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FOREWORD

The conformal projections used most in mapping and in geodetic computational
work of the U. S. Coast and Geodetic Survey are the Lambert conic, the stereographic,
the Mercator, the transverse Mercator, and oblique Mercator.

The mathematical development of the Lambert-conformal conic projection is given
by O. S. Adams in Special Publication No. 53. The development of the Mercator
projection with tables is given in Special Publication No. 68, by C. H. Deetz and
0. S. Adams. The development of the transverse Mercator and the stereographic
conformal projections may be found in various Coast Survey publications, for instance
in the “Manual of Plane-Coordinate Computation,” Special Publication No. 193, by
0. S. Adams and C. N. Claire, and in “General Theory of Polyconic Projections,”
Special Publication No. 57, by O. S. Adams. _

The purpose of this publication is to bring together in one volume and to give in
detail the mathematical development of the formulas (or source references) for these
projections in their various forms for the convenience of the geodetic computers and
cartographers of the Coast and Geodetic Survey. It will supersede Special Publication
No. 53, since it will incorporate the essential material contained therein.

The format, differing somewhat from that of previous Coast Survey publications
on projections, has been designed for the convenience of the computer or engineer. "All
the formulas for the projections are listed first. The mathematical developments or
references to their source have been placed last for the convenience of those who would

like to check the derivations of the formulas. ,
Lansive G. Simmons,

Chief Mathematician,
Division of Geodesy,
U.S. Coast and Geodetic Survey. .

I



PREFACE

In many of the published treatises on map projections, the autogonal or conformal
projections ate conceived as conical or cylindrical, the idea being that the ellipsoid is
conformally developed on a cone or cylinder which is then in turn developed in the
plane, i. e., cut along an element and “rolled out” in the plane. The stereographic and
the Mercator are then conceived as being the two limiting positions of the Lambert
conformal conic projection. "That is, beginning with a tangent cone whose vertex is on
the minor axis of the ellipsoid, the vertex is moved away from the spheroid along the
axis to an infinite distance which generates in the limiting position a cylinder tangent
to the Equator and under the conformal property results in the Mercator projection.
If the vertex is moved toward the ellipsoid along the minor axis until it lies on the
surface, the tangent plane at the pole is the limiting position and under the -conformal
property the stereographic projection results. The difficulty with this type of presenta-
tion is that these projections are not all perspective, hence the actual point-to-point
correspondence is not exhibited and often an erroneous idea is conveyed. Then in some
of the transverse or oblique positions of these projections with respect to the ellipsoid,
the transition is not easily conceived or obtained. )

In most conformal projections the point-to-point correspondence between points
on the ellipséid and points on the plane is not perspective. In fact it would be difficult
if not impossible to describe geometrically the method of projection in each case. It
is true that by using limiting processes or transformations on the mapping coordinates
themselves one can make the transition from Lambert conformal conic to stereographic

or Meércator. v
It seems better, since the properties of an analytic function of a complex variable

lend themselves so admirably to derivation of conformal mapping equations, to discuss
autogonal projections from this standpoint, classifying the projection according to the
conditions which the map must satisfy as to form and scale of map elements. In this
manner, through the medium of the analytic function of & complex variable, we obtain
a one-to-one correspondence between points on the ellipsoid and points on the plane
without regard to the intermediate or developable surfaces implicitly involved. This
method, which is not new, will be followed here in deriving the mapping equations for
the autogonal projections.

It should be noted that most of the conformal projections in use today were in
existence before complex variable theory had been developed. Deriving the mapping
coordinates by this theory is not necessary, but is more elegant from a collectivization
standpoint, since we can write down a general analytic function of a complex variable
from which all conformal maps of the ellipsoid may be obtained.

The concept, often introduced, of the conformal sphere, that is, the mapping of
the ellipsoid upon the conformal sphere and this sphere in turn mapped conformally
upon the plane, leading to the development of the conformal latitude, is a useful one
and will be demonstrated in some cases in the subsequent developments. 1t is possible,
in some cases, to develop.only the sphere conformally upon the plane, the ellipsoid
then being taken into account by using the conformal latitudes which have been exten-

v



PREFACE \

sively tabulated by the War Department, Corps of Engineers, U. S. Lake Survey,
Military Grid Unit, for several spheroids. (See the bibliography.)

An attempt has been made to keep the mathematical procedure in derivation of
formulas as simple as practicable. It was thought necessary to.give some account of
the elementary parts of complex variable theory since few cartographic engineers are
familiar with it and since it is the basis here for the development of the conformal
projections. Some of the more essential theorems of the differential geometry of
curves and surfaces have been included.

In -this publication I have made free use of material in other publications.
Particular references in most cases are avoided for sake of continuity but the publica-
tions consulted are listed in the bibliography.

Short historical accounts are given with each projection and other sources are
Indicated in the text or included in the bibliography.

I wish to gratefully acknowledge the valuable assistance given by Erwin Schmid
who checked the mathematics of the manuscript, C. N. Claire who edited the manu-
script and illustrations, Marjorie L. Moffett who typed the manuscript.

PaurL D. TaomMas.
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#It is no more than Just, thererora; to date the
beginning of & new epoch in the science of map
making from the appearsnce of Lambert'e work",

0. 8. Adame
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CONFORMAL PROJECTIONS IN GEODESY
AND CARTOGRAPHY

MAPPING FORMULAS

MERCATOR PROJECTION
The spheroid. Mapping equations,

T=alX
v=gos [un (7+9) (1 5m )
= fytoe v (F+3)~f o co
Magnification,
k =Z£V sec ¢;

where ¢, x, and 2z are respectively the geodetic latitude, the conformal latitude, and
the conformal colatitude; ¢ is the eccentricity of the meridian ellipse; @ is usually
expressed in units of minutes on the Equator, ¢==3,437/7467708; M is the modulus
of common logarithms, M=0.4342944819; hence a/M=7,915.704468. With \ expressed

in radians we have z=—1—0’—§—0—0 A (radians). If Nis expressed in minutes, z=\’. N is the

radius of curvature normal to the meridian in latitude ¢, N=a//1—é sin?® ¢.
Series approximation for 4 in terms of ¢ and e:

y=7,915:704468 log tan (1+3)
4 (] 8
—3,437!747 [(e2+fz+e§+g_2+ s
(12 16 64 . .)sin3¢

€ € . e® .
+(%+EZ+ .. .)sm 5¢—(m+ .. .)sm 74)]-
Series approximation for y in terms of ¢ and f: ‘

y="7,915/704468 log tan G 9)

—6, 875! 494 f| sin ¢— 3 (2ff)sm 3¢+5(2 f) sin 5¢—= (2 f) sin 7¢]

where f=1—b/a=1—1—e’=flattening or the compressmn



2 _ U. S. COAST AND GEODETIC SURVEY
The sphere. Mapping equations,
—an, =2 T8\ 2 P
x—a,)\,y—M log tan <4+2> Mlog cot 5
Magnification,
k=sec ¢;

where p is the colatitude; the constants @ and M are the same as for the spheroid.
TRANSVERSE MERCATOR PROJECTION

Spheroid. Band size, 10 to 12 degrees in longitude—61 degrees latitude north. _
Conversion of geographic coordinates to rectangular coordinates.

N cos o+ T (gt
é%"sz‘b (5—18t2+t4+‘14n2—5v8t27,2+13n4+4776-64n4t2—247}6t‘2)+
%%87? (61 —4792+ 179 —19)
Z%=S¢+ 5 sin ¢ cos ¢+24 . 5in ¢ cos® $(5—12+ 992+ 499+
oo oI e
AN '

m sin ¢ cos’ ¢(1,385—3,111t2+543t4—t6),
s

2
where p=cosec 17, t=tan ¢, n2=24 cos? $=7 = cos"’ ¢, Sy=meridian arc from the

.Equator to latitude ¢, AA==A— )\o_longlbude dlﬂ’erence from the central meridian X\,

N=a/+/1—e*sin® ¢=the radius of curvature normal to the meridian.
Latitude and longitude from rectangular coordinates.

é_q_ﬁ__qS—qSl___ a’ zt 2 2 A A Q.22

i G 2B, 24BN Ot dnimOni)

_ @ (614906446724 456—2526n3— 3n‘}+100n$—66tf1ﬁ)
720R\N} 90t1n1+88n1+225t“n‘§+84t1m 192¢3n}

x8

oz , \
+ 103208 (1,385+3,63361 4,005t +1 57489,

AN A=)z sy o ( ) 5+692+4282—39% 812y f+)
psec ¢ sec¢; Ni 6<N> (1426 +n1)+120 N, 24t‘§—411§‘+4t1n1+24t1771

1 (= , ]
5,040 <N1> (61+662¢;+1,320¢1-+72083),

where ¢;=footpoint latitude (see fig. 27, p.100), R;=radius of curvature of the meridian
corresponding to ¢;, Vy=radius of curvature normal to the meridian.in latitude ¢y,

. 2
& . .
h=tang,, ni=4é cos2¢1=1_62 cos®¢,, p=cosec 1'/.
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For formulas with higher-order terms in the coefficients see equations (288), (289),
(314), and (324).

Meridian convergence from geographic coordinates.

AN? cos?
B Tt (L 8n* 4299+
4 .
élﬁs—"’(z — 24 1572+ 3575 — 150224 3370— 50742+ 1 15— 60£2n5— 24t3 %) +-
AX® cos® ¢ 2 1 o
e (17~268-+ 205

Meridian convergence from rectangular coordinates.
RANET W 2 P
Ptl—Nl 3 <N1> (] + i —ni 2771)+
1 5 : |
1—5<Nil> 2456+ 291+ 361+ 0T+ Ini+ 2003 — 7ttt — 27603+ 1197 — 248207 —
— <1>7 (17+776+1056 +458)
315 \V, ' PRI
The scale from geographic coordinates.

2 2
E=1 480088

4 4 i
ﬂ_chLb (5—4t2+ 14712+13774_28t2772+4176—'48t2 4—24t"-’n“)+
AX® cos® ¢ . . ]

790 (61 —14882116t%.

The scale from rectangular coordinates.

=141 (Z%) 140D+

57 (N) (14692490t 449 —24tint— 24t1n1)+720 (N)

Reciprocal of the scale from rectangular coordinates.

1 1 z \?
115 () A+adtgz (%) G+ont—3nt—tnt+ 24ttt 24— o0 (&)

The (t—T') corrections. (See fig. 25, p. 75.)
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(tl-;Tl) Rz Y2—yn) (22t 2231)+g11§; Yo—y )1+ x2).
— I e et Bt 3D
(t2_pT2) 6R2 (yl y2)(x1+2$2) 3R; (?/1 'y2) (x1+3z2)

_G_R:; (@1 —z9)(@i+ 22,125,432+ . . .,

where R;,= YRN;, mean radius at the point P;; p=cosec 1”.

For examples of the tabulation of coefficients in the above equations and applica-
tions of the formulas see the following publications: Army Map Service Technical
Manual No. 19, Universal Transverse Mercator Grid, Corps of Engineers, Department
of the Army, Washington, D. C.; Ordnance Survey, Constants, Formulae and Methods
Used in Transverse Mercator Projection; Projection Tables for the Transverse Mercator
Projection of Great Britain, London, 1950.

The following more simple formulas are for smaller bands, about 2 degrees each
side of the central meridian, as used for computing triangulation and for State plane
coordinate systems.

Transverse Mercator coordinates, scale, and convergence from geographic
coordinates.

AN® cos® ¢

AN M( t2+n2)+T20_pT (5—18t2+1%,

=—cos ¢}
p

2w

2 4 .
%:—%—i—% sin ¢ cos ¢+% (sin ¢ cos® ¢) (5—1%),

AN? cos [

=1+ 149+ 20 5y,

AN? cos ¢

y=AN\ sin ¢[l+

AN cos? ¢
(1+3n2)+——157 (Q—tz)]‘

Geographic coordinates, scale, and convergence from rectangular coordinates.

'xZ x4
M= =i | —gin s (5430 |
3 . 5
AN=XA—hy=p sec ¢ [ﬁ—% (1%) (+26+n)+s (ﬁ—) (5+28tf+24t‘§)])
17 2\%,. 1 z \*
=143 (%) tndtoy (5) (1-+62,

v=ots[ =3 () G+a-m+5 (£ ) +satan |
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The (¢t— T) corrections.

ti—Ti=—gp Wa—)(E2t22),

ta—To=— o W=y (21229,

Coordinates from bearing and distance.

From figure 25 (p. 75) we have z;=x,-}+d sin ¢, y,=y,+d cos tl For a first approx-
imation assume the projected geodesic and its rectilinear chord to be coincident.
We have then z,=2,-+ S sin «, ¥2=%;+8S cos a where S is the spheroidal geodesic dis-
tance. With approximate values of 2, and y, computed from these formulas we then
compute s and 8 from the formulas

corel(E (3]

- p(Yy2—Yy) (932“'2271)'
f=a 62

Then

Ty=1x,+s sin B, Y2=Y,+s cos 8
and

a’—_—B:l: 1800+P(?/1_y62)R(211+2x2)_

Bearing and distance from coordinates.

B=tan™! -52—:—;1’ v8=(wz—wl) csc B=(y2—) sec B,
s=o—gm [ (32 +3 (%72 }
a=B _l_p(y'z—yéézz-l'-%l)
a,=ﬂi1800+p(yx—yé)1%1+2¢2)

The bearings in the above formulas are taken from true north.

Examplesof the above formulas are found in Plane and Geodetic Surveying, D. Clark,
Fourth Edition, 1951, Chapter V. The application of the transverse Mercator projec-
tion to computation of State plane coordinate systems is found in the Manual of Plane-
Coordinate Computation and the Manual of Traverse Computation on the Transverse
Mercator Grid by O. S. Adams and C. N. Claire, U. S. Coast and Geodetic Survey
Special Publications Nos. 193 and 195.

Formulas for the sphere.
When =0, pi=

1_e_ez'cot"’ ¢=0, N=R=a. Hence the spherical formulas are
easily obtained from the spheroidal formulas above by placing 7°=0, N=R=a.
Therefore only the spherical formulas in closed form will be listed here.
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Mapping equations and scale in closed form.

1 <1+cos ¢ sin A

= -1 ..
1—cos ¢sin A =a tanh™' (cos ¢ sin \),

y=a tan~* (tan ¢ sec A).

k=1/+/1—cos? ¢ sin® X,

Equations of meridians and parallels. -

sin2 A coth? Z—cos? A tanz =1 meridians
a a ’

sec? ¢ tanh? %—i— tan? ¢ cot? %= 1, (parallels):

" OBLIQUE MERCATOR PROJECTION

The sphere. Formulas in closed form.
Mapping equations, and scale.

a , 1-sin ¢, sin ¢+cos ¢, cos ¢ sin AN

=9 M1 sin bo-SIN d—COS ¢y COS ¢ SIN AN
=@ tanh~(sin ¢, sin ¢+ cos ¢, cos ¢ sin AN),
y=—a tan=! Sin ¢ cOs ¢ sin AN—c0S ¢ sin q’>

COS ¢ COS AX

E=1/4/1—(sin ¢, sin ¢-+cos ¢, cos ¢ sin AN,

where AA=2X\;—X, A\, being the central map meridian.
Coordinates of the pole of the great circle of true scale, (¢o, No)-
Origin of coordinates ¢=0, AA=X—A=0.
Equations of meridians and parallels.

2
(sm AN—sin ¢, cos AX tan y> coth2 ——(sm o Sin AA—cos AN tan %) =cos? ¢y,

(meridians)

2 . 2

sec? ¢0(tanh§~—sin ¢ SIN ¢) -I-cotz%i-[t&n o (tanh%—sin @0 8In ¢>—cos ¢osin ¢ | =cos? ¢.

(para]lels)

If Np=0, then A\= — and we must therefore replace in the above formulas sin A\

by —sin X and cos A\ by cos A\. Longitude is then measured from the point where the

true scale great circle crosses the Equator, i. e., the point 0’ in figure 28 (p. 110). The

required changes in the above formulas are easily made so no relisting of the formulas
is necessary.

Great circle through two given points.

When the great circle to be held true to scale is that joining two given points
@1 (¢1, \1) and @x(¢2, Ny) as shown in figure 29 (p. 113), we must compute the coordinates
Xo and ¢, of the vertex or the point where the great circle is orthogonal to a meridian,
i. e. the point O(¢y, ) in figure 29 (p. 113) or the point @(¢g, M) in figure 30 (p. 114).
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Equations for X\, and ¢,.

tan __tan ¢; cos M —tan ¢; cos A,y
07 tan ¢; sin A,—tan ¢, sin A,

cot go=cot ¢ cos (\;—Ag)=cot ¢; cos (A;—Ay).
Equation of the great circle @, Q.
cos (A—X\g)=cot ¢, tan ¢.

Mapping equations referred to the vertex @(¢s, M) of the great circle as shown in
figure 30 (p. 114).
cos ¢ sin A\
Sin ¢, SI ¢+ COS ¢y COS ¢ Cos AN

z=a tan™!

_a lﬁ 1-4sin ¢ COS ¢—COS ¢ SIN ¢y COS AN
Y=g M1 sm ¢ oS ¢otcos ¢ sin ¢, cos AN

=@ tanh~! (sin ¢ cOS ¢p—CoS ¢ sin ¢y coS AN),
where z and y axes have their orientation as shown in figure 30 (p. 114).
The spheroid. The following formulas are essentially those developed by Briga-
dier M. Hotine and published in the Empire Survey Review, Vol. IX, No. 64. This

approximation to the oblique Mercator projection of the spheroid is called the rectified
skew orthomorphic projection.

Computation of constants.

Two widely spaced points are selected on a line running centrally with respect
to the skewed area to be mapped. The geographic coordinates of these two points
“are then determined. The corresponding isometric latitudes are computed or obtained
from tables. Suppose the coordinates of the two points are (71, N), (2, A\2) Where 7 18

L . . . T, ¢\ (1l—esin ¢\ . oy ..
isometric latitude, i. e. 7=In [tan ( 4—}—2) (—1 Tesiné ], and \ is longitude (positive
westward from Greenwich). The constants vy, and Ay are then computed from

_sin [B(\;—Xg)] _sin [B(A:—20)]
Y =§inh (Bri+0)  sinh Br,+0)’

tan [% B()\,—)\g):l t:a:nh {% B(TI+T2)+O$
tanh[% B(r\— 12)]
where B=(1+& cost ¢}, A=B(RNy)}, C=cosh™'(Afry)—Br,, é=&/(1—e), ¢ is

the eccentricity of the meridian ellipse, and ¢, Ny, Ro, 7o=2N, c0s ¢y, 7o are evaluated
for the particular latitude where minimum distortion is required.

—tan

2

tan {% B(x1+>\2)—B>\O}=

The projection formulas.
With the constants A4, B, C, v,, Ao and the scale k the projection formulas are:

lc_r_' S y=co08 cos]—B—g oth
7 oS v= Yo — cosh—
kr

S . By .. Bz
—{ S0 Y=Sin 7o —C0s o sin —¢ sinh =1
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k_[:' €os y=2¢08 7, cos[B(A —Ay)] cosh (Br40),

—Z%—' sin y=sin vy, —cos v, sin[B(A—2X\y)] sinh (Br+40),

tan [B(A —)\0)]=<cos v, sinh —B—X—sin ¥o Sin %)/cos B—Xy»
tanh (Br+0)=(cos Yo SIN %-l—sin Yo si_nh.l—%-)/cosh %E;
tanh %—={cos vo sin [B(A —X\g)]+sin v, sinh (Br+4C) }/cosh (Br+0),

tan B—£/= { cos v, sinh (B7+(C)—sin v, sin_ [BON—=2)1}/cos [BOA—Np)].

Tabulated functions.

To effectively employ the above projection formulas the following 16 functions
were tabulated at suitable intervals for the Malaya and Borneo projections:

For argument ¢ : For argument »
I cosh (B7+0) V  cos [B(A =7\l
II tanh (Br+0C) VI tan [B(OMN=N\)]
III cos 7y sinh (Br+C) VII cos v, sin [B(A —2g)]
IV sin v, sinh (Br+C) VIII sin v, sin [B(A —2o)]
Functions of y Functions of
IX cos (By/A) XIIT cosh (Bz/A)
X tan (By/A) XIV tanh (Bz/A)
XI cos v, sin (By/A) XV  cos v, sinh (Bz/A)
X1I1I sin v, sin (By/A) . XVI sin v, sinh (Bz/A) -

In the following formulas the roman numerals refer to the above tabulated functions.
Rectangular coordinates from geographic coordinates.
z is found by interpolation from XIV=(VII4IV)/I,
y is found by interpolation from X=(III - VIII)/V.
Geographic coordinates from rectangular coordinates.
¢ is found by interpolation from IT=(XI+4-XVI)/XIII,
A is found by interpolation from VI= XV —XII)/IX.

Skew convergence of meridians.
From geographic coordinates tan y=[tan v, —sec?® v, (III)(VID)}/(I) (V). From
rectangular coordinates tan y=[tan v, —sec? v, (XI)(XV)]/(IX)XIII).

The scale factor.

A cosh(Bzfd) A XIII A  cos(BylA)
N cos ¢ cosh(Br+0) Ncos¢ I ~ Ncos¢é cos BA—N

At any point, k=

The scale factor for a line may be computed by k= (1/6) (k,+4k,+k,) where k, and %,
are the scale factors at the ends of the line and k, the scale factor at the midpoint.
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An over-all scale factor to reduce the extreme scale error may be incorporated in the
value of the constant A. For any line we may take the scale factor as

A
N,, cos ¢, cosh (B7m+0)|:1+6A2(z1+931 Zz-l-xz):l

where the subscript m signifies the values of the functions at the midpoint of the line.
The (¢t —T) correction.

1 B B2z,4-x R
—T1=§(y2—yl)m t&nh {Z 13 2} ‘—0 Sln ¢0

.1 '. 2
{SID§(2¢1+¢2)—5111 ¢’o} (A—)y),

where \; —\; is in seconds. For lines not over 70 miles in length the maximum value
of the second term is 07007. It can therefore usually be neglected and placing -

tnh{Ble—l-xz} 1_3.2221—1—2:2

3 T3 ve obtain for subsidiary work, the formula
, | .
—T1=m (Y2—y1) 2+,

Rectified coordinates:

If N is the Northing map coordinate and E the Easting map coordinate we have
by the ordinary rotation formulas for a plane rectangular coordinate system that

N=y cos y,+2z sin v, 2= —F ¢os v,-+N sin v,
E=y sin vy —z cos v,, or y= K sin v+ N cos v,

where 7, is the skew convergence of the meridian through the origin or the angle which
. the center line of the skew projection makes with the meridian at the origin. The
formulas for the computation of v, are given above under computation of constants.
Note that false Northings or Eastings may be added to the above rectified coordinates
as is usually done to avoid negative plane coordinates.

Convergence of map meridians.

The convergence of map meridians is defined as the angle, measured positively
clockwise, from true North to rectified grid North and is denoted by va.

Yr=7 —%, where v is computed by the formulas given above under skew con-
vergence of meridians. \

For examples of the application of this projection to actual skew areas see the
publications entitled Projection Tables for British Commonwealth Territories in
Borneo (Malaya), prepared by Directorate of Colonial Surveys, Teddington, Middlesex,
England.

For tabulating the expressions above involving hyperbolic functions, there are
available the following useful tables: Tables of Circular and Hyperbolic Sines and
Cosines for Radian Arguments, National Bureau of Standards, U. S. Government
Printing Office, 1949; Tables of Circular and Hyperbolie Tangents and Cotangents for
Radian Arguments, Columbia University Press, New York, 1943.
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LAMBERT CONFORMAL CONIC PROJECTION

Spheroid. One standard parallel.

Mapping Equations—origin at the pole.

z=r cos I\, y=r sin [\,

Coordinates plotted from the intersection of the parallel in latitude ¢ with the
central meridian.

z=r sin I\, y=r(1 —cos IN)=x tan 12—)‘

r=Ket'=K tan’_—zz—, K=¢lmo N, cot ¢py=cot! %’ Ny cot ¢g, I=sin ¢,.

Magnification
, =7l/N cos ¢,
where qso—standard parallel
A=longitude from the central merldlan
7=the conformal colatltude 1. e.

. o\ /1-+esin ¢> Z
“r=cot (4 2) ot (4 )(1'—6 sin ¢ =tan 2

Mapping Equatlons——orlgm at the mtersecblon of the fixed parallel ¢, with the

central meridian.
x=r sin l)\, y=ry—7r cos I\,

where for ¢ ¢, we have

r=ryFAr,

Ar—S+ S3 S4(5R0—4N0) tan ¢0+S5(5—|—3 tan? ¢,) S“(7+4 tan? ¢ tan ¢0
- GRONO 24 RN} 120R,N3 240R,N}

ro=2N, cot ¢y, v

Ro, Ny=principal radii in latitude ¢o,
S =meridional arc of the spheroid measured from the parallel ¢;—positive with
decreasing latitude; obtained from tables.
A=longitude from the central meridian.

Note: For the rigorous series for A r see equation (402) on page 120.
Spheroid. Two standard parallels.
Mapping equations—origin at the pole.

z=r cos I\, y=r sin I\

Coordinates plotted from the intersection of the parallel in latitude ¢ with the

central meridian.
AN

z=r sin [\, y=r(1 —cos l)\) z tan 5

T:K ,tﬂ-nl g, K=N1 COSZd)l N2 COSZ¢2
ltan' 2! 1tan* 22

2
2 2
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l=log cos ¢;—log cos ¢, +log Ny—log N

Z1 ZQ
log tan —2——log tan 5

Magnification .
k=Ir[N cos ¢.

Mapping Equations—origin at the intersection of the central meridian and the
parallel ¢, of the corresponding one-standard-parallel projection.

log cos ¢;—log cos ¢,-+log N;—log N,

do=arc sin I=arc sin

Z, ~ Zsy
| log tan ?—log tan -

z=rsin [\, y=r—r cos I},

ro=Nj cot ¢; for ¢ # ¢y, r=r,Fk, Ar, where Ar is the same as given above
for the one-standard-parallel projection, and k, is the scale reduction for Ar at ¢, given by

1+ S? S3(5R0—4N0) tan ¢0J_S4(5+3 tan? ¢0):tS5(7+4 t&n2 ¢0) tan ¢o
ke=l45p Nt BRINZ T 24AR,N3 T 40R,N?

- NotE: For the rigorous formula for %, see equation (424) on page 123.
Conversion of geographic to Lambert rectangular coordinates.

S 4(5R;—4Ny) tan ¢,
6R0N0 24 RENZ

+S5(5+3 tan? ¢°)i86(7+4 tan? ¢,) tan ¢
TTIR0BN 240 B, V2

ro=7 (do)=N, cot ¢o, Ar=S-+

AN=N—N\,, y=A\ sin ¢, = (7TFAr) sin v, y=Ar-+z tan % ¥.
AN is positive east of the central meridian, negative west of the central meridian. S is
the meridian distance between latitudes ¢, and ¢. Ar is tabulated for suitable intervals
of ¢.

Conversion of Lambert rectangular coordinates to geographic coordinates.

; v, Ah=v cosec ¢o-

Knowmg Ar, the corresponding latitude can be obtained by interpolation from the
table giving Ar for different values of ¢. Alternatively, S can be obtained by successive
approximations from the formula above for Ar and ¢ then found from a table of merid-
- ional distances.

Computation of Lambert rectangular coordinates from bearing and distance.

tanfy—'x » Ar=9 —z tan
To—Y

y1S2sin? @ S cos a-S?sin’a | Y3— S13 cos asec® § cos 38 tan ¢,

vmh=Seos et m =% Tem T 6 I
+S4 cos 4o tan ¢>O+S2y';’ sec? 8 cos 2(a—+8) tan ¢0+S3y1 sec 8 cos (3a-0) tan ¢0
24R3 4 R 6 K2

38 sin @ S%cos’ a- 8 sin a+Syf sin a sec® § cos 38 tan ¢
2 R2 6 k2 6 k3

2—2:1=2. sin a4 22
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S22 sec? § sin 2(a-8) tan ¢0+S3y1 sec § sin (3a-+-0) tan ¢0+S4 sin 4o tan ¢,
iRy 6R;, 24E,

S sin a(y:+ys)
2RZsin1” '

+
o' =a+180°4

where tan §= Z/-, ¢o=latitude of the origin, R} =R,N3.

When a line is only a few miles in length and not more than about 150 miles from
the origin, coordinates may be computed from:

m? tan ¢, , m*(5--3 tan® ¢0):|
S“S[1+2R0No+ RN AR NG

.3=a+( xl)(2y1+yz)

: 5 - 2y=12,+8 sin
6R2sin 1”7 =21+ B

a __6:!:1800+(x2 w1)(2y2+y1)’

GRz sin. 17 ?/2=yr|'8 cos ﬂ;

where m is the true meridian distance of the midpoint of the line and B is the grid bearing.
When the lines are long or the #’s and y’s are large we compute s from the above
formula, using the scale factor for the midpoint of the line and the angle § computed

S sin a(y1+%S cos a)
2R} sin 1” '

from 0=+

Then z,=x,-+s sin 6, y.=y,-+s cos 6

’ 0 S sin a(y1+y2)
o' =at180 +W .

For lines about 30 miles in length the latter formulas will give accuracy to about
1/100,000. For much longer lines where highest degree of accuracy is required no
really satisfactory formulas have been derived for point-to-point working directly in
terms of Lambert conformal coordinates. In such cases one may compute geographic

' coordinates by Puissant’s or Clarke’s formulas and then transform these geographic
coordinates into Lambert conformal coordinates.

Distances and bearings from Lambert rectangular coordinates.

One may use successive approximations in the formulas above for computing
Lambert conformal coordinates from bearmg and d1stance
A first approximation from these gives

tan a=zz—$1’ S=(y;—v,) sec a= (zg—-xl) cosec a.
—

These values are used in the second and succeeding terms to get new values for
S sin « and S cos a.
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For short lines not too far from the origin calculate 8 and s from tan ;3=x—2?—;1;

2— Y1

s==(y, —y:) sec f=(x; —1x,) cosec B. '
Calculate S and o from

. (1_ m?  m?tan ¢0) a_ﬁ_(xz—xl)(2y1+y2)_
2RN, 6RNZ ) 6RN, sin 1"

Scale and scale error.

For long lines my;=m;+8 cos A, where m, is the apprommate meridional distance of the
end point of the line, m, that of the beginning, and

=S [1+2R0N0 {(mﬁ—mz +1 (mz—ml> }_i_lmlmg(nzgiizx% tan ¢,
+82 (3222_0;\’;:) tan ¢0:|-

¢o is the latitude of the origin, ¢ that of the initial point of the line and A the azimuth ‘
at that point. For appropriate length lines, any of the above formulas connecting
s and S may be used.

Reduction of scale error.

If a negative scale error is introduced along the central parallel, there will be two
parallels, one north, the other south of the central parallel along which the scale error
is zero. Between the two standard parallels thus introduced the scale error is negative.
Outside them it is positive. If the scale error is to be reduced in this way by the factor

%, all measured distances, meridian distances and geodetic functions must be reduced
by multiplying them by 1—1/F.

Formulas for the Lambert conformal conic projection of the sphere.

In all the above formulas for the spheroid we have but to place e=0; N=R=a,
7 (conformal colatitude)=p (geodetic colatitude), to produce the corresponding for- :
mulas for the sphere. Hence it is not necessary to relist them here.

*  Most of the above formulas' are found in Clark, Plane and Geodetic Surveying,
Volume II, Fourth edition, London, 1951, pages 370-376, where numerical examples
of applications are given.

The application of Lambert conformal coordinates to State plane coordinate
systems is found in the Manual of Plane-Coordinate Computation, U. S. C. and G. S.
Special Publication No. 193 by O. S. Adams and C. N. Claire.

. The computation of traverse in Lambert conformal coordinates is explained in the
Manual of Traverse Computation on the Lambert Grid, U. S. C. and G. S. Special
Publication No. 194 by O. S. Adams and C. N. Clau‘e
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STEREOGRAPHIC PROJECTION
POLAR STEREOGRAPHIC PROJECTION OF THE SPHEROID

Mapping equations. ,
: Z=7 cos A\, y=r sin \,

Scale factor.
2a? 1—¢€\2 )
~ BN cos ¢ d\1+e 2
Series expansion for 7.
—2e2+-46¢*

(1_62)2[ +12(1 62)7’+120(1 —op P’

17-93*—1,335¢' —4,880¢° ;. 31—184¢"+3,831e'+41,006¢" +53,641¢"
20,160(1— ¢ P 362,880(1 —e?)°

691 —4,841e2—44,966¢*—2,420,926¢°—10,194,43665—6,982,072¢°
79,833,600(1 —e?)° P ]
where - z=conformal colatitude,
a, b, e=semimajor axis, semiminor axis, eccentricity of the meridian ellipse
ko=scale factor at the pole; an arbitrary reduction applied to all geodetic
lengths to reduce the maximum scale distortion of the projection,
¢, A=geodetic latitude and longitude,
p=geodetic colatitude,
N=principal radius of curvature orthogonal to the meridian in latitude ¢
(the great normal).
NotE: See equations (438) and (439) on page 129 for formulas with the coefficients in the '
expansion of r above evaluated for the international spheroid of reference.

P+

Geographic coordinates from rectangular coordinates.

Yy 1Y
T

tan )\=;; or A=tan 1 7= S€C A=Y CSC A,

where ¢ for the corresponding value of 7 is interpélated from computed tables of 7
with ¢ or p as argument.

Polar stereographic projection of the sphere.

In the above formulas place e=0, N=a=5, Z=p to obtain the spherical forms
which will not be listed separately here.

. STEREOGRAPHIC MERIDIAN PROJECTION
The sphere. Mapping equatioﬁs.
___@cos ¢sin A ___asin¢
) “14cos ¢ cos N Y=11cos ¢ cos r
Scale factor.
k=1/(14cos ¢ cos N\).
Equation of meridians.

Circles _
(z+a cot N)’+y*=a® csc® \,
with centers x=—a cot N\, y=0; radii r»=a csc A.
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Equation of parallels.
Circles A .
24 (y—a csc ¢)*=a’ cot? ¢,
with centers z=0, y=a csc ¢; radii r,=a cot ¢.
For the graphical construction of the stereographic meridian projection of the
sphere see U. S. C. and G. S. Special Publication No. 57, page 34. :
The spheroid. Replace ¢ by the conformal latitude x.

Mapping equations.

__@cosxsinN @ sin x
“1+cos x cos N Y =1 cos x cos

Scale factor.
k=a cos x/[N cos ¢ (1+cos x cos N)].

STEREOGRAPHIC HORIZON PROJECTION
Sphere. Mapping equations.

. a sin A ¢os ¢
" 1-} sin ¢ sin ¢o-+-C0s ¢ €OS ¢y oS Y

e

» __a(sin ¢ cos ¢o—sin ¢, cos ¢ cos N)
¥=1 -sin ¢ sin ¢+ C€0S ¢ COS ¢y COS A

Scale factor.
k=1/(1-+sin ¢ sin ¢o+cos ¢ cos ¢, cos ),
where ¢o=latitude of the origin.
Equation of meridians.
Circles (z+a sec ¢o cot N2+ (y-4a tan ¢g)?=a® sec’® ¢ csc N, with centers
T=—a sec ¢ cot \, Yy=—a tan ¢,; radil r\=a sec ¢, csc \.

Equation of parallels.

@cospy \_  a’cos’é
sin ¢o1-sin ¢/ (8in ¢o+sin ¢)?

Circles z2+<y —

. . acos¢y . . '@ cos ¢
h == - I' _——7 -

with centers z=0, y Sn gotsin g adii 74 S ot sin

POLAR COORDINATES FOR THE STEREOGRAPHIC PROJECTIONS OF THE SPHERE

Horizon. 0=«, p=a tan % D,

tan a:cos bo 'tan ?—sm ¢o COS )\, sin D=cos ¢ sin )\.
s A €08 a
For the meridian and polar stereographic projections we have but to place ¢°=0’%
in these equations. '
' The graphical construction of the stereographic horizon projection is described in

U. S. C. and G. S. Special Publication No. 57, page 48.
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DERIVATION OF MAPPING FORMULAS

ELEMENTS OF COMPLEX VARIABLE THEORY

Before proceeding to the derivation of the formulas for the conformal projections we
will give a short account of complex numbers, some of the properties of a complex
variable and of analytic functions of a complex variable. No attempt is made to give
rigorous proofs, the idea being to enable the reader to grasp a working knowledge by
demonstrating the properties of an analytlc function of a complex variable which allow
the development of all conformal projections from such a function. Those who may be
interested in further investigation of the theory will find the presentations whose titles
are included in the bibliography most helpful.

Usually the first time one encounters the quantity i=+/—1 is in obtaining the
solutions of quadratic equations. The solution of the quadratic az?+2bz+c¢=0 is
—b++/b—ac
R

given by the well-known formula z== Now if the quantity under the

radical sign (the discriminant) is negative, i. e.,

b A=k

b?—ac<0, the solution is x=—a:{:%kw_here k=|b*—ac|.
We may then write

= ———i w/— JE__b \{ZE (1)
and we say the equation has complex roots and that ¢ is the imaginary unit. Conse-
quently the roots are also said to be imaginary. .

First let us demonstrate an important property of the imaginary unit i=+—1.
If we multiply this unit by itself we have i?=+—1+4—1=—1. Multiplying both sides
of this last by ¢ we have = —4. Continuing #*= —i*= -1, *=1, *=9?=—1, etc,,
so that regardless of how many times we repeat the operation of multiplication of %
by itself only four values are obtained and always in the same order each time, that is,

i4n—4:+1’,i4n—3:+i’i4n—2=_1){47;-1:__,1:" (2)

for all integral values of n.
Now think of an ordinary pair of orthogonal axes, z and y as shown in figure 1.
Let distances along the y-axis be multiples of the imaginary unit 4, and those along the
z-axis be the real numbers. The y-axis is then the axis of imaginaries, the z-axis is the
axis of reals. The plane determined by these axes is called the complex plane. By
~ examining the relations (2) as one places n=1,2,3 .. . . . itisseen that the effect of
repeated multiplication of ¢ by itself may be interpreted geometrically as a rotation of
the unit vector R=0T through increments of 90°. We see also from this operation that
multiplication by —1 corresponds to a rotation through 180° leaving lengths unchanged
Hence multiplication by —k would correspond to a rotation through 180° and a magm-
fication in length in the ratio & to 1. )
But what about some other point P on this clrcle? From figure 1 it is seen that
the regular cartesian coordinates of P are z,5. But we say the point P in the complex
plane corresponds to the complex number z+7y. That is, we have a double coordinate



CONFORMAL PROJECTIONS 17

system but referred to the same orthogonal axes. One might think of it as a complex
plane superimposed upon a real plane. z and y are both real numbers. When z=0,
then 0+17y=1y is said to be a pure imaginary. When y=0, 2} 0-i=z is a real number.

g

PlyriX)

FicUrE 1.—Continued multiplication of i=+/—1 by itself interpreted as rotation of a unit vector in the complex plane.

Hence it is seen that the formulation of the complex number system is a generalization
of the real number system since it includes it. Clearly if the complex number z-+14y=0,
then z=y=0. .

Again from figure 1 we have OP=+z*+y*=R=1 and tan 6=y/z. Now it is
seen that we do not need to limit P to the unit circle or to any circle. We may say
that R=+a?+y*=|z+1y| is the numerical value of the complex number z=z-y as
represented geometrically by the length of the line OP. In the formal terminology
R is called the modulus. R always has a unique direction specified by 6=tan™'y/z.
6is called the amplitude or the argument of z. If we impose the condition BR= N Fyi=
|z+4y| <k the point P (x+1%) is confined to the interior and the bounding circle of
radius k. If we write R= +2*+y*=|z-+iy|<k then P is confined to the interior of the
circle of radius £ but excluded from the points of the circle itself. This idea of limiting
a complex variable to a circle, to an area enclosed by a circle, or to the area contained
between two circles is fundamental in the study of analytic functions of a complex
variable, particularly in discussing the convergence of their power series expansions.!
Series expansions will be used later in connection with the derivation of some of the
autogonal projections. '

1 R. V. Churehill, Introduction to Complex Variables and Applications, p. 98.
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From the above discussion it is seen that we have at once the polar or vector
representation of complex numbers, namely

R— " yi=|a+iy|=|2|, 6=tan! /s,
=R cos 6, y=E sin 6, 3)

The vector nature of complex numbers may be demonstrated in performing the
elementary arithmetical operations on complex numbers. For instance consider the
sum of the complex numbers 344, and 4+6¢. Wehave 34+:1+44+6i=7+71. Nowin
figure 2 it is seen that OP=7-+47¢ is the vector sum of 0Q=3+1 and OS=4- 64,
since OP is the diagonal of the parallelogram OSP@. The other arithmetic processes

B P7¢74)

Stred) . -— " S

CRa

SR . ,
’
4} /’
’
. /
3+ /
/
/
2 | //
/
- L ' / .
¢ , Qe3+c)
1 ] L L 1 1 1
O

FIGURE 2.—The vector nature of complex numbers.

are as validly performed with complex numbers as with real numbers making use of
relations (2) to reduce powers of 4, and these processes always lead to another complex
number. As an example of multiplication of complex numbers we have

(2+430)(3+449)=6+171+12:*=6+17i—12=—6-+174.
Division is performed by rationalizing the denominator (since 1 is a radical), i. e,

6+7i_(6-+7i)(3-45i)_18+51i+35¢ 18-451i—35_ 1, 51
3—5i (3—bh)B+bi)  9—2b5i2  9+25 234

It is easy to show that the distributive and commutative laws hold in arlthmetlcal
operations on complex numbers.

We saw that multiplying ¢ successively by itself corresponds to the four intercepts
of the unit circle on the axes of the complex plane, giving in effect the cyclic rotation
from one intercept to the other—that is, through 90° increments. Suppose that we
multiply the complex number z=z41y by 4 to get z;=—y-+1z. If 6 and 6, are the

amplitudes of z and z, respectively we have tan Bz% tan 0= ——z— and since tan 6, is the
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negative reciprocal of tan 6, the line OP has been rotated through 90° as shown in
figure 1.

In figure 1, the point P’ is the symmetric of P with respect to the axis of reals or
the reflection of P in the axis of reals. We have then the two complex. numbers
z=z--1y, Z=2x—1y which are called conjugate complex numbers. They have, among
many other interesting and useful properties, the property that their product is always
a real number, that is,

2z= (x—l—iy)(x-——iy)=x2—iéy2=x2+y2=R2=]z[z. (4)

We note that, in division of complex numbers, the rationalizing factor is the

conjugate of the denominator. See the illustration above.
Returning now to equations (1), it is seen that the solutions of our quadratic

equation represent a pair of conjugate complex numbers in the complex plane.
Now let, w=z+1y, and z=A-+414r and suppose that the complex variable w is a
function of the complex variable z, that is,

w=z+iy=Ff(2)=F(\+ir). (5)

Then z and y are real functions of the real variables N and 7, that is, z=2(), 7),
y=y(\,7) and they are obtained by equating the real and imaginary parts of (5).
For example if f(A+4i7)=A*—72+24¢xr then ac—}—zy M—724+2¢x7 and consequently
y=N— 12, y=2\r1.

Let us write the d1fferent1al form of (5). Since w is a function of two variables

z and y we must use the differential form dw-— -|- dy. We have then
dw=22 dz—l—g—z) dy={ @)dz= f’()\+i1)'<g i+ df) ©)
ow 0z ow_ 0z
But N 1, 3y or —=1 so that we have from (6)
' dwzdx—i—idy:f’(z)dz =f'(A+ir)[dN+1id7). (7
-Similarly for the conjugate complex function z—iy=f(\—17),
we have .
dw=dz—idy=FEZ)dz=f"A—i7r)(dr—idT). (8)
Now multiply respective members of (7) and (8) together to obtain '
da?+dy*=f'(N—i7) f/(NHin)([dNHd D). 9)
If the derivative f’(z) exists at the point z, it may be provéd 2 that
, , .oy Oy .0
F@=fOtin=2 b?{ E-ish
| (10)

oy 2y, D
S@=f0—in=g—i =glti g

2 R. V. Churchill, Introduction to Complex Variables and Applications, p. 29.
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~ The folloWing demonstration will make equations (10) meaningful. In figure 3,
the point A in the z-plane is the point 2z=X--¢7 and the corresponding point in the
-plane for w=z-+1y=f(z)=jF(A+17) is the point C. Suppose that z is given the
Z-Plane w-Plane '
A 4
. Diw+dw)
s ,‘ B(z+Az)
/ >
/ /,VT\ "A\f‘
/ LA
(z=A+ir)A AT
N //
\\\ _ //
g /’ 7] X

FiGURE 3.—Derivation of the derivative of an analytic function. )
increment AB=Az=A\-}-1Ar as shown in the z-plane. Then w=f(z) will get the
. Aw .
4 fd —
Now f'(2)= hm LAz in the

increment O D=Aw=Az-+1Ay as shown in the w-plane.
notation of the differential calculus and if the limit exists the value should be unique.

Since w=z-+1y and z=2z(, 7), y=y(A, v), then
0z oy
Aw== A)\-}—b Ar+i ( An57 AT) (1

where we have ignored additional infinitesimal terms which vanish when Ar and A\

~ tend to zero.
With.Az=A>\+iAr we may write (11) as

y AT
aw_ ax +(af+ 3 '
o (12)
Az 1+z—-
AN
whence
b
i (i A’
, b)\ oM
f (2)~hm = lin
Az—0 AZ Az—>8 1+Z_
Ars0 AN
or
b b d
ot §+< o) :
@@= (13)

1+’b(—i-x
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But clearly the right member of (13) depends on the value of d)\ Whlch in figure 3

d

is seen to be the slope of the line ABi in the limit, i. e., lim dr Hence the derivative

Az—wO AX ?d_x
f'(2) as defined by (13) would not be unique at the point A(z=A-1ir), since the point
B may be any point on the circle about A of radius Az, each point determining a dif-

ferent value of % We must, therefore, impose some conditions on z and y which will

cause equation (13) to be free of % This will also cause the representation to be
conformal. We note that if we place %*O, 2)\—- @ (equivalently take the directions

of AB parallel to the M and 7 axes) we will obtain from (13)
| , S e 1 ay)
ro-g+ish o5 (3+iY) (14)

. : dr
which are free of PN
But if f/(z) is to be unique at the point 2z, then the two values of f'(2) as given by
(14) must be equal, and equating them we obtain the first of equations (10), namely

oz .0y dy .oz
I @ =511 =3, or

Analogously we may give a demonstration of the second of equations (10).
If we equate real and imaginary parts in equations (10), we obtain

or Oy B :
N or e, Ten=0 (15)

which are known as the Cauchy-Riemann equations. They are the conditions which
must be satisfied by the real functions z(\,7), y(\,r) if f/(2) or f'(Z) exists at a point z,
the existence of the derivative through' (15) imposing, at the same time, the con-
formal mapping of one plane upon the other. This will be subsequently demonstrated.

Multiplying the right members of (10) together in all possible ways, making use
of equations (15), we have '

7@y @=sotinso—in=(55)+(3L) =(52) +(%£) =7 (£ as)

ox Oz
T,y o o . . .
where J <—’— = is the Jacobian functional determinant. Hence the product
AT dy y
O\ dr

of the derivative of a functlon of a complex variable and the derlvamve of its con]ugate
is a real function since = and ¥ are real functions of A and .

We may wish to express the complex variables N4-ir, A—4r and hence the conju-
gate complex functions f(A-1i7), f(A—1r) in polar form. From equations (3) wé have
A=R cos 8, 7=R sin 0 and (5) may then be written

w=z+1y=f(2)=f(A\+1i7)=_f[R(cos 641 sin 0) = f(Re'),
W=z—1Y=f(2)=f(A\—1i7)=f[R(cos §—1 sin §)]=1f(Re~*9).

(17)
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In (17) we have used the identities e’*=cos 6+1 sin 8, e~ **=cos #—1 sin § which
may be easily demonstrated by means of the Maclaurin expansions for the functlons

e, cos 0, and sin @ as follows:
# 6 6 6
A TR TR TR

6
cos = 1 +4|
. #® P
sin 020—-—?;-"—'—?— sy

2 3 4 05

. ..o L8 8.
etf=1 '{'?/0-—5]_—’& g+m+@ 51

(e (-5

=cos 041 sin 0

2

» 9 .
e "—1—@0 + 3,+4‘ B

_( 2v+4v > ( 3T 5! >

=cos §—1 sin 6.
The Cauchy-Riemann equations (15) become for the polar form

or 10y 1 oz
3R R ’bR+R 560" . as

Let us derive equations (18) as follows:
From (5) w=z+w=f(\1), where z=z(\,7), y=y(\,7) and we are changlng to
polar form by means of the transformation A=R cos 8, r=R sin 6.

Then
i G St
But g{ g’f gf\ +4 23){ g{ aaqf gf-l—_i% and these values placed in the right

~ members of (19) give

R+ by x_l_iby cos 0—I—<a -I-zay) sin 0 )
. by (20)
m—i—’b-a—— b)\ >( R sin 0)—|—< >(R cos f).

Now multiply the second of equations (20) by z/R and then add respective members
of the equations to obtain
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ot oy + 1 30) [ (S5 w4 G 50) o ]

z[(a—f—l——a—% <———7 sin 0:!- | 21

Equating real and imaginary parts in (2'1) we have

oz 10y [ozx Qy or , oY\ .
3R E 26 \ox or) 0+<—+‘X)Sm 6,

+1 0r [0z by ( y) s, 22

R 26 \or ox "ar)Sin

The right members of (22) are identically zero if 0x_0y_ =0, ‘+—=
N or. or © O\

But these last are the Cauchy-Riemann equations (15), hence from the left members of
(22) we have equations (18).

A function of a complex variable is said to be analytic in a region if its derivative
exists at every point of the region. Let us now state the conditions under which (5)
is an analytic function. If z=x(\,7), y=y(\,7), together with their partial derivatives
of first order, are continuous, single-valued and satisfy the Cauchy-Riemann equations
(15) throughout some open bwo—dlmensmnal region, then the function (5) is analytic
at all points of the region?

The properties of an analytic function of a complex variable which make it a natural
- medium for the development of the formulas for conformal maps are: (1) at each point
where a function f(2), as given by equation (5), is analytic and f’(z)0, the mapping
w=1(2) is conformal and; (2) the curves z(A,7) =¢;, y(\,7)=c¢, that intersect at that point
under the above conditions are mapped into the lines z=c;, y=¢; in the w-plane. Since
these lines in the w-plane are orthogonal, the curves x()\ 7)==c1, Y(\,7)=c; are or t,hogonal
in the z-plane, and conversely.

Since the mathematical figure of the earth, considered a sphere or spheroid, is
referred to its orthogonal system of meridians and parallels, we recognize the importance
of these properties. This will be discussed in more ‘detail when we show that the
spheroid can be mapped conformally upon a plane.

We will now demonstrate these properties by an example.

Suppose that equation (5) is given by w=z+1y=f(z) =T * —f(x—zr)

We have then that x+iy=e7e™, and from (17), eT™=cos A+1% sin A so that z+iy=
e” (cos N+ sin A).  Equating real and imaginary parts we have

r=¢" COS )\,y='—1—e’sin A (23)
From (23) we have g—%—ef cos A, g)\ —e7sin \, a—y=+e’ sin A, g%{——}-e cos X\, whence
LA —eT sin A o _ + Y—¢ cos \ and the Cauchy—meann equations (15) are
o or "or )

thus satisfied, the sign reversals being due to the use of the conjugate function f(A—<7)

instead of f(A+147). »
Squaring and adding, then dividing respective members of (23) we obtain the
equations
2’4 y?=e’, y=-+u1 tan \. (24)

3R. V. Churehill, Introduction to Complex Variables and Applications, p. 32.
953903—53
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In figure 4 it is seen that r=e¢;, A=¢,, which are lines parallel to the coordinate
axes in the z-plane as shown, define the point P at their intersection. The values r=¢;,
A=, placed in (24) give the corresponding point P’ in the w-plane as the intersection
of the circle 2*+y?=¢?% and line y=-x tan ¢,. That is, for every line r=¢; in the
z-plane (parallel to the A-axis) we have a circle 2*-¢* —ez" in the w-plane. For every-
line A=¢, in the -z-plane (parallel to the r-axis) we have a line y=-z tan ¢, in the
'w-plane It is clear that every line y =z tan ¢, is orthogonal to every cu‘cle 22 yi=e2a
since the lines coincide with radii of the clrcles :

Z-Plarne ' ' w-Plane

X
7= X # yz_. ézc
1= ' ' 9= XtenC,
A =/;/ﬁ') ‘5; 244 _ez )f(ﬂrc/an /1)
f—':f;(ﬁ) Jll x* +f11 _ezr’(arr/any/x)

Fi1GURE 4,—Corresponding curves in conformal mapping.

We will now show that angles are preserved in the mapping of the z-plane upon the
w-plane.  In the z-plane of figure 4 we have the curves r=£;(\), r=5,(A) which pass
through the point P if ¢,=f; (c.)=f» (c.).  The tangents to these curves at the point P
make the angles £, and £, respectively with the N-axis, and we have tan &=f,'(c,),
tan &=71,'(c;). The angle between these tangents is % and n==4§—#&, whence

tan £,—tan g, — Je)—fil(ed) ‘(2 5)
1+tang tang, L4+ £(co) fe (co)

Now in the w-plane, the curves s; and s. correspond respectively to the curves r=£;(\),
r=f2(\) in the z-plane, and the parametric equations of the curves are obtained from
(23) by replacing 7 by f;(\) and f;(\) respectively, that is,

tann=

5 I

S x=¢1" cos \,y=-+¢*"sin A,
f2 20 (26)
St x=¢?*" cos \,y=-F¢*" sin \.

To show that the curves s; and s, pass through P’ in the w-plane when the curves
r=fi(\), 7=f(\) pass through the point P in the z-plane we have only to recall our
condition for these last two curves to pass through the point P, namely f;(¢;) =7:(c2) =«¢,.
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If we place A=¢; and fi(¢;)=fz(cz)=¢; in equations (26) we obtain in each case z=
€°1 o8 €y, Y= -}¢% sin ¢; which are the coordinates of the point P’.
If 5, and &, are the angles which the tangents to s; and s, in the w-plane make with
the z-axis then
dy |dx dy |dz

tan 61: tan 62=d—x EX 82()\=02).

AN/ AN si(A=¢y), 27

From (26) we have

st %?i=+ef‘(”fl’(>;) sin A4¢*™® cos A,
zx—e"mf "(\) cos A\— "m sin A.

8gt gz +¢2% £7(\) sin A4-¢2% cos A,
%:e’zm fz’(}\) cos A—e2™ sin \.

Forming from these values the ratios in (27) and placmg A=c, to evaluate at the
pomt P’ we find that equations (27) become

1 +f1 (co) tan ¢,

14-5'(co) tan ¢,
fi'(co)—tan ¢,

) tan &=+ ./ (c;)—tan ¢,

Now if B8 is the angle between the tangents to s, and s; then f=8—48 and
tan é;,—tan 6;
tan f= 1+ tan é, tan 62

tan &=+ 28)

With the values of tan &, tan 6, from (28) this becomes

1+£,(co) tan ¢z 14fi'(cs) tan ¢,
Ji'(cs)—tan c, B fi'(ca)—tan ¢,

[1+£i(co) tan c,] [1+£,'(cs) tan c5]
[fi'(co)—tan co] [ f,'(c;)—tan ¢,

i (el —=fi'(cd) 1+tan¥2 Cq
1 + 1/ (e f’ (Cz) 1-+tan? ¢,

_ fi'le—1i'(eq) '
1A (e fs (02) @9)

From (25) and (29) we have that tan n=tan 8, or =g and corresponding angles
are thus preserved in the mapping.
Figure 5 is & numerical example of the general case treated in figure 4. We have

chosen f;(A) and f.(\) to be_ fl()\)=% N—1, fz(k)z% )\2+

+

tan =
14

5 that is, we have chosen

for the point P in the z-plane the intersection of 7=c¢,=1, )\=02=Z~ and the two para-

bolas r=% N—1 ,r=% X"—I—%, through the point P. From these wehaver,'=f'(\)=—

T =1 (k)=17r—§ M and at )\=cz=§, these become respectively 7,/=f <£>=%=tan £,
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=1, <§>=%=tdn £. Hence from (25)

'16_4
T o7 127
tan n= =— =0.51035.
104 wI6d
T T

From (24) the corresponding point P’ in the w-plane is the intersection of the circle
2?4 y?=¢?, and the line y=z.

- 16 4
1+— 14—
: 16+ = T 447
F' =S 7|': ! 8. —_——
10m(2$) tan &, lﬁ_l 6= tgnéz il_._l pp—
™ ) T
and '4+7r_16+1r

tan é,—tan §, 4—7 16—7w 127
= =tan~,

PP tan tans, | dFw 16FT w64
4~7x 16—

whence 8=5=27°02’15" as was to be shown.

Z-Plane ' w-rFlarne
7
=L ~
1,
2 X .
W |
,;m‘ !
4 7= 7 =Z
2 l"’?
gt-ylr A X
g .3
=17 x1ryrt=g@*%
A % —
re B PRTLS Soto,
- 32, L 2, g2 = SR FTE #xcrs)
7= 7%+ 2 S xtryi=e

F1GURE:5.'—Corrcsponding curves in conformal mapping.
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We could have mapped both corresponding families of curves on the same com-

plex plane. The use of two planes is for convenience in deplctlng the point-to-point
. correspondence in the conformal transformation or mapping.

Finally we can exhibit the autogonal property by considering the respective for-

mulas for arc length in the two planes. .In the w-plane the element of arc is ds,’=

dz? +dy* In the z-plane it is ds?=dx*+d+2. Now from equations (23), using the

formulas dx———— d)\—l— S, L dr ,dy= by d)\ + by dr with the values already obtained for

. .. or by__ .o oz, Qy__ . _
the partial derivatives, Ny, ¢ sin A, 67——{—0)\—3 cos A, we have dz=
e” (—sin X d\+cos N dr), dy=-e" (cos X dA-+sin A dr) whence ds*=dz?+dy’=

e* (dN+dr?y. Now forming the ratio ds;?/ds;* we have

ds®  e*(dN+drh)

ds = ANFd O O gs, " (39

Since the right member of (30) is free of the direction in which ds, is measured -
and has a unique value for each value of 7 the mapping is autogonal. The ratio
ds,/ds, is called the magnification or the scale of the projection. The method by which
(30) was derived will be essentially the one used in obtaining the scale for the auto-
gonal mapping of the spheroid.

PARAMETRIC REPRESENTATION OF SURFACES AND CURVES

A surface in three dimensions is given by an equation of the form F(z,y,2)=0, or
z=f(z,y). It may be given a parametric representation in terms of two parameters
and in many ways. That is, we may write

\ e=r(r)), y=y(), e=2(eN), . 6D

where 7,\ are the arbitrary parameters. But we may change to other parameters by
writing 7=7(£), A=A(5), etc. The two parameters, of course, when eliminated among
the three equations (31) must leave the equation of the original surface in the. form
F(z,y,2)=0 or 2=f(z,y). ' '

For example, consider the sphere 2?42+ 22—7r?=0 which is in the form F(z,y,2)
=0. From figure 6 we have clearly that

Z=" COS ¢ COS N\, Y=" €OS ¢ sin \, =7 sin ¢, (32)

where the parameters are the latitude, ¢, and longitude, A. Squaring respective mem-

bers of (32) and adding we have again z®+y?4-2>—r?=0. Now in equations (32)

place ¢=tan~'f, \=cos™1§ and obtain z=rs/(1+£)"?, y=r(1—3)3/(1+£)V? 2=
rE/(1+£)"2, which is a new parametric representation of the sphere, since squaring and
adding respective terms again produces z?-+y*+22—7r?=0. Again in (32) place

cos ¢p=¢% cos A=¢’, whence sin A==+1—¢*, sin ¢=+v1—e* and we have r=re*t?,

y=re*1—e*, Z=7‘\/1—62“ which is still another parametric representation of the

sphere. We could continue this process indefinitely, obtaining each time a different

parametric representation of the sphere.
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q ¥=recosd cosa; S=rcosP s, Z :r;/‘n%ﬁ
' ads?2 =¥ dp*+ cos’bai*)

FIGURE 6.—Derivation of parametric equaiions for the sphere.

In the equation z=f(z,y), place y=c (constant). We have then the curve z=
f(x,c) which is the intersection of the plane y=c and the surface z=f(z,y). Any point
on this plane curve has coordinates x=2, y=c, z=f(z,c) as shown in figure 7.

If we place y=u(x), where u(x) is an arbitrary function of z, we have a curve on
_ the surface which is the intersection of the cylinder y=wu(z) and the surface z=f(zy).
(By a cylinder is meant the locus of a straight line which intersects a given fixed curve
and moves always parallel to a given fixed straight line. In this case the given fixed
line is the z-axis and the fixed curve is y=u(z), 2=0 as shown in fig. 8.) The coor-
dinates of any point on this curve, which is clearly a twisted or space curve since it
does not lie in any plane, are '

z=zx, y=u(z), z=f[r,u(x)]. A (33)

From (33) we see that the coordinates are expressed in terms of the single parameter z.
The curve of intersection of any two surfaces z=f,(z,y), 2=f(z,y) may be considered
as the intersection of a cylinder and a surface from the following considerations:
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We have along their common curve of intersection z=f,(z,y)=f(2,y), or fi(z,y)—
foley)=2(z,y)=0, or y=u(x). Then z=2, y=u(z) and with either z=f[x,u(z)]=
folz,u(x)] we have the coordinates of the curve of intersection in the form (33). For

L

8

—X

it T TP,

\,

z=£(nY)

FIGURE 7.—Parametric equations of a plane curve on a surface.

example, consider the surfaces z2=227+y"—y, z=z*+y?. We have 2224y’ —y—2—y’=
#?—y=0, or y=2°. Hence the coordinates of the curve of intersection are z=x, y=27,
z=22+at—a*=2"+a'=2a’(1+2?), the curve being evidently a space quartic.

“~

y

FIGURE 8.—Parametric equations of a space curve on a surface.

Now in equations (31) if we place A=c, then the coordinates are a function of the
single parameter 7, and similarly for r=e¢.
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From figure 6 and equations (32) with A=c¢ we have the coordinates as a function
of ¢ or latitude only, whence the curve is the meridian section in longitude A=c, or the
intersection of a plane through the z-axis with the sphere.

Similarly with ¢=c, we have a parallel of latitude, or the intersection of the plane
z=r sin ¢ with the sphere. Hence ¢=c, A=c represent intersections of planes with the
sphere giving curves on the surface which are called curvilinear coordinates. If we
place A=X() or f(\,¢)=0 we get a twisted or space curve on the surface passing through
the intersection of the curves ¢=c, A=c. Analogously for the general surface given by
(31), r=c;, A=c, are parametric curves of the surface, whence r=7(\) or ®(+A\)=0
represents a curve on the surface through the point P(x,y,z), P being the intersection of
the parametric curves r=c¢,, A=¢; as shown in figure 9. Note that the parametric

FIGURE 9.—The angle between two curves on a surface.

curves are not necessarily plane curves. In fact they seldom are. We may discuss the
- geometry of the surface with reference only to the parametric curves, knowing of course
that the space coordinates z,y,z are functions of the parametric curves or parameters.
We are familiar with this from the concept of latitude and longitude—a point is uniquely
~ determined (except for the poles) by the intersection of the meridian in longitude,
and the parallel in latitude, ¢. Such a point has also a rectangular representation, the
coordinates being functions of the latitude and longitude. (See equations 32.)
We often express the coordinates of a curve on a surface in terms of arc length along
the curve. Thisis especially convenient in the development of the differential geometry
of curves and surfaces.

THE LINEAR ELEMENT OF A SURFACE

The linear element or differential of arc length of a curve ®(r,\)=0 on a surface
through a given point P(z,y,2) of the surface, where z,y,z are obtained from (31) by

placing 7==¢,, A=c¢, is
s"’=dx2+dy +dz? (34)
From figure 10 we see that the chord Al=PQ of the curve. (c) is given by Al*=

Ax?4- Ay?+ A2, hence
Al2 Az\?
=(55) +GD + G
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In the limit as Q—P, the chord Al becomes the tangent at P, Al—As, so that we have

() + (@) + (5

dx d'_e/ dz are direction cosines of the tangent to the curve (c) at P.

ds'ds ds
Multiplying through bylds® we have the differential of arc length of the arbitrary curve

which"states that 5

XA X, J48Y, Z +AZ)

FI1GURE 10.—The linear element of a surface.

~ (¢) through P on the surface as given by (34) which is also called the linear element of
the surface. - '

From (31), since the coordinates are functions of two parameters, we have

(35)

_ 0z oz _by oy _0z 9z
dm—ardr‘—i—ad)\, dy= d +b dn, dz dr—l—a)\d

If the expressions in (35) are squared and placed in (34) there results the equation

ds!=Ed+*+2Fdr d\+Gd)\?, (36)

Gy

—(2EY (VY (22,
G‘(ax) +<a>\ +<a>\>
Equation (36) gives the linear element of the surface in terms of the curvilinear
coordinates 7,\. The quadratic differential form given by the right member of (36) .
is called the first fundamental form of the surface, and the quantities E, F, @ the funda-

mental coefficients of the first order.
953903—53

where
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THE ANGLE BETWEEN THE PARAMETRIC CURVES

Consider the parametric curve r=c,. We have then d==0 and (36) becomes ds,=
JGd\. TFor the parametric curve A=c;, dA=0 and (36) gives dsy= VE dr, or the

elements of arc for the parametric curves r=c,, A\=c; are respectively
ds,=+Gd\, dsx=+Edr. (38)
From (35) with 7=¢,, A\=¢, we have respectively ’

dbx

by _0z
ax, dy= d>\, dz=%3 ax,
(39)

| _ oz _ oy _ 0z
dx—a—T dT,dy—a dT,dZ—g”—_ dr.

If (L, M,, NY), (Ly, M,, N,) are dlrectlon cosines of the tangents to the curves

7=¢;, A=¢C; then \
(40)
Lz_g—;, M=%, Nz:(}l_;.
Forming the ratios from (38) and (39) we find that equations (40) become
oz Oy 0z .bx 0y Oz
L, M,, Nl=m, Ly, M, NZ:EO__;’E_ (41)

| VG VE
If 6 is the angle between the parametric curves 7=¢;, A=¢, we have from (41) that

dx Ox by by+bz oz
dNO7 'ON Q7 ' O b'r_

VEG

CcOos 9=L1L2+M1M2+N1N2—

" But by (37) the numerator of this fraction is F, hence

cos 0=F/yEG; sin 0= T—cos? 0= VEG—F*/JEG. (42)

From (42) it is seen that the parametric curves are orthogonal if F'=0.
For an example let us continue with the sphere. From equations (32) we have

or__ . or oy _ . oy

26 T sIn ¢ cos A, SN 7 cos ¢ sin A, Py r Sin ¢ sin A, b)\—r CcOS ¢ COS A,
z 0z

—b¢—r cos ¢, YV =0.

Forming the quantltles E, F, G from equatlons (37) we have
E=r?sin? ¢ cos? N\+7r? sin? ¢ sin? A+r? cos? ¢=72, v
F=r?sin ¢ cos ¢ sin X\ cos A—r? sin ¢ cos ¢ sin A cos A=0, (43)
G =72 cos? ¢ sin? A+r? cos? ¢ cos® A=r? cos? ¢.

Since F=0, the parametric curves are orthogonal. This we knew since the para-
metric curves are meridians and parallels on the sphere.
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With the values of E, F @ from (43) the linear element as given by (36) is
ds =r2(d ¢p2+ cos? od\? -
=72 cos? ¢ (sec? pdp*+dN?). (44)
Note in figure 6 (p. 28) that from the differential triangle PAB, considering it to

be a plane right triangle with hypotenuse equal to ds, we have at once ds’=r’d¢’+
2 cos?opdN2.

THE ANGLE BETWEEN TWO CURVES ON A SURFACE

The direction cosines of the tangents to two curves &(r,\)=0, f(r,\)=0 through
P(x,y,z), the intersection of the parametric curves r=c;, A=c; are respectlvely
dz dy dZ d:cl dy1 le
ds’ds’ ds’ ds, ds,’ ds. where differentiation is with respect to arc length. (See the

discussion following equation (34).) If g is the angle between the tangents then
dz-dz,+dy-dy,+dz-dz,

(45) |

cos f= ds-ds,
With the values from (35) placed in (45) we have by (37)
Edr-dr,+F{dr- d)\l—i—d‘rl dN)+GdN- d)\l
cos B=
ds-ds;
(dry-dN—dr-d\) (46)
s\ ATy T 1
sin f= ‘/EG F 7535,

THE ANGLES BETWEEN A CURVE ON THE SURFACE
AND THE PARAMETRIC CURVES

If the curve f(r,\)=0 is the parametric curve A=c, through P, then d\;=0 and,
from (36) or (38), ds;=+Edr,.. With these values of d\ and ds, Qquations (46)

F1GuRE 11.—The angles made by a curve with the parametric curves.

become :
T — T2 )
cos B=—— (E Is STL+F dk) EGF F 3: (47)
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where 8 is now the angle between the curve ®(r,\)=0 and the parametric curve A=c;.
See figure 11.

If v is the angle which the curve ®(r,\)=0 makes with the parametric curve r=¢,
and 6 is the angle between the parametric curves (see fig. 11) we have y=60—8, whence

cos y=cos (§—B)=cos 8 cos B-+sin 6 sin B, 48)
. 48
sin y=sin (§—B)=sin 6 cos B—cos 4 sin 8.

"With the values of sin 8, cos 4, sin 8, and cos 8 from (42) and (47) placed in (48)
we have

VEG—F*d+
VG ds
FAMILIES OF CURVES ON A SURFACE

We have seen that f(r,A\)=0 represents a curve on a surface. A family of curves on
a surface is given by

cos (6— )= /G<F +Gd sin (9—B8)= (49)

S, N=¢, (50)

where ¢ is an arbltrary constant.
Now (50) is the solution of the ordinary dlﬁ'erentml equation of first order and
first degree

M(T,)\)dT+N(T,>\)d>\=O. ' (51)

To show that any solution of (51) defines the same family of curves we suppose that
fi(r,\)=c¢, is also a solution. Now if both (50) and f,(r,\)=c; define the same family of
curves on the surface, f; must be an arbitrary function of f.

From (50) and f,(r,\)=¢c; we have by differentiation

bfd +bfd>\ 0, af‘al +af‘d>\ 0. ‘ (52)

From (51) and (52), solving for d\/dr in each case we have

dx__df Pf__dh /afl M

&= oo " or N (53)

From (53) we have gf aaj;: ? g%——O or J(f’ﬁ) 0, which is the condition that f;

should be a function of f and hence all the solutions of (51) define the same family of
curves on the surface.

ORTHOGONAL TRAJECTORIES

If a curve is orthogonal to every curve of a given family of curves, (50), it is called
an orthogonal trajectory of the given family. (Two curves on a surface are orthogonal
to each other if, at each point of intersection of the curves, the corresponding tangents
to the curves are orthogonal.) '

Let the given family of curves be defined by (51). From (46) the condition that
two curves on a surface be orthogonal is

; dX d\ dN o
E+F-<E¥+ )T = &4
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Placing the value of d\i/d7;=—M/N from (53) in (54) we obtain
(NE— MF)dr4-(FN—GM)dr—=0, . ) (55)

which is the differential équation of the orthogonal trajectories of (51).
"~ A differential equation of second degree of the form

RN +2 860 24763 (£ =0, (56)

may be solved as a quadratic in Z)\, giving then two differential equations of first de- -

gree. The integrals of these two differential equations will give then two distinct
families of curves on the surface provided the discriminant of (56) does not vanish.

AN d)\ . dv 28 dhdh,_ R .
If a7 dr, are the roots of (56), we have d —}-dT1 T drde T With these
values placed in (54) we obtain
ET—2SF+GR=0, (67)

which is the condition that one of the families of curves given by (56) shall be the
" orthogonal trajectories of the other.

CONFORMAL REPRESENTATION OF ONE SURFACE
UPON ANOTHER

A surface has conformal representatlon on another if a one-to-one correspondence
" is established between their points in such a way that the angles between corresponding
lines on the surface are equal.

To obtain the condition for this we assume that both surfaces, S and S;, are re-
ferred to a corresponding system of real lines in terms of the same parameters =, N and
that corresponding points have the same, curvilinear coordinates. The respective-

“linear elements may then be written

S) ds?=Edr*+2Fdrd\+G dN,

(S)) dsi?= Eydr*+2 Fidr dA+ Gy d\e, (58)

From (42) the cosines of the angles 6, 8, between the respective parametﬁc curves.

on the two surfaces are ——

r Iy and if the representation is to be conformal then.
\/L’G x/El 7
F 5 (59)
VEG +E.G
In figure 12, B, B, are the angles which corresponding curves ®(r, \)=0, &:(r, \)=0
on 8 and 8; respectively make with the parametric curve A=c, at corresponding
points P and P,.. From (47) and (49) we have

EG—F? d\ VEG—F? dr
—l_hw_ haddd
s 8 VE ds’ sin (0—f)= f(; ds’

, (60)
M \/ElGl Fl d)\ VEIGI Fl dT
sin B,— , 8in (01 Bg)=Y—"17_-1 .
VE, ds, V& - ds,
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If the representation is to be conformal we must have 6= + 0, B=+0: éccording
as the angles have the same or the opposite sense. From (60) we have then

VEG—F? d\ 1/E,G1 F2dx JEG—F? dr__ w/ElG, 2 dr
@ ds VE; ds;’ \/G ds m ds;

~ where the signs are chosen according to the sense of the angles in the corréspondence.
From (61) we have

(61)

(BE.G—Fd ds G | VE

B TG EE )
From (59) we have 7——{% ‘;/(2 which with (62) gives
E,\G,— F? _d_sf__E,__F_l__G,_ ' (63)
- EG—F* ds* EF @ .- _

Solving (63) for E,, Fi, Gy and combining with equations (58) we have ds;*=

EEI%—F—,Z— ds*, or finally

d81

E, G,— F12>1/2_
ds?

2 2 ’
=k where k —(——~——E iy (64)

Since E, F, G, E,, Fl, G, are, in general, functions of 7, A then £? may be a function
of 7, A .

From the above it is seen that (64) is the condition to be satisfied by the linear
elements of the two surfaces in order that the representation shall be conformal. Note
that we have used this condition in the discussion of the conformal representation of
" - one plane upon another by means of the complex variable. See equation (30).

(s) : | (s,)

F1GURE 12.—Corresponding angles at corresponding points of two surfaces having the same curvilinear coordinates.

The conformal representation is direct or inverse according as the relative posi-
tions of the positive half-tangents to the parametrlc curves on the surface are the
same or symmetric.
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Referring to figure 12, note that the elements of area on the surfaces S and S; are
respectively d A=sin 0 ds) ds,, d A;=sin 6, ds\ ds, which become from (38) and (42)

R IO 52
=+ EG@—F*d\Ndr,d A=+ E,Gi—F®d\dr. Hence 3511 = EE?} FF 12» that
1 1 1

is, 132 is the ratio of the elements of area on the two surfaces.

CONFORMAL REPRESENTATION OF A SURFACE UPON A PLANE

If we consider the surface (S), equations (58), to be a plane, then the linear ele-
ment, or differential of arc, must be given by

s?=dr*+dN, . (65)

where 7, N\ are reétangular coordinates in a plane. We have thus E=G=1, F=0.
Then because of equation (64) we must have the linear element of the surface (S;)

in the form :
ds*’=m(dr?+4dN\?), where now m = k% (66)

This means that the parametric curves must be orthogonal since F1=0. Suppose
the linear element of the given surface (S,) is then ds,*=Edu’+ Gidv®. If E, is a func-
tion of % alone and @, is a function of » alone we may place dr’=Edu?, d\*=Gdv*
and the linear element becomes ds,>=dr?+d)?, that is, m=1, whence there is no dis-

.tortion in the representation. Surfaces having such linear elements are developable

surfaces—surfaces such as cones or cylinders which can be “‘cut’’ along a linear element

r ‘“‘generator”’ and made to coincide with a plane by “rolling out” without stretching
or tearing. ’

Suppose the linear element ds,’= K, du®*+ G, dv? can be written

- ds,? =m< =) where El=%, Gz=%; : (67)
and we place
d72=%", dNI= "’;ﬁ (68)

The linear element will then be in the required form (66) but in order to integrate
equations (68), U must be a function of  alone and V must be a function of v alone.
From (67) we have ’
U_a

V& (69)

m=UE,=V G, or 7>

The conditions then for the conformal representation on a plane of a surface which

is not developable are that the parametric curves must be orthogonal, F;=0, and that

E, and @, must satisfy a relation of the form (69) where U is a function of « alone and
‘V is a function of » alone.

ISOMETRIC ORTHOGONAL SYSTEMS

When the linear element is in the form (66) we have seen that the parametric
curves are orthogonal. Note also from (66) that the elements of arc of the parametric
_curves r=¢;, A==, are respectively ¥m d\, ¥m dr. Hence when the increments dr,
d\ are taken equal, the four points (r, N), (+dr, N), (r, A+dN), (r+dr, A+d)) are the
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vertices of a small square as shown in figure 13. Hence the parametric curves divide
the surface into a network of small squares, not necessarily all of the same size. On
this account these curves are called isometric curves and 7, N isometric parameters.

F1oUuRre 13.—Isometric orthogonal net ona sur(ace

Thus it is seen that a surface to be mapped conformally upon a plane must be referred
to an isometric orthogonal system. .

- DIFFERENTIAL GEOMETRY OF A CURVE ON A SURFACE

In figure 14 we have a curve (¢) on a surface (S). At any point P(z,y,2) of this
curve (¢) we have always associated three mutually perpendicular lines, namely the
tangent PT, the principal normal PN, and the binormal PU.

If @ is a neighboring point of P on (¢), then the chord P@Q and the tangent PT
determine a plane which as Q—P assumes a limiting position at P, the chord P
coinciding with the tangent PT. This plane is called the osculating plane of the
curve (¢) at the point P.

A plane perpendicular to the tangent PT at P is called the normal plane, and its
intersection with the osculating plane determines the principal normal PN. The
binormal PU orthogonal to PN and lying in the normal plane determines with the
tangent the rectifying plane as shown in figure 14.

The curve (¢), considered a space curve, has two radii of curvature associated
with it at every point. p;, the first radius of curvature, lies along the prmmpal normal.
The second radius of curvature, p,, called the radius of torsion, lies along the binormal.

In order to find the equation of the osculating plane we need to find under wha,t
conditions a curve and surface have contact of a given order.

2

CONTACT OF A CURVE AND SURFACE

If P, P, P,, . .. P, are points of a given curve which also lie on a given surface
and the points P;, P,, . . . P, tend to P, then in the limit, when Py, P,, . . . P,
coincide with P, the curve and surface have contact of the nth order at P.

Assuming that the coordinates of P are x=u(s), y=y(s), 2==2(s) and that the
equation of the surface is of the form f(X,Y,7)=0, so that at a point P, common to the
surface and curve, f(z,y,2) =f(s)=0, then the roots of f(s)=0 are values of s which
correspond to the points of intersection of the curve and surface. If the curve and
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surface have contact of the first order at the point for which s=s,, the equation f(s)=0

af bfdx+ ofdy ,ofdz _

ds, oz ds, oy ds; +bz ds,

This may be extended. That is, if the contact is of the second order, the equation
df _ &' _

"ds, ' ds?

In general, if the contact is of nth order, then f(s,) =0, f'(s;)=f""(s)= . . . =f" (81) 0.

(Note that we are using here essentially the theorem that an n-4-1 fold zero of a function

has two roots equal to s;, and therefore f(s;) =0, and

f(s) —0 has three roots equal to s, therefore we must have f(s;) =0

Principal Normal
N

L S
R 2
N 2
-
/8 R

\ Tongent

—-

FIGURE 14.—The three planes and three axes associated with a space curve at each of its points.

is also a zero of its nth derivative. This is easily seen from the fact ﬂl&b ifs;isannt1

fold root of f(s)=0, then s—s, is an n--1 fold factor, or f(s)=g(s)(s —s;)"*%. Thus

8 —s; will be in every term of every derivative up to and including the nth derivative.)
THE OSCULATING PLANE

In figure 14, the osculating plane is determined when the chord PQ coincides with
the tangent P7. This implies that the curve and plane have contact of second order
at P(zy,2), since the tangent requires contact of- first order. Therefore if
AX+BY+C7+D=0 is a general plane we must have

f(8)=Az+By+Cz+4D =0
f(s)=Az'+By +Cz =0
f//(s)zAwu_*_Byu_*_OZ//:O.
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Eliminating A, B, C, D from these four equations by writing the eliminant we have

XYy 71
X-2Y-~y 7~z
x y 2z 1 |
' ’ =| 2 y; 2’ =(X x)(y/ 17 z’y”)
II) y, 2 0 ’ rr ’ +(Y y)(z’x”'—x’z,/)
X Y 2 _*_(Z'_Z)(x/yu _y/xll)zo,

. 2! Z/” 27 Q0 (70)
which is the equation of the osculating plane at P(z,y,z).

THE NORMAL PLANE

From the discussion following equation (34), the direction cosines of the tangent

PT were noted to be x’-—%— y’ 328/ ! g—% -Hence a plane through P(z,y,2) normal
to the tangent would have the equation
(X —2)2’'+ (Y =)y’ +(7 —2)2'=0. (Y]

Since #’,3/’,2’ are direction cosines we have also z'*+y’*42"*=1, and by differentia-
tion 'z’ +y’ y”+z’ =0,

DIRECTION COSINES OF THE TANGENT, PRINCIPAL NORMAL,
BINORMAL

We now develop the formulas for some of the fundamental differential relations
among the associated geometric elements of the curve in the neighborhood of the
point. P(z, y, 2).

Let 1), my, n1; b, ma, na; ls, ms, 1z be the dlrecmon cosines of the tangent, principal
normal, and binormal respectively. Then these direction cosines must satisfy the
following two sets of conditions:

LP4mi4nl=1
l22+m22+n22=1 (72)
l32+ m32+n32= 1,
lllz+m1m2+n1n2=0
l1l3-|—m1m3+n1n3=0 (73) '
Lol mamg +ngny=0.

~ From these we have the following relations among the direction cosines:
l1=m2n3—n2m3, m1=n2l3_‘l2'ﬂ3, nl.=l2m3——m2l3
L=mgn,—nsm;, me=n3li—Ilm,, ny=lm;—msl; (74)
l3= MmNy — N1 Mo, m3=n1l2—l1n2, n3=l1m2—m1l2.
PRINCIPAL CURVATURE OF A SPACE CURVE

Since the principal normal, PN ixi,ﬁgu're 14, is the intersection of the osculating
plane and the normal plane we may obtain the direction cosines of the normal directly
from the coefficients of equations (70) and (71). That is,
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le/l_zlef ,x’yll_y/x// xly/’_ylz/’ ylzll_zy yl 44 z/y/I Z/xll_zlzll
lg:mg:n2= , , . N

Yy ’ 2

’ ’

z ® z 4 !

x Y
(75)
By means of the relations following equation (71) we may write 1, mo,ms from (75) as
lg=p1(2'227” 22y —g y y"-I—x"y’ )_Pl[ x (y y//+zrz/r)+x//(y/2+z/2)]
=pilz""z" + @y +2"%)2"]
=p’’ (2" +y""+2")
=p1$”,

J— 17
my=py ,
Ng= pl‘Z”.

Squaring and adding we have l§—l—m§—i—n§=pf(z”2+y”2+ z”z) =1, whence

S = ) ) ), (76)

that is, p; is the first radius of curvature of a space curve.
From (72) gnd (74) we must have for the binormal
I:*+ m32+n32=(m1n2—n1m2)2+(nllg—llnz)“’—i—(llmz— mg)t=1. ' 7N
With the values of l;=2', my=vy', m=2"; L=p2”’, m2——p1y , nz=p;2’’ equation

(77) becomes (y'z''—z'y" 2+ ('z' —a'2"" )+ (x'y"’ yx”)“’— ¥ which may be written =

(w’2+y’2+z’,2') (113”2‘*“’.1/”2‘}‘2”2)'—'(1/ xll+y/ ”+Z’ ”)2=_I%_ (78)
1
From (73), (74), and (76) it is seen that (78) becomes 1 - ———0—p 5 5o that p, is
P1 1

the factor of proportionality for the direction cosines of the binormal which may now
be written

l3=P1(y' 2" — ! yr/)’ ma=p, (2" 2" —2’ 2"), na—Pl(I, ” y/ :D”). (79)

SECOND CURVATURE OR TORSION OF A SPACE CURVE

The torsion, 1/ps, or second curvature is defined analogously as the first curvature,
that is, '

-;12—;=(za')2+<ma')2+<n3'>2. (80)

o

THE FRENET-SERRET FORMULAS

We may express the derivatives of the direction cosines.of the tangent, principal
normal, and binormal as functions of the direction cosines and the two radii of curva-
ture, p, and p,, as follows:

We have l,=2’, m;=vy’, my=2’ whence l,/=z", m;’=y", n)/=2".
But l2=p11”, m2=p1y”, n2=p12" whence ‘

L' =1y p1, mi=mafp1, 7' =02/ p1. 81)
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From the third of equations (72) and the second of equations (73) we have by
differentiating

bl +mamy’ +ngng’ =0,

(Wl +mymy’ Fnng’ )+ O 4 my ma+ny"ng)=0.

By placing the values of [, m,’, n,’ from (81) in the second term of the second

(82)

equation of (82) we get for that term —;— ({lols+mems—+ngn;) which is zero by the third
1 .
of equations (73). Hence we have

Ly +mumg +nmng’=0 '
l;lz:m;mz’in:n:EO’, (83)
from which to determine Iy, my’, ny’. We find
I 2mjy n3’=(n1m3¥- ming) s (lins—nlds) s (mals—1mg)
and from (80) the .factor of proportionality is p,, that is,

lg/:’nlms— ml’”s} g = Ling— ’ﬂlla, 1y — Mily— llm:!'

P2 P2 . P2

From (74) it is seen that the numerators of these last equations are respectively .
1y, ma, My 80 that . :

5 ==— m3 = 77/3 e (84)
P

To obtain the derivatives of l,, ms, n, we differentiate the expressions in (74) for
them as follows:

L =n/mz+nmms —mns—mms’. . (85)
In (85) place the values m,’, n,"; ms’, ny’ from (81) and (84) to obtain

I/ — Moy — MMy My — My
Y =— —
P1 P2

(86)

But the numerators of (86) are, by (74), [, and I3 so that [;’= - (%—}—i—s) We find
1 2.

similar expressions for m,” and n,’ and group all these results together for easy refer-
ence.

Direction cosines:
Tangent: [,=2",m,=y’,n=2’
Principal Normal: ly,=p, 2", me=p,9y”",na=p1 2" ' (87)
Binormal: l;=p;(y’2"—y"2"), ms=p, (2’2" —2"2"), n3=p:(x'y" —2"y’).
First derivatives of the direction cosines of the tangent, principal normal, and binormal -
(known as the Frenet-Serret formulas): '

Tangent: l1’=£; m =22, py =2
P1 P1 P1
Principal Normal: [,/=— h—!—é » My = — —@—I—% y Mg == — Z?’—l—l—@ (88)

P11 P2 P P2 P11 P2
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Binormal: l3’=l—2: my =122, ny="2,
P2 P2
where p, and p, are the first and second radii of curvature of the given curve (c) at the
point P.
We now derive a formula for the torsion in terms of the first radius of curvature
and derivatives of the coordinates of the point P(x,y,2).
‘ In (87) take the derivatives of the direction cosines ls,m3,n3 of the binormal to get

l3 =p; I(yl 144 —z yll)+p (,’/I II/ Zly/ll)
ma’=P1'(ZI1”-$ 2//)+p](2/x111_zlzlll) (89)
n3’=P1/(x’y,’—y’$N)+pj(xly”"‘—y,x’“).

With the values of the derivatives l;’,ms’,ns’ from (88) placed in the left members
of (89) and the factors (y'z’’—z'y’’), etc. of the second members replaced by their
values in terms of /;, etc. from (87) we may write (89) as

l

Lo __ Pl Lt oy’ 2" —2'y'""

P2 . Pi

ms__ pr
e 1 M3+p1(zl I/I____xlzlll) (90)
P2 P _ -

Ny p .

_2=—l" na‘f‘m(x’y’”—y’z”/)-

P2 M

If we multiply the first of equations (90) by l;, the second by my, the third by n,
and add respective members we obtain

l 2 Py Tttt
L—*_%g;ﬂ Py (lzls+m2ms+nzns)+p1lz(y' =2y ) A pmg(2’ e — 22" )+
lnz(x’ l/’ / I,/). ) (91)

The numerator of the left side of (91) is unity because of the second of equations (72).
The first member of the right side of (91) is zero because of the third of equations (73).
In the last three members of (91) replace L, my, n, by their values from (87) and we

may write (91) as '

pl_p Z[x/r(yl "y ///)+y//(zl 12 'Z/Z///)+Z(I(zryl//__,yrm///)]’ » (92)
or in determinant form
zl yl Z’
_1_: — pl xl/ yll Z”

~ Equafion (92) gives the torsion, or second curvature in terms of the radius of first
curvature and the first three derivatives of the coordinates of the point P(z,y,z) of the
curve (¢) on the surface.
* Note that in obtaining the differential formulas of this section the parameter was
the arc length along the given curve (¢) measured from the point P(z,y,2) on the
surface (S), figure 14.
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EQUATIONS OF THE TANGENT PLANE AND‘
NORMAL TO A SURFACE

‘To develop these equations we will consider .the surface given by the parametric
representation (31). In figure 15 we have the tangents # and ¢, to the parametric
curves r=¢; and A\=¢; at the point P(z,y,z) or P(7,\) of the surface (S).. These tangents
determine the plane tangent to the surface at the point P.

V4

Rectangulor coordma/e.s of Pand P are

PL AT s SC53) , 26753)]

B L X747, A2dA), Y77 A+dA ), 2.(T#97; ,i+a',i)J .
PE

Fi1GURE 15.—The distance from a neighboring point on a surface to the tangent plane at a given point.

From (41) the direction cosines L,, M;, Ny and L,, M,;, N, of the parametric
curves 7==¢;, A=¢, are respectively

ox Oy 0z oz by 0z

o o and o7’ 07’ o1
V@ VE
From a Well—known theorem of solid analytical geometry, the plane containing the
two lines

X—z Y~y Z—=z X——:v_Y—y_Z—z
L, M, N 'L M N
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having the common point P(z,¥, z) 1s given by the determinant
| X—z Y—y Z-—z
L, M, = N, |=0.
L, M, N
Hence the tangent plane at P(x,¥, 2z) Is given by
X—2 Y—y Z—=z

oz oy . 0z : v
oA oA or =0, (93)

gag oy 0z
or or or

or
dy 0z : oz Oz “|ox Oy
ON oA On oA oA OM
—z) +(X -y +(Z—2) =0.
Yy 0z dz Oz oz oy
dor or E o7 ot - 07

From (93) it is seen that the direction cosines I,m,n of the normal to the surface
at P(x,y,2z) are proportional to the three determinants in (93), the square of the factor
of proportionality, u, being of course the sum of the squares of the three determinants.

If we compute #, we find that

1_/dyoz oy bz) (bz or 0z bx +(bx Oy Oz oy\? (94)

u? \OXOr Or O\ DX Or Or O ONOr Or OM

G+ +GIIIE ) -Graasras:)

and from (37) and (94) we have %=EG—FZ, or %-: VEG@—F? hence the direction

cosines of the normal to the surface are

oy oz oz 0Oz dx Oy
ON oA {ox o On O\
I=p y m=p| y n=p (95)
|0y 0z 0z Oz dz 0y
dr o1 o7 Or dr O7

where u=1/{EG—F~=

In figure 15, t; is the tangent to an arbitrary curve (c) through P(z,y, z) on the
surface, and the direction cosines, being %, %’ —Z—:—; are given by equations (35) since
z,y, 2 are functions of the parameters r,\. Hence the equations of the tangent line

are
X—x Y—y Z-—z
dxr  dy  dz ' (96)
ds ds ds
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To show that the tangent line (96) lies in the plane tangent to the surface at P,

Zx:Y y——ugyz z—ug—from(96)

from (35) in the determinant (93) which will vanish, since

we have only to substitute the values X —z=»

dx dy dz
ds’ ds’ ds
the elements of the first row are then the sums of the elements of the second and third

w1th the values of =~

rows after the latter have been mulmphed by Z fil respectively.

In figure 15, P,Q is.the distance from a point' Py(7+d, A-+d)) on the surface to
the tangent plane determined by the tangents ¢, and ¢, to the parametric curves r=c¢,,
A=c, at the point P(r,}).

To approximate this distance we express the rectangular coordinates of the
point P; in terms of power series in r and A.

In any standard treatise on the calculus * one may find the derivation of Taylor’s
formula for functions of two variables which may be written in the following form to
correspond to our notation:

Jrtdr\+dN—f(r,N=df+5 <afd72+2 bzf dr dx+wdk“’>+ » (97)

Wheredf— fd + f

From (31) the rectangular coordinates of P, on the surface in terms of =, \, dr; d\ are
z=z(r+dr,\dN\), y=y(r-+dr A\+d\), z=2z(r-+d 7,2 +d\) and by (97) we may write
the difference of the coordinates of the points P(r,\), Pi(r+dr,A+d}) in the form

1 |
x(r+d7,)\+d)\)—x(7,)\)=dac+— dri+2 —— b D)\ d‘rd)\-{-b)\z d)\2>+. ..
y(r+dr AN —y(rN)=dy+5 (° Yarte JU drin 3y d>\2>+. . (98)
S(rtdr A+ AN —2(r )= dotg (T2 drira 22 = 2 drdnt D2 dx2)+. .

SECOND FUNDAMENTAL QUADRATIC DIFFERENTIAL FORM
OF A SURFACE

The normal form of the tangent plane (93) is
p=UX—2)+m(Y —y)+n(Z—2), (99)

where [, m, n are the direction cosines of the normal as given by (95). Hence the
distance P,Q from the point P; on the surface to the plane tangent to the surface at
the point P is obtained by substituting the values of the left members of (98) in (99)
respectively for the terms X—ix, Y—y, Z—z. We obtain thus ‘

p=P1Q=(lcé—§ d?/+ ds + (Ddr*+2 D'drda+D"dN)+. . ., (100)
where
Y, oy . . 02
D=lgstmyytng: e la ax+ or ax+ a D ZWJF axz TN
(101)

4+ 1. 8. Sokolnikoff, Advanced Calculus, pp. 317-320.
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Now the direction cosines of a line in the tangent plane are Z (fi c(ilz7 andl, m,n
‘are the direction cosines of the normal to the surface. Hence the first term of (100)
is zero since the normal is perpendicular to any line in the tangent plane. Hence we
have from (100) to terms of second order in d\ and dr

8—=2p=Ddr2+-2D'dr AN+ D"\, (102)

where D, I, and D” are given by (101).

The quadratlc differential form (102) is called the second fundamental form of the
surface and the funections D, D', D'’ the fundamental coefficients of the second order.

In figure 15, it is seen that the direction of the tangent # to the arbitrary curve
{¢) through P may be considered to be determined by dr/dA. The angle between PN
(the normal to the surface) and PC (the principal normal to (¢)) is £&. From (87) and
(95) we have '
cos E=ll,-+Fmmotnn,=p,(lz"+my”+nz"). - (103)

Differentiating equations (35) we find

o r_ 02 dr)2 % d\ d7'+ ) +bx d?r +bx d*\
“ds? ds ONOT ds ds ' ON:\ds Or ds® " ON ds?
v d“’y b"’y dr % didr 62y<d > oy d*r | Oy d*\
> t25%ords ds Toni\ds) Tarasetonds: (104
0%z didr 0z d?r bz a2\
) T25%r ds ds+av ds) Tor dstTandst

”_ d
Tds?t

‘Now multiply equamons (104) through by l, m, n respectlvely and add—ignoring
differentials of second order in M and -r——obtamlng by means of (101)

2 Y 7 2
lz,,+my,,+m Ddr*42 Dddsrd)\—i—D NS | (105)

With the value of ds® from (36) and the right member 6f (105) placed in (103) we
have

cos £ Ddr’+2 D'dr d\+D"dN

;o Edr+2Fdrdat6d N ’

(106)

where p, is the principal radius of curvature of the curve (c).

The right member of (106) depends only on the curvilinear coordmates 7, A and
the direction of the tangent #;, hence it is the same for all curves on the surface having
the same tangent, t;. Consider the plane curve which is the intersection with the
surface of the plane determined by the normal PN to the surface and the tangent f;
to the curve (c). This plane curve or normal section will be tangent to the curve (c)
at P since they have the same tangent at P, and its curvature will be given by the left
member of (106) with §=0, that is, we have :

csf_1, (107)
P1 Pn
“where p, is the radius of curvature of the normal section. Equation (107) written as
p1=p, cos £, states that the first radius of curvature of a curve (¢) through P is the
projection of the radius of normal curvature upon the osculating plane at P of the
curve (c), as shown in figure 16. :
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o/ to (C)

v
~ N,

FIGURE 16.—Illustration of the relation p;=p, cos £, and its special case, Meusnier’s theorem.

MEUSNIER’S THEOREM

For the plane curve, which is the plane section of the surface determined by the
tangent ¢; and the normal to the curve (¢) at P, equation (107) gives its curvature.
That is, p;=p, cos ¢ gives the radius of curvature, p;, of the plane section which makes
an angle ¢ with the normal section whose radius of curvature is p,. This is usually
known as Meusnier’s theorem.

PRINCIPAL RADII OF NORMAL CURVATURE OF A SURFACE

Clearly there are many normal sections of a surface at a point P, genérated by a
variable plane containing the normal to the surface at P. We now determine the

two among these for which ;’1— is respectively maximum and minimum.

n
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From (106) and (107) we have

1 _D+2 D'utD"u?
E¥2Fut+Gu?’

(108)

where u=d\/dr.
Differentiating (108) with respect to u and placmg the result equal to zero gives

(D' + D"u)(E+2 Fu+-Gu?)—(F +Gu) (D+2 D'u+ D"u?)=0.

or .
(FD"—G@D)YWH(ED"—GED)Yu+H(ED'—FD)=0. | (109)
Comparing (56) and (109) we see that 4 _
T=FD"—G@D',28=ED"—GD, R=ED'—FD. . (110)

The values of (110) placed in (57) give EFD" —EGD’'—EFD"4GDF+ GED'—GFD=
0, which shows that the two families of curves given by (109) are orthogonal. That is,
the two normal sections given by (109) at each point of the surface, and whose curva-
tures are respectively maximum and minimum, are orthogonal to each other.

The radii of curvature of these two normal sections are called the principal radii
of normal curvature of the surface at a given point. They are equal to each other
for the trivial cases of the plane and sphere. (For these two trivial cases the discrimi-
nant of (109) vanishes, otherwise it is positive and-the equation has two real and
distinet roots provided E0.) A

TOTAL AND MEAN CURVATURE OF A SURFACE
From (108) -and (109) we have

1_D+DutwD'+D"w) _D+Du_D'+D"u
EfFutuF+Gu  E+Fu  F+Gu '’

whence

' E+Fu=p,(D+ D)
(111)
F4+Gu=p,(D'+D"u).
Eliminating » between equations (111) we obtain the equation
;1—2(EG—F“‘)—- —pl—(ED”.—i-GD—z FD)4+(DD"— D) =o0. (112)
If 112 and < N are the roots of (112) t,hen
1,1 ED"4+GD—2FD’
Be=pty=—"Fe—r
, (113)
RT— 1 1 DD'-D

R'N™ EG—F*

R, is called the total curvature of the surface at the given point and E, the mean
curvature of the surface at the given point. .

From (36) and (102) it is seen that B, in (113) is the ratio of the negatives of the
discriminants of the first and second fundamental quadratic forms.
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From (108) the normal curvature is zero if D-+2D"u-+D""4?=0, where u=d\/dr.
In the directions determined by this differential equation we have from (102) that the
distances of nearby points of the surface from the tangent plane are at least of the
third order in d\, dr. Hence the lines . D--2D"u~-D"'4?=0 are the tangents at a given
point to the curve in which the tangent plane at that point meets the surface. Now
according to the discussion, equation (56), the integral curves of the differential equa-
tion D+2D’u+D""4?=0 are two distinct families of curves. These integral curves are
called the asymptotic lines of the surface. From (113), the numerator of R, is the
negative of the discriminant of the quadratic D+42D'u~+D""u*=0. We now consider
the values of this diseriminant and its characterlza’mon of the asymptotic curves and of
the surface.

For DD''—D’*>>0 at every point of the surface, R 718 positive and there are two
distinct families of imaginary asymptotic curves on the surface. But from (113) we
must then have both R and N positive at every point of the surface, which means that
both centers of principal curvature lie on the same side of the tangent plane at each
point. Such surfaces of positive curvature at each point are exemplified by the ellipsoid
and the elliptic paraboloid.. This will be illustrated later when B, is computed for the
spheroid.

If DD"’—D’*<0 at every point of the surface, R, is negative and there are two
distinet families of real asymptotic curves on the surface. From (113), R and N must
differ in sign and therefore the surface lies on both sides of the tangent plane. Surfaces
of such negative curvature at each point are exemplified by the hyperbolic paraboloid
and the hyperboloid of one sheet.

If DD”—D"”*=0 at every point of the surface, then R, is zero at every point and
the differential equation of the asymptotic lines D--2D'u4-D"u*=0 becomés

(v D+ +/D” w)*=0 and there is only one family of real asymptotic curves. Since there

is no change of sign as u passes through the value u= —\/F; the surface lies on one side
vD
~of the tangent plane and is tangent to it along the direction YD+ +/D” u=0. From
(113), if R, is zero at each point, then B or N must be infinite, which means that one
family of lines of curvature on the surface must be straight lines. Such surfaces are
called developable surfaces, such as cylinders or cones which by cutting along a straight
line element can be brought into coincidence with a plane without stretching or tearing.
We discussed the linear element of such surfaces following equation (66). We shall
show that R, is zero at each point of a developable surface after we have expressed R,
in terms of the first fundamental coeflicients E, F, G and their derivatives.

LINES OF CURVATURE ON A SURFACE

Equation (109) is the differential equation of a pair of orthogonal curves, called the
lines of curvature on the surface at each point, the directions of whose tangents are
those for which the radii of normal curvature have their maximum and minimum values.
1f these lines of curvature are to be the parametric curves, r=c¢;, A=c,, then from (108)

we have, replacing % by d\/dr and then placing dr=0, dA\=0 in turn,
| 1 D’ 1D

From (113) and (114) it is seen that this is equix}alent to placing D’=F=0. That |
is, the lines of curvature are the parametric curves for the surface if D’=F=0.
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From (47), B is the angle between the curve ® (r,0\)=0 and the parametric curve
N=¢,, but since the lines of curvature are to be parametric, we have F=0 and therefore

cos [3:\/@%; sin B=+/G Z—;\

2 \2 ' ' ‘
E (%%) —cos’B, @ (‘%‘) —sin? 6. (115)
EULER’S FORMULA FOR THE CURVATURE OF A NORMAL
SECTION OF A SURFACE

Now Wlth D’'=F=0, wé may write (108), remembering the denominator is ds as

or

1 ™N' | e (ANY :
;ZD(d—s‘> 4D 5)- (116)
From (114) and (115) we have
dr dr cos?B " dX sin’g .
D(E) =% ds) =z P > N(ds) - W

From (116) and (117) we have finally
1_ cos? sin? 8

B
=g N (118)

Eﬁuation (118), known as Euler’s equation, gives the curvature 1 of any normal

Pr
section at a given point in terms of the curvatures of the principal normal sections, 8
being the angle which the arbitrary normal section makes with the parametric curve
A=c¢y, the lines of curvature being parametric.

THE GEODESIC CURVATURE OF A CURVE ON A SURFACE

In figure 17 we suppose that a variable line, meeting the curve (c) on (S), moves
parallel to the normal to (S) at P generating a cylinder which is met by the plane
tangent to (S) at P in the curve (¢’) as shown. The curve (¢’) is then a normal section
of the cylinder. Obviously the curve (c) lies also on this cylinder and the curves (c)
. and (¢’) are tangent to each other at P as shown. Hence we may use Meusnier’s
theorem with respect to the cylinder, where p, is the radius of curvature at P of the
plane curve (¢’) and p, is the principal radius of curvature of (c) at P. From figure 17
and equation (107) we ha,ve then

1_cosy (119)

Pe P1
If £ is the angle between the normal to the surface and the principal normal to (c)

as shown in figures 16 and 17, then 1I/=%—£ and

1 %8 <g—$>=sin ¢ | (120)
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Clearly the principal normal to (¢c) may lie exterior to the plane quadrant between
the normal to the surface and the normal to the cylinder, but is always coplanar with
‘these normals. Hence we make the convention that the positive directions of the
tangent, the normal to (¢’), and the normal to the surface shall have the same mutual
orientations as the positive z,y, and z axes as shown in figure 17.

Norma/ fo (:5)

Principal Normal
to ()

FIGURE 17.—Geodesic curvature of a curve on a surface.

A geodesic on a surface may be defined as a curve such that at each of its points
the principal normal to the curve coincides with the normal to the surface. 1/p, as
defined by (120) is called the geodesic curvature of the curve (c), p, being then the -
radius of geodesic curvature. If the curve (c) is a geodesic, then the angle £, as shown
in figure 17, is 0 and from (120) the geodesic curvature is 0. We might then equiva-
lently define a geodesic as a curve for which the geodesic curvature is 0 at each of its
points. '

. dx dy  dz N .

We have from equation (87) that l1=%; My=— M= are direction cosines of
the tangent to (¢c) at P. The direction cosines of the normal to (S) arel, m, n as given
by (95). If l,, m,, n, are the direction cosines of the normal to (¢’), then from the last
of equations (74) with the direction cosines of the tangent and normal, I}, my, n, and
I, m, n we have

- " lLe=mn,—nmy, me=nh—In;, ng=Ilm;~ml. (121)

From figure 17, ¢ is the anglé between the principal normal to (¢) and the normal
to (¢’) and we have therefore from (87) and (121)
cos Y=l L+ mamg+nan, -
=l2(mn1:—nm1)—|—mg(nll—lnl)—l—nz(lml——mll) v
= p12"(mz’ —ny" )+ pr1y"(na’ —12")+p.2¢ (ly’ — mz’),
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or from (119) and this last equation

;1-=9(f—¢—x”(mz —ny")+y"(ne’ —lz")+ 2" (ly' — ma). (122)
g 1

To save space in the developments to follow, we will shorten our notation bj’
writing sums in the form

o0z\? /0z\!, /Oy
2(5; =3, +(b ( )etc
From (37) we have
oz O ; oz
pex (), Py =5 (5
From these by partial differentiation we have '
OF oz 0%z OF or 0z
B 2237 0,7 on 2237 Bron

3¢ .0z oz 06 oz %

ar 2 N oy N 225y ont (123)

Ox 0%z or 0%z ox 0%x , 1 0F
ZaxaferZarbxaf Z5seta oy

oF oz o 22 % .0z d% . 103G
= 2on o8 T 27 on Zaf Ak

From (37) and (95) we find that
bx ) ( 9z by
b)\
( bx Dz) (
m

Identities analogous to (124) are found by permuting the letters z, Y, 2; l,m, n.
Placing the values of 2/, y’, 2; ", y’/, 2’* from (?5) and (104) in (122) and reducing
by means of (123) and (124) we ﬁnd

(124)

dr dx
L EZ4+FS U
b VEG=F*| 4. ax

Potes v

) (125)

where

12E/dr\* dE drdn  (OF 106
=337 >+a>\ dsds+(a)\ 2af>< >+Eds2+Fdsz’

OF 10FE 0G@ dr dx , 1 0G /dX
( T2 b)\>< >+br ds ds+2 X )+Fd82+ads

From (125) we note that the geodesic curvature of a curve depends upon the
fundamental quantities of first order E, F, @ and their partial derivatives.

From (38), the elements of arc length of the parametric curves are ds,= VG dx,
dsx=+E dr. From (42) the parametric curves are orthogonal if F=0. With these
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values placed in (125) we find the geodesic curvatures 1/pp, 1/p. of the parametric
curves 7=c;, A=¢,; to be

‘ 1 oG
T B
11 1 1 oG 1 024G
e — —_ = = T =Y ’
pon VEG| VEG 2G, ot EG Or
v@ v
(126)
, vE U , —
1_ 1 .1 1 9k 1 OoVE
per EG vEG 2JE O\ JEG O\
__L ok
2E o\ |
We have noted that a geodesic may be defined as a curve for which the geodesic
curvature at each of its points is zero. From (126) we note that ba\/f: ) aa‘{rG are each

zero if E is a function of 7 alone and if @ is a function of \ alone. That is, when the
parametric curves form an orthogonal system then r=¢; or A==¢, are geodesics if G is ,
a function of X alone or if E is a function of r alone.

THE GAUSS CHARACTERISTIC EQUATION

We will now express the total curvature as given by (113) in terms of the funda-
~mental quantities of first order' E, F, @ and their partial derivatives. 'To do this we
will express the numerator, DD’’—D’* of R, as given by (113) in terms of E, F, @ and
their partial derivatives. The resulting equation for DD’'—D’* is called the Gauss
characteristic equation. ’ B : '

From (123) we may write

oz 0%z 10K 0z d% OF 10E
M =255, = Narior 2 on
/<02 0% 10K ,_ <0z 0%z 106G
M =2 S 5ron "2 on J = N aron 2 0r (127)
s _ <~ 0z d%_OF 106G v~ 0x 0% 102G
M= s ov—on 20 X zon
and if we place »
A =u((MG=JF) "B =uXJE— MF)
A’ =¥ (M'G—J'F) B’ =uJ'’E— M'F) (128)
A"Z/.LZ(M”G—J”F) B”Z,U.Z(J”E—M”F),
then . .
M =EA+FB J =FA+GB
M’ =EA'+FB J =FA+GB (129)

M/I —_ E AI/ + FBI/

J'=F A"+ G,
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From (101) we have

D= zzaz,p Elba)\ D= zlw

From (127) and (130) let us solve the three equations

oz 0%r oz 0%z
D Zl 2;M Zb bZ’J Eb)\b
for
' o%r o%y 0%z
07% or% O+
The determinant of the coeficients of z O% 0%,
. ) Sy 2’0 7 97t
I m n
: dy 0z dz Oz oz
o Jy 0z dr or dr Or o1
A=|dr Or Ot |=l +m ) “+n
oy Oz 0z 0z oz
oz oy 0z ON O\ dN O o\
ON OM O '

- 55

(130)

5 in these three equations is

From (95) it isseen that thismay be written A =%(l2+ m*n?) ;%, where >+ m*+n’=1

since {, m, n are direction cosines of the normal to the surface.

Hence the solutions

2 2 2
for gﬁ,gyz,g 3,2 may be written ]
b'rz . or? . or? _ '
D m n| |l D n| [l m D[ "™ (131)
oy Oz ox dz 0z Y -
M 5o [or Mo |arar M
oy 2| (22 5 22| |2z dy
J oM Ox| |oA N I -
From the first of equations (131) we have
D m =n
: oy Oz n m m n
oy 0z or Or
2 it~ _—
%=y M Or Or|=uD +uM +uJ
' oy 22| (22 | | 2:
Jg %y 2z ON O\ O\ - O\ o7 Jr
7 ON  OA
or o
0% 0y 0z bybz) (% > ( oz y)
drf o7 b)\ O\ O7T tul(n tud (m n (132).

- From (95) and (124), equation (132) becomes

ox

o%x . oz oz ox
St (6 52—F S )+utd (E S3-F 5

— 1D+ (MG—TF) L (T E—MF) 32 (133)

953903—53——5
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From (128) we may write (133) finally as

% ox o .
o= D+ AF +B 5 (134)
If we solve the second and third of equations (131) for g ?é: g > we find expressions
similar to (134) and group them together for reference. .
o o | ., 0x
o DHAg+B
oy _ %Y, g%
612_MD+AOT+B Sx (135)
0?
Sa=n D+A —|—B
From (127) and (130) if we solve the equations
. , or 0% , 0z O
Ela ax’ M= 5 aron V=25 aron
o% O 0%z
for 507 5708 570 VO find analogously asabove
a z ’ 4 7
575 =[D -I—A +B a)\
.y )
ba mD'+ A’ a?/+B' (136) -
N
az — DI+AI +BI
070N b)\
From (127) and (130), if the equations
” ox 0% »__~ 0% Oz
Zlav’ M=33 7 o S =l
2 2, 2
are solved for g—%, g%’ ’g_)\é as above we find
a z /I ”n 4
YO =[D"+ A b +B
2y .
gx2 D”"}—A” by'l"B” ay (137)
b 2 D/I+AII +Bl/
Nt o7

Squaring respective members of (136) and adding we obtain

2 o 2 oz 2 ) < O O
2(3 ) —C+m D+ 475 () 4505 () +2aB s SE 24

oy

rpr(19%, ., QY 0z (198, 9Y 02
2AD(za + bT+n$>+2BD(la)\+m WindZ) s
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Since I, m, n are direction cosines of the normal to the surface and this normal is
orthogonal to the tangents to the parametric curves whose direction cosines are given
by. (41), we have I*+m’+n*=1; and the last two terms of (138) are zero.

From (37), > (g—f =E, > < ) =G, >, g:c gi—F so that we may write (138) as

D (a m) —p+ A”E+B’2G+2A’B’F

=D"+ A(AE+B'F)+B'(B'G+ A'F). (139)
From (129) we see that (139) may be written ﬁnally as
72 PASIN ’ T

Z(a ax) — D+ A MBI (140)

If we multiply respective members of (135) and (137) together and add the products
we obtain

o’z O 2 2 2 " // 91_17_ " :

20w swimnrs s (@) 2
(BA”—}—AB”)Zgi g"’+(AD”+ A”D)(la+m%+ng—f>+
@D+ B D)1+ m L +n2Z). (141)

Analogously as for (138), we may‘xvrite (141) as

Z(Sk”; 2 4 —DD"+ AA’E+BB’ G4-(BA"+ AB")F
=DD"+ A”(AE+BF)+B”(AF+BG) (142)
By (129) we may write (142) as
2(2)?2 > x) DD”+ MA"+JB". (143)

Now from (140) and (143) we have
DD”——D'2=Z<@.DZ Z( ) +AM+BJ—MA"—JB". (144)
OA% Q72 070\ ' '

From the second and last of equations (123), by partial diﬁereﬁtiation we have

1 2E oz Oz
3 ON (afax) T2557 5700
3F 10°G % %, —.dr O (145)

%073 o~ 2% 5,1 Doy 5K
From (145) we have

621} 62 a2F azG sz
2R Z<afa>\ “2\Zover 3 ov) (146)‘
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From (127), (128), and (129) we find

P | DG DE 2@
AM—{—BJ—Z;;?I:E a“f) 2Faa+a( E>]

O0EOF OE d@G OGOE OF 0G OF OF .
oron o or Taaor T oran oo

0E 2@ oE oF oE 0@
S~+2F ™ on Fﬁb—r'- (147)

MAr+IB = (26 32

oF 0@
2 o ~E 3% YN
With the values from (146) and (147) placed in (144) and with the value of
w?=1/(EG —F?) we have finally the Gauss characteristic équation

D—D'=g (2 orae— 50— 3 ) FarEa = | 52) -5 St
(-3 o e -
Equation (148) may be expressed equivalently as
ppr—pdEE] 2 (= 3w )+

2N (\/EG—F" or JEG—F?O0N EJEG—F?0r

The Gauss characteristic equation (149) is significant in the theory of the differen-
tial geometry of surfaces, since it is the condition that the quantities E F G D, I,
D’ must satisfy in order to be the fundamental quantities for a surface.

Now the linear element of a developable surface may be reduced to the form ds*=
dr®-+dN\:.  (See the discussion following equation 66.) Hence E=G=1, F'=0. From
(149) we have therefore that DD”—D’2=0 and from (113) that R,=0 at every point
of a developable surface.

We shall need equation (149) subsequently to prove an important property of the
spheroid, namely that the only geodesic isometric orthogonal system on the spheroid
is that formed by the meridians and parallels.

THE SPHEROID

The theorems we have discussed apply to surfaces in general, hence to surfaces of
revolution, and therefore to the sphere and spheroid. We avoid discussion of surfaces of
revolution as such but proceed directly to the spheroid.

In figure 18, AP=N is the normal to the meridian ellipse at P(r,z) and clearly
r=N cos¢. The equation of the meridian ellipse is 7?(1—e%)+422=a’(1 —¢%), where
a is the semimajor axis, ¢ the eccentricity. a, ¢, and b, the semiminor axis, are
connected by the relation b*=a®(1—e?. Since the slope of the tangent at P is
dz '
dr

oF - 1 oL F OENT - .
2w __F V]

=—£ (1—¢?), the slope of the normal at P, being the negative reciprocal of the
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. dr 2
slope of the tangent, 1s’—%—(17__62)—tan ¢, hence

2=r(1—¢?) tan $—=N (1—e?) sin ¢. - (150)

[4
A

FIGURE 18.—Meridian ellipse of the spheroid.

Returning the value of z in terms of r given by (150) to the equation of the ellipse
we have r24-r2(1 —¢?) tan’¢=a?, or r*(1 —e? sin’¢)=a? cos’¢, whence

r=a cos ¢/y1—® sin®p =N cos ¢. (151_)
PRINCIPAL RADII OF N ORMAL'CURVATURE OF THE SPHEROID
> From tile latter of the two equalities of (151) we have
- N=a/y/1—¢%sin’p. ' (}52)

The radius of curvature of the meridian ellipse may be found from the usual
formula for the radius of curvature of a plane curve,

pof0E2T 159

From the equation of the ellipse, r*(1 — €%+ 2?=ga*(1—¢%), we have 2’'= —2(1 — ez).,

2"= _(lj:)_—e? - Since the slope of the normal is tan ¢, that of the t,;xngent is—cotbdo.

' Hence z2’=—cot ¢, and 2" =— 1tootlp—e® _oseip 6’2- From (150) and (152) we have

2 z
1—¢?) si
z=N(1—52)sin¢=———a;§1 ¢)siné

T—efsin’g’ " With these values of 2/, 2z”,.and z placed in (153)

we have :
) Re a(l—e?) sing csclo -
J1—elsin?¢ (csc?p—e?)

a(1—e?)

lT=e sin%gy|’ (139

Now in figure 19, the ellipse of figure 18 has been revolved about its minor axis
through an angle A, the point P moving to the point P’, and the spheroid being gener-
ated has been referred to the z, 3, z coordinate system as shown. It is seen that r=
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B . {
N cos ¢ is the'radius of the parallel in latitude ¢ and we have z=r cos?A=N cos ¢ cos },
y=rsin A=N cos ¢ sin ), and z is still given by (150), so that we have the parametric

Z

FIGURE 19.—Generation of the spheroid from the rotation of the
meridian ellipse.

representation of the spheroid in terms of geodetic latitude, ¢, and longitude, A, namely
2=N cos¢ cos \,y=N cosd sin\,z=N(1—e?) siné (155)

where NV is given by (152). )

If we divide the members of (155) by @, a, and b,. respecblvely, then square and
add, making use of the relation bz——az(l—eZ), we obtam the well-known rectangular
equation of the spher01d

2 2 2
st e (156)

MEAN RADIUS OF THE SPHEROID AT A GIVEN POINT

From the reciprocal of equation (118) we have the radius of curvature of a normal
section in given latitude ¢ for any azimuth o, namely - '

BN -
p"—f(a)zR sin‘a+N cosla

(157)

To find the mean value of p, about a point in latitude ¢, we make use of the theorem
of the mean for a function. The theorem is easily demonstrated by means of figure 20.
‘The slope of the tangent to the curve y=f(z) is given by f’(x), where the prime denotes
differentiation, and at the point @[, f(£)], the slope is f/(£). The slope of the chord
ps s TD=10

and there exists a point @ as shown such that the slope of the tangent -

at @ is equa] to the slope of the chord PS where c<(¢<(d. That is, a value £ can be
~ found such that

= f(d) f(c) (158)
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At such a point f(£) is defined as the mean value of the function f(z), c<x=d.
By definition of the definite integral we have

[* r@az=s@—se.

With this value of f(d)—f(c) placed in (158) we have

ro=gt [ rwa, (159)

T R
7Sl 7@, “o,

- — - ——

° c 12 a X

FIGURE 20.—The mean value of a function.

!

which allows us to compute the mean value of the function f(z), ¢ <z <d by evaluating
the definite integral of this function with limits ¢ and d. (The primes denoting differ-
entiation may be omitted in equation 159.) :

Denoting f(£) by E. and the limits of « by ¢=0, d=27 we have from (157) and

(159)
BN da

1 27 . 1 2
R”‘_ﬂ,ﬁ) ﬂa)da:ﬂﬁ R sin? a+N cos® a

2 ("% Rsec’* ada

T‘L 1 —I—ZEV tan? «

2 R "/
= +vEN [arc tan (\/§ tan a)]o

~2 VRN (5—0)—+RN. (160)

Thus the mean value of the radius of a spheroid at one of its points is the geometric
mean of the principal radii of curvature at the given point, or from (113) it is the square
root of the radius of total curvature of the surface at the given point. Placing from
(152) and (154) the values of R and N in equation (160) we have

ayl—¢ .

L p— e - (161)
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LINEAR ELEMENT OF THE SPHEROID

Let us compute the fundamental quantities E, F, @ and D, D’, D” as given by
(37) and (101), namely '

_(0x\2, Oy, [ozY _, 0%
E*(— +<— +(% o Delpptm b¢>2+n ¢2’

0x 0x , 0y Oy , 0z 0z , 0%y
F=3¢ontosonTos ax’ D= a¢ax+ dgon T a¢a>\ (162)
(%Y L (20 1 (22 - gk
G‘(bx +(a>\ o) - D= )\2-|—m >\2+ N
where I, m, n as given by (95) are
0y 0z 0y 0z " 0z 0z 0z 0z _ 0z oy Oz by
oNd¢ d¢or) T H\aNvs dpon) "TH\onds 0N/
p=1/+/EG—F*.
From (155), by partial differentiation with respect to ¢ and A\, we have
dr _ 5 . Q% ., Recos) _ -
Y R sin ¢ cos }, 3—¢2——COS M (Rsin ¢)'= Necos 6 [(2N —3R) sin ¢.+N],
’ 2 2
. —g—i=-—Ncos ¢ sin A= —y, %————Ncos ¢ coOs A=—r, b?;sb)\ =R sin ¢ sin \= —g%»
Y po . dx %y ,_ 0% oy
36— R sin ¢ sin )‘_b:b tan )\, b_¢2 —sin MR sin ¢) ¢ ban N, a)\—Ncos $cosh=zx,
oy . ox o%y _ .
Yl Ncos¢s1n)\— —Y=3N Sgon =—Rsin ¢ cos \= b¢ 5d> =R cos ¢,
0%z , Rsmd) 0z 0%z 0% __
>4 =(R-cos ¢)'= (2N 3R), ax“av_a”—(pa)\—o' . (163).

From (162) and (163) we find

E=R?, F=0, G=N? cos’, l=zlv’ m:%; n=sin ¢, D=—R, D'=0, D"=—N cos’s.
' (164)

Since F=0, we know from (42) that the parametric system is orthogonal. We
knew this anyway since the meridians are orthogonal to the parallels. Since D'=0, we
know from (113) and (114) that the parametric curves, the meridians and parallels,
are also the lines of curvature for the surface, D’=F=0 being the required condition.
We knew this also from an elementary property of the lines of curvature, which we
have not proved in general here, namely that consecutive normals along lines of cur-
vature intersect. Hence N and R, as given by (152) and (154), are the principal radii
of curvature of the spheroid at a point P in latitude ¢. We will find N and R entering
all the mapping formulas to be obtained. As has been shown, R is the radius of curva-
ture in latitude ¢ of the meridian ellipse, while N is the distance along the normal from
the point P in latitude ¢ to the minor axis of the spheroid.

With the values of E, F, G from (164) placed in (36) we have the linear element of
the spheroid,

ds?=R*d¢$*}N? cos?’¢pd\2=N? cos?¢ (Z%; seclpdop’+d >\2>- (165)
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CURVES ON THE SPHEROID

Curves on the spheroid will be represented by the integrals of differential equations

- as given by (51) and (56), where 7 has been replaced by ¢. That is, any integral curve

on the spheroid, expressed in terms of the curvilinear parameters ¢ and A, is of the

form f(¢,\)=0. We will be interested here in the following three curves on the

ellipsoid and in their projections on g plane: The geodesic, or the geodetic line; the
loxodrome, or the rhumb line; the curve of alinement. '

THE GEODESIC

The geodesic is fundamentally defined as the curve of shortest distance between
two points on a surface. From the integral for arc length we may, by the calculus of
variations, determine the conditions on the integrand for the arc length to be a mini-
mum. From these conditions may be deduced the property that the osculating plane
at each point of a geodesic contains the normal to the surface, or equivalently that
at each point of a geodesic the principal normal to the curve coincides with the
normal to the surface. We will adopt this last property as the definition of the geodesic
on the spheroid, find the differential equation of the curves and show that the in-
tegral curves depend on the evaluation of an elliptic integral.

If the principal normal to a curve on a surface is to coincide with the normal to
the surface at each point of the curve, then the corresponding direction cosines of the
two normals must be equal.

From (87) and (164) the direction cosines of the prmmpal normal and of the normal
to the surface are respectively. Lb=piz”, my=py”, ne=p2" and l=2z/N, m=y/N,
n=sin ¢. Hence we must have

I

pa” _py” _ pi2” :
/N~ /N~ sin¢ (166)

Now the two equations (166) are not independent as can be easily shown. From
the first two members of (166) we have the differential equation zy” —yz” =0, a first
integral being at once

xy’ —yz' =c. (167)

Since the derivatives of (167) are with respect to arc length,‘ s, then

,_dz_ 0z d_d;_l_bx d)\ Y= oy d¢+by dx
T ds O¢pds ' ONd " O¢ds "ONds
bx oz by oy
With the values of —— 25 ON 94 O\ from (}63) we have

' . do . dX
r_— - -
= Rsmd;coskds Ncos¢>sm)\ds;

, . . do ' dX
y'=-—~Rsin ¢ sin A %—I—N CoS ¢ cos A\ 75

~ and these values of 2’ and y’ with those of 2 and y from (155) placed in (167) give

L, da :
2 2 =,
N cos ¢—ds'—, ¢ (168)

953903—53——6
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where, as noted before, r=N cos ¢ is the radius of the parallel of the spher01d in lati-
~tude ¢.
Eliminating ds between (165) and (168) we obtain the dlfferenmal equation of the
geodesics on the spheroid,

c2R2d¢2—l—N2 cos?d(c*— N2 cos?¢)dN?=0. (169)
From (169) we have .
dé¢_+Ncos ¢ pmrm o, ’ f
7 R N? cos? ¢—c2 | (170)

In figure 21, if «is the angle which the element of arc length, ds, makes with the

meridian, then NV cos ¢dr=ds sin «, or (CZ: sin a

(168) we obtain

. . dX\ -
=N cos ¢ With this value of s placed]in

N cos ¢ sin'a:c, (171)

which is the fundamental characteristic of the geodesic on the spheroid or on any
surface of revolution. That is, at each point of a geodesic the product of the radius.

FIGURE 21.—The linear element of the spheroid as obtained from a differential right triangle.

of the parallel and the sine.of the angle which the geodesic makes with the meridian
is constant. When a=90°, the geodesic is orthogonal to the meridian and c¢=ro=
N cos ¢p. When the geodesic crosses the Equator, =0, and r=a, so that c=a sin a,
where q, is the angle which the geodesic makes at the Equator with the meridian.

In (170) we note that for the geodesics to be real N? cos? ¢—c?= 0 or N cos ¢=
¢=2N, cos ¢y and that ¢=r,=N, cos (& ¢y,) =N, cos ¢,. This means that the geodesic
oscillates between two parallels which are symmetric with respect to the Equator, the
geodesic being tangent alternately to each parallel as shown in figure 22.

- From (170) we have o
Rd¢
o N cos ¢ (N? cos%—c”)‘”'

A—he=c (172)

The transformation sin ¢==£ sin @, with 7c1_ @ :CCZ and with the values of N and
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R _from (152) and (154), reduces (172) to

o(1—e?) o
@’ —e)7 ), (1—k2 Sin%) (1= s

c(l1—e?)

(az__€262)1/2

)\—)\o: +
or

A==+ TI(—k2, ek, 0), . (173)

where II is the elliptic integral of the third kind in Legendre’s notation.

From (169), if ¢=0, and ¢<g; we have dA=0, or A=¢,. But ¢=a sin «, and

¢=0 when a,=0 which is the condition on «, if the meridian is to be a geodesic.
Thus the meridians on the spheroid are geodesics. We knew this from geometrical

FIGURE 22.—A nonmeridian geodesic of the spheroid.

“considerations. That is, the shortest path between the ends ‘of a diameter of the

Equator would obviously be the plane elliptic path through the poles. Again we

knew this from equations (126) since E'=R? is a function of ¢ alone. If we eliminate
é [2__ 2

dX between (165) and (168) we obtain gi_: VI %, where r=N cos ¢ is the radius of

ds Rr
the parallel in latitude ¢ and we have placed ¢=a sin g=a, for “0:%
condition on « if a parallel is to bea geodesic. If a parallel is a geodesic then ¢=c,
d¢
ds
only parallel which is a geodesic is the Equator. Again this was clear geometrically

1is the required.

——=0 and we have r’—a’ —0 since Rr#=0 for ¢<2- This gives r=a. That is, the
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>

since the normal (the radius) of a parallel makes the angle ¢ with the normal to the
surface in latitude ¢ except at the Equator where ¢=0. Thus the only plane geodesics
on the spheroid are the meridians and the Equator.

THE RHUMB LINE OR LOXODROME

This curve on the spheroid is such that it meets consecutive meridians at the
same angle. From figure 21, we have

_Ncos¢ dn :
With o constant, equation (174) is the differential equation of the family of curves.

Writing (174) in the form di=tana- E sec ¢ d¢s the integral curves are

N
A—ro=1 tan a, (175)
where ) .
B ‘R . ks 2 1—esin ¢\*/? .
I—fo Nsecq& d¢—ln|:tan(4+2><—1+esin¢ :I (176)

The integral, I, of (176), as will soon be shown, is the key to the conformal repre-
sentation of the spheroid upon the plane.

THE CURVE OF ALINEMENT

" The curve of alinement is the locus of a point on the spheroid which moves so
that the plane through it and two fixed points on the spher01d is normal to the surface

at the moving point.
If the point P(z, v, z) on the spheroid lies in a general plane, its coordinates satisfy

an equation of the form’ .
: Ax-I—By—i—Oz=1. o . (177)

If the plane (177) is to be normal to the surface then A, B, C are proportional to
the direction cosines of a tangent to the surface at P, and since the normal to the
surface at P is orthogonal to every tangent to the surface at P, we must have

lA+mB+nC=0. (178)

From (156), placing b2=a? (1—€?), we have f(z, y, 2)=(1 —ez) (x®+y?)+ 22—
a? (1 —¢e%=0, as the equation of the spheroid.. Since the direction cosines of the normal

of of of % =, of
to the surface are proportlonal to s’ oy 02 we have l—vax; m= Yo n= Vbz

Now =3 (1 ez, g%=2 (—eys L =22, Hence I=24 (1=, m=20 (1 -,

n=2vz. We could have obtained these directly from (164). Since z=N(1—¢) sin ¢,
we have sin $=2/N(1—e?) and then from (164) we have l=x/N, m=y/N, n=2z/N (1—¢?).
Whence multiplying these last through by 2Nv(1—¢*) we have [=2v (1—é’)z, m=2»
(1—¢’) y, n=2vz. These values of [, m, n placed in (178) give

(1—e)z A+(1—e)y B+20=0, (179)
which is the condition that the plane (177) at the point P(z, , 2) shall be normal to the
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surface. But the plane (177) must also pass through two arbitrary points, P;(xi,
1, 21), and Py(zs, ¥z, 22), on the surface and the conditions for this are

Az, +By,+0z,=1,

Aillg +By2+022= 1.

From (177), (179), and (180) we have enough equations to eliminate A, B, anel C.
We accomplish this by writing the eliminant of the four equations as follows:

(180)

z Y 2 1
(1—edx (1—edy z 0 :
=0. (181)
Ty Y1 23 1
Ty Y2 22 1
Expanding (181) we obtain the equation
Crz—Hyz—Uz—Vy—Wz=0, (182)

where O—GZ(yz Y1), H=<c¥x,—2), U=(1—€")(¥12:—Yy2:21),
V= (1_5)(217)2—22%1),W (Z1y2—22Y1)-

Equation (182) represents a hyperbolic paraboloid and is the envelope of the
plane (177) under the given conditions. That is, the curve traced by P(z,y,z) on the
surface, the curve of alinement between the points P, and P,, is the 1ntersect10n of the
hyperbolic paraboloid (182) and the spheroid.

By means of (155) the coefficients C, H, U, V, W of (182) may be expressed in
" terms of the latitude and longitude of the points Pi(xy,y1, 21) and Py(z,, Y3, 22) since

rc1=N1 cos ¢y cos Ay, Y =N, cos ¢, sink,, z;=N;(1—¢?) sing,
Za= N, COS ¢ COS Ny, Yo=Nj €OS ¢y SiNNy, 2,=N,(1 —62) sin ¢,
and (182) may be written as
- N(1—€)(C cosA\—H sin ) sin¢—U cosA—V sin \— W(1—¢?) tan¢=0. (183)

If we place cos A=+/1—sin?\ in (183) we obtain the quadratic (P*+@Q?% sin®*A+
2QS sin A+ S?— P?=0, whose solution is

. _—QSiPVP2+Q2—SZ
sm_)\— Py ) ' , (184) .
where P, @, S are functions of ¢ alone, given by the relatlons P=[{CN(1 —¢?sin¢p—U],
Q= [HN(l—-e2) singp+ V], S=W(1—¢* tan ¢. (185)

The curve of alinement may be described physically as the path of a theodolite, in
adjustment, which is placed so that the plane of its vertical circle always passes throuOh
two fixed points. It is very near the geodesic between the two points.

CONFORMAL PROJECTION OF THE SPHEROID UPON A PLANE

We have already found that in order for a surface to be mapped conformally
upon a plane, we must have, from (66), ds,’=m(dr*+dN\). From (165) we have

ds>=N? cos? ¢ (% sec? ¢d¢2+d)\2>. (186)
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Hence we must have dT:]% sec ¢d ¢, and m=N?cos? ¢, that is, mis the square of the radius

of the parallel in latitude ¢. Note that dr may be written dr= which is the

Rd¢
N cos ¢
ratio of the element of arc along the mer1d1an to the radius of the parallel in latitude ¢.
(See fig. 21 on p. 64.) The value of the integral, 7—f 3 Sec ¢ d¢, as noted before,

is given by (176), and we mentioned in connection with (176) that this.integral was
bhe key to the conformal projection of the spheroid upon a plane. That is, the repre-

sentation A=\, r== f <-5ec ¢ d¢> maps the spheroid conformally upon the r\-plane.

Since 7 is a functlon of ¢ alone (Both R and NV are functions of ¢ alone.) we have for ¢
a constant (which gives a parallel on the spheroid) the straight line r=¢, A=X\ parallel
to the N-axis. Similarly when N is a constant (which gives a meridian on the spheroid)
we have the straight line A=¢, r=17(¢) which is parallel to the r-axis. That is, the
parallels and meridians on the spheroid are mapped into straight lines parallel to the
M- and 7-axes. (Sce fig. 4 on p. 24.) This is actually the Mercator projection of the
spheroid upon a plane as will be demonstrated later. But the point N7 has the complex
representation A+-4r in the superimposed complex plane or z-plane as discussed before,
and we have already seen that the analytic function (5) maps the z- or Ar-plane con-
formally upon the w- or zy-plane. Now from (9) we have

dsiP=dz’+dy’=f'A—ir)f'(A+ir) (dr?+dN). (187)
From (186) and (187), analogously as we had for (30), we have
' ds? f'—in)f'\Fir) [@dr*+drD
dSZZ—Nz 2, (B 2 2 2
cos’ ¢ (ZW sec? ¢pdd>-+dA )

:f’()\—i'r)f'()\-}-ir) (d724-dA%
]\72 cos? ¢ (d724+dN%)

_ S —in)f (>\+%'f)

N2 cos? ¢ (188)
. where we know from (16) that the product f'(A—ir)f’ (A\+47) is a real function.
We can finally state that the analytic function
x+iy=f(>\:ti~r), - {189

where, from (176),

_ ¢ l—esmda‘/z]
7= f = sec pdo= 1n[tan<4 ><1+esm¢

represents all conformal mapping of the spheroid upon a plane. The form of the func-
tion f(\+47) is determined by the initial required conditions of the desired projection,
that is, by which line or lines in the projection are to be held true to scale, and by the
required geometric form of the map elements corresponding to meridians and parallels.
The mapping equations will then be given by equating real and imaginary parts in
(189) to obtain the real mapping coordinates z=2 (A, r), y=y (\, 7) which must satisfy
the Cauchy—Rlemann equations (15).
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From (16) and (188) we have

pdsi_ FO—in) i) _ \/ &) \/( )+E) \/"<

ds, N cos ¢ N cos 4> N cos ¢ Ncose¢ =

» (190)

which is the magnification or the scale at any point of the projection.

THE GEODESIC ISOMETRIC SYSTEM ON THE SPHEROID

From the discussion of isometric orthogonal systems, following equation (69), we
see that equation (186) with d T=JEV—
in the form ds?=r*dr24-d\?, where r=N cos ¢ is the radius of a parallel in latitude ¢.
The parametric curves are the same and the meridians, A=c,, are geodesics on the
spheroid. Thus we have a geodesic isometric orthogonal system of curves on the
surface. We will now show that this system formed by the meridians and parallels
is the only such system possible on the spheroid.

From (113), (152) and (154) we have

sec ¢ do establishes such a system on the spheroid

1 1 (1—é¥sin® ¢)*

R N= e =IO (191)

Since e<1, By >0 for all values of ¢. That is, the spheroid is a surface of positive
curvature.

Now from (126) we see that the condition for the parametric curves )\=02 to be
geodesics is for E to be a function of ¢ alone. From (42) the parametric curves are
orthogonal if F=0. The linear element is then of the form

ds*=R?d ¢*-+-r*d\? ’ (192)

where E=R?is a function of ¢ alone and G=12 is, in general, a function of both A and ¢.
The parametric curves are not changed if we replace Ed¢ by d¢ in (192) but E is now
unity, that is, (192) becomes

ds?=d ¢+ rid\t a (193)
From (69), an orthogonal system of parametric curves is isometric if E and @
g g; where U is a function of ¢ alone and Vis a

function of A alone. If we write this condition in terms of logarlthms as logg—log U—

satisfy an equation of the form

: . . C 0?
log V, then by partial differentiation we havem<log F)—m(log E>_0’ hence

either of the latter equatlons is equivalent to g g From (193) E=1, @=r? whence
we have —=— (log 7?)=0, whence log r=log p+4log ¢, or r=pg where pisa functlon_

Dq&b)\
of ¢ alone, and ¢ is a function of A alone, and (193) becomes then

ds?=d ¢+ pPgdN>. . . (194)
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With the values of E=1, F=0, @=p?¢? placed in equation (149), remembering
that p is a function of ¢ alone and ¢ a function of \ alone, we have DD” —D*=

—pq¢* gf With this value of DD”— D" placed in (113) we have

10°p

Ry s (195)
) Equation (195) is an ordinary dlﬁ'erenmal equation for which solutions exist if
R,=0, R,=a constant, or if R, is a function of ¢ alone. We have seen that if B,=0,
the surface is developable; if B, is a constant, the surface is one of constant curvature
(for example, a sphere). On surfaces of revolution, particularly upon the spheroid
as seen from equation (191), R, is a function of the latitude alone, whence equation
(195) has solutions. Therefore the only geodesic isometric system on the spheroid is
the graticule formed by the meridians and parallels. Note that the linear element

(192), with r=N cos ¢, is identical to that of the spheroid as given by (165).

SURFACES OF CONSTANT CURVATURE, THE APOSPHERE

" Surfaces whose total curvature, B, as given by equation (113), is the same at all
points are called surfaces of constant curvature. Now we can write equation (194) as

ds*=d¢$*+GdN?, (196)
and the differential equation (195) as
1 2%4/@
RBrt+— 76 08 =0,

where p?= G is a function of ¢ alone. This is true for the spheroid as seen from equa-
tion (193) where p=r=0N cos ¢, and it is true of any surface of revolution.

Let R,=1/a’ where @ is a real constant. Then equation (197) may be written as
an ordinary .differential equation of second order, namely

(197)

2 [ 2
B T RN S
Tt welt gf;_h then £G— 801 4G 0 4 cquation 198) may be writen
Gfb dh—h? dGCj ? d@, which 1ﬁtegrates at oncev to gix.re %—2= —% G+, whence
h=%%=i\/@\/m. (199)
_dae
Equation (199)may be ‘Vritten—ﬁ—%“%_%b’ whose integral is cos 12://27 Z—i—d or

JG@=c cos (%-{—d), ' (200) .

where we have placed ¢=a/C/2=a real constant. ‘
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The surfaces given by (200) are called spherical surfaces and they depend upen
the values of the constants of integration ¢ and d. A change in d means only a differ-
ent choice of the parallel =0, so let us take d=0. The linear element (196) becomes
then with the value of & from (200),

ds’=d¢*+c? coszgd)& . ' (201)

the radius of the parallel being r=+/G=c cos g=’“(¢)-

To obtain the equation of the meridian curve we refer again to figures 18 and 19
(pp. 59 and 60). From figure 18, the equation of the meridians is z=f(r), where r=r(¢).
From figure 19 we have z=7 cos \,y=rsin \. Hence from equations (37) and (201) we
have
— ?_E : oYY <62>2_ ”? 2 a2 120N t2
E—(a¢ +<b¢> + 5% =7"" cos? N7’ sin? N+ (r)r _

=r’2+]"2(r)r’2=1

whence
= ==,
or '
dz={f'(r)dr=1—1"d. (202)
From r=¢ cos %: we have r :—-g sin 9 and with this Value of v’ placed in (202)
we have

r=Cc cos—; z—f\/l——gsm ~de, ' (203)

which are the parametric equations of the meridian curve in terms of ¢ as parameter.
The parametric equations of the surface in terms of ¢.and X are then ’

¢ ¢ . ¢ .,
Z=¢ cos ~CO8 N\, y=c¢ cos— sin A, sz\/l — sngddx (204)

There are three types of surfaces given by equatlons (203) or (204), according
as c=a, ¢ >a, c<a.

1. c=a. From equations (204) we have x=a cos % cos A, y=a cos% sin A,

z= f cos E d¢=a sin g’ which, by comparison with equations (32), or by squaring

and addmg respective members, is seen to be a sphere of radius a.
2. ¢>a.. For 2 to be real we must have from equations (203) or (204), P s1n < 1,

or sin 2_— and ‘hence r=¢ cos = >0 for all allowable values of ~. When ¢=0, we

have r=c, 2=0. When sin 52%’ To=C COS £=C\/ —a?/c? ——=\/c —a? and z,=
sin-t aje c? . ¢ . .
f 1~——2 sin? ~ d¢=d0. Thus the surface is made up of zones bounded by the

minimum parallels ro= /c—a?, the greatest parallel of each zone being of radius ¢ as
shown in figure 23.
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3. ¢c<a. In this case we have O_S_(r=c cos %\)éc’. For =0 we must have

¢=ua 7/2 where v is fany odd integer. If » is the angle which the tangent to the
cra - '

<

._‘_~_..___.._.__.+—__._.. e ——

FIGURE 23.—The aposphere, zonal type.

meridian makes with the axis of rotation (the z-axis in fig. 18, p. 59), then v+ /2 is

the angle which the tangent makes with the r- axis, hence tan (v 4 #/2)= Zi (é—z g—gz

—\/1———5 sin® ¢/ sm——

With the value of ¢=ua /2, % an odd integer, for which r=0, we have sin %zl,
wﬂence tan (vy+7/2)=--cot v(,:—.\/l——c—2 °, or sin. 1)0:5; vo=gin"* £, and zo=
¢* a a a

uaz — 2 7 :
f 2 \/ 1 —% sin? 9 dp=d,. Thus it is seen that the surface is made up of a series of

spindles as shown in ﬁgure 24.
‘ The integral for z in equations (204) where c#a, may be expressed in terms of
elliptic functions.

We will now show that the two surfaces, as given by equations (204) where c#a,
are applicable to the sphere with the meridians and parallels of each in correspondence,
that is, developable upon the sphere in the same manner as cones and cylinders upon
the plane—small lengths are equal as well as corresponding angles. Or stated in
another way, the ratio of their linear elements about any common point must be unity.

If we write the linear element (201) with c=a, replacing ¢ and X by ¢ and X

respéctively we have ds2£d$2+a2 cos? g dX?, and this is identical with the linear
element (201) if we have g=4¢, X=3)\ which establishes the applicability and the -

correspondence of parallels and meridians.
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Let us consider a zone between the parallels ¢, and ¢, on the surface whose linear
element is given by (201). A point of the zone is determined by values of ¢ and A such
that ¢;= ¢= ¢o, 27=A20. The parametric values of the corresponding point on the

sphere are such that ¢;>¢= ¢, 27 gg_ =0, since =6, X:% A

Hence when ¢<a, the given zone on the surface does not ‘cover the zone on the
sphere between the parallels ¢, and ¢;. When ¢>>a, it not only covers it, but overlaps it.

FIGURE 24.—The aposphere, spindle type.

We note that with Rr=—1/a? the differential equation (198) is integrable, the
resulting family of surfaces being called pseudospherical surfaces. They are of three
types, hyperbolic, elliptic, and parabolic and are of interest but not very -useful for
- conformal mapping of the spheroid since they are not applicable to one another with
meridians in correspondence.

The spherical surfaces represented by the linear element (201) and parametric
representation (204) where ¢, have been employed in the conformal mapping of the
spheroid by Brigadier M. Hotine. (See Orthomorphic Projection of the Spheroid,
Brigadier M. Hotine, Empire Survey Review, Vols. VIII and IX, Nos. 62-65, 1946
1947.) Hotine obtains the equation of the surfaces in the form

p=A sech B(r+0),

where p is the radius of the parallel and 7 is the isometric latitude, B, C are arbitrary
constants and A= B/P where P?~=1/RN = R;=real constant. To show that this equa-
tion and equation (200) are equivalent we have from (189) with ¢=0, r=In tan

I+9 which is the expression for the isometricilatitude on the sphere. From this we
472 P _

L T, ¢\ _ [lising ' . _e—e’T s 1 .
~ havee —tan(4+2>——\/——-——l_sin¢: 0rsm¢———ef+e_r—tanh r, whence cos®’ ¢=1—tanh

r=sech®r, or cos ¢=sech 7. Hence we haver=p=c¢c cos (%—l—d)oA sech B(r+C).
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Hotine calls these surfaces where B>1 (B=1 gives a sphere) apospheres, attribut-
ing the name to C. J. Sisson of London University. The spheroid is projected confor-
mally upon the plane by the series of conformal projections, spheroid to aposphere,
aposphere to sphere, sphere to plane.

The basic idea in connection with oblique projections of the spheroid is not new
and such & projection thay be found in Jordan-Eggert, Handbuch der Vermessungskunde,
Vol. ITI, Second part, Chapter V. The development by Hotine with closed formulas
involving hyperbolic functions and the aposphere which reproduces the surface of the
spheroid to a high degree of accuracy over a considerable area, gives much simpler
working formulas after certain functions involved have been tabulated.

The method is also useful for the horizon stereographic projection of the spheroid,
and complete formulas for this and several other conformal projections through the
aposphere are presented by Hotine in the work cited above.

MAP ELEMENTS
We have seen that an arc element of thé..spheroid may be expressed in the form
dS?=r* (dr*-+dN*), where r=N cos ¢, dr=§ d¢ and it must be in this form if the spheroid
is to be developed conformally on a plane. The map coordinates will in general be

functions of ¢ and A, that is, z=2 (¢, N), y=v (¢, A). The map arc element will then be

dsP—1? (%2 a2 arans§ dx2>

oo 5= ) + (385 (R [+ T-E 39 +(G)

Ox dx dr Oy oy dr Oz Oz E)y oy R 0z 0z | Oy Oy
dd> (205)

F=3\3:ds oxordé o) or Toxor)" 7 \onor Toror/)

_ (0, (oYY
G—(a +(a

In order for the mapping to be conformal we must have from equation (64)

(ot o)
as =2
dsz— . 2(d12+d)\2) =k*(r, ),
and necessarily then
E @ .
F=0, 2= (206)

Note that from (206) with the values of E, F, G@ from (205) we have the conditions

2
0z 0z , Oy Oy _ —|—(g ) < ) +<g_?£ » which are equivalent to

OXO7 ' OAOT
?_x_:Fby or__ 9y
or ONON Tor

These are again the Cauchy-Riemann equatlons (15) as was to be expected.

(207)

Now dx=g§ dr +%;E ax, dy= ayd + d)\ In ﬁgure 25, ds is the projection of
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Poreljer

X -

FIGURE 25.—FElements of the projected geodesic and the rectilinear chord.

the spheroidal arc length dS as shown in figure 21 (p. 64). If g is the angle which the
projected arc ds makes with the map z-axis, then

3y 4. 42U gy 2,2y dA
dy ot O\ 07 OndT
tan f=—2= = (208)
de 0z ;. 40z gy Oz, 0w dh
o7 ‘TN Oor  OMNdrT
. _Ncosgpdn dx_R
From equation (174) tan R - or do=7 tan a.
Now g—:\=% . %=§ tan « . 1%=tan «. Hence (208) may be written
oy , 0y, .
<= tan «
tan B=%=°_.-_a"_——. (200)
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Solving (209) for tan « we have

oy O
- or oy np
tan a=—5——5——- (210)
oy 0z
~—<— tan § '
OX O\

Equations (209) and (210) give the relations between the azimuth, a, of a spheroi-
dal arc element and the direction, 8, of its projection on a conformal map.

CURVATURE OF PROJECTED MERIDIANS AND PARALLELS

From equation (153) writing % for 2’ we have the usual formula for the curvature

of a plane curve given by

d2

d 273/ 7 a1
[l @) |
For the projected curve, the coordinates z, y of any pomt on 1t will be functions of

a single parameter say s, the arc length along the curve.

Then

(211)

d2y df ds T yl/_ylx” ) l:x,y”_y,x”.

de? ds dz z? 2’ z3

L dy d% .
With these values of T2 a2t placed in (211) we have then

1 i l I y z
BTy 212)
where z and ¥ are functions of the same parameter and differentiation is with respect to
that parameter. .

Now when A is constant, we may replace the derivatives in (212) by par tlal deriva-
tives with respect to =, that is, for a meridian we may write

0z 0% 0y O’z
1 o7 01 Or Or?

SN (213)
»G+GO]
From (205) and (206)-it is seen that the denominator of (213) is G** so that
1 1 [0xzd% 0yo _
e (e 3o or 5e) @14

. . . . 0% dy % . LT
By differentiating the equations (207) we obtain 5.7 T oror b-rb)\—:FW”
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o, oy o ay
N~ 3,00 onor Loy Whence
Cod%, d% 0?2 ~62 '
a 2+5R2_0’ Ty2+a—)\y2=O (215)

Equations (215) are the well-known Laplace equations which analytic functions .
must satisfy. -
1 1 (oy o’ , oz 0%
With equations (207) and (215) we may write (214) as —- B G\ o ont T o o

1 0G_oy 9%y , 0z O’z

By differentiating G in (205) we obtain 7 3N "or b)\2+ SN 507 hence we have

1 1 26 2t . . .
ﬁna,]ly.ﬁ)\=2—g3/-2 P ox Similarly for a parallel, equatlon (213) becomes
1 OAOAE oxoON? 1 (dz dx oy Oy 1 26 oG-

A [( ) (a ):Iw TGYE\ON ONOr ToxOror/ 2G%2dr or
)

Hence the curvatures of the projected meridians and parallels in a conformal projection

are given by -
1 2@t 1 G- 2G-t d¢

RN R or o dr

(216)

where, from (187), @=f'(A+1i7)f'(A\—17), G being formed from the map coordinates
z=z (¢, \),y=1vy (¢, N) of the conformal projection according to (205).

CON VERGENCE OF MAP MERIDIANS

The convergence of the mer1d1an through any point on the map is deﬁned to be
the angle between the tangent to the meridian at the point and the y-axis. Since the
projection is conformal, this angle is also equal to that between the tangent to the
parallel and the z-axis.

From (209), with =0, a=90°, if we let v be the convergence, we have

tan 7= 2220 foz_2y
Y=5r/9r on/on \dz/) r=constant.

CURVATURE OF THE PROJECTED GEODESIC

’ 42 2
From figure 25, %f=cos 8, %=sin 8, %=—sin B (fl—/z, %=cos B%?- Hen‘ce from

(212) we have

(2‘17)

1 - '
E=(cos2[3 %-l—s n?g ds> (218)
Now from (206) we may write, considering k to be a function of z and v,

dS= kds—— 1+y’2dx =JIdz, or

Szﬁjzfdx,1=% Vit =I@yy). (219
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Equation (219) gives the arc length of the spheroidal arc S corresponding to the
projected arc s of figure 25, but expressed as a function of the rectangular coordinates
z, ¥ and the slope 3’ of the projected curve.

If Sis a geodesic arc of the spheroid, then the integral of (219) must be minimized.
The integrand, I, must therefore satisfy the equation

of d /oI
o <a )— 220)

The differential equation (220), known as Euler’s equation, is obtained in consid-
ering the simplest case of the calculus of variations of which (219) is an example. The
derivation of this equation may be found in treatises on advanced calculus.’

With y'=dy/dx=tan 8, %ZCOS 8, %=sin B and I_E V1497 we have

oI =75 O /1 __ 0 /1

S+ -—az<z>——sec6-ay<k>; (221)
ol _1 __ﬁl/’_ ltan B sin B’

oy k+1+y” ksecf k

(aI) dx<smﬁ>" né [a—ax@*%@ T rgeoss (fiﬁ =l

With the values of Z =tan @3, j——sec B this last equation becomes

£(E)-mo[2 OATORI S @

The values of (221) and (222) placed in (220) give

1dg_ o
A (k) <k> (sec B—sin B tan B)= 52 (k) smﬁ 3 (k) cos B=
19k . :
—FE 3, b B+p5§ cos B, and from (218)
_dB 170k .
=5 E\5s - COS ﬁ) (223)

Equatlon (223) is the expression for the curvature, o, of the projected geodesic at a
given point in terms of the scale factor at that point and the angle 8.
If the projected geodesic is referred to the normal and tangent at a point, say

at Py, as shown in figure 25, then g%=sin B and ——Z—izc% B so that (223) becomes

d dk dy\ 10k S
“k (bx dn+by dn) & on’ (224)
where g_f; is the derivative of the scale factor in a direction normal to the curve.

s F. 8. Woods, Advanced Calculus, p. 319.
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PARAMETRIC EQUATIONS OF THE PROJECTED GEODESIC

In figure 25, consider the projected geodetic curve, s, to be referred to the normal, »,
and tangent, ¢, as coordinate axes and suppose both n and ¢ to be functions of the arc
length s. That is, n=n(s), t=¢t(s). We may expand »n and ¢ in ] \/Iaclaurm series about
the point P, that 1s,

t—st’(0)+2, t”(0)+ t”'(0)+ t‘“(0)+ t“(0)+
(225)
82 83 . 84 85
n=57"(0)+5; 2" (0)+37 " (0 +35 " (0)+ n"(O)—I— e

: 2 2
Now the differential of arc length is ds?=dn?+d¢?, and hence (%) +<%§) =n"4

?=1. The slope of the tangent to the curve at any point is Z—? / Z—i=n’/t’ and since the

curve is tangent to the t-axis at the origin we must have n’(0)/t’(0)=0, which is true
if n7(0)=0, t’(0)#0. From n’’4+¢*=1 we have with 2/(0)=0 that ¢/(0)=1.
From (212) and figure 25, the radius of curvature is
0" —n't"

1 P on .//
0’(8)=E=m=t n. —n’t . (226)

With- 2/ (0)=0 and ¢’ (0)=1 we have from (226) that " (0)=g,.
If we differentiate n’*+1'>=1, o =#/n" —n’t” successively with respect to s we obtain:

A w'n” 18" =0
w0 4 =0
n'n V-tV 3( 0 ) =0
0T+ A0 )R 3 ) =0
B: o'=t'n'"—n't""’
o =t"n!" — ”t”’+t’ Sy

V=t'n —n/t"—2(n "t —t"n").

(227)

From groups A and B of equations (227) with n/(0)= 0 t(0)=1, n”(O)-—a(, we
have finally

n'(0)=0, 0" (0) =03, ' (0)=0y, n™(0)=0¢" — o, n*(0)=0¢"'~ 605’y

(228)
t/(O) =1, t’/(0)= 0, t"’(0)= - 002: tiv(o) =—3 0’000/, tv(0)= - (4 0000”+3Uo’2~ 004)-
The values from (228) placed in (225) give
g8 st
f=8— 6'0'0 §0'00'0 120 (400’00’ +30’0 —'lfo>
(229)

s 8°
=3 ‘To+ Uo'+ (a’o 0'03)+120 (6" —6aolag)+ . ..
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Since the curvature, ¢, corresponding to the point ¢, » on the curve is also a function
of s as seen from (226), it may be expressed also as a Maclaurin series in s, namely

o=0o+oy's+ag" 2+a —+ (230)

THE DIFFERENCE IN LENGTH OF THE PROJECTED GEODESIC
AND ITS RECTILINEAR CHORD

From figure 25, d is  the length of the chord of the projected geodesic s. If the
curve is referred to the normal, n, and tangent, ¢, as shown in figure 25, then d?=n?{¢*
and from equations (229) by squaring respective members and retaining terms in s°
we have

: 2
 dP=nt =g —84102—-85 ";g" 360(90'000 + 80 —agh)—. . (231)

whence

d:..‘\/n2+t2:8 ].'—'i—i (1) +600'0 S+ (90’000 +80’0 _0'04)"}" ]

Expanding the radical by the binomial formula and retaining terms in s* we have
finally

2 ’ .
-d—s—s3 54 —st U;Zo —5 760 (720q04" +640'0 ——300)
or
S s—d= o4 54 " 4640y —300)F ... ©(232)
From equation (230), if oy is the curvature at the mldpomt of the geodesic arc s,
2
we have, replacing s by s/2, c,=0¢+ o’ 2—|—o'0” ‘; +...,0r cp=0,—0, g._.go” Sg_. .
and this value of o, placed in (232) gives
83 ' .
S_d:“2_4‘ 0'22+5 760 (190'20'0”_"‘40'0 —302)+ P (233)

THE ANGLE BETWEEN THE PROJECTED GEODESIC AND THE
RECTILINEAR CHORD

In figure 25, it is seen that the angle between the chord, d, and the projected geo-
desic, s, is 71—t =0; and tan §;=n/t. With the values of n and ¢ from (229), we have

s s? s
tan 01=[—2‘ Uo‘l‘g Uo’+§z( — 0o )+120 (00" =60’ ag)+ .. ]

s ., 8 7,
|:1+—6*60+§6960+...]

s 2 3 )
=§ao+%ao'+;—4(ao"+af)+ (600" +29052a)+ . .. (234) -

720
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. 3
. From the series for tan™! u:u—i—l— . .., with §,=tan"! 4, we have
3 )
3
§,=tan 01—“"; by . (235)
tan®g, - s°

4
5 =54 "'—I—24 ool oo/, and with this value
and that of tan 6, from (234) placed in (235) we have to terms in s*,

From (234) we have to terms in s,

83,

01=T1 00+ +24 720

* 60y —alo )+ . .. (236)

Let us replace s by /3 in equation (230) and indicate by o3 the curvature one-

III+

third the distance along the arc s in figure 25. Then o;= a'o-l—g oo —l— g %o 162

18 ~1g3 % T - and this value of ¢, placed in (236)

2 3
s 14 $ ” $ e
«y OT 09g=03—5 0o — '

3
gives to terms in s*

S 82 ’ 83 ” 84 I//v 82 7 83 14 2 7
01=T1'—t1=§ 93— 90 T35 90 —3g57 00 +€ oo +2—; oo +720 60y —as%0y’)
LRI MR Sye YRV ST (237)
273172 6 480 LR te .

THE DISPLACEMENT OF THE- PROJECTED GEODESIC.
K FROM THE RECTILINEAR CHORD

In figure 26 we have taken a portion s; of the projected geodesic s of figure 25 and
drawn the perpendicular, &, from the point Q(t, n) of the geodesic upon the rectilinear
chord. & is thus the dlsplacement of the pr01ected geodesic from the rectilinear chord

+/7

7 . :
e homg—] &

FIGURE 26.—The displacement of the projected geodesic from the rectilinear chord.
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and we have from figure 26, %%%S%=tan 6;.  Solving for & we find that -
- 1
h=t sin 6,—n cos §,. ' (238)

. . . . 0%
Now the series expansions for sin #, and cos 6; are sin 01=01—§IT+ ..., COS O=

2 4
] —f’;, +£‘_,- ..., and with the value of 6, from (236) these become

. sin 01=% ao-l— tfo + (20'0 —ad)+ ...

(239)
82 3
cos Oi=1— 8 02 182 0'00'0
From equations (229) we have iirith s replaced by s,
3
i 11 =81—8—é‘ 0'02_
(240)

. 8 .
ao+— ay QIZ (6 — o)+ . ..

With the values from (239) and (240) placed in (238) we have to terms of 4th order
in § and s, ' '

= ao(s—sl)—i-— oo (s? —sf)—i—— oy (83 —813)+ « (38,282 + 28, —s;83—4s%)+ .
(241)
For the middle point of the arc s as shown in figure 25, we have sl_=% and with this

value (241) gives ~

82
8_0'0+ 0’0 +384 (70’0 _ 3)... (242)
We found in obtaining (233) that the curvature at the middle point of the arc s is
. 2
o= op-+0og ) +o ” & —|— ... OT 6g=0y—0q %—00" s§_. . . and this value of ¢, placed in
(242) gives to terms in s* 4
2 84
h2:S§ 0'2+§—82 ((70/,—023)+ PN . (243)

For. a point one-third the distance from P; to P, as shown in figure 25 we have

- from (241) with sl=~§~

e !
h=g o3y Uo+1944(26¢70 —5o - e

In obtaining (237) we found the curvature for a point one-third the distance from

2 2
P, to P, to be 0'3=00+§ 00’+-f—8 o+ ...o0r 00=03——§ Uq'——% oo"— ..., and this
value of ¢, placed in (244) gives to terms in s*
s? 88 3 .
'g'o'3+8 0'0+ (14:0’0 50'3 )"*“. .o (245)

1 944



CONFORMAL PROJECTIONS . 83

THE DIFFERENCE IN LENGTH OF THE GEODESIC ARC AND ITS
PROJECTION ON THE MAP

’ s
From (206) we have ds=kdS, or s=f kdS where S is the arc length on the
0 .

spheroid, s is the projected arc, and k is the scale ratio.
Considering k to be a function of S we may expand k(S) in a series, namely,

E©=kt(53 )S+2<a2k>82 6<ask>83

Now k may be expressed as a function of the map coordinates and the map co-
ordinates may be expressed as functions of the arc s of the projected curve.

Hence aag (fik j—g,—k’k. Similarly we have
% d%k dkd_d_s__d_s.Bdkd )k’
_ 28t dst’ ds s/ dSs
and hence
azk_ ” 1.2 ”?
—b-‘s—,é—lc B2 k7.

3
Continuing we find Sk—k3k”’+4k2k k” +kk”, so that we may ‘write

s— f “rdS— f ¢ [k0+k0k0's+l (eothes” + k™) S+
S 3k0’”+4k02k0’k0”+k0k0’3)S3+ :| ds.
Integrating we have finally
' s=hoS+3 koky' St (ketky” +hoks™)S*+
o (kotke "+ kb + ok )8 (246)

where ko', ko', ko’’’ are the derivatives of the scale ratio, k£, with respect to s and eval-
uated at s=0.

If we neglect terms greater than S? in (246) and write ksks’ for kok,” which corre-
sponds to the point one-third the distance along the projected curve, we obtain '

s=koS+%k3k3’S2+ . (247)

We may also write from (206), dS=l ds, or Szfa %ds. Since k is a function

oLswe may ert,e +(k> +<k)” 2 +<k)m
whence
1 g2 " g
5= f [ko+(k> +<k> +(k> Ly ]ds
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L (D5 Q)

and integrating we have

or
_8_(k_<)— 1>8+<k> +<k> <k> Pres (248)
If we refer to the midpoint of the projected curve we may write
5= f [k*(k) +(k> G L
whence

S=Es+<E>;I 581—}- ..., 0r S—s=<ki2——l> s+(E>;’2ii+ ce e (249).

144
where 7c1—’ (715) are evaluated at the midpoint of the projected curve.
2

dlc  dk dx | ok dy

Since k=Fk [z (s), y(s)] then k= But we have seen (fig. 25,

“oz ds oy ds' v
p: 75) that g—s=cos 8, d—=sin 8, hence lc’=9]E cos 6-|—a— sin 8. Differentiating this
. "o b% b2k dy ok . dg  o%k
last equation we have k =542 °¢ sB- ds +bxby s B - 55 Sin 8- —+b S sin g -
dy, O% ok dB d_x__ dy
ds—!—a—y—s— ng- ds+b cos 8 - With cos B, Ts= sin 8 and the value of

Z—S from (223) we have k"=% cos? ﬁ-}—a 26-}—;; sin 28—ko? Where o 18 the

curvature of the projected geodesic as given by equatlon (223).

1V 17 kzk,// 2]6 k/Z 2k'2-—-k k'
(E) k2, (k> = — (250)
K =g—k—c S B—I—a—sm B,
0%k 0%k

1 __ 2
k =37 08 B+ay2sm B+b o7 sin 28—ko2.

In equatlon (249), ks, k', etc. are evaluated at the nudpomt of the projected
geodesic. If we desire these to be evaluated for the midpoint of the rectilinear chord a
correction term, AS, must be applied to equation (249). To derive this correction term
we assume that h, as shown in figure 25 (p. 75) is coincident with the normal to the
projected geodesic at its midpoint which introduces no appreciable error. Then

AS:d (7::1—2 s)=—é; %]:f dn-.s. From (224) and (243) we havq 02—; %k2: hy=dn=
s? 1 1 Ok, s :
§az+. ..., hence AS=d <k_z s)= Eon cdn - s=— 3 k o2?s®.  Applying this correc-
tion to (249) we have ) .
144
e 2 . Q3
5= <k2 1>s+(k) SigE oS (251)

where ks, &y, . . . refer to the midpoint of the rectilinear chord.
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THE MERCATOR CONFORMAL PROJECTION

Mercator probably arrived at his parallel spacings about 1550 by empirical meth-
ods in attempting to reduce the rhumb line on the globe to a straight line on the map,
Edward Wright giving the correct mathematical formulation about 4@ years later.

The historical account is perhaps best summarized in the following quotation
from “A Short Dissertation on Maps and Charts” by M. Mountaine which was pub-
lished in the Philosophical Transactions of the Royal Society in 1758.

“Rectilinear were therefore very early adopted, on which the meridians were
described parallel to each other, and the degrees of latitude and longitude: everywhere
equal; the rhumbs were consequently right lines; and hereby it was thought that the
courses or bearings of places would be more easily determined. But these were found
also insufficient and erroneous, the meridians being parallel, which ought to converge:
and no method or device used to accommodate that parallelism.—However, the errors
in this were sooner discovered than corrected, both by mathematicians and mariners,
as by Martin Cortese, Petrus Nonius, Coigniet, and some say by Ptolemy himself.

“The first step towards the improvement of this chart was made by Gerard Mer-
cator, who published a map about the year 1550, in which the degrees of latitude were
increased from the equator towards each pole; but on what principles this was con-
structed, he did not show.

“About the year 1590, Mr. Edward Wright discovered the true pnnmples on which
such a chart should be constructed; and .communicated the same to one Jodocus
Hondius, an engraver, who, contrary to his engagement, published the same as his
own invention: this occasioned Mr. Wright, in 1599, to show his method of construc-
tion in his book, entitled, Correction of Errors in Navigation; in the preface of which
may be seen his charge and proof against Hondius; and also how far Mercator has any
right to share in the honour due for thls great improvement in geography and navi-
gation.”

For a more detailed modern historical account of this projection see the Story of
Maps by Lloyd A. Brown and Elements of Map Projection by C. H. Deetz and O. S.
Adams (Coast and Geodetic Survey Special Publication No. 68). The latter treatise
includes a complete development with tables. Other sources are indicated in the
bibliography. We will include here the derivation of the mapping equations and the
scale by means of the function of a complex variable as an easy introduction to the
application of equations (189), and also to show that all autogonal projections of the
spheroid on the plane are actually given by a function of the coordlnates of the Mercator

conformal projection.
DERIVATION OF FORMULAS

For the Mercator projection it is required that the scale shall be true along the’
Equator. Hence for ¢=0, we will have 7=0, y=0, t=aX. From equations (189) we
may write, then, the linear analytic function z+iy=a(M-}4r), whence equating real and
imaginary parts '

T=a\

_ . (*R _i T, ¢\ (1—esing\/?
y——ar—aﬁ Nsec¢d¢-—M10g[tan (4—|—2> (————1_*_6 né ];

where M is the modulus of common logarithms.

(252)
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From (44) let us write the_liﬁ'ear element of the sphere as
ds®=r? cos? x(sec? xd x>+ d\D). (253) -

From (165) we have the linear element of the ellipsoid
2
ds?=N? cos? ¢ (]% sec? ¢ do’+ d)\2>- , (254)

In order for the ellipsoid to be mapped conformally upon the sphere the condition
(66) must be satisfied, whence we must have

,
dr?i=sec? xal)("’zz—l\zf—2 sec’ ¢ d¢?. (255)

But by (66) the first equality of (255) is the condition that the sphere be mapped
conformally upon the plane. The second equality is the condition that the spheroid
should be mapped conformally upon the sphere. . From the second equality of (255)
we have '

sec xdx———% sec ¢ d¢,
1—e sin ¢\/?
mlntan(4 2) In[tan ) 1—{—es1n¢ ]

¢ 1—esing ‘/2
ortan( 2> tan(4 ) TFesme v (256)

CONFORMAL AND ISOMETRIC LATITUDES

The latitude x, as determined from the geodetic latitude ¢ by (2'56), is called the
conformal latitude.

- - 1 €/2 . .
The function 7=In [tan(%—l—g)(%:ﬁii ]; which with the longitude, A,

determines a pair of isometric parameters on the spheroid is properly named the
isometric latitude.

¥f a direct conformal projection of the spheroid is derlved by substitution in the
formulas for the projection of the sphere, the isometric latitude on the sphere is replaced
by r, or the geodetic latitude on the sphere is replaced by the conformal latitude, x, as
obtained from equation (256).

It should be noted that O. S. Adams in his special publications for the Coast and
Geodetic Survey uses the designations conformal latitude and isometric latitude inter-
changeably for the quantity x. However, the term isometric latitude is more appro-
priate to the parameter . No harm is done in practice as long as one knows that

his tabular values of x are conformal latitudes and not isometric latitudes. '

THE CONFORMAL SPHERE

The sphere whose linear element is given by equation (253) is called the conformal

_ds;__rcosx
sphere. From (253), (254), and (255) we have kl—dSZ—N c0s ¢

the conformal representation of the spheroid on the sphere. If we demand that the
scale be true at the Equator, then ¢=x=0, N=q, and k;=1, whence the radius of the
conformal sphere is 7=a. That is, for projections centered on the Equator this is the

» the scale factor for
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best value for the radius of the conformal sphere. If, for projections centered in
latitude ¢, we desire to hold the scale at this latitude, we have k=1, hence

"7 cos xO _ N, cos N, cos ¢ -
Ny cos ¢y =1, whence r= 05 22 (257)
By substituting from (256) in (252) we obtain
‘ z=al\
(258)

- 74X

Y=37 log tan <4+2);

which represents the Mercator projection of the conformal sphere upon the plane, but
actually accomplishing the projection of the ellipsoid upon the plane, since the confor-

mal latitudes are computed from the geodetic latitudes by means of (256).
It is customarv to replace x and ¢ by their colatitudes z and p respectively, i. e.

J— €/2
X= 2 —2,6=5—P. The relation (256) becomes then cot ——cot P, (1 ecosp

2 1+ecosp
P (1—{—5 cos P\

or reciprocally tan Z—tan? and equations (258) become

2 2 l—ecosp
a o,z
| x—a)\,y—ﬁ log cot 3 | (259)
From (190) the magnification or scale at any point is
k=< sec ) ' (260)
——N - .

Comparing equations (189) and (252) it is seen that all other conformal projections
of the spheroid upon the plane are given by a function of the mapping coordinates
(252) for the Mercator conformal projection. This is due to the linear function for
the Mercator projection, i. e., from (189), z-+iy=f(A+1r). _

But for the Mercator projection, equations (252), we have A=z/a, r=1¥/a hence
any other orthomorphic projection is given by

X+i¥=7 (§+z%> 3 (@261)

This obviously may be generalized still further, that is, through the Mercator
autogonal projection any conformal projection can be expressed in terms of any other.
We may put equations (259) in form for computing as follows:
60180

T

The radius e is usually expressed in units of minutes on the Equator, a=

3,437/7467708. M =0.4342944819, hence ————7 ,9157704468. With A expressed in

M
radians we have then leo,_fog M (rad.), y=7,915'704468 log cot % If N is ex-
pressed in minutes of arc we have
z=N,y=7,915' 704468 log cot =- (262)

2
953903—53——17
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Now the conformal latitudes for (262), which were computed for the Clarke spheroid
of 1866, are given for every half degree of geodetic latitude in U. S. Coast and Geodetic
Survey Special Publication No. 67. - They have been tabulated more extensively for
several spheroids by the War Department, Corps of Engmeers U. S. Lake Survey,
Military Grid Unit. (See the blbhography )

The series expansion for % in terms of ¢ can be obtalned by writing, from (25"),

¢ 1+esin ¢ ‘
Since :
€ 1+esin ¢ 2 € qm?' ¢ efsin® ¢ e sm7 ¢>
l (1—esm¢ sin ¢+ + -5 + +-

we may write (263) as

4 13 6 qiMd 8 oain’
y=1%10g tan(%—l—%)—a(az sin ¢+e Sin ¢—I—e S ¢-|—€ s17n ¢-|— .. .):

3 5

or placing the values of % and ¢ in this last equation

y="7,915/704468 log tan <§+§>_

3 8 qind 8 ain?
3,437 747<e sin ¢-4+5 Sm ¢ ¢ = ¢y g LT ) (264)
1 1 1 1 1 1
By use of the identities 7 s sin® ¢— sin ¢ 2 sin 3¢, = 5 sin® ¢—— sin ¢— sm 3¢+
1. . 5 3. 1o 1 .
30 sin 5¢, 7 sin ¢——64 sin ¢ 64 sin 3¢+64 sin 5¢ _448 sin 7¢, we may write (264)

in the form

y=7,915 70446810gtan<4 "’)-—

8
4 2. ) M
3,437.747[( +E4 +64+ )sm¢ (12 +...)sm 3¢+
(‘_ﬁ+e_8+ )sin 5¢_<_€___|_ > in7 :I (265)
80762 " \ 1438 ... )81 :1> {
The flattening or compression of the spheroid is déﬁned in terms of the semiaxes

of the meridian ellipse by the equation f =%—b——i 1 ——3 and since 2—= v1—¢€ we have

f_l_\/lfa_f+f+ie+_5__ 8t | (266)
- €T2TgTIg 128 ° T -
where the radical has been expanded by the binomial formula.
From (266) we have (1—e?)=(1—1)? or
e=2f—f. - (267)

Hence if the spher01d to be used is defined by its ﬂattenmg we may use (267 ) to
compute ¢ and successive powers.



CONFORMAL PROJECTIONS 89

We may express (265) dlrectly in terms of the flattening and eccentricity as follows:
From (266) we have '

TSNS S L (@)
=€ 4 8 64 o e
- From (268), cubing both sides, we have, retaining terms in €,

8f'= é+—é+ 4L,
or
3 4 6
Mttt o, . (269)

Again from (268), raising both sides to the fifth power, we have, retaining terms
in €2,
32 5= ‘1°+Z et ...
or

2f°
5et 80+64+ (270)
From (268), raising both sides to the seventh power and retaining terms in €4, we
have
128 ="+
or
2f7 €

L=t 271)

With the values of the coefficients from (268), (269), (270), (271) placed in (265) we
have finally
y=17,915"704468 log tan <Z+—>—3,437f747 <2f sin ¢-—3—J:2 sin 3¢+

1] N
g 5 sin 5¢— 2f6 sin 7¢+ . ) : (272)
or since e2=f(2—j), ¢=1(2—f)%, €=*(2—f)* this last equation may be written

y=7,915704468 log tan (%4(;)_
’ . . AfZ . 'f3 R ~f4 )
6,875.494 (f sin ¢—3_(2——]‘_) sin 3¢+——‘5(2—'f)2 sin 5¢——__7(2_f)3 sin 7¢+ . . )

From equations (175),(176), and (252) wehave I =r =L¢% sec pdo,A=r tan a+ A,

where x=a\=ar tan a-+a), y=ar. Eliminating  between these last two equations
gives z=y tan a+a, which is clearly the equation of a straight line and the loxodrome
on the Mercator projection.

With the value of A from (173) placed in (252) we have the equations of the geo-
desic on the Mercator projection, namely

1—¢ ¢ R
z="tac (a"’(_—ezce—%“—z H(—k"’,ek,0)-|—a>\0,y=ar=af¢oﬁsec odo, | (273)
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where §=sin"! Snllc ¢ kl=a' _CC; y 6=a Sin ay, ap being the angle at which the geodesic

crosses the Equator. 2 may be evaluated from tables of elliptic integrals or from a
series expansion. ¥ may be computed from the formulas (262), (265), (272), or ob-
tained from tables of meridional parts for the Mercator projection.

THE TRANSVERSE MERCATOR PROJECTION

. This projection, which has become of great importance in modern cartography and
geodesy, was invented by Johann Heinrich Lambert, to whom modern cartography is
also eternally indebted for his conformal conic projection. It seems proper that we
should include here an account of the life and accomplishments of one who has con-
tributed so much to modern cartography.

BIOGRAPHICAL SKETCH OF JOHANN HEINRICH LAMBERT

Lambert was born at Miilhausen in Alsace on August 26, 1728. He was the son
of a poor tailor and his education was entirely the product of his own exertions, ex-
pended in a systematic course of reading which kept him up the greater part of each
night. This sacrifice was probably a factor in his untimely death from consumption
on September 25, 1777.

At the age of 16 Lambert dlscovered in computations for the comet of 1744, the
so-called Lambert’s theorem. This theorem is actually an extension to the ellipse of a
theorem for the parabola published by the Swiss mathematician Euler in 1743. As
published by Lambert in his “‘Insigniores orbitae cometarum proprietates’, 1761, the
theorem states that the area of any focal sector of an ellipse can be expressed in terms
of the focal distances of its extremities, of the chord which joins them, and of the axes
of the curve. More specifically if ¢ is the time of describing any arc PP’ of an ellipse

and k is the chord of the arc, then nt=(¢—sin ¢)—(¢'—sin ¢'), Whe;re sinl o=

\/ (r+r"+k)/a, sm ——\/(r+r —k)/a, r and »* being the focal distances of P and P, n

t;he mean angular velomty, and a the semimajor axis of the ellipse. His attempts to
simplify the computation of cometary orbits led him to some remarkable theorems on
conics such as the following: “If in two ellipses having a common major axis we take
two arcs such that their chords are equal, and that also the sums of the radius vectors,
drawn respectively from the foci to the extremities of these arcs, are equal to each other,
then theé sectors formed in each ellipse by the arc and the two radius vectors are to each
other as the square roots of the parameters of the ellipses”.

When Lambert was 30, he became a private tutor to a Swiss family and secured
leisure to continue his studies. In his travels with his pupils through Europe he became
acquainted with the leading mathematicians. In 1764 he settled in Berlin. He was:
elected a member of the Royal Academy of Sciences of Berlin and received many
favors, including a small pensi()n from FKrederick the Great. He later became editor
of the Berhn Ephemeris.

Lambert’s first research in pure mathematics developed in an infinite series the
root z of the equation x™+pr=q. Since each equation of the form a2’ +bx*=d can
be reduced to ™ +pr=¢ in two ways, one or the other of the two resulting series was
always found to be convergent, and to give a value of z. This paper was a stimulus to
both Euler and Lagrange, both of whom succeeded in extending Lambert’s results.
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-In 1761 Lambert communicated to the Berlin Academy a memoir, in which he
proved = is irrational. His paper on trigonometry, read in 1768, introduced into, trig-
onometry the hyperbolic functions, which he designated by the notation existing today,
sinh z, cosh z, etc. Also included were the developments of DeMoivre’s theorems on
the tn’gonometry of complex variables. His researches on descriptive geometry pub-
lished in “Die frele Perspectiv,” 1759 and 1773, were a stimulus to the great geometer
Monge. '

The earliest attempt to form functional equations by expressing the given proper-
ties in the language of the differential calculus and then integrating is found in an
essay entitled “ Analytic observations,” published by Lambert in 1771. In his paper
on vis viva, published posthumously in 1783, Newton’s second law of motion was
expressed for the first time in the notation of the differential calculus.

Astronomy was enriched by Lambert’s investigations. In his‘cosmological letters”
he made some remarkable prophecies regarding the stellar system. For instance he
aptly denominated the Milky Way the Ecliptic of the Fixed Stars. But he was also
- active in the physical sciences, being best known in this field for his work in optics

where he developed photometry on theoretical lines. His work on optics was published
as “Photometria,” Augsburg, 1760.

It was in the application of mathematical analysis to the practical problems of
life that Lambert especially excelled. He was the first mathematician to make general
investigations in the field of map projections. ’

His predecessors in this work had limited themselves to the development of a single
method of projection, principally the perspective, but Lambert considered the problem
of the representation of a sphere upon a plane from a higher standpoint and he stated
certain general conditions that the representation was to satisfy, the most important
of these. being preservation of angles or conformality, and equal-area or equivalence,
both being, of course, unattainable in the same projection.

Although Lambert did not fully develop the theory of these two methods of
projection (conformal and equal area), yet he was the first to express clearly the ideas
regarding them. The former, conformality, has become of the greatest importance to
pure mathematics, but both of them are of exceeding importance to the cartographer.
It is no more than just, therefore, to date the beginning of & new epoch in the science of
map making from the appearance of Lambert’s work. What he accomplished is of

"importance because of the generality of his underlying ideas and for his successful
application of them in methods of projection.

Lambert’s treatment of the so-called transverse Mercator pr0]ect10n was published
_in his “Beitrige zum Gebrauche der Mathematik und deren Anwendung,” Berlin 1772.
He pointed out that it was applicable to a country of great extent in latitude but of
small longitudinal width. The first known appearance of the name “Transverse
Mercator” is found in Germain’s “Traité des Projections”, Paris 1865. Germain also
called it the ‘“Projection Cylindrique Orthomorphe de Lambert.”

Lambert’s development was.from elementary considerations as shown by Germain,
Gauss giving the analytic derivation 50 years later in a paper presented to the Academy
of Sclences—Copenhaoen 1822 (published by Schumacher in 1825). Gauss showed
that it is a particular case of his general theory of the conformal representation of one
surface upon another. Gauss also included the theory in a later publication, ‘“‘Unter-
suchungen iiber Gegenstéinde der héheren Geodisie,” 1843.

In 1866, eleven years after the death of Gauss, General Oscar Schreiber published
an account of the use by Gauss of this projection in the Survey of Hannover, ‘“Theorie
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der Projectionsmethode der Hannoverschen Landesvermessung,” and in 1878 published
the developments essentially in use today.,

In 1912, L. Kriiger published a comprehensive treatise of the projection entitled
“Xohforme Abbildung des Erdellipsoids in der Ebene”, in which the formulas were
developed in a form suitable for numerical calculation, and in 1919 a second work called .
“Formeln zur Konformen Abbildung des Erdellipsoids in der Ebene”’ was published.
In 1927, the system was adopted for the whole of Germany and called the ‘“Gauss-
Kriiger”” projection. '

There are some notable differences in the transverse Mercator projections obtained
by modifying the abscissa of the Cassini spherical coordinates to make it conformal and
that obtained by means of the analytic function.of a complex variable. In the projec-
tion obtained by modifying the Cassini abscissa, the ordinate is assumed the same for
both projections. This is not true for the spheroid, but the error introduced is usually
negligible. Technically, the projection thus obtained for the spheroid is not conformal,
since the coordinates will not satisfy the Cauchy-Riemann equations.

The curves orthogonal to the central meridian on the modified Cassini projection -
are assumed to be geodesics, while in the projéction obtained by means of complex

“variable theory it is known that they cannot be geodesics since the only geodesic-iso-
metric system on the spheroid is that formed by the meridians and parallels. That is,
non-meridian geodesics on the spheroid cannot be members of an isometric system.
{See equation 195.) . '

The transverse Mercator projection is used officially in Great Britain, Egypt,
Sweden, Poland, Portugal, Russia, Bulgaria, Finland, Germany, Yugoslavia, Norway,
British African Colonies, South Africa, Australia, U. S. Army Map Service, and in the
plane coordinate systems of many States of the United States. The machine method
of computing geographic positions in the U. S. Coast and Geodetic Survey is based
on it. The transverse Mercator system is now more extensively used for geodetic
computatlons than the Lambert confonnal conic or any other projection for the follow-
ing two reasons: :

(1) On: the Lambert conformal conic projection, when the abscissa is large the
convergence is also large which leads to considerable divergence between the grid lines
and the true north line for map- sheets lying a considerable distance east or west of the
central meridian.

(2) Lambert conical orthomorphic coordinates are not quite as suitable for point-
to-point working as transverse Mercator coordinates are.

DERIVATION OF FORMULAS FOR THE SPHEROID

The requirement for the transverse Mercator projection is that the scale shall be
true along the central map meridian. Hence when A=0, we must have z=0 and from
(189) if we write the analytic function z-+iy=7(A+14r) we must then have

1y=f@n=18, (274)
where S, is the arc length along the elliptic meridian of the spheroid from the Equator'

to latitude ¢. But S¢—f Rd¢ and from r—f ~=sece dqs, equation (189), we have
Rd¢=N cos¢ dr so that we may write .

S,= L N cosé dr=f(s). ‘ (275)
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If we expand ® z+4y=f(\-}-i7) about the point z=ir by Taylor’s theorem we obtain
- zFiy=f(\tin= f(zr)+)\j’(zr)+ f”(z )—}-3‘ " (r )+4'f"(?,-r)—|—5'f"(w)+
. (276)
XG vif, x7 vilf, xs viit/s .
R L G PR e N R

From (274) and (275) it is seen that J@ry=1 Se=1 f(r). Hence, differentiating this
equation with respect to z, we have d—dg f(ir):% [2f(+)] or f'(’i‘r)"——“:gd; [ f(7)] % Since‘

‘13=¢ FEI=i/() =1, where f(ir =-d— _ f(i) and f'()=_% f(+)- Continuing

f"(w)——% f), f”'(%r)——f"’(f) f"(’bf)—%f”(f) f’(%f) J7(@), i) =—i f"'(r),
etc. With these values placed in (276) we have

z+w—%f(f)+>\f’(7)—- %f”(f)—gf”’( )+4, f”(f)+5,f"(f)—

(277)
X = AR
Equating real and imaginary parts in (277) one obtains
2=\ ()= S () P = f““(r)+
' (278)

Y= 1= S PN P L

In obtaining the successive derivatives of f(r), and other derivatives, we will need
the values of N, R, <%> » (N cos ¢)’, (N sin ¢)’, the value of d¢/d+ from (189), and some
trigonometric identities. We group them all together here for convenience:

N’'=(N—R) tan ¢; R’——3—— (N—R) tan ¢; (N> 2(1\;%_R) tan¢;

Zi-f=%rcos ¢; (N cos ¢)’'=—R sin ¢; (N sin ¢)’ =sec ¢ (N—R sin’¢)=(R cos ¢)/(1— ¢?).
T (279)

NS

2 sin n¢ cos ¢=sin (n—i—»l)cp—l—sin (n—1)¢,
2 cos n¢ cos ¢p=cos (n+1)¢p+cos (n—1)¢,
2 cos n¢ sin ¢=sin N4 1)¢p—sin (n—1)¢,
2 gin n¢ sin ¢=cos (n—1)¢—cos (n-+1)¢.

From (275) we have :
' ' J'(r)=N cos ¢. . (280)

Differentiating again f”(r)=(N"'cos ¢—N sin ¢) %, and withrelations (279) this becomes-

J(7) =—%V sin 2¢. (281)

¢ Since f (\-ir) is an analytic function, the series expansion is valid—Churchill, foc. cit., p. 98.
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Cont,mumg ()= —3 (N " sin 2¢>+ 2N cos 2¢) e ? which with relations (279) becomes

' )—-—I:<3 ZX— >cos¢+<R+1> cos 3¢>:| (282)

|:<3 - 1) cos ¢+<R+1) cos 3¢:|+3N <R> cos ¢ o
dr’

—N <3 ———1>s1n¢—{—N <R> cos 3¢— 3N<R+l)sm 3¢

Now
¥ ()=—

and reducing by means of (279) we have
2 2
f"’(r)=% [2 ( 1 —I—]I\g-{—ziz}\;) sin 2¢+(1 +]1\37+4 11\372) sin 4¢:|- (283)
Differentiating (283) we have A
N’ [z (—.1+ZX+4 Al ) sin 2¢+(1+R+4 R2 sin 4¢]
1 N N d¢
F=3 +2N< ><1+8 )sm 2¢+4N< 1+R+4 a7 ) cos 26 ¢ 52
+N (%) <1+8 %) sin 4¢+4N <1 +R—+4 l_i’?> cos 4¢
- which becomes by means of (279)
2 3
2(1 —{—1321\272 %)cosda ]

fv(,)=lﬂ{ +< 3+2N J\T+44]I\;>cos3¢

-

(284)

2
<1+2N %24—28 = cos 5¢

P

From (284) differentiating again we have
N2 3 N
—4 %%) (N cos ¢)’

. , ,

—4(%) (1 N+6ZI\;)N cos¢

. N ’
+<—3+2§ 2—i—44:R3)(Ncos 3¢)

+2 <%>,<1 —|-66 R2>N cos 3¢ ’

+<1+2 7 +28 Ra)(N cos 5¢)

+2 (R) (1 +42 R2>N cos 5¢

2(1- Z+13 5

c»l"‘
A
v

«
S

Fi=1
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~ and after reducing by means of relations (279) we have finally

X
<5 6— 91 2+364JZ¥3 %)sm 2¢
2 3 A
e )____ 4 (—'1-{—%—28 %@Jrss %) sin 46 . (285)
2 73 4
+(1+2 +33]]\; %—73+280 %’;) sin 64 |
Continuing as above we find v
( 5+9——279 2+1 911% 2,044 4+680%5>c0s¢
. 4
v +<9—9§+267 %——2,831 N+, 076];4 2 280]}75) cos 3¢
S )=—%5 ' > (286)
64 2 v
+<—5—3%+97 N 29 3%3 1,708 213,502 Z};) cos 5¢
' N N N «
d \+(1+3§ R2+1 277 S5~ 4,116 R4+3 640 ) cosT4
an
4 -
2(—7+9T3+819 %—12;4137%34—36,984%—-
33,648 1. +10 240 %6) sin 2¢
N
| +2(7 3——279 R2+7 243 ~— 38,568 R4+
N 58,512 %5 20, 864 Zzﬁe) sin4¢ | ,
Vi oy LY - (287
)= N v e
+6< — R2+1 381 32,872 T~
3, 344N +7, 168%) sin 6¢
N N N® Nt
+(1+3’R+279 7,235 5+ 44,136
ey
90,384 o %—58 240 Rs) sin8¢ ,

~

Placing the values of f/(z), f'' (), /"' (7), " (z), £ (7), f.v'(’r); f (), f71(7) from

(280), (281), (282), (283), (284), (285), (286), (287) with o=

B in equations (278) we have

‘the mapping equations to eighth-order terms for the transverse Mercator projection,

namely

A\ cos ¢+— [(Ba—

th*

1) cos ¢+ (o+1) cos 3¢]+ 5=

[21—206+1362—4¢°) cos ¢+

1 920

( 3+20—302+4406% cos 36+(1 +20'-—702+2803) cos 5¢]

953903—53——8
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(—5-+90—27902+1,9110°—2,0440*+6800%) cos ¢

v | +0—95+42670"—2,8315%+6,0765'—2,2805%) cos 3¢
+353 560 ' o
- , 1 (—5—30497¢"—2934°—1,7080*+3,5920% cos 5é

+(1+30—8502+1,2770%—4,1160*+3,6400° cos 7¢ 288)
28

=]§Vé+% sin 2¢+192 [2(—1+4+0+406% sin 2¢+(1+ 0+ 407 sin 4¢]

2

(5—60—910°+3640%—1360¢%sin 2 ¢
)\6 . 2 3 4 M
+§§,~m +4(—1+02—28¢%+88¢*) sin 4 ¢ »
+(14+20+33062—196034+28006%) sin 6(1?'
(2(—7+90+81902—12,4130°+36,984¢*—33,64805)
. 410,2406% sin 2 ¢ ’
+2(7—36—27902+7,2435°—38,5680*+58,5124°
A8 4 —20,8640% sin 4 ¢ t
FETEOGEG v -
5,160,960 | 4 61 _;_010241,38159—2,87204—3,344¢5
+ +7,1685% sin 6 ¢

+(14+30+27902—7,2350°+44,1365*—90,3846°
+58,2400°% sin 8 ¢ :

J .

N

2 .
=& and 52=6 cos? ¢,t=tang¢, we may

If we place 0:%: 145 cos? ¢ where s— . ig“

/rite the mapping equations (288) as
=X cos g cos ¢ COS ¢ —p4 2)+>‘ lcg(s) (5 — 1841441 49— 5812?4139 —

644244475 —-24t2 %)+
61— 4792+ 1794 — 151 331n2—3,2620%2 1,771 n?4+7159*
7 7
)‘—5300—20_‘1’ —8,65529%+6,080¢*n*+7697°—10,96487°+ 9,480ty + 412
v | —6,760t2054+6,912¢'5 88920 1,632¢2910+ 1,920¢49'

-2

(289)
%— N —|— sm ¢ cos ¢+ s1n¢cos ¢(5—t2+9n2+4n4)+m sin ¢ cos® ¢(61— 581
+t4+270n —330%2 2+445n — 680¢*n*+3247°— 6001275+ 887> —192¢*y%)+
1,385—3,111¢2+4543t¢—15-+10,89942—32,80229?
. 49,2108+ 34,4197 —129,08729+49,644¢%y*
40’320sin ¢ cos” ¢.| +56,3857°—252,0841%°4121,800¢*9°450,8567°
—263,088t2n3-+151,872¢495+ 24,0487 —140,928¢2510
+94,080t4710+4,67252—30,5282912+-23,040t4n 12
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If in the coefficients of the 5th- and 6th-order terms of equations (289) we delete
those terms involving powers of  above the second and in the 7th- and 8th-order
terms delete from the coefficients all terms involving 7, we may write them in the
form

' 3 3 5 5
- %:% o8 ot (L=t 9+ 2500 & (5= 180+ 1492 58%n)
+5 040 7 cos’p(61—479t24-179¢*—1f),
(290)
]l\f SN-}- 55sing cos¢—|— 4s1n<i; cos3¢(5—t2+9n2+4n4)
[}
+W)E)‘pﬁ sin ¢ cosg(6 1 — 581%--£-- 27072 — 330647
AS ‘. o
+W sin ¢ COS7¢(1,385—3,1 1 1t2+ 543t4—t6),
2
where p=cosec 17, t=tan ¢, n*=23 cos"’¢— 2(:0s2<;b Equations (290) are in a more

practical form for computation and are essentlally as given in Jordan-Eggert, Handbuch
der Vermessungskunde, Vol. I, part 2, paragraph 32 (8th enlarged edition 1941), or
in the Army Map Service Technical Manual No. 19, pages 4 and 5. In actual practice
the 7th- and 8th-order terms are seldom if ever needed.

For the convergence we have from equation (217)

tan fy—a gi . (291)

From (289) we have

g—i=N cos¢(1 + A LS cos ¢+B)\ COS ¢—|—0 A" cos? ¢+ .. .):

720
. (292) _
oy . A2 cos2¢o " ANcoste A8 coste )
a——stm(ﬁ cos¢<1+D 5 +E 130 +F 5,040 +...)
where A, B,C, D, E,F are the respective coefficients in ¢ and 7.
From (291) and (292) we have
4 4 '
tan y=3 /gx—)\smxﬁl:l—{-(l) 34) N cos ¢+(E—10AD 5B+3047 2 1";’3 L
: o M eosbe '
(F—7O—21AE—-35BD+210AB+210A2D——630A)' 5.040 | (293)

Placing the values of A, B,C,D,E F from (289) in (293) and simplifying we have,
deletmg terms in 7 in the coefﬁment of N\,

1+>\ cos? ¢(1+t2+3n2+2n4)+315 (141238 cos® ¢

tan y=2XAsin ¢ . (294)
M coste (2+4t2+2t4+ 15n2-{—35n4—40t"’n4)

15 \43395— 60295 1158—24¢298
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-x3 25 27

The series expansion for arc tan z is arc tan z=x— 3 +3———7—+ ... and placing

y=arc tan z, we have
1 3 1 . 5 l 7> ’ .-
-y=tan'y—-§ tan 7-{—5 tan Y= tan” v+ .. .. » (295)
Writing (294) in the form

. 4 6 6
tan y=\ sind;(l—l— A2 cos? ¢+b)\ cos? ¢>+ 1_7)\3%3 ¢>, (296)

"where @, b, ¢ are the corresponding coefﬁments in t and », we have then, retaining
terms in N '

4
— 3 tan® y=—3» sm3¢|:1+v cos’ ¢<a+ S cos’ ¢ ]
1 5 _15-5 ( 5)\zcos2¢')
5tan 7—5>\ sin® ¢ 1+——-——————3 a)
I DU S e
7 tan” y=—3 N sin’ ¢.

Hence by (295) we have

42  Eag2 4
y=N\sin ¢ [1 —}—9—3i 2% cos? ¢>+é—5(i’—t5+—3i \t _cos‘* o+
5 2__ 22 4 6 . : .
17¢—21bt 353alt5+105at 45¢ A6 cos® 4’:|' 297)

Placing the values of @, b, ¢ from (294) in (297) and deletmg, as before, terms in 7 in
the coefficient of A7, we have ﬁnally

A2
142 g2y PR

>\4 cost ¢ 2—t2+15172+35n —15n2t2+33‘r)6)
15p% \—509%+1193—60¢>n°—24¢°9®

(17 —2682+ 2t

y=2Asin ¢ (298)

In equation (298) the term in A" is seldom if ever needed and the termsin 5 in
the coefficient of A\® are usually negligible. For instance in the Universal Transverse
Mercator System as given in the Army Map Service Technical Manual No. 19,
equation (298) Would correspondi_ngly be

y=nsin g 1425052 (1 4 3yt 2q94- M2 1"5°S4"’<2—t2)]

From (190) we have the scale

Ay 1
- \/< +<a)\>/Ncos¢ Neose b)\ ‘/1+tan ¥,

and expanding the radical by the binomial formula

1 Yo b ooe . '
Ncos¢ b)\ <1+ tan v Stan ~y+ tan ) ‘ (299)
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From (292) we have

1 ox

, NCOS_¢.D)\_1+ )\2 cos? ¢+_)\4COS ¢+i)\6 cos’ ¢+

720

and from (296) retaining terms in A

l 2___1_2'2(2_@22 _‘1’_24 4 ?_64 4)1
2tan -—2)\ sin® ¢ 1+3)\ cos ¢+9)\ cos ¢,_+15)\ cos* ¢ )»

_l 4___1_4'4('4_0'2 2.\)
Stan = 8)\sm¢ 1+3)\cos¢;

tan® 'y—L \8sin® ¢.

16 16

With these values placed in (299) we obtain

2 4
_ AL A+t @ o B+2(3A2—|—44a)t =3\ oost o4 -
2 2
0+(15B+120aA+40a +7245; b —15(3 A+Ba)i 458 o o (300)

Placing the values of A, B, C from (289) and the values of a, b from (294) in
(300), 1gnoring terms in 7 in the coefficient of A% we obtain finally

_1+— cos? ¢ (14 n?) 0 @ °°S P (5— 42+ 1472+ 137 — 288202+ 40— 48820 — 24129%)+

A8 cos? ¢
720

(61—148824+16%. ‘ (301)

In equation (301) the term in \® is usually deleted and the terms in % omxtted in
the coefficient of A%,

‘We now develop the formulas for )\ o, v, kin terms of the rectangular coordi-
nates z and y. .

Let us write equation (189) in the form

‘ Mir=F(z+y). (302)
When =0, A=0, then F(iy)=1r and from (189) and (275) we have

dr 1 dd) 1 : )
T_f Nsec¢d¢’ds “Necos ¢’ dss R : (303)

Taylor’s expansion for the functlon F(2)= F(x—i—zy) about the point zo—?,y is
M ir=Flig)+oF () +5; F”(zy)+3, P+ 5 P y) +5 P +5 FGiy) +

ﬂFv“(z'y_) +§—!FV‘“(iy)+ e - : | | (304)
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From the relation F(iy)=ir, we have F’(iy)=1', F"' (iy)=—ir"!, F''' (ty)=—7""" '
Fr@y)=ir", F'@y)=1", F"'(iy)=—ir", F™ ()= —", F"(iy) =i7"" and with these
values placed in (304) we obtain

2 3 4 5 6
R+7:T=7:T1+$T1,'—';‘T'l:7'1”"‘£" 7'1,N+% iT]jv+% Tlv—%i‘fl‘“—‘.
= vll+ ,b,rlvlll_*_ } . (305)
Equating real and imaginary parts in (305) we have
3 b
)sz‘rl,—%'rl’”‘i"% T __Tlvll+
\ \ (306)
T xr
T=71——2——!71”+ﬂ T 7'1 +8'T e,

where the subscript one refers to the “footpoint” latltude of a given point of the
projection. (See fig. 27.)

+4
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<
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x 5 Y

?—‘—"“““— ________ AR,

agx

~a.

X

Map Eguaior R

;é /s ‘the "/oo/pc‘a/'n/" latitude.

F1GURE 27.—Convergence of map meridians and the Iootpomt latltude, transverse Mercator
projection. A

' ,_dr_ 1 v (Neos ¢) dg,
From (303) we have 7 =ds, Ncosg whence 7 —(Ncos ¢> s N oo ¢ds
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From (303), d and from (279), (N cos¢)’=—R sin ¢, so that |

n_ SN _ tang 1
" N2cos®¢p N3icos¢ NZicos¢ . - (307)
ST s N cos® $—2 sin ¢(V cos ¢) d¢ do¢_ 1 ' b
Continuing 7'/ = Ne cos® ¢ s and Wlth s~ & (N cos ¢)’=—R sin ¢

%cds2¢+2sin2¢ %7+Ztm; ¢ —+2t2
N3cos® ¢ = N3cos ¢ N*"’cosdz

this becomes 7//'=

» Or since %7:1—}—1,2 we
may write finally .
rre__ 2 2 ’

P Woesg (P20 (308)

Continuing in this way we find that

lv 2 2 4
=N cos¢(5+’7 +612—47", (309)
1 . S
™= NFcos ¢ (54679742812~ 3+ 822+ 241 — 45 + 417y 424129, (310)
s t (6144672180t —37*+48t"p2+ 1208 (311)
"~ NP cos ¢\ 1007°— 3682 —96¢20°+88*— 1926243/

61+6622+1,320t4-+-720£04 10772+ 437*+ 440297

Tvuzm +977°—234#p*+ 3368492+ 1887°— 772205 — 192¢49*+ 8871 | , (312)
—2,3928%84+408¢*°+1,536t493—1,632t%91°41,920¢4 1
1,385-+7,266¢2-1,731724-10,920+4,416¢292— 573 74

, +5,0405— 1,830t21*+2,688t492— 2,927 55+ 5,052¢29°

TV*“=Z—V-8%6-S-E —1,536t4%—8,80815 27,4565+ 744t 5—11,4729° | - (313)
+53,95262410—7 8724y —4 672n‘2+30 5281212
—24,960¢49'°—23,040¢49'2

Placing the values of 7/, 7/, 7"/, "%, 7%, 7 ', U 7V from (303), (307); (308), (309),
(310), (311), (312), (313) in equatlons (306) we have

_5_13___ 2 2

v )(1+2t +n2)

+‘ 1 ) 5-+6741428t3— 391+ 8tin? )
120\ V; + 2484 =498+ 41291+ 241250

AN=)p sec ¢;< ‘ 61-+662121+1,3206+72084+-10742 Y - (314)
44391+ 4408392+ 9798 — 2341291

_5_,61'46<%>7 3368t 18858 —T7 28— 1926yt
—}-8817 °0_9 ,392t3n3+ 408193 ‘
+1,536t5—1 632tm1 +1,920tin1° j
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(3 () 455 (&) GHartot—ta
(61-+4693+18012—39* A
— (N) 1 48122+ 120441001 |
—36tfn1—96t1n1+88n1—-192t1nu
(1,385-7,26612+1,731724+10,920¢ )
Ar—1— 1= py 560 i +4,4166201—57303-+-5,0406 183081 | [ 1)
+2,688tni—2,927x1+5, 052%
fﬁ(ﬁ)s —1,536tn1—8,80853+27, 4560
744893 —11,472910453,9528251°
—7,872t4y5— 4,6.7211}2‘{—30,528&17}2

L [ —24,960851°0— 23,0409 J )

where the subscripf one, on ¢ and the functions of ¢ involved, refers to the “footpoint”
latitude, ¢;, of the point whose rectangular coordinates are given. (See fig. 27.)
In formula (314) the terms containing 73 and higher powers of 7, are usually

omitted in the coefficient of <ﬁ> and the term in < N) is seldom needed. For
1 1

example in the Armmy Map Service Technical Manual No. 19, the correspondmg
equation (314) for the universal transverse Mercator grid would be .

. z _1/2V 2 2 2, 2
AN=p sec ¢, l:jv—l'—g (m) (A4-26+43 )+120 N> (5+28t +24t4+6"7 +8t1’71)]

Formula (315) does not give us directly the dlfference of the geodetic latitudes but
the difference of the true isometric latitudes. In order to get the difference in geo-
detic latitudes, A¢, we expand A¢ into a Taylor’s series in A7 as follows:

d¢1 AT d¢1 AT d¢1 AT d¢1

Ao=d— o=t gt or Gt sr st ar dn (316)
From (303) we have the relation B, d¢,=N, cos¢,dr, or
g—fi 271 008 §y=(1+n3) 08 =P cos ¢. (317) .

. (NY N, . dé,
COS ¢1('El'> —f;SID(ﬁl](—i‘;;'_ From
NyY N, - . . )
(279), i =2 ?—1——1 tan ¢ =—2(14+ni—1)ti=—293; and with the value

$ :
ar. from (317) we find

Z:&l——:&tl cos? ¢, (2—3%)='-—(1+1ﬁ)(1+37ﬁ)t1 cos? ¢=—Qcos?¢.. (318)
1 . 1 .
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Continuing we find

2
ZT":‘ Zl\gcos3¢1|:4t2+2 1(1——9t§)+3(—21\%> (5t§—1)]

=149 [451+2(1 4 2D — 9D+ 3(1+ 7)) (56— 1)] ¢os® ¢
=8 cos® ¢y, _ (319)

4
ZT¢1=-—MtlcOS4¢I[ 8t2+4 (216~ 4)+4(M (17—458)
l»

+3<%> (35t=;—19)]

= —ty(1 19 [— 8624 4(1 + nD) (21£2— 4)+ 4(1 + n )17 — 458)
+3(1 + 72356 —19)] cost ¢y ' (320)
=-—T cos* ¢,. '

We now write Ar from (315) in the form

| 1/aN F/a\ @
Ar=t sec ¢‘[—§('JVI) +ﬂ<ﬁl> _753<N1 40, 320 M)] (321)

where F, G, H are the corresponding coefficients in 4, and t.
By placing the values of the derivatives from (317), (318), (319), (320) and the

i 8
value of Ar from (321) in (316) we obtain, retaining terms in <Z_$—>
) 1

Ap=Pt, [—% <]—f,—1>2+"2%<7%>4 - % (7\7:%>S+10—I§26 <X7—l>j
Qt{ <N1> 24<Nl>+576 N1> +720 N1>_l
+2 ta[ 8<NI> +32<Nl>:| [16<Nl>]

A __};n(_) +PFt1—3Qt2< ) PG151—15QF¢§+15St?<_£>6
¢ N, N, 720 N,

PHt— Q(35F+28Q)fi+210SF—105T t‘*(i)s.
40,320 M

4+ (322)

Placing the values of F, G, H P, Q, S, T in (322), deleting terms in 74, in the coeffi-
cwnt of ( N1> , we have finally

2p=d—tr=—" 140 () +H5a 400 (5) - (5+3t2+n1-4n1;9n 1)

_Ph (_) (61906 +4673 1 4561 — 252603 ~ 301+ 10073 — 66t1n§>
720 N:) \—90tn?+88n3-+225tn1-+84tEns —192¢n]

ph | N 2 o .
'+ 203201 TV ( N1> (1,385+3,633t14-4,095t1 +1,57565). (323)
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Since 1 +n?=%’ equation (323) may be written in the form

: i t
$=d1—5 1’;1}\,1 7Y A EACRE Fu Hl LI F )

"oty 61908244672+ 45t — 252t1n1—3n1+100n1—66tm;‘)
720N \—00tin2 8878+ 225¢ 51+ 841218 — 1020208
-lr—L %(1,385-+3,633t2-+4,095¢¢ -+ 1,57519). S (324)

10,320R,N7*

Here p==cosec 1’/, and the subscript one refers to the ‘“footpoint” latitude.
" To express the convergence of the meridian, v, in terms of z we have from (217)

tan ’y=% for r=constant. Diﬁerentiatihg this equation yields dT:%; dx +5;;/ dy=0,

dy  orfor b‘r/a)\ . 0r OA

whence =— from the Cauchy-Riemann equations.

dz oz by oz oz SC° oy ox

The derivatives —-—g—; and g—; are obtained by differentiating (306) and therefore -

3 5 7
n T owy T z

gz/a_r_“ 6 T T120 5,040
a.’l: ay— I4 rry v vii
E’ +2—47 720’ +

vlll+

tan y=— (325)

Performing the division in (325) we have

tan y= A:c—}- (3AB O)+ (E 5AD+30AB2—1OBO)

120

5040(7AF G+350D+21BE—210 ABD— 210320+630AB3), (326)

’
T T
where A=——,;B =
T T

Computing the values of A, B, C, D, E, F, G from (303), (307), (308), (309), ('310),
(311), (312), (313) and placing them in (326), neglecting terms in 7, in the coefficient
of 27, we have finally

tan 'y— x——— (N) (1—

+£ ) 242924954+ 6122207} 17, _x_.’. (327)-
15 Nl_ +3t1771_27t1771+11’71 2489} 315 \ N,

Writing {327) in the form

o=t () [ 15 (%) +15 (z’\fz') 515 (%) | (328)

Where a,b are the corresponding coeﬂiments in ¢, and 5, we have, retammg terms in

(%) |
o= ta (@) [ (2) 2 (2) 2 (2]
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L tans =L (2 [1- 5“(7\77)]

1 1.,
.7138117 7t(N1)

" Substituting these values in the series for v from (295)

T=bh %‘% @) () +15 O-+sat+3t) (&)

2 4 _—
315 (17-+21b8+ 3526+ 1050+ 451) (N) (329)

Placing the values of a, b from (327) in (329), ignoring terms in 1, in the coefficient
T 7
of (N;) , we have finally

v, = Ltz (258201438t 9nt '
Y > 18— p2—2n? ——<—> (
» lN 3 w;) rta—ni=2n)+ s +20n1—7t,1;,—27tfn +1198— 248243

315 N>(17—l—77t2—|—105t4+45t°) , (330)

To express bhe scale, k in terms of the abscissa, , we write the remprocal of kin
the form

E“N cos¢ - 41 +tan? y (33_1)
From (314) we have

%;%m[ _U<Nl)+24v< ) 720 (M)] | (332)

where U, V, W are the corresponding coefficients in tl and 7.
We now expand IV cos ¢ (the radius. of a parallel on the sphermd in latltude ¢) in
a Taylor’s series in (¢—¢,) as follows:

S@O=N cos p=1lorH(o— ol =1(8)+@— o0 6+ 25 g7(g)
@ gy (333)

By differentiating f(¢)=DN -cos ¢ and using relations (279) we have

f'(¢)=—R sinp=—Rt cosp, ° . (334)
2 .

s (¢)=—J% cos ¢(1+1+3¢7), (335)

S = L oos b(— 1+ Tnth 8n*—3nt+ 12009, (336)

With the values of f/, 1, f/'* from (334), (335), (336) and the value of ¢—¢; from
6
(323) placed in (333) we find, retaining terms in (;%) ) that
. - 1
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2

t/z )
145 (& 24 N>(8+3t+4n1 4n?)

+ i [z 1364120134+ 136974581 — 121297 — 48793
T730\V; +40n1-—3‘6t1m+88n1 961293 —192t393

N cos ¢=0N,; cos ¢; - (337)

From (337) we may write

2 2 2 .
N cos =N cos ¢, l:l-l—2 ]Z;l ‘;{i N1> +7B;to Nl) ] (338)

where A, B are the corresponding coefficients in ¢, and 7. We have also, by the bino- |
mial theorem that

(1+4tan? 'y)l’z—l—l— tan? *y——% tan* fy—i—— tan® v

and with the value of tan v from (328) this becomes

— 2 2
(14-tan? y)2=1+4+2 (N) 24 N) (8 +3t2)+720 N> (40a®>+120at? +48b—l—45t)
(339)
Placing the values of d—, N cos ¢, (1+tan?y)Y? from (332), (338), (339) in (331) and

retaining terms in (W) > we obtain
1

1 2t1 U/fz\, V—88(A+8a+120)438 /2!
R (%) + s ()
15(A+3U)t4—(B+15AU 430V +120aU +40a24-48b)2+ W (_x_ )6. (340)
720 NJ

With values of U,V, W from (314); A, B from (337); a, b from (327) placed in (340),
[
neglecting terms in 7, in the coefficient of (—;—) » we have finally
1

1_ _1.—!-17?(_36_)2. 5-46n7—3n1— —|—24t1n1+24tfn‘i(_x_> )
k—l . 2 N, + 24 N, 720 N, (341)

Taking the reciprocal of both sides of (341), we find by division that

o L e N 1607901408 — 2481 — 24tfn1<_> ( > '
= () + 21 %) +7z6 (%) 342

When the rectangular coordinates of a point are known, the “footpoint’ latitude,
¢y, is easily found from a table of meridional distances since it is the latitude corre-
sponding to Sy, =8, £y, where S, is the meridional distance to the origin, the plus sign
applying to the northern hemisphere.

In the formulas given for x, ¥, v, k the series converge rapidly and for relatively -
narrow belts many of the terms given will not be required. Usually the fifth- and
higher-order terms may be discarded, but in high latitudes the effect of omitting any
of the parts of the fourth-order terms should be examined before extensive computations
‘are made. In many cases the omission of the spheroidal parts (those containing 5 or 7;)
of the fourth-order term in ¥ has more effect than the entire fifth-order term in z.
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In computing, it is customary in the United States and in the British Kingdom to
tabulate the coefficients in the formulas for sufficiently small intervals of latitude and
to interpolate the corrections for higher-order terms from graphs (for instance the
universal transverse Mercator coordinate system of the U. S. Army Map Service).
However, the formulas can be expressed in terms of the latitude of the origin, so that
the longer, less rapidly converging power series expansions have constant coefficients.”

DERIVATION OF FORMULAS FOR THE SPHERE

If we place e=0 in the formulas just developed for the transverse Mercator pro-
, ]ectlon of the spheroid, the resulting formulas are valid for the sphere. However, the
mapping coordinates for the sphere may be derived in closed form. '
With ¢=0, we have from equatlons (255) and (259), 7=In cot g, or ¢"=cot g;
whence p=2 cot™ (¢). Hence a dlstance along the meridian from the pole 1s p=
2a cot™! (e7), where a is the radius of the sphere.
_ Since the scale is to be true along the meridian, the analytic function which estab-
lishes the transverse Mercator projection of the sphere is given by

y+iz=2a cot™! et - ' (343)

That is, when \=0, =0 and y=2a cot™" (¢"), where the coordinates are referred
to the pole.

With a=1 for simplicity in (343) we may write ,
cot (y+-iz)=etr=e7(cos M- sin A), (344)

r— ot P sin p ___cos¢
where ¢ cot2 T—cosp I—sm ¢

Now we have

sin (y+12)  1-4cos (y+192) -1-4cosycosiz—sinysiniz -
1—cos (y+1z)  sin(y+iz)  sinycosiztcosysiniz

cot $(y+iz)=

and since sin 1z=1 sinh z, cos 1z=cosh z, this last identity becomes

1+4-cos ¥ cosh x—1 sin y sinh 2
sin ¥ cosh 41 cos ¥ sinh z

cot Hy+ix)=
‘which by rationalizing the denominator can be reduced to

i sinh z) (cosh z+cos ) _sin y—4 sinh z (345)

(sm y—
L =
cot }(y +12)= cosh? z—cos? y cosh z—cos y

From (344) and (345) we have then

sin y—isinhz_ cos ¢ .
cosh z—cosy 1—sin ¢(COS Ati sin A). (346)

~

The coordinates z, ¥ in (346) are referred to the pole. To refer them to the
Equator we have but to replace trigonometric functions of i by cofunctions and change
the sign of . Thus (346) becomes

cos y+isinhz  cos ¢
cosh z—siny 1—sin ¢(COS A4 sin ). (347)

7 W1 K. Hristow, Die Gauss-Kriigerschen Koordinaten auf dem Ellipsoid, B. G. Teubnef, Lelpzig, 1943,
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Equating real and imaginary parts in (347) we obtain the equations

oSy  cos¢ cosh sinhz  cos¢sin)
cosh z—siny  1—sing coshz—siny 1—sing¢

(348)
Solving equations (348) for tanh z, tan ¥ we find tanh z=cos ¢ sin \, tan y=
tan ¢ sec A, and reintroducing ¢ in these last equations,

z=a tanh~!(cos ¢ sin A), y=a tan~!(tan ¢ secX), (349)

which are mappmg equamons for the transverse Mercator projection of the sphere.
Since tanh~! U~——l + » we may write z alternatively in equations (349)

1=U
as z— _1 <1+cos¢sm)\

1—cos¢smA
From equations (349) we may write _ ‘ \
x . y
tanh ~==c08 ¢ sin A, tan E=tan ¢ sec A
. z y
or sec¢=sin A\ coth 7 tan ¢=cos A tan P _ (350)
and sinA=sec ¢ tanh 2; cos A=tan ¢ cot %- A (351)

From equations (350) we eliminate ¢ by means of the identity sec?¢—tan®¢=1 which
gives .

sin® A coth? (—gi--—cos2 A tan? %—'—— 1, : (352)
which is the equation of the meridians,.

From equations (351) we eliminate A by means of the identity sin? A+cos?A=1
and obtain

sec? ¢ tanh? ;;——l—tan2 ¢ cot? %——— 1, ' : (3_53)

which is the equation of the parallels.
The scale factor for the sphere is, from (190) placing N=a,

k= \/< +(g§)/acos¢ | | (354)

From equations (349) we have .

' 0r COS ¢ COS A ay tan ¢ tan X\ sec A , sin A sin ¢ cos ¢
4T "cost ¢ sin? N’ ON =a 1-+tan? ¢ sec? A =a 1—cos? ¢ sin® N
Thus ) :
oy cos’ Af-sin? Asin® ¢ a®cos? ¢
( ) (b > =a’cos’ ¢ (1—cos? ¢ sin® )\)2 T(1—cos® psinZ N)’

and from (354) we have



~ CONFORMAL PROJECTIONS 109

a cos ¢ 1 355
w/l—cos ¢ sin? A ‘acos ¢ w/l—-cos dsinZh (355)

If we replace ¢ by the conformal latitude x to produce a conformal projection of
the spheroid through the sphere then the total scale factor will be, from (190),

@ cos x __cos xyI—é’sin? ¢

"N cos ¢/ 1—cos? x sin? )\*cos ¢+/1—cos? x sin? N

(356)

GEODETIC CORRECTIONS FOR THE TRANSVERSE MERCATOR
PROJECTION

Formulas (341) and (342) give respectively the value of 1/k and k for the transverse
~Mercator projection, and both are functions of z alone. Hence formulas (223) and
(250) become :

dﬁ 1dk .
dS E—&;Sln ﬂ,
,_dk |
k _dx cos B,
k"= Z’Zcos B— ka, ’

NN (357)
(k) Iz (k ' (k) cos £,
&) =2 () 7 oo =5 () - 65

%(%) cos? B— Tz (lc) o sin B.

With these values we may compute rigorously the various corrections as given by
equations (229) to (251). For geodetic computations, particularly the computation of
plane coordinates over limited areas, approximation.formulas have been developed
and can be found in several sources, for instance: The South African Survey Journal,
Volume V, Part 2, No. 35, January 1938, page 59; Empire Survey Review; Volume IX,
No. 65, July, 1947, page 119; JOrdan-Eggert, Handbuch der Vermessungskunde, Dritter
Band, Zweiter Halbband, 1941, page 180; Driencourt et Laborde, Traité de Projections
Cartes Géographiques, page 303; Clark, D., Plane and Geodetic Surveying, Volume II,
Fourth edition, Chapter V.

The hsted formulas of geodetic corrections for the transverse Mercator prOJectlon
were taken from Jordan-Eggert and Clark

THE OBLIGUE MERCATOR PROJECTION OF THE SPHERE

In figure 28, the point O(g,\,) is the pole of the projection and .0’ (0,)\0—%> is the

origin of x, y coordinates as shown. The great circle OO0’ is orthogonal to the meridian
SOP at 0. The great circle U(’ is the Equator considering O to be the pole. That is,
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FIGURE 28.—(Geometric transformations for deriving skew projections of the sphere.

“if we move P to 0, the equator SO’ turns about the line O’ T through the angle %— oo

~ and assumes the position of the great circle U0'.
Now the Mercator coordinates for the sphere in terms of colatitude and longltude

are {from equations (259), x=al\, y=a ln cot g From figure 28 with UO’ as Equator

and O as pole, it is seen that the corresponding colatitude is D and longitude is «, so
that the corresponding Mercator coordinates at O’ with respect to the pole O are then

z=qa, y=a ln cot D, But we wish the great circle 00’ -to be true to scale instead

2
of the great circle UO’. Hence we interchange the values of z and ¥, namely
_ D _a '1 —}—cos L
z=a In cot 3=5 In T—eosD— tanh (cos D), (358)
Yy=aa.
From the spherical triangIe POQ we have
- €08 D=sin ¢, sin ¢-}cos ¢, cos ¢ cos A\,

sin D) cos a=cos ¢ sin AN, ) ' . (359)

' : sin D sin a=cos ¢, sin ¢—sin ¢, cos ¢ cos AN,
where AA=\,—AX.
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Dividing the third by the second of equations (359) we obtain

__€OS ¢ sin ¢—sin ¢y cos ¢ COoS AN
- cos ¢ sin AN

tan « (360)

From the first of equations (359) and equation (360). we may write equations
(358) as :
a, 1--sin ¢, sin ¢+cos ¢y COs ¢ sin AN

T=3 M1 sin o Sin ¢—COS ¢y COS ¢ sin AN

=ga tanh™! (sin ¢, sin ¢-+cos ¢, cos ¢ sin AN),

_,Sin ¢, cos ¢ sin AN—cos ¢, Sin ¢ (361)
cos ¢ cos AX ’ '

y=a tan

where we have replaced AN by ,Ak—%, since, as seen from figure 28, the formulas (359)
refer to the meridian SOP in longitude Ay, while the mapping coordinates are referred

to the point 0’ on the meridian P(0’ in longitude )\0——%' The formulas (361) will yfeld

the proper values for ¢,=0, %r That is, with ¢,=0, equations (361) give equations
(349) for the transverse Mercator projection. With ¢0=g, and interchanging x and ¥,

we have x=aA\ and

_a 1-4sin ¢)_g (1+cosp o P
y=3 In (_——1—sin $)=32 In T—cos p =¢ ln cot 57

which are the coordinates of the Mercator pfojection of the sphere, equations (259).

From equations (361) we hayve

_ tanh g=sin'¢0 sin ¢-+cos ¢g cos ¢ sin AN
(362)

tan %=sec ¢ sec AN (sin ¢ €c0s ¢ sin AN —c0s ¢, sin ¢).

Solving equations (362) for sec¢ and tang e have sec ¢=coth % sec ¢

‘ (sin AX—sin ¢ cos A\ tan Z—): and tan P=—sec ¢, (sin ¢psin AXN—cos AN tan %); whence

- by means of the identity sec’¢—tan?¢=1, we obtain the equation for the meridians,
. . % 2T [ . N, o
sin A X—sin ¢y cos A\ tan o coth P sin ¢ sin AX—cos AN tan . =cos?¢y. (363)

Solving equations (362) for sin AN, cos AN we have sin AA=sec¢, sec¢

(tanhg— sing, sinqa), and cos AA=sec ¢ cot%[ban b <tanh —:——'— sin ¢ sin ¢)-—cos o Sin ¢],

and by means of the identity sin?AN+cos?’AN=1, we obtain the equation of the
parallels, .
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2 2
sec? ¢y (ta,nh g-—-sin ¢, sin ¢>) +cot? % I:tan o (tanh 2—_- sin ¢, sin ¢)— COS ¢, sin qS:I =
cos? ¢. (364)

Note that with ¢,=0, equatlons (363) and (364) become equatlons (352) and (353)
respectively as they should.
From the mapping equations (361) we have

bx‘ COS ¢, COS ¢ cos AN |
S (sin ¢y sin ¢+ cos ¢y cos ¢ sin AN)

59 and

»ﬁ—a cos o SiIL ¢y COS ¢ —COS ¢, SIN ¢ sin AN
OAN cos? ¢ cos? AN-(Sin ¢, cos ¢ sin AN—coS ¢, sin ¢)?
‘ . sin ¢ COS ¢—COS ¢, SIn ¢ sin AN
=acos ¢ 1 —(sin ¢ sin ¢+ cos ¢, cos ¢ sin A)\)2’
whence
( ( ) _ cos ¢ cos? AN+ (sIn ¢, cos ¢—cos ¢0 sin ¢ sin AN)?
SAN 5an) =%

[1—(sin ¢, sin ¢+4-cos ¢ cos ¢ sin AN)]?
a? cos® ¢ '
=1 —(sin ¢ Sin ¢+ cos ¢y cos ¢ sin AN)?

(365)

From (365) and (190) we have the scale factor for the projection of the sphere of

radius a, _ _
\/<6A>\ <DA)\ 1 a cos ¢

@ cos ¢ “acos ¢ /1 —(sin ¢, Sin ¢--coS ¢, COS ¢ SINAN)?
=1/+/1—(sin ¢, sin ¢+ cose, cos ¢ sin AN, (366)

7

If the conformal latitude x is substituted for geodetic latitude ¢, the total scale
factor for the spheroid becomes then from (190) '

@ cos x
N cos qS\/ 4 —(sin x, sin x4-cos x, COS x Sin A)\)“’

cos xv/1—e?sin? ¢

(367)
" cos ¢+/1—(sin x, sin x+cos Xo COS X siii AN)? )

If the radius of the conformal sphere is used, we have from (257) and (190) the
scale factor

. Ny cos ¢, cos x )
N cos ¢ cos xoy/1—(sin xo sin x--cos xo cos x sin AN)?

(368)

In cohstructing an oblique Mercator projection where the great circle to be held
true to scale is that through two given points, say @ (¢1, ) and Qs (¢, N;), we must
compute the latitude and longitude of the pole, O (¢, No), on this great circle.
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In figure 29, the point @ (¢, \) is any point on the great circle through the points
Qy (1, N), Q2 (¢2, o). From the right spherical triangle PO we have

cos (A—Ag)=tan (g— ¢0> cot g— ¢>=cot ¢, tan ¢, (369) -

which is the equation of the great circle 0Q.

F16URE 28.—Derivation of coordinates of the projection pole for the oblique Mercator projection
of the sphere.

i Now in the points @, and- @, lie on the great circle 0Q, then the coordinates o M
and ¢,, N\, must satisfy equation (369), that is, we must have

cos (\;—Ag)=cot ¢, tan ¢,, -
: . (370)

cos (A\y—Ag)=cot ¢, tan ¢,, .
‘which may be written

c0s N\, c0S NoFsin A sin Ag=cot §, tan ¢,
(371)
€OS Ay €08 AogFsin A, sin Ay=cot ¢, tan ¢,.

Solving equations (371) for sin Ag, cos A, we find sin Ay=cot ¢ csc (A — ;) (tan ¢z cos M
—tan ¢, cos \;), and cos Ag=cot ¢ csc (A;—N;) (tan ¢, sin A,~—tan ¢, sin \y), whence

tan ¢, cos A;—tan ¢, cos A . (372)
tan ¢; sin A;—tan ¢, sin A\,

tan )\0=

From equations (370) we have
cot ¢y=cot ¢, cos (\j—Ng)=cot ¢, cos (\a—Ny). (373)

Hence given two points @ (¢, M), @2 (¢, As) on the required great circle track
we compute Ao from equation (372) and then ¢, from either of equations (373) or from
both as a check. With these values of ¢, and X, we may compute other points on the-

~ great circle track from equation (369).
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We now derive the mapping equations of the diagonal Mercator projection in
another form for direct use with the formulas just discussed. The origin of coordinates
will now be at the point ¢, A as determined by (372) and (373), or at the point
@ (¢0, M) as shown in figure 30.

Analogously, as in figure 28, the point O (g— ¢0,)\0—7r> in figure 30 is the pole of
the great circle 0S. D éorresponds to the colatitude of the point 1" referred to the

o/l %’ %)AO“ 7r)

. G A) S$(0,A0"73.

Lguator
FicURE 30.—Oblique Mercator projection of the sphere.

pole O and great circle QS; a is the. measure of arc along QS corresponding to longitude
~ along the Equator. Therefore the Mercator coordinates of 7" in this system are

D alnl—l—cosD

92 " 1—cos D (374)

r=aa,y=>5 % In cot =

: o _
From the spherical triangle POT we have the identities

cos D=sin ¢ cos ¢g—C0os ¢ sin ¢, cos AN -
cos ¢ sin AN . (375)
sin ¢, sin ¢-+cos ¢, cos ¢ cos AN - :

tan a=
" where AAN=X,—A\. ' _
With the values of cos D and « from (375) we may write e'q'uations (374) as

cos¢ sin AN
SIN ¢ SIN G+ €OS ¢ COS P COS AN

z=ga tan~!

(376)

=2 1-}-sin ¢ cos ¢g—cos ¢ sing, cos A :
¥=3 1—sin ¢ cosgy-tcos ¢ sin ¢, cos AN

' =@ tanh~1(sin ¢ cos ¢o—COS ¢ Sin ¢ cos AN).
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To show that the point @ (¢, No), as shown in figure 30, is now the origin of oblique
Mercator coordinates of the sphere, place ¢=¢,, AN=A;—A=0 in the mapping equa-
tions (376) which gives z=y=0 at the point Q (s, \o).

THE OBLIQUE MERCATOR PROJECTION .OF THE SPHEROID

A type of oblique Mercator projection of the spheroid, which will represent a
considerable extent of spheroidal surface accurate enough for geodetic computations,
is the representation through the aposphere devised by Brigadier M. Hotine. It
employs hyperbolic functions and closed formulas to give simple computational forms
after certain functions iivolved have been tabulated. The development is found in
Hotine’s Orthomorphic Projection of the Spheroid, Empire Survey Review, Volumes
"VIIT and IX, 194647, Nos. 62-66. The particular formulas for this projection are
found in No: 64, section 19, pages 66—69. In the tables which have been prepared for
Malaya and Borneo—Projection Tables for British Commonwealth Territories in
Borneo (Malaya), pr epared by Directorate of Colonial Surveys, Teddington, Middlesex,
England—the projection is called “rectified skew orthomorphlc and the publications
contain examples of the use of the formulas. :

Another type of diagonal, skew, or oblique Mercator projection of the spheroid
is given by J. H. Cole in the Use of the Conformal Sphere for the Construction of Map
Projections, Survey of Egypt, Paper No. 46, Giza 1943, where he obtains such a pro-
jection for Italy. _

The projections of both Hotine and Cole are approximations. In geodetic work,
we deal with the projected geodesic and Beltrami’s theorem that only surfaces of con-
stant curvature can be represented upon a plane so that all geodesics become straight
lines indicates the undesirability of using geodesics to determine projections of the
spheroid. By assuming the spheroid to be an aposphere, a surface of constant curva-
ture applicable to the spheroid over a certain area, Hotine accomplishes the “rectified
skew orthomorphic” projection of the spheroid by means of geodesics and within
allowable error limits over a limited area of the spheroid. Cole accomplishes it through
the conformal sphere, a surface of constant curvature.

THE LAMBERT CONFORMAL CONIC PROJECTION

First developed by Lambert in his “Beitrageé zum Gebrauche der Mathematik,”
Berlin 1772, the projection was later fully discussed by Gauss. Although his “cylindri-
cal orthomorphic” or so-called transverse Mercator projection seems destined to be the
most important of the conformal projections, Lambert has already become immortal to
cartographers because of his conformal conic projection.

The projection received great notice and publicity in World War I, when it was
adopted for the battle maps in France. Suitable for areas of small latitudinal width
but great longitudinal extent, it is. used for maps of the United States and as a basis
for the plane coordinate systems of many of the States of the Union. Many of the
aeronautical charts published by the Coast and Geodetic Survey are based on it. Itis
used as a basis for most of the world aeronautical charts pubhshed by the Aeronautical
Chart Service of the United States Air Force.

The Geographical Section of the General Staff in Canada uses it in connection with
military surveys and the production of military maps.

It is the official projection of Venezuela and it is used by other South and Central
American countries.



116 U. 8. COAST AND GEOQDETIC SURVEY

The following European counbrles use it officially: Belglum, Spain, France,
Estonia, and Rumania.

On the African continent it i5 used officially by Algeria, Egypt, Libya, Tunisia,
French and Spamsh Morocco.

In Asia it is the official proj jection for India and Syria.

DERIVATION OF FORMULAS

The requirements for the projection are that the parallels and meridians shall be
respectively arcs of concentric circles, and radii of these concentric circles.
To determine the most general form of the function in’ (189) we recall that the

- ¢
conformal mapping of the spheroid upon the plane was given by 7= f ‘% sec pdop, A=\

which glves for ¢=c¢y, or A=¢; lines parallel to the coordinate axes in the rAtplane or the
Mercator projection of the spheroid. Hence the function f(A&1{7) in (189) must be
such that the parallel lines in the Ar-plane representing the meridians on the spheroid
must be transformed into a pencil of lines in the zy-plane, and the parallel lines in the
Ar-plane representing the parallels on the spheroid must be transformed into concentric .
circles in the xy-plane having the same center as the pencil of lines for the meridians.
This means that z and ¥ must be functions of r and X such that

2?4y =K f(r), y=m(\) - z. (377)

In (377) we see that, since r is a function of ¢ alone, for every value of ¢ we will get a
circle, and since m is a function of \ alone for every Value of A we will get a stralght line
w1th slope m()).

Now solving equatlons (377) for z a,nd y find

g NI@ M
2=E gm0 V=R T mi o (378)

, We know that for the analytic function (189) to exist the functions 2(\,7), y(A,7)
of (378) must satisfy the Cauchy-Riemann equations (207). From (378) we have

dx Nfmm' ox - Kf by K+ fm’ dy __Kmf
=K dsZt=———+-——,wh
o (JIEmD)® 07 2/F1+mE On (\/1+m (Jigmd)® " or 2/fV1+m? whenee
the Cauchy-Riemann equations gi gg gf _X Y both lead to the equation

f7 1+m ’ | (379)

Since f is a function of 7 alone and m a function of N alone, the only possibility
for (379) is for both ratios to be equal to the same ¢onstant, for example 2I. We have

12
then from (379) the two differential equationsf7 21, 1_? =] or df—f=—2ld-r,
7 j_m =I[d\, whence the solutions are In f=—2Ir and arc tan m=I\ (considering con-
stants of 1nl;egratmn zero). These may be written
F(r)=e?", m(\)=tan I\. (380)

Returning the value of f(z) and m(\) to (378), we have
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z=Ke " cos I\, y=Ke " sin I\ (381)

where =K e~'" is the radius of the map parallels and from (189),

g T 9\ 1—esin ¢\ %
¢ ‘¢M1<4+2><1+emn¢

Equations (381) are sufficient since we have used the Cauchy-Riemann equations
in obtaining them, but we can actually write the function (189), z+iy=Ff(A£ir1),
from equations (381). That is, we have z+iy=Ke™'" (cos IN+1 siniX) and from
(17) we have cos §-+4 sin §=e"* where 0=I\ so that z-+iy=Ke - e P=Ket™in=
FOFin). |

Referring now to equations (23) and figure 5 (p. 26), it is seen that the case discussed
there was that given by (381) with K=1, I=—1.

Note that equations (381) can be expressed in terms of Mercator coordinates since
for the Mercator projection zy=al, yur=ar.

From (381) we have %:—-Kle‘.” coslk y=—Kl e ' sin l)\ and from (190) the
scale is given by

\/( ) 1/K2l2 —air coszl)\—I—K"’l2 “2rginflN Kle™*
Ncos4> , Ncos¢ =N co ¢>’

(382)

el

lr__ i ‘l_l’ 2 ———————-1—e Sin¢ ?
where, as before, ¢ =tan. ( 1 +2> (1 Tesing

We have two arbitrary constants or parameters, K and /, at our disposal in equations
(381) which we may use to impose two conditions upon the projection. Let us use them
to hold the length true along two parallels. From (382) if we are to hold. the length
exact along the parallels, ¢; and ¢,, we have

Kle'n Kle

“Nicosd, Nicoses (383)

e~\' N cos ¢,
e ™2 N, cos ¢,

From (383) we have ( » whence taking logarithms of both sides

and solving for [.we have

l=1i1 Ni—Iln N,4In cos ¢:—In cos é2

(384)

T2— Ty

Again from (383) we have

K:N‘ cos ¢; N cos b2

le—l‘rl - le-—l1'2 (385)

Hence having been given ¢, and ¢, [ is computed from (384), Whence Kis computed :
-by either relation in (385) or by both as a check.

It is easier to compute the map radii if we expand r=K ¢~" into a power series,
in arc length, s, of the meridian of the spheroid, about the fixed map radius, 7(¢o),
corresponding to the fixed parallel, ¢,. That is, we expand Ar=r(¢) —r(¢o) by Taylor’s
theorem in a power series to be tabulated for sufficiently small intervals of ¢. By
Taylor’s theorem we have
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: ' 82 8? st s® - s
Ar:7'(‘15)_7'(4’0):7"(@50)3+7‘”(¢0)'2—!+7'm(¢0)§i+7‘w(¢o)a+7'v(¢o)a‘i’rv'(d’o)a‘i'- .. (386)

° From r=Ke ', we have In r=In K—Ir, whence by differentiation with respect
to arc length, s, of the meridian of the spheroid
r’ dr '
o= -1 e ‘ | . (387)
For this derivation we choose the arc length, s, as poéitive with decreasing latitude
¢ to correspond to positive values of increase in 7, the map radius. Hence from-(186)
we have '

Ncos dr=Rdp=—ds. (388)
dr 1 : ’
Whence Ts=— N 05 and (387) becomes
7’ ‘ l
7 N cos e (389) .

Taking logarithms of both sides of (389) we have log r ——log r—log I—log (N cos ),
and differentiating this last gives
. r (N cos ¢) d¢

7 7 Ncos¢ ds . (390).

With the values of (N cos ¢)’=—Rsin ¢ f10m (279), = —1—13 from (388), and the

value of — flom (387) .placed in (390) we have .
o _ sing [—sin ¢
r Ncos¢ Ncos¢ N cosde

" (391)

From (391) again by logarithms we have, log r’’—log r"zlog (l—sin ¢) ——log(N cos ¢),
and by differentiation :
7 1t

'’ " [ cos o (N cos @)
! I—sin ¢ ' N cos ¢ ds

(392)

Il

Wlbh the values of (IV cos ¢)’=—R sin ¢ from (279), dd) from (388), - from
(391), we may write (392) as :

r’” (l—sin ¢)(I—2 sin ¢)
RN+ N2 cos? ¢ (393)
Differentiating (393) gives
Vo " (NR)  l—2sin ¢ 2(l—sin ¢)
o N2R2+N2cos¢+N2cos¢ +
2(l—sin ¢){—2 sin ¢)(N cos ¢)’ (394)

N3 cos® ¢ —lds

wa (NE)=4R(N—R) tsin ¢ and with the value of (N cos ¢)’=—F sin ¢ and the
other values from (388), (391), and (393), we find that (394) becomes
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4(1—sin ¢) , (I—sin ¢)(I—2 sin $)(—3 sin ¢) _

z‘: tan ¢ +(l
RBN?cos ¢ N3 cos® ¢

T RN
Diﬂ’erentiat_ing (395) we ﬁnd

(395)

(4N—5R)+

(4]\1732]\752R)+;?2121\7f [(5R’ 4N")+2 <

oty ) 4 s 1 __(l—2 sin ¢)({—3 sin ¢) | d¢ ,
oo =1 RN2+4(Z sin ) (RN2 cos ¢) N3 cos? ¢ Lds' (396)

: (1—2 sin ¢)({—3 sin ¢)
L-}-(l—sm ) [ N cos’ ¢ :I

Simplifying with the values of N’ R’ from (279) and the values from (388), (391)
(395) we find that (396) becomes

5N'R 4NR’>]7

P

r'_9R-—4N 4N+3t (QR2 16NR—l—8N2)_*_20 sm¢(l—sin¢)+5 ({—sin ¢)(21—9 sin ¢)
r " RN? RiN3 R*N? cos? ¢ RN3 cos? ¢
- (l——sm ¢)(1—2 sin ¢) (1—3 sin ¢)(l—4 sin qs)
N* cos's (397)

Continuing as before by differentiating (397) and simplifying by known relations we
find that

vi 3
= '1“;‘]1\;2 (88N?— 228NR+161R2)—121;S\1714¢(14R3—41R2N+44RN2—16N3)
'_{_(l—-sm #)(2012—1751 sin ¢+ 432 sin’¢)
- RN*cos’¢
4(l—s1n¢)(16 cos? ¢—102 sin? ¢+ 15l sm¢)L24(l—sm¢)(6 sin? ¢—cos? ¢)
RN3 cos® ¢ REN? cos® ¢
(1—sin ¢)(I—2 sin ¢)(I—3 sin ¢) ({4 sin ¢)(I—5 sin ¢).
+ N° cos’e (398).
T ‘ No COS ¢y
If we hold the radius of the parallel, ¢,, we have from (383) that K= Totm ' OT
e ) (399)

From (389) 7/ (¢0)=r(¢0)z—v—l—-—; whence with the value of 7 {(¢o) from (399) we
, 0 COS ¢y : .
have ’ .
' (¢g)=1. (400)
The radius of the parallel in latitude ¢ is Ny cos ¢q, (fig. 21, p. 64). ‘

Then '
. d (N, cos ;) d(Nocos ¢)) do
ds - do ds

l= 7

———-'—‘Ro Sin ¢0 —"_—'Sln d)o (401)
From (399) and (401) we have r (¢o)=N, cot ¢o. This may also be seen geometrically

from figure 18 (p. 59).
953903—53—9
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With the value of 7'(¢,) and [ from (400) and (401), equations (391), (393), (395),

t
(397), (398) become respectively with ¢=dy, r"'(¢o)=0, T”'(¢o)—R0N: r“’(¢o)—gz§$°

4N
4N 5R), o= BN | g o g, OTEZIONTASND, gy =t do,

[No(88N3—228N R+ 16113+ 12 tan? ¢o(148—41RINo+44RN3 = 16N3)].
With these Yalues of the derivatives at ¢, placed in (386) we have ﬁnally

s8 _84(5R0—-4N0) tan ¢,
6N, 24R2N2

L SN (O Ry— 4N+ 3(9BS— 16N Ry + 8N?) tan? ¢
120R3N?

Ar=s+

8% tan ¢ '

L 12(14R— 41 RN, +44RN?— 16N3) tan® 6. (402)

It is customary for general use to place Ny=R, in the numerators of the terms in
s® and s% Equation (402) becomes then

s s*(5Ry—4No) tan ¢ , s°(5+3 tan® ¢,) %744 tan? ¢g) tan ¢,

6RN. S4REN? t—TsorN: 240 B,N2 (403)

Ar=s+

See for instance, D. Clark, Plane and Geodetic Surveying, Volume II, Fourth edition,
page 372.

In (402) or (403) Ar is positive when s is positive, that is, when the point to be
mapped is in latitude ¢<¢o and the map radius is 7=r(g) - Ar with Ar given by (402)
or (403). When the point to be mapped is in latitude ¢ >¢,, then s is negative and
Ar will be negative. That is, by replacing s by —s in (402) or (403) all terms on the
right will have negative signs and Ar will thus be negative. Then will r=r(¢,)—Ar
‘where Ar is obtained from (402) or (403) with all signs positive. ,

A SECOND METHOD OF OBTAINING THE SERIES EXPANSION FOR Ar

From (389) we have’—(-i;?=N clos p ds or
. s
But r=ro+Ar and Ell; d(r(;i—zAr) dflAr)’ consequently (404) may be written
d((ii’”)-(N 008 6)—L(ro-Ar)=0. (405)

Let us assume that Ar is given by a series in the form

AT‘=AS+BS2+083+DS4+E85+FSG+ R (406)
Then

d(Ar)__A+2Bs+3082+4Ds3+5Es"+6Fs"’+ (407)
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We next expand N cos ¢, vhe radius of the ellipsoid parallel, in a Taylor’s series
of the form

N c0s ¢=Ny c0s do+(Ny cos ¢o)'s-+(N cos ¢ ,+(No cos ¢o)"’ 2

+(V, cos ¢o)“' +(No cos ¢g)” 5' e (408)
From (401) we have ﬂNdL‘;’s—@——sm ?,
"_ d¢___cos ¢
whence A (N cos ¢) =Cos ¢E§_ \ B (409)

Continuing (N cos B)'=— — R sin d};R s 9. _1_1%:__1{ s ¢;3R €08 ¢ and with

the value of R’ from (279) this becomes

(N cos ¢)""'= S]‘\?R‘f (3R—4N). (410)

Continuing in this manner we find

(N cos ) — _N@BR—4N) cos¢+1 2](57\2R3R) (2N —R) sin ¢ tan ¢, (411) :

~and

(N cos 6)" —j%% [N(451°— 132 RN +88N?)

-—12(N—R)(16N2 20N R+ 5R?) tan®¢). (412)
With the values of the derivatives from (401), (409), (410), (411), (412) we may
write (408) as

N cos =N, cos ¢y+s sin ¢o—s? cos ¢°+ 3;}322(3& 4N0)

—s* s N3 Bo— AN+ 19Ny~ R) 2Ny~ R tax'e]  (413)

s Sing,
+5° ooz
—12(Ny—Ry) (16N2—20 N,Ry+ 5R2) tan’sy).

[Vy(45 R2— 132 R,Ny+ 88 N3)

From (401) we have I=sin ¢, and ro=r(¢o)=0N, cot ¢,. Hence with these values and
those from (406), (407), and (413) we may write equation (405) in the form

g2 908 %o COS ¢

N, cos¢0+s sin ¢o— R,

(A+2Bs+30s2+4Ds*+5Es+ 6Fso+. . )

483 6811\171202(3R0—4No)—‘ 01$4+ Cys*
—sin ¢ (N cot ¢p+ As+Bs?*+Cs?+4 Ds*+Es’4-. . .)=0, (414)

where C, and C, are the corresponding coefficients of s* and s® in (413).
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In equation (414) we now equate to zero the sums of the coefficients of like powers

of s, which will give equations in A, B, C, D, E, F to solve.
For the constant terms we have 4

ANy, cos ¢o—N, cos ¢@= 0,
A=1.

whence

For’ the terms in s we have
2BN, cos ¢yt A sin ¢p— A sin ¢,=0,
B=0. '

or

We now place A=1, B=0 in (414) and continue, finding for the terms in s*

—ég;‘:"—{— 3CN, cos ¢,=0,
or
N1
=N Ry

With this value of C placed in (414) we find for terms in 3,

sin ¢ 3 sin ¢, _sin ¢y
_ NI (BR,—4N )+ 6N.E, +4 DN, cos 4@ ———GNORO—O;
~from which we find T
__ tan ¢, _ .
D—24N§R§ (4N,—5Ry).

Returning this value of D to (414) we find for terms in s, i

' 3
e b N (3 Ro— 4N+ 12(Ny— R)(2No— R tan? g — 20520
TRLLRE tagﬁ\,"?ng v=5%0) 4 5 BN, cos go=0,

and solving for & we have

gRo 4N0_L 3 tan? ¢0(9R2—' 1 6NOR0+ 8No)

E=Tsonm 1 12038

For the coeflicients of the terms in s® we find the equation

sin ¢

INF (3R~ 4N0) 2 D cos ¢0+4E sin ¢o+ 6F N, cos ¢>0—0

C34-C 55553

(415)

(416)

(417)

(418)

(419)

(420)

With the value of C, from (413) and the values of C, D, E from (417), (418), (419)

placed in (420) we find, solving for F, bhat'

tan ¢,
720NR:

+12(14R3—~41N,R2+44R,N2—16]N2) tan? ¢.

F=— [N(8SN2—228N Ry+ 161R2)

(421)
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- Placing the values ofA B, C, D, E, F from (415), (416), (417), (418), (419), (421)
in (406) we have

[N(9R,—4Ny)

6N, R, 24N3E; 1 20N3R3

+3(9R;—1 6 NoRo+8N?) tan? ¢

3 4
Ar—st S SN Sy yp ANt

_s'tan ¢ - ,

+12(14RE—41REN,-+44R,NZ—16N3) tan® ¢},

which is identical with the value obtained in equation (402).

In order to use the formula for Ar, as given by equation (403), to compute radii
for the Lambert conformal conic projection, it is seen from equations (384) and (401)
In N;—In N;+41n cos ¢,—In cos ¢2,

that we must have sin ¢,=I=

Tz—Tl‘
or . ' .
0=sin‘1l=sin‘1ln Ni—In Nz—l-Tln cTos ¢1—In cos 3 (422)
2T 1

With this value of ¢,, we have the map radius and scale at ¢, given by

7(pg)=Ke 0510 %o, ko“r](\?()) tan ¢, (423)

where K is given by (385).
To determine the scale factor as a function of s we have k,——d%(:)

4 tr(p)+mari=m L0,
85

dAr S st
From equation (402) we have —d———- 1 +2R0No— A 6R§N§+B 24R3N3_0 1207

s? gt g%
— 1 — — .
whenee ky=m (14573~ 4 6R0N2+B sarvi ¢ 1201%32%)
Now when s=0, we have from this last equation that m=Fk,, whence

ko= 4 8 4p_S o5
= °<1+2R0N0_ srn: TP s 120R;Ng>’

where A4, B,C are respectively the numerators of the coefficients of the terms in s*, s
§%, in equation (402).

(424)

ONE STANDARD PARALLEL

The projection just discussed with two standard parallels is the conformal conic
projection discussed by Lambert and is also called a conformal secant conical projection
since the cone through the two rectified parallels is a secant cone with respect to the
spheroid.

If we desire to hold bhe scale along only one parallel, say latltude ¢, We have
from (382)

Kle=tmo

_— 1. —lrg— ) =
=N, co5 b, 1, or Kle—"0=N, cos ¢y. (425)
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For a second condition let us suppose that the map radius for ¢, 7(¢) =Ke™'",
is equal to the length of the tangent to the meridian from the point of tangency in
latitude ¢, to the polar axis, or equivalently equal to the slant height of the cone touch-
ing the spheroid along the parallel ¢,. From figure 18 (p. 59) it is seen that the slant
height is N, cot ¢y, hence we have

. 7(¢o)=Ke o= N, cot ¢,. (426)

By dividing the members of (425) by the respective members of (426) we find at
once that [=sin ¢,, whence K=e¢"%" ¢ N, cot ¢,, or the constants are

l=Sin djg, K=6708m L) No cot ¢0. . . (427)

These are identical with the values obtained in equations (399) and (401) as they
should be.

We may then use the value of Ar as given by equation (403) to compute the map
radii according to the rules as stated in the last section but we need no scale correction
for Ar. The mapping equations are given as before by equations (381). This pro-
jection is often called the conformal simple conic projection or the Lambert conformal
conic projection with one standard parallel, since it is a special case of the Lambert
conformal conic projection. :

We obtained the analytic function (189) for the Lambert conformal conic projection
by starting with the equations of the required meridians and parallels involving general
functions of 7 and \. Then, after solving for z and y in terms of the arbitrary functions
of 7 and X involved, we demanded that z and y satisfy the Cauchy-Riemann equations.
This produced the differential equations whose solutions gave the required forms of the
functions of 7 and X. See equation (379). We will now show how the same result may
be produced by considering the curvature of the map meridians and map parallels.

From (216) we have the curvatures of the meridians and parallels in a conformal
~ projection given by :

- -3 '
1_ 267 1 26 (428)

— ——— ——— e )

R ox 'R o
where E=G=f"(A+1ir)f'(A\—1i7).

In the Lambert conformal conic projection the meridians are straight lines. Hence
. 1

2

the radius of curvature of the meridians is infinite, that is, Ry—« and we have g N =0.

This means that G is a function of 7 alone. Hence we have G=f (A4-ir)f A\ —17)=F (7).
If we differentiate this last equation with respect to A, writing g for f(A\—1r), we obtain

17 ’ .
"y 1y’ =0, 0r‘§—,=——%- But since the first of these ratios is a function of Nf-r

alone and the second of A—i7 alone, the equality can only exist if each ratio is equal to a
constant, for example ¢. Hence with u———)\—}—ir, v=A—1r we have

~§[“((u) c, lnf'(u)——cu—l—lnA ()= A@cu,f(u)—ée°"+B

(429)

g’,/((/;))) —c, In g g (v)—'—cv-Hn A g (1)) Ae~ w’ g(U)—— ée‘”—)—B_
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Since the scale ratio, (190), must be real and contain the pmducbf’(k—i—w)f’()\—w)—
f(w)g’ (v) =A% @~ =A% %" it is seen that ¢ must be pure imaginary, for example
¢=il. Then with B=0, K=A/c we have finally from (429), f(«) —f()\—i—m) Kettotin
which is the same as found before.

Finally, to give the complete geometric characterization, we derive the differential
equation of the map radius directly from geometric properties. From figure 21 (p. 64)
we have cot a=(—LRd¢)/N cos ¢d\, where we have taken the arc length along the
meridian to be negative so that an increase in map radius will correspond to a decrease -

in latitude. From figure 31, we have the corresponding angle 8, and in terms of the
map elements, cot f=dr/rld\.
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FIGURE 31.—Elements of Lambert conformal conic projection.

If the projection is to be conformal, then the angles o and 8 must be equal, that is,

cot a=cot f= N Ci‘i‘;k TZZ‘)\, whence
dr R '
—7‘—:—lﬁsec¢_d¢, (430)

which is the differential equation of the map radius. Integrating we have In r=

—lfz% secodé+In K. But from equation (252),
R o T, ¢\ (l—esm ¢ '3]
fN sec¢d¢—r—ln[tan<4+2><—l+eSin¢ )

l_e .
hence In r=_lr+lh K,or r=Ke'"=K [cot’ ( > 1Fe 1Tesing 2]; as obtained
1—esing .
before. See equations (381).
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In order to reduce asfar as possible the maximum scale error over the whole area to
be projected by the Lambert conformal projection the mean latitude for the area should
be chosen as standard parallel. The scale error at the maximum distance in the repre-
sentation from this standard parallel is then determined and the coordinates are multi-
plied by the reciprocal of one-half of this scale error. This actually produces a Lambert -
conformal conic projection with two correct parallels whose latitudinal distances north
and south of the central parallel will be approximately two-thirds of the latitude differ-
ences of the central parallel and the maximum north and south latitudes of the map.
That is, we may specify two standard parallels to be held true to scale and then deter-
mine the central parallel from these, or we may choose a-central parallel and apply an
arbitrary over-all scale factor which results in the fixing of two unspemﬁed standard
parallels,

The origin is usually chOSen as the intersection of the central meridian with the
standard parallel in order to avoid computation of large values of the map radius, i. e.
in order to use to advantage the formulas for Ar as given by equations (402) or (403).

POINT-TO-POINT WORKING ON THE LAMBERT CONFORMAL CONIC
PROJECTION

E. L. M. Burns in “Point-to-Point Working for the Conical Orthomorphic Projec-
tion’”’, Empire Survey Review, Volume IT, No. 11, 1934, developed convenient formulas
for corrections to bearing and distance allowing coordinates to be computed by the
ordinary methods of plane trigonometry, but the formulas were intended to be used for
topographical work only.

J. Clendmmng investigated the formulas for point-to-point working on the con-
formal conic projection and extended Burns’ formulas for application to more precise
work. His work was published in the Empire Survey Review, Volume VII, Nos. 48,
51, 52; 1043—44. .

Clendinning developed rigorously the necessary formulas which are extensive,
cumbersome and devoid of terms higher than the third order although as he demon-
strates for points no farther away from the origin than occur in practice, terms of the
fourth order may hardly suffice to give the accuracy desired.

The investigation proved conclusively that if point-to-point working is the most
important consideration when choosing a projection for a given area, then the Lambert
conformal conic projection, when the formulas are expressed as functions of rectangular
coordinates, is not the best projection to select, even when the area to be covered has its
principal extent in longitude. Several belts of transverse Mercator coordinates give
more satisfactory results than a single belt of Lambert conformal conic coordinates.

Brigadier K. M. Papworth in “The (¢—T) correction for the Lambert No. 2 (Conical

‘Orthomorphic) Projection”, Empire Survey Review, Volume VIII, No. 56, 1945,
developed by empirical methods simplified formulas for computing the (¢—T') correction.
B. L. Gulatee in “Angular Corrections for the Lambert Orthomorphic Conical Pro-
“jection”, Empire Survey Review, Volume VIII, No. 62, 1946 gave the mathematical
proof of Papworth’s formula and presented the correction in another simple form in-
volving the chord of the projected geodesic and its curvature evaluated at a point
one-third of the way along the are.

In order to apply the Lambert conformal conic projection to China, J. T. Fang
developed suitable formulas in terms of the vertical distance between the parallel
passing through an arbitrary point of the map and the central parallel. The formulas
containing third-order terms in this parameter suffice for zones of 3%° in latitude differ-
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ence and 65° in longitude. These developments are found in the Empire Survey
Review, Volume IX, Nos. 70 and 71, 1948-49. Fang also includes the formulas
for transformation of coordinates from one zone to an adjacent one with numerical
examples of their application. His derivations of formulas for azimuth and distance
corrections for geodetic lines on the Lambert conformal conic projection are found
in the Empire Survey Review, Volume X, No. 75, 1950. His formulas for transforma-
tion between the Lambert conformal conic and the transverse Mercator projections
are given in the Empire Survey Review, Volume X, No. 74, 1949.

The derivations of the usual formulas for point-to-point working on the Lambert
conformal conie projection are found in several treatises. Some of these sources are: -
Jordan-Eggert. Handbuch der Vermessungskunde, Dritter Band, Zweiter Halbband,
Stuttgart, 1941, pages 204-218. Driencourt et Laborde. Traité des Projections des
Cartes Géographiques, Paris 1932, Volume IV, pages 323-331. Clark, D. Plane and
Geodetic Surveying. Volume II, Fourth edition, London, 1951, pages 370-376.
‘Courtier, M. Exposé de la Projection de Lambert, Annales Hydrographiques, Tome
Dix-septiéme, Paris, 1946, pages 101-114,

The formulas listed in the front of this publication for point-to-point working on
the Lambert conformal conic projection have been taken from these sources..

THE STEREOGRAPHIC PROJECTION

Hipparchus (about 150 B. C.), to whom we are indebted for plane and spherical
trigonometry, is also credited with the invention of the stereographic projection.
It was employed in the astrolabe-planisphere for the solution of the astronomical
triangle as revealed in Chaucer’s treatise on the astrolabe.

The ruler and compass constructions of.this projection and graphical solution of
problems by means of it had and still have a fascination for geometers. The most
important of these constructions and solutions -may be found in U. S. Coast and
Geodetic Survey Special Publication No. 57. Two papers by S. L. Penfield, “The
Stereographic Projection and its Possibilities from a Graphical Standpoint,” and
“On the Use of the Stereographic Projection for Geographical Maps and Sailing Charts,”
‘published in the American Journal of Science for February 1901 and May 1902 give
additional graphical applications of the projection. A complete treatise is found
in ‘“The Stereographic Projection” by F. W. Sohon. (See the bibliography.)

Besides its use in cartography, it is of interest to the student of the complex
variable. It is also used in its various forms for the solutions of problems in crystal-
lography, seismology, astronomy, navigation, and hydrodynamics.

As in the case of the other conformal projections already discussed, the stereo-
graphic projection of the spheroid is complicated compared to the sphere. A way of
avoiding the difficulty is to employ a method which has already been explained, namely
that of projecting the spheroid conformally on a sphere and then projecting the sphere
on a plane. This method will be followed here in discussing the horizonal and equatorial
forms.

POLAR STEREOGRAPHIC PROJECTION OF THE SPHEROID

For the polar stereographic projection, the meridians are straight lines radiating
from a central point corresponding to the pole of the spheroid and the parallels are
concentric circles about this central point. It is thus clear that the polar stereographic
‘projection of the spheroid is a special case of the Lambert projection where one of the
fixed parallels is taken to be the pole, or equivalently when [ is placed equal to 1. Geo-
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metrically the tangent or secant cone of the Lambert pr OJectlon has become the tangent
plane at the pole.

With =1, equations (381) become

=7 cos \, y=r sin A, : (431)

Kot g T 9 1_—6_511?5_'@ i)_' z -
where r=Ke™7, e'=tan <4+2> (1_}_6 sn o) =tan 4—}—2 =cot 5 2 bejlng as before
the colatitude of the conformal latitude, x. See equations (256) and (259).

The scale factor is obtained from (382) by placing /=1, namely

k=N Noose (432)

We have the arbitrary constant K which we may use to hold the scale along a
given parallel, ¢,. If we place k=1 in (432) and solve for XK, it is found that

K=N, cos ¢, cot %) ' (433)

To determine the value of K when d)ozg (the scale is then true only at -the pole),

we may write equation (433) by means of (431) as K=N cos ¢ cot g=N cos ¢
( ¢>(1—e sin ¢\ 2 Ncos"’d) 1—esing¢ _2_ a(l+sing) [1—esing 2
tan { 3 l1+esing/ 1—sing\14esing/ T—¢?gin’¢ \l+esing

Placing ¢-— in this 1ast equatlon we obtain

€

1—e 2a 1—¢€\2 '
~V1;€2 1+e> 1+e> (434)
The scale factor is then, from (432) and (434)
2a? 1—e\2 z o
=T N cos W) tan - (435)

The mapping equations for this particuldl' case are then
T=r cos N\, y=r sin A

¢ (436)
r-koKe =k % 1_e> tan = " -
b 14+ 2’

where k, is the scale factor at the pole—an arbitrary reduction applied to all geodetic

lengths to reduce the maximum scale distortion of the projection. ?
It should be noted that the polar stereographic projection of the spher01d is not

perspective. If we place e=0 in the mapping equations (436), z will become the polar

distance, and we will then have a perspective stereographic projection of the sphere

from the South Pole upon the tangent plane at the North Pole.
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1+4€ cos p
1—e cos p ‘
may be expanded analogously as before for the Lambert projection into a series in
the colatitude p. The series to terms in p'! is

From (259) we have tan ——tan ( Hence r in equation (436)

ke 1—7¢ —2e 466 | 17—932—1,335¢'—4,889¢8
<+12(1 2)7’Jr 100 —e2 T 20,160(1 — &%) p

V1—¢?

31—184¢*+3,831¢*441,9066°4-53,641¢° P

+ 362,880(1 — )

(437)

+

691 —4,841¢2—44,966¢'—2,420,9266°—10,194,43665— 6,982,072 1,)_
79.833,600(1 —e?)° p

If the coefﬁclents in equation (437) are evaluated for the international spher01d
we have
r=6,361,536.988459 p+508,600.09984 P
+53,122.087 p°+5,252.83 p"4539.4 p°-54 pV, (438)

where 7 1s in meters and p is in radians. If r is in meters and p is in minutes of arc
multiplied by 1072, equation (437) becomes

r=1,850,496.09893 p-+12,518.57204 p*+110.63836 p°
+0.9257 p7--0.0080 p°+0.0001 p!i. . (439)

In the polar stereographic projection the convergence is equal to the longitude, X,
in numerical value. In the northern polar area it has the same sigh as . In the southern
polar area it has the opposite sign. Since the pole is the center of the projection it is seen
that the convergence may be any angle up to 180° E or W. That is, at times grid north
may be the same direction as true south, east, or west, depending on the position on
the projection.

Tables are usually constructed of » with ¢ or p as argumenb Hence to compute
¢ and X from rectangular coordinates we have from equations (431),

tan )\2% or A=tan™! y} =1 8ec N==17 CSC A, (440)

where ¢ for the corresponding value of 7 is interpolated from the tables.

DEVELOPMENT OF r IN SERIES

The method of undetermined coefficients will be used in obtaning the series
expansion for » as given by equation (436). From equation (430) the corresponding
equation for.the polar stereographic projection in-terms of p is

gsinp-g—;—rzo. (441)
7 ' 2 2 . :
Now ’ f(p)=% sin p—1 ¢ (lz(fef) =2 (442)

Next expand f(p) in a Maclaurin series in p of the form

FD=JO+7Op 7O Lt el (a43)



130 U. S. COAST AND GEODETIC SURVEY

We have from equation (442)

(1—e)f(p)=(1—¢ cos® p) sin p, ' f(0)=0.
(1—)f" (p)=(1+2¢) cos p—3é cos? p, F(0)=1.
(1—e)f"’ (p)=(9¢ cos? p—26€—1) sin p, f’(0)=0.
S (I—=é)f""" (p)=27¢ cos® p— (1+20¢") cos p, f0)=—Q1-7&)/(1—¢).
(1—e)f'"(p) =(1-+206*—81€ cos? p) sin p, 7 (0)=0.
(1—e)f"(p)=(1+182¢%) cos p—243€ cos® p, O f0)=(1—618)/(1—¢).
(1—€é)f" (p) = (729¢* cos® p—182¢€—1) sin p, FH0)=0.
(1—e)f"(p)=2,187¢ cos® p— (1+1,640¢%) cos p, FH0)=—(1—547&)/(1—¢).

(11— ™ (p)=(1+1,6406—6,561¢ cos? p) sin p, F™(0) =0.
Q- **(p)=(1+14,762¢®) cos p—19,683¢% cos® p, = f*(0)=(1—4,921¢%)/(1—¢€).
(1—eB)f*(p) =(59,049¢ cos? p—14,76262—1) sin p, F*(0)=0.
(1—e)f*(p)=177,147¢ cos® p— (1+132,860¢%) cos p, f*(0)=—(1—44,287&")/(1—¢).

- (444)
With the values of the derivatives from (444), the series (443) becomes
__ZX . . 1—-7¢8 1—61e® 1—547¢
fo)=p sin p=p—Ga— 5 Pt 1500—en P 5,040(1—¢) ©
— 2 — 2 .
4o 1—4921¢ ,  1--44,287c " (445)

362,880(1—¢) ¥ 39,916,800(1—e) ¥

If we place the series (445) in equation (441) and assume a series for r of the form
r=A+Bp+Cp*+ . . .we see at once that A and all coefficients of even powers of
p vanish since only odd powers of p occur in the series (445). Also it will be seen that
B=1. Hence we assume a series for r of the form

r=p+ Ap*+ Bp*+Cp’-+ Dp*+ Ep", - (446)
whence :

g—;=1 +3 Ap*+5Bp*+70p5+9 Dp*+11 Ep'. (447)

We now write the series (445) in the form
@)= sin p—p—Pp+ @ —Up'+ V3T, (448)
where P,Q, U, V, T are the corresponding coefficients in e from (445).

Placing the values of r, gz—:; %7 sin p from (446), (447) and (448) in equation
(441) we have ' :

(143 Ap*+5Bp!+70p°+ 9 Dp'+ 11 EpY) - (p— Pp*+ Qpi—Up' + V' — T'p't)
—(p+ Ap*+ Bp*+Cp'+ Dp*+ Ep')=0. (449)

Equating to zero the sums of the coefficients of like powers of p in equation (449),
returning the values of P, @; U, V, T where needed from equation (445), we have

1-—7¢2

. 1
3. — —_ —_— .
2% | 24-P=0, A= P=rrty

(450)
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o 4B+Q—3 AP=0, B=% (3AP—Q)==1 (1—7e)?  1—61¢ ]

4241 —¢? 120(1—&)

1—2e%-}-46¢ '
T 12001 —e)7 (451)

o 60— U--3AQ—5BP=0, 0=% (U—3AQ+5BP)
1 1—-547¢8 (17501 —6162)+(1 —7eH(1 —262-}—4654)]

=% 5,040(1—¢?) 480(1—e2? T 144(1 =€

. (452)

1 51—-279é2~4,00554—'14,667eﬁ]=17—93e2—1,335e“—4,88955

6 10,080(1 —¢2)? 20,160(1 —¢?)3

o 8D+V—3 AU 5BQ—TPC=0, D=% (7PC—5BQ--3 AU~V

p_l [(1—762)(17—93e2—1,33564—4,88956)_(1—6162)(1—252+46e4)
~3 17,280(1 — 2t 2,880(1 —€2)?

+

(1—7H(1—547¢) 1—4,921¢ ]
20,160(1—e?)?  362,880(1—¢?)

1 [248—1,472e2+30,64se4+335,24seﬁ+429,12868]
3 362,880(1—e2)*

_ 31—184¢+3,831¢*+41,006¢°+ 53,6416
- 362,880(1 — €2

Pt 10E—T+3AV—5BU+7CQ—9PD=0,

(453)

E:lio (T—3AV+5BU—10Q+9PD),

Fo L[ 1=94287¢  (1—7e)(1—4,921¢) | (1—2¢4466)(1—547¢)
=701.39,016,800(1 =)~ 1,451,520(1 —?° 120,060(1 —e°F
_(17—936—1,335¢*—4,889¢")(1 —61¢%)

345,600(1 — )

e +762)(31—18462+3,831e4+41,90666+53,64168)]
241,920(1 —e?)p ,

L 1 [6,910—48,410e2—449,660&-—24,209,26056—101,944,36oe8'—69,820,720e*°]
10 79,833,600(1 —¢??

_691—4,841e2—44,966e“—2,420,926e°-——10,194,436e5-—6,982,07251°'
o 79,833,600(1 —e?)®

(454)

With the values of 4, B, C, D, E from (450), (451), (452), (453), (454) returned
to (446), the series as given in (437) is produced.
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STEREOGRAPHIC MERIDIAN PROJECTION OF THE SPHERE

The analytic function which. produces this projection for the sphere may be de-
rived analogously as for the other conformal projections already discussed and is found
to be

$(r—iX) ——e—%(‘r—i)\)

. . e '
. r+iy=ar e%(’4i*)+e—%(f—i")’ (455)

where 7 is now an isometric parameter for the sphere.
e . 1 .
From the definitions cosh u=% (e*+e™*), sinh u=y (e*—e™™)

we may write equation (455) as

| sinh—;—(r—i)\) sinh & (r—4N) cosh £ (r—i))
rt+iy=ai =a1 =

cosh g (r—iN) - cosh? % (r—iN)

at sinh (r—i\) _ aisinh (r—1i}\)
" 1-4cosh (r—1N\)

2 cosh? % (r—ik)

__at (sinh 7 cosh i\—cosh 7 sinh i\)
T 1+cosh = cosh tA—sinh 7 sinh 4\

(456)

Now cosh 4A=cos M, sinh ¢A=1 sin}, sinh r—tan ¢, cosh 7=sec ¢. These values
placed in equation (456) give

tan ¢ cos A\—1 sec ¢ sin A
1-+sec ¢ cos A—2 tan ¢ sin A

z+iy=ai

tan ¢ cos A—1 sec ¢ sin \ 1+scc ¢ cos A+ tan ¢ sin N
1+sec ¢ cos A—1 tan ¢ sin . 1+4-sec ¢ cos A+ tan ¢ sin A

(tan ¢—1 sin N) (sec +cos N) a (cos ¢ sin A+ sin ?)
(sec ¢+ cos A)? 1-+cos ¢ cos A

Equating real and imaginary parts in this last equation we obtain the mapping
equations of the stereographic meridian projection of the sphere

acospsinhn asing

1T cospcos N /T T+cosdcos n (457

If we use the conformal latitudes as defined by equation (256) in place of ¢ in the
mapping equations (457), we will have then taken into account the spheroid. That
is, we have mapped the spheroid on the sphere and the sphere in turn upon the plane.
The scale factor will be the product of the scale factors in the two projections.

The total scale factor is thus obtained from (190) as follows:

In mapping equations (457) place $=x and find

oz —a cos X cos A+cos x Oy —a cos x sin x sin A
o X (1¥cos x cos IVEEETY X (1Fcos x cos N2

whence
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\/ dz\? (9_‘11)2__:\/ a? cosZy __ acosx (458)
N/ T\ (1-+cos x cos \)*  1-4cos x cos A

With N =a/ 1/1——52 sin’¢, we have then from (190) and (458) the total magnification

Dy ' :
\/( . acosy cos x+v1—e?sin’¢ :
= ) (459)

Ncosrb N cosé(1Fcos x cos N cos ¢ (14cos x cos A)

If we solve the mapping equations first for sin ¢, cos¢ and then for sin X\, cos A
we obtain respectively

Y sin A ' x (4605

s ¢=a, sin A—z cos N cos¢=a sin N—z cos N’
.oy _xsing - . asing—y
sin A= o5 % cos A= Y cos & (461)

Eliminating ¢ between equations (460) and N between equations (461) by squaring
and adding respective members in each case we arrive at the equations of the meridians
and parallels. That is, from equations (460) we have the equation of the meridians,

z? y? sin® A
(@ sin A—z cos >\)2 (a sin A\—z cos \)?
for the equation of a circle,

=1, which may be written in the standard form

(z+a cob NP+ y*=a® csc? \, (462)

with center at x=—a cot A, y=0 and radius n=a csc \. From equations (461) we
have the equation of the parallels,

2? sin? ¢+(a sin ¢— y)2
y*cos’¢ . y’cos’

’ .
which may be written in the standard form for the equation of a circle

22+ (y—a csc ¢)*=a’ cot? ¢, (463)

with center at 2=0, y=a csc ¢ and radius 7,=a cot ¢. Thus the meridians are circles
with centers on the z-axis and the parallels are circles with centers on the y-axis.

STEREOGRAPHIC HORIZON PROJECTION OF THE SPHERE

, The analytic function of = (considered an isometric parameter for the sphere) and
N which gives this projection is

$(r—ir-3) —3(r—iX-6)
—€

. . €
= . 464
Fruy=a L I (464)

We may as before transform the right membel of (464) into hyperbohc functions
to obtain

sinh % (r=ir=9) cosh = 5 (rHin )

r+iy=a1 1 (465)
cosh 5 (r—ix+8) cosh = (T+1,)\+6)
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The hyperbohc identities sinh #—sinh »=2 smh (u——v) cosh (u-l— v), and

-cosh u--sinh p=2 cosh 5 (u— o) cosh 3 (u-+ v) applied respectively to the numerator
and denominator of (465) give

. sinh r—sinh (§+4A)
zt+iy=a cosh (7+ 6)+cosh 4\

. sinh 7 —sinh & cosh 1A —cosh § sinh ¢\

=% Cosh 7 cosh 8+sinh 7 sinh §-4cosh 7\ (466)

As before we have cosh ¢ A=cos )\, sinh ¢ A=1 sin A, sinh r=tan ¢, cosh r=sec ¢,
sinh §=tan ¢, cosh §=sec ¢, and with these values placed in equation (466) we obtain
. tan ¢—tan ¢, cos A\—1 sin \ sec Po,
sec ¢ sec ¢p-tan ¢ tan ¢,4-cos N

r+iy=ai
Multiplying numerator and denominator of the right member of this last equa-
tion by cos ¢> cos ¢, we obtain finally

sin N cos ¢+1 (sin ¢ cos dy—sin ¢, oS ¢ oS )\)'
1-}sin ¢ sin ¢y} cos ¢ cos ¢0 cos A

z+iy=a (467)
Equating real and imaginary parts in (467) we have the mapping equations for the
stereographlc horizon projection of the sphere.

sin \ cos ¢
1+sm ¢ sin ¢y} cos ¢ COS¢y COS Y

__a(sin ¢ cos ¢o—sin ¢, €os ¢ cos >\)

" 1-4-sin ¢ sin ¢y+-Cos ¢ cos P, €os Y

The spheroid is taken into account as before by substituting the conformal.

“latitude x for ¢. _
The total scale factor is obtained in the same manner as for the stereographlc

“ meridian projection. That is, from the mapping equations (468) we have with ¢=x

(468)

cos x €08 xo+(1-+sin x sin xg) cos A
0 v 2
(1+sin x sin xo-}cos x €os xo cos N)?

éf—a CcO0S8
on X

—a cos sin \ (sin x-sin xg)
oM X (1 sin x sin xo €O x €OS xo COS N2

N B —
. oA oN/ ¥V (1-+sin x sin xO-I—cos % COS xo COS \)?

. a cos X .
1+4sin x sin xe+-Cos x €OS X COS N
From (190) with N=a/(1— ¢ sin’ ¢)! we have then

\/(Si) +(%)

N cos ¢ Ncos ¢(1+sin x sin xy+¢€os x cos xp COS N)

whence

. Co8s X'\/l-—.e sin? [0 ' (469)
" cos ¢(1-4-sin x sin xo-+cos x cos xo cos )
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To obtain the equations of the meridians and parallels we solve the mapping
equations (468) for sin ¢, cos ¢ and then for sin A, cos A analogously as was done for the
stereographic meridian projection, obtaining then '

 sin ¢, cos ALy sin \

S =008 ¢o I A—2 cos A—7y sin ¢y sin A
(470)
_ X COS oy
cos ¢ma COS ¢y SiN A—2 coS A—7Y Sin ¢ sin N’
S z (sin ¢o+sin ¢)
sin )\_a Sin ¢, cOS ¢+ cos ¢, cos ¢
(471)

@ COS ¢ 8IN d—Y —7Y sin ¢y sin ®
@ SN ¢y COS P+ cos ¢y oS ¢

CcOS A=

By squaring and addmg lespectlve members of equations (470) and then of equa-
tions (471) we arrive as before at the equations of the meridians and parallels. That is,
from equations (470) we have after reducing and arranging in standard form the
equation of the meridians which are circles given by (z-+a sec ¢, cot N\)>+ (y+a tan ¢g)’=

a? sec? ¢, csc? A\, with centers at = —a sec ¢y cot \,y=—a tan ¢o and radii rv=a sec ¢, csc \.
Clearly the centers all lie on the line y=—a tan ¢,.
Analogously from equations (471) we have the equation of the parallels which
o . 2y (,__@cosdy ' a’cos’¢ “Gh o -
are circles given by z +<y Sin b fsn & &m Gt sn o with ‘conters at r=0,
_ @ COS ¢ .. - @cosd
sin ¢g+sin ¢ and radii 7,= sin ¢,-Fsin ¢
If we place ¢=— ¢, in the formulas for 7, and y we find that 7, becomcs infinite and
7 becomes infinite which means that the parallel for ¢=—¢, is a straight line.:

We will now show that the analytic functions (455) and (464) for the stereographic
meridian and horizon projections are special cases of a more general function which
may be obtained by considering the expressions for the curvature of the meridians and
_ parallels in a conformal projection.

-3
When the parallels are circles, B,=¢ (constant) and from (216) we have bgT :%,
Gt 1 oG 1 ., 02G % G-t .
whencem =0. Bu t—— ~ 5% and if b)\TZO’ then 5% IS 2 function of A

alone. Hence the merldlans (for which X is constant) must also be circles. Also from
(216) we have @=f'(A\+1i7)f'(A\—i7) and let us suppose that @=g(N+ir)g(A—i7).
MG 02 . . ” L . p . .

Then ——— S\0r —ONor A2 n)g(N—ir)]|=g¢" AN Fir)g(A—ir)—g" (N —17)g(N+i7)=0.
g"At1in)_ ¢"(A—1i7) '
dOFiD  g—iD) Slnce the left member is a func-

tion of A4 7.and the right member a function of A—7 7, the uqualiby can only exist if both

g (N Far). _g"(\—17)

. Thatis," o6 — gv—in

Placing M+ ir=u we have from these last equations g”(u)—c?*g(u)=0, which is clearly alin-

ear homogeneous differential equation with constant coefficients. The auxiliary equation

is m?—¢?=0, whence m = +¢ and the solution is then g(u)= Ae**-+ Be™°*, or g(A+1i7)=

Ae*®Fn 4 Be=e0+in_ But. we have @ '=g(A+ir)g A—in)=[f'(\i7) f/(A—37)] 7,

953903—53——10

From this last equation we have

ratios are equal to the same constant, for example ¢2. =c2
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whence f/(N+ir)=¢ ?(AN+i7)=[Ae*MV 4 Be=¢0+in]-2  Again with u=M+ir we
nave yet to-solve the differential equation f'(u)=(Ae*+ Be~*)~2. From the defini-
tions of hyperbolic functions we have ¢®=sinh cu+cosh cu, ¢~**=cosh cu—sinh cu,
s0 ‘that
Ae®*+Be~*=(A—B) sinh cu+(A+B) cosh cu
=2AB [(;i/AIl? sinh cu-}-(zAj;lB) cosh cu]

—C cosh (cu-+8), where 0=2+/AB, s=tanh~ 1 A—B

A+B

Our differential equation is then f’(u)=C"? cosh™?(cu+-8)=C"*% sech?(cu+3), and the
solution is at once f(u)=c~* C~2 tanh (cu+8)+ D.
In this last equation place D=6=0, c=—1/2, ¢~'C~ =g and we have

fw)=qa1 tanh (—iu/2)=a1 tanh [—i(A+177)/2]=ai tanh —é— (r—aN)

. 1 .
sinh 5 (r—1N) JE—iN G-y

=av OV ge=—n I gte—in’

cosh%(r—i)\)

which is the analytic function (455) for the stereographic meridian projection. Similarly
we may obtain the analytic function (464) for the stereographic horizon projection.

S'}I‘EREOGRAPHIC HORIZON PROJECTION OF THE SPHEROID -

-For the computation of triangulation by plane coordinates in large areas where the
horizon stereographic projection could be applied, the distortion is so great at the
boundaries that either the Lambert conformal conic or the transverse Mercator is more
suitable when used in bands. Also tables for conversion from the spheroid to the
projection are either already available for these latter pI‘O]eCtJIOIlS or can be computed
with greater ease. -

Examples of the application of the horizon stereographlc projection to an area of
considerable extent are “Emploi des coordonnées rectangulaires stéréographiques pour
le calcul de la triangulation dans un rayon de 560 kilométres autour de Vorigine” by
M. H. Roussilhe and published by the Section of Geodesy of the International Union of
Geodesy and Geophysics, May 1922; “De stereografische kaart projectie in hare toe-
passing”’, by Hk. J. Heurelink, Nederlandsche Rijksdriehoeksmeting, Delft, 1918.

In the development of orthomorphic projections through the aposphere, Brigadier
Hotine gives formulas for a satisfactory approximation to the horizon stereographic
projection of a considerable area of the spheroid for geodetic purposes. These formulas
with worked examples are found in sections 20 and 26 of his treatise, “The Ortho-
morphic Projection of the Spheroid,” Empire Survey Review, Vols. VIII and IX,
Nos. 62-66, 1946-47. _

For a small country whose boundaries are contained in a small circle of radius 3 to
3% degrees, the stereographic projection in polar form as given by equations (475), (476),
and (477) is useful using the conformal sphere as suggested by J. H. Cole. The scale is
about 1 in 1,000 at a distance of 400 kilometers from the central point. Thus by
applying an over-all scale factor the scale error can be kept less than 1 in 2,000 over a
small circle of radius of 400 kilometers from the central point.
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GEOMETRIC DERIVATION OF EQUATIONS FOR THE STEREOGRAPHIC
PROJECTIONS OF THE SPHERE

The stereographic projections of the sphere are perspective. That is, we may
project the sphere from any given point of the sphere upon any plane perpendicular to
the diameter passing through the given point of perspectivity, the only difference for
different, choices of planes being one of scale. For the geometric demonstration of the
three forms for the sphere we will use for the plane of projection a diametral plane (one
passing through the center of the sphere). '

In figure 32, W, the center of projection, is an arbitrary point of the sphere. U'is
the projection of @ from W upon the diametral plane V. The angle TWU is equal to

% D, and if a is the radius of the sphere we have TU=a tan ZTWU=aqa tan % D.

FI1GURE 32.—Geometric derivation of stereographic projections.

Now for a given value of D, @S is fixed in length. Hence if @S turns about the fixed
point S through an angle a then @ traces the circular arc @@’ on the sphere and therefore
U describes a corresponding circular arc UU’ in the plane V. )

RECTANGULAR COORDINATES
If we call the line 7U in the V-plane the map z-axis we have -

1 a sin D cos «
7 J— ——
2=TU’ cos a=TU cos a=a tan 5 D cos A=

, (472)
a sin D sin a

. - ) 1 .
U’ — - - —_——
y——T sin a=TU sin « atan2D31na 1| s D
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Now comparing figures 28 (p. 110) and 32, the points O and  correspond in the
figures and we have from equations (359)

cos D=sin ¢, sin ¢+ cos ¢, cos ¢ cos A,
sin' D cos a= cos q,'> sin\, | (473)
. sin D'oin a=c08 ¢, Sin ¢—sin ¢, cos ¢ cos \.
With these values placed in equations (472) we have

_ @ COS ¢ sin A
1-Fsin ¢, Sin ¢-1-coS ¢, COS ¢ COS N’

(474)
__a (cos ¢, sin ¢—sin ¢, cos ¢ cos \)
- 14-sin ¢, sin ¢+cos ¢, cos¢ cos A !

which are identical with equations (468) as obtained before.
Note from equations (474) and figures 28 and 32 that with ¢,=0 we have again
equations (457) for the meridian stereographic projection of the sphere. With ¢go=mn/2

_acos¢sin\_ asin psin N 1 . __acos$cos N
we have z= Ttsng — 1icosp =g¢ tan 5 D sin N\, and y= Itsne —
_%0_052__‘_ —a tan l p cos \, which give, after interchanging z and y and chang-

ing the negative 31gn to reverse the positive direction of x, x=r cos \, and y=r sin A,
where r=a tan 5D P being the colatitude. These are the equatlons for the polar
stereographic projection of the sphere corresponding to equations (431) with e=0.

POLAR COORDINATES

From figure 32 and equations (472) we have at once the horizon stereographic
projection in polar coordinates. That is,

0=a,

(475)
p=TU'=aq tan l D.

By d1v1d1ng the members of the third by the correspondmg members of the second
of equations (473) we have .

cos ¢, tan ¢—sin ¢, cos )\

(476)v

tan. a= Y
and from the second of equations (473)
sin chos ¢ sin )\_ 477)
cos o

, To obtain polar coordinates for the meridional and polar stereographic projections
we have but to place ¢,=0, 5 1n equations (476) and (477).

For the spherical forms of the stereographic projections it is custorhary to take as
the radius of the sphere, the mean radius of the spheroid at the pole of the projection.
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That is, from (160) we take r=+/R,N,, where the subscript , refers to the latitude
&0 of the pole of the projection. We would use this value in place of @ throughout the
formulas for the sphere.

When the conformal latitude, x, is used to take into account the spheroid, the

radius of the conformal sphere is then, from (257), » Ngocsoi %o,

For the horizon stereographic, if it is used to map a small area on a large scale,
the scale will be improved by using r*Ng—:SOS)—(;—O instead of » = @ as shown in the above
development. That is, we would replace @ in the formulas for the horizon stereo-
graphic by N, CSOS %o, the scale factor from (190) being then

N N, cos ¢o cos x
N cos ¢ cos xo(1+sin x sin x+-cos x cos x €0s N)

(478)
For the meridian stereographic, which is centered on the Equator, we have ¢o=0

and thus r=q, the semimajor axis of the spheroid. Hence the formulas as given for
this projection are satisfactory for mapping small areas on a large scale.
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