
the key to the conformal projection of the spheroid upon a plane. That is, the repre- 

sentation X=X, ~=l sec 4 d4 maps the spheroid conformally upon the rX-plane. ’ 

Since r is a function of 4 alone (Both R and N are functions of 4 alone.) we have for 4 
a constant (which gives a parallel on the spheroid) the straight line r=c, X=X parallel 
to the X-axis. Similarly when X is a constant (which gives a meridian on the spheroid) 
we have the straight line X=c, 7=7(4) which is parallel to the 7-axis. That is, the 
parallels and meridians on the spheroid are mapped into straight lines parallel to the 
X- and 7-axes. This is actually the Mercator projection of the 
spheroid upon a plane as will be demonstrated later. But the point X,r has the complex 
representation X+ir in the superimposed complex plane or z-plane as discussed before, 
and we have already seen that the analytic function (5) maps the z- or X7-plane con- 
formally upon the w- or xy-plane. 

(187) 

N cos 4 

(See fig. 4 on p. 24.) 

Now from (9) we have 

dS12=dxz+dy2=fl(X- - i ~ ) f ’ ( X  + i ~ )  (d T’+ dX2). 

Prom (186) and (187), analogously as we had for (30), we have 

-- dSi2- f’(X - i ~ ) f ’ ( X  f i r )  (d r2+dX2) 
ds,2 N 2  cos2 4 ( E 2  - sec2 4d+2+dX2 

-f ’(X-i~)f’(X - + i r )  (d T2+dX2) 
N 2  COS’ +(dr2+dX2) 

_f’(X - --i 7)f’(X + i r )  
N 2  cos2 , 

where we know from (16) that the productf’(X--ig)fl(X+i7) is a real function. 
We can finally state that the analytic function 

Z+@/ =f(h & i7) , 
where, from (176), 

7=Lag sec 4dd=ln 

represents all conformal mapping of the spheroid upon a plane. The form of the func- 
tion f ( X & i i 7 )  is determined by the initial required conditions of the desired projection, 
that is, by which line or lines in the projection are to be held true to scale, and by the 
required geometric form of the map elements corresponding to meridians and parallels. 
The mapping equations will then be given by equating real and imaginary parts in 
(189) to obtain the real maFping coordinates x=x (X, 7 ) )  y=y  (X, 7 )  which must satisfy 
the Cauchy-Riemann equations (15). 
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Prom (16) and (188) we have 

which is the magnification or the scale a t  any point of the projection. 

THE GEODESIC ISOMETRIC SYSTEM ON THE SPHEROID 
From the discussion of isometric orthogonal systems, following equation (69), we 

see that equation (186) with d7=- sec 4 d4 establishes such a system on the spheroid 

in theformds2=r2(d72+dX2), where r=N cos 4 is the radius of a parallel in latitude 4. 
The parametric curves are the same and the meridians, X=c2, are geodesics on the 
spheroid. Thus we have a geodesic isometric orthogonal system of curves on the 
surface. We will now show that this system formed by the meridians and parallels 
is the only such system possible on the spheroid. 

R 
N 

From (113), (152) and (154) we have 

Since ~ < 1 ,  RT>O for all values of 4. That is, the spheroid is a surface of positive 
curvature. 

Now from (126) 
geodesics is for E to 
orthogonal if F=O. 

we see that the condition for the parametric curves X=c2 to be 
be a function of 4 alone. From (42) the parametric curves are 
The linear element is then of the form 

ds2= R2d @+ r2d X2 (192) 

where E=R2 is a function of 4 alone and G=r2 is, in general, a function of both X and 4. 
The parametric curves are not changed if we replace Rd4 by d+ in (192) but E is now 
unity, that is, (192) becomes 

ds2 = d 42 + r2d X2. 

U G  
V E  

(193) 

From (69), an orthogonal system of parametric curves is isometric if E and G 

satisfy an equation of the form -=- , where U is a function of 4 alone and V is a 

function of X alone. If we write this condition in terms of logarithms as log-=log U- G 
E 

I b4bX a2 (log $) =g4 (log:) = 0 , hence log V ,  then by partial differentiation we have ~ 

either of the latter equations is equivalent to -=-- 
U G  From (193) E= 1, G=r2 whence V. E 

a2 

b4bX we have - (log r2)=0,  whence log r=logp+log p, or r=pq where p is a function 

of 4 alone, and p is a function of X alone, and (193) becomes then 

d s2 = d +2 f p2p2d X2. (194) 
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With the values of E=l, F=O, G=p2q2 placed in equation (149), remembering 
that p is a function of + alone and p a function of k alone, we have DD”-DO’2= 
- p q 2  w. b2P With this value of DD”- 0’’ placed in (113) we have 

Equation (195) is an ordinary differential equation for which solutions exist if 
R p = O ,  RT=a constant, or if RT is a function of + alone. We have seen that if RT=O, 
the surface is developable; if R, is a constant, the surface is one of constant curvature 
(for example, a sphere). On surfaces of revolution, particularly upon the spheroid 
as seen from equation (191), R, is a function of the latitude alone, whence equation 
(195) has solutions. ,Therefore the only geodesic isometric system on the spheroid is 
the graticule formed by the meridians and parallels. Note that the linear element 
(192), with r=N cos 4, is identical to that of the spheroid as given by (165). 

SURFACES OF CONSTANT CURVATURE, THE APOSPHERE 
’ 

Surfaces whose total curvature, R, as given by equation (113), is the same at all 
Now we can write equation (194) as points are called surfaces of constant curvature. 

as2= d +‘f Gdx’, (196) 

and the differential equation (195) as 

where p2=G is a function of + alone. 
tion (193) where p=r=N cos 4, and it is true of any surface of revolution. 

an ordinary differential equation of second order, namely 

This is true for the spheroid as seen from equa- 

Then equation (197) may be written as Let RT=l/a2 where a is a real constant. 

d2G dh dh dG dh 
d+’ d+ dG d+ dG then- =-=- - -=h - 7  andequation(198)maybewritt.en 

h2 4 2h dG 
G G2 a2 G a  , which integrates at  once to  give -= -- GSC,  whence - dh-h’-=-- dG 

dG - 

=9, whose integral is COS-’ *=$+a, or 
a,,CjG 

aJC a Equation(199)may be written- 
J1-4G/a2C a 

JG=c cos (E+d)l 

where we have placed c=af i /2=a  real constant. 
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The surfaces given by (200) are called spherical surfaces and they depend upon 
the values of the constants of integration c and d. A change in d means only a differ- 
ent choice of the parallel d=O, so let us take d=O. The linear element (196) becomes 
then with the value of G from (200), 

(201) 

’ 

d s 2 = d ~ q - C 2  cos2-dX2, d , 

a 

d 
a the radius of the parallel being r= a = c  cos -=r(+) .  

To obtain the equation of the meridian curve we refer again to figures 18 and 19 
(pp. 59 and 60). Prom figure 18, the equation of the meridians is z=f(r), where r = r ( d ) .  
From figure 19 we have x = r  cos X,y=r sin X. Hence from equations (37) and (201) wc 
have 

=r” cos2 sin2 X+jf2(r )r f2  

whence 

Or 

d C d  
a a a  From r = c  cos -, we have r’= -- sin - and with this value of r’ placed in (202) 

ut! have 

which are the parametric equations of the meridian curve in terms of 4 as parameter. 
The parametric equations of the surface in terms of 4. and X are then ’ 

a 
d d x = c  cos-cos A,  y=c cos- sin X, z=  a a 

There are three types of surfaces given by equations (203) or (204), according 
as c=a, c>a, c<a. 
1. c=a. From equations (204) we have x=a cos - cos X, y = a  cos - sin A, d d 

a a 
z = s c o s  a d d+=a sin - 7  9 which, by comparison with equations (32), or by squaring 

a 
and adding respective members, is seen to Le a sphere of radius a. 

c 2  6 2. c>a. sin2 -5 1, a a 
or sin - 5- and hence r = c  cos - >O for all allowable values of - e  When d=O, we 

have r=c ,  z=O. When sin -=-, ro=c cos -=c t ‘ l -a2/c2=4c2-a2 ,  and zo= 

sosin-’ ;; ; 
1 -- sin2 - &=do. Thus the surface is made up of zones bounded by the 

minimum parallels ro= Jc2-a2, the greatest parallel of each zone being of radius c as 
shown in figure 23. 

I 

For z to be real we must have from equations (203) or (204), 

+ a  d 9 
a - c  U a 

d a  d 
a c  U 
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3. c<a. I n  this case we have 0 6  r=c  cos - Sc. For r=O we must have 
+=uar/2 where u is [any odd integer. If v is the angle which the tangent to the 

c7a . 

( a +I 

I 
I 

FIGURE 23.-The aposphere, zonal type. 

meridian makes with the axis of rotation (the z-axis in fig. 18, p. 59), then v+?r/2 is 

the angle which the tangent makes with the 7-axis, hence tan (v + 

4 With the value of +=ua r/2, u an odd integer, for which r=O, we have sin a= 1, 

C . c  whence tan (~ ,+~ /2 )=-co t  vo=- dT/:l 1-- - or sin v0=-, vo=sin-' -1 and zo= a a 

lUQ'dl -$ sin2 d4=do. Thus it is seen that the surface is made up of a series of 

spindles as shown in figure 24. 
The integra1 for z in equations (204) where c#a, may be expressed in terms of 

elliptic functions. 
We will now show that the two surfaces, as given by equations (204) where c Z a ,  

are applicable to the sphere with the meridians and parallels of each in correspondence, 
that is, developable upon the sphere in the same manner as cones and cylinders upon 
the plane-small lengths are equal as well as corresponding angles. Or stated in 
another way, the ratio of their linear elements about any common point must be unity. 

If we write the linear element (201) with c=a, replacing + and X by 7 and - 
respectively we have ds2=d$2+a2 cos2 - 4 d P ,  and this is identical with the linear 

a 
which establishes the applicability and the element (201) if we have ?=+, X=c 

a 
correspondence of parallels and meridians. 
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Let us consider a zone between the parallels 4o and c$~ on the surface whose linear 

element is given by (201). A point of the zone is determined by values of 4 and X such 
that The parametric values of the corresponding point on the 2 4 2  40, 2 ~2 X 2 0. 

c c 
a -  a sphere are such tha t  41z;z #J~, 27r -2 X2 0, since z=4, X=- A .  

Hence when c<a, the given zone on the surface does not 'cover the zone on the 
sphere between the parallels 4o and 41. When c>a, it not only covers it? but overlaps it. 

C<f f  

I 
I 

I 

FIGURE 24.-The aposphere, spindle type. 

We note that with RT=-1/a2, the differential equation (198) is integrable, the 
resulting family of surfaces being called pseudospherical surfaces. They are of three 
types, hyperbolic, elliptic, and parabolic and are of interest but not very useful for 
conformal mapping of the spheroid since they are not applicable to one another with 
meridians in correspondence. 

The spherical surfaces represented by the linear element (201) and parametric 
representation (204) where c #a, have been employed in the conformal mapping of the 
spheroid by Brigadier M. Hotine. (See Orthomorphic Projection of the Spheroid, 
Brigadier M. Hotine, Empire Survey Review, Vols. VI11 and IX, Nos. 62-65, 1946- 
1947.) Hotine obtains the equation of the surfaces in the form 

p = A  sech B(T+C), 

where p is the radius of the parallel and T is the isometric latitude, B, C are arbitrary 
constants and A=B/P where P2= l/RN=RT=real constant. To show that this equa- 
tion and equation (200) are equivalent we have from (189) with e = O ,  T=ln tan 
(:+;) which is the expression for the isometricWitude on the sphere. From this we 

If sin4 eT-e-7 

have er=tan (:+:)=.,/ 9 or sin 4 =-- - tanh T ,  whence cos2 4= 1 - tanh2 1- sin4 er+e- l  

T=sech27, orcos4=sech T .  Hencewehaver=p=ccos ($+d)+A sech B(T+C) .  
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Hotine'calls these surfaces where B# 1 (B= 1 gives a sphere) apospheres, attribut- 
ing the name to C. J. Sisson of London University. The spheroid is projected confor- 
mally upon the plane by the series of conformal projections, spheroid to aposphere, 
aposphere to sphere, sphere to plane. 

The basic idea in connection with oblique projections of the spheroid is not new 
and such a projection Ihay be found in Jordan-Eggert, Handbuch der Vermessungskunde, 
Vol. 111, Second part, ChapterV. The development by Hotine with closed formulas 
involving hyperbolic functions and the aposphere which reproduces the surface of the 
spheroid to a high degree of accuracy over a considerable area, gives much simpler 
working formulas after certain functions involved have been tabulated. 

The method is also useful for the horizon stereographic projection of the spheroid, 
and complete formulas for this and several other conformal projections through the 
aposphere are presented by Hotine in the work cited above. 

MAP ELEMENTS 
We have seen that an arc element of the spheroid may be expressed in the*form 

dS2=r2 (dr2+dX2), where r=N cos 4, dr=- d 4  and it must be in this form if the spheroid 

is to be developed conformally on a plane. The map coordinates will in general be 
functions of 4 and A, that is, x=x (4, A), y=y (4, A). The map arc element will then be 

R 
r 

I 

I n  order for the mapping to be conformal we must have from equation (64) 

F d r d X  G 
ds2 r2 ( i -dr2+2- - -  rR +p dX2) 

= k 2 ( r ,  A), d S 2 -  r2 (d '+ d X2) 

and necessarily then 

Note that from (206) with the values of E ,  F ,  G from (205) we have the conditions . .  

~ 5 ; r + ~ ~ = O ,  bxbx byby (g)  bx +(G) by =(x> bx +(gy, which are equivalent to 

bx bx by -="f -,--= A-. 
b r  d X  bX br  

These are again the Cauchy-Riemann eiuations (15) as was to be expected. 

ax  a x  bY bY 
b7 bX d r  bX 

Now dx=- d r  +- d x ,  dy=- d r  +- dX.  I n  hgure 25, d s  is the projection of 
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FIGURE 25.--Elements of the projected geodesic and the rectilinear chord. 

the spheroidal arc length d S  as shown in figure 21 (p. 64). If @ is the angle which the 
projected arc d s  makes with the map x-axis, then 

NcosCpdX dX R 
R d+ d+ r 

From equation (174) tan a=- -1 or -=- tan a. 

dX d x  dCp R r 
d r  dCp d r  r Now -=- - -=- tan a . z=tan a. Hence (208) may be written 
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Solving (209) for tan a we have 
--- b y  a x  tan p 

--- by b x  tan p' 
br br 

ax ax 
tan a=- 

Equations (209) and (210) give the relations between the azimuth, cy, of a spheroi- 
dal arc element and the direction, p,  of its projection on a conformal map. 

CURVATURE OF PROJECTED MERIDIANS AND PARALLELS 

From equation (153) writing - for z' we have the usual formula for the curvature dY 
dx 

of a plane curve given by 

d2u 

For the projected curve, the coordinates x ,  y of any point on it will be functions of 
a single parameter say s, the arc length along the curve. 

Then 

- y '/z' =f(S). 

d'y d j  d s  x'?J'"-~J'x'' . -= 1 x'~''-Y'x'' 
d x 2  d s  d x -  X '2 2' 5 ' 3  
-=-. -- 

dY d2Y Wit,h these values of -> placed in (211) we have then dx d x  

(212) * 

where x and y are functions of the same parameter and differentiation is with respect to 
that parameter. 

Now when is constant, we may replace the derivatives in (212) by partial deriva- 
tives with respect to 7, that is, for a meridian we may write 

a2y b y  b2x 
1 - b r d 2  d T b T 2  

- _-__ 
(2 13) -_ 

From (205) and (206) it is seen that the denominator of (213) is G3/' SO that 

(214) 

b2x- b2y b2x b2y. By differentiating the equations (207) we obtain 7- T;; =~X=TK~, 
a7 bXb 
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Equations (215) are the well-known Laplace equations which analytic functions 
must satisfy. 

With equations (207) and (215) we may write (214) as 

1 bG b y  b2y bx b2x By differentiating G in (205) we obtain - -=- --+- -, hence we have 2 a x  ax bx2 bx br.2 

Hence the curvatures of the projected meridians and parallels in a conformal projection 
are given by 

1 bG-t 1 bG-; bG-t d+ 
EA---- bX ’ E = -  b7 a+ dr’ 

where, from (187), G=f’(x+ir)f’(k-i~), G being formed from the map coordinates 
x = x (+, A), y = y (4, A) of the conformal projection according to (205). 

(216) --___. - - - 

CONVERGENCE OF MAP MERIDIANS 
The convergence of the meridian through any point on the map is defined to be 

the angle between the tangent to the meridian a t  the point and the y-axis. Since the 
projection is conformal, this angle is also equal to that between the tangent to the 
parallel and the x-axis. 

From (209), with a=O, a=90°1 if we let y be the convergence, we have 

CURVATURE OF THE PROJECTED GEODESIC 

d x  d y  d 2 x  d p  d 2 Y -  dp  From figure 25, -=cos p, -=sin p, --,=-sin fi  -7 ,-cos p--. Hence from d s  d s  d s  d s  d s  d s  
(212) we have 

Now from (206) we may write, considering k to be a function of x and yl 

dS=-  1 ds=- 1 d x d x = I d z ,  or 
k k  

S=[Idx,I=- 1 -  J l + y ” = I  (2, y, y‘). 
k (219 
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Equation (219) gives the arc length of the spheroidal arc S corresponding to the 
projected arc s of figure 25, but expressed as a function of the rectangular coordinates 
x, y and the s1ope.y' of the projected curve. 

If S is a geodesic arc of the spheroid, then the integral of (219) must be minimized. 
The integrand, I, must therefore satisfy the equation 

--- bI d (-)=o. bI 
by dx by' 

The differential equation (220), known as Euler's equation, is obtained in consid- 
The ering the simplest case of the calculus of variations of which (219), is an example. 

derivation of this equation may be found in treatises on. advanced c a l c u l ~ s . ~  

dx dY 1 Witch y'=dy/dx=tan p,  -=cos p, -=sin p and I=- lw we have ds ds k 

1 tan p sin@ 
by' k 4 l + y r 2  k secp k ' 

-- a I  1 * Y '  -=- -=--- 

dg ds 

dY ds 
dx, dx With the values of -=tan p, -=sec 0 this last equation becomes 

The values of (221) and (222) placed in (220) give 
a i  (secp-sinptanp)=d(i)  sinp--( a i  ) 

bx k by IC - c O s p =  
1 bk 

k2  bx k2 by 
_--. bk sin p+- - cos p, and from (218) 

. sin p-- bk . cos 8). 
bY 

Equation (223) is the expression for the curvature, u, of the projected geodesic a t  a 

If i.he projected geodesic is referred to the normal and tangent a t  a point, say 
given point in terms of the scale factor a t  that point and the angle P. 

at P I ,  as shown in figure 25, then -=sin dx p and --=cos dY P so that (223) becomes dn d n  

bk 
bn where - is the derivative of the scale factor in a direction normal to the curve. 

1 F. S. Woods, Advanced Calculus, p. 319. 
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PARAMETRIC EQUATIONS OF THE PROJECTED GEODESIC 

In  figure 25, consider the projected geodetic curve, s, to be referred to the normal, n, 
and tangent, t ,  as coordinate axes and suppose both n and t to  be functions of the arc 
length s. That is, n=n(s), t=t(s). We may expand n and t in Maclaurin series about 
the point PI,  that is, 

S2 s3 s4 s5 
t=st’(0)+3 t’f(O)+Z t”’(O)+Z t ’ V ( O ) + ,  tV(0)+ . . , 

(225) 
S2 s3 s 4  s5 n=sn’(O)+% n”(O)+- n”’(O)+- niv(0)+5! nv(0)+ . . . 3! 4! 

2 
Now the differential of arc length is ds2=dn2+dt2, and hence (2) +($y=n”+ 

t’2= 1. The slope of the tangent to the curve at  any point is - -=n‘/t‘ and since the 

curve is tangent to the t-axis a t  the origin we must have n’(O)/ t ’ (O)=O, which is true 
if n’(O)=O, t ’ ( O ) # O .  From nf2+tf2=1 we have with n’(O)=O that t’(0)=1. 

dnldt ds ds 

From (212) and figure 25, the radius of curvature is 

With.n’(O)=O and t’(0)=1 we have from (226) that n”(0)=uo. 
If we differentiate n‘2+t‘2= 1,  u=t‘n” -n’t” successively with respect to s we obtain: 

(227) 

From groups A and B of equations (227) with n’(0)=0, t’(0)=1, n”(0)=uO we 
have finally 

n’(O)=O, n”(0)=uo, n’”(O)= a(, n’v(0)=u,,”-a~, nv(0)=u{”-6u02u~ 
(228) 

t’(0) = 1 , t” (O)= 0 ,  t”/(O)= - uo 2 , t*v(o)=-3UoU;, tv(o)=-(4a,o,”+3~o’~--~~).  

The values from (228) placed in (225) give . 

s3 s4 , s5 

6 8 120 t=s-- a:-- uouo-- (40ao~”3u(2-uo~)- . 

s4 s5 
u;+- (U/-U;)+- ( ~ { ’ ’ - 6 ~ o 2 ~ { ) +  . . . n=- +- s2 s3 

2 ’ 6  24 120 
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Since the curvature, u, corresponding to the point t, n on the curve is also a function 
of s as seen from (226), it may be expressed also as a Maclaurin series in s, namely 

(230) 
S2 

2 6 * * *  

THE DIFFERENCE IN LENGTH OF THE PROJECTED GEODESIC 
AND ITS RECTILINEAR CHORD 

u=uo+u;s+uo“ - + U ; l ’ C +  

From figure 25, d is the length of the chord of the projected geodesic s. If the 
curve is referred to the normal, n, and tangent, t ,  as shown in figure 25, then d2=n2+t2 
and from equations (229) by squaring respective members and retaining terms in s6, 
we have 

(231)  
uou; s6 d2,n2+t2,s2-s4 d- s5 -- __ ( 9 u O u o ” + 8 u O ~ 2 - u ~ ) - .  . ., 12 12 360 

whence 

d = + T ? = s J l - &  [uo~+uou;s+- S2 (9u0u/+su;2-uo4)+ . . .I. 
30 

Expanding the radical by the binomial formula and retaining terms in s5 we have 
finally 

( 7 2 u o u / + 6 4 u o ~ 2 - 3 u ~ ) -  . . . d,s-s3 (T02+4 ao-- s5 

24 2 4  5,760 
or 

From equation (230), if u2 is the curvature at the midpoint of the geodesic arc s, 

we have, replacing s by s/2, u2=uO+u0’2+uo s ‘,, %+. s2 . . , or u o = u 2 - u o ’ ~ -  n e- 
2 g o  8 

and this value of uo placed in (232) gives 

s3 s5 

24 5,760 
. 

s-d=--Uz2+- ( 1 2 u ~ u ~ + 4 u ; 2 - 3 u 2 ~ ) +  . . . (233)  

THE ANGLE BETWEEN THE PROJECTED GEODESIC AND THE 
RECTILINEAR CHORD 

In  figure 25, it is seen that the angle between the chord, d, and the projected geo- 
desic, s, is T1-tl=O1 and tan O1=n/t. With the values of n and t from (229), we have 

S2 s3 S4 . tan 01= - go+- a;+- (U,,”--U:)+- (U;”--~U:U,,’>+ . . .I. [l 6 24 . 120 

1 [1+; u:+g s3 uou,,’+. . . 
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u3 From the series for tan-' u=u-- + . . ., with &=tan-' u, we have 3 

(235) 
tan3 O1 

3 

From (234) we have to terms in s4, - =- uZ+- a: a,,') and mit>h this value 

&=tan el-- + . . .  
tan301 s3 S4 

3 2 4  2 4  
and that of tran el from (234) placed in (235) we have to terms in s4, 

(236) 
S S 2  s3 S 4  

2 6  2 4  720 &=Tl--tl=- ao+- a,,'+- a,,"+- (6a,,'"-a~a,,')+ . . . 
Let us replace s by s/3 in equation (230) and indicate by u3 the curvature one- 

third the distance along the arc s in figure 25. Then ~ 3 = ~ o + -  a,,'+- a,,"+- a{"+ 

. . . , and this value of uo placed in (236)  s S 2  s3 . . . , or U O = U ~ - -  a,,'-- a,,"---- 162 go"'- 3 18 
gives to terms in s4, 

S S 2  s3 

3 18  162 

s2 s3 s4 

2 6 36 324 2 4  720 
S s2 , s3 54 uO,"+~ a,,'+- a,,"+- - (~u, , '"-u~~u, , ' )  el=T1-tl=- g3-- a,, -- a,,"-- 

(34u0/"-9a32a,,')+ . . . s s3 s4 
=- a3+- a,,"+- 2 72  6,480 (237) 

THE DISPLACEMENT OF THE, PROJECTED GEODESIC 
FROM THE RECTILINEAR CHORD 

In figure 26 we have taken a portion s1 of the projected geodesic s of figure 25 and 
drawn the perpendicular, h, from the point &(t, n) of the geodesic upon the rectilinear 
chord. h is thus the displacement of the projected geodesic from the rectilinear chord 

\ 

FIGURE 26.-The displacement of the projected geodesic from the rectilinear chord. 
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=tan O1. Solving for h we find that n + h  cos O1 
t - h  sin Or and we have from figure 26, 

h=t sin O1--n cos el. (238) 
Now the series expansions for sin 111 and cos 6, are sin ol=el--+ . . ., cos 01= 3! 

1 -'+-- . . . , and with the value of el, from (236) these become o 2 4 4  

2! 4!  
S S 2  s3 

2 6 48 .. sin 01=- u0+- u,,'+- (2'~/-~ao3)+ . . . 

S2 s3 
COS el= 1 -- a,+- 8 12  uouo'- * . ' 

From equations (229) we have with s replaced by SI 

s13 
t=s1-- a?- . . . 

6 

n=- 81, uo+- s13' u,,'+- SI4 (u/-uo3)+ . . . 
2 6 24 

With the values from (239) and (240) placed in (238) we have to terms of 4th order 
in s1 and s, 

h = i  S uo(S-s,)+' ' 8  uo'(s2-s12)+~ u/($-s13)+- a03 ' (3s;2s2+2S14-S1S3-4S13S)+ . . . 
6 24 48 

(241) , 

s For the middle point of the arc s as shown in figure 25, we have sl=- and with this - 2  

We found in obtaining (233) that the curvature at the middle point of the arc s is 

. . . and this value of uo placed in u2=uo+uo Z+U,," s + .  . . or U~=U~-U,,' --a/ -- 

(242) gives to terms in s4 

, s  S2 S S2 

2 8 

(243) 
S2 s4 

8 384 hz=- u,+- ( u / -  u,3)+ . . . 

For. a point one-third the distance from P, to P, as shown in figure 25 we have 
S from (241) with 

s2 4s3 s4 

9 81 1,944 hz=- go+- ~ o ' + - ( 2 6 ~ { - 5 ~ 2 ) +  . . . (244) 

I n  obtaining (237) we found the curvature for a point one-third t.he distance from 

. . ., and this S S 2  S S2 PI to P, to be a3=uo+- a:+- a{+ . . . or uo=u3-- u{-- a/- 3 18 3 18 
value of uo placed in (244) gives to terms in s4 

s2 S 3  s4 

h 3 = c  go'+- 1,944 ( 1 4 a / 1 5 u 2 ) + .  . . (245) 
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THE DIFFERENCE LN LENGTH OF THE GEODESIC ARC AND ITS 
PROJECTION ON THE MAP 

From (206) we have ds=kdS ,  or s= 

Considering k t80 be a function of S we may expand k ( S )  in a scries, namely, 

k d S  where S is the arc length on the 
L I S  

spheroid, s is the projected arc, and k is the scale ratio. 

k ( S ) = k o + ( g )  S+~($)~2+j! - ($)~3+. .  . 

Now k may be expressed as a function of the map coordinates and the map co- 
ordinates may be expressed as functions of the arc s of the projected curve. 

bk dk  ds 
bS ds d S  Hence -=- -=k'k. Similarly we have 

and hence 

b3k 
bS3 Continuing we find ---"3k"'+4k2k'k''+kk'3, so that we may'write 

s = S S k d S = S S [ k o +  kok,'S+Z 1 (k~k, ,"+k~k, '2)S2+ 
0 0 

(k,3k,"'+4k,2k,'k,"+kok,'3)S3+. . .] d S .  

Integrating we have finally 

1 1 s=koS $5 kok,'S'+g (k,2k," +kOk,")S3+ 

(246)  

where ko', k,", k0"' are the derivatives of the scale ratio, k ,  with respect to s and eval- 
uated a t  s=O. 

If we neglect terms greater than S2 in (246) and write k3k3' for koko' which corre- 
sponds to  the point one-third the distance along the projected curve, we obtain 

1 - (k,3k,"'+4k,2k,'k,''+kok,'3)S4+ . . . 24 

(247)  

ds .  Since k is a function 

s=kOS+Zk3k,'S2+ 1 . . . 

1 
k We may also write from (206))  dS=- ds ,  or S= 

of. s we may write . l  

whence 
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and integrating we have 

or 

If we refer to  the midpoint of the projected curve we may write 

S=sr,' [&+(;): s+(;): $+(;>, f f f  s3  6+ . . .] d s ,  

J f  s3  
whence 

( 2 4 9 )  ~=-s+(:), 1 %+ . . ., or ~ - s =  
k ,  

where ('1' are evaluated at the midpoint of the projected curve. 
kz T z  

d k  bk d x  bk d y  Since k = k  [z (s) ,  y ( s ) J ,  then k'=-=- -+- -. d s  b x  d s  b y  d s  But we have seen (fig. 25, 

d y '  bk bk . p; 75)  that @=cos p ,  -=sin p, hence k f = -  cos p+- sin p. Differentiating this 
d s  d s  bX bv 

d p  b2k cos p . --- ' y  sin p - -+7 sin p - b2k d x  b2k last equation we have kJ'=- cos p -+- 
bX d s  b x b y  d s  bx d s  b y  

d o  . 1 d x  With -=cos 0, &= sin p and the value of sin p . -+- cos p . -. d x  b k  Q+- b2k 
d s  b y a x  d s  by d s  d s  d s  

b2k b2k e from (223) we have k " = Y  cos2p+, sin2p+= sin 2p-ka2 ,  where u is the 
d s  dX dY b x b y  . 
curvature of the projected geodesic as given by equation (223) .  

I n  equation (249),  k2,  k2', etc. are evaluated a t  the midpoint of the projected 
geodesic. If we desire these to be evaluated for the midpoint of the rectilinear chord a 
correction term, AS,  must be applied to equation (249) .  To derive this correction term 
we assume that A, as shown in figure 25 (p. 7 5 )  is coincident with the normal to the 
projected geodesic a t  its midpoint which introduces no appreciable error. 

AS=d - s =-- - d n .  s. From (224) and (243) we have a,=& -$, hz=dn= 

S2 1 bk, 1 
%az+. . _. , hence AS=d - s = -- - d n  - s = -- uZ2s3. Applying this correc- 
tion to (249) we have 

Then 

1 bk ,  1 bk (i2 ) kZ2 bn 

(i2 ) kZ2 d n  8k2 

where k,, k,", . ~ . refer to the midpoint of the rectilinear chord. 
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THE MERCATOR CONFORMAL PROJECTION 
Mercator probably arrived a t  his parallel spacings about 1550 by empirical meth- 

ods in attempting to reduce the rhumb line on the globe to  a straight line on the map, 
Edward Wright giving the correct mathematical formulation about 48 years later. 

The historical account is perhaps best summarized in the following quotation 
from “A Short Dissertation on Maps and Charts” by M. Mountaine which was pub- 
lished in the Philosophical Transactions of the Royal Society in 1758. 

“Rectilinear were therefore very early adopted, on which the meridians were 
described parallel to each other, and the degrees of latitude and longitude. everywhere 
equal; the rhumbs were consequently right lines; and hereby it was thought that the 
courses or bearings of places would be more easily determined. But these were found 
also insufficient and erroneous, the meridians being parallel, which ought to converge: 
and no method or device used to accommodate that parallelism.-However, the errors 
in this were sooner discovered than corrected, both by mathemeticians and mariners, 
as by Martin Cortese, Petrus Nonius, Coigniet, and some say by Ptolemy himself. 

“The first step towards the improvement of this chart was made by Gerard Mer- 
cator, who published a map about the year 1550, in which the degrees of latitude were 
increased from the equator towards each pole; but on what principles this was con- 
structed, he did not show. 

“About the year 1590, Mr. Edward Wright discovered the true principles on which 
such a chart should be constructed; and communicated the same to one Jodocus 
Hondius, an engraver, who, contrary to his engagement, published the same as his 
own invention: this occasioned A h .  Wright, in 1599, to show his method of construc- 
tion in his book, entitled, Correction of Errors in Navigation; in the preface of which 
may be seen his charge and proof against Hondius; and also how far Mercator has any 
right to share in the honour due for this great improvement in geography and navi- 
gation.” 

For a more detailed modern historical account of this projection see the Story of 
Maps by Lloyd A. Brown and Elements of Map Projection by C. H. Deetz and 0. S. 
Adams (Coast and Geodetic Survey Special Publication No. 68). The latter treatise 
includes a complete development with tables. Other sources are indicated in the 
bibliography. We will include here the derivation of the mapping equations and the 
scale by means of the function of a complex variable as an easy introduction to  the 
application of equations (189), and also to show that all autogonal projections of the 
spheroid on the plane are actually given by a function of the coordinates of the Mercator 
conformal projection. 

DERIVATION OF FORMULAS 

For the Mercator projection it is required that the scale shall be true along the. 
Equator. Prom equations (189) we 
may write, then, the linear analytic function z+iy=a(X+i.r), whence equating real and 
imaginary parts 

Hence for 4=0, we will have r=O, y=O, x=aX. 

where M is the modulus of common logarithms. 
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Prom (44) let us write the linear element of the sphere as 

ds12=r2cos2 X(sec2 XdX2+dX2). 

Prom (165) y e  have the linear element of t'he ellipsoid 

(253) . 

I n  order for the ellipsoid to be mapped conformally upon the sphere the condition 
(66) must be satisfied, whence we must have 

But by (66) the first equality of (255) is the condition that the sphere be mapped 
conformally upon the plane. The second equality is the condition that the spheroid 
should be mapped conformally upon the sphere. Prom the second equality of (255) 
me have 

R sec xdx=- sec 4 d4,  N 

(256) 

CONFORMAL AND ISOMETRIC LATITUDES 
The latitude x, as determined from the geodetic latitude 4 by (256), is called the 

conformal latitude. 
The function T=ln > ' i 2 ] 7  which with the longitude, X, 

determines a pair of isometric parameters on the spheroid is properly named the 
isometric latitude. 

If a direct conformal projection of the spheroid is derived by substitution in the 
formulas for the projection of the sphere, the isometric latitude on the sphere is replaced 
by 7, or the geodetic latitude on the sphere is replaced by the conformal latitude, x, as 
obtained from equation (256). 

It should be noted that 0. S. Adams in his special publications for the Coast and 
.Geodetic Survey uses the designations conformal latitude and isometric latitude inter- 
changeably for the quantity x. However, the term isometric latitude is more appro- 
priate to the parameter r .  No harm is done in practice as long as one knows that 
his tabular values of x are conformal latitudes and not isometric latitudes. 

THE CONFORMAL SPHERE . 

The sphere whose linear element is given by equation (253) is called the conformal 

sphere. From (253), (254), and (255) we have k l = z = N ~ 4  9 the scale factor for 

the conformal representation of the spheroid on the sphere. If we demand that the 
scale be true at  the Equator, then +=x=O, N=a; and k l = l ,  whence the radius of the 
conformal sphere is T = U .  That is, for projections centered on the Equator this is the 

r cos x 
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If, for projections centered in best value for the radius of the conformal sphere. 
latitude r # ~ ~ ,  we desire to hold the scale at this latitude, we have k l = l ,  hence 

r cos xo 
- 1 , whence r= 

No cos 40 cos xo 

By substituting from (256) in (252) we obtain 

No COS do. 

x=aX 

a y=- M log tan (:+;), 

(257) 

wnich represents the Mercator projection’of the conformal sphere upon the plane, but 
actually accomplishing the projection of the ellipsoid upon the plane, since the confor- 
mal latitudes are computed from the geodetic latitudes by means of (256). 

It is customary to replace x and 4 by their colatitudes z and p respectively, i. e. 
7r 7r z ’ p (l-€ c o s p y 2  x=--z +--p . The relation (256) becomes then cot -=cot - . 2 ’ 2 .  2 2 l + € c o s p  ’ - 

E cos p €12 

( I f  
) and equations (255) become z or reciprocally tan -=tan - 2 2 l - E  cos p 

a z x=aX, y=- log cot - a  M 2 

From (190) 6he magnification or scale at  any point is 

a k = N  sec 4. 

(259) 

Comparing equations (189) and (252) it  is seen that all other conformal projections 
of the spheroid upon the plane are given by a function of the mapping coordinates 
(252) for the Mercator conformal projection. This is due to the linear function for 
the Mercator projection, i. e., from (189), x+iy=f(X+ir). 

But for the Mercator projection, equations (252), we have X=x/a, r=y /n  hence 
any other orthomorphic projection is given by 

X+iY=f  (:+i E). 
This obviously may be generalized still further, that is, through the hlercator 

autogonal projection any conformal projection can be expressed in terms of any other. 
We may put equations (259) in form for computing as follows: 

60 X 180 - 

3,437.‘7467708. M=0.4342944819, hence %=7,915! 704468. With X expressed in 

radians we have then x=- 107800 X (rad.), y=7,915!704468 log cotZ. If X is ex- 

pressed in minutes of arc we have 

The radius a is usually expressed in units of minutes on the Equator, a= ~ - 
7r 

1M 
z 

7r 

(2 6 2) 
z ~ = X ’ , y = 7 , 9 1 5 !  704468.10g Cot -. 2 

953003-53---7 
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Now the conformal latitudes for (262), which were computed for the Clarke spheroid 
of 1866, are given for every half degree of geodetic latitude in U. S. Coast and Geodetic 
Survey Special Publication No. 67. They have been tabulated more extensively for 
several spheroids by the War Department, Corps of Engineers, U. S. Lake Survey, 
Military Grid Unit. 

The series expansion for y in terms of 4 can be obtained by writing, from (252), 
(See the bibliography.) 

U e l + ~ s i n ~ $  y=-log M.  tan .(I -+- i) --a-ln 2 ( l-esind).  ' 

Since 
e 4  sin3 4 e0 sin5 4 e8 sin7 4 

=e2 sin 4+-+-+- + . . e ,  

~ ~ ~ ( l + c  sin 4) 
2 1-esin 4 3 - 5  7 

we may write (263) as 

+ e 4  sin3 4 e6 sin6 4 c8 sin7 4 
e2  sin 4+- 3 +5+7 . ,  

-a or placing the values of - and u in this last equation M 

y = 7,9 1 5 1 7 044 6 8 log tan (:+:) - 
e 4  sin3 4 e6 sin5 4 

3,4371747(szsin 4+- 3 +5 
1 1 '  1 1 1 
3 4 12  5 8 16  

By use of the identities - sin3 4=- sin 4-- sin 34, - sin5 &=- sin 4 - L  sin 34+ 

1 1 5 3 1 '  1 -sin 54) - sin7 +=- sin 4 -- sin 34+- sin 54-- sin 74, we may write (264) 
80  7 64 64 64 448 
in the form 

y= 7,9 151 704468 log tan (:-I-$)- 

3,437:747[(€2+7+s+64+ € 4  € 6  5 2  . . .) sin +-(%+E+=+ € 6  3 8  . . .)sin 34+ 

( 4t488 ) ,I ($+&+. . .)sin 54- -+ . . . sin 7 4  

The flattening or compression of the spheroid is defined in terms of the semiaxes 

we have a-b . b b of the meridian ellipse by the equation j=-= 1 -- and since -= 
U U U 

€2 € 4  €6 5 j = 1 - V - - + - + - + -  €8+ . . ., '-2 8 16 128 

where the radical has been expanded by the binomial formula. 
From (266) we have (1-e2)= (l-f12, or 

2=2j-f2. . (267) 

Hence if the spheroid to be used is defined by its flattening we may use (267) to 
compute 2 and successive powers. 
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We may express (265) directly in terms of the flattening and eccentricity as follows: 
From (266) we have , 

€4 €6 5 2  
4 8 64 2 f = 2+-+- +-+ . . . . 

From (268), cubing both sides, we have, retaining.terms in do, 

3 9 8f3= E'+- e'+- do+ . . . , 4 16 
or 

2j3 €4 € 6  3 
-=- +-+- € 8 + .  . .. 3e2 12  16 64 

Again from (268), raising both sides to the fifth power, we have, retaining terms 
in el2, 

5 
4 32f5=d0+- el2+ . . , 

or 
'€6 €8 

5e4 80 64 
2f"=- +-+ . . . . 

From (268), raising both sides to the seventh power and retaining terms in e", we 
have 

or 
128f7=d4+ . . . 

With the values of the coefficients from (268), (269), (270), (271) placed in (265) we 
have finally 

y=7,915.'704468 logtan (:+$)-3,437!747 ( 2 j  sin 4-g sin 344- 

2f6 sin 54----. 2f7 sin 74+ . . .), 
5 € 4  7 € 6  

(272) 

or since e2=f(2-f), e4=?(2-fl2, S=f"(2-f13 this last equation may be written 

y=7,915!704468logtan (:+$)- 
f 4  sin 74+ . . .). 7(2-fi3 6,875I494 j sin 4 - p  f2 sin 34+ j 3  sin 54- ( 3(2-f) 5(2 -fY 

Fromequations(l75),(176),and (252) wehaveI=T= *E sec4d+,X=T tan a+Xo, 

where X=UX=UT tan cr+aXo, y = m .  Eliminating T between these last two equations 
gives x=y tan a+aXo, which is clearly the equation of a straight line and the loxodrome 
on the Mercator projection. 

With the value of X from (173) placed in (252) we have the equations of the geo- 
desic on the Mercator projection, namely 

L N  
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sin+ 1 a2-c2r2  where 8=sin-’ ~ k ’ p = n  J c=a sin ao, a. being the angle a t  which the geodesic 

crosses the Equator. 
series expansion. 
tained from tables of meridional parts for the Mercator projection. 

5 may be evaluated from tables of elliptic integrals or from a 
y may be computed from the formulas (262), (265), (272), or ob- 

THE TRANSVERSE MERCATOR PROJECTION 
This projection, which has become of great importance in modern cartography and 

geodesy, was invented by Johann Heinrich Lambert, to whom modern cartography is 
also eternally indebted for his conformal conic projection. It seems proper that we 
should include here an account of the life and accomplishments of one who has con- 
tributed so much to modern cartography. 

BIOGRAPHICAL SKETCH OF JOHANN HEINRICH LAMBERT 
Lambert was born at  Miilhausen in Alsace on August 26, 1728. He  was the son 

of a poor tailor and his education was entirely the product of his own exertidns, ex- 
pended in a systematic course of reading which kept him up the greater part of each 
night. This sacrifice was probably a factor in his untimely death from consumption 
on September 25,  1777. 

At the age of 16 Lambert discovered, in computations for the comet of 1744, the 
so-called Lambert’s theorem. This theorem is actually an extension to the ellipse of a 
theorem for the parabola published by the Swiss mathematician Euler in 1743. As 
published by Lambert in his {‘Insigniores orbitae cometarum proprietates”, 1761, the 
theorem states that the area of any focal sector of an ellipse can be expressed in terms 
of the focal clistances of its extremities, of the chord which joins them, and of the axes 
of the curve. More specifically if t is the time of describing any arc PP’ of an ellipse 

and k is the chord of the arc, then nt= (+-sin +)-(+’-sin + f ) ,  where sin - += 1 
2 

e 1  1 1 -J(r+r’+k) /a ,  sin - +f =-J(r+r’-k)/a,  r and r’ being the focal distances of P and P’, n 2 2 2  
the mean angular velocity, and a the semimajor axis of the ellipse. His attempts to 
simplify the computation of cometary orbits led him to some remarkable theorems on 
conics such as the following: “If in two ellipses having a common major axis me take 
two arcs such that their chords are equal, and that also the sums of the radius vectors, 
drawn respectively from the foci to the extremities of these arcs, are equal to each other, 
then the sectors formed in each ellipse by the arc and the two radius vectors are to each 
other as the square roots of the parameters of the ellipses”. 

When Lambert was 30, he becanie a private tutor to a Swiss family and secured 
leisure to continue lus studies. In  his travels with his pupils through Europe he became 
acquainted with the leading mathematicians. In  1764 he settled in Berlin. He was 
elected a member of the Royal Academy of Sciences’ of Berlin and received many 
favors, including a small pension, from Frederick the Great. He later became editor 
of the Berlin Ephemeris. 

Lambert’s first research in pure mathematics developed in an infinite series the 
root x of the equation xm+px=q. Since each equation of the form axr+bxs==d can 
be reduced to xm+px=q in two mays, one or the other of the two resulting series was 
always found to be convergent, and to give a value of 2. This paper was a stiinulus to 
both Euler and Lagrange, both of whom succeeded in extending Lambert’s results. 
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In 1761 Lambert communicated to the Berlin Academy a memoir, in which he 
proved ?r is irrational. His paper on trigonometry, read in 1768, introduced into trig- 
onometry the hyperbolic functions, which he designated by the notation existing today, 
sinh x, cosh x, etc. Also included were the developments of DeMoivre’s theorems on 
the trigonometry of complex variables. His researches on descriptive geometry pub- 
lished in “Die freie Perspectiv,” 1759 and 1773, were a stimulus to the great geometer 
Monge. 

The earliest attempt to form functional equations by expressing the given proper- 
ties in the language of the differential calculus and then integrating is found in an 
essay entitled “Analytic observations,” published by Lambert in 1771. In his paper 
on Vis viva, published posthumously in 1783, Newton’s second law of motion was 
expressed for the first time in the notation of the differential calculus. 

Astronomy was enriched by Lambert’s investigations. In his “cosmological letters” 
he made some remarkable prophecies regarding the stellar system. For instance he 
aptly denominated the iMilky Way the Ecliptic of the Fixed Stars. But he was also 
active in the physical sciences, being best known in this field for his work in optics 
where he developed photometry on theoretical lines. His work on optics was published 
as “ Photometria,” Augsburg, 1760. 

It was in the application of mathematical analysis to the practical problems of 
life that Lambkrt especially excelled. He was the first mathematician to make general 
investigations in the field of map projections. 

His predecessors in this work had limited themselves to the development of a single 
method of projection, principaIly the perspective, but Lambert considered the problem 
of the representation of a sphere upon a plane from a higher standpoint and he stated 
certain general conditions that the representation was to  satisfy, the most important 
of these being preservation of angles or conformality, and equal-area or equivalence, 
both being, of course, unattainable in the same projection. 

Although Lambert did not fully develop the theory of these two methods of 
projection (conformal and equal area), yet he was the first to express clearly the ideas 
regarding them. The former, conformality, has become of the greatest importance to 
pure mathematics, but both of them are of ,exceeding importance to  the cartographer. 
It is no more than just, therefore, to date the beginning of a new epoch in the science of 
map making from the appearance of Lambert’s work. What he accomplished is of 
importance because of the generality of his underlying ideas and for his successful 
application of them in methods of projection. 

Lambert’s treatment of the so-called transverse Mercator projection was published 
in his “Beitrage zum Gebrauche der Mathematik und deren Anwendung,” Berlin 1772. 
He pointed out that it was applicable to a country of great extent in latitude but of 
small longitudinal width. The first known appearance of the name “Transverse 
Mercator” is found in Germain’s “Trait6 des Projections”, Paris 1865. Germain also 
called it the “Projection Cylindrique Orthomorphe de Lambert.” 

Lambert’s development was from elementary considerations as shown by Germain, 
Gauss giving the analytic derivation 50 years later in a paper presented to the Academy 
of Sciences-Copenhagen 1822 (published by Schumacher in 1825). Gauss showed 
that it is a particular case of his general theory of the conformal representation of one 
surface upon another. Gauss also included the theory in a later publication, “Unter- 
suchungen uber Gegenstande der hoheren Geodasie,” 1843. 

In ,1866, eleven years after the death of Gauss, General Oscar Schreiber published 
an account of the use by Gauss of this projection in the Survey of Hannover, “Theorie 
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der Projectionsmethode der Hannoverschen Landesvermessung,” and in 1878 published 
the developments essentially in use today., 

In 1912, L. Kruger published a comprehensive treatise of the projection entitled 
“Kohforme Abbildung des Erdellipsoids in der Ebene”, in which the formulas were 
developed in a form suitable for numerical calculation, and in 1919 a second work called 
“Formeln zur Konformen Abbildung des Erdellipsoids in der Ebene” was published. 
I n  1927, the system was adopted for the whole of Germany and called the “Gauss- 
Kruger” projection. 

There are some notable differences in the transverse Mercator projections obtained 
by modifying the abscissa of the Cassini spherical coordinates to make it conformal and 
that obtained by means of the analytic function.of a complex variable. In  the projec- 
tion obtained by modifying the Cassini abscissa, the ordinate is assumed the samesfor 
both projections. This is not true for the spheroid, but the error introduced is usually 
negligible. Technically, the projection thus obtained for the spheroid is not conformal, 
since the coordinates will not satisfy the Cauchy-Riemann equations. 

are assumed to be geodesics, while in the projection obtained by means of complex 
variable theory it is known that they cannot be geodesics since the only geodesic-iso- 
metric system on the spheroid is that formed by the meridians and parallels. That is, 
non-meridian geodesics on the spheroid cannot be members of an iso’metric system. 
(See equation 195.) 

The transverse Mercator projection is used officially in Great Britain, Egypt, 
Sweden, Poland, Portugal, Russia, Bulgaria, Finland, Germany, Yugoslavia, Norway, 
British African Colonies, South Africa, Australia, U. S. Army Map Service, and in the 
plane coordinate systems of many States of the United States. The machine method 
of computing geographic positions in the U. S. Coast and Geodetic Survey is based 
on it. The transverse Mercator system is now more extensively used for geodetic 
computations than the Lambert conformal conic or any other projection for the follow- 
ing two reasons: 

(1) On the Lambert conformal conic projection, when the abscissa is large, the 
convergence is also large which leads to considerable divergence between the grid lines 
and the true north line for map sheets lying a considerable distance east or west of the 
central meridian. 

(2) Lambert conical orthomorphic coordinates are not quite as suitable for point- 
to-point working as transverse Mercator coordinates are. 

The curves orthogonal to the central meridian on the modified Cassini projection . 

DERIVATION OF FORMULAS FOR THE SPHEROID 
The requirement for the transverse Mercator projection is that the scale shall be 

true along the central map meridian. Hence when X=O, we must have z=O and from 
(189) if we write the analytic function z+iy=f(X+i~) we must then have 

where S+ is the arc length along the clliptic meridian of the spheroid from the Equator 

t o  latitude +, But S + = l  R d +  and fromT= $4 sec+ d+, equation (189), we have 

R d + = N  cos+ d r  so that we may write 

6 

S o N ,  

N cos+ dr= j ( r ) .  (27 5) 



CONFORMAL PROJECTIONS 93 ’ 

If we expand x+iy=f(X+iT) about the point Z = ~ T  by Taylor’s theorem we obtain 
x 2  x 3  x 4  z + i y = j ( ~  + i T ) = j ( - i T )  + x f ’ ( - i T >  +2 f”( iT>+- f”’(i.1 +- j’’(iT> +h” y(-iT>+ 

3! 4! 5 !  
( 2  7 6 )  

x6 x 7  xs a f”(i~)+F f’”(i~)+, f’”’(i~)+ , . . . 

From (274) and (275) it is seen that f(i~)=i S6=i f ( ~ ) .  Hence, differentiating this 
d d d dT 

T ) ]  or f’(-i~)=- [if(.)] -- Since equation with respect to z ,  we have - f(i~)=- [if( 
dz d z  dT dz 

dz  1 d d 
-=i, f’(i~)=if’(~)- -=f’(~), where f ’ ( i ~ ) ~ - f ( i ~ )  and f ’ (~ )=- f (~ ) .  dT Continuing dT z dz 
f” ( i ~ )  = --i f”  ( T ) ,  f”’ (i7) = -f”’ ( T ) ,  f“(-iT)   if'"(^), f t i ~ )  = f v ( T ) ,  f ’ ( i~)  = --i Ti(.), 
etc. With these values placed in (276) we have 

x 2  x3 x 4  A5 
z+- iY=- i f (T)+Af’ (T) -g  if”(.)-,? f”’(T)+q? i f”(T)+,? f’( T ) -  

< 
( 2  7 7) 

x 6  x7 ’ A S  3 i?’( T ) - g  f’”( T ) + g  ;f’”’(T)+ . . . . 
Equating real and imaginary parts in (277) one obtains 

In obtaining the successive derivatives of f ( ~ ) ,  and other derivatives, we will need 

the va.lues of N’, R’, (g),.(Ncos +)’, (N sin 4)’’ the value of d4/dT from (189), and some 

trigonometric identities. We group them all together here for convenience: 

R (:)= -2 ‘N-R)  tan 4 ;  
R 

N’=(N-R) tan4; R’=3- (N-R) tan4; N 

$=:cos+; (Ncos+)’=-R sin4; (Nsin +)’=see 4 (N-R sin24)=(Rcos 4)/(1-t2). 
(279)  

2 sin n4 cos 4=sin (n+ 1)4+sin (n- 1)4’ 
2 cos 724 cos 4=cos (n+ l ) + + C O S  (n- l)+, 

2 cos n4 sin 4=sin (n+ l)+-sin (n- 1)4, 
2 sin ncj sin;P=cos (n- l)+-cos (n+ 1)4. 

From (275)  we have 
f ’ ( . ) = N  C O S + .  

d4 Differentiating again ~”(T)=(N‘cos 4-N sin 4) --> and withrelations (279)  this becomes- 

f ” ( ~ )  = -- sin 2 4 .  

dT 

(281) 
N 
2 

6 Since f (X+ir) is an analytic function, the series expansion is valid-Churchill, loc. cit., p. 98. 
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1 

1 d4 Continuing f”’(~)=-- (N’ sin 2 4 + 2 N  cos 24) - which with relations (279) becomes 2 dT 

+(-3+2 N E-3F+443)(Ncos N 2  N 3  34)’ 
R 

N’[(3:-1) cos$+(g+ l )  cos 34]+3N (g] cos4 
f”(T)=-- ’{ - N ( 3 ~ - l ) s i n 4 + N ( E ] c o s 3 ~ - 3 N  

and reducing by means of (279) we have 
- 

f ’”(7)=-  2 -1+-+4-2. N 2 )  sin2++ ( 1 + - - + 4 7  : r) sin * 44  1. (283) ” [ (  8 R R 

Differentiating (283) we have 

which becomes by means of (279) 

(284) 
N +(-3+2 N E-3 N 2  p + 4 4  

N N 2  1+2 --7 -+28 +( . R R2 

+2 (gy (1-7  
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and after reducing by means of relations (279) we have finally 

(285) 

(286) 

(-5+9 N R-279 N2 - + 1 , 9 1 1 - - 2 , 0 4 4 ~ + 6 8 0  N 3  N 4  
R2 R3 R 

fY '( 7 ) =  - -- 
32 

Continuing as above we find 

+(9-9 N 3+267 N2 --2,831 N 3  -+6,076 N 4  R4-2,280 N 5  p) cos34 

R2 R3 R4 

R2 R3 
fY"(T)= -- 

64 +(-5-3 N z+97 N 2  --293 N 3  ---1,708 N 4  -+3,592 

-+1,277 N 3  --4,116 N 4  7 + 3 , 6 4 0  
R3 R 

and 
N2 N3 N 4  ,-12;413 ,+36,984 7- R R R 

+2(7-3 g - 2 7 9  N2 7 + 7 , 2 4 3  N 3  --38,568 N 4  p+ 

N5 
R 33,648 -5+ 10,240 

R R3 
N5 

58,512 p - 2 0 , 8 6 4  

Ni --7,235 N 3  -+44,136 N 4  ~ 4 -  

R2 R3 
90,384 N5 -+58,240 

R 

J 

- (287) 

Placing the values of f ' ( ~ ) ,  f " ( ~ ) ,  j ' " ( ~ ) ,  f " ( ~ ) ,  ~ Y ( T ) ,  f" (~) , f ' "  ( T ) ,  f'"'(~) from 

(280), (281), (282), (283), (284), (285), (286), (287) with u=- in equations (278) we have 

the mapping equations to eighth-order terms for the transverse Mercator projection, 
namely 

2 A3 x5 x- 24 1,920 

N 
R 

[2(1-22+133~-44~) cos Of COS 4+- [ (3~-1 )  COS + + ( ~ + l )  COS 34]+- 

(- 3 + 2 U- 3 u2+ 44 u3) cos 3 #+(l  + 2 u- 7 u2+ 28 u3) cos 541 

953903-53--8 
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( - 5 + 9 ~ - 2 7 9 ~ ~ + 1 , 9 1 1 ~ ~ - 2 , 0 4 4 ~ ~ + 6 8 0 ~ ~ )  COS 4 

+ ( 9 - 9 ~ + 2 6 7 ~ ~ - 2 , 8 3 1 ~ ~ + 6 , 0 7 6 ~ ~ - 2 , 2 8 0 ~ ~ )  COS 3 9  

+ (- 5 - 3 u + 9 7 u2- 29 3 2- 1,7 0 8.4+ 3,59 2 6 5 )  cos 5.4 

+ ( 1 + 3 ~ - 8 5 ~ ~ + 1 . 2 7 7 ~ ~ - 4 , 1  16u4$3,640u5) COS 7 4  

x 4  

192 

(5 - 6 u- 9 1 u2+ 3 64 u3- 13 6u4) sin 2 4 

$=$+:sin 29+- [2(-1+u+4u2) sin 24+(1+u+4u2) sin 441 

+(l+2u$33u2-196u3+280a4) sin 6 4 

I xs 
'5,160,960 

2 (-7+ SU+ 8 1 9 ~ ' -  12,413 a3+ 36,984u4-33,648a5 
+ 10 ,240~ ' )  sin 2 9 

+ 2 (7 -3 u - 27 9 7,24 3 u3 - 3 8,5 6 8 a4+ 58,5 12 u5 

-20,8642)  sin 4 4 

+ 6(- 1 - U- 9 1 a2+ 1,38 1 a3-2,87 2 u4- 3,344 U' 

' +7,168uG) sin 6 4  

+ (1 + 3 u + 2 7 9 u'- 7,2 3 5 u3+ 44,13 6 u4- 9 0,3 8 4 u5 
$58,240~')  sin 8 9 

N 2 2 

R 1 - E 2  
If weplace a=-=l+6cos2cp where 6=7=~' andq2=6cos2+,t=tanq5, wemay 

- mite the mapping equations (288) as  
E x3 cos3 4 x5 cos5 4 -=x cos $4- v (5- 18t2+t4+ 14q2-58t2q2+13q4- (l-t2Sr12)+ 120 6 

64t2q4+ 4q6- 24t2q6)+ 

- 8 , 6 5 5 t 2 ~ 4 $ 6 , 0 8 0 t 4 ~ 4 + 7 6 9 ~ G - l O , 9 6 4 t z ~ 6 + 9 , 4 8 O t 4 q 6 + 4 l 2 ~ 8  9 

6 1 - 4 7 9t2+ 1 7 9t4- t6+ 3 3 1 7'- 3,2 6 2 q2t2 + 1,7 7 1 q2t4+ 7 1 5 q 4  

-6,760t2~s+6,912t4q8+ 88q"- 1,632t2q1'+ 1 ,920t4q1' 

(289) 
1 

x 4  x' 
. 24 720 

- [  x7 cos7 4 
5,040 

Y-& x2 x-- $2 sin 4 cos 4+- sin4cos3 4(5-t2+9q2+4q4)+-- sin 9 cos54(61-58t2 

f t4 + 2 7 0 - 3 3 O t 2  9 + 4 4 5 - 6 8 0t2 7 + 3 2 4 7 ' - 6 0 Ot2 q + 8 8 q - 1 9 2t2q ') + 
1,385-3 , l l  lt'+ 543t4-t'+ 10,899q2-32,802t2~~ 
+ 9,2 1 9t4q'+ 34,4 1 9q4- 1 29,087t2q4+49,644t4q4 

" sin 4 cos7 C#I +56,385q6-252,084t2~6+121,800t4q6+50,856q8 
-263,088t2q8+ 1 51,872t4~8+24,048~10-- 140,928t2q1' 
+ 9 4,O 8 Ot4q lo+ 4,6 7 2 q "- 3 0,5 2 8t2g1' $- 2 3,04 0t4q 

40,320 



CONFORMAL PROJECTIONS 97 

If in the coefficients of the 5th- and 6th-order terms of equations (289) we delete 
those terms involving powers of q above the second and in the 7th- and 8th-order 
terms delete from the coefficients all terms involving q,  we may write them in the 
form , 

x x  x3 cos3+ x5 cos5+ 
w=, 6 p3 

cos #)+- (1 - t'+ 772) +120p5 (5 - 1 8t2+t4+ 147'- 58t2q2) 

x 7  

5 , 0 4 0 ~ ~  +- cos74(61-479t2+ 179t4-t'), 

'' sin 4 cos54(6 1 - 5 8t2+t4+ 2 70 q '- 3 3 Ot2q 2) +mi7 

sin 4 cos74( 1 , 3 8 5 - 3 , l l  l t2+ 543t4-t'), +40,320p8 
€ 2  where p=cosec l", t=tan+, q2= 6 cos24=--, cos%$. Equations (290) are in a more 

l--e 
practical form for computation and are essentially as given in Jordan-Eggert, Handbuch 
der Vermessungskunde, Vol. 111, part 2, paragraph 32 (8th enlarged edition 1941), or 
in the Army Map Service Technical Manual No. 19, pages 4 and 5. In actual practice 
the 7th- and 8th-order terms are seldom if ever needed. 

For the convergence we have from equation (217) 

(29 1) 

(292) 
x2 cos2 4 x4 cos4 4 X0 COS' 4 +F -+ . . .), 6 +E 120 5,040 2 = A N  sin+ cos4 bX 

where A, B, C, D,E, F are the respective coefficients in t and q .  
From (291) and (292) we have 

+ 1+(D-3A) ~ +(E- 1 OAD- 5B+ 30 A') 120 x 2  cos2 4 x4 cos4 4 
6 

(F-7C-21AE-35BDS2 10AB+210A2D- 630A3) " 5,040 @]. (29 3) 

Placing the values of A, B, C, D,E,F from (289) in (293) and simplifying we have, 
deleting terms in q in the coefficient of x7, 

17 
315 + (1 +t2+ 3q2+ 2q4)+- (1 $-t2)3 X' COS' c$ 

x 2  cos2 4 

2 + 4t2+ 2t4+ 1 5q2+ 35q4- 40t2q4 
$33q'-60t2q6+11qs-24t2qs 

tan y=X sin 4 (2 9 4) 
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2 3  2 5  X I  

3 5 7  The series expansion for arc tan x is arc tan x=x--+---+ . . . and placing 
y=arc tan x, we have 

(295) 
1 1 1 

. 3  5 7 y=tany-- tan3 y+- tan5 y-- tan7 y+ . . . . 
Writing (294) in the form 

x 2  cos2 4 x4 cos4 4+c 1 7x6 cos6 4) 
3 + b  1 5  315 1 

where a, b, c are the corresponding coefficients in t and q ,  we have then, retaining 
terms in X7 

1 1 
3 -- tan3y=---Xasin34 3 ciS44a2]7 

1 1 
5 5 - tan5 y=- X5 sin5 4 

1 1 
7 7 -- tan7 y= -- X7 sin7 4. 

Hence by (295) we have 

b-5at2+3t4X4 c0s4 4+ 
1 5  y = X  sin 4 1+---X2 cos2 4+ [ 

17c- 2 1 bt2- 3 5a2t2+ 1 05at4--45t6 X6 cos6 4] 
(297) 

Placing the values of a ,  b ,  c from (294) in (297) and deleting, as before, terms in q in 
the coefficient of XI, we have finally 

315 

- (298) 
(1 7-26t2+ 2t4) X6 cos6 4 

q2+ 2 q  + 3 1 5 p 6  

2-t2+i5q2+35q4-15~2t2+33116 
- 50q4t2+ 1 l v s -  60$2q6-24t2q8 

y = X  sin 4 

I n  equation (298) the term in X7 is seldom if ever needed and the terms in 7 in 
the coefficient of X5 are usually negligible. For instance in the Universal Transverse 
Mercator System as given in the Army Map Service Technical Manual NO. 19, 
equation (298) would correspondingly be 

From (190) we have the scale 

and expanding the radical by the binomial formula 

(299) 
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From (292) we have 

99 

1 a x  A B C -.-= 1 +z X2 cos2 ++% x4 cos4 4+---x6 720 COS% ++. . . Ncos 4 bA 

and from (296) retaining terms in X6 

2b 
1 5  cos4 4+--x4 cos4 4 1 1 

- tan2 y=-x2 sin2 4 2 2 
1 1 -- tan4 y=--h4sin4 8 8 

1 1 
- tane y=- Xe sine 4. 16 16  

With these values placed in (299) we obtain 

B+2(3A+4a)t2-33t'x4 c0s4 ++ . 
k=1+- A + t 2 A 2 C O S 2  2 ++ 24 

(300) C+ (1 5 B+ 1 2 OU A +  40a2+ 48 b)t2- 1 5(3 A+ 8a)t4+ 4 5t6 xe case 4. 
720 

Placing the values of A, B, C from (289) and the values of a, b from (294) in 
(300), ignoring terms in I] in the coefficient of X6, we obtain finally 

(5-4t2+ 141]2+ 131]4-28t21]2+ 41]e-48t21]4-24t21]8)+ k= l+-cos2~( l+ I ]2 )+  24 
x2 x4 cos4 4 
2 

(61-144P+16t4). A6 cos6 4 
720 

I n  equation (301) the ter'm in he is usually deleted and the terms in I] omitted in 

We now develop the formulas for A,  4, y, k in terms of the rectangular coordi- 

Let us write equation (189) in the form 

the coefficient of A4. 

nates x and y. 

x + i 7 = F( 2 + i y). (302) 

When x = O ,  X=O, then F(iy)=ir  and from (189) and (275) we have 

. .  
Taylor's expansion for the function F(z)=F(x+iy) about the point zo=zy is 

52 
A + i r = F ( i  y) + x F' (i y) + 3 FN (i y ) + $ F' ' I (i y) + 2 F yi y) + ; F' (i y ) + g F"(i y) + . 

(3 0 4) X' 28 

7! 8! -F'"(iy)+--F'"l(iy)+ . . . . 
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From the relation F(iy)=ir, we have F’(iy)=#, F” ( i y ) = - - i / f ,  Ffft(iy)=-r”/, 
(iy) =irVii1 and with these FiV(iy) = iP, F (iy) = T ~ ,  F” (iy) = -irv’, FVii (iy) = - P, 

values placed in (304) we obtain 

2 3  x4 . 2 5  26 . i r l N - -  r l f f f + 3   IT^'^+- T , ~  ---2rlvi- 
22 

2 !  3! 5! 6! x + i 7 = i 71 + 2 7 i t - -  

Equating real and imaginary parts in (305) we have 

‘T1”’+ . . . , 2 3  2 5  x = 2 T I f  -- 3! 

where the subscript one refers to the “footpoint” latitude of a given point of the 
projection. (See fig. 27.) 

’ Y  
I 
I 
I 

I 
I 
I 
I 
I t X  

Mup €guofor . 

FIGURE 27.-Convergence of map meridians and the footpoint latitude, transverse Mercator 
projection. ‘ I  

From (303) we have 7’ =-=- d r  1 9 whence rff=(&) $= -N2 (Ncos cos2 4)f 4z .  d4 ds+ N COS 4 



CONFORMAL PROJECTIONS 101 

d4 1 
d s  R From (303), -= - and from (279), (N cos 4)'= - R sin 4, so that 

N cos2 4- 2 sin 4(N cos 4)' d 4 d4 1 
N3 cos3 4 ds , ds IC - and with -=-, (N cos 4)>'= -R sin Continuing T>'!'= 

N 
Ncos24+2sin24 ;+2 tart24 - E+2t2 or since N -=1+q2 we 

R - - - R 
N 3  cos3 4 N 3  cos 4 N 3  cos 4 this becomes T I " =  

may write finally 

(1 +2t2+T2). (3 0 8) 
T>'"= 1 

N 3  cos 4 

Continuing in this way we find that 

(309) 
t T 1 v - - _ _ _  - 

N 4  cos 4 (5 + q2+ 6t2-4q4), 

(5 + 6q2+28t2-3q4+ 8t2q2+24t4-4q6+4t2q4+24t2q6), (3 10) 
1 

TV=N5 cos 4 
61+46~2+180t2-3q4+48t2q2+120t4 

+ 100~6-36t2q4-96t2q6+88qs-192t2qs 
TvI &= 

+ 9 7 71 '- 2 3 4t2q 4+ 3 3 6t4q2+ 1 8 8 7'- 7 72t2q 6- 1 9 2t4q 4+ 8 8 7 lo 

-2, 392t27*+ 408t4q6+ 1 ,536t4q8- 1 ,632t2~"+ 1 ,92Ot4q" 
J .  (3 1 2) 1 6 1 + 662t2+ 1,320t4+ 720t6+ 1 07q2+43q4+440t2q2 

1 
N 7  cos 4 

7vII - - 

1,385+7,266t2+ 1 , 7 3 1 ~ ~ 4 -  10,920t4+4,416t2q2-573q4 
+ 5,040t6- 1 ,830t2q4+2,688t4q2- 2,927q6f 5,052t2q6 
- 1 ,536t4q4- 8,808qs+27,456t2qs+ 744t4q6- 1 1,4 7 2 ~ "  
+ 5 3,9 52t27"- 7,8 7 2t4+ 4,6 7 2 ql2+ 3 0,5 2 8t2q l2 I - 24,9 60t4q lo- 23, 040t4q" 

TYlll = t 
N s  cos 4 * (313) 

Placing the values of T ' ,  T", T"'; ? I v ,  T', T ~ I ,  T ~ " ,  T ~ " '  from (303), (307); (308), (309), 
(310),. (311), (312), (313) in equat,ions (306) we have 

I AX= p sec t$l 61+662tf+ 11320t:+720t;+ 1077; 
+ 43 q:+ 440t:q;+ 9 7s:- 234t;q: 
+336t;q;+ 188q;-772t;q;- 192t;q: 
+ 8 8 7 lo - 2,3 9 2t:q;+ 4 0 8t:q: 
+ 1,536t:q;- 1,632t;q:0+1,920ttq:0 

. (314) 
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A T =  7,- rl= ptl sec 4, 

-- l x  ( )2+L (Ly (5+7:+6t:-47':) 
2 % 24 Nl 

+L( )8 
40,320 

1 - 3 6t:7': - 9 6t3,7!+ 88 7; - 19 2t:q: 

1,385 7,266t:+117317 + 10,920tf 

+4,416th -5737': + 5,040t:- 1,830t:~': 

+ 2,6 8 Sel l : -  2,92 7 q!+ 5 ,O 52ti7; 

- 1,5 3 6t':q': - 8 , 8 0 8 7; + 2 7 , 4 5 6t:q 7 
+744tf7!- 1 1 ,472~ i0+53 ,952 t :~~0  

- 7 , 8 7 2t;'~; - 4,6 7 2 7 i2+ 3 0 , 5 2 8t:7 i2 
- 2 4 , 9 6 Otfs io - 2 3 , 04 Oc7 i2 

(315) 

where the subscript one, on 4 and the functions of 4 involved, refers to the "footpoint" 
latitude, 411 of the point whose rectangular coordinatles are given. 

are usually 

omitted in the coefficient of ($-- and the term in (Gy is seldom needed. For 

example in the Army Map Service Technical Manual No. 19, the corresponding 
equation (314) for the universal transverse Mercator grid would be . 

(See fig. 27.) 
In  formula (314) the terms containing 7': and higher powers of 

Formula (315) does not give us directly the difference of the geodetic latitudes but 
In  order to get the difference in geo- the difference of the true isometric latitudes. 

detic latitudes, A4,  we expand A 4  into a Taylor's series in AT as follows: 

d 4 1  A? d241 A r 3  d341 A r 4  d441 ' 

dTl 2! d T 1 2  3! dr13 4! d r l  
A + = 4 - + 1 = A ~  -+- -+- -+- --,+e * * , 

From (303) we have the relation R1d4,=Nl cos41dr1  or 

(3 17) --_ d41 - cOs41=(1+7:) c o s ~ l = P c o s ~ ~ .  
d ~ i  Ri 

From (317) by differentiation we have += d24 [ cos 41 (21 - -- 2 ~ i n 4 ~ ]  2- From 
dTi 

Ni (2791, (z) =-2 (2-1) tan 41=-2(1+7~-1)tl=-27~tl and with the value 

&?!! from (317) we find 
dTi 

s = % t l  cos2 41 (2- 3 %)= -(1+ 7?)( 1 + 37:)t1 cos2 &= - Q cos' 41. (3 18) 
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Continuing we find 

103 

d 3 ~ = 3 ~ ~ ~ 3  d r 1 3  R, 41 

Ni 
d r14- Ri 
--__ d441 :ti co~~4~[--8t:+4-(21t;-4)+4 

+3(z) Ni (35t:-l9)] 

= -t1(1 + q f )  [-st:+4(1 fq:)(21t2-4)+4(1 + ~32(17-45t;) 

+3(1+q~)3(35t~-19)] cos4 41 (3 2 0) 
= - T cos4 41. 

We now write AT from (315) in the form 

where F, G, H are the corresponding coefficients in q1 and ti. 

value of A 7  from (321) in (316) we obtain, retaining terms in 

By placing the values of the derivatives from (317), (31S), (319), (320) and the 

Placing the values of P, G, H, P, Q, S, T in (322), deleting terms in q l  in the coeffi- 

we have finally - 
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Ni 
R1 

Since 1 +q:=--, equation (323) may be written in the form 

+=+1-- P t l  22+- pti x4(5 +3t:+q:-4q:-9q:t:) 2RINi 24RlN: 
I 

61 + 90t3-46q?f45t: - 252t:q: -37: + 1007; - 66t:q: 
7 2 ( -9Ot~q~+88q!+ 2 2 5 t t ~ :  +84tiq;- 192t:q; 

- 

(324) p t l  
+40,320RlN:x  ( 1,385+3,633t?+4,095t~+ 1,5751;). 

Here p=cosec iff, and the subscript one refers to  the “footpoint” latitude. 
To express the convergence of the meridian, y, in terms of x we have from (217) 

tan y=- for r=constant. Differentiating this equation yields dr=- dx +- dy=O, 

- -& @ since -=- from the Cauchy-Riemann equations. whence -= -- - - 

The derivatives -- and - are obtained by differentiating (306) and therefore 

dY b7 b7 
d x  bx b y  
d y  br br 
d x  bx/by bx lbx  by  bx 

ar 
br a X  

r 
bx bx 

X.’f -- 2 3  p+- 2 5  rv l - -  2 7  r y l i l +  . . . 
(325) 

6 120 5,040 
+ - r v - - r v f l  2 4  26 + . . . 

24 7 2 0  

Performing the division in (325) we have 

. 2 3  tan Y = A x  4-6 ( 3  AB-C) +&(E- 5 A D +  3 0 A B 2 -  1 OBC) 

(7 A F  - G + 3 5C D + 2 1 B E  - 2 1 0 ABD- 2 I 0 B2C + 6 3 0 AB3), (3  2 6) 
2 7  +m 

Computing the values of A, B, C,’D, E, F, Gfrom (303), (307), (308), (309), (310), 
(311), (312), (313) and placing them in (326), neglecting terms in q1 in the coefficient 
of x7, we have finally 

, Writing (327) in the form 

where a ,  b are the corresponding coefficients in ti  and q l ,  we have, retaining terms in 
/ 2 1 7 .  
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+A tansy=; ti (%)l[ 1 -3 5a (xJ7 x 
5 

Substituting these values in the series for y from (295) 

‘ 3 1 5  (329) 

Placing the values of a ,  b from (327) in (329), ignoring terms in q 1  in the coe5cient 

of (Gy, we have finally 

2 + 5t:+ 2 q:+ 3 c  + t:q :+ 9 q: 
+ 207 i - 7t?q: -27t:q + 117: - 2 4t;q; 

7 -”( 315 ’) ( 1 7 + 7 7 t : f l 0 5 t ~ + 4 5 t ~ ) .  (3 3 0) 

To express the scale, k, in terms of the abscissa, x, we write the reciprocal of k in 

(331) 

the form 
1 d h  --N cos 4 . - - 4 1  +tanZ y. k- dx 

From (314) we have 

where U ,  V, W are t’he corresponding coefficients in tl and q l .  

a Taylor’s series in ( c#J -~~)  as follows: 
We now expand N cos 4 (the radius. of a parallel on the spheroid in latitude 4) in 

By differentiating f(+)=N ‘cos 4 and using .relations (279) we have 

f’(+)=--R sin4=--Rt cos+, . . (334) 

(3 3 5 )  
R2 f” (+)=-r COS +(I + q2f 3t2v2), 

(336) 
R3 
NZ f”’(4)>= -- t COS 4 (- 1 + 7 ‘f 8 q4- 3t2q ’+ 1 2tZv4). 

With the values of f’, f”, f”’ from (334), (335), (336) and the value of 4-$q from 

(323) placed in (333) we find, retaining terms in (Gyj that 
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From (337) we may write 

At: x Bt: x NCOS 4=N1 COS 41 [ 1+- :(GJ2 - -- 2 4  (N) - +-(-)I1 7 2 0  N1 (338) 

where A, B are the corresponding coefficients in tl and ql. 
mial theorem, that 

We have also, by the bino- 

1 1 1 
2 8 16 (1+tan2 y)1/2=1+- tan2 y-- tan4 y+- tans y . . . 

and with the value of tan y €rom (328) this becomes 

ax Placing the values of N cos 4, (1 + tan2 y)lI2 from (332), (338), (339) in (331) and 

retaining terms in ($y, we obtain 

1 2t: - U ( $)2 + V- t: ( A +  8 u + 1 2 U )  + 3tj 
2 4  -= 1 +2 k -  

(340) 
15(A+3U)tf-(B+ 15AU+30V+ 1 2 0 ~ U + 4 0 ~ ~ + 4 8 b ) t : +  W 2 (x) * \  

- 
720 

With values of 'U, V, W from (314); A, B from (337); a, b from (327) placed in (340), 

neglecting terms in q1 in the coefficient of - J we have finally (a0 
5+6q:-3qj-4q;+24t:q:+24t:qy 

2 4  

Taking the reciprocal of both sides of (341), we find by division that 

- 
When the rectangular coordinates of a point are known, the "footpoint" latitude, 

+1, is easily found from a table of meridional distances since it is the latitude corre- 
sponding to SQl=S+ Ay, where SQ is the meridional distance to the origin, the plus sign 
applying to the northern hemisphere. 

I n  the formulas given for 5, y, y, k the series converge rapidly and for relatively 
narrow belts many of the terms given will not be required. Usually the fifth- and 
higher-order terms may be discarded, but in high latitudes the effect of omitting any 
of the parts of the fourth-order terms should be examined before extensive computations 
are made. In  many cases the omission of the spheroidal parts (those containing r]  or 71) 
of the fourth-order term in y has more effect than the entire fifth-order term in x. 
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I n  computing, it is customary in the United States and in the British Kingdom to 
tabulate the coefficients in the formulas for sufficiently small intervals of latitude and 
to interpolate the corrections for higher-order terms from graphs (for instance the 
universal transverse Mercator coordinate system of the U. S. Army Map Service). 
However, the formulas can be expressed in terms of the latitude of the origin, so that 
the longer, less rapidly converging power series expansions have constant coefficients.' 

DERIVATION OF FORMULAS FOR THE SPHERE 
If we place e = O  in the formulas just developed for the transverse Mercator pro- 

However, the 

P P With E = O ,  we have from equations (255) and (259), T=ln cot -J  or er=cot -T 2 2 
Hence a distance along the meridian from the pole is p= 

Since the scale is to be true along the meridian, the analytic function which estab- 

' jection of the spheroid, the resulting formulas are valid for the sphere. 
mapping coordinates for the sphere may be derived in closed form. 

whence p=2 cot-' (e.). 
2a cot-' (er), where a is the radius of the sphere. 

lishes the transverse Mercator projection of the sphere is given by 

y+ix=2a cot-' (343) 

That is, when X=O, x=O and y=2a cot-' (eT), where the coordinates are referred 
to  the pole. 

With a=l for simplicity in (343) we may write 
cot +(y+ix)=e:+fx=eT(cos x+i sin A), (344) 

sin p - cos 4 where er=cot p= 2 1-cos p-1-sin 4 '  
Now we have 

sin (y+ix) 
cot '(Y+ix)=l-cos (y+ix)= sin (y+ix> 

1+cos (y+ix) - l+cosycosix-sinysiniz - 
sinycosix+cosysinix ' 

.and since sin i x = i  sinh x, cos ix=cosh x, this last identity becomes 
1 +cos y cosh x--i sin y sinh 2 

sin y cosh x + i  cos y sinh x cot +(y+ix)= ' 

which by rationalizing the denominator can be reduced to 

(345) 
(sin y--i sinh z) (cosh x+cos y) - sin y-i sinh x cot +(?/ + ix)= - 

cosh2 x -COS' y cosh. x -cos y 

From (344) and (345) we have then 

sin y-i sinh 2- - cos 4 (cos X + i sin A). cosh X-COS y l - ~ i n  4 (346) 

The coordinates x, y in (346) are referred to the pole. To refer them to the 
Equator we have but to replace trigonometric functions of y by cofunctions and change 
$he sign of z. Thus (346) becomes 

(cos X + i  sin A). cos y + i  sinh 2 - cos 4 
cash 2-sin y 1-sin 4 

- (347) 

7 W1. K. Hristow, Die Gauss-Krligerschen Koordinaten auf dem Ellipsoid, B. G .  Teubner, Leipzig, 1843. 
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Equating real and imaginary parts in (347) we obtain the equations 

(348) 
cos y - cos4 cos1 sinh x - cos 4 sin X 

cosh x-sin y- 1 -sin 4 ' cosh x-sin y- 1 -sin 4 * 

Solving equations (348) for tanh x, tan y we find tanh x=cos 4 sin X, tan y= 
tan 4 sec X, and reintroducing a in these last equations, 

x=a tanh-'(cos+ sinX),y=a tan-l(tan4 secx), (349)' 

which are mapping equations for the transverse Mercator projection of the sphere. 

Since tanh-l U=- ln- we may write x alternatively in equations (349) 2 1-U 
a (1 +cos 4 sin A) 
2 l-cos#~sinX as x =  -In 

From equations (349) we may write a 

2 tanh -=cos 4 sin X, tan y=tan 4 sec X a a 

(350) X Y tan +=cos X tan -, a a or sec 4=sin X coth -7 

(35 1) 

From equations (350) we eliminate 4 by means of the identity sec24-tan24= 1 which 
gives 

(352). sin2 X coth2 --cos2 X tana g= 1 

and sinX=sec+ tanh -7 2 cosX=tan4 cot -. Y a a 

X 

a a '  

which is the equation of the meridians. 

From equations (351) we eliminate X by means of the identity sin2 X+cos2X= 1 
and obt>ain 

(353) X sec2 4 tanh2 -+tan2 4 cot2 g= 1, a a 

which is the equation of the parallels. 
The scale factor for the sphere is, from (190) placing N=a, 

From equations (349) we have 

cos 4 cos X by- tan 4 tan X sec X , --a sin X sin 4 cos 4 b X  -=a 
l-cos24sin2X 1+tan24sec2X l-cos24sin2X' 

Thus 

and from (354) 'we have 
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(3 5 5) 
1 1 .-- a, cos 4 k= 

J1-cos2+sin2X a c o s 4 -  J1-cos2+sin2X' 

If we replace 4 by the conformal latitude x t.0 produce a conformal projection of 
the spheroid through the sphere then the total scale factor will be, from (190), 

cos x J1 ---e2 sin2 4 
cos 4 4 1  -cos2 x sin2 X 

- ~ .  a. cos x k =  - 
N cos 441 -cos2 x sin2 X 

GEODETIC CORRECTIONS FOR THE TRANSVERSE 
PROJECTION 

(356) 

MERCATOR 

Formulas (341) and (342) give respectively thevalue of l /k and k for the transverse 
Hence formulas (223) and Mercator projection, and both are functions of x alone. 

(250)' become 

d k  
d x  k'=- COS 8, 

(357) 

d p  - sin p- d s  d x  (3"- d x 2  ( ) ' -& cos p - d  (1)  
d 2  1 d x  ~ 

=- d 2  (-) 1 . cos2 p--& (i) - u sin p. 
d x 2  k 

With these values we may compute rigorously the various corrections as given by 
equations (229) to (251). For geodetic computations, particularly the computation of 
plane coordinates over lifnited areas, approximation. formulas have been developed 
and can be found in several sources, for instance: The South African Survey Journal, 
Volume V, Part 2, No. 35, January 1938, page 59; Empire Survey Review, Volume IX, 
No. 65, July, 1947, page 119 ; Jordan-Eggert, Handbuch der Vermessungskunde, Dritter 
Band, Zweiter Halbband, 1941, page 180; Driencourt et Laborde, Trait6 de Projections 
Cartes G6ographiques, page 303; Clark, D., Plane and Geodetic Surveying, Volume 11, 
Fourth edition, Chapter V. 

The listed formulas of geodetic corrections for the transverse Mercator projection 
were taken from Jordan-Eggert and Clark. 

THE OBLIQUE MERCATOR PROJECTION OF THE SPHERE 

In  figure 28, the point O(+,,X,) is the pole of the projection and 0' O,Xo-- is the 

The great circle 00' is orthogonal to the meridian 
That is, 

\ .  

( 9 
origin of x, y coordinates as shown. 
SOP at 0. The great circle UO' is the Equator considering 0 to be the pole. 
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FIGURE 28.--Oeometric transformations for deriving skew projections of the sphere. 

if we move P to 0, the equator SO‘ turns about the line O’T through the angle T- +o 

and assumes the position of the great circle UO’. 
Now the Mercator coordinates for the sphere in terms of colatitude and longitude 

2 

2 

are from equations (259), x=nX, y=a In cot P -. From figure 28 with UO’ as Equator 

and 0 as pole, it is seen that the corresponding colatitude is D and longitude is a, so 
that the corresponding Mercator coordinates a t  0’ with respect to the pole 0 are then 

D x=aa, y=a In cot -. But we, wish the great circle 00’ -to be true to scale instead 2 
of the great circle UO’. Hence we interchange the values of x and y, namely 

y= aa. 

From the spherical triangle POQ we have 

cos D=sin +o sin ++cos do cos + cos AX, 

sin D cos  COS + sin AX, (359) 

sin D sin a=cos +o sin +-sin +o cos + cos AX, 
where AX=Xo-X. 
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Dividing the third by the second of equations (359) we obtain 

(360) 
cos 4, sin +-sin +, cos $ cos AX 

cos $ sin AX tan a= 

From the first of equations (359) and equation (360) we may write equations 

]+sin +, sin ++cos 4, cos + sin AX 
l-sin 4, sin +-cos $, cos + sin AX 

(358) as 
a x=- In 2 

=a tlanh-' (sin 4, sin ++cos 4, cos + sin AX), 

sin 4, cos + sin Ax-cos 4, sin + 
cos C#J cos AX y = a  tan-' , 

where me have replaced AX by Ax-?, since, as seen from figure 28, the formulas (359) 

refer to the meridian SOP in longitude Xo, while the mapping coordinates are referred 

to the point 0' on the meridian PO' in longitude Xo-z. The formulas (361) will yield 

the proper values for +,=O, - e  That is, with $,=O, equations (361) give equations 2 

(349) for the transverse Mercator projection. With $,=?, and interchanging x and y, 

we have x=aAX and 

2 

?r 

7r 

2 

which are the coordinates of the Mercator projection of the sphere, equations (259). 
From equations (361) we haye 

5 tanh -=sin +, sin ++cos +, cos + sin AX a 
(362) 

tan Y=sec + sec AX (sin +, cos 4 sin A X - C O ~  C # J ~  sin $1. a 

Solving equations (362) for sec+ and tan$ We have sec+=coth 5 sec9, a 

* (sin A X-sin do cos A X tan - 

(sin A X-sin 4, cos A X tan 

(tanhZ-sin$,sin+), and cos 

a a 
by means of the identity sec2+-tan2+= 1, we obtain the equation for the meridians, 

sin$,, sin A X-cos AX tan a a 

Solving equations (362) for sin A X ,  cos A X  we have sin AX=sec+o secd 

- c o ~ + ~ s i n d  1 t 

and by means of the identity sin2AX+cos2AX=1, we obtain the equation of the 
parallels, 
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4o sin 4y+cot2 ?J a p a n  4o (tanh "sin a +o sin 4)- cos 4o sin 4 

cos2 4. (3 6 4) 

Note that with 40=0, equations (363) and (364) become equations (352) and (353) 

From the mapping equations (361) we have 
respectively as they should. 

a x  COS 40 COS 4 COS AX , -=a 9 and bAX 1 -(sin 4o sin ++cos 4o cos 4 sin AX)2 
sin $o cos 4-cos 4o sin 4 sin AX 

cos' 4 cos' AX+(sin 4o cos 4 sin AX-cos (bo sin 4)' -a cos 4 d m  - 

sin 4o cos 4-cos 4o sin 4 sin AX 
1 -(sin 4o sin ++cos 4o cos 4 sin  AX)^' =a cos 4 

whence 

cos' cos' AX+(sin +o cos 4-cos bo sin 4 sin AX)' -('-+(&y=a2 cos' 4 [l-(sin 4o sin ++cos 4o cos 4 sin AX)']' 

- a' cos2 4 - 
1 -(sin +o sin ~ + C O S  c j ~ ~  cos I$ sin AX)' 

From (365) and (190) we have the scale factor for the projection of the sphere of 
radius a,  

I 

= 1/41 --(sin 4o sin  COS^, cos 4 sin AX>'. (3 6 6) 

If the conformal latitude x is substituted for geodetic latitude 4, the total scale 
factor for t,he spheroid becomes then from (190) 

a cos x 
N cos 444 -(sin xo sin x+cos xo cos x sin AX)' 

k =  

If the radius of the conformal sphere is used, we have from (257) and (190) the 

No cos 40 cos x 
N cos 4 cos x04l  -(sin xo sin x+cos xo cos x sin AX)' 

scale factor 

(368) k =  

I n  constructing an oblique Mercator projection where the great circle to be held 
true to scale is that through two given points, say Q1 (+,, A,) and Qz (4', A,), we must 
compute the latitude and longitude of the pole; 0 (+o, a), on this great circle. 
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In  figure 29, the point (3 (4, X) is any point on the great circle through the points 
91 (41, XI), (32  (+z ,  A*). From the right spherical triangle POQ we have 

cos (X-Xo)= tan (;- o0) cot (;-+)=cot +o tan+, (369) 

which is the equation of the great circle OQ. 

P 

FIGURE 29.-Derivation of coordinates of the projection pole for the oblique Mercator projection 
of the sphere. 

Now if the points Q1 and Q2 lie on the great circle OQ, then the coordinates &, XI 
and 4z, X a  must satisfy equation (369), that is, we must have 

cos (Xl-Xo)=cot +o tan 
(370) . ,  

cos (X2-X0)=cot40 tan 42, 
which may be written 

cos X1 cos Xo+sin XI sin Xo=cot .Ibo tan 4,, 

cos X z  cos Xo+sin X a  sin Xo=cot +o tan &. 
(371) 

Solvingequations (371)forsin&, cosXowefindsinXo=cot~ocsc @,-A1) (tan42cosX1 
sin X,), whence -tan 4, cos X2), and cos b=cot  c $ ~  csc (X2-X1) (tan sin Xz-tan 

tan 42 cos X1-tan 
tan 

cos X z  
sin x2- tan +2 sin x1 tan Xo= (372) 

From equations (370) we have 

cot +,=cot 41 cos (X,-Xo)=cot 4 2  cos (A,-Xo). (373) 

Hence given two points Q1 (#q, XI), Q2 (I&, A,) on the required great circle track 
we compute & from equation (372) and then 4o from either of equations (373) or from 
both as a check. With these values of c $ ~  and Xo me may compute other points on the 
great circle track from equation (369). 
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We now derive the mapping equations of tbe diagonal RiIercator projection in 
another form for direct use wit.h the formulas just discussed. The origin of coordinates 
will now be at the point 4ol Xo as determined by (372) and (373), or a t  the point 
Q (40, Xo) as shown in figure 30. 

Analogously, as in figure 28, the point 0 ( ~ - ~ 0 , h O - 7 r )  in figure 30 is the pole of 

D corresponds to the colatitude of the point T referred to the the great circle QS. 

FIGURE 30.-Ohlique hfercator projection of the sphere. 

pole 0 and great circle QS; a is the measure of arc along QS corresponding to longitude 
along the Equator. Therefore the Mercator coordinates of T in this system are 

a . D  a l + c o s D  
2 2 2 1- cos D' x=aa, y=- In cot -=- In 

\ 
From the spherical triangle POT we have the identities 

cos D=sin 4 cos 40-eos 4 sin 4, cos AX 
cos 4 sin A X tan a= sin 4o sin ++cos 4, cos 4 cos AX' 

where AX=Xo-A. 

With the values of cos D and a from (375) we may write equations (374) as 

cos 4 sin A X 
sin 4o sin  COS 4o cos 4 cos A X' 

x=a tan-' 

a y=- In 2 

' =a tanh-' (sin 4 cos +,-cos 4 sin +o cos A X). 

1+sin4 c o s ~ , - c o s ~  sin+, cos A X  
1-sin4 c o s ~ o + c o s ~  sin4, cos A X  

(374) 

(375)  
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To show that the point Q (+o, A,), as shown in figure 30, is now the origin of oblique 
Mercator coordinates of the sphere, place +=c$~ ,  AX=Xo-X=O in the mapping equa- 
tions (376) which gives z=y=O a t  the point Q(+o, A,). 

THE OBLIQUE MERCATOR PROJECTION OF THE SPHEROID 
A type of oblique Mercator projection of the spheroid, which will represent a 

considerable extent of spheroidal surface accurate enough for geodetic computations, 
is the representation through the aposphere devised by Brigadier M. Hotine. It 
employs hyperbolic functions and closed formulas to give simple computational forms 
after certain functions involved have been tabulated. The development is found in 
Hotine’s Orthomorphic Projection of the Spheroid, Empire Survey Review, Volumes 
VI11 and IX, 194647, Nos. 62-66. The particular formulas for this projection are 
found in No: 64, section 19, pages 66-69. In  the tables which have been prepared for 
Malaya and Borneo-Projection Tables for British Commonwealth Territories in 
Borneo (Malaya), prepared by Directorate of Colonial Surveys, Teddington, Middlesex, 
England-the projection is called “rectified skew orthomorphic” and the publications 
contain examples of the use of the formulas. 

Another type of diagonal, skew, or oblique Mercator projection of the spheroid 
is given by J. H. Cole in the Use of the Conformal Sphere for the Construction of Map 
Projections, Survey of Egypt, Paper No. 46, Giza 1943, where he obtains such a pro- 
jection for Italy. 

In  geodetic work, 
we deal with the projected geodesic and Beltrami’s theorem that only surfaces of con- 
stant curvature can be represented upon a plane so that all geodesics become straight 
lines indicates the undesirability of using geodesics to determine projections of the 
spheroid. By assuming the spheroid to be an aposphere, a surface of constant curva- 
ture applicable to the spheroid over a certain area, Ho tine accomplishes the “rectified 
skew orthomorphic” projection of the spheroid by means of geodesics and within 
allowable error limits over a limited area of the spheroid. Cole accomplishes it through 
the conformal sphere, a surface of constant curvature. 

The projections of both Hotine and Cole are approximations. 

THE LAMBERT CONFORMAL CONIC PROJECTION 
First developed by Lambert in his “Beitrage zum Gebrauche der R~Q~thematik,” 

Berlin 1772, the projection was later fully discussed by Gauss. Although his “cylindri- 
cal orthomorphic” or so-called transverse Mercator projection seems destined to be the 
most important of the conformal projections, Lambert has already become immortal to 
cartographers because of his conformal conic projection. 

The projection received great notice and publicity in World War I, when it was 
adopted for the battle maps in France. Suitable for areas of small latitudinal width 
but great longitudinal extent, it is used for maps of the United States and as a basis 
for the plane coordinate systems of many of the States of the Union. Many of the 
aeronautical charts published by the Coast and Geodetic Survey are based on it. I t  is 
used as a basis for most of the world aeronautical charts published by the Aeronautical 
Chart Service of the United States Air Force. 

The Geographical Section of the General Staff in Canada uses it in connection with 
military surveys and the production of military maps. 

It is the official projection of Venezuela and it is used by other South and Central 
American countries. 
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The following European countries use it officially: Belgium, Spain, France, 

On the African continent i t  2s used officially by Algeria, Egypt, Libya, Tunisia, 

I n  Asia it is the official projection for India and Syria. 

Estonia, and Rumania. 

French and Spanish Morocco. 

DERIVATION OF FORMULAS 

The requirements for the projection are that the parallels and meridians shall be  
respectively arcs of concentric circles, and radii of these concentric circles. 

To determine the most general form of the function i n  (189) we recall that the 

conformal mapping of the spheroid upon the plane was given by r = - sec 4 d$, X = X 

which gives for +=e1, or X=cz lines parallel to the coordinate axes in the rsplane or the 
Mercator projection of the spheroid. Hence the function f(X&ir) in (189) must be 
such that the parallel lines in the Xr-plane representing the meridians on the spheroid 
must be transformed into a pencil of lines in the zy-plane, and the parallel lines in the 
Xr-plane representing the parallels on the spheroid must be transformed in to concentric 
circles in the xy-plane having the same center as the pencil of lines for the meridians. 
This means that x and y must be functions of r and X such that 

r: 

x2+y2=K2f(r), y=m(X).x. (3 7 7) 

I n  (377) we see that, since 7 is a function of 4 alone, for every value of 4 we will get a 
circle, and since m is a function of alone for every value of X we will get a straight line 
with slope m(X). 

Now solving equations (377) for x and y find 

We know that for the analytic function (189) to exist the functions x ( X , r ) ,  y(X,r) 
From (378) we have of (378) must satisfy the Cauchy-Riemann equations (207). 

a x  by a x  the Cauchy-Riemann equations -=-’ -= -3 both lead to the equation bX a7 d r  bX 

Since f is a function of r alone and m a function of X alone, the only possibility 
for (379) is for both ratios to be equal t o  the same constant, for example 21. We have 

f then from (379) the two differential equations fl=-2Z, -- f l+m2- 

l+m2- 

m‘ $1 or -=-2ldr, d f  

-- dm IdX, whence the solutions are In j = - 2 1 ~  and arc tan m=ZX (considering con- 

stants of integration zero). These may be written 

f ( r ) = e - 2 z r ,  m(X)=tan ZX. (380) 

Returning the value off (7) and m(X) to (378), we have 
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where r=Ke-l' is the radius of the map parallels and from (189), 
D 

Equations (381) are sufficient since we have used the Cauchy-Riemann equations 
in obtaining them, but we can actually write the function (189), x+iy=f(Xfir) ,  
from equations (381). That is, we have x+iy=Ke-" (cos I X + i  sinZX) and from 
(17) we have cos e + i  sin b e + ' @  where O = l X  so that x+iy=Ke-"~e+f'X=Keffl'X+f'~= 

Referring now toequations (23) and figure 5 (p. 26), i t  is seen that the case discussed 

Note that equations (381) can be expressed in terms of Mercator coordinates since 

From (381) we have *=-Kle-" coslX, -=-Kl e - 1 T  sin ZX and from (190) the 

j ( A +  i7 ) .  

there was that given by (381) with K=1, I=-1. 

for the Mercator prdjection x ~ = u X ,  ~ M = u T .  

3Y 
37 37 

scale is given by 

f 1  

l + e  sin+ where, as before, e"= tan' 

We have two arbitrary constants or parameters, K and I ,  a t  our disposal in equations 
Let us use them 

From (382) if we are to hold. the length 
(381) which we may use to impose two conditions upon the projection. 
to hold the length true along two parallels. 
exact along the parallels, 41 and 4zl we have 

1 

From (383) we have (s) =N1 'Os 9 whence taking logarithms of both sides 
Nz COS 42 

and solving for 1. we have 

I= 
Again from (383) we have 

(3 84) 
In Nl-ln Nz+ln cos 41-ln cos I # J ~ ~  

7 2 -  7 1  

(3 8 5) 
NI COS 41 - Nz COS $2 .  - K= (le- .1T1 le-1'2 

Hence having been given 41 and &, I is computed from (384), whence K is computed 
by either relation in (385) or by both as a check. 

I t  is easier to compute the map radii if we expand r=K e-1r into a power series, 
in arc length, s, of the meridian of the spheroid, about the fixed map radius, ~ ( 4 ~ ) ~  
corresponding to the fixed parallel, 40. That is, we expand AT=T(C#J) - -T (~~)  by Taylor's 
theorepl in a power series to be tabulated for sufficiently small intervals of 4. By 
Taylor's theorem we have 



* From r=Ke-lr, we have In r=ln K-17, whence by differentiation with respect 
to arc length, s, of the meridian of the spheroid 

I (387) 

For this derivation we choose the arc length, s, as positive with decreasing latitude 
Hence from (186) 4 to correspond to positive values of increase in r,  the map radius. 

we have 
N COS 4dr=Rd+=--ds. (388) 

and (387) becomes d r  Whence -= - ~ d s  N cos 4 

and 
Taking logarithms of both sides of (389) we have log r’-log r=log 1-log (N COS +), 
differentia t,ing this last gives 

r“ r’ (N cos 4)’ a4 
,r’ r N c o s 4  ds’ (3 9 0 )  

a4 1 
a s  , R With the values of (N cos +)’=-Rsin4from (279), -=-- from (388), and the 

r’ 
r value of - from (387) placed in ,(390) we have 

(391) 
r” 1 sin 4 1-sin 4 
r’ -N cos 4 N cos 4-N cos 4 

, From (391) again by logarithms we have, log r”-log #=log (I-sin 4) -log(N cos +), 
and by differentiation 

a4 r“ 
a s  With the values of (N cos 4)’=-X sin 4 from (279), - from (388), -p from 

(391), we may write (392) as 

Differentiating (393f gives 

+ r iv  

r’ r’ r’ --[m + N2 cos + 
.(NR)’ 1-2 sin 4+2(Z--sin 4) _ - _ ,  _ _  

AT2 cos 4 

2(1-sin 4)(1-2 sin +)(N cos 4)’ 
N3 cos3 4 (394) 

Now (NR)’=4R(N-R) tan 4 and with the value of (N cos +)’=-R sin 4 and the 
other values from (388), (391), and (393), we find that (394) becomes 
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Differentiating (395) we find 

(1-2 sin 4)(1-3 sin 4) ' 1 +@-sin 4) [ , N3 cos3 4 J 
Simplifying with the values of N',  R' from (279) and the values from (388), (391) 

(9  R2- 1 6 N R +  8 N 2 )  + 2o sin + (Z-sin 4) 5 (Z-sin 4) (21- 9 sin 4) 
R3NT--- R2N2 cos2 4 RN3cos24 

(395) we find that (396) becomes 

C=9'-4N+ 3 tan2 4 
r' R3N2 

(Z-sin 4) (1-2 sin 4) (1-3 sin 4)(Z-4 sin 4). + N 4  cos4+ (397) 

Continuing as before by differentiating (397) and simplifying by known relations we 
find that 

( 1  4R3- 4 1 R2N+ 44RN2-  1 6 N 3 )  
rv' 12 tan34 
-= - 
r' R4N3 (8 8 N 2  - 2 2 8 N R +  1 6 1 R2) - R4N4 

(l-sin 4) ( 2  01'- 17 51 sin 4-t 4 3  2 sin2+) 
RN4 ~ 0 ~ ~ 4  + 

4(1-sin 4)(16 cos' 4- 102 sin2 44- 151 sin 4) 24(Z-sin 4) (6 sin' 4-cos2 4) 
R3N2 cos3 4 + R2N3 cos3 4 + 

(I-sin 4) (1-2 sin 4)(1-3 sin (6) (1-4 sin 4)(1-5 sin 4). + N5 c0s54 (398)  

No cos 40, or If we hold t,he radius of the parallel, 40, we have from (383) that K =  

Ke-lro= No cos 1 kr (40)* (399)  

, From (389) r ' ( 4 3 = r ( d J 0 ) ~ ~  cos +o , whence with the value of r (40) from (399) we , 

have 
r'(+o)=l. (400) 

The radius of the parallel in latitude 40 is No COS 40, (fig. 21, p. 64) .  

From (399) and (401) we have r (+,)=No cot 40. 
from figure 18 (p. 59).  

This may also be seen geometrically 

953903-53-9 
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Wit,h the value of r'(4,) and 1 from (400) and (401), equations (391), (393), (395), 
1 tan do (397), (398) become respectively with 4=4,, r"(4,)=0, r"'(+o)=---, r1"(40)= 

RON0 

[N0(88N;- 2 28NJZO+ 16 1Ri) + 12 tan' 4,( 14R: - 4 1 R w 0 +  44RJV;f 16N:)l. 

With these values of the derivatives at  (Po placed in (386) we have finally 

s3 s4(5Ro-4No) tan 4, 
2 4 R W r  

Ar=s+-- 
6RoNo 

+ s5[N0(9 R, - 4 No) -1- 3(9 Ro2 - 1 6 N a 0 +  8Ni) tan2 
120RW0 

[No(8 8Ni- 2 2 8 NOR,+ I 6  I Ri) s6 tan 4, 
7 2 0 R$Nt 

- 

+ 1 2 (1 4 R: - 4 1 R,"No+ 4 4RJVi - 1 6 N 3  tan' 4,]. (402) 

I t  is customary for general use to place N,=Ro in the numerators of the terms in 
s5 and s6. Equation (402) becomes then 

* (403) s3 s4(5Ro--No) tan 4, I s5(5+3 tan2 4,) - s6(7+4 t,an2 4,) tan 4o 
2 4R37; 12ORJV; 240 R f l  Ar=s+-- 

6RoNo 

See for instance, D. Clark, Plane and Geodetic Surveying, Volume 11, Fourth edition, 
page 372. 

In (402) or (403) Ar is positive when s is positive, that is, when the point to be 
mapped is in latitude. 4<4, and the map radius is r=r(40)+Ar with Ar given by (402) 
or (403). When the point to be mapped is in latitude +>c$~, then s is negative and 
Ar will be negative. That is, by replacing 6 by --s in (402) or (403) all terms on t,he 
right will have negative signs and Ar will thus be negative. Then will r=r(40)-Ar 
where Ar is obtained from (402) or (403) with all signs positive. 

A SECOND METHOD OF OBTAINING THE SERIES EXPANSION FOR AT 

d s  or dr From (389) we have -=- r N cos @ 

e=-. rl 
ds N cos 4 (404) 

dr  d(To+Ar)-d*), - consequently (404) may be written d s  d s  But r=ro+Ar and -= d s  

~. d(Ar )  ( N  cos 4)-l(ro+Ar)=0. 
ds (405) 

Let us assume that Ar is given by a series in the form 

A r = A s + B s ' f C ~ ~ t D ~ ~ t E s ~ f F s ~ +  . . .. (406) 
Then 

*)=A+2Bs+3Cs2+4Ds3+5Es4+6Fs5+ d s  . . .. (407) 
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We next expand N cos 4, the  radius of the ellipsoid parallel, in a Taylor’s series 
of t,he form 

=sin 4, d (N cos 4) 
ds From (401) we have 

whence d+ cos 4 
d s  R ( N  COS +))“=COS 4 -=--a (409) 

-R sin 4-R’ COS 4 1 - R sin d+R’ cos 4 and .th . ---- 
R2 R R3 Continuing (hl cos +)”’= - 

the value of R’ from (279) this becomes 

sin cp (NCOS +)‘“=m (3R-4N). 

Continuing in this manner we find 

(411) 
N(3 R-4N) cos ++ 1 2(N- R) (2N- R) sin C#J tan 4 

N2R3 (N cos +)‘Y = - 

.and 
sin 4 (N COS+)’=F~~ [N(45R2-132RN+88N2) 

- 1 2 (N- R) ( 1 6N2 - 2 ONR + 5 R’) tan*d]. (412) 

With the values of the, derivatives from (401), (409), (410), (411), (412) we may 
write (408) as 

sin (po 
[No(45X,2-132noNo+88N~) 

+s5 120N0R0 

- 1 2(N0 - Ro) (1 6N,2 - 2 0 NORo + 5 RE) tan2&]. 

From (401) we have Z=sin do and T ~ = T ( c # J ~ ) =  No cot do. 
those from (406), (407), and (413) we mn,y write equation (405) in the form 

Hence with these values and 

1 cos $0 No cos do+s sin do-s2 - 
2RO 

sin do +s3 -__ I .  6NoRo 
(3Ro- 4No)- CIS“+ czS5 

(A+2Bs+3Cs2+4Ds3+t5Es4+6Fs5+. . .) 

-sin do (No cot do+ A s  + Bs2+ Cs3+ Ds4+Es5+. . .) = 0 ,  (414) 
where C, and C, are the corresponding coefficients of S“ and s5 in (413). 
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In equation (414) we now equate to zero the sums of the coefficients of like powers 

For the constant terms we have 
of s, which will give equations in A, B, C, D ,  E ,  F to solve. 

A N 0  COS +O--No COS $o=O, 

A=l. 
whence 

(415)  

For the terms in s we have 

2BN0 cos 4,+A sin +o-A sin c$~=O,  

B=O. 
or 

We now place A= 1,  B= 0 in (414) and continue, finding for the terms in s2 

or 

With this value of C placed in (414) we find for terms in s3, 

from which we find 

Returning this value of D to (414) we find for terms in s4, 
5 

3 cos 40 
24NoRo 1 2 Rwo 

-~ 'Os p3 [No(3Ro-4No)+ 12(No-Ro)(2No-Ro) tan2 40]-- 

and solving for E we have 

9Ro-4No 3 tan2 40(9R,2-16N,J20+8N,2) 
E= 120NgRi 12 ONiR: 

For the coefficients of the terms in s5 we find the equation 

(4 19) 

With the value of C2 from (413) and the values of C, D,  E from (417), (418), (419) 
placed in (420) we find, solving for F ,  that 

. .  

+ 1 2(14R:- 4 1 N0R:+44 R&- 1 6 N 3  t.an2 40]. . (421) 
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Placing the values of A, B, C, D, E, Ffrom (415), (416), (417j, (418), (419), (421) 
in (406) we have 

+ 1 2( 14Ri - 4 1 RiNo+ 44 RJVi - 1 6 N 3  tan2 40] , 
which is identical with the value obtained in equation (402). 

In  order to use the formula for Ar, as given by equation (403), to compute radii 
for the Lambert conformal conic projection, i t  is seen from equations (384) and (401) 

that we must have sin 40=Z= 

or 

In N1-h N2+ln cos +l-ln cos 42 
1 

7 2 -  71  

(422) 
In Nl-ln N2+ln cos 41-ln cos cb2 

7 2 - 7 1  
do= sin-'Z= sin- 

With this value of do, we have the map radius and scale a t  +o given by 

(423) r(40) 
NO 

r(+o)=Ke-rosin h, ko=- tan 4ol 

where K is given by (385). 
d r b )  

ds To determine the scale factor as a function of s we have k,=-= 

d - [ ~ ( 4 ~ ) + m A r ] = m  -e ds a s  
dAr S2 s3 s4 s5 

ds 2RoNo 6RWi 24RWi c120R3V~' 
+B-- From equation (402) we have-= 1 +-- A- 

whence k#=m 1 + - - - - A ~ 2 + B ~ - C  S2 s3 S4 s5 ). ( 2R&o 6RaO 2 4 R a  1 2 0 P f l  
Now when s= 0, we have from this last equation t,hat m = ko, whence 

where A, B, C are respectively the numerators of the coefficients of the t.erms in s', s5, 
set in equation (402). 

ONE STANDARD PARALLEL 

The projection just discussed with two standard parallels is the conformal conic 
projection discussed by Lambert and is also called a conformal secant conical projection 
since the cone through the two rectified parallels is a secant cone with respect to the 
spheroid. 

If we desire to hold the scale along only one parallel, say latitude 4ol we have 
from (382) . .  

= 1, or Kle-lro=No cos 40. Kle-Iro k= 
No COS 4 0  

(425) 
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For a second condit,ion let us suppose that the map radius for 40, r($o)=Ke-zro, 
is equal to the length of thc tangent to the meridian from the point of tangency in 
latitudc 4o to the polar axis, or equivalently equal to the slant height of the colic touch- 
ing the spheroid along the parallel 40. From figure 18 (p. 59) it is seen that the slant 
height is ATo cot 407 hence we liavc 

r(4,)=Ke -h= No cot 40. (426) 

By dividing tlic membcrs of (425) by the respcctive members of (426) wc find a t  
oncc that Z=sin +o, whencc K=erosin +a No cot or thc constants are 

l=sin do, K=erosfU+o No cot $,,. (427) 

These are identical with the valucs obtained in cquations (399) and (401) as they 
should be. 

We mag then use the valuc of Ar as given by equation (.403) to compute the map 
radii according to the rules as stated in the last section but we iieecl no scalc correction 
for Ar.  This pro- 
jection is often called the conformal simple conic projection or the Lambert conformal 
conic projection with one standard parallcl, since it is a special case of tlic Lambert 
conformal conic projection. 

We obtained the analytic function (189) for the Lambert conformal conic projection 
by starting with the equations of the required meridians and parallels involving gcneral 
functions of T and X. Then, after solving for 5 and'y in terms of tlic arbitrary functions 
of T and X involved, we demanded that x and y satisfy the Caucliy-Riemann cquations. 
This producecl the cliff erential equations whose solutions gave the required forms of the 
functions of T and X. We will nom shorn how the same result may 
be produced by considering the curvaturc of the map meridians and map parallels. 

From (216) we hatve the curvatures of the meridians and parallels in a conformal 
projection given by 

The mapping equations are givcn as before by equations (381). 

See equation (379). 

where E= G=f' (1 + i~).f' ( X - i ~ )  . 
I n  the Lambcrt conformal conic projection the meridians are straight lines. Hence 

the radius of curvature of the meridians is infinite, that is, X ~ + ~  ancl we have - = O .  bX 
This means that Gis a function of T alone. Hence we have G=,f'(h+i~)-f'(X-i7) =F(T).  
If we differentiatc this last cquation with respect to A, writing g forJ(X-iT), we obtain 

But since the first of these ratios is a function of X + ~ T  

alonc ancl the second of X - ~ T  alone, the cquality can only exist if each ratio is cqual to a 
constant, for example c. 

dG-3 

f"g'+.f'y''=O, or.T=--- f" 9" 
f g1 

Hence with u=X+i~,  v=X-ir me ham 

A f"(U)= c, In f' (u) =cu+ln A, .f' (u) =AdU, f(u) =- e'' +R. f (4 C 

g Y v )  C 

(429) 
A gll(v)=-c, In g'(v)=-cv+ln A, gl (w)=Ae-co ,  g(v)=---ee-"+B. 
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Since the scale ratio, (190), m u s t  be real and contain the procluctf'(x+ir)f'(x-i.>= 
f l (~)g ' (v )=A2eC("-u)=A2ec(2fr ) ,  i t  is seen that c must be pure imaginary, for example 
c=iZ. Then with B=O, K=A/c we have finally from (429), f(u)=f(x+ir)=Kefz'X+fr) 
which is the same as found bcfore. 

Finally, to give the complete geometric characterization, we derive the differential 
equation of the map radius directly from geometric properties. From figure 21 (p. 64) 
we have cot a=(-Rd+)/N cos+dX, where we have taken the arc length along the 
meridian to be negative so that an increasc in map radius will correspond to a dccrease 
in latitude. From figure 31, we have thc corresponding angle p, and in terms of the 
map elements, cot p=drlrldA. 

Y 

FIGURE 3l.--Elements of Lambcrt conformal conic projection. 

If the projection is to be conformal, then the angles a aid p must be equal, that is, 

dr  whence -Rd+ 
N cos +dx=rldx cot a=cot p= 

(430) 
dr R -=--1- sec+d+, r N 

which is the differential equation of the map radius. Integrating we have In r= 

scc +dd+ln K. But from equation (252), 

s$ sec4d+=r=ln tan (r+2> - (1 --E sin +)>'1 
4 2 l + E s i n +  , 

hence In r=--Ir+ln K ,  or r=Ke-"=K sin')7, as obtained 

before. See equat'ions (381). . 
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I n  order to reduce as far as possible the maximum scale error over the whole area to 
be projected by the Lambert conformal projection the mean latitude for the area should 
be chosen as standard parallel. The scale error a t  the maximum distance in the repre- 
sentation from this standard parallel is then determined and the coordinates are multi- 
plied by the reciprocal of one-half of this scale error. This actually produces a Lambert 
conformal conic projection with two correct parallels whose latitudinal distances north 
and south of the central paraIIel will be approximately two-thirds of the latitude differ- 
ences of the central parallel and the maximum north and south latitudes of the map. 
That is, we may specify two standard parallels to be held true to scale and then deter- 
mine the central parallel from these, or we may choose a central parallel and apply an 
arbitrary over-all scale factor which results in the fixing of two unspecified standard 
par all els . 

The origin is usually chosen as the intersection of the central meridian with the 
standard parallel in order to  avoid computation of large values of the map radius, i. e. 
in order to  use to  advantage the formulas for AT as given by equations (402) or (403). 

POINT-TO-POINT WORKING ON THE LAMBERT CONFORMAL CONIC 
PROJECTION 

E. L. M. Burns in “Point-to-Point Working for the Conical Orthomorphic Projec- 
tion”, Empire Survey Review, Volume 11, No. 11, 1934, developed convenient formulas 
for corrections to  bearing and distance allowing coordinates to  be computed.by the 
ordinary methods of plane trigonometry, but the formulas were intended to be used for 
topographical work only. 

3. Clendinning investigated the formulas for point-to-point working on the con- 
formal conic projection and extended Burns’ formulas for application to more precise 
work. His work was published in the Empire Survey Review, Volume VII, Nos. 48, 
51, 52; 194344. 

Clendinning developed rigorously the necessary formulas which are extensive, 
cumbersome and devoid of terms higher than the third order although as he demon- 
strates for points no farther away from the origin than occur in practice, terms of the 
fourth order may hardly suffice to give the accuracy desired. 

The investigation proved conclusively that if point-to-point working is the most 
important consideration when choosing a projection for a given area, then the Lambert 
conformal conic projection, when the formulas are expressed as functions of rectangular 
coordinates, is not the best projection to select, even when the area to be covered has its 
principal extent in longitude. Several belts of transverse Mercator coordinates give 
more satisfactory results than a single belt of Lambert conformal conic coordinates. 

Brigadier K. M. Papworth in “The (t-7‘) correction for the Lambert’No. 2 (Conical 
Orthomorphic) Projection”, Empire Survey Review, Volume VIII, No. 56, 1945, 
developed by empirical methods simplified formulas for computing the (t-7‘) correction. 
B. L. Gulatee in “Angular Corrections for the Lambert Orthomorphic Conical Pro- 
jection”, Empire Survey Review, Volume VIII, No. 62, 1946 gave the mathematical 
proof of Papworth’s formula and presented the correction in another simple form in- 
volving the chord of the projected geodesic and its curvature evaluated a t  a point 
one-third of the way along the arc. 

In order to apply the Lambert conformal conic projection to  China, J. T. Fang 
developed suitable formulas in terms of the vertical distance between the parallel 
passing through an arbitrary point of the map and the central parallel. The formulas 
containing third-order terms in this parameter suffice for zones of 3%’ in latitude differ- 
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ence and 6.5’ in longitude. These developments are found in the Empire Survey 
Review, Volume IX, Nos. 70 and 71, 1948-49. Fang also includes the formulas 
for transformation of coordinates from one zone to an adjacent one with numerical 
examples of their application. His derivations of formulas for azimuth and distance 
corrections for geodetic lines on the Lambert conformal conic projection are found 
in the Empire Survey Review, Volume X, No. 75, 1950. His formulas for transforma- 
tion between the Lambert conformal conic and the transverse Mercator projections 
are given in the Empire Survey Review, Volume X ,  No. 74, 1949. 

The derivations of the usual formulas for point-to-point working on the Lambert 
conformal conic projection are found in several treatises. Some of these sources are: 
Jordan-Eggert. Handbuch der Vermessungskunde, Dritter Band, Zweiter Halbband, 
Stuttgart, 1941, pages 204-218. Driencourt et Laborde. Trait6 des Projections des 
Cartes Gdographiques, Paris 1932, aolume IV, pages 323-331. Clark, D. Plane and 
Geodetic Surveying. Volume 11, Fourth edition, London, 1951, pages 370-376. 
Courtier, M. Expos6 de la Projection de Lambert, Annales Hydrographiques, Tome 
Dix-septiBme, Paris, 1946, pages 101-114. 

The formulas listed in the front of this publication for point-to-point working on 
the Lambert conformal conic projection have been taken from these sources.. 

THE STEREOGRAPHIC PROJECTION 
Hipparchus (about 150 B. C.), to whom we are indebted for plane and spherical 

trigonometry, is also credited with the invention of the stereographic projection. 
It was employed in the astrolabe-planisphere for the solution of the astronomical 
triangle as revealed in Chaucer’s treatise on the astrolabe. 

The ruler and compass constructions of, this projection and graphical solution of 
problems by means of it had and still have a fascination for geometers. The most 
important of these constructions and solutions .may be found in U. S. Coast and 
Geodetic Survey Special Publication No. 57. Two papers by S. L. Penfield, “The 
Stereographic Projection and its Possibilities from a Graphical Standpoint,” and 
“On the Use of the Stereographic Projection for Geographical Maps and Sailing Charts,’’ 
published in the American Journal of Science for February 1901 and May 1902 give 
additional graphical applications of the projection. A complete treatise is found 
in “The Stereographic Projection” by F. W. Sohon. 

Besides its use in cartography, it is of interest to the student of the complex 
variable. It is also used in its various forms for the solutions of problems in crystal- 
lography, seismology, astronomy, navigation, and hydrodynamics. 

As in the case of the other conformal projections already’discussed, the stereo- 
graphic projection of the spheroid is complicated compared to the sphere. A way of 
avoiding the difficulty is to employ a method which has already been explained, namely 
that of projecting the spheroid confovmally on a sphere and then projecting the sphere 
on a plane. This method will be followed here in discussing the horizonal and equatorial 
forms. 

(See the bibliography.) 

POLAR STEREOGRAPHIC PROJECTION OF THE SPHEROID 

For the polar stereographic projection, the meridians are straight lines radiating 
from a central point corresponding to the pole of the spheroid and the parallels are 
concentric circles about this central point. It is thus clear that the polar stereographic 
projection of the spheroid is a special case of the Lambert projection where one of the 
&xed parallels is taken to be the pole, or equivalently when 1 is placed equal to  1. Geo- 
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metrically the tangcnt or secant cone of the Lambert projection has become the tangent 
plane a t  the pole. 

With 1=1, equations (381) become 

x = r  cos X, y = r  sin X, (43 1) 
e 

z where r=Ke-r, er=tan 

the colatitude of the conformal latitude, X. 

’in ‘)l=tan (T+i)=cot 4 2  -7 2 z being as before 

See equations (256) and (259). 
The scale factor is obtained from (382) by placing I= 1, namely 

z K tan - 
, Ke-* * 2  

(432) 

We have the arbitrary constant K which we may use to  hold the scale along a 
given parallel, 40. If we place k=1 in (432) and solve for K, it: is found that 

K=No COS cot 3. (433) 2 

To determine the value of K when + o x ’  (the scale is then true only at  the pole), 2 

we may write equation (433) by means of (431) as K=N cos + cot -=N cos + 2 

2 

n- Placing +=- in this last cquation we obtain 2 

The scale factor is then, from (432) and (434) 

2a2 1--E z 
k =  b N cos + (G>i tan 2’ 

The ,mapping equations for this particular casc are then 

x = r  cos X, y = r  sin X 

(434) 

(435) 

where k, is the scale factor at  the pole-an arbitrary reduction applied to  all geodetic 
lengths to reduce the maximum scale distortion of thc projection. 

It should be noted that the polar stereographic projection of the spheroid is not 
perspective. If we place E = 0 in the mapping equations (436), z will become the polar 
distance, and we will then have a perspective stereographic projection of the sphere 
from the South Pole upon the tangent plane at  the North Pole. 
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p 1 + E  cos p 2 
) a  Hence r in equation (436) 

may be expanded analogously as before for the Lambert projection into a series in 
2 ( 1 - 6  cos p 

z From (259) we have tan -=tan - 2 

the colatitude p .  The series to terms in p" is 

1-76' 1 - 2 ~ ' + 4 6 ~ ~  1 7 - 9 3 ~ ~ - 1 , 3 3 5 ~ ~ - 4 , 8 8 9 ~ ~  
P7 2 0 , 1 6 O( 1 - 1 2 ( 1 - 4  p3+  1 2 0 ( 1 - ~  2 2  in5+ y=- 

l i l  - 6 2  . 
3 1 - 1 84e2+ 3 , 8 3 l t * + 4 1 , 9 0 6 ~ ~ +  53,6416' + 362,880(1 P9 (437) 

6 9 1 - 4,8 4 1 e - 4 4 , 9  6 6 E *  - 2,4 2 0,9 2 6 c6  -- 1 0 , 1 9 4 , 4 3 6 6'- 6 , 9 8 2,O 7 2 ,lo 

7 9,8 3 3,6 00( 1 - -i- 

If the coefficients in equation (437) are evaluated for the international spheroid 
we have 

r = 6,361,536.988459 p + 508,600.09984 p3 
$53,122.087 ~ ~ $ 5 , 2 5 2 . 8 3  p7+539.4 pg+54 pll, (438) 

where r is in meters and p is in radians. 
multiplied by equation (437) becomes 

If T is in meters and p is in minutes of arc . 

I'= 1,850,496.09893 p+ 12,518.57204 p3+110.63836 p5 
+0.9257 p7+0.0080 p9+0.0001 p11. (439) 

I n  the polar stereographic projection the convergence is equal to the longitude, X, 
in numerical value. I n  the northern polar area it has the same sign as X. In the southern 
polar area it has the opposite sign. Since the pole is the center of the projection it is seen 
that the convergence may be any angle up to 180' E or W. That is, a t  times grid north 
may be the same direction as true south, east, or west, depending on the position on 
the projection. 

Tables are usually constructed of r with 4 or p as argument. Hence to compute 
4 and X from rectangular coordinates we have from equations (431), 

(440) t,an A=- Y or X=tan-1% r=x sec ~ = y  csc X, 
X X 

where 4 for the corresponding value of r is interpolated from the tables. 

DEVELOPMENT OF r IN SERIES 

The method of undetermined coefficients will be used in obtaining the series 
expansion for r as given by equation (436). From equation (430) the corresponding 
equation for the polar stereographic projection in terms of p is 

Now 

r=O. N . d r  -sin p .-- 
R dP  

N ' (1-e2 cos2p)sinp . f ( ~ ) = ~  sin p= 1-2 

Next expandf(p) in a Maclaurin series in p of the form 

(441) 

(442) 
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We have from equation (442) 

(1 - e')f(p) = (1 -2  cos' p) sin p, 
(1-2)f'(p)=(1+2~~) COS ~ - 3 ~ ~  cos3 p, 

(1-e2)f"(p)=(9r2 cos2 p-22-1) sin p, 
(i-2)f"'(p)=27e2 cos3 p - ( i + 2 0 ~ ~ )  COS p, 
(1-e2)f'V(p)=(1+20e2-81~2 cos' p) sin p, 

(1-e')fv1(p)=(729e2 cos' p-182e2-1) sin p, 
(l-e')fvi'(p)=2,1872 cos3 p-(1+1,64Oe2) COS p ,  

(1-e2)f'x(p)=(1+14,762~2) COS p-19,683~' cos3 p, 
(1 - e')fx(p) = (59,049~' cos' p- 14,7622- 1) sin p, 

(1-e')fx'(p)=177,147e2 cos3 p-(1+132,860e2) COS p, 

(1-e2)fv(~)=(1+182e2) COS p-243~' cos3 p, 

(1 -e2)fV"'(p) = (1 4- 1,640e2-6,561e2 cos' p) sin p ,  

f(0) =o. 
f'(0) = 1. 

f"(0) =o. 

j " ( O ) = O .  . 

f " ( 0 )  =o. 

f"'(0) =o. 

f " ( O ) = O .  

f "' (0) = - (1 - 72) /( 1 - e2) . 

f (0 )  = (1 - 6 l a ) / (  1 -e'). 

f " ( 0 )  = - (1 - 5476') /( 1 - e'). 

f" (0) = (1 -4,9214 /( 1 - E ' ) .  

.$' (0) = - ( 1 -44,2876') /( 1 - E') 

(444) 
With the values of the derivatives from (444), the series (443) becomes 

N .  1 - 7 ~ '  1-61e2 1-547~ '  f ( ~ ) = ~  sin p=p-- 6(1-e2) p3+120(l-eZ) p5-5,040(1-~2) p7 

1-4 ,921~ '  1 --44,287e2 
+362,880(1-e2) p9-39,916,800(1-e2) (445) 

If we place the series (445) in equation (441) and assume a series for r of the form 
r=A+Bp+Cp2+ . . .we see a t  once that A and all coefficients of even powers of 
p vanish since only odd powers of p occur in the series (445). Also it will be seen that 
B= 1. Hence we assume a series for T of the form 

r =p + Ap3+ Bp5+ Cp7+ Dp9+ Ep", 
whence 

(446) 

We now write the series (445) in the form 

(448) N f ( p ) = z  sin p = p - Pp3 f Qp5 - Up'+ Vpg - Tpll, 

where P, Q, U, V, T are the corresponding coefficients in E from (445). 

dr N 
d p  €2 

Placing the values of r ,  -7 - sin p.€rom (446), (447) and (448) in equation 
(441) we have 

(1 + 3 Ap'+ 5 Bp4+ 7Cp6+ 9 Dps+ 1 I Ep'') * (p- Pp3+ Qp5- U p 7  + Vpg- Tp") 
-(p+Ap3+Bp5+Cp7+ Dpg+Ep")=0. (449) 

Equating to zero the sums of the coefficients of like powers of p in equation (449), 
returning the values of P, Q; U,  V, T where needed from equation (445), we have 

p3 : (4 5 0) 
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1 1 (1 -7~ ' )~  1-61e2 - p5: 4B+Q-3AP=O1 B=- 1 (3AP-Q)=- [ 4 4 24(1-e2)' 120(1-ee2) 

p7: 

- 1 - 2 ~ ~ 4 - 4 6 ~ ~  - 
120( 1 - 2 ) Z  

1 
6 6C-?7+3A&-5BP=O, C=- (?7-3AQ+5BP) 

(451) 

1 c =i I] 1 - 5 4 7 e2 ( 1 - 7 E')( 1 - 6 1 e2) ( 1 - 7 e')( 1 - 2 e2 + 4 6 e 3  
6 5,040(1 -e2)- 480(1 + 1 4 4 ( 1 - ~ ~ ) ~  

1 51-279k2-4,005e4-14,667e6 1 7 - 9 3 ~ ~ - 1 , 3 3 5 ~ ~ - 4 , 8 8 9 ~ ~ .  (452) 
6 10,080(1 - e 7 3  I= 2 0 , 1 6 O( 1 - e2)3 

1 

=- [ 
p9: 8DfV-3AU+5BQ-7PC=O, D=g (7PC-5BQ+3AU-V). 

(1 - 7 e')( 1 7 - 9 3 2- 1,3 3 5 e *  - 4,8 8 9 E') (1 - 6 1 E')( 1 - 2 e2 + 4 6 e4) - 
17,280(1 - - E ~ ) ~  2,880(1 

(1 -7e2)(1 - 5 4 7 ~ ~ )  - 
+ 20,160(1-e2)2 362,880(1-e2) 

1 248 - 1,4 7 2e2+ 3 0, 648e4f 3 3 5,248e'f 42 9,12 8 e 8  

3 6 2 , 8 8 0 ( 1 - ~ ~ ) ~  

p": 

- 3 1 - 1 84e2$ 3,83 1i4$ 4 l,906ee+ 53,641 e 8  - 
362,880(1 - E ~ ) ~  

(453) 

E = Z  1 (T-3AV+5BU-7CQ+9PD), 

E=- ' 1  [ 1 - 4 4 , 2 8 7 ~ ~  (1 -7e2)(1-4,921e2) (1 -2~~+46e~) (1 -547~ ' )  
1 0 3 9 , 9 1 6 , 8 0 O( 1 - e2)-. 1,4 5 1,5 2 O( 1 - e2)2 -k 120,960(1 -e2)3 

(1 7 - 9 3 e2- 1 , 3 3 5 e 4  - 4 , 8 8 9 E')( 1 - 6 1 e2) - 
345,600(1 

(1 - 7 e2)(3 1 - 1 8 4 e 2+ 3 , 8 3 1 e 4  + 4 1 , 9 0 6 e'+ 5 3 , 6 4 1 e') 

241,920(1 + 

1 10 -48,4 1Oe -49,6606 -24,209,2606 ' - 10 1,944,360~~ - 69,820,720~ lo 

10 7 9 , 8 3 3 , 6 00( 1 - 

- 69 1 - 4,84 1 e2- 44,9 6 6 e4- 2,420,9 2 66'- 1 0,194,43 6 ~ ' -  6 , 982,O 726" - 

(454) 

With the values of A, B, C, D, E from (450), (451), (452), (453), (454) returned 

79,833,600(1 -e')' 

to (446), the series as given in (437) is produced. 
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STEREOGRAPHIC MERIDIAN PROJECTION OF THE SPHERE 

The analytic function which produces this projection for the sphcre may be de- 
rived analogously as for the other conformal projections already discussed and is found 
to be 

+(r-iA) - + ( T - I A )  

t (455) . e  - e  x +iy = aa 
) ( r - t A )  +e-;(T-zA) 

e 

where T is now an isometric paramehr for t,he sphere. 
1 1 
2 2 From the definitions cosh u=- ( e u + e - u ) ,  sinli u=- ( e U - e - " )  

we may write equation (455) as 

1 1 I 
2 2 

1 
2 
1 

2 2 

sinh - ( T - ~ X )  

cosh- ( , - i X )  ' 

sinh - ( T - ~ X )  cosh- ( T - ~ X )  
= aa 

Cosh2 - ( T - ~ X )  
x + i y = a i  

ai  sinh (,-;A) - a i  sinh ( T - ~ X )  - - - 
1 1+cosh ( T - ~ X )  2 Cosh2 - ( T - ~ X )  2 

- a i  (sinh T cosh iX-cosh T sinh i X )  
l+cosh T cosh iX-sinh 7 sin1iiX' 

- (4 5 6) 

Now cosh iX=cos A, sinh i k = i  sinh, sinh  tan +, cosh 7=sec 4. These-values 
placed in equation (456) give 

tan $I cos k - i  sec rp sin 
x + i ~ y = a i  1+sec + cos ~ - i  tan rp sin 

. 
= az tan 4 cos X - i  sec + sin X I fscc rp cos X + i  tan +,sin X 

l+sec+cosX-i tan$IsinX l+secrpcosX+i tanrpsinh 

. (tanrp-isinX)(sec++cosX) - a(cosrpsinX+isin+) - = aa (sec ++cos 1 +cos + cos X 

Equating real and imaginary parts in this last equation we obtain the mapping 
equations of the stereographic meridian projection of the sphere 

a cos rp sin X 
X =  7 y =  l fcos  rp cos X 

a sin + 
1+cos + cos X '  (4 5 7) 

If we use the conformal latitudes as defined by equation (256) in place of rp in the 
mapping equations (457), we will have then taken into account the spheroid. That 
is, we have mapped the spheroid on the sphere and the sphere in turn upon the plane. 
The scale factor will be the product of the scale factors in the two projections. 

The total scale factor is thus obtained from (190) as follows: 
In  mapping equations (457) placc $I=X and find 

cosX+cosx b y  sin x sin X 
(1 +cos x cos X)2' 

-=a cos x b x  -=a cos x 
bX (1 +cos x cos bX 

whence 
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a cos x 
cos xcos X)2=l+cos xcos X'  (458) 

With N = a / d w + ,  we have then from (190) and (458) the total magnification 

. (459) COS x JFFiG&& -__ a cos x - - 
N C O S + ( ~ + C O S  x COS X)-COS  COS xcos A) 

k= N cos + 
If we solve t,he mapping equations first for sin 4, cos+ and then for sin X, cos X 

we obtain respectively 
y sin X X sin #'= 7 cos+= a sin A-x cos X a sin X-x cos X' 

2 sin+ . a sin+-y sin A=- Y COS 4JJ cos y cos + 
Eliminating + between equations (460) and X between equations (461) by squaring 

and adding respective members in each case we arrive at  the equations of the meridians 
and parallels. That is, from equations (460) we have the equation of the meridians, 

=1, which may be written in the standard form 2 2  

(a  sin A-x cos X)z 
for the equation of a circle, 

y2 sin2 X 
(a  sin X-x cos A)' + 

(x + a cot X)2+ y2= a2 csc2 X, (4 6 2) 

with center at  x=-a cot A, y=O and radius rx=a csc X. 
have the equation of the parallels, 

From equations (461) we 

x2 sin2 + (a  sin ~ J - - Y ) ~  =1,  
y2 cos2 4J+ y2 cos2 l$ 

which may be written in the standard form for the equation of a circle 

x"(y-a csc +)'=aZ cot2 4, (4 6 3) 

with center at  x=O, y=a csc + and radius r+=a cot 4. 
with centers on the x-axis and the parallels are circles with centers on the y-axis. 

Thus the meridians are circles 

STEREOGRAPHIC HORIZON PROJECTION OF THE SPHERE 

, The analytic function of 7 (considered an isometric parameter for the sphere) and 
X which gives this projection is 

3 ( r - i  X--6) - t ( r - iX -a )  

4 (r-  i h S-6) 

. e  -e 
+ iy = -4 (r-  i X+6) * 

e +e  
(464) 

We may as before transform the right member of (464) into hyperbolic functions 

1 1 
2 
1 1 
2 

to  obtain 

sinh-(T-iX-6) coshZ(T+iXf6) 
(465) x + iy = ai 

cosh-(~--iX+6) coshZ(T+ihf6) 
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1 1 
2 2 The hyperbolic identities sinh u-sinh v = 2 sinh - (u- v)  cosh - (u+ v), and 

1 1 cosh ufsinh v = 2  cosh 5 (u-v) cosh 

and denominator of (465) give 

(u+v) applied respectively to the numerator 

. sinh 7-sinh (6S ih )  
cosh (7+8)+COsh i X  x+iy=aa  

(466) 
. sinh 7-sinh 6 cosh iX-cosh 6 sinh i X  

cosh T cosh 6+sinh T sinh 6+cosh i X .  = az 

As before we have cosh iX=cos A, sinh i h = i  sin X, sinh r=tan+,  cosh T=sec 4, 
sinh 6= tan 4,, cosh 8=sec c$o and with these values placed in equation (466) we obtain 

:1: + i y = az 
. tan 4-tan $,, cos X--i sin X sec 4,. 

sec 4 sec do+tan 4 tan  COS X 

Multiplying numerator and denominator of the right member of this last equa- 
tion by cos (b cos 4, we obtain finally 

(467) 

Equating real and imaginary paris in (467) we have tlhe mapping equations for the 

sin X cos 4+i  (sin 4 cos Qo-sin cbo cos 4 cos X) 
x + i y = a  T + s i n  4 sin 4,+cos 4 cos +o cos x 

stereographic horizon projection of the sphere. 

sin X cos 4 
I +sin 4 sin  COS 4 cos+, cos X’ x=a 

’= 1 +sin 4 sin 4,+cos 4 cos 4, cos X’ 

(468) a (sin 4 cos $,-sin 4, cos 4 cos A) 

The spheroid is taken into account as before by substituting the conformal 

The total scale factor is obtained in the same manner as for the stereographic 
That is, from the mapping equations (468) we have with 4=x 

latitude x for 4. 

meridian projection. 

cos x cos xo+(l +sin x sin xo) cos X 
(1 +sin x sin xo+ cos x cos xo cos x)” *=a cos x bX 

’ 

sin X (sin xfsin xo) 
(1 +sin x sin xo+cos x cos xo cos x)~ ’  by=, cos x bX 

whence 

a cos x 
1 +sin x sin Xo+cos x cos xo cos X‘ 

- - 
From (190) with N=a/(l-  2 sin2 4)4 we have then 

by 
a cos x 

N cos 4(1 +sin x sin xo+cos x cos xo cos X) 

cos @(I  +sin x sin Xo+cos x cos x0 cos A>’ 

- - d(%>’+(X) 
N cos 4 k= 

- cos X1/1-c2sin2 4 - (469) 
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To obtain the equations of the meridians and parallels we soive the mapping 
equations (468) for sin 4, cos 4 and then for sin A, cos X analogously as wasdone for the 
stereographic meridian projection, obtaining then 

sin 4= x sin 4o cos h+y sin 
a cos 4o sin A--2 cos ~ - y  sin +o sin X’ 

x cos 4 0  

a cos (p0 sin X-x cos x-y sin do sin A’ 

x (sin +o+sin 4) 
a sin do cos 4+ y cos 4o cos 4’ 

a cos +o sin 4- y- y sin 4o sin 4 
a sin 4o cos 4+ y cos cpo cos 4 

(470) 
cos += . 

sin X= 

(471) 
cos X= 

By squaring and adding respective members of equations (470) and then of equa- 
tions (471) we arrive as before at the equations of the meridians and parallels. That is, 
from equations (470) we have after reducing and arranging in standard form the 
equation of the meridians which are circles given by (x+a sec +o cot A)’+ (y+a tan 40)z= 
a2 sec2 4o csc2 X,with centers at x= -a sec +o cot X,y= -a tan 4o and radii rx=a sec 4o csc X. 
Clearly the centers all lie on the line y= -a tan 40. 

Analogously from equations (471) we have the equation of the parallels which 
a cosd0 a2cos2 4 

sin 40+sin 4) =(sin 40+sin 4 1 2  are circles given by x2+ y- . 9 with centers a t  x = O ,  ( 
a cos 4o a cos 4 and radii r - ?’=sin 40+sin 4 “sin 40+sin 4. 

If we place += -40 in the formulas for r9 and y we find that r+ becomes infinite and 
?J becomes infinits which means that the parallel for +=-+o is a straight line. 

We will now show that the analytic functions (455) and (464) for the stereographic 
meridian and horizon projections are special cases of a more general function which 
may be obtained by considering the expressions for the curvature of the meridians and 
parallels in a conformal projection. 

bG-+ 1 
a7 c 1  

-_ When the parallels are circles, R,=c (constant) and from (216) we have ~ - 

a G - t .  
-0, then ~ is a function of X 

b2G-t d2G-t 
b T b X  R, bX b X d T  ax 1 a‘-+ and if ~- whence -=O. But -=-- 

alone. Also from 
(216) we have G=f’(x+ir)f’(X-ir) and let us suppose that G-f=y(X+ir)g(X-iT). 

Hence the meridians (for which X is constant) must also be circles. 

a2 [ y ( X + i r ) g ( X  -i.)] = g”(X+i7)y(X b2G-3 Then - = ~ axar bXdr - i T) - y ”(A - i .)g@ + i 7)  = 0. 

y”( X + i T) !/”(A - i r )  - . Since t,lic lcft member is a func- 
g ( X f i 7 )  - S ( X - i T )  

tion of X + i r  and the right member a function of X-ir, the equality can onlyexist if both 

From this last equation wc have 

=c2. ratios are equal to the same constant, for example cz .  

Placing X+ir=u we have from these last equations g”(u)-c2g(u)=0, whichis clearly alin- 
ear homogeneous differential equation with constant coefficients. The auxiliary equation 
is m2-c2=0, whence m= i c  and the solution is then y(u)=Aecu+Be-cu, or g(X+i-r)= 

Aec (X+%T) +Be -c (x+iT). But we have G-*=g(X+i~)g  ( X - i r ) = I f ’ ( X + i ~ )  j’(X--ir)]-’, 

g”( x + i r )  - y” X - i r )  
g(Xfi7) - g(X-ir) That is, 

953003-53-10 
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whence f’(x + i T ) =  g-2 (A + i T )  = [ AeC(h+ir) +Be-c(‘X+’T’]-2. Again with U= X + i 7 we 
nave yet to-solve the differential equation f’(u)=(Aecu+Be-c”)-2. From the defini- 
tions of hyperbolic functions we have ecu=sinh cu+cosh CU, e-CU=cosh cu-sinh CU, 

so that 
Aecu++e-cu=(A-B) sinh cu+(A+B) cos11 cu 

1 = 2 4 m [ w  sinh cu+- (A+@ cosh cu 
2 JAB 2 4AB 

A-B =C cosh (cu+ S), where C=2 4=, 6 =  tanh-’ -- 
A+B 

Our differential equation is then ~ ’ ( u ) = C - ~  cosh-2(cu+ 6)=C-2 sech2(cu+ 6 ) ,  and the 
solution is at  once f(u)=c-l C-2 tanh (cu+ 6)f D. 

In  this last equation place D=6=0, c=-i/2, ~ - ‘ C - ~ = a i  and we have 

1 
2 f(u)=ai tanh (-iu/2)=ai tanh [-i(k+iT)/2]=(Li tanh - ( 7 - i X )  

which is the analytic function (455) for the stereographic meridian projection. 
we may obtain the analytic function (464) for the stereographic horizon projection. 

Similarly 

STEREOGRAPHIC HORIZON PROJECTION OF THE SPHEROID 

For the computation of triangulation by plane coordinates in large areas where the 
horizon stereographic projection could be applied, the distortion is so great at  the 
boundaries that either the Lambert conformal conic or the transverse Mercator is more 
suitable when used in bands. Also tables for conversi’on from the spheroid to  the 
projection are either already available for these latter projections or can be computed 
with greater ease. 

Examples of the application of the horizon stereographic projection to  an area of 
considerable extent are “Emploi des coordonnhes rectangulaires st6rhographiques pour 
le calcul de la triangulation dans un rayon de 560 kilometres autour de l’origine” by 
M. H. Roussilhe and published by the Section of Geodesy of the International Union of 
Geodesy and Geophysics, May 1922; “De stereografische kaart projectie in hare toe- 
passing”, by Hk. J. Heurelink, Nederlandsche Rijksdriehoeksmeting, Delft, 1918. 

I n  the development of orthomorphic projections through the aposphere, Brigadier 
Hotine gives formulas for a satisfactory approximation to  the horizon stereographic 
projection of a considerable area of the spheroid for geodetic purposes. These formulas 
with worked examples are found in sections 20 and 26 of his treatise, “The Ortho- 
morphic Projection of the Spheroid,” Empire Survey Review, Vols. VI11 and IX, 

For a small country whose boundaries are contained in a small circle of radius 3 t o  
3jk degrees, the stereographic projection in polar form as given by equations (475), (476), 
and (477) is useful using the conformal sphere as suggested by J. H. Cole. The scale is 
about 1 in 1,000 at  a distance of 400 kilometers from the central point. Thus by 
applying an over-a11 scale factor the scale error can be kept less than 1 in 2,000 over a 
small circle of radius of 400 kilometers from the central point. 

NOS. 62-66, 1946-47. 
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GEOMETRIC DERIVATION OF EQUATIONS FOR THE STEREOGRAPHIC 
PROJECTIONS OF THE SPHERE 

The stereographic projections of the sphere are perspective. That is, me may 
project the sphere from any given point of the sphere upon any plane perpendicular to 
the diameter passing through the given point of perspectivity, the only difference for 
different choices of planes being one of scale. For the geometric demonstration of the 
three forms for the sphere we will use for the plane of projection a diametral plane (one 
passing through the center of the sphere). 

U is 
the projection of Q from W upon the diametral plane V. The angle TWU is equal to 
1 1 - D, and if a is the radius of the sphere we have TU=a tan LTWU=a tan 5 D. 2 

In  figure 32, IV, the center of projection, is an arbitrary point of the sphere. 

W 
Froun~ 32.--Cieonictric derivation of stereographic projections. 

Now for a given value of D, QS is fixcd in length. Hence if QS turns about the fixed 
point S through an angle a then Q traces the circular arc QQ' on the spherc and therefore 
U describes a corresponding circular arc UU' in the plane V. 

RECTANGULAR COORDINATES 
If we call the line TU in the V-plane the map x-axis we have 

1 
2 

a sin D cos a 
l+cos D ' x=TU' cos &=TU cos a=a tan - D cos a= 

(472) 
1 a sin D sin a , 

2 1+eos D y=TU' sin a=TU sin a=a tan- D sin a= 
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Now comparing figures 28 (p. 110) and 32, the points 0 and Q correspond in the 
figures and we have from equations (359) 

cos D=sin +o sin ++cos +o cos + cos X, 

sin D cos a=cos + sink, (473) 

sin D sin a=cos +o sin +-sin +o cos + cos X. 

With these values placed in equations (472) we have 

a cos + sin X 
1+sin +o sin +-+cos +o cos + cos X’ x= 

(474) 
a (cos cp0 sin +-sin +o cos + cos X) 

Y= 1+sin +o sin ++cos +o cos+ cos x ’ 
which are idcntical with equations (468) as obtained before. ‘ 

Note from equations (474) and figures 28 and 32 that with +o=O we have again 
equations (457) for the meridian stereographic projection of the sphere. With +o= ~ / 2  

- - a cos + sin X a sin p sin X- 1 a cos + cos X -a tan - p sin X, and y=- - - 
l+sin + l+cos p 2 l+sin + we have x= 

a sin p cos X 1 - = -a tan - p cos X, which give, after interchanging x and y and chang- 

ing the negative sign to  reverse the positive direction of x, x=r  cos X, and y=r sin X, 

where r=a tan - p ,  p being the colatitude. These are the equations for the polar 

stereographic projection of the sphere corresponding to equations (431) with E = O .  

1+sin p 2 

1 
2 

POLAR COORDINATES 
From figure 32 and equations (472)- we have at  once the horizon stcrcographic 

projection in polar coordinates. That is, 

8= a, 

p=TU’=a t,an- 1 D. 
2 

(475) 

By dividing the members of the third by the corresponding members of the second 
of equations (473) we have 

cos cp0 tan +-sin +o cos X 
sin X 

tan a= 9 

and from the second of equations (473) 

cos + sin X sin D= cos a 

(476) 

(477) 

To obtain polar coordinates for the meridional and polar stereographic projections 

we have but to  place &=O,  f in equations (476) and (477). 

For the spherical forms of the stcrcographic projections it is customary t o  take as 
the radius of the sphere, thc mean radius of the spheroid at  the pole of the projection. 
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That is, from (160) we take r=dR,,No, where the subscript refers to  the latitude 
+o of the pole of the projection. We would use this value in place of a throughout the 
formulas for the sphere. 

When the conformal latitude, x, is used t o  take into account the spheroid, the 

iwlius of the conformal sphere is then, from (257), r= 

For the horizon stereographic, if it is used to map a small area on a large scale, 

the scale will be improved by using r= N o  'Os O0 instead of r = a as shown in the abo;e 
cos xo 

development. That is, we would replace u in the formulas for the horizon stereo- 

graphic by No 'Os ", the scale factor from (190) being then 

No cos 40. 

cos xo 

cos xo 

(478) 
No COS +o COS x 

N cos 4 cos Xo(I+sin x sin xofcos x cos xo cos A)' 

For the meridian stereographic, which is centered on the Equator, we have 40=0 
Hence the formulas as given for 

IC= 

and thus r=u, the semimajor axis of the spheroid. 
this projection are satisfactory for mapping small areas on a large scale. 
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