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PREFACE. 

In this publication an attempt has been made to gather 
into one volume all of the investigations that appl to the 

mainly for the reason that no such treatise has ever 
been produced in the English language. No adequate 
treatment even of the ordinary, or American, rly- 
conic projection has been given in any separate pu hca- 
tion. The work b Thomas &a’ entitled “A Treatise on 
Projections,” pubtshed by the % nited Statea Coast and 
Geodetic Survey, 1882, gives almost no treatment of the 

olyconic projection as used by the Coast and Geodetic 
&wvey, but merely makes reference to the various early 

tion regarding it. 
The subject of projections as a whole seems to have been 

considerably neglected b authors who em lo the English 
language. A small worg by Arthur R. &I& pubhshed 
by the Cambridge University Press in 1912, is an excellent 
introduction to the general subject, and 
some awakened interest in this branch o apphed mathe- 
ma tics. 

works were especiall consulted: The most excellent wor 

faces e t  les Projections des Cartes 860 aphiques, Paris, 
1881; Trait6 des Projections des Cartea Bographiques, by 
A. Germain, Paris 1866 ( P) ; Lehrbuch der Landkartenpro- 
jektionen by Norhert Hem, Leipzi 1885; Notea on Stere- 
ographic bro’ection by Prof. W. #Hendrickson, U. S. N. 

It is hoped that the treatment of the various classes of 
polyconic projections may be found complete enough to 
serve all practical purposes. 

system of polyconic projections. This waa un c9 ertaken 

reports of the Superintendent of the Survey for J orma- 

gi,, promise Of 

-Y! 
by M. A. Tissot, M z moire sur la Re rkentation des Sur- 

In the preparation of this publication the follo 

2 



C O N T E N T S  . 
Page . 

7 . 
10 
13 

Determination of ellipeoidal expressions ......................... 
Development of general formulae for the polyconic projections .... 
Classification of Dolvconic projections ............................ 
Rectangulrv poljmhic projections .............................. 
Stereographic meridian rejection.. ............................. 
Derivation of stereopp&c meridian projection by functions of a 

complex varialile ........................................... 
Construction of stereographic meridian projection ................ 
Table for +reographic merid+ projection ....................... 
Stereographic horizon projection ................................ 
Derivation of stereographic horizon projection by functions of a 

corn lex variable ........................................... 
Proof &at circles project into circles in stereo.graphic projections .. 
Construction of stereopphic hoezon projection ................. 
Solution of problems in etereographic projections ................. 
Confohnal polyconic projections ................................. 
Determination of the conformal projection in which the meridians 

allels are represented by circular a r c s  ................... 
8peciaKLs of the projection .................................. 
General atudy of double cmular projections ..................... 
Conformal double circular projections ........................... 
Cayley's princi le ............................................. 
Discussion of d e  magnification on the conformal double circular 

projection ................................................... 
Equivalent, or equal.-, &conic projections ................ 
Conventional polyconic propctiona ............................. 
Nonrectangular double cucular projections ....................... 
Projection of . Nicolom or globular projecbon ...................... 
Pro ection of P . Fournier ....................................... 
O d i n q ,  or American, polyconic projection .................... 
"kwt's mdicatrix ............................................. 
Tablee of elemenb of the ordinary, or American, polyconic projec- 

tion ......................................................... 
T r a n s v e r s e ~ l ~ n i c  projection ................................. 
Projection or t e international map on the scale of 1 : 1 OOO OOO ... 
Tables for the projection of the aheetrr of the international map of 

the. world .................................................... 

and 

3 

13 
24 

30 
34 
36 
36 

42 
43 
48 
52 
72 

80 
93 . w 
105 
106 

109 
114 ... 
119 
129 
136 
138 
143 
153 

166 
187 
172 

173 



4 CONTENTS. 

ILLUSTRATIONS. 

Front' iece.--'kanrrveree polyconic projection of the North 
Q. l.--G?nera%g ellipae with the radii of-curvat- of the earth. 
Fq. Z.-Differentml elements of a palycoruc proj&on.. . . . . . -. - 
Fig. 3.-cOIU?trUCtiOn of arc of parallel on rectangular polyconic 

projection. . . . . . . - - -. . . -. . . . . . -. . -. - -. . . . . -. . . . . . . . . 
Fig. 4.Ent i r0  aurface of the sphere on rectangular polyconic 

projection .......................................... 
Fig. 6.-Radiua from center on stereogrsphic projection .......... 
Fig. B.-l'xanaformation triangle for mendian Btereagrsphic pro- 

jection. . . . . . . . . . . . - - -. - -. . . , . . . . . . . . . . . . . . . . . . . . . . . 
Fig. 7.4tBreogra~hic meridian projection of a hemiephere.. . . . . m. 8.4onstrucbon of atereofmphic meridian pm'ection ._.... 
~ ig .  9 . - w f o m t i o n  triang e for -phc honzon pro- 

ection. - - - . . . -. . . . . . . . . . . . . . . . . . . . . . . . -. . . . . . . . . -. . 
F'ig. lO.-dtereographic horizon projection of a hemiaphem- 

horizon of Paris ............ . -. . . . . :. . . . . . . . . . . . . . . . . 
Fig. 11.-Pmof.%t circlea project into &lee on aterwgmphic 

Projec~O ns......................................... 
Fig. lZ.--cOnStruction of parallels on stereographic horizon pro- 

jection. . . . -. . . - . - . . . . . . . . . . - - . . - . . - . . - . . . . . . . - - . . . 
Fig. 13.-&.nat?Iction of men& on stereagraphic horizon p w  

ec~n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . .  
Fig. 14.-Elemen$ O! B small circle o n  atemgraphic rojection.. . 
Fig. 15.-Detemma bon of the arc dlstsnce from $0 centex on 

etereo$rephic projection _.... . . -. . . . . . . . . . . . . . . . . . . . . . 
Fig. 16.-Projecbon of a circle with given pmiection of pole and 

@?en. polar +rice on etereograp+c pojection.. . . . . 
Fig. 17.--prol~~qn of. m l e  w h w  pole .proje$ion Ilea. on the 

pmbve a l e  on ~tereogra hic project~on.. . -. . . -. . 
Fig. 18.-Pmjection of 8 great e c l e  wid given pole projection on 

phic pmjectIon ...... -. -. , . . . . . -. . . . . . -. . . . . e. lQ.-hT us o centere of peat circlea through a given point on 
a@rtypphic projection ...... . . -. -. . -. . . . . . . . -. . -. . . 

Fig. 2O.-Projec~on of a great cmle through th-e projectione of 
two even inta on atereographlc prolection. . . . . . . . . 

IQ. Zl.-Pbe t h r o u z  the plea of two great circles.. . . . . . . . . . . 
Fig. 22.4reat. chyle arc between two pinta on ~te-phic 

rojec~on ......................................... 
Fig. 23.-Sp% ere showing interntion of 'ven lines.. . . . . . . . . . . . 
FQ. H.-hjection of great circle tb rous  twopoi=$ and length 

o arc between them on &reo p h c  projection. - . . . . e. %.-Projection of great circle througrtwo pinta on *reo- 
graphic projection, aecond method.. . . . . . . . . . . . -. . . . 

F'ig. 26.-Proj~ti?n of at circle with .veri ipclipstion to the 
plurutave.pEe on erepsrap E c pro ecbon.. . . . . . . . . . 

Fig. 27.-hbrIrIh?abon of the mchm?tIon of p h e a  of two 
great.cmlea on atergraphic projectaon.. . . . . . . . .. . . . . 

Fig. I.-Projecbon of the mend- and parallel through a given 
point on etereographic pro'ection . . . . . . . . . . . . . . . . . . . . . . - e. B.-Projecti?n of -lea paradel to given circle on stereo- 
graphic pmjecbon. ........ .. . . . . . . . . . . . . . . . . . . -. . . . . 

F'ig. 3O.&m?trical relabone between orthogonal circular 
mendiansand llele h t  figure. -. .. . . .. .... . . . . . . . . 

F'ig.31.--Geom?t.$cal r e K m  be tween orthogonal circular 
-duma and parallela, aecond firrure ........ . . . . . . . . 

PEW' 3 c Ocean.. . . . . . . . . . . . . . . -. . . . . . . -. -. . . . . . .facing page.. 

. 

7 
8 

11 

18 

19 
24 

25 
29 
36 

37 

41 

44 

49 

51 
62 

63 

54 

65 

66 

67 

69 
80 
61 
63 

64 

66 

67 

68 

70 

71 
97 

QQ 



CONTENTS . 8 

Fig . 32.--Cayley’s principle ................................... 
Fig . 33.-Lapnge s projection with Paris as center of least altera- 

 on...... .......................................... 
Fig . 34.-Lagrange’s rojection, earth’s surface in a circle ........ 
~ r o  . 35.~eometricaPre1ations of atractozonic projections ........ 
Fig . 36.4eometrical relations of nonrectangular double circular 

projections ........................................ 
Fig . 37.-”2olosi’s projection or globular projection ............. 
Fig . 38.4eometrical relations of Fournier’s projection .......... 
Fig . 39.-Projection of P . Fournier ............ , ................ 
Fig . 4O.-Ordinary, or American, polyconic projection of t h ~  entire 

sphere ............................................. 
Fig . 41.-A curve and its pro’ection ............................. 
Fig . 42.-Two tangents at ri&t angles andtheir projections ...... 
F!g . 43.-Projection of infimtely near points ...................... 
f i g  . 44.-Tissot’s indicatrix ..................................... 
Fig . 45.-Angular change in projection, first case ................ 
Fig . 46.-Angular change in prolection, second case .............. 
Fig . 48.--Transformation triangle for transverse polyconic pro- 

jection ............................................ 
Fig . 47.4omtruction of transverse polyconic projection ........ 

Page . 
108 

112 
114 
119 

130 
138 
139 
142 

150 
154 
156 
156 
158 
160 
161 
168 

169 



I Blank page r e t a i n e d  for p a g i n a t i o n  1 



991943 0 - 62 (FACE P. 7) h r ~ ~ ~ ~ ~ n ~ ~ ~ - l k u u m s r a e  pelyoonlc projection of the North PnciAo Ocean. 



By OSCAR S. ADAMB, 
Geodetic Computer, 17. S. Coast and CCodGtic Survy. 

DETEmATIOH OF ELLIPSOIDAL EXPRESSIONS. 

In the consideration of the sub'ect of map construction, 

the meridians and parallels are to be represented in an or- 
derly way upon the lane surface of the map. This is done 
by the adoption o some mathematical ex ression that 
determines a one-to-one relation .between t e meridians 
and parallels and their correspondmg curves in the plane. 
In the consideration of this determination, the earth can be 
looked upon either as a sphere or as an ellipsoid of revolution. 
When especial accurac 1s desired, the eccentricity must be 
taken into acoount. d t h e  formulas are determined for the 
ellipsoid, they can be reduced to those for the sphere by 
setting the expression for the eccentricity equal to zero. 
Since the elli soidal form is to be taken as the basis of 
most of the P ollowing discussions, a preliminary determi- 
nation of the necessary lines will be gven. 

In  f i v e  1 let EPS represent a quadrant of the enerat- 

normal a t  P and P' K the same a t  P'. Pf the equation of 
the ellipse be given in the parametric form 

x=a cos + 
y - b  sin +, 

a will represent the equatorial radius or the semimajor axis, 
and b the polar radius or semiminor axis ; + is the eccentric 
an@e as indicated in figure 1 If cp 18 the latitude of the 
point P, it will be seen that 

the initid queation to be decide d is the manner in which 

g P 

ing ellipse. P and P' are contiguous oints; P P , is the 

/ 

but 

ax. Gs tan ( p a -  

dx= -a  sin $ d$ 
dy- b cosJId$. 

7 
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% 

Hence 
a tan q = ~  tan 4. 

We denote the eccentricity by e and define ‘it by the 

8 2  
equation 

. f’,-=1--, aa a2 
* as-82 

hence 
-a5-. b 
a 
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By substituting this value, we obtain 

tan $= .$1'-;i tan cp. 

9 

- cos +9 -= 1 _ -  _- 1 
cos += 41 + tan24 41 + tanzcp - €2 tanzcp 41 - €3 sin*q 

sec2+ a$= J G 2  sec2cp acp 
J 1 ~ e c 2 ~ a ~  - - J l , d a c p  

d+ = 1 + tan2p - 62 tanzp 1 - t 2  sinzcp' 

If we denote the radius of curvature PI< of the meridian 
by pm, we have from the general theory of plane curves 
the relation pmdp = ds. 
But 
ds = ,I- = Jaz sid# + ba cos2# a$ = a&T'Z2JJ a#. 

A l S O  
Jr2 

-J1-2sin2cp 41 - 2 cos2+ = 

and 

The normals at an two points on the same parallel circle 
int,ersect in a point 5' of the axis of rotation. If we pass 
a plane through these two normals and then let the nor- 
mals approach each other until the finally coincide, we 

erpendicular to the meridian a t  the point of tangency, 
t h e  radius of curvature of a small aro in this direction is 
given by PK' because the normals of two contiguous 

obtain a vertical plane tangent to t s le given parallel and 
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ointa of this arc intersect in K'. If we denote this radius 
gy pn, we have 

a - 5 a cosy/ 
PUP-=-- cos 4 cos Q (1 - €% S i n Z ( 0 ) " S  * 

If the aement of length of the meridian is denoted by am, 
we obtain 

This is an elliptic integral that it is not necessary to 
evaluate in thLs place, since we shall have occasion to 
employ it only in the differential form. 

DEVELOPMENT OF GEJXERAL FORMULAS FOR T m  POLY- 
CONIC PROJECTIONS. 

Tissot defines a polyconic projection as one in which 
the parallels of latitude are represented by arcs of a non- 
concentrio system of circles, with the centers of these 
various circles 1 This line of 

not necessarij the central meridian of any given map 

In the following discussion the latitude will be denoted 
by Q, and the longitude out from the central meridian 
wrll be denoted by A. 

In figure 2 let QM be the arc of a circle that representa 
ven X on the arallel of latitude Q, with radius SQ 

an center at S. t RM' be an arc of e ual A on the 
parallel of latitude Q++Q, with radius S'R an center a t  S'. 
0 is the point of intersection of the central meridian and 
the Equator. Then since 8 is a 
decreasin function of Q, SS' is equal to -ds. If the 
angle QSP is denoted by e, we have 

g u on a straight line. 
cehters is gener ralf ly o ed the central meridian; but it is 

and in cases B 08s not appear upon the map at all. 

a E, 

Let OS be denoted by 8. 

s~- -a8  e. 
SIP- -ds sin e. 

M'N=S'M' x L M'S'N. 

L M'S'N= L0S'M'- LOS'N 
But 

5 L O S ' W -  LOSN-  LS'NS, 
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Since 

But 
LOS'N= L O S N +  LS'NS.  

be L OS' N' - L OSN E -dp. 

8' M' = 8' N = p -+ dp, 

ap 

at the limit 
S'P -&sine 

L S ' N S = r N =  P + d P  

L 

\ 
\ 
\ 

'\ 
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Theref ore 

or, at the limit 

MN = sM- S N =  s M -  S' N -  SP, 

since at the limit 

But 

By substituting this value and the value of SP, we obtain 

S'N = PN. 

SM-S'N= -dp. 

M N =  -ap+as cos e. 
If we denote L M'MN by 9, we have at the limit 

If we denote the change in scale or the magnification 
dong the meridian by k, and that along the parallel by 
kp, we shall obtain the following expressions for these 
quanti ties: 

M ' M =  M N  sec += (as cos e-ap) S'W q. 

The arc of the meridian on the earth that is represented 
by 3.f" is given by 

a(i - €3) ap 
(1  - €2 sinzq)": a dm = p,dp - 

Hence we have 
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The arc of a parallel on the map between the meridians 
of longitude and X+dX is equal to 

p (g) dx, since cp is constant. 

This arc upon the earth is equal to the expression 

a dx COS (0 
PnCOs (P dx = (1 - c p  sin2cp)1/i' 

* 

Therefore 
p (1 - ea sinacp)'/l -. be 

a COS (0 ax k, = 

The ratio of increase of area, denoted by K, is given by 

Ii= k,k, sin (f - $) = kmkp cos #, 
or - _  

p(i -2 sin2q)l da cos e - H )  ap -- 
cp ax ==,a (1 - e Z )  cos 'p ( a, 

CLASSIFICATION OF POLYCONIC PROJECTIONS. 

The general division of polyconic rojections is sub- 
divided into the following classes whic I! are not, however, 
mutually exclusive : 

(1) Rectangular polyconic projections. 
(2) Stereogra hic meridian and horizon projections. 
(3) Conformn P polyconic frojections. 
(4) Equal area or e uiva ent polyconic projections. 

(6) Ordinary, or lmerican, polyconic projection. 
The general differential formulas developed above will 

( 5 )  Conventional o s yconic projections. 

now be applied to these classes in the order named. 
RECTANGULAR POLYCONIC PROJECTIONS. 

The condition that must be fulfilled if the meridinns and 
are to intersect a t  right angles IS parallels of the ma 

*=O. 

Since this condition requires, whatever the value of s and P, 
that 

tan $-O, 

expressed analytica lf y by 

we must have 
be as 

acp -+- sin 8-0. 
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Let us introduce as a new variable a function of cp 
denoted by u and defined by the equation 

But  

hence 
1 be 1 au -_=___.  

sinebcp udp 

By integrating this partial differential e uation with respect 
to cp, we obtain the required relation. &is integration may 
be carried through in the following manner. 

sin e dcp= -p!! 

e log tJin --log cos = -log u +log r (XI .* 2 

Log r ( X )  is a function of X that is added since the integration 
is partial with respect to cp. The function r ( X )  is as yet 
undetermined. 

log tan -=log- 8 r(N 
2 u 

or 

*Thb function has no connection with the gamma function defined by the second 
Eulerian Integral. 
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Since for X=O, e must also be zero, the function r(X) must 
vanish with X. This is the only condition that is required 
to ive a rectangular olyconic projection. & we choose an ar itrary function for F(X) that van- 
ishes with X and another arbitrary function of (o for u and 
set 

then the net will always be rectangular provided that 

as 
G p = UTu' 

dP 

in which s is also an arbitrary function of rp, or provided 
that 

with p arbitrary. 

tion $== 0 and sec #= 1, we have 
Since in this case of the rectangular polyconic projec- 

since 

If we wish the parallel of latitude (o to lie on the developed 
bme of the cone tangent to 'the earth at latitude (o, we 
must have 

a cot 9 
P=(IiSTOll'' 

If, besides, the parallels are to be spaced along the central 
meridian in proportion to their true distances, we must 
also take 

v a ( 1 - d )  aP + a cot $9 
0 (1 - 62 sins pp>'/* (1 - t' sin2 cp)'"' 
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With these values we obtain 

ds a(1-2) a cosec2 (O a e2 cos2 cp 

dcp- (I - €2 sin 2 c p > * / g -  (1 - €2 sin2 p) ' /g+ (1 - €2 sin2 q ) a / *  
_- 

hence 
1 as - -=-cot cp. 
P dcp 

Theref ore 

by integration, we obtain 

log u = -log sin cp = log cosec (o, 

or, passing to euponentials, 

Bu t  
u = cosec cp. 

e r(A) tan - =- = I' (A) sin cp. 2 u  

The length of an arc of the developed parallel is given by 

' 0  
2 

tan 2 

- 2a cos cp 

(1 - 2 sin2 c p ) ' / a  

e 
e 2  

- 2a cot cp 

(1 - 2 sin2 c p ) ' / z  
tan - - = r(M 8' e tan 5 2 po = 

On the equator, since (o= 0 and e- 0, we obtain for an arc 
from X = 0 to X the value 

equatorial arc = 2a I'(A). 

If we now add the condition that the e uatorial arcs are 
to be preserved in their true length, we lave  

2a r ( X )  =aX 
or 
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This value gives 
e x  tan z-z sin cp. 

This gives the full determination of the projection. With 
these values we shall now determine the magnification 
along the meridians and parallels. 

- a cosec2 cp + a2 + aea cosa cp 
(1 - 2 sinz c p ) " ~  

- - 
and 

as a cota cp 
dcp (1 - czsinz c p ) ' / ~ *  

Substituting these values in the differential formulas on 
pages 12 and 13, we obtain 

-e: - 

cosec2 (a a2(1  + cos2 cp) k, = - 1 - 8 sina cp Cot' cp COS e - 
1 - € 2  1-8 1-2 

The formula for k, shows that the value of k, don the 

maintained constant 9 ong this meridian as was provided 
by the choice of the value for s. This means that the 
parallels are spaced along the central meridian in pro- 
Portion to their distances apart upon the earth. Srnce 
fhls is true, with the known radii we can construct the 
Parallel arcs either by drafting or by plotting by .means of 
computed coordinates.. The only things remainlng .to be 
determined are the points of intersection of the meridiass 
with these parallels. 

central meridian is e ual to unity; that is, the scae 5 is 

In order to determine these points, we have fist 

881943 0 -  52-  2 
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But the righbhand member of this equation is equal to 
one-half the arc of the parallel of latitude cp from X = 0 to 
the value A. If then in figure 3 we lay off the distance M N  
on the tan ent to the parallel drawn from the point where 

to one-half the arc of this parallel up to the iven Ion itude 
X, the an le NCN will be equal to one-hd of 0. $0 de- 
termine t%b point of intersection, from N as center with a 
radius NiKconstruct an arc intersecting the arallel at iKl. 

with-the parahel cp 
This pro'ection has been much used by the English War 

Office for t h e construction of maps. 

it crosses t % e central meridian and take it equal in length 

The point M is then the intersection of t E e meridian X 

We can easily determine the radius of curvature of the 
meridiana in t h  projection. In figure 2 

W M =  (de COB e-dp), 

since in this  cas^ cos +=- 1. 

The angle between two successive radii of curvature is the 
angle between the tangents to the pard& of cp aad cp + dp 
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a t  the points’M and M’, respectively, since the projection 
is rectan ular. This angle is evidently equal to de. 

By difkeerentiation we obtain 

since is a constant for a given meridian. 
Hence 

x cos aQ 
A2 

3 1 +- sinzcp 4 

The radius of curvature of the meridian, denoted by p. 
is given in the form 

a0 = 

ds d p  By substitut.ing the values of - 9 --! and cos 8 and reduo 
ing, we f b d  

dcp dcp 

x2 
a [ 1 - ea + (1 - ez)a sin2 p + - cos2 cp (1 - ea sina cp) ]  

x cos cp (1 - t2 sin2 c p ) 3 ’ 2  

2 Ps = 

The magnification of area becomes 

K= 
t2 [l +COS2 $01 1 - 2  s i n 2  Q sin 8 cot2 cp COS e - )A sin (P’ 

- 
1 - c 2  l - - a Z  

But 
x’ 

A 2  

1 - sin2 (p 

1+ sin2 cp 
COS e= 

z- 
and 

sin cp 
A 2  l+- sin2 p 
4 

sin e- 
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By substituting these values we obtain 

or, on roduction, 

x2 A2 1 -$sin2p 1+;i-sin2cp+5 cos2p 1-e2  

(I f3sin2cp)1 ' X2 
R- 

this to unity, we shall find the e uation of a 

equation becomes 
which there is no exaggeration o P area. On 

which is satisfied by X-0, or by the equation 

ha sh4cp+4 sin2cp-8 cos2cp (1 -;'_"p~ cp )=O. 

The areas of all sections north of this curve are diminished 
and those lying south of it  are increased in their represen- 
tation on the map. 

If we confine ourselves to the consideration of the sphere 
Rmay be expressed in the form 

Xa Xa 
4 4  1 + - + - cos2cp 

K- 2. 

(1 + sin2 cp)  

The differential element of area of the representation is 
given in the form 

x 2  

4 4  1 + - + - cos2cp 
cos cp aP ax. dS = a2 

(1 +;sin2cpJ 
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If the whole area of the sphere is represented on one con- 
tinuous map, one-fourth of the area of the representation 
will be given by integration of this expression from X = O  

to X=r and from cp=O to cp=- 2' 
To obviate the use of the fractions, i t  is better to let h = 2y; 

y will then range from 0 to I and dX=2 dy. 2 
The total area S is given by 

n- 

+cos8c8 cp tan -l - sin (p G ) 
7r cot2 cp cos $0 + 2 cosec 2cp cot (p 1 s = 4 a s l f  - 
(I +$ sin 2cp 

The quantity in brackets has to be evaluated for the lower 
limit, since it takes the form 00 - 00 st this point. Let us 
write it in the form 

ain (p - tan -1 (4 sin 9) 2 
sin' p 

9 

which takes the form a t  the lower limit. 

sin2 p 
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Theref ore, 

S=a3[(4+*) tan-1 ;+2r1. 

This value is greater than the surface of the sphere in the 
ap roximate ratio of 8 : 5. 

h e  length of the outer meridian for the representation 
Of the sphere is given by four times the integral of a IC, d p  

.ir from p=o  to (p=-with h = r  in the value of 8. 

For the sphere k, = coaecl (p - cota (p COS 8, 
and for the outer meridian 

Ira 

2 

1+7 (1+ cosa Q) 

knI = * 1+x sinap 

The length of the meridian is, therefore, given b i  

Bg means of a table of integrals we fhd that the value of 
tb integral is given in the form 

1 = 2ar[(4 + *)>* - 11. 
eat circle at the outer limit of the map length of a 

18 increased in t iT e ratio 

(4+ a)% - 1 : 1 or about 2.72 : 1. 
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STEREOGRAPHIC MERIDIAN PROJECTION. 

In  the discussion of the stereographic meridian and 
horizon projection, it is probably best to consider first the 
s here and later to indicate the manner in which the 

the differentia formulns given before, we need only to 
set E equal to zero. 

Any stereographic projection is a perspective projection 
of the sphere, either upon a tangent plane or u on a dia- 

the s&ce of the sphere in such a way that the diameter 
through the point of projection is perpendicular to the 

P e P lipsoidrtl sha e can be taken into account. To employ 

metra1 lane, with the center of the projection P ying upon 

Fro. 5.-Radlus from canter on storeozraphlc projection. 

plane u on which the rojection is made. 

of scale between that and the tangent lane. 

of the sphere determined by the diameter PQ and the 
projecting line PM. P is the point of projection, OR is 
the trace of the diametral plane upon which the map is to 
be constructed, and the oint Q pro ected into 0 forms 

; then the arc Q M  is the measure of p .  All points 
o t e sphere at the arc distance from Q will lie upon a 
circle the plane of which is paralle to the plane OR.  The 

We shall make 
use of t R e diametral p P ane since there is only a difference 

I n  figure 6 let the circle Q M R P  % e a plane section 

the center of the map. Eet the ang i e &OM be denoted 

b9 E 'f 
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lines that project the ointg of this circle will all lie upon 
a right circular cone tEat will cut the lane OR in a circle 
the radius of which will be equal to OK. OP is equal to a, 

and the angle OPN is equal to 5 
Rence 

ON=p-'a tan E +  2 

If we denote the angle between p and the X axis in the 
mapping plane by w, we have 

a sin p cos o 
1 +cos p 

s = p  cos o-a tan 2 cos w =  
2 

a sin p sin w 
1 +cos p - y = p s i n o - a t i n E s i n w =  2 

W 

Fro. e . - M m u o n  trimgle for meridlen stereographic prq)eOtim. 

If the point of rejection lies on the Equator as it d.0- 
in the stereograplic meridian pro ection, the values of 

In figure 6, let WQV be the E uator. and 2' the Pole 

the functions of p and w must be B eterrmned in terms of 

and let ?'Q project into the centra f mmdan of the map. 

(P and x. 
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P is the point that we were considering in the previous 

PQ-P 
figure. 

From the trigonometry of the spherical triangle we 
have the relations 

cos p=cos  x cos cp 

sin p sin w =sin cp 

sin p cos w =sin COB 9. 

If these values are substituted in the equations for 2 
and y, we obtain 

a sin X cos cp 
i +COS COS cp X== 

a sin cp 
Y"1 +cos x cos $0' 

, 

From these equations, by aolving for sin X and coa h, 
there result 

2 sin X-- tan cp Y 

Hence 

or, by reduction,, 
d+y2-2ay COBBC (p= -aa 

or, as uaually written, 

2' + (y - (I COB00 cp)' = 0'co tap. 
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This equation shows that the parallels are circles, and that 
the pardel of latitude 9 hm the radius a cot Q, and that 
the center lies at  the point z = 0, y = u cosec cp. The paral- 
I& are therefore circles, nonconcentric, but having their 
WnBrs on the line x-0. The projection is thus eeen to 
be a pol conic rojection in the sense of Tissot's definition. 
By sorving tge original equations for sin (0 and cos (p we 

6nd 
y sin X 

a sin X-x c'bs X S i n  Q= 

X 
Q=a sin ~ - x c o s  X' 

BY squaring and adding, the equation of 
obtained. 

the meridians is 

or, on reduction, 

z'+ya+2ax cot A-a2 

or, as usually written, 

(z + a cot X)2 -+ ya - aa cosecaX. 

The meridians are thus seen to be circles also; the circle for 
the longitude x has the radius a cosec X, and the center hes 
at the point 2 = u cot h, y - 0. 

s 

In this projection we have, therefore, 

p - a  cot Q 

s = a  cosec (o 

x sinhsin Q 

p l f c o s  A COB cp 
sin e--= 

- -a cot cp cosec (p 
a8 
&-- 
be ds  a sin x cot cp a sin X cot cp rp o, 

sin *- 1 +cos h co8 $0- 1 +cos X cos Q 
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Theref ore 

of the rectangular polyconic pro'ections. 

and along the meridians, respectively, are for the sphere 

tan 9 - 0, or 9 = 0, and tho projection belongs in the class 

The equations for the rnagndcation along the parallels 

But 

a cosecap &=- 
cos x +cos Q 

e- 1 +cos x cos Q 

and 
be sin Q 

a-1 +cos x cos $0' 

By substituting these values in the formulas for & and k, 
we obtain 

-a cot p cosec Q (cos + cos (p) * +a cosecay 1 +cos x cos Q 

kln= a 
1 

E: 

1 +cos x cos cp 

a cot Q sin cp 1 
k p ' a c o s v  1 +cos x cos ~ = l + o O s  x m $0' 

The projection is therefore conformal, since the meridians 
and parallels form an orthogonal net and the magnifica- 
tion along the meridians and along the parallels is the same. 
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DERIVATION OF STEREOGRAphlC MERIDIAN PROJECTION 
BY FUNCTIONS OF A COMPLEX VARIABLEP 

The element of length upon the sphere is given in the 
form 

dSa = aa @'pa + dha  COS^^) = aa CO+ 

If we set 

dS becomes 

Zcp , 
d U  =- 

dSa = aa COS' cp (da' + dX'). 

cos cp 

Any conformal 

usual 4-1. 
rojection may then be ex ressed as a 

function either o f u + i  X or of u -i X, in whic g i denotes as 

u=log, tan e+$), 
a See Oenernl Thy of the Lambert Cdormal  C d o  Projecttan. Spedel Publication 

No. a, U. 8. Coest an Geodetlo Surrey. 
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or, on passing to exponentiais, 

e*= tan (2.;) 
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This can also be written in the form 

z+ iy=a i  tanh - ('a 
ai sinh (7) U - i X  

ai sinh (7) U - i X  cosh (7) U + i X  

cosh (7) a-iX cosh (7) U + i X  

x + i y =  
cosh (q) 

= 

- ai (sinh a-sinh iX) - 
cosh u + cosh i X  

ai (sinh u - i sin X) 
cosh u + cos X 

P 

a sin X + ai sinh u 
cosh u+coa X 

E 

a sin &+ai tan (o 

see Q+COS X 
= 

a sin h cos p+ai sin cp 
1 +cos X cos cp 

By equating the real parts and the imaginary parts this 
becomes 

- 

a sin X cos (o 

l + C O S X C O S ~  

a sin (o 

2- 

y- 1 +cos X cos $0" 

We thus b this method arrive at  the same vdues that 

of the direct projection. 'fhe fact that the projection can 
be derived by the use of functions of a complex variable 
establishes the conformality of the projection.* 

were obtaine i before by ex ressing analytically the results 

*See Coast and Geodetic Rurve Apecia l  Publication No. 63, TheQenesalTheory of the 
Lgmbert COnIormal conlo Prolec8an. 
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In order to take into consideration the ellipsoidal shape 
of the earth, we proceed in the followbk way. If we 
denote the element of length upon the e psold by dz, 
we have 

THEORY OF POLYCONIC PROJECTIONS. 

In th' is case 
(1 -2) dcp 

cos P (1 - ea sin2p) 
- (1 - €2 sinZ(a - tZ cosacp) dp 

cos cp (1 - e) sin2cp) 

au = 

- 

aV eaCOs Pa(a =-- 
cos (a 1 - ea sinap 

€ - .- 2 log, (1 + c: sin cp) 

991943 0 - 52 - 3 
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We can now,map the ellipsoid conformally upon the 
sphere by the relations 

and 
X'=X 

The latitudes cp' are computed for the parallels that we 
may wish to map; that is, for IO", Z O O ,  etc., or for what- 
ever interval we may choose. This sphere may then be 
conformally mapped upon the plane, the values of cp' being 
employed 111 the computation. Each step is conformal; 
hence the phne map IS.& conformal representation of the 

d!~$&gnification upon the sphere is given by 

- cos p' (1 - €2 sinacp)n - 
cos $7 

The total magnification is equal to the product of the 
values obtained for the ellipsoid upon the sphere and for 
the sphere u on the plane. The total magdication, 
which we sha s denote by k without subscript, since it is 
the same at any point in all directions, is given in the form 

cos $0' (1 - 2 sinacp)w 
cos cp (l+cOs x cos 9'). k- 

CONSTRUCTION OF STJZREOGRAPHlC MERIDIAN PROJECTION. 

It is a very easy matter to construct a stereogra hic 
meridian projection graphically. Divide the meriflisn 
circle into equal arcs at whatever interval it is desired 
to construct the meridians and arallels. In fi 
divisions are made at 30' inte QR'-30°; t e tangent 

vea the radius S'R' ani the center 8' for the 

south egud to OS' and with radius equal to S'R' givea 
the pro ection of the parallel of 30° S. "he tangent at  
R or d !  gives the radius for 60' of latitude, and the 
same arc transferred to the south gives the projection 

%Y the 

paralle at R' gi of 30"; a similar arc with center distance to the 
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for 60' S. The center distance 0 T= SR with radius TP' - 
TP gives the projection of meridian 60' west and OT' 
@yes 60° east; also the center distance OlJ=&"R' per- 
mits the construction of 30' W. and 0 U'=S'R' gives the 
meridian of 30' E. 

no. 8-bmtruotion of stereographlo maridlan pmW- 

hobably the most satisfactory wa to construct the 

Of coordinates of the center. The centers of the p ~ r d e b  
@U,he an the Y and those of the meridians lie on the X 
%ma. The radii and the distances of the centers of the 

projection is by means of a compute B table of radii and 
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parallels become, respectively, the distances of the centers 
and the radii of the meridians. In  the table pm and pp 
denote respectively, the radii of the meridians and of the 
parall& ; /&, m d  ap, the distances of the centers; 6, and 
6 the distances of the intersections of the meridians with 
tKe Equator and of the parallels with the central meridian. 
The table, of course, applies to the sphere and not to the 

The values are given in terms of the earth's :$e!, they are the values for a sphere of unit radius. 

TABLE FOR THE STEREOGRAPHIC MERIDIAN PROJECTION. 

-- 
q or x 

Degrees. 
0 
b 
10 
15 
20 

23O 27' 80" 
26 an 
3s 
40 
45 
50 
66 
Bo 
6.5 

880 3Y W' 
70 * 
75 
80 
e5 
m 

[In nnits of tho earth's rdius . ]  

pn, or aD 
.- 

00 
11.47371 
b. 75877 
3.86370 
2923m 
2 51204 
2 38620 
2oooM) 
1.7434b 
1.55572 
1.41421 
1.30541 
1. m77 
1.15470 
1.10338 
1. OeOoB 
1.06418 
1.0359 
1.01543 
1. w3b2 
1.00030 

PP Bm 

00 
11.43005 
5.67128 

2. 74748 
2.30442 
2 14451 
1.73206 
1.42815 
1.19175 
1.00000 
.m11 
.7WI . 5770 
.40031 
.433385 
.36397 
.a785 
.I7633 
.08749 
.00000 

a. 73205 

or 6, 

0. 00000 
.04M 
.OB748 
.I3165 
.I7633 
.20762 
.E169 
.28795 
.31530 
.a397 
.41421 
,46831 
.6%7 
.57735 

.I35016 

.70021 

.76733 

.83010 

.91633 
1.00000 

.133907 

(D or X 

Deffrec.3. 
0 
Q 

10 
15 
20 

23' 27' 3W' 
25 
30 
35 
40 
45 
50 
ba 
60 
e5 

88" 32' 30,' 
70 
76 
80 
85 
m 

STEREOGRAPHIC HORIZON PROJECTION. 

In a stereographic projection the center of the map map 
lie a t  an pomt upon the earth's surface. We have just 

If  the center is to be in latitude a, we start with the same 
equation in terms of the arc distance from the center and 
the azimuth reckoned from the great circle perpendicular 
to the meridian through the center. 

a sin p cos w 
1 +cos p 

treated t I e case in which the center lay upon the equator. 

z=- 



THEORY OF POLYCONIC PROJECTIONS. 37 

In fi 
and fi" et P be any given point. 

re 9 let Tbe the pole, Q the center of the projection, 

7r TQ-2 -CY 

?r TP=2 - c p  

&P=P 
LQTP-x 

7T 
L T&P=2 - w .  

From the trigonornotry of the spherical triangle we have 

cosp=sincusincp+cos~cosXcoscp 

and 
sin y sin o=cos a sin (0-sin a cos X cos p b  
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On the substitution of these values we obtain as defbi- 

a sin x cos $0 

a(c0s a sin $3 -sin a cos x cos cp)  

tions of the coordinates of the projection 

x=1+sin asin (p+cos a cos x cos p 

Y - 1  +sin asin cp+cos a cos x cos cp' 

From these equations, by solving for sin cp and cos 'p, we 
find 

x sin a cos X+y sin 
Sill (p" a cos a sin A-x cos X- y sin a sin X 

x cos a! 
COB $9' a cos a sin x - x  cos - y sin a sin X' 

By squaring and adding there results 

( x  sin a cos X + y sin A ) 2 + 9  cos2 a! 
=(a  00s a sin X-x cos A-y sin a! sin A)?. 

By 
h a &  

erforming the operations and collecting, we obtain 

f+y2+f2clz sec a! cot Xf2ay tan &=aa, 

which may also be written 

(x+asecacotX)~+(y-t-a tana)'=.a2sec2acosecaX. 

This is the equation of the meridians and they are thus 
seen to be circles. The meridian of iongitude A has the 
radius 

-=a sec a! cosec X, with its center at  the point, 

x =  -a sec u cot A, 

y" -a tan a. 

The centers, therefore, all lie on the line 

y =  -a tan a. 
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By solving the original equations for sin X and cos X we 
get 

z(sin a + sin (p) 

a sin a! cos (p+y cos a cos cp sin x= 

a cos (Y sin (p-y-y sin a sin cp.  
a sin a! cos cp+y cos a! COS cp COsX= 

BY squaring and adding we obtain 

%'(sin a+sin cp>a+(a cos a! sin 9-y-y sin a! sin VI'= 
cos' cp(a sin a + y  cos a!P, 

Or, on developing and arranging, 

@(sin or+sin cp)~+y~(sina+sin cp)'-2aycos a!(sina+sincp) 
= a'(&' CY COS' cp - cod a sin' (0) 

or, SnfLUy, 

a cos CY a2 cosa Q 

p+(y-sin ar+sin S = ( s i n  a+sin so)'* 

' h e  parallels are, therefore, circles with their centers all 
l e g  on the Y axis. The parallel of latitude (p has the 
ra&w 

a cos Q 

'p'sin a+sin 9' 

with its center n t  the point 

x=O, 

a cos a . 
Y=sina+sincp 

The pardel of latitude - a  is evidentl; a strcLight line, 
SmW the radius becomes infinite for t h ~ ~  value, as does 
f b o  tho distance of the center from the center of the 
Pro 'ection. 

dhe projection is seen to be a olyconic projection in 
accordance with the definition of '.&sot. 
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For the parallels we have 

a cos cp 
'=sin a+sin cp 

a cos a 
sin a +sin p 

8 =  

5 e=--= 
p 

sin h (sin a +sin CQ) 
1 +sin a sin p+ws a cos h cos cp 

s - y ~ c o s h + c o s a c o s p + s i n a c o s X s i n p  
COS e=-- 

P 1 +sin a sin p+cos a cos h cos p 
- 

s in this case is not reckoned from the Equator; but, 
since we need only the derivative of s with res ect to (p, 
it will answer the urpose to leave it as it is. fn fact, s 

centers and in this case it is reckoned from the origin 
which lies at latitude a. 

could be reckone 3 from any 6xed point in the line of 

ae cos a sin h 
bp 1 i - h  a sin p+cos a cos cos p 

be sin a +sin p 
?Si l+s inas in~++osacosXcoscp  

-= 

-= 

ds a COS CY COB cp 
&= -(sina+sin cp)Z 

d p  
&=- (sin a +sin cp)a 

a(1 +sin a sin p). 

These values may now be substituted in the general dif- 
ferential formulas and by that means we obtain the follow- 
ing resulh: 

ae ds a cos a sin X cos p 
p- +- sin 8= 

b P  dcp (sin a + sin p) (1 + sin a sin cp + cos a cos cos c p )  

a cos a sin X cos p 
(sin a+sin (p) (1 +sin a sin a+cos a cos x cos cp> 

- 
Therefore 

or 
tan J / = O  

+ = O .  
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Tho pnrallcls and meridians form, tlicn, nn orthogonnl nct 
of circlcs. 

($ cos 0-- 
k, = a cos $ 

COS  cos a: cos cp+siii a: cos x sin cp 
1 +sin a sin cp + cos a cos x cos cp 

1 +sin a sin (a 

+ G n  a +sin p)i 
-i 

- 1 
1 +sill CY sin cp+cos CY cos X cos cp 

---__ - 

1 - - 
1 + sin a sin cp  + cos a cos x COS cp' 
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The projection is thus shown to bc conformal, since the 
meridians and parallels are orthogonal and the magnifica- 
tion along both is the same. We might have taken this 
for panted since we found that the stereographic meridian 
projection was conformal and the nature of the projec- 
tion is not changed by moving the point of projection to 
a different point upon the sphere. 

In taking account of the spheroid we proceed as in the 
case of the stereographic meridian rojection. The magni- 
fication a t  a point (the same in all C f  irections) would then be 

cos ‘p’ (1 - 2 sin2‘p)11s k=-- 
cos cp (1 +sin a’ sin (0’ +cos a’ cos x cos cp ’ )  * 

DERIVATION OF STEREOGRAPHIC HORIZON PROJECTION 
BY FUNCTIONS OF A COMPLEX VARIABLE. 

The rojection, being a conformal pro ection, can be 0x- 
pressecfh terms of a function of a comp i ex variable either 
of U + ~ X  or of a-ix. Let us bake 

U - i X - p  

IJ-iX+P 

ai sinh( ) 
s+iy= cosh ( ) 

ais inh(  a - A - p  ) cosh ( U + i X + B  

cosh ( a-iX+B )cosh ( U + i X + B  ) ) 

ai [sinh u - sinh ( i X  + 011 
cosh (u  + 0) + cosh i X  

E 

=-- ai [sinh u - sinh i X  cosh 0 - cosh i X  sinh B] 
cosh u cosh 0 + sinh Q sinh p + cosh i X  

. 
But 

cosh u = sec ‘p 

sinh u= tan cp 

sinh i X = i  sin X 

cosh i X  = COS X. 
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BY substituting these valucs we ohttiin 

cli(tnn cp-isinAcoshp-cosAsinh@) 
SCC cp cosh p+ tan cp sinh B+cos A 

nsin X cosh @+&(tan cp-cos A sinh 0) 

x + i y =  

=-- ___ 
sec cp cosh p + tan cp sinh +cos A- - ' 

43 

BY equating tho rcnl pnrts and tho imnginary parts, we get 

a sin A cosh @ 
sec cp cosh 6 + tan cp sinh @ + cos A 

a (tan cp-cos A sinh 8) 

X =  

y=sec cp cosh 
Let 

then 
cosh @ = sec a, 

sinh B = tan a. 

substituting these vnlues we obtain 

a sec a! sin X 
sec a! sec cpFtan a! tan cp + cos A 

a(tan cp- tan a cos A )  . 
y =sec a sec cp + tan a! tan cp + cos A 

2= 

___ .___ 

On multiplying both numeratqr and denominator by cos 
cog cp, we derive 

a sin X cos cp 
1 +sin a sin cpfcos a cos X COS cp 

 cos a! sin cp-sin a cos X COS cp> 

.we thus arrive at the same equations that were ob- 

5 =  

___. . _- -. 
sin a! sin cp+cos a COS x cos cp 

talned before. 

It can be proved in a genernl way thnt, in .any stereo- 
g r a p h  projection, any & d o  u on the sphere IS projected 
loto a circle upon the plane o F the map. Stralght lines 
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must, of course, be considered as circles of infinite radii, 
with centers a t  infinity. Any circle either great or small 
which passes t h o u  h the point of projection will he pro- 

will lie in the plane of the circle and will cut the mapping 
plane in a straight line, which is formed by the intersection 
of the plane of the circle with the mapping plane. 

Make 
a, great-circle section of the s here containing the point of 

jects into the center of the map, i. e., the point antipodal to 

jected into a straig E t line, since all of the projecting lines 

pro'ection and the ole of t Y le given circle. This grrnt 
circje necessarily wil P also pass through the point that pro- 

Let us now take any other circle upon the sphere. 

FIG. ll.-Proof that circles project into clrclcs on stereographic projections. 

the point of projection. After this is done turn the reat 
circle section into the lane of the page. The plane o f this 

given cwcle, since the plane of any great circle containing 
the pole of the given clrcle would partake of this proportv. 

I n  figure 11 let 0 be the oint of projection, KL the trace 
of the mapping lane, B 8  the trace of the plane of the 

of the map. The lines that project t e circle under con- 
sideration will evidently form an oblique cone that has the 
given circle as 4 circular section. An1 plane parallel to 
the plane of this circle will also cut t e cone in a circle. 

section,will evidently ! e perpendicular to the plane of the 

circle, and let A t: e the point that pro ects into the center h 
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We shall now prove annlytically that any such oblique cone 
thnt has ono system of circulnr scctions has also another 
s stfern of circular sections. If we have a cone passing 
t<rough the circle z = I), x2 +y2 =a2, it will be a perfectly 
gencrtd one if we tako the apex a t  the goint .x=f, y.=O, 
z = h in tho plane ?J = 0. A linu through t is point 1s given 
by tho equations 

z-f=a!(z-77L) 

y = P(z - h). 

x:,=f-aah 

yl= -oh. 

This line intersects the plane z= 0 in the point the coordi- 
nates of which are 

Since this point is to lie on the circle, we have 

But 

BY substituting these values we obtain 

(fi - hx)2 + h2yZ = d ( Z  - h)Z. 

This is the equation of a cone bearing the same d a t i o n  to 
the lane y = 0 that the projecting cone bears to the-plane 
of t P le great circle. This equation may be written in th0 
form 

hz (22 + y2 + 2 2  - a2) = z[2fhx + (az -$ + 7 2 ) ~  - 27baZ]. 

Hence, if the conical surface is cut by either of the planes, 

\ 

or 

the points of 
form 

2=y 

2fhz + (a2 -p + h2)z - 2ha2 = 6, 

intersection will satisfy an oquation of the 

x2 + y2 + 2 + 2Az + ~ B z +  D = 0 
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for all values of y and 6, and the sections will therefore be 
plane sections of a sphere. Therefore, there are two series 
of circular sections made by two systems of parallel planes, 
and both systems are parallel to the lane y=O. 

equation : 

This is, therefore, the equation of the two generating lines 
which lie in that plane. The equation of the two planes 
in opposite systems giving the circular sections is 

The trace of the cone upon the p P ane y = 0 has for its 

(fi-hz)a-az(Z-h)a=O. 

(2 - y) [2fhz + (aa -$ + ha) z - ah42 - 61 = 0. 

z2 + 9 + A’z +B’y + C’ = 0. 

By adding these two equations we get an equation of the 
form 

This shows that the four points in which the two enerating 
lines in the plane y = 0 meet the lanes forming t % e circular 
sections lie u on a circle. &nce the first system of 

Hnes that  the second system makes with the other. We 
fulfills the conditions 

sections. The mapping 
to the plane of the great 
the firat condition. The 

further condition is that it must. make the same angle with 
one of the elements of the cone I F g  m the plane of the 
great circle that the plane of the clrcle on the sphere makes 
with the other element in this plane. In  Sgure 11 

lanes makes t l! e same angle with the one of the generating 

Therefore 

and 
L CBO = L KFO 

L BOO = L FQO. 

It is thus seen that the.points B, 0, F and Q! lie upon a 
circle and all the conditions are fulfilfed for a circular 
section. 

Construct the tah enta BD and CD, draw EX parallel 
fo CD, and draw E & parallel fo BD. 
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Then 
DC: EM=DO:EO=DB:EH, 

but 

Therefore 
DC=DB. 

l?H= EH, 
1 1 
2 L EGII=- (arc OL+arc KB)-%+% arc KB 

47 

I 

LEHQ==- LEHO=T- LDBO=r-$aroOLACB 

car-- ‘ (arc OLACBK-arc BR) 
2 

4 4 2  
- - r - - - - r+2arcBK 3 1  -%-arcBE. 1 

Therefore 

and 
L EGH= L EHQ 

EH = E%. 

a similar way it can be proved that 

.EM= EF. 

EH- EM, 

EQ = EF, 

therefore the projection of D is the center of the circle that 
maps the given clrcle. D is, of course, the apex of the cone 
tan ent to the sphere along the given circle. 
. ‘&e stereographic horizon projection can be constructed 

either b computation of the radii and centers or direc.tly 
bY rapLC construction. The formulas for computatlon 

But, since 

are r3 or the meridians 

pm = a sec CY copec X 
xm= - a  sec a cot X 
ym= -a tan CY 
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and for the parallels 

a cos cp a cos cp 

a+cp 
P p P  $rCY-+xizT = 

xp=O 
2 sin ( T )  cos ry) 

Y P = s i n  a+sin cp 2 sin (T) a+cp cos (7). a cos a_= a cos CY 

The forms last given should be used for logarithmic com- 
putation. 

CONSTRUCTION OF STEREOGRAPHIC HORIZON PROJECTION. 

The method of graphical construction for ’the parallels 
is as follows: Let us su pose that we wish to construct a 
projection for a=3Oo. f n  figure 12 the point of projection 
is supposed to be in the perpendicular to the plane of the 
paper a t  E. Let tho plane of the central meridian (that 
throu h the oint of projection) cut the mapping plape or 
the $ m e  OF the paper in the line YY’. This central 
meridian section is then turned upon YY’ as an axis until 
it  falls in the plane of the paper. The eye will then be a t  
0, and A will be the point that projects into the center of 
the map. Construct the angle AEQ equal to 30°; then 
&&‘ is the trace of the equitorial plane upon the plane of 
the central meridian. The diameter PP’ perpendicular to 
QQ’ is the axis of the earth turned with the plane of the 
central me+dian. YY’ is the projection of the central 
meridian, smce the plane was turned upon this line as an 
axis; hence, if any pomt IS projected ?I on this line the 

P and P’ are the poles; draw OP and OP’. Then p is the 
North Pole of the map and p’ is the South Pole of the 
same. 

To determine the circle that forms the projection of any 
parallel, lay off the arc CQ e ual to the latitude; in the 

construct tangents a t  B and C meeting in the axis pro- 
duced a t  D. Draw OB, OC, and OD; then B‘ and c’ are 

oints on the circle, and D’ is the center of the same. 
k i t h  D‘ as center an! wlth radius D’B’ or D’c’ construct 
the circle, and the circle so drawn in the ,figure is the 
projection of the parallel of 45’ of latitude. OQ deter- 

corresponding point upon the map wil P be determined. 

figure CQ=45O. Construct C 1 perpendicular to PP’ and 
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mines tho point Q on tho Equator, and O F  drawn 

tho arc OpA; this arc is tho projection of the Equator. 
to PP' locntcs tho center a t  P; with the radius 

/ 
/ 

Y 

/ F  



50 U. 8. COART AND GEODETIC SURVEY. 

we know that the center lies upon YY’. The circle 
which represents the parallel of latitude -a has an infinite 
radius wlth center at lnsnity on the line Y Y’; it is there- 
fore a straight line pe endicular to YY’. The lower 

given by 
point a t  whch the par 3 el crosses the central meridian is 

a(cos a-cos cp) .  
Y p y h s =  sin a+sin cp 

This takes the form 0/0 ‘for cp= -a, and the limit must 
be determined for this point. 

or, otherwise, 

a(c0s CY-00s 9)- 1 -u tan 9 ($0-a), sin a+sin cp 

which for cp = 
The straight h e  pardel, therefore, conicides with the 
line of centers for the meridians. and henca must be the 

f t  is the line RR’ drawn EXe figwe. 
In figure 13 the details of the construction of the merid- 

ians are given. p and p’ are determined in the same wag 
as in figure 12. To determine the coordinates of p and 
of p’ ,  we set x-0 in the equation of the meridian and 
solve for y. 

therefore 

a becomes -a tan a. 

e endicular bisector of pp‘ .  

We thus find that 

y - -a tan afa sec a; 

Ep= -a tan a + a s e c a  
and 

Ep‘= -a tan a-a sec a. 

The middle point of pp’ is given by 

2 k ~ p + ~ p ’ ) =  -a tana. 

The perpendicular bisector of p is, of come, the line of 

the points iv and p’ and they thus have ’ as a commo~ 
chord. Thw line of centera is the line $if in the @e, 

centers of the meridians, since t % ey must al l  pass through 
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The length of F is equal to the length of Ep' minus the 
length of EF; ience the length of Fp'=a see a. The 
cent,er for the arc that is the rojection of the meridian 
of loligitude X lies on the line %Rf at the pomt.Xrn= -a 
Sec a cot X. With p f  as a center and with any convenient 
radius construct a circle; divide this circumference into 

but 
BF= Fp' tan L Bp'F, 

Fp' =a sec a. 
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If then the angle Bp’F= - A, we shall have 

BF=a sec CY cot A. 

The arc G H  must be taken as the complement of the 
lon ‘tude, for which we wish t.0 construct the meridian. 
G&s 30’; therefore C is the center of the meridian for 
X=6O0. The meridians .all ass through p and p ’ ,  so 

the centers. F is, of course, t.he center for the meridian 
of A=90°. 

that they may be constructe B as soon as we have located 

no. I-i.-Elomonts 01 n small C h l O  on StOreographiC projection. 

SOLpTION OF PROBLEMS IN STEREOGRAPHIC PROJECTIONS 

We shall now give the demonstration of the solutions 
of a few problems connected ul th  s te reorphic  projections1 
The plane of the pro ection i? called t e primitive plane! 

plane with the s here 1s called the primitive circle. The 

gistance on the sphere from one of t e poles of the prim, 

and the circle forme 1 by the xntersection of the primitive 

olar distance o P a point on the s here is the angular g 
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Infigure 15 l e t  DBEA be the rimitive circle and let AB 

Cg’ equal to Cg and drav Eg‘ from the point of sight E 
and prolon it to meet the rimitive circle a t  G; then DG 
are pro’ected into the circle of which t e arc gg‘ forms a 
part. ‘$herefore, the great circle distance of Cg and Cgl 
are equal; DG is evidently the polar distance of g’, and 
hence also of 9. If the given point lies on the line of 

. measures the construction is the same as that given for 
the determination of the great circle distance of 9‘. 

be the line of measures; g is t I? e given point. Construct 

is the arc f istance, since a 8 points of olar distance DG E 

Fm. 16.-Projection Of 8 C&Ol0 with Riven PIdeCtiOn.Of pole and given polar distance oil. 
spmaaphic project~on. 

ProbZem $.-To construct the projection of a given circle, 
its polar distance and the projection of its pole being 
given : 

In figure 16 let P’ be the rojection of the pole. NEEW 
is the rimitive circle wit{ NS passing throu h P’ and 
with $E pe endicular to  NS; NS is then &e line of 
measures, wix W as tho point of pro’ection. Draw 
WP’P and from P lay off the arcs Pp and f . q  equal to the 

given polar distance. Draw Wp and Wq, thus locating 
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P' and p' in the line of measures. A circle constructred 
o: 'p'q' as diameter is the required projection, sirice Lq 1~ the projection of the diameter of the circle on the 

e of measures. This circle can bo determined in another 
Way by locating p and p' as before; then a t  p draw the 

Q' 

E 
0 W 

S 

tan ent PQ meeting OP produced at Q; then R? locates ' center of the required circle. With 6' as center and 
with cP' as the radius, we can construct the c$de. If P' 

the primitive circle, p and p' wdl comcide, and the 
comtructio~l is evident from figure 17. 

hG* 17'-prohtion of circle whoso polo rejection lie9 on the primitive Cimh 011 S~ereO- 
grephfc projection. 
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Pro7iZem $.-To project a great circle, the projection of 

In  this case the polar distance is f and Pp=Pq=i in 

The circle asses through W and E; hence it is 

the pole being given: 

figure 18. 
sufficient to locate eit R er p' or p'; WCis parallel to OP, 

9' 

N 

ma Is.-projeetion of a great circle with given pole projwtion on skreJgraphic pwject~on. 

and in this manner Ocan be located; with Cas center, with 
0% as radius, the circle can be constructed. 

ProbZem 4.-To find the locus of centers of all great circles 
passing through a given point: 
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N 
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me triangle WP’c is isosceles, and the angle P’ Wp equals 

the angle WP’S, which is measured by Ti (2+ arc P N )  
1 

=. - Hence lay 2 
off the arc PEp=arc P N W  and draw Wcp. This is the 
same as laylng off a polar dlstance PN W from P; thus the 
line of cents? 1s the .pro~ectlon of. a small circle 
throu h the line of 51 h t  and having the polar $~~~~~ 

From fi re 19 WQ-PE; & S P = ~ - ( ~ E +  WQ,=7r- 
P E ~ = ~ - ~ N W =  WQ; hence lay off WQp=2PE1 and 
draw W p ,  thus locating C. w is evidently perpendicular 
to PQ, so that G can be locatefin that way. 

WE = L POE= L WOQ; hence a lins joining E and p 

$robZem 6.-To draw a great cucle through P ,  making a 
given angle with NS: 

I n  figurs 19 the tangent to the required circle at  P makes 
the given angle (m).mth P’OS; the perpendicular to the 
tangent makes with P’OS the angle T-m. Hence con- 

struct SP’R=z-m’with P’R intersecting the line of cen- 
t e r ~  at R, the center of the re.quired c&+e. 
The projection of a great-circle always meets the rimi- 

tive circle at the extrermties of a diamehr‘m da‘ in 
Sgure 19. 

P r o b h  6.-To h d  the projection of a pole of a given 
circle : 

In figure 18 let V p ’ E  be a reat circle; draw the per. 
pendicular diameters WE and 88, and draw Wp’p; lay off 
pP equal to 2 and draw WP, thus locating P’, the required 
pole. 

I n  figure 16 let p’ ‘ be a ‘ven small circle; through i? 
center c draw NS an8 draw %‘E a t  right angles; draw Wp 
to locate p and W ‘ to locate q; bisect the arc QNEP, locatr 
ing P ,  and draw %P, thus locating P’, the projection of 
the re uired pole. 

passing through the prolections of two given puiritv: 

1 7 r  

P N W; that is, the arc PEP = arc P N  W. 

pN $= T - E., where 4: % enobs the inclination of the circle. 

is aralle T to PQ; this gives another method for locating c. 

2 

Pro ?le m r.-To constNot.tha projection of a great circle 
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20.-Proprtion 01 a grcnt clrclc through tho projections 01 two jilvoii points on stem- 
grnphm projcction. 

In figure 20 let ORO‘S be the primitive circle and let 
and Q be the projections of the two fiven points, nnd 

!et A be the centor of the projection. T le lines that pro- 
Jcct any two antipodal poiuts are perpendicular to each 
Other; we can then easily determine the pro octions of 
%e points antipodal to P and Q through whit k the y- 
Jetted circle must necessarily pass. Draw P A  and pro oiig 

beyond A; a t  A erect the perpendicular AO, intcrsocting 
rho priinitive circle at 0; draw O P  aiid erect upon it the 
Perpendicular OP’ intersecting P A  produced in P‘; P’ is 

the rejection of the point antipodal to P. Tho tri- 

Feted line PP‘ as an axis into the plane of. the paper. 

P, &, and P’ is the required projection. I!?::; 
Seen that tho construction is correct from the considera- 

‘Ion that AP’ must be a third proportional to AP and A?. 
‘f the point of which F is the projection has tho polar dls- 

O P  $ ’ is the projecting triangle turned on the pro- 

n a similar way Q’ can be determined, but a circle 
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=a  cot 2- but OA-a, and so we have 2 '  
OP : OA = OA.: AP'. 

This establishes the validity of the construction. 

As a basis for the next problem we shall prove that if 
plane passes through the poles of two great circles it cuts 
off equal arcs on the two circles. 

In figure 21 let P be the ole of the great circle CEC' 
and let P' be the pole of JED' with the center of the 
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s.phere at 0. The triangle OPP' is isoscclcs; therefore, the 
hie PI" is equally inclincd to the plancs of the great 
circles, since it is equall inclincd to their perpendiculars 
OP and OP'. Produce 3: P' in both directions to intersect 
the planes of the circles, the one a t  Q and the other at Q'. 
The triangle OPQ = the triangle OP'Q', since O P  = OP', 
L OPQ = LOP'&', and L PO& = L P'OQ'. Thorefore, 
QO = Q'O and Q D  =Q'C'. Pass a lane t h o u  h PP' and 

of D D' and lot 
Q'F'H F be the trace on the plane of CEC'. Then L OQD = 
L OQ'H, since the corresponding right trianalos are equal. 
The arc DG will therefore equal the arc C,& and the arc 
G.'D' will equal the are OF, since Q and Q' are the same 
dlstance from their respective great circles. But the arc 

EG' ='IF- (DG + D'G') and the arc FEF' = 'IF- (F'C' + CF). 
Therefore, the arc GEG' is q u a l  to the arc FEF', and the 
Pro osition is proved. 

&o6bm &-To determine the shortest distance between 
two points whose projections P and are given; that is, 

let QGIIG' be its trace on the pane P 

to dotormilie the arc of a great circle % etween them: 
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I n  figure 22 construct the projection of the great circle 
passing through P and Q ,  the rojections of the two iven 

oter determined by the intersections of this great circle ro- 
jection with the rimitive circle and draw the PerpenJcu- 
lar diameter WE! This diameter is then the line of meas- 
ures. Locate the projection of the pole of SRN by drawing 
SRT and by laying off and by then drawing S 0, 2 
thus locating K, the projection of the pole. Draw ILP and 
K& and prolong them to intersect the primitive circle in 
P’ and Q , respectively; then P( WQ’ is the great circle arc, 
between the given points of which P and Q are the projec- 
tions. KP’ and KQ’ are the proiections of circles passing 
through the point of projection and through the pole of the 
great circle of whch SPQN 1s the projection. But tho 
point of projection is the pole of the-primitive circle; hence 
the planes that determine the projections KP’ and KQ‘ 
cut off equal arcs pn the great circle, whose projection is 
SPQN and the prmitive circle. Therefore, the &ro P’Q’ 
is e ual to the arc of which PRQ is the projection. 

‘J%is problem can be solved, together with that of deter- 
mining the-projection of the .great circle passing through 
the projectlorn of the two gwen points in the following 
manner : 

points, by the method pf prob P em 7. Draw N S  the &am- 
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FIG. 23.-Sphen, showing intersection of given lines. 

In  figure 23 let 2 be the zenith and C the center. of the 
and let MM' be the arc of a great circle joinmg the 

POnts  M and MI. If E is the point of projection M and 
w' are evident1 the projections of H and M'. firoduce 

Ra is evidently in the plane of the great circle NM', and 
Therefore, the pomts 0 

and 0' lie on the rojection of the great circle and the 
Projection is fully J etermined, since it is a circle passin 
through m, m', 0, and 0'. If MH' is parallel to mm , 
then evidently 00' is also parallel to each of these lines. 

the chord M M  ;P until it meets mm' produced in R; then 

in the primitive plane. 

B 
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Now, in figure 24 le t  NESW be the primitive circle and 
let WE be the line of measures; also let m and mi be the 
projections of the given points. Taks On'=Om' and 
On=O.m; draw Sn' to intersect the primitive circle in p' 
and Sn to intersect I t  in p .  On mm' construct the tri- 
a n & ?  Dmm', having mD =Sn and m'D =Sn'; prolong 
Dm' to  q', making m'q' = n(p', and prolong Dm to 9,  mak- 
T = n p .  Then p' is the chord distance between the 
given points, an i this chord being laid off anywhere on 

mc;. 24.-~rojectIon of great circle through two Polnta and length of arc between thefl 
on stereographic projoction. 

the primitive circle will give the great-circle-arc distance, 
The triangle Dqq' is evidently the triangle EMM' oj 
figure 23 turned on mm' as an axis into the plane of the 
projection or lnto the primitivo plane. Prolong mm' and 
g' until they intersect a t  R, and draw RO intersecting the 

through C, m, m', and c', is tho required projection o pass the 
primitive circle in C and C'. A circle made to 

$1 weat circle through the points M and a' of the sphere. 



THEORY OF POLYCONIC PROJECTIOXS. 65 

This same problem can be solved by the method of 
descriptive geometry in the following wny: 

I I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

FIQ. 25.--Projection of p a t  circle through two points on storeographfc projectfon, 
socond method. 

QQ1Q43 0 - 52 - 5 
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vertical projection of the line MM' and rr' is the hori- 
zontal projection of the same line. Prolong TT' until it  
intersects thg line S'S a t  U and erect the perpendicular 
UR intersectmg T'r  rolonged in R. R is the trace of tho 

line .MU' on the Rorizontal plane, which is here the 
primitive plane. RO is then the trace of the reat circle 
plane on the horizontal or primitive his deter- 
mines the points c and e', though w ~ c h  'the projection 
of the great circle must pass. A circle made to pass 
through the points e, m, m', and C' is the required pro- 
jectio11. Note that m'm produced passes through the 
point R, as i t  should. 

Problem 0.-To lay Off on a great circle an arc of given 
length from a given point P: 

Determine the projection of the pole of the given great 
circle rojection. In  figure 22 lot K be the rojection of 
the poye of the great circle of which the arc ,S!$BQN is the 
rojection; draw KP intersecting the primitive circle in 5'. La off tho given rtrcP'Q' on the primitive circle and 

draw K& intersectmg the projection of 'the eat circle 
in &; then P& is the projection of the rkquirerarc. 

Problem lO.-The projection of a great circle and that 
of a point being given, to construct the projection of the 

eat circle passing through the given Doint and perpen- 
gcular to the iven great circle: 

circle and then construct the rojection of the great circle 
passing through-thls pole an%the given point; this is the 

$rdZena 11 .-To construct the projection of ' a great 
circle which passes through a given point and which is 
inclined a t  a certaln angle z to the primitive plane: 

Deternine t E e proJection of the pole of the given great 

.re uired projection. 
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FIG. %.--Projection of great circle with given inclination to the primitive plane 
on stereographic projection. 

In fi ure 26 if the iven point lies on the primitive circle, 
8s N,  %raw NS and %E, the line of measures. Construct 
the angle ONC equal to the given angle z; then C is the 
center and CN the radius of the required projection.. If 
the projection of the given point is not on the prlmitive 
Ckcle, but is at  some other oint, as P, construct the arc 
cg with 0 as a center wit % OC as a radius. Construct 
?nother arc with P as a center and with C N  as a radius 
Intersecting the first arc in D ;  then with D as a center 

with RP as a radius construct the re uired projection. 

tlve circle, the construction is not always 
fact, the angle z can not be less than the ang e WOA ) 

Problem 12.-To determine the inclination of two great 
cbcles with respect to each other: 

This problem is solved by determining the projections 
Of the poles of the given clrcles, and then by measuring 
the great-circle-arc distance between them. Apply the 
Qethod of problem 6 and then that of problem 8. With 
meat circles the inclination of the planes 1s equal to the 

between the radii of the two circles drawn to the. 

prF- rossib e: ln 

(Remark.-If the given point does not 'f io on the 



68 U. 8. COAST A S D  GEODETIC SGRVEY. 

point of intersection, since the inclination is equal to the 
angle between the given clrcles. The method of the 
problem can, however, be applied to any circles, either 
great or small. Even with small circles we may draw 
the projections of the parallel great circles and then deter- 
mine their inclination mth respect to each other by the 

FIG. z7.-Determination of the 1ncUnetion of the planes of two great circles on 
stereographic projection. 

radii drawn to the point of intersection. In  fi ure 27 
let S R N  be the projection of a eat circle, with 8 as the 
center for the arc;.also let E’FW‘ be the projection of 
another great circle with 0’ as the center for the arc. 
The an le between the arcs is then equal to CK”C’, since 

the tangents, and, the projection being conformal, the 
angle between the circles is preserved in their re rmenta- 
tions. Locate the projection of the pole of ea& of the 
given great circles; K is the projected pole of the first 
circle and K’ is that of the second circle. A great circle 

the ang 5 e between the radii is equal to the angle between 
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passing through the pole of a given great circIe has its 
plane necessarily erpendicular to that of the iven 

Poiees of the two great circles has its rane erpen icular 
to the plane of each of the given circLs. If'' must then 
he the projection of the pole of this great circle of which 
IKK'I' is the ro'ectcd arc. GG' is therefore the great 
circle arc of wkch KK' is the pro'ection; or the an le 
COG' is the angle that measures t h e incllnation of t a e 
planes of the given great circles. The angle GOG' should, 
therefore, equal the angle CK" C'; the impossibili.ty of 
making a erfect construction ma came some deviation 

PTo&m lS.-The projection of a point bein given, to 

point : 
I f  the problem is to be determinate, we must have the 

Primitive circle given and the projection of one of the 
poles. 

In fi re 28 let NES W be the primitive circle and let 
2' be t,g rojection of the pole; locate the south pole by 
drawing $P and then WP erpendicdar to WP; RR' is 
the perpendicular bisector of $PI, and is therefo? the line. 
Of centers for the meridians. Let Q be the pro ection of 

this 18 the projection of the meridian through the given 
point. Construct a tangent to PQP' at Q, meetlng NS 
U 2'; then Tis the center of the rojection of the paraUel 

Of the parallel which is the arc QQ'. 

circle; therefore t l e great circle which asses t%-ou$?t; 

from .e ua P ity in the constructed B gure. 

construct the meridian and parallel passing t %: rough the 

the e v e n  point; pass a circle through P, Q, an d P', 

'and TQ is the radius; this fully R etermines the projection 
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Problem 14.-To construct the projections of the circles 

THEORY OF POLYCONIC PROJECTIONS. 

Parallel to a given circle: 

c 

re 29 let p' with center at C be the given circle. 
and t E e perpendicular diameter WE; draw 

circle. From Q lay off the polar Lp; istance 
bisect the arc PP', thus locatin Q the 

Of the required parallel circle. In the figure QR=QR'-s; 
$QV WR and WR', thus locating the extremities of the 
lameter of the given circle rr'; the center is given by 

a 
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bisecting this line. For the parallel great circle take 
QT=F; TVT locates 2 and WU parallel to OQ locates U, 
the center of the required great circle projection. 

CONFORMAL POLYC'ONIC PROJECTIONS. 

2 

it is best 

we did in treat- 

polyconic projec- 
tions, we found that 

and for the sphere that 

also 

same along 
km = k,,. 

Hence 

or 

If the pro'ection is to be conformal, i t  must be rectangular, 
and, in a dition, the scale at  any given point must be the 

the meridian that it EI along the pardel,  or 
d 

- .  
. *%p. 16. 
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But 
A 

Substituting these values and the value of 

as pau 

We obtain 

Since r (x)  is independent of cp, r’(x) is also independent 
Of P; consequently the two ex ressions dependent upon (o 
must reduce to constants. d can set one of them equal 
to unity, because u can be multi lied by any constant 

r(X) would be multiplied by the same constant, so that 
8 Would not be changed thereby. 

Without changing the value of eit R er s or p ;  and if so, 
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Accordingly let 

or 

dP d(u - t )  
-E 

1 u-- 
u 

by integration 

in which the constant of integration is taken in the form 
log,, g- It determines the scale of the projection. Passing 
to axponentials, we obtain 

p = ;( u - t). 
But 

or 

substituting the value of P, we get 
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Therefore, by integration, . 

in which the constant of integration may be taken as 
zero, since the addition of any quantit would only serve 
to change the point fkom which 8 is rec z oned. 

From these results we obtain 

C s - p  =- 
U 

or, by multiplication, 
3 - p =  = 8. 

This equation shows that the circle with the origin as 
center, constructed with the radius c, cuts all the parglels 
at  right angles. Any circle drawn through the tw0.pomt.s 
of intersection of t b  circle and the line of centers of the 
parallels will also cut the pardels orthogonally, for the 
tangents drawn to it from any point is this line of centers. 
are equal. Therefore, these cmles, since they form the 
orthogonal trajectories of the parallels of the map, are 
none other than the projections of the meridians. The 
two common points in the line of centers of the parallels 
are the poles of the map. 

If, then, we take two arbitrary points to represent the 
two poles, the meridians of the map will be the arcs of 
circles which pass through these two points and the 
Parallels will be other arcs of circles having their centers 
at various points of the prolongation of the line of oles 

tangent drawn from the center to any one of the mend- 
ians; for example, to the circumference described upon the 
h e  of oles as diameter. 

We tave yet to find the expressiops for u, 9, and s in 
%ITIU of Q, and that for r (A) in terms of X, by whch expres- 
Slou we may be able to tell, in the h t  series of arcs, 
;the one that corresponds to a given meridian h and, 

the second series of arm, the one that corresponds ta 
the parallel of latitude p. 

and each passing through the point of contact o P the 
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In the expression for I?' (X) on page 73, if we let 3 
represent the second constant, we have 
\ 

or, by substitution in the equation on page 73, 

S j w  for X=O, we have 0=0; therefore, c'=O and 

and 

n r ( X )  =tan X 

0 1  n tan -=- tan - X. 2 u  2 

To determine u, we may write 

But 

and 
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By substituting these values, we obtain 

COS du n 
ua-1 dQ 2 

du -n d p  
ua-1 2 cos Q 

- -E-- 

-=-- 

n acp 

n [cosi (:+;)+sins (;+9]ar 
= -- 

2 
2 sin (;+;) cos (i+g) 

cos (;+;) sin (;+;) - ;(::1 ---- e;,)=-![. (" y+ (" .,.I 
cos -+- 4 2  sm g+2 

or 

au du 
u + l  u-l-lt 
--- 

By integration 

(Z+f) +sin (2.') r42g  sin (f+$ C O * ( f + Q  4 . 2  !I 
log, :< = n [log. sin (i + g) - 10% cos (: + z)] + 1% g, 

log, k being the constant of integration. Passing to 
exponentials we obtain 
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Qr 

k tann (:+;)+ 1 

kt,ann(:+$)-l 
u5- 

The value of 8 gives the distance of the center for the 
circle that is to represent the qafauel of latitude Q from the 
htersection of the cent:al mendw with the parallel that is 
represented by a straqht line- P .is the radius of this 
p d e l ;  the parallel IS therefore fully determined by 
these two quantities, since the centers of the parahla must 
fie on the central mendian. In order to construct the 
meridians, we must of Q the 
+due of e, the angl? at  the center 
s onds to the rne.ri&an of 
h , i n g  the merihans by 

gowever, if we determine 
We have 

x = p s i n e .  

But 
y - 8 - p COS e. 
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Hence 

or 

1 1 
c(cus &cos nX) . sin (nh-8)'ain~ (nA+e) 

= 2c - 
s h n X e h 8  . sin nA sin 8 

c ( m  8 -COS n A )  
sin nh - 2, p e i n 8 -  

or 

eoose-z+c cot nA. sins 
Therefore 
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Since this equation contains only X and is independent of 
The meridians 

straight line parallel of the map) 1 g at the distance 
= - c  cot nX from the ongin anphaving the radius 
= c cosec nX. 

Since for x = 0, y = f c, rill of the meridians pass t h o u  h 
the two points which are distant + c  and - c  from t a e 
ori in; 2c is therefore the length of the central meridian 
incuded P between the poles. 

As an aid to construction, we may assume the equation 

and e, it  is the-e . uation of the meridians. 
are therefore cvces 'f wlth centers upon the X axis (the 

then 

and 
s = c cosec # 

p - c  cot #. 

A special case of this projection is iven by the values 
k = 1 and n = 1 in whch case 9 -  p, an (f 

s=c  cosec p 

p = c  cot p 

and the equation of the menditins becomes 

= c2 cosec2 A. y2 + (z + c cot 

This is evidently the stemogra hic meridian projection, 
which has already been dlscusse a under that heading. 

DETERMINATION OF THE CONFORMAL PRO CTION M 
WHICH TEE MERIDIANS AND PARALLELS ik3 REPRE- 
SENTED BY CIRCULAR ARCS. 

This projection is the one devised by Lagran e. 
problem was to detsrmine. the general conformak projec- 
tion in which the meridians and parallels were both 
represented by Fircdar arcs. 

Since the projection. is to be conformal, we can express it 
in the form of a function of a complex variable.* 

The Oeneral Theory of the Lambert COI.IfOrma1 Conic Projeotlon, 8pecu pubuo,,. 
Uon No. 63, U. 8. Coast and Oeodetia Survey. 
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Let i denote as usual d-Tand assume the relations, 

5 - i y  =A(. + ix> 
x + i y  =*,fa (a - w, 

thenf, and.$, are conjugate functions of a complex variable 
that are only limited to being analytical functions. From 
b s e  we find at once 

1 
x=~[ . f i (u  + i x )  +.G(.-Nl 

EIfohl these equations i t  follows that 
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From these we obtain at once 

b'x _- bay bax 
w aU ax a x ~  _-----.-=-- 

Therefore 
P- df, (u 3- ih) f ;  (u - ix)  . 

If the coO&etes of 8 plane c . w e  are expreased io 
tew of an fpdependent vaplable t In the form 

x - y ( t )  
= w> f 

the e x p e o n  for the radius C J ~  curvature b given in the 
forrg 

1 

&ace ip the ex ressions for 1; and y in terms o f t  andfill 

tude, u is constant along a gven parallel and X 18 constad! 
@long a given meridian; in other wofds, Q remainin COD'' 
stant, we o b t h  8 p8rptlel by v@n+pn of A, and A%&$: 
ponstaqt, we get 8-mendian by vmatiqn of u. Therefore! 
@ we neglect the 4gp 

U is a function o P the latitude and h 18 merely. t e lo@'! 
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Or by substituting the values on page 82 

Or) &gain paying no attentisn to sign, 
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The two members of this equation are conjugate compld 
functions, and the e udity can only exist on condition thd 
the members ltre eac 1 e ual to a real constant. Let us us8 
Ba for this constant an3, for the sake of abbreviation, lei 
us denote the variable a+iX by z and g,(z) by Z. The 
differential equation then becomes 

dlZ,pzz. 
d 2  

az 

aaz $2 az dz @ -28 az- 

Multiply both members by 2~ and we have 

I__.- 

dz‘ 

By integr~&ion, 

-ya being the constant of integration. 

or 
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"OW, for abbreviation let 

ea  y2e-6 
-=A,  and --B, 28 
21s 

and we have 

or 

But 

Bence 
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8 
Since f , (o+ih)  is equal to x-iy, the conatant C tends e 

only to translate the origin. Let us suppose that C is a 1 complex quantity in the form of a+& If we transpose 
C to the left-hand member, we have 

CG and b may be either positive or ne ative and either of 
both may be zero. No generality isHost if we set them 
both equal to Z ~ M ,  since the] may be accounted for by B 
mere t r d a t i o n  of axes. 

' 

Now, let M- - Ai and N =  -Bi and,we get 

ie-B(.+W 
'-'Y=A&(*+fA) +Be-B(v+U)' 

By multiplying both tams of the fraction by A$s@-") + 
B e - ~ ( ~ - f ~ ) ,  we get 

iAe-Mh + iBe-wg 
x- iY=A2P+2AB COS 2/3X+@e-w 

- A sin 2BX + i (A cos 2BX + Be-*) - 
AZPu + 2AB COS 2BX + @e-* 

By equahg the real parts and the imaginary parts, we 
obtain 

On the sphere 

ana on the ellipsoid 

That the meridians and paraU& are both circles, we 
already know, since the function XI was determined on 
this condition; but in order to obtam their equations, we 
must proceed in the tuual way. If we elirmnate U, we 
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shall have the equation of the X meridian and, by the 
elimination of A, we may obtain the equation of the 
parallel of latitude Q. 

Aa + 2ABe-lbU cos 2BX + Be-* * ya - (Aaflu + 2AB cos 2BX + De-*)l 
e-* 

- A a e + 2 A B  cos 2BX+De-2k' 
Therefore 

-&p= -(A@ cos 2BX+B) 

horn these, by the elimination of u, we obtain 

y + B  ( 2 ' + y L  -cot 2BX 
X 

or 
1 1  

39 + y' + + gc cot 2BX - 0. 

% is a circle, 'the center being a t  the point 

cot 2BX 
2B 

1 
Yo- -2B 

and its radius being 
1 

P0"2B sin 2BX' 

% equation is identically satisfied by the values s-0, 
1 9-0, and by 2-0, ya-3; since all meridians pass 

t b u g h  these points, the represent the two poles; the 
2" rwS is the central men f an. 
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If we eliminate A, we get 

or 

This is a ciicle with center at the point 

B %=4 Y O " ' ~ , a  

and with radius 
A& 

Since we know that the-projection is confomd, it is 
known that the m p a t i o n  ls the same at  my point 
*in all directions. e can determine ib value dong 8 

a d e l  and in that way determine its vdue in aU 
Loctions. 

4-Ateypl_Bj  
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But on the earth 

1 - e2 sin3 (o' 

from which it follows that 

89 

IC=-'- as 2A@ 41 - ea sina (o 

dS -a cos cp + 2AB cos 2BX + P e - W a ) *  

In  order to derive the equations in their usual form, 
We shall move the origin down to the p0int-D. The value 
of 2 will remain the same, but tho new value of y 

1 1 
equal the old value of y increased by 2~ or y' = y + B. 
The equations are. therefore, 

A sin 20h 

Aa@ - Be-* 

1 

' E Ale* + 2AB cos 2pX + 8 e - %  

y'2B (A2e%+2AB cos 20h+B-' 
The equation of the meridians now becomes 

cot 2@h a 1 
("+T) + ya = 4 8  sin2 2px 

1 A 2B=c, 20=n, and -=k. B 
'hen 
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But for the sphere 

or for the spheroid 

Therefore, for the sphere 

Xf we denote that intersection which lies nearest the origin 
by yo (that ie to say the ?/ value for A = 0) , we hve  

e Y-’y,-Y-sfP tan2- -. 
X X 
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By performing the indicated operations, we obtain 

The projection is thus found to be identical with the one 

With tgese values the m cation (denoted by k’ for 
previous1 obtained by a different procedure. 

distinction) for the ellipsoid v ecomes 

in which 

If the pardel, the 
sented by the circle 
b e ,  among the circles 
dicular bisector of the 
tion, then the radius of 
center from the origin 
the case if 

hence 

or 

If, for the sake of abbreviation, we set 

the expression for the center of the parallel becomes 

2cm 
2~‘o, yo‘ ma- 1 ma- I),  and the radius becomes  PO=-^* 
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The equation for the parallel becomes 

The equation of the meridians remains as before 

(x + c cost nN2 + y2 = c2 cosecz n ~ .  

The coordinates expressed in terms of m become 

2 m s i n n ~  , 
X= 1 + 2m cos nx +ma 

and tne magnification for the sphere becomes 

Since both cp and a must be less than f, if cp is greater than 
-aJ then 

tan (‘+;) > tan (i- ’2) 
or 

and 
m > l .  

In a similar way it may be shown that when cp< -a, then 
m< 1. 
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The arallel circles whose latitudes are greater than - a 
lie on t e positive side of ; those with latitudes less than 
-a lie on the negative sic e. 

In  the expressions for the projection to which we have 
arrived, c, a, and n are constants that we can determine to 
fit such conditions as we ma require the projection to 

that are possible in a conformal map. 
c determines the scale of the pcojection and it may be 

any real constant, so that it onl remains to determine a 

the equator and m becomes 

Y Yl 

fulfill, these being limited, o s course, to tKe conditions 

and n. If a=O, then the straig t t line parallel represents 

90 that k-1. 
SPECXAL 

m=tan" -+- P (4" 3 
CASES OF THE PROJECTION. 

If n converges to zero, and at the same time c conveves 
to a0 in such a wa that m=2a, we obtain a projection 
in which the paraiels are represented by straight lines. 
Perpendicular to the Y axis since their centore lie at 
ulfinity on the P axis. In the same way the meridiana 
have infinite radii with centers at infinit on the X axis: 
Conge uently the are erpendicular to t&s axis. 

Toletermine t t P  e va uea we have 

cn.i 2a 
mA 1 

2 lim 
12: 

mA2a 
mi 1 
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The limiting value of this is seen to be 

x-ah. 

y-alog,tan -+- . ("4 "2> 
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If n becomes equal to unity, we obtain the stereogrtlpbic 
Projection and the equations take the form 

2 m  sin h 
1 +2m cos X+ma X -  

c(ma- 1) 
YP1+2mcosh+ma 

With m= tan (g +;) tan (2 4-5) 

hbstituting this value of m and reducing, we obtain 

c cos a sin x 00s Q 
l+sh  a sin Q+COS a cos A cot3 Q 

c (sin a+& Q) 

X =  

Y " l + s i n  a sin pi-cos a coax coo (0' 

If we now let y' - y - sin a, which merely movea the origin. 
Qd does not change the nature of the pro]ecfion, WB 
obtain after dropping the primes 

o co8 a sin X ow Q 

"-l+sin a sin (p+cos a cos x cos$ 

c COB a(cw a coa v-sip a cos h cos p), 
?/= 1 +sin a sin (p+Gos cr Go0 x Ooa Q 

&(cos a cos rp--in a COH h cos p),. 
I./- 1 +& a ain (p + cos a cos x cos y, 
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GBNSEUL STUDY OF DOUBLE CIRCULAR PROJECTIONS. 

In order to enter upon some points not yet discussed, 
we shall study m general those projections in which the 
meridians are represented by a .system of circles passing 
though two common-polnts which form the poles of the 
projection and in whch the parallels are represented by 
8 system of eyes orthogonal to the meridians. The 
centers of the clrqles forming the meridians WiU all lie 
u on the pe endlcular bisector of the common chord 

The tangents drawn t:, the vanous circumferences from 
oint of the prolopgation of the common chord are 

between the same secant; and the external segment of the 
same. If from tb5 pOln6 center, with a radius equal 
to one of these tangents, we describe a circle, it will inter- 
sect all the clroular arcs representing the meridians st 
right angles. We. thus 880 that the orthogonal tra e o  

a@ also cp?mferences, 80 that they belon to the poly- 
coni0 projectlqns. The ~ X U S  of centers of the parallels 
ia a s t r q h t  h e  P-1- through the projections of the 1 

two poles-and pe rp~d~cu la r  to the locus of centem of 
the meridlaps. 

Every pomt of either prolongation of the line ot poles of 
the map can be considered as the center of the projectiop 
of one of the parallels, and the radius of this rejection IS 
then equal to the tangent drawn through &e point in 
question to one of the meridians of the map; for example, 
to the circd?rence des??bed upon the h e  of oles s9 
diameter. Eecl rocally,. If 111 a projection with c&ogond 

upon the prolongations of-une of the diameters of a given 
cwoumferenc~ and w, ~$1 the tangents drawn from the 
variow centers to tha cycumference, the meridi&ns will 
also be circumferences whlch pass through the two extrem- 
ities of the g h n  diameter. This will not be true if the 
radii of the pardek  are detemined by any other condition 
than the one menboned. The rectangular olyconic pro- 
jection of the English War Office already $iscussed, fur- 
nishes an example of an oFhogond projection in which the 
parallels, but not the meridians, are circumferences, 

The properties,which we have just pointed out are not 
the only ones whlch we can extend from the StereographlG 
projection t0 dl conformal projections with circular 
meridians and from them to projections with circular 

w Yli ch forms .g t e h e  ]om% the poles of the projection. 

equa, any P since they are in each case a mean. proportional 

toriss of the mendians of the map-that is, the paraIIe i s- 

curves the para1 e el9 are cncumferences having their center8 



THEORY OF POLYCONIC PROJECTIONS/ 97 

meridians and orthogonal arallels. In figure 30 let P 
and P’ be theProjections ofthe poles, 0 the middle point 
of the line PP ? APA’P’ the circumference described upon 
PP’ as a diameter, AA‘ the diameter perpendicular to 
PP’; in addition, let S be the center of the projection of any 
parallel, Z7 and U’, D and D’, F and F’ the points where 
this projection intersects, respectively, the oucunference 

I 

RO. aO.4eometrical relations between orthogonal circular meridians and paralluls, 
flrst flyre. 

APA’P’, the line PP’, and the per endicular erected at  S 

W h  UU’? and let 27, be symmetrical to Uwith respect to 
O, 80 that 27/27 is parallel to PP‘ 

.The point b being the bisector of the arc 27027’ UD 
bisect the angle formed by the.chord 1717’ and the 

027; the point A’ being the bisector of the arc 

upon thls line; finally, let B be t R e intersection of PP’ 

QQif14s o - 52 - 7 
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u'AfUl, *UA' also bisec-ts the angle 27'00,; therefore, the 
thee olnts Z7, 13, A' be on a straight line which makes it 
possib P e to comtruct the point D without describin the 
circumference S when 771s given. Since the angles &A', 
DUD', each. being-mscribed in a semicircle, are right 
angles, the three pomts A, 0, D' also lie on a straight line, 
whch is the brsector of the angle formed by one of the 
sides of the tnmgle U'UU. mth the prolongation of the 
other. 

The angle PDA', which subtends, upon the circumfer- 
ence 0, an arc-equal to. a quarter of the circumference, is 
q u a l  to the half. of a right angle; the same is true of tho 
angle DUF' whlch subtends upon the circumference 8 
&D arc quai to 8 quadrant;. the two an les are, therefore, 
qual, and, as two of thew sides DA' a n i  170 coincide, tho 
two others, U P  and OF', a190 coincide; that is to say, that 
the points 77, P, F' are rn a strai h t  lie. Since UP' is 
perpendicular to UP and 'DF to bii., the points P', 0, 3' 
are also in a s t r q h t  h e .  It foUowa from this that '170 
is the bisector of the right angle PUP' and UD' of the 
d'acent le P U R  therefore, DP : DP' =i D ' p  : D'P' = 
Ub : U P ' Y h e  projection of each parallel is the locus of 
the points the distFc@ of which to the ro'ections of tho 
two poles have a Q ~ V O ~  fixed ratio. &e L w S  UP and 
UP' are in thew turn blsecto? of the ri h t  angles DUD' 
and VUA; therefore, the ratio of the %stances of any 
point of the circumference 0 to the two p ~ h t , ~  D and D' 18 
constant. 

in figure 30 arc3 
employed with the same signification. ?!he semicircum- 
ference PAP' 1s the projection of a articular meridian. 
Letusnow consider the projection P M  8 P' of any meridian. 
Let T be the center, G and M its intersections with AA' 
and the circumference 8, respectivdy, and, finally, let  (3' 
and M' be the pomts of intersection of the arc which com- 
pletes the circumference T wlth the same two lines, res ec- . With regard to the two circumferences S a n i  T, 

ointed out as obtaining between the two circumferences 5 and 0. It will be sufficient to indicate the following 
facts: Since dd lies on the parallel circle which is the locus 
of ointa with distances from P and P' in the ratio DP to  
D?, the ratio of MP to MP' is the s m e  &a that of DP to 
DP'; therefore, the line MD is the bisector of the an le 
P W ,  and It  should ass through the mid-point Q' of t a 8 

In @re 31 the letters dready appear' 

we ~veli s odd  have to point out the same properties that were 

arc PQ'P'; then the t L ee paints M) D, G' are in B straight 
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line; the same is true of the throe points D’,  ill,. G ,  
as also of G, D, M‘ and of G‘, M’, D’. The throe points 
D’, G, G’ are thus the vertices of a triangle the altitudes of 
which intersect in D and the feet of these perpendiculars 
are at 0, M‘, and M. 

Let us construct the angle POI equal to that which the 
meridian PMP’ makes with the straight line meridian 
PP’; tho three points P’, G ,  I will be in a straight line, 

&a 31.--Qeometrlcal relatiom I)et\l’om Orthogonal meridians and parallels, 
second Bgure. 

the angle OP’G which subtends the arc PNG upon 
the circumference T is equal to half the angle formed 

the chord PP’ with the tangent a t  P’;  that  is, to half 
the angle POI; hence upon the circumference 0 it ought 
to subtend an arc equal to PI; that is to sa %that tho fro; 
ion ation of P’Q ou h t  to pass through I .  e have, t en 
to 8etermine direct k y the point a, a process analogous to 
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that which may be made use of in the stereographic pro- 
jection upon a meridian. 

Let us construct TL perpendicular to TP and inter- 
secting in L the projectiqn PMP’ of the meridian; the 
three points I”, L, A are in a straight line, for the angle 
pp’z, which has its vertex upon the circumference T and 
intercepts the same arc as the an le at the center PTL, is 
equal to half th1s an le or to ha#a right an le; therefore, 
the rolongation of J’L ought to pass througE the point A. 

TEe radius OP or OA of the circumference described 
upon the line of oles as diameter bein taken as unit , we 
this circumference comprised between the strai h t  line 

parallel in uestion. This arc .which we denote by Q‘ is 

rojection of the pafa el, one would see the circumference 
$esmibed upon the h e  of poles as diameter; this aro varies 

with Q from 0 to 2 and from 0 to --. For the abbrevia- 2 
tion of the fomUlaS we shall often use in them in lace of 
the arc that has lust been defined the modified coyatitude 
p l ,  which is the complement of cp’ and which re resents the 
arc PU comprlsed betyeen the projection of pole and 
that of tho parallel; p can then vary from 0 to ?r with the 
colatitude p .  

of the ro- 
longation of PP’ t~ center, with the tangent SO for ragus, 

system of projection with orthogonal intersec- 

allel; that which varies from one s stem to anothef is the 

tively. Whatever thls expression may be, if we call f tho 
radius S D  or SU or S M  of the projection of the parallel 
and 6 the distance OS from Its-center to the center of the 
map, we shall have from tho right angled-triangle o m  

T = cot cp’ 

define the modi R ed latitude of a para f el as the arc 20 of 
parallel AA’ of the ma and the projection UDU 9 of the 

also tho ha 9 of the an le at which, from the center of the lf 
?r T 

Every circumference described from a point 

tions an “7 wlth circular meridians, the projection of a par- 

position of thls arallol upon the g s obe, or, h~versel~,  it i s  
the expression o P d O r  of p’ &s a function of p or p ,  respec- 

8. = cos& Q‘ 

’ 8 2 - T 2 = f .  
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Since the three points A ,  D,  U‘ are in a strai h t  line, 
the angle a t  A of the  triangle OAD is “qdal to f-9 and it 
resulk, in this triangle and the triangle OAD’,  that O D =  
tan 6 2’ andOD‘=cot$ We thus have O D x O D ’ = l ,  as 
it  ou h t  to be, since. the tangent OU is the mean propor- 
tionaf between OD and OD’. 

The constant ratio of the distances of any point of the 
Projection of a arallel to the projections P and P’ of 
the two poles wiE be 

F 
2 

-= tan PP‘T~= tan Y‘ 
UP‘ 

Let us now consider the meridians. The lon itude wilI 

tion of which is the strai h t  line PP’, and we shall define 
the modified longitude of a meridian the angle at which 
Its projection intersects the projection of the central 
meridian, an angle which we shall denote by A’; this an le 

Projection of the meridian, we should see the line of 
poles of the ma Therefore, for the meridian projected 
1Qto PGP’, A’ w$ he the an le which PP’ makes with the 
tangent at P to the arc P 8 P’, or, what amounts to the 
Same thin , to the angle OTP. The projection can vary 
h thou t  tge arc PGP’ ceasing to be the projection of .a 
meridian; that  which will vary will be the position of thls 
meridian upon the earth or, inversely, the expression of 
A’ ea ij function of A. Whatever this expression may be, 
if we call R the radius TQ or TP or TMof tho projection 
of the moridian, and S the distance OT of its center from 
the center of the map, the right-angled triangle OTP will 
W e  

R=cosec X’ 

be reckoned as starting from that meridian t a e projec- 

P also half the angle a t  which, from the center of t l e  9 

S=cot  X‘ 

R2-S2= 1, 

and the triangles OPG and OPO’ will give 

X‘ X’ 
OG = tan -, OG! = cot - 2 2 
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We thus have 0 c f ~ O G ' = l  which ou ht to be SO, since 
Op is a mean proportional Letween 08 and OG'. 

The coordin&teg Q' and A' or p' and A' determine the 
position of any pomt of the map; however, we shall make 

also of a thmd variable dependin upon the first two. 
will be the angle OSM formed % y the radiua SM of 

the projection of the parallel Wi$h the straight line meridian 
or, .what amounts b the same thing, the angle OTM 
formed by the rah? 2% of the projection of the meridian 
with the straqht h e  parallel. We denote this angle by 
6; it is the angle a t  F\bch m e  would see, either from the 
center of the pm]ectlon of 8 p a l l e l  or from the center 
of the rojwtion of the merhan, the distance of any 
point 3to the center of the map 

e ual to the inscibed angle OG'M, which 
subtends u on %e chmmference T the same arc w the 
&e at d e  center OTM or to the an le oG'D, since 
the thrm o @ b  Q' 9, id are in a stra&t line; but the 
ta ent o 9 t h ~ ~  sngs 18 given by the ratio of OD to Ocf'. 
W ? a v e ,  then, 

Half of 6 

Mrn this equation we deduce 

The coordinates' of M with respect to the 8x88 OA and 
OP are 

sin A' cos Q' x=r sin e- 
l + C O S h '  COS Q' 

sin Q' V - R  sin e= 1 +cos h' cos $0'' 
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We have for the square of the distance OM to the origin 

1 -cos X' cos cp 

9+1J?'1 +cos A' cos $0" 

We should note that the eneral equation of the circles 
traced upon the sphere an8 that of circles traced upon 
the map have exactly the same form when we take for 
coordinates cp and X on the sphere and Q' and A' upon the 
plane. On the unit sphere we have 

x=cos x cos cp 

y=sin x cos cp 

2-sin (0. 

If we substitute these values in the equation of a plane 
Az- tByi -Cz+D=O,  

we Obt8b 
(AcosX+Bsinh) c o s c p + C s i n ~ + D = O .  

This is the equation of a circle determined by the inter- 
section o€ the plane with the s here. 

The general equation of a circ P e in the plane is given by 

(% - a)a + (y - b y =  2, 

or on substitution of the values of z and 9 in terms of 
(P' and X' we obtain 

1 +cos sin h' X'  cos cos cp' $0' -a)'+( 1 +cos sin X' cp' cos cp' - b y = c ' ,  

or on development 

;-cos X' cos Q' 2a sin A' COB $0' 2b sin Q' c'-d-p - 
l+cos A' cos $0) l+cos X' cos $0' - l+cos X' cos $0'- 
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A', B', C', and D' being constants depending upon the 
position of the center and the racius of the circle. In  
the meridian a+nreographic projection we have cp' = cp and 
A'=),, so that it is only necessmy to take A', B', C', and 
Dt proportional to A, B, 0, and D, respectively, in order 
that the two circles may Forrespond to each other. There- 
fore, in the stereographlo projection on a meridian, and 
as a consequence also upon the horizon of an place, 
every circle 1s pro e+ed into a circle. This 9 act has 
already been proved in another place by the use of ana- 
lytic geometry.* 

Let us now-determine the expressions for the scale 
along the mepdlan and for thFt don the parallels. When 
the point .ill 1s displaced lnfinltesima ci y upon the projection 
of the meridian, the arc described is equal to .(%,) &p'. 

and when displaced upon the parallel the arc described is 
equal to (&) a'; therefore, we have 

acp 

Now, if we take the logarithms of the two members 
of the formula which gives the value of tan -!! and then 
differentiate, we obtain 

2 

which gives for the partial derivative values the foUowing 
expressions : 

On substituting these values and the values of T and II 
we obtain 

k -I_---- sin 9 aA' - p-cos cp tan cp' sin A' ax' 
c 

*Seep. 43. 



THEORY OF POLYCOSIC PROJECTIOSS. 105 

or, on substituting the value of sin 8,  

1 dcp' 
km=l+cosA'cos c p ' &  

COS cp' dA' 
l+c.os  A '  COS 'p' COS cp dA 

- -. 1 k =  

CONFORMAL DOUBLE CIRCULAR PROJECTIONS. 

In  the conformal polyconic pro ection the condition 
km=kp gives in the case of the c! ouble circular ortho- 
gonal net 

sec cp' dcp ' -g .  
sec cp acp 

The left-hand member of this equation is a function of 
(p alone and the right-hand member a function of X alone; 
I t  is therefore necessary that they should be equal to the 
same constant n; hence 

&'=n dx 
and 

dcp -- ,-n-- cos cp cos Q 

d d  

By integrating the first equation we get 

A' = nA, 

no constant of integration being introduced, since A' 
Vanishes with X. In  the second equation lot cp'=z-p' 

and let cp = - - p and we obtain 

U 

?r 

2 

sin p' s1n p 

Let us write this in the form 
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on integration this becomes 

-n loge sin 2 -t n log, cos 20, 2 

or 

log,. tan 5= n loge tan 5 - n'log, tan t, 
or, on passing to exponentials, 

The constant which enters into the expression for tan f t  denoted by tan $, is determined by the fact that the 
etraight line parallel is to have the colatitude po. When 
p is equal to po, p' becomes equd to 2 ana r= 00 . In the 

further discussion we shdl COnSider p o > i  and reckon p 
and p' from the North Pole. That yill throw the straight- 
fine parallel into the Southern Heuphere,. 

The angles are everywhere preserved except at the 
poles; in ordFr >hat they may be preserved aIso at these 
two points, It 1s necessav that we should have n equal 
to unit and then we have the stereographic projection 
upon &e horizon of the place of the central meridian 
which has the latitude po = p ,  - f. 

?r 

CAYLEIPS PRfI4CIPLE. 

This uta us in position to explain what is sometimes 
Grilled 8ayley's principle.*. Since in the stereograp@c 
projecti?n 3). rnusk the meridians in the hori- 
zon projection are simply the game arcs those of the 



THEORY OF POLYCONIU PROJECTIONS. 107 

stereogfaphic meridian projection. The parallels are 
d e t e m e d  by the equation 

/ t a n s  

t a n 5  
tan E=-. 

Parallels constructed for p‘ on the meridian projection are 
the parallels for p OR the horizon projection. The circle 
constructed with its diameter consisting of the chord for 
vQ=p,,-g in the meridian projection becomes the projec- 
tion of the horizon circle in the horizon projection; In 
fig+e. 32, piKp’N is the meridian circle of the original 
meridian projection and PQP’Q’ is the horizon circle for 
p o = ~  constructed on the chord of the meridian circle for 

Qo=g’ Tangents to the computed p’ points of the meridian 
circle would determine the centers and radii of the arcs 
for the horizon projection; or the radii and centor diF- 
tances can be computed from the expressions for rand 8 m 

217 

17 terms of q’=-- 2 P‘. 
a If we let p,  become - and then let 7t converg9 to zero 

While leaving constant the product of n by the length O P  in 
*e 31, which we have chosen as unity in the former 
analysis, we obtain again Mercator’s projection. If we 
maintain this product equal to two, we s h d  have con- 

2 

staIit1y 

tan - X’ 1 -(tan g)n 
OO-h and OD-- 

- 2 1 +(ian g)n‘ 
The limiting values of these expressions as nA 0 ar - given 
ul the form 

00 = X, and OD = log. cot f.* 
\ 

*For the dedvation of these Ilmlts see p. 84. 
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DISCUSSION OF THE MAGNIFICATION ON THE CONFORMAL 
DOUBLE CIRCULAR PROPCTION. 

The values which we have found for k, and kp ill any 
system of rectangular projections with circular meridians 
and parallels have now become equal to each otber and 
we have for the ratio of the lengths a t  ea& point of a 
conformal projection 

n sin e 
cos p tan Q’ sin A’ 

p =  

It results from this equation that, upon any given parallel, 
k increases or diminishes a t  the same time as h. When 
the value of sin 0 is substituted, we obtain 

n sec Q n sin p‘ 
sec cp‘+cos X’=sin p (1+cos A’ sin p’)’  k =  

A point of discontin&y is found when cos h’ sin ’ = - 1- 

p ’ = z  and X’= fr. In  the stereographic projection this 
oint is the antipode of the center of the map. If n is 

Ess than ~ i t y  it would fell outside of the map of the 
whole surface; but if n is greater than unity it would f d  
Inside of the map of the earth’s surface, since we should 
have nh= fir: 

For convemence we will write the above expression in 
the form 

Within the limits of the map this can happen o n y  7 when 

need only to replace X’ by nh and 
to obtain k directly as a function 

order to see immediately what ha pens to 
make this substitution an expresa I f  

;=(cot g + i n  g>””(cos;J-” 
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We shall need the derivatives of k with respect to p of the 
 st two orders; we have 

sinp 3%- n cos p' -cos p --- k bp 1 +sin p' COY X' 
or 

1 
n 

$'+) = - cot p' -I- - (cosec p' + cos A') cos p 

n sin p sin p ' X(1) bp2 -n2-n cos p COS 'p' 

-sin2 p (1 + cos x' sin p') ,  
or 

Sn cos p cos p'-nZ. 

Let u3 first sup os8 n< 1. Then at the two poles, that 

the interval k would ass upon each m~idian throu h a 
applies for k a minimum, we Bpouli have, by equating to  
zero tbe first derivative of k -&-lth respect to p ,  

is, for p - 0  and P or p-,?r, WB should have k- 00; within 

minimum. Denotmg i y a subscri t m the value w ffi ch 

m e  corresponding point is sithated in the NorthernHemi- 
sphere. 

0urnes for p =Q and fpr p = ?r are, respectively, n - I and 
1 -n, so that the first is negative and the second is po3itive. 
But for p' = 2' 2 4  = pJ > 3 ; hence the expression is pos- 

itive for p'=-r and, in fact, it is positive for ,=E. The 

9% b$ 
k $ as- 

The values which the above expression fqr 

r %- 

?r 

2 2 '  



TWEORY OF POLYCONIC PROJECTIONS. 111 

point at which the minimum is found lies, therefore, in the 
Northern Hemisphere. . 

The values of pm and p', for a given value of n on any 
given meridian would have to be determined by successive 
ap roximations until the e uation contammg pm, lm, A', 

articular meridians the equation becomes much simpler. 
&us for the central meridian it becomes 

an8 ~t would be satisfied B y the value obtainex For 

When thir, value ia substituted in the equation for the 
secopd derivative, we obtain 

1 +cos b,-na 
na+ sin= (0, 

sin pm sin p', 

It is upon this meridian that we obtain the smallest of all 
tbe pininla. 

Let us now suppose n>l .  The conditions are now 
changed, since k = O  at the poles. The value of k upon 
each meridian passes through a maximum instead of a 
minimum; this maximum is found in the Southern Hemi- 
sphere and lies between the colatitude po and the South 

*@ is equal to Pole. This is shown by the fact that 

n-1 for p = O ,  a positive result; for p=po, P I = $ ?  and the 

value is -cos po, still positive, since po>-* for p = a  the 
Value becomes 1 -n, a negative result. Hence the maxi- 
mum lies between the straight line parallel and the South 
Pole. 

eater than unity, it may hap en 

maximum in the Northern Hemisphere; then it woulcffall 
to a minimum in the same hemisphere, .and finally pass 
through a maximum in the Southern Hemuphere to return 
to zero at the South Pole. This depends upon whether 
COS becomes greater than n; this may well happen if 
n is & slightly greater than unity. 

Lagrange proposed to profit by the fact that  n and po 
Were arbitrary arameters to so determine them that k 
Would vary as s iwly  as possible at  a given point upon the 

A 
k bP 

n- 
2'  

When !p is slightly 
that, sttirting at zero, t f e value of k would pass t h o u  R a 
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meridian and upon the parallel in the vicinity of tpe prin- 
cipal place of the count the map of which he mshed to 

the meridian of the place become the central or straight 
line meridian, for in that case the derivative of k wlth 

construct. One part of ‘91 t e condition is fulfilled by making 

respect to X becomes zero for X = O .  We can now equate 
to zero the h t  derivative of IC with respect to p upon this 
meridian; it would merel he necessary to consider 9 
also become equal to zero If we take 
the latitude of the given p s ?e. The second derivative wll 
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n = J I + coszcp,. 

Having thus found n, we would calculate (atrn by means of 
the formula 

Then we should have for the determination of po 

tan fi= 2 tan %cot +y. 
For example, if the principal place was found on the 

Equator, we should have 
?r vm=O, n= a, v'm=O, and po=2a 

The Equator would then be represented by a straight line 
and the system of projection would be defined by the 
equations 

X'=hJ% 

A special case considered by Lagrange is given by the 
values of definition 

001943 0 - 62 - 8 
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?r Hence p , = ~  and the Equator is represented by a straight 
fine. The whole surface of the earth may be represented 
on a unit circle p.lth.the projection as defined, and the 
projection is so gven 1n figure 34. 

?IC?. 34.-L8greSge’S PrObtiqn, earth’s SuriaCe in achcle. 

EQUIVALENT OR EQUAL-AREA POLYCONIC PROJECTIONS. 

An equivalent or equa&-area projection is one in which 
the proportion of areas 1s preserved constant; that is.to 
say, that any portion of the map bears the same ratio to 
the regm? It represents that any other portion does to the 
region whch it represents, or the ratio of area of any part 
is equal to the ratio of-area of the whole representation. 
This is expressed analytically by the equation 

k,k,cosJI=I. 

In the polyconic projection this becomes for the sDhere 
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Integrating partially with respect to A and 0 with (p re- 
maining constant, we obtain 

no constant being added, since 0 and X vanish to ether. 

may choose. 0 would then be determined by the above 
equation. Inversely, if we give the relation which should 
obtain between 0, q, and A subject to the condition that 
A should be a linear function of 0 and ,sin 8, there would be 
an infinity of equal-area olyconic pro ections which 
W o u l d  satisfy this relation. f n  fact, u an B v being given 
functions of (p, the assigned relation would be 

u sin 0-v 0=A,  
in which 

In this expression s and p are any function of q t % at we 

P ds 
a%os (p d p  

U s -  - 

or 

s=s,,+az - cos (p d(p S: ," 
p0 and so denoting the two constants of integration. 

Same time rectangular. 
lection we have 

There is RO equlvalent polyconic projection that is at the 
I n  a rectangular polyconic pro- 

a s e p  au 
&-ii & 

Qd 



116 U. 8. COART AND GEODETIC SURVEY. 

By substituting these values we obtain 

This is an equation that must be identically satisfied by the 
~a lues  of'u (a funcQon.of cp) and (a function of A). 
The right-hahd member 1s inde endent of c p ;  hence the left- 

fion will be identlcauy satisfied If ZG equals a constant and 

if 
If u is a constant, 8 is ah0 a qopstant, and the pro'ectioa 

would pas into O n 0  of the bmiting cases of the po{yconio 
pro 'ec tions. 

dhe integration of the equation 

hand member myat also be m x @pendent of 4. The condi- 

2 p  d p  - 1s equal to a constant. a coscp dcp 

2 p  d p  = azc coa cp d(p 
gives 

p2 =pol  f u2c sin cp. 

By assigning p&cuh vdues to the constants po and c,  
we may obtam Lambert's central equal area rojection, 
Lambert's isospher1ca.l stenoteric rojection gometimes 
called Lambert's fifth), or, ha$, Albers' projection, 
None of these are pqlyconic projections in the acceptsd 
sens0, and hence-no inve8tigatlon of their properties d 
be iven at tlvs tame. 

$0 one of the strictly po~yco~nic equivalent projections 
has ever become of prytical importance, because they 
would generally be compbcated both for computation and 
construc tion. 
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DISCUSSION OF T E E  MAGNIFICATION ON T E E  C0NFORJU.L 
DOWLE CIRCULAR PROJECTION. 

The values which we have found for k, and k, +I any 
system of rectangular projections with circular mendlans 
and parallels have now become equal to each other and 
we have for the ratio of the lengths a t  each point of a 
conformal projection 

n sin e 
cos (p tan Q' sin X' 

kE 

It results from this eguation that, upon any given parallel, 
k increases or diminishes a t  the same time as A. When 
the value of sin 0 is substituted, we obtain 

? = - I -  
A point of discontingity is found when cos X' sin 
Within the limits of the map this can happen on y when 
p ' = z  and X'= fa. In  the stereographic projection tpiS 

oint is the antipode of the center of the map. If n is 
ress than linity it would fall outside of the map of the 
whole surface; but if n is greater than unity it would fall 
Inside of the map of the earth's surface, since we should 
have nA = f u.. 

For convenience we will write the above expression in 
the form 

?r 

n= sin p [;(tan $+ cot +cos X' - E 7 1 
In this ex ression we need only to replace X' by nX and 
tan f by G o t  $ tan $7 to obtain k directly as a function 
of p and A. In order to see immediately what ha pens to 

the result in the form 
k at the poles, we shall make this substitution an a express 
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We shall need the de~ivatives oi k with respect to p of the 
first two orden; we have 

-cos p sinp n cos p' 
-k bp 1 +sin p' COY X' 

or 
1 $;)= - cot pt +E (cosec p' + cos A'> cos p 

n sin p sin p' - =n2-n cos p cos p' 

-sin2 'p (I +cos 1' sin p' ) ,  
or 

n sin p sin p' [i2 - "ba". --- ;3(gy]=sin2 p (1 +cos At sin p t )  

4-n GO3 p cos p'-na. 

Let ua first SUP ose n< 1. Then a t  the two poles, that 

the interval k would ass upon eech meridian tbrou h a 

applies for k m,inin?um, we shod have, by equating to 
zero the first derivative of k %ith respect to p ,  

is, for p-0 and P or p=r, 

minimum. Denoting y a subscri t m the value w a lch % 
should have k- M; within 

B 

sin p ,  sin p',  - n. 

The corresponding point is situated in the Northern 'Hemi- 
sphere. 

sumesfor p-0  and fy p = r  are, respectively, n-1 and 
1 - n, so that the firat is negative and the second is poaitive. 
But for p' = gf p (  = p,,) > 5 ; hence the expression is pos- 

itive for p ' - g  and, in fact, it is positive for p=S. The 

s*abk a9- The values which the above expression fqr 

r 7F 

7r r 
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point at which the minimum is found lies, therefore, in the 
Northern Hemisphere. . 

The values of pm and p'm for a given value of n on any 
given meridian would have to be determined by successive 
ap roximations until the A uation containing p m l  I,,,, A', 
an$ n would be satisfied ?I y the value obtainej. For 

articular meridians the equation becomes much simpler. 
h u s  for the central meridian it becomes 

When this value is substituted in the equation for the 
secopq derivative, w0 obtain 

It is upon this meridian that we obtain the smallest of all 
tbe phima.  

Let us now suppose n > l .  The conditions are now 
cbanged, since k-0 at the poles. The value of k upon 
each meridian passes through a maximum instead of 8 
minimum; this maximum is found in the Southern Hemi- 
sphere and lies between the colatitude p, and the South 
Pole. is equal to 

n-1 for p = O ,  a positive result; for p=p,,, ~ ' - 2 '  and the 

value is -cos p,, still positive, since po>-; for p = ~  the 
value becomes 1 --n, a negative result. Hence the maxi- 
mum lies between the straight line parallel and the South 
Polo. 

eater than unity, it may hap en 
that, starting a t  zero, t e value ot k would pa& throu a 
maximum in th? Northern Hemisphere; then it woul fall 
$0 a minimum m the same hemisphere, and &ally pass 
through B maximum in the Southern Hemisphere to return 
to  zero at the South Pole. This depends upon whether 
Cos becomes greater than n; this may well happen if 
31 is f:t slightly greater than unity. 

Lagrgnge proposed to profit by the fact that n and p ,  
Were arbitrary ammeters to so determine them that k 
Would vary BS sgwly as possible a t  a given point upon the 

"his is shown by the fact that 
H 

?r 

2 

When p is slightly 

d f 
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in the Vicinity of tpe pnn- 
ol which he mshed to 

is fulfilled by making 
the meridian of the place become the centrd or straight 
line meridian, for m that case the derivative of k mth 

respect to We can now equate 
to zero the-first derivative of k with respect to p upon thu 
meridian; It would mere1 he necessary to consider pm as 

also become equal to zero if we take 

becomes zero for = 0. 

the latitude of the given p s ace. The second derivative Will 
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n = -J L + cos2qm. 

Having thus found n, we would calculate Q ' ~  by means of 
the formula 

Then we should have for the determination of p ,  

tan B? 2 = tan s c o t  +y . 
For example, if the principal place was found on the 

Equator, we should have 
'IF. ~ ~ - 0 ,  n=*, ( P ' ~ = O ,  and p o = z .  

The Equator would then be represented by a straight line 
and the system of projection would be defined by the 
equations 

X'=X.JZ 

tan g = ( t a n  $)"- 
A special case considered by Lagrange is given by the 

values of definition 
(P 8==COt - 2. 

x 
2 S-cot - *  

Q oosec +d==-cot - 2 

x cot A'= cot - 2 
or 
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7r Hence p o = 2  and the Equator is represented by a straight 
line. The whole surface of the earth may be represented 
on a unit circle .mth.the projection a3 defined, and the 
projectlon 1s so gwen in figure 34. 

3.l.--Lsgrsnge’s projectiqn, oarthr surfece fn aci~cie. 

E Q W U E N T  OR EQUAL-AREA POLYCONIC PROJECTIONS. 

~n quivgent or equal-area projection is one in Which 
the proportion of areas ia preserved comtant; that  is ,to 
Say, thftt a?Y portion of the map bears the same ratio to 
the. repon it represents that any other portion does to the 
feglon which It repfesents, or the ratio of area of any part 
1s equal to the ratio of area of the whole representation. 
This 1s expressed analyti’cally by the equation 

kmkp COS +-I. 
I n  the polyconic projection this becomes for the sphere 
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Integrating partially with respect to X and 8 wit,h (p re- 
maining constant, we obtain 

no constant being added, since 8 and X vanish to ether. 

may choose. 8 would then be determined by the above 
equation. Inversely, if we give the relation which should 
obtain between 8, cp, and X subject to the condition that 
X should be a linear function of 8 and ?in 8, there would be 
an infinity of equal-area olyconic pro’ections which 
would satisfy this relation. f n  fact, u an d! v being given 
functions of cp, the assigned relation would be 

u sin 0--v e=h ,  
in which 

In this expression s and p are any function of cp t f at we 

or 

s = s o + a 2  - cos (O dcp S: ,” 
p0 and so denoting tho two constants of integration. 

There is RO eqmvalent polyconic. projection that is at the 
same time rectangular. I n  a rectangular polyconic pro- 
Jection we have 

a d  

as p & 
& = G a p  
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By substituting these values we obtain 

but 

Henca 

This is an equation that must be identically satisfied by the 
values of‘u (a functlon of p) and I?@) (a function of A). 
The right-hand member is inde endent of cp ; hence the left- 

tion will be identically satisfied if u equals a constant and 
if - - 1s equal to a constant. a2coscp dcp 

If u is a constant, 8 is also a cowtant, and the pro’ectiop 
would pass into one of the ’limiting cases of the po~ycom~ 
pro ’ ec t?ons. 

dhe integration of the equation 

hand member must also be in a ependent of p. The condi- 

2p ap . 

2~ dp=a2c COS cp ap 
gives 

pa =pol + a2c sin cp. 

By assigning particular values to the constants po and C, 
we may obtun hmbert’s central equal area ject;ont 
Lambert’s isospherical stenoteric Qrojection sometimes 
called Lambert’s Sth), . or, h d  y t  AZbers’ projection. 
None of these are p?lyconic projections in the accepted 
sense, and henceno investigation of their properties w d  
be iven at this time. 80 one o€ the strictly ~ O ~ . Y C Q ~ ~ C  equivalent projections 
has ever become of practical importance, because they 
would generally be comphcated both for computation and 
construction. 
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Let us investi ate the case in which the scale should be 
the parallels. We should then have held constant aong f 

or 

or 

k,= 1 and k, cos += 1, 

ds cos e-dp=a dcp 

ds cos e=&p+a dp .  

On any given parallel the rightrhand member of this equa- 
tioQ is a constant, since d p  is a function of cp; but e 1s a 
function of cp and X, for we have 

or, by integration, 
a cos cp e=------- A, P 

no constant being added, since 8 and X vanish tcgether. , 

tion must vanish identically; that is to say, &=O. %he 
circles of parallels are, thereforg, concentric and 

d p =  -a dp, 
Or, by integration, 

P = Po + a(cpo - cp) . 
This is’Bonne’s projection; bat, of course, it is not a pol - 
~ C S  are concentric. It appears, however, in the attempt 
to attain certah things by means of the equal-area poly- 
conic projection and can be looked upon aa a h t i n g  case 
Qf the same. 

It follows that the leftrhand member of the above e ua- * 

Conic projection, since s 1s constant; that is, the pardel  7 

If we assume 
p = a  cot cp 

ds  -=u(l-cosecaq)= -acotap. 
dcp 
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If these values are substituted in the equation of condition 

we obtain for the determination of 0 the equation 

e - cos2 'p sin e = x si113 Q. 

so that we have as required 

kmkp COS 3/ = 1, 

and both-k, and k, are equal to unity for 0-0. 

If, on the other hand, we assume 

p=a cot V, 

s=a cosec Q 

ap G- -a  cased c 

a s  -=-a cot Q cosec cp & 
these values bein substituted in the equation of condition 
give as the formu T a For 0 

and 

80 that k, kp cos It- 1 and k,= 1 for e=cp, andk,-Mc J /  at 
the same point. 
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CONVENTIONAL POLYCONIC PROJECTIONS. 

There is a class of projections that are not strictly equal- 
area, but which have the pro erty that they preserve the 

lunes between the meridians: I n y  equal-area projection 
possessq this property, but f t  is not conversely true that 
any projection possessing this property UI also an equal- 
mea projection. Tissot calk projections of this class 
atractozonic. It can be rigidly proved that no rectangular 
polyconic projection can be an equal_area projecbon. We 
can, however, have an atractozonic projection rn the 
Polyconic class that 
ah0 has  circular 
lneridians forrmng a 
rectangular net mth 
the circular paralleis. 

In those that we 
ahdl study first we 
a h a l l  t a k e  t h e  
etraight-line paral- 
lel of the ma to 

tor, and the cwcum- 

Upon t h e  l ine of 
oles of the map as ffi ameter tQ .repre 

Sent the mendmn the 
longitude of which is 
DO", reckoned from 
the central meridian 
OF the line of polea. we shab detemne ~ 0 . 3 6 . ~ m e t r i c a l r e 1 e t o f a ~ ~ ~ ~ ~ 0 ~  
p' as a function of (p 
In such a manner that, in the hemisphere limited by this 
Qeridian the area of the half zone comprised between any 
two ptrrdldn will be preserved, and we shall d e t e r m e  A' 

a function $.A, BO that the area of the lune formed by 
8ny two mendlam may be preserved. The equal-.area 
Projections not only have the zona and lunes equal, but 
&o in themathe meridians af the earth and those of the 
pap, respecbvely, divide each zone intq proportional parts. 
hu latter property is not found in the atrrtctozonic 

Projections. 
In Sgure 36 we shall suppose the radius OA or OP equd $4, so that the hemisphere and the circle which servesas 

Its projection are equivalent, since the radius of the globe 

&rea of the zones between t g e arallels and that of the 

represent the. 8 qua- 

ference described A' A 
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taken B,B unity. The half zone with a base limited by the 
parallel of latitude cp has the area r(1 -sin cp). It is pro- 
jected u on the portion of the plane PUDU' which tlie 
chord $U' dioldes into two segments of circles; the one 
UPU' is the difference between the sector OUPU', meas- 
wed by 2 O P  t h e a  the arc UPU' or by r -2q ' ,  and 

the triangle OW', which is measured by 5 OUx OU'X 
sin LUOU' orby sin 210'; the other segment is the difference 
between the sector 5UDU' and the triangle 52717'; the 
angle USU' 5s equal to 2d, and the radius SI7 of the par- 
allel is equal to $ cot cpI2 so that the area of the segment 
is equal to (2q'-siu 2 d )  cota 9'. BJT equating the area 
of the zone to the area of the projection of the same, we 
obtain the relation 

a-r sin rp==u-2pp'-sin2~'+ (2cp'-sb zv') cot3cp' 

1 -- 
1 

or 

According to the second condition, the area of the s y e n t  
OPQP' ought.to beequal to that of the lune formed y the 
central meridian mth  the meridian of longitude X. The 
angle PTQ ia the angle XI, so that TP = Jz cosec A'. The 
area of the segment OPQp' is qyal to the areaof thewtor 
TPQP', minus the area of the tnangle TPP'. , 

TPQPI =; TP x PQP' 
1 -9x2 c0sec~x'x2x' 

= 2X' CoseCa h' 
1 

1 

ATPP'==zTPx TP'sin AZ'KF' 

=g x 2 coseca 1' sin 2h' 

TPP' = COS~C%' sin 2X'. 
Hence for the area of the segment we obtain 

OPQP' = 2h' coseCah' - cosedh' sin 2 ~ ' .  
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The area of the lune upon the unit sphere is equal to 2A; 
hence by equating this area to the area of the projection 
Of the same we obtain 

21' -sin 2h' 
2X= sin2A/ 

or 
2Xf -sin 2Xf 
1-cos 2X' * 

These two expressions may be written 

sin 2(p' - 2p' cos 29' 
'A sina(p' sin (p- 

A=-- cot XI. 
smaA' 

By computing by means of the h t  equation the values of 
(P, which corregpond to a sufEcient number of values of (p', 
we could construct a table which, reciprocally, would make 
hown the values of (p' corresponding to given values of (p. 
The second equation would make it possible to solve the 
Same roblem with respect to X and X'. 
W' it i these relations we obtain. 

!idr=- u 
d(p 4 sin 2(pf(2(p'-Sin 2 4  

cos (p(1 -cos 2Cp')l 

aA' Sill%' 
dA 2(1-A' cot A') 
-a 

T cos (p sin (pf tan (P' sin e 
k m U J z  sin X' (2(p'-sin 2 p f )  

u coscptanp' 1 k , 5  - 
'A 1 +COS A' COS (of 2.4'2 2Ql -3  S h  Q 

1 COS (p' sin%' 1 b.. PI_ - . ot X' l+cos X' cos (p' 4% cos p 1 -X'  c 
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BY setting aside the condition that the rincipal meridian 

u on the line of poles of the map as diameter, we could 
o{t,ah a senes. of atractozonic projections instead of fi 
single one, and m ths group some would certainly be found 

.the alterations of whch wquld be less than those of the 
We could still 

fwther increase the Iqdetermination, and we could intro- 
duce two ammeters 111 the place of one by not fixing 

straight line. 9 s  remar * applies also to the remaining 
projections in t b  class. 

In a rectangular Gkxdar projection, in place of deter- 
minin (p' as a funct!on of 9, so that the projection of ea& 

can brin about that the ratio of the surfaces should be 
continua% equal t o  Unity along a given 'meridian or that 
the len& should be preserved u on this meridian. 
Si iady ,  we could deternine X' as a L c t i o n  of A in such 
a way that, u on a.@ven arallel, the same conditions 

seved kinds of projections, each of which would possess 
the t$vo properties m question. 

Let US contlnue to re resent the p&cipal meridian by 

map as &meter, the Equator by the diameter perpen- 
dicular to thia h e ,  and let US call R the radius of the cir- 
cumference. 

The ratio of 8UTfBcBB at each point, in one of these rectan- 
gular circular projections, is 

Should be represented by the circum P erence described 

rojection that we have just studied. 

i advance t E e parallel, the rojection of which should be fi 

zone s 5 odd be equvalent to the zone it represents, we 

should be fdd. B com g. mng each ex ression of I SO 
obtained with 'one of t 5 e expressions for X we could form 

the circu@erence descll 7) ed upon the line of poles of the 

P 

We now propose to bring about that it should remain equal 
to un$y along the central meridian. For X = 0 we have &'PO, and the denvatlye of X' with respect to x msumes a 
known value a, dependmg on the nature of the function of 

which has been adopted to represent the vdue of h'. 
The condition is then 

or, by integration, 
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No constant of integration is added, since Q and Q' vanish 
at  one and the same timo. If each pole is to be a single 
point this equation must be valid for or - 5. This gives 
nh?=3. If we wish that the ratio of surfaces should be 
equal to unity along the Equator, it would be necessary to 
have 

n. 

"' -ax, (1 +cos A T -  

n' being the value of the derivative of (PI with respect to 
cp for p=O. We deduce from this equation, by integra- 
tion, the relation 

no constant' being added, since X and X' vanish together. 
Since the meridian of 90' of longitude is to be re resented 

as diameter, it is necessary. that ths equation 
e satisfied when we make in 1t at the same ths 

described upon the line o P poles of 

I h = 2  and A'=;; we have then 

y e  can unite the two conditions; then the mode of pro- 
Jection will be defined b the two relations which we have 

h e e n  X' and X; in addition! n' will be found joined to n 
by the relation nn'P = 4, which we obtain either by making 

40 
making X = O  and g=n in the second. From this we 
conclude, that 

lust obtamed, the first T l  etween p' and cp, the second be- 

cp=O and &' ;t-n' in the first differential equation or by 
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The two equations are 

sin p=@-tams $)tand 2 

A=;@ + tan8 ;)tan A’ - 
k, and it,, have now become 

& cos (0 (1 +cos cp’p E,=- - 
cos (0’ (1 +cos A’ cos (0”) 4 

1 cos cpf (1 +cos X’p 
cos (0 (1 +cos A’ cos cp’)  

kp=- 

1 (1 +cos X’) (1 +cos (0’) 

g = k m k p - [ 2  1+cos x’ cos ‘p’ . 1. 
The latter foymda cam be written 

K==[l-y 1 (1-cos A’) (1-cos (0’) 

1 +cos A’ cos (0’ 

In this form we see that R is everywhere less than unity, 
except on the Equator and upon the central meridian, and 
that the alteration of surface increases With the longitude 
and with the latitude. On the principal meridian we 
obtain 

(0‘ K =COS‘ -* 
2 

Let us further examine how cpf ought to vary with Q in 
order that the areas should be preserved along the prin- 
cipal meridian. If we denote by n” the value which the 

have 

derivative of A’ with respect to h takes for A=- 7r we should 

COS cp dp = n’’ R= COS ‘pi dcp’ 

, sin p=n’’ R ~ S &  ( O r ,  

2’  

or, by integration, 

no constant being added, since Q and Q’ vanish simul- 
taneously. 
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lr - If Q and Q' are to become ;z simultaneously, we shall 
hare the condition 

riff R a = l ,  

and in this case the pole will be represented'by a single 
point. The equation then reduces to 

$of =p. 

If to this equation we add the following: 

We know that the surfaces will also be preserved along the 
Equator; this equation was derived from the differential 
equation 

ax' 4 
dX-3lr -- (1 +cos hf)2 

This value of nf' gives 
R=+- 1 

The values for the magnification along the meridians and 
P~allds now become 

F 1 km=- 
2 1 +cos y, cos x' 

U d  from these we derive 
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The ratio of surfaces is greater than unity everywhor? 
except on the Equator and upon the principal meridian. 
The a!teration increases with the latitude; on the othqr 
hand, it dimnishos when tho longitude increases. This 1s 
shown a t  once by writing the above expression in the f o r a  

Upon the central meridian, where the greatest alteration is 
.produoed, we have 

K=sec‘$. 

The conditions to insure that the areas should bo pro- 
served don the meridian of longitude h, and dong tho 

equations 
parallol of f; atitude (po give, respectively, the differentid 

A sin2 A‘, - cos cp’ 1 a d  = 1 
COS Cp (1 +COS xc, cos acp 

1 ax‘ 
(1 +cos (p‘, cos h’)ZZi = 

B sin qf0 tan ‘pro 

Tho integration of the firs& equation gives 

sin ‘p’ 

1 +cos A’, cos (01 
sin cp = A  

and from the second we get 

1- ( ”1 2 1 +cos (p’, cos x’ x=B[- 4 sin X’ tan-’ t a n 2  tan- - sin 2p’, 

cpo, Q‘~, &,, A‘, and the constants A and B are 
other by the four relations that are obtained 

y expressing that the first equation is satisfied for ‘p = (PO 

With ‘p’ = +‘o, as also for cp = 9 with cp’ = 2 and the second for 

h = 2  with A’=2, as also for X=Xo With x’=xt0. 

7r 7r 

n R 

Tho ratio of surfaces has now become 

(1 +cos A’, cos 9’) (1 +cos cpco cos A’) 8 

(1 I- COS do cos X’J (1 + cos X’ cos7J] 
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In the parentheses of the second member the factor which 
Varies with p’ is 

1 +cos x‘, cos p‘ - 
1 +cos X’ 00s (PI- +cos X’+seo Q” 

cos A‘,-cos x’ . 

we see, then, that upon each of the meridians for which we 
have x < h,,, the ratio K is less than unity and increases from 
the. Equator to the pole; for A > %  we have K> 1 and E 
Qcreases from the ole to the Equator. We should see in 

h s  than pol K is smaller than unity and increases with the 
longitude, while, if Q is greater. than p,, K will be greater 
than unity and will increase as the longitudedecreases. 
Thus Kattains a minimum Kl a t  the center of the map, and 
another K, at the pole on the principal meridian; it attains 
a maximum K, a t  the pole on the central meridlan; and, 
&ally, a second maximum K, a t  the intersection of the 
Equator with the principal meridian; these values are 

a similar manner t E at, upon each parallel whose latitude is 

cos h’,) (1 +cos d o )  ’ 
K1=[(1+ 2 (1 + cos A’, cos 9 ’ 0 )  1 

1 
%== (1 +cos A’, cos d o ) a  

l+(l +cos l+cosp’o X’, cos p’, >’ 

Let us still oonsider the rectangular circular projection 9 which the hemisphere is represented by a complete 
CWe, and let us now suppose that we wish to develop 
the central meridian with its true length. I n  order to 

do this we take the radius of the map equal to In 

30 we have seen that the three points A’, D, and 
&re in a straight line; hence the angle OA’D is equal 

Moreover, we have here OA’=2 and r to the half of Q’. 

OD=,; the right triangle OA’D will then give 
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If we dso Wish to develo the E uator with the true 
len th, we should have in f! re 31 8 0 =A, end, sincs the 
an% OPG is equal to the?& of A’, the triangle OPG 
will give in turn 

From these two equations we obtain 

e 4xQ tan - = -, 2 *’ 
and also 

ax/ sin XI - =- 
&A h ’ 

so that we obtain 

a sin 8 U sin A’ 
k p = Z  A cos cp tan pf ‘3 X ( l  +cos A’ cos Q’)* 

At the intersection of the Equator and the principal 
meridian, we have 

k‘, = 2 

K‘==2. 

The Equator bein developed with its true length, if 
central meridan, but to the princi d merigan, and d 
we wish that the arcs of this last gave for projeotiofl 
arcs that are propoTtional to them, the relation between 
x and A’ d1 remain the same, but that which exists 
between p and Q’ will be replaced by ‘p ’ccp ,  whioh r e l ~  
tions give 

we make the. secon lf condition no longer a ply to tho 

tan”- e 2x tan9’ 
r 
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We have then 
7r 1 

E- 
T s i n e  

k m = g  sin p sin XI 2 1+cos X' cos cp 

sine sin X' k p p " z m = -  
p 2 X(1 +cos A' c09 pj 

Re:Ea S i n  X' 
4 X ( l  +cos A' cos cp)" 

E projection is sometimes called the stereographic pro- 
jection with modified meridian. 

NONRECTAIYGUIAR CIRCULAR PROJECTIONS. 

Let us always suppose that to each point of the globe 
there corresponds one point of the map, and only one, so 
that the circumferences which serve for the projections of 
the meridians all pass through two points P and P' in 
figure 36, which are the rojections of the two oles. 

diameter, 0 its center, AA' the diameter per ndicular 
to PP', UDU' the ro'ection of tho parallel of Y atitude cp 
or of colatitude p, E the point in the prolongation of PP' 
which serves as the center for this projected parallel, V 
the middle point of the chord UU' common to the two 
circumferences APA'P' and 17027'. Further, let PGP' 
be the projection of the meridian of longitude A, reckoned 
from the central meiidian projected into the line PI" and 
let T be the center of the circumference PQP'. Let us 
continue to define this last by the angle X' at which it 
intersects PP', which is qual to the le OTP so that 
in the trian le OTP we have, as formzy, on takulg OP 
radius f'.. and the distance OT, 

Let APA'P' be the circu mp erence described upon P8" as 

aa unit an 5 on denoting by R and 8, respectively, the 

R/-COS~C A', Sacot  X', R'-S'= I. 

As to the projection UDU' of the parallel we can d e h e  
it by the two lengths r and 8,  .as we hsve done up to thia 
time, or by the two' angles whlch the sides of the trim le 

f'; its complement, p'; the angle O W ,  e *  and h a l l  
et 7 denote the an le which one of the radii Od and L!% 

OUP 1, the triangle 8SO is determined by two of the 

0517 make with each other. Let us call the angle S 8 U, 

makes with the pro P on ation of the other. Since we have 

OOlolS 0 - 5 2 - 0  
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A' 

Ro. 86.-cal a'tUlom of llDplsotengullv doubbahnahr pmJwuspUr. 

urntities T ,  8 ,  p', f, and Y and it is easy to express the 
b e e  other quantitma as ,well as the vanow linea of the 
;figure in functions'of the f b t  two. We have espoially 
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r=a+p' 

sin p' 
sin a T= 

sin y 
sin e 

8=--, 

cos C+) 
O D = s - r -  

c 

The ratio of the two parts DP and DP' into which the 
line PP' is divided by the projection of the parallel*iS 
expressed very simply by means of t' and y. In fact, 
thu latter angle is e ual to that of t e two tan en+ at 

two arts b the chord UU', the one of which is the double 
of tge angTe DUU', and the other of the angle PUU'. 
Tho angle PUD is then equal to $7 but of the two comple- 

mentary angles PP'U and P'PU the b t  is equal to 2.  
It comes about, then, in the triangles DPU and DP'U 

tha t  

Z7 to the two circum ? erences, which angle is din f ed into 

v' 

Dl7 sin $ = DP cos 2) 

from which, by dividing' member by member and on 
denoting the ratio by €, 

D P  r __- ,,,-E= t a n g  tan 2- 
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The alteration $ of the angle of the meridians with the 

parallels is the excess of the angle S MT over In  order 
to obtain it simply, let us no-te that, M, being the second 
point of intorsection of SMmth the circumference PYP' ,  
We have 

if Mia &placed by changing the meridian but, remaining 
on the same parallel, SM is constant; then the same is true 
of SM - come uentl also of 211211 Then the rojection 
&W d'the r$u9 T& of the variahe meridian o P the map 
UPOR the radius eMof the fixed parallel has B constant 
length. At the pomt Y ths length is expressed by R sia @ 
or by sin A' ' 9 and, at the point 0, by cos 7 ;  it thus multa 
that 

sin $-cosy sin A'. 

In the trie;ngle OST the angle at  8, which we wiU call u, 
may be immediately obtained, for we have 

Let us now designate by 8 the angle OSH and b 6 *e an le 
OTM, which we shall need for calculating $e ratios 5 ,,, 
and kp. The triangle STM gives 

R sin (e++m cos rc, 

r 

but we have in the triangle OST 

cos (8 + u )  = Ts cos $; 

Ir's=-r-r- S 8 
sln u cos tJ' 

so that we have 

R sin sin Q C O ~  + 
r cos (6 fa).=- cos u cos * 
8 
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or 
sin u cos * 

cos X' sin (e+@)- 

sin p' cos u cos * 
sin y cos (6 + @) = 

It ii, however, sufficient to calculate one of the angles 0 
apd 6; we have, in fact, 

s-e=*, 
for, I being the oint of intersection of TU with PP', the 

by expressing that the sum of the o&er angles are the 
same rn the one triangle as in the other, we obtain the. 
relation which we have just written. 

The rectan ular coordinates of the point M with respect 

two'triangles OI 8 and ISM have the anules at I equal, and, 

to the axes 8 A and OP are 

x - r  sin e 
y = R sin 8. 

We now have 

By taking, with respect to p a a n d  with respect to X, the 
derivatives of the logarithms of the two members of each 
of the relations which we ham established between the 
different variables, we obtain - and s, which figure in 
the values of k, and k,; but it is more simple to obtain 
k, by making use of the formula 

as be 
Pr! 

which has been demonstrated with regard to polyconic 
pro'ections in general. Since the meridians are also 
circ \ es with thelr centers upon the same straight line, 
we can form an expression for kp by replacmg in the 
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expressionfor.k,, p by A, T by R, s by S, and e by 6,,and by 
dividing by sm p ;  this gives 

m e  projection of TMupon OT being equal to TO plus the 
projection of ISM, we have 

IR cos 6-8 +r  sin e. 
Substitutbg for cos S! in the expression of k,, the value 
which results from this last equation, and observing that 
RG-dj is zero, since R2-Sa is a constant, we have a i  a i  

r sin 0 dS 
k p = - R s i n p c o s ~ & ;  

but  
1 as 1 a v  - -- 
R ai--= dX’ 

T sin e sec I) dh’ 
k p =  sinh‘ sin p Z‘ 

so that 

The expression for k, can be written 

Let us ex+e in particular what these ratios become 
upon the straighblme’ parallel of the ma which we shall 
make, for example,. correspond to the 8 quator. Let us 
call A the value which is assumed for cp = @by the d~r iva-  
tive of OD or s--r with respect to (P and - B  the limit 

toward which tends the ratio of to 2+ when ‘p tends 
toward zero. Since at the same time re tonds toward OG 
or tan 2 ,  we find that on the Equator 

A’ k,=A+B tana - 2 

d8 
G 

h’ 

since I ) = O  a t  that point. 
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The condition that the areas should be preserved along 
this line will then be 

or, by integration, 

no constant being added, since X and A' vanish simulta- 
neously. 

There is an infinity of circular projections with oblique 
angles that are atractozonic. If we sup ose the meridian 

described upon the line of poles &p diameter, these pro- 
jections are furnished by the followvlg equations: 

of 90° of longitude represented by t Yl e circumference 

2t - sin 2e 2Q' +sin 2cp' - (1 +cos 2P') 1 - co9 2e =?r sin Q 

2x' -sin 2x' 
1-cos 2A' =" 

The first leaves yet undetermined one of the two quantities 
cp' and t as a function of c p ;  as to the second, it is incom- 
patible with the condition of reservation of areas along 

with o 0 lique angles can be equal-area m the complete 
the E uator, which proves t fl at no cireular projection 

sense. 

PROJECTION OF NICOLOSI OR GLOBULAR PROJECTION. 

In this projection the Equator and the central meridian 
are found developed in stra' ht h e s  and with their true 
lengths; the principal merzan is represented by the 
circumference descnbed upon €he line of oles of the 

an the correspondin arcs of the circumference are pro- 
portional. We there ore have 

ma as diameter; and, finally, the arcs of t \ is meridian 

H a 



U. 8. COAST AND WODETIC SURVEY. 136 

d"(0 

P'=P 
tnr-1, 

P 

tan-&-cot% r P  
2 r - p  

*sin7 
8 = -  2sm e 

x' 2x* tan --- 2 *  

sin +=cos 7 sin X' 

S tan u-- 
8 

T sin.0 
cos yp cos +- 
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The latter formula is very easily deduced, since by 
logarithmic differentiation we obtain 

i ah' 1 
S i n v  ah XI 
- - = - a  

when this value is substituted in the eneral formula we 
obtain the relation as ven above. TEe formula for im is 
somewhat more com#%ated in its derivation. We have 
from the a priori con itions 

s--r=p 

or 
-&-r) a =1- 

From the triangle 0517 we obtain 

Ira 
4 f-d+---?rs sin $0; 

but 
8 - r = p  

S 3  

4 (s-p)3=s'+- -us sin cp 

or 
?? 

--v? 4 
8= 

?r sin (a-2p 

&s -2p -8 (T Cos (P-2) 
&Y-?rsin p-2p rsin p-2p 

- 2r-ss cos cp - 
S sin cp-2p' 

When these values are substituted in the general formula on 
page 134, we obtain the value of k,, as given above. A 
circle constructed upon the line of poles of the map tw a 
diameter gives the projection of the principal mmdmn. A 
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diameter perpendicular to this is the rojection of the 
Equator. Both of these diameters are Jvided into equal 
parts and the projection of the principal meridian is divided 
mto the same number of equal arts. The parallels are 

through the corresponding divisions of the principa 
meridian. The meridians are arcs passin through the 

%meter  perpen8cular to the line of poles. 

5 arcs through the divisions of t E e line of poles passin 

oles and throu h the divisions of the ES: quator or the 

FIQ. 37.-Nicolosi’s projection or globular projection. 

PROJECTION OF P. FOORNIER. 

E P. Fournier in 1646, whic K is a polyconic pro’ection wit 

The principal meri cl! ian 1s a circumference of a circle. The 

Another conventional rojection is that proposed b 

d meridians that are ellipses. The Equator an the central 
meridian are developed with their true length on two 
strai h t  lines perpendicular to each other; the central 
meri % ian serves as the major axis of all the ellipses for each 
of which the corres on$ing X.servcs as the semiminor axis. 



FIG. 38.--Qeomotrical relations of F o d W ' S  PrdoCtion. 

and let U t  be the E uator. If we take O D  equal to vt 
and if we make the aJes AOU and A'OU' dso $;qual to 'P? 
the circumference passing through the three points u, 0, 
Ut BY 
tahng OG' e ud to h and constructing a half ellip?e h a m  
for vertices %, G ,  and P' we shall obtain the projection 
the meridian of longitude A. Let &f be the point where ~t 

be the projection of tho parallel of latitude Q. 

f 
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intersects the parallel, and let S be the center for the latter. 
draw the absclssa M N  of the point M and the tangent Mrfi 
to the ellipse; also draw SU and SM. 

The parallels are the same as those in the globular pro- 
jection, so that we have, aq before, 

4 s-r=(p 

or, by combining the two equations, 

I? &+s) -m sin Q + ~ = = o  

7? 7 - 4  
?r sin (0-2p' 8' 

B y  taking the derivatives of the two members of these 
equations with respect to Q we obtain 

ds 2r-r.s cos (o 

dp- a Sin Q-2Q 
-- 

as-,. &"G 
The angle OSM is still denoted by 8. The triangle SMN 
gives for the rectangular coordinates of M With 0 as an 
Origin 

x=r sin 6 

y=s-r COS e. 

The elliptic meridian has the equation 
a+(y) a? 2y a =l. 

By substituting the above values of z and y in this equa- 
tion, and then aolving for cos 0, we find 

~ 4 4 x 4  + 2-?rha (2s sin Q - a) + a 2 ~  - 4x28. 
r (." - 4x7 COS e- 



+=s-e. 
Everything is now known in the expression for k,, namely 

km=(G ds cos 0-g) sec +. 

By substitcting the values this becomes 

an ex ression that has the same form as in the case of the 
IobuL projection; but, of come, the angles 0 and have 

b e r e n t  values from what they had 1x1 that projection. 

By differentiating the equation for cos 0 With respect to A 

we obtain the value of a which may be reduced to a con- 
venient form by substituting for sin 6 its vdue in terms of 
z md y; this form is much more read& ob!ained by dif- 
ferentiating the expressions for x and y-mth  respect to 
x, and then the differentiation of the equation of the ellipse 
partially with respect to X will Iurnlsh the equatlon for 

be 

and 
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be By solving these linear equations for a we obtain 

b9 2% 

&“h [*8- (#---A2) y]’ 
H0llCe 

Zmsec Q . 
I”p’h [#8- ( d - 4 h a )  y] 

Upon the central meridian we have 

and 
e=o, +=o, km== 1, 

upon the principal meridian 
cos 8 = - ( 8 - $  1 Sin Q)I 

r 
a relation Bat is evident from the figure. 

ha. %.-PmJection of P. Fournfer. 
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Also 

8 [(cp-i sin cp)  $+.I 

ORDIKARY, OR AMERICAN, POLYCONIC PROJECTION. 

This is the pro ection that is generally referred to in this 

to show that the polycoruc projecfion class 19 an exceed- 
ingly broad one and that it contains examples of almost 
every kind of rojections. The name Amencan polycpnic 

gecause it has been extensively used by the Unitad States 
Coast and Geodetic Survey; in fact the project~on seema 
to have been devised by Supt. E'. k. Hassler to meet the 
requirements in the charting of the coast of the United 
States. 

For convenience of reference we shall give again the dif- 
ferential formulas developed on pages 10-13 : 

country as the PO i yconic prpjectl?n ; but we hape attempted 

rejection has % een given to it by European wnters chefly 

The characteristics of this rojection are that each par- 
allel is the developed base o f t h e  cone tangent along the 
parallel in question; that the parallele are spaced along the 
central mendmp !n proportion to their true slistances apart 
along this mendmn; and, &ally, that the scale is m$n- 
tained conetant along the parallels. 
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With these conditions we have 

- P (1 -e2  ~ i n ~ ~ ) x  b e  k,j- 1 a cos 
or. 

By intergation 
e = x  sin Q, 

no constant of inte ration being added, since 0 and X vanish 
Simultaneously. 8mca the parallels are represented by 
circles and since the scale d o  the parallek 1s to be main- 

equating an arc of the projection to an arc of the parall4 
hence 

tained constant, the last re ? ation can be obtained b 
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These values fully determine the projection, and dl of tho 
elements can a t  once be computed. 

as -- a(1-2) 
aP - (1 - s i n z  (o) + 

-a coseca Q + aZ (1 + cosa Q) 

(1 - ea sina ~ ) ' / a  

- - a (1 - coseca (0) + cos2 cp 
(1 - e2 sin2 (p)": 

-a cotz p+aeZ cos3 cp 
(1 - sin2 cp)'/a 

- -a cot2 Q (1 -2  sin2 (0) 

(1 - €2 sin2 cp)"'l 

E 

- 

-a cota Q 

(1 -8  sin2 ,p)H 
t;l 

&I F = x cos $7. 
Q 

981945 0 -  63 - 10 
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By substituting these values in the daerential formulas 
we obtain 

cjin e a m t #  a cot Q 

(1 -2 sin2 Q)% 
x cos Q- (1 - ea s i n 2  (p)”a t.an p= a cota Q 

(1 - 62 sin2 Q)% 

a cosoc 2~ -aea (1 + cosa (p) 

(1 - 2 s i n 2  Q)’S 
COS e+  

sin p-sin 8 _ . _  E 

e” sina Q 

1 - e a  sin2 Q 
- COS e - 

c1 sina Q 

l. -&? sin= Q 
~ 8 ~ 1  q - ~ ~ ~  e- 

sec # 
1-2 = - [ - (1 - 8 sin2 Q) COta COS e + cosec’ .Q (1 - €2 sin2 Q) 

-2 cos2 $01 

cosecz Q - t 2  - ea cosa (o - cota p(1- 8 sin2 (0) 1-2 

(1 -2  Bin91 2 

1 -2+2 (cot2 Cp- € 2  cos2 $0) siria- =““[ 1 --Ea 2 1 
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When X is small-that is, when the map is not extended 
far from the centr?l meridian-an approximation in a 
series in terms of X 1s very convement. If we neglect 8 
and higher powers, we obtain 

For smaller values of $ this can be still further approxi- 
mated by the form 

A' 
12 +-sin zp cos (p; 

for the sphere k, becomes 

k,,,-mc (cosed (p-cota Q cos e). 
To obtain an approximation we let sec 9-  1 and we get 

km-(cowca (p-cot' (p+cota.p -- 2 - 
h' -l+-cos'(p. a 
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'In these approximations X must of course be expressed in 
arc. 

A n  a proximation for k, was determined by A. Linden- 

This was given 
kohl, o B the United States Coast and Geodetic Survey, that 
is reniarkably close to the one given above. 
in the form 

E= +0.01( X" 8.1 cos Q y, 
in which Xo is the distance from the central meridian in 
degrees of longitude. In this form E corresponds to the 
term 2 cos 2p in the first approximation. 

The pro'ection is generally lotted from computed coordi- 

I f  we take as origin the interesection of the central meridian 
and the Equator, we shall have 

Xa 

nates of t L e intersections o P the meridans and parallels. 

x = p  sin e 
y - 8 - p  COS 8. 

It is the more general practice to compute each parallel 
; that is to say, by uslqg as origin the 
parallel in question with the central 

with ita own ori 
intersection of 
meridian. 

In this case 

x=p sin 8 
6 

2 2 y = p - p  cos e = 2 p  Sinat=z tan -. 
18s. have to be computed for each parallel that it 

is desire to ma by computatm. If these are to be a t  
frequent intervaps, it is customary compute certain 
coordinates and then to interpolate the mte~ening values. 

The peridional-mc values are tabgated m meters from 
minute to minute in the P?lp)luc h 'ec t ion  Tables, 
Special Publication No. 5,.Umted States (3 oast and Geo- 
detic Survey. If it is desmd to refer the coordinates of 
the various parallels to .a. common OW, it is merely 
necessary to add the mendmd-arc values reckoned from 
the c h o w  origin to the y values fls determined above; this 
is true because the valve Of 8 18 @Van as e ual to the 
meridional arc from the Equator to th? p a r a d o f  latitude 
p, with the addition of the value of P l l ~  terms of 9. It ie 
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customary, however, in the construction of the projection 
to locate the various origins on the central meridian by 
their meridional-arc values and then to use the coordinates 
as originally computed. It is in ganeral, not necessa 
compute the Pn values since the tabulated A factor v ues 
given in Special Publication No. 8, United States Coast 
and Geodetic Survey, are connected with them by the 
relation 

- 1  

3 to 

pn sin 1" 

Pn = a m i  

A -  
or 

1 

EmCe 

The logarithms of the A factors in meters are tabulated for 
each minute of latitude in Special Publication No. 8, as 
referred to above. With these values as given the formula 
for p becomes 

P' Pn cot 0. 

log Pn P Colog A + CObg Sin 1". 

A great advanta e of this projection consists in the fact 

anywhere upon the earth's surface. Almost every other 
rojection has special elements that must be determined 

for each projection. These elements are generally certain 
arbitrary constants that enter into the formulas for com u- 
tation. The Mercator rojection is another projection t E at  

If the whole earth's surface were. mapped in one continu- 
ous rojection it would be interesting to know what would 

of thq representation and also h0.w many times the area has 
been increased. Such a projection of the sphere is shown 
in figure 40. By appromate measurement on a plate of 
such a projection it was.found that the ratio of increase of 
le th of the outer meridian was about 3.2 to 1. 

T h e  element of area of the representation being given in 
the form 

that a universal ta % le can be computed that can be used 

can have a universal ta  g le. 

be t E e length of the mendian that forms the outer boundary 

dS=aa Rcos Q d~ dx 

for the sphere, we have 

K== (cosec' Q - cot2 ~p COS e), 
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BO that 

dS= a2 [cosec2 cp- Cot2 cp COS (X sin cp) ]  COS cp dcp A. 

One-fourth of the area is given by integrating between the 
limits X = 0 to X = r and cp = 0 to cp = 2. The total area S is 
therefore given by the formula 

~ = 4 a z J f  cos cp aPJ' [coseca $-cot2 cp  cos(^ sin cp)] &X 

r 

0 0 

s in  (T sin cp) cos p dcp 1 cos2 cp 
= 4azL+[r coseca cp- - sins Q 

In  the latter integral let x =  r sin cp 

then 

and 

dX cos cp acp=-, 
r 

Hence the value of S becomes 

The int rated terms msume the form 00 - 00 at the lower 
Limit, an Ti must be evaluated for that point. The last term 
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of the expression is the transcendental function known as 
the integral sine; it is represented by the series 

The value of this series €or x = ?r is approximately 1.852. 

restore the value of x = r sin  cp 
To aid in the evaluation of the integrated part, we shall 

2 sin(r  s in  cp) + 2 r  sin cp cos(a sin cp) - 47 sin =r . sina cp 

2 sin (r sin cp) + 2 r  sin cp cos (r sin cp) - 4 r  sin c p l  

sina Q 1 limit [ 
( P A 0  

1 =lim;t rr cos (r sin Q) -?ra sin cp sin (r sin cp) - 2 r  
sin Q cpA0 

= 0. 
Therefore' 

&'=[-4r-2*+ (2nd+4) 1.8521 U' 

= [ - 6~ + (27? + 4) 1.85210' 
= [ -6~+23 .74x  1.852]aa 

= (- 18.85 + 43.97)~' 

= 25.12 aa. 

&ea of the sphere = 4raa = 12.57 a'. 

The area is therefore increased approximately in the ratio 
of 2 : 1. , 
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TISSOT'S WDICATRI& 

To represent one surface u on another we imagine that 
each surface is decomposed g y two systems of hnes into 
infinitesimal parallelograms, and to each line of the first 
surface we make correspond one of the lines of the second; 
then the intersection of two lines of the different sys- 
tems upon the one surface and the intersection of the 
two corresponding lines upon the other determine two cor- 
responding oints; finall , the totality of the points of the 

the hat forms the representation or the projection of this 
figure. We obtain the different methods of re resentation 

upon one of the surfaces. 
If two surfaces are not ap licable to. each other, it is 

impossible to choose a metho (P of projection such that there 
is similarity between every figure traced u on the first and 
the correspondin figure upon the second: On the other 

infinity of systems of projection preservin the angles and 
as a consequence, such that each fi y i&itely mail  and, 
its representation are similar to eac other. There is also an 
infinit of others preserving the areas. However these 

projection being ta en by-chance, it will generally happen 
that the angles wi l l  be changed, except? possibly, at par- 
ticular points, and that the correspondm areas will not 

be altered. 
Let us consider two curves which correspond to each 

other on the two surfaces. In figure 41 let 0 and iKbe two 
points of the one, 0' and HI the correspondin points of 

If the oint M a proaches the pomt 0 indefinitely, the point 

the lengtl! of the arc 0'2' to that of the arc OM will tend 
toward a certain limit; this limit is what we call the ratio of 
len s at the point 0 upon the curve OMor in the dipction 

thus defmed has the same value for all fLrectiom at a given 
point; but it varies with the osition of this point unless 
the two surfaces are applicab P e to each other. d e n  the 
representation does not preserve the angles except at par- 
ticular points, the ratio of lengths at all other pornts 
chasges with the direction. 

second whic ?l correspon i to the points of a given figure of 

by varying the two series of lines which form li e graticule 

hand, whatever G % e two surfaces may be, there exists an 

two c 9 asses of pro ections are exceptions. A method of 

have a constant ratio to each other. The P engths will thus 

the other, and let OTbe the tangent at  0 to the %E? t curve. 

M'wi ?l a proac Y l  indefinitely the point Or, and the ratio of 

0 P . In a system of projectionpreservin the anglesthe ratio 

k 
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The deformation produced around each oint is subjected 
to a law which de ends neither upon i& nature of the 

Every representation of one surface upon another can 
be replaced by an infinit of orthogonal projections each 

We note, h t ,  that there always exists at every point 
of the h t  surface two tangents perpendicular to each 
other, such that the directions yhich correapqnd to them 
upon thasecond surfwe also mtereect at nght angles. 
In figure 42 let CE and OD be two tangents erpendicular 

and O'D' be the corresponding tangents to the second. 

surfaces nor upon t E e method of projection. 

made upon a suitable sc J e. 

to each other at the point 0 on the h t  s ill#? ace; let C'E' 

b. 4l.-A and wbOt101L 

Let us suppose that of two angles O'O'D' and D'O'E' the 
iirst is acute, and let us imagine *t a right angle having 
its vertex at  0 turns from left to ht around this oint 
in the plane ODE, 8 
d v i n g  at the position D E. The comapon- angle 
in the plane fa ent at 0 to the second surfam wdl h t  
coincide with U%D' and wil l  be yute; in ita final position 
it wi l l  coincide with D'O'E', and dl be obtuse; within the 
interval it will have p d  through 8 right angle. There- 
fore, there exists a system of FO tpgenta 
condition stated, ace t at &am s e  pointa: 

system of repre- 
sentation there is upon the h t  of e two Surfacee a 
aptem of two series of orthogonal curves whoae roam+ 
fiom upon the second &&e are also orthogonaf h e  

from % e position m8and Y 

% this property we conc P ude that in ev 
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two surfaces are thus divided into infinitesimal rectangles 
which correspond the one to the other. 

Fro. 42.-Two tangents at right angles and their projoctions. 

This fact being established, let M be a point in figure 43 
infinitely near to 0 u on the first surface and let OPMQ 

just described that has OM as a diagonal. Let us move 
be that one of the in f? nitesimal rectangles which we have 

Fro. 43.-Projection ofinfinitsly near points. 

the suco~id surface and place it so that the projections of 
the sides OP and OQ fall upon the sides themselves pro- 
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longed if neceasa - then let OfPfiKfQf be the rectangle 
corresponding to ' ; 3 h i ~ ~ ;  let ug c a ~  N the point of inter- 
section of the linea ON' and Pdl. We can consider this 
point as the orthogonal projection of the point that M 
would be if we should turn the lane of the rectan le 
OPiKQ throu h a suitable an le wi% O P  as an axis. #ut 
this an le, w % ich depends o 9 y upon the ratio of the two 
lines & and iKP, is the same whatever oint M ma be; 

respectively, by c and d tE e ratios o 9 the 
e directions O P  and OQ-that is, on setting 

OP' op - c  and - 

we should have 

Thus if Mmoves on an inhi teshal  curve traced around 
0, we shall obtain the locus described by N by turning this 
curve through a certain angle around O P  as an axis and 
by then projecting orthogonally upon the plane tangent 
at 0.' On the other h a d ,  we have r 
t OXf OP' 

ON-OP-c, 

so that the locus of the points i?f' is homothetic to that of 
the oints N ;  the center of similitude is 0, and the ratio of 
s&tude has the value E. The representation of the 

fore be considered as 

the scale of the reduction and the position of the element 
with respect to the plane of the map. 

onaipro*ections of all 
provlde d that we 
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Of all the right angles which are formed by the tangents 
at the point 0 those of the lines O P  and OQ and their pro- 
longations are the only-ones one side of which remains 

arallel to the tan ent plane after the rotation which was 
%scribed above; Lese are the only ones then which are 
pro'ected into right an les. We can now state an addition 
to t i e proposition whic 5.l has just been proved, and we can 
express the whole in the following form: At every point of 
the surface which we wish to represent there are two per- 
pendicular tangents, and, if the angles are not preserved, 
there are only two, such that those which correspond to 
them upon the other surface also intersect at right angles. 
So that, upon each of the two surfam, there exists a sys- 
tem of ortho onal trajectories, and, if the method of r e p  
resentation foes not preserve the a 
onl one of them the projections of whic upon the other 
s d a c e  are also orthogonal. 

We shall denote, by first and second principal tangents, 
the two pe ndicular tangents the an le between whch is 

respectively, by c and d the ratio of lengths in the direc- 
tions of these tangents, and we shall suppose that c is * 

greater than d. 
If the infinitesimal curve drawn around the point 0 is a 

circumference of which 0 is the center, the representation 
of this curve will be an ellipse the axes of which will fall 

Y?) there 

not altered T y the projection. We sh Bii continue to denote, 

point. 
In Sgure 44 let us draw OM', and let us call, respectively 

u and u' the angles AOiK and AOiK' which correspond 
upon the two surfaces. Inasmuch as the second is the 
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Wa. 44.-Tlssot'~ hdicatrix. 

smaller of the two, we see that the re' resentation dimin- 

the f i s t  principal tangent. Between u and u' we have, 
moreover, the relation 

d 

ishes all the acute angles one side of w !ill 'ch coincides with 

tan ut=- tan u, c 
Since 

RS os tan u= 

M'S tan u'=- os ' 
and, consequently, 

M'S a tan Z L ' = ~  tan u=- tan u. 

Let us prolong the line RS to R' and then join 0 and R'. 
The two triangles ORN' and OR'M' give 

C 

c - a  sin (u-u'>=- +a sin (u+u'), 
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which is obtained by equating two expressions for the 
ratio of the areas of the triangles. The same relation fol- 
lows at once analytically from the tangent relation first 
given. The angle u increasing from zero to 2, its alteration 
u-u' increases from zero up to a c@&n value w,  then 
d'ecreases to zero. The maximum 1s produced at the 
moment when the sum u + u' becomes equal to $. Let ZJ 
and 17' be the corresponding values of u and u'. We find 
from the tangent formula that the following are their 
values: 

n 

The qumtity o cm be computed by any one of the formulas 

c- a 
tan "";J-' 2 c d  

From the last two equations since the sum af U and U' is 
equal to and their d8erence.h equal to w, we have 

From the tangent relation we see that when we change 
to z-u' it is sdc ien t  to change u' to 2-u. The same 
substitutions being effwted in u+u', give for result 
r- (u+u'), so that the aine formula shows that the valus 

$T 
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of the alteration is not chan ed. Thus of two angles 

is the complement of the proption of the other. 
If we wish to calculate directly the alteration which any 

given an le u is subject to, we should make use of one of 

which are found to be change c f  by equal quantitihs each 

the two B ormulas 
(c -d)  tan u 

tan (u-u')=c+& tan Yu 

(c -d)  sin 2% 
tan ( '-ur)==C+d+ (c-&)  W S  2u' 

which follow immediately from the previous formulas by 
easy analytical reductions. 

"Io. (li;-Ang&u obuy in proJmtion, 5x4 w. 

Let us now consider an angle NON in fi es 45 and 46, 

cipal tangents 08 and OB. We can suppose the two 
directions O X  and ON to the right of O B  and the one of 
them OM above OA. According as the other ON will be 
above 08 (fig. 45) or below OA (fi . 46), we should calcu- 
late the correspondin angle Mf0& bjy takin the differ- 

would be 'ven by the formula stated above. The alter 
ation MO#-di'ONr would also in the first case be the 
Merence, and in the second case would be the sum of 
the alterations of the angles AOM and AON. When the 
angle AON (fig. 45) k equal to the angle BOM, we know 
that ita alteration is the same as that of the angle AOM, 
80 that the angle MON wi l l  then be reproduced in ita true 

which has for aides neither one nor the ot T er of the prin- 

ence or the sum of t % e anglea AON and d ON', which 
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magnitude by the angle H'ON'. Thus to every given 
direction we can join another, and only one other, such 
that their angle is preserved in the projection. However, 
the second direction will coincide with the first when it. 
makes with OA the angle which we have denoted by 7% 

The an le the most altered is that which this direction 

it 1s representex upon the rojection by it4 sup lement. 
"he maximum alteration t K us produced is egu8 to 2 ~ .  

forms wit % the oint symmetric to it with respect to OA; 

B 
M 

A 

N' 

ma. 4 6 . - ~ o h a n g e  In projectlon, second w. 

This can never be found ap lioable to two directions that 

'&e%ngth ON in figure 44 having been taken as unitv, 
the ratio of lengths in the direction OM is measured by 
OM'. Let us denote by T this ratio; we can calculate it 
by means of one of the formulas 

are e endioular to each ot !Ll er. 

T cos u' = c  cos 21 

or 
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We have also among r, u, and the alteration u-ut of the 
angle u the relation 

2r sin (u-u') =: (c -d )  sin 2u, 

which expresses that, in the triangle OR", the sines of 
two of the angles are to each other as the sides opposite. 

The maximum and the minimum of r correspond to the 
principal tangents and are, respectively, c and d .  

Let us call r and r the ratios of len ths in two directions 
at right angles to each other and let #%e the alteration that 
the ri ht angle formed by these two directions is subjected 
to. &om the well-known properties of conjugate diam- 
eters in the ellipse we have 

rz +Tal "c2 +da 

?TI cos #=cd 

or, in terms of the scales along the parallels and meridians, 
the semiaxes are given by the equations 

C2 + d2 = k2, + k2, 
= k,7c, cos #. 

For all angles not changed by the projection the product 
of the ratios of lengths along their sides is the same. 
In fact, let OA (fi . 45) and OB be the two princi a1 

angle whatever; and f et tangents; let MOif b 
WON' be its pro ection. et us denote b T' and r" 

the angles AOM and AO&. 
Then 

e aY 
the ratios of lengt I! s alon OM and ON and %y u and u' 

r' cos u '=c  cos u 

r" sin L AON' = d sin L AOfi 

but wq know that, when the alteration MON-M'ON' 
is zero, the angle AON is the complement of u' and the 
angle AON' is the complement of u; so that the second 
equation gives 

r'' cos u=d cos u'. 

By multiplying these equations member by memher we 
,obtain 

r' r" = cd, 
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which roves the statement. It results from this roperty 

of which undergoes the maximum alteration is equal to m, for the angle which is not altered and which has for 
side one of these two lines reduces to zero, and it has the 
same line for second side, so that r' = r" = 4Z 

In the ordinary, or American, polyconic projection we 
have 

that t z e ratio of lengths in the two directions t R e angle 

k, = R sec $ 

k , = l .  
Hence 

ca+dZ=1+R2seca$ 

c d = K  
or 

c=L (41 +2 K f  K2 sec2 $+ 41 -2KS K2 seta $) 
2 

By means of these formulas the semiaxes could be 
computed for any oint on a continuous map of the 
sphere or of the ellpsoid if it is desired to take into 
account the eccentricity of the generating ellipse. A s  a 
obd a proximation for projections extendin no farther 

may take 
from tRe central meridian than is usually t B e case, we 

C =  K S ~ C  $=itm 

a= 1. 

The effect of this a proximation becomes barely erceptible 

imation is exceedingly good for projections of less extent in 
lon itude. 

dirith t,his ap roxhation for the semiaxes it only remains 

nates should be turned to make them colncide with the 
directions of the axes of the ellipse. The angle through 
which the axes must be turned to make the 2 axis be tan- 
gent to the parallel a t  the oint we shall denote by €; its 

in the third place o P decimals for X = 4 5 O ,  so that t R e approx- 

to determine t R e angles through which the. axes of coordi- 

value is given by the formu 7 a 

( = X  Sin cp. 
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If 7 is the angle between the conjugate axes, and if q 
is the angle between the major axis and the conjugate 
axis of 2. we have from the theory of conjugate axes 

dl tan 7 tan (q+r>= -2. 

By developing this expression‘we get 

dl+(?tan’q. 
(e2 - d2)  tan q’ tan y =  - 

but 
?r 

7=7j+*. 

Therefore 
8 +ea tana q 

(ca-b?) tan q: ’ cot $= 

By solving this for tan 11 we get 

tan 11’ - 2ca 

from which 7 can be determined. The angle between the 
minor ax18 and the conjugate minor axis is e ual to q+$. 

meridian, the axw must be turned through the angle 
[ - 7 - #. We shall then have 

If E is counted positive for points east o 7 the central 

d = z  cos (E-q-+)+y sin (t+p+j 

f =  --Z Sin ([-q-#)+f/ co8 ( ( - v y + ) .  

For points west of >he central meridian #-q-$ can be 
considered negative in the transformation formulas. 

If geodetic azimuths a r e - p e n ,  they should first be 
referred to the aralIel as inltlal line; that is, the should 

through north. If the q+$ a le 18 added to these 

indicatrix has the m o r  axu u1 the direction of the 
initial line, we Lave 

t a n d =  tanu. 3 

be reckoned P rom the east around cauntercockwise 3 
azimuths we shall .obtain the .ang Y e u. Since the elliptic 

c 
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The ratio of scale is given by the equations 

or 

If it is desired to determine the azimuth of the line from 
a point to a near point from their coordinates on the 
map, we have approximately 

r sin u' = E  sin u 

r COS U' =& COS U. 

2' and y' b e k  the coordinates of one of the points With 
#respect to the other as origii in the transformed system; 
that is. after the axes have been turned to make the axea 
of the ellipse coincide with the axes of coordinates. Then 

. a  tan u=-  tan u". 

The azimuth reckoned from east to north is given by 
a =u+ [ - q  -+. 

If the map does not extend more than 5 degrees beyond 
the central meridian, the angle q can be considered zero 
and the reductions become comparatively simple. 

The theory of the elliptic indicatrix can be applied to 
any projection that has a chan e OK scale at  any pokt 
for dd€erent directions; that is, B or any projection that 19 
not conformal. It has been a lied only to the ordinary 
polyconic rojection in this uftcation, since for practical 

nonconformd projections treated under the polyconic pro- 
jections. 

The appended tables of the elements of the ordinary 
polyconic pro'ection are taken from Tissot's work. They 
are.computed for the sphere but can safely be used for 
o r h a r y  computation work. If more exact results are 
desired the computations should be made from the first 
by employment of the spheroidal formulas. 

C 

purposes t ?l at one is probab s y the most important of the 



166 U. 9. COAST AND QEODETIC SURVEY. 

Q 

, .  

0 ............................. 
15 ............................ 
30 ............................ 
45... ......................... 
60 ............................ 
75.. .......................... 
90 ............................ 

TABLES OF ELEMENTS OF THE ORDINARY OR AXERICAN 
POLYCONIC PROJECTION. 

__ 
00 

0 ,  

0 00 
0 00 
0 00 
0 00 
0 0 0  
0 00 
0 0 0  

Values of +. 
__ .- 

0 ,  

0 0 0  
0 52 
1 2 3  
1 24 
0 5 5  
0 17 
0 0 0  

~- 
0 ,  

0 0 0  
1 45 
2 5 3  
2 59 
2 0 1  
0 39 
0 0 0  

x 

0 ,  

0 0 0  
2 52 
4 5 0  
5 10 
3 38 
1 1 3  
0 0 0  

15' 1 30' -- 
0 ,  

0 0 0  
09 

r 0 8  
i 51 
5 46 
2 0 0  
0 0 0  

- 
0 ,  

0 0 0  
0 02 
0 0.1 
0 0.1 
0 02 
0 01 
0 0 0  

9 

0 ............................. 
15 ............................ 
30 ............................ 
45.. .......................... 
60 ............................ 
75 ............................ 
90 ............................ 

- 
0 ,  

0 0 0  
0 -18 
0 .28 
0 27 
0 17 
0 05 
0 0 0  

- 
00 

1.m 
1.ooO 
1.ooO 
l.m 
l.m 
1 . m  
l.m 

1.034 
1.032 
1.026 
1.017 
1.009 
1.002 
l.m 

1.137 
1.128 
1.102 
1.068 
1.034 
1.009 
l.m 

Values of k,. 

1.308 
1.287 
1.229 
1.151 
1.074 
1.020 1.m 

1.548 
1.509 
1.404 
1.264 
1.129 
1.034 
1.m 

-- 150 I No 

1.857 
1.794 
1.625 
1.404 
1.195 
1.050 
l . m  

2,234 
2.141 
1.893 
1.571 
1.270 
1.068 
l.m 

Values of dw.  

0 

0. ............................ 
15 ............................ 
30 ............................ 
45 ............................ 
60 ............................ 
75 ............................ 
80 ............................ 

x 

a ,  

0 0 0  
0 00 
0 0 0  
0 00 
0 0 0  
0 00 
0 0 0  

-- 
45' I 600 

750 90" -4- 

(P I, 15" 1 30" 

1 5 5  7 2 1  
1 4 8  6 5 3  
1 27 5 36 
0 58 3 45 
0 2 9  1 5 4  
0 08 0 31 
0 0 0  0 0 0  

I 

x 

450 60" 750 90' 
---- 

0 , l e  , l o  , I  0 I 

44 51 
42 49 
36 43 
28 52 
14 51 
4 18 
0 0 0  
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0 .............. ̂............. 
15 ............................ 
30 ............................ 
45 .................. .: ......... 
60 ............................ 
75 ............................ 
80 ............................ 

Values of c .  
- 

I 

l.m 
1.OOO 
1.OOO 
1.m 
l.m l.m l.m 

P 10. 

1.308 
1.287 
1 . m  
1.152 
1.075 
1.020 
l.m 

1.548 
1.610 
1.405 
1.286 
1.131 
1.034 
l.m 

(P 

1.857 
1.795 
1.629 
1.410 
1.m 
1.053 
l.m 

0 ............................ 
15. .......................... 
30 ........................... 
45. .......................... 
80 ........................... 
75 .......................... 
80 ........................... 

2.24 
2.143 
1.899 
1.680 
l.m 
1.073 l.m 

15' 30' -I- 

80. 

Lo00 
0.889 
0.897 
0.888 
0.987 l.m l.m 

Values of d.  

750 -- 
l.m 
0.928 
0.W 
0.883 
0.863 
0.m 
1.000 

x 

-- 
&e I 6oo 

1.w l.m l.m 

1. m  
1.000 

::a 
l.w 
1.m 
0.889 

l.m 
l.m 

Kz 

-- 
%a I w4 

Lo00 l.m 
l.m 
1.ooo 
1.ooo l.m 
1.ooo 

1.m 
l.m 
l.m 
Lo00 
1.ooo 
1.ooo 
1.000 

0' I 15' 

- 
0 

0 ............................. 
16 ............................ 
30 ............................ 
46 ............................ 
Bo ............................ 
76 ............................ 
80 ............................ 

~~ 

1.ooo 
1.ooo 
1.OOO 
l.Oo0 1.m 
LOO0 
l.m 

x 

1 . W  
1.m2 
1.026 
1.017 
1.008 
1.002 
1.ooo 

1.137 1.308 1.W 1.857 
1.128 1.287 1.m 1.783 
1.102 1.228 1.402 1.820 

, 1.W 1 . W  1.281 1.369 
1031 1074 1128 1192 
1:OOe 11020 1:034 1:W 
1.OOo 1.m 1.m l.m 

Valwsof  K. 

x 

::E 
0.w 
0. w 
0.987 
0.885 
1.m - 

P 1-T 

2.m 
2. I35 

1.650 
1.m 
1.088 
1.OOo 

1 . m  

TRANSVERSE POLYCORIC PROJECTION. 

If the earth is considered as a sphere] there is no reason 
why the tangent con= that d e t e r n e  the projection 
should necessaril bo tangent to the earth along parallels 

earth. Any diameter prolonged might just as well serve 
as the line of apexes, and then the cones would be tangent 

of latitude and s l. odd have their apexes in the axis of the 



168 

Q'- 

U. 8. COAST AND GEODETIC SURVEY. 

P 

Q 

FIG. 47.-CanStrUCtiOn of traasverae polyconic projootion. 
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tem of small circles khat would correspond to 

great circle of the earth would correspond to the central 
meridian. By this scheme a map of reat extent in longi- 

to the lon itudinal scale error. The error in scale in this 
case woul d appear along the great circles of the projection 
that correspond to the meridians in the ordinary projection. 

The most feasible plan for the construction of such a 
projection wodd seem to be the followin : Since such a 
map would, no doubt, be planned for a K arge section of 
the earth’s surface, the elli soidal features would be neg- 

if they had been computed for the sphere. ith these 
tables construct a projection in the usual way. After it 
is constructed turn the projection so that the poles fall 

the para1 a ST els of latitude in the ordinary projection. Some 

tude could be constructed without t fl e usual trouble due 

%v 
ligible, and the ordinary ta E les could be emplo ed, just as 

%IO. 48.-Trpnsformatlon triangle for truilsverso polyconic projection. 

u on the Equator and then by means of the formulas for 

parallels and meridians can be computed in terms of the 
parameters that correspond to latitude and lon itude on 
the ordinary projection. After the projection B as been 
constructed and turned into the new position, the (o and X ’ 

values become what we shall denote by $. and 7. The 
values in degrees will be just the same as before, but the 
wih have the new designation. Figure 47 represents suc 
a scheme in outline. PI” is the central meridian, and 
&&’ represents the Equator in the pro’ection as constructed. 
The projection is now turned and P b  becomes the chosen 
great circle, and &&’ becomes a meridian on the map; $ 

t E e transformation of coordinates the intersections of the 

Tl 
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'is measured to the right and left of QQ' and q is measured 
up and down from PP'. 

In  the figure 48 let P be the pole and let RBR' be the 
Equator and also let ABA' be the great circle that we 
wish to make correspond to the central meridian of the 
ordinary projection. BB and BA are quadrants, and AB 
measures the inclination of the iven great circle to the 

the transverse projection. Let Q be the intersection that 
we wish to compute. We have BQ = 90" -+; QP = 90" - cp;  

by the trigonometry of the spherical triangle we 
obtain from these results the relations 

plane of the Equator, and PXA gb ecomes the Equator on 

BP=90°* LBPQ=90°-X; LABR=@; LPBQ=90°- 
+ 0). 

sin +=sin X cos cp 

cos+cos (p+q)=cosXcoscp 

cos + sin (0 + q )  =sin cp, 

or by combining the last two equations 

tan (p  + q )  =sec X tan cp. 

pis aconstant the vdue of which is known from our choice 
of the great circle that is to form the center of the map; 
i t  is the value of the parallel of latitude to which the great 
circle is tangent. 

By use of the equations 

sin $=sin X cos cp 

tan (0 +q) =sec X tan cp 

we c m  compute the $ and q values for any intersections of 
the parallels and meridians that we may wish to determine. 
The points are then plotted on the projection as originally 
constructed; a smooth curve drawn through the points 
corresponding to a constant value of cp WU represent the 
parallel of latitude cp, and, similarly, the smooth curve 
through the points correspondin to a constant valus of X 

curves are drawn, the original rojection lines can be 
erased, and then only the meri&nns and pardels will 
appear on the projection. The folding plate represents 
such a projection of the North Pacific Ocean, showing 
the eastern coast of Asia in its relation to North America. 

and 

will represent the meridian of f: ongitude X. After these 
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The projection was constructed b Mr. Chas. H. Deetz, 

vey, wit[ the central great circle approximately the one 
joining San Francisco and Manila. Another ro'ection of 
this klnd was constructed by Mr. A. Lindenfold, cartog- 
rapher in the United States Coast and Geodetic Survey, 
consistin of a map of the United States based on the 

f n  this projection /3 =39" and X is reckoned from the 95O 
meridian. 

The meridian that corresponds to the Equator in the 
projection as first constructed is an axis of symmetry for 
the map, so that the coordinates of the intersections need 
to be computed only for one-half of the map if the Equator 
of the original prolection corresponds to one of the meri- 
dians that ap ear on the map, so that for each value of 

latitude the same in both cases. In  the one constructed 
by Mr. Lindenkohl for the United States the meridians 
were constructed for every 5' of lonGitude, so that the 
meridian of 95" appeared upon the rojection. If 94" had 

to compute for a h of 4" E. and one for a h of 6' W., and 
so on for tho others. 

In the construction of the rojection of which the fold- 

is tangent to the parallel of 45" of latitude a t  the point of 
its intersection with the 160' meridian west of Greenwich. 
Mr. Doetz (in the construction of his projection) computed 
the intersections of his original projection after it wm 
turned into the new position in terms of latitude and 
longitude and then interpolated the even values of inter- 
sections on this projection. From the original three equa- 
tions we obtain 

tan X=sec $ + q )  tan 9 
sin (p=sin @ + q )  cos $. 

In the cRse under consideration 8-45' and g + q  is the 
latitude of the intersection of any iven great circle with 

given great circle. The amount of computation requlred 
IS about the same for either method of procedure. 

cartogra her of the United States d o a t  and Geodetic Sur- 

reat circ 9; e intersecting the 95" meridian a t  39" of latitude. 

+ A  we may E ave another intersection for -A,  with the 

been chosen in place of 95O, we shou P d have had a meridian 

ing plate is a copy the centr Bp great circle is the one that 

the 160" meridian. B+v is, there P ore, constant for pny 
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PROJECTION FOR THE INTERNATIONAL MAP OB TEE SCALE 
OF 1 :lOOOOOO. 

and with radii e ual to pn cot 9. In practice, however, an 
equd division 01 the straight-line meridians between the 
top and bottom arallels could scarcely be distinguished 
from the points o f  parallels actually constructed by means 
of radii or b coordinates of their intersections with the 
meridians. *he provisions also fail to state whether, in 
the sheets covemg 12' of longitude instead of 6', the 
meridians of true length shall be 4' instead of 2' on each 
side of the central meridian; but such was, no doubt, the 
intention. In  any case, the sheets would not exactly join 
to ether alon the arallel of 60' of latitude. 

t h o  appenfed tailes give the corrected lengths of the 
central meridian from 0' to 60' of latitude and the coordi- 
nates for the construction of the 4 O  parallels within the 
a w e  limits. Each parallel has its own origin; i. e., where 
the parallel in question intersects the central meridian. 
The central mendian is the Y axis and a per endicular to 

the hshuce between the origins. The y values are small 
IR every h t 8 m c e .  I n  terms of the parameters used 

1L the origin is the X axis; the first table, o P course, gives 
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Natural 1 Jength. Latltude. 

. o  

throughout this publication these values are given by the 
expressions 

x=pn  cot p sin (X sin p) 

correc- Corrected 
tlon. 1 Iongth. 

y=pn cot $?[l-COS (A sin $?)]=2pn cot (p sin - - .(" 

-0. !a 
.21 .ae .w .w 
.23 
.24 
.20 
.18 
. I 7  

.I1 

.OB -.os 

2: 

In the tables aa published in the International Map 
Tables, the 2 coordinates were computed by use of the 
erroneous formula 

x=pPn,cot p tan (X sm cp).  

The resultin error in the tables is not very great and is 
practically a k o s t  negli 'ble. The tables aa given below 

to 60" of latitude. This fact in itself shows very clear y the 
advantages of the use of this projectionjor the purpose in 
hand. 

A discussion of the numerical properties of this map 
s stem is given by M. Ch. Lallemand in the Comptes 
€fendus tome 153, page 559: He finds that the mitximum 
error oi scale of a meridian is 1 part in 1270, which 
corresponds to 0.35 film. in the height, 0.44 m.,. of the sheet. 
The maximum error of scale of a parallel is 1 part in 
3200, and the greatest alteration of azimuth is 6 minutes 
of arc. These errom are much smaller th&n those occa- 
sioned by the expansion and contraction of the sheet due 
to atmospheric conditions. 

P are all that are required !? or the construction of all ma s up 

442.45 
44267 
442.91 
443.19 
443.w 
443.81 

444.81 
445.a 
445.44 

ai? 

TABLES FOR THE PROJECTION OF THE SHEETS OF TEtE 
INTERNATIONAL ,?UP OF THE WORLD. 

20 to %-.. .......................................... 
Ut02g.. .......................................... 
28 b 32..-. ........................................ 
32 to38 ...................... ..................... 
38tOru). ........................................... 
U t 0 4 8  ............................................. 
48 t o  62 ............................................. 
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