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PREFACE.

In this publication an attempt has been made to gather
into one volume all of the investigations that apply to the
system of polyconic projections. This was undertaken
mainly for the reason that no such treatise has ever
been produced in the English language. No adequate
treatment even of the ordinary, or American, gxoly-
conic projection has been given in any separate publica-
tion. The work by Thomas Craig entitled ‘‘A Treatise on
Projections,” published by the United States Coast and
Geodetic Survey, 1882, gives almost no treatment of the
golycomc projection as used by the Coast and Geodetic

urvey, but merely makes reference to the various yearly
reports of the Superintendent of the Survey for informa-
tion regarding it.

The subject of projections as a whole seems to have been
considerably neglected by authors who employ the English
language. A small work by Arthur R. lgmﬂs , published
by the Cambridge University Press in 1912, is an excellent
introduction to the general subject, and gives promise of
some awakened interest in this branch of applied mathe-
matics. '

In the preparation of this publication the followi
works were especialléy consulted: The most excellent wor,
by M. A. Tissot, Mémoire sur la Représentation des Sur-
faces et les Projections des Cartes Géographiques, Paris,
1881; Traité des Projections des Cartes Géographiques, by
A. Germain, Paris, 1866 (1); Lehrbuch der Landkartenpro-
jektionen, by N orbert Herz, Lelp%i&, 1885; Notes on Stere-
ographic Projection by Prof. W. W. Hendrickson, U. 8. N,

It is hoped that the treatment of the various classes of
polyconic projections may be found complete enough to
serve all practical purposes.
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GENERAL THEORY OF POLYCONIC PROJECTIONS.

By Oscar §. Apaxns,
Geodetic Computer, U. 8. Coast and Geodetic Survey.

DETERMINATION OF ELLIPSOIDAL EXPRESSIONS.

In the consideration of the subject of map construction,

the initial question to be decided is the manner in which
the meridians and parallels are to be represented in an or-
derly way upon the planesurface of the map. This is done
by the adoption oF some mathematical expression that
determines a one-to-one relation between the meridians
and parallels and their corresponding curves in the plane.
In the consideration of this determination, the earth can be
looked upon either as a sphere orasan ellipsoid of revolution.
When especial accuracy is desired, the eccentricity must be
taken into account. If the formulas are determined for the
ellipsoid, they can be reduced to those for the sphere by
setting the expression for the eccentricity equal to zero.
Since the ellipsoidal form is to be taken as the basis of
most of the following discussions, & preliminary determi-
nation of the necessary lines will be given.
. In figure 1 let EPS represent a quadrant of the generat-
ing ellipse. P and P’ are contiguous points; PK is the
normal at P and P’ K the same at P’. If the equation of
the ellipse be given in the parametric form

z=a cos ¥
y=>bsin y,

a will represent the equatorial radius or the semimajor axis,
and b the polar radius or semiminor axis; ¥ is the eccentric
angle as indicated in figure 1  If ¢ is the latitude of the
point P, it will be seen that /

. dz,
tan ‘P=—Ty3

but
de= —asin ¢ dy

dy= b cosydy.
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We denote the eccentricity by e and define it by the

equation

hence

tan <p==% tan .

* a?—D? b

. €= =1—-n

b

i 1—é

K’
F16. 1.—Generating ellipse with the radii of curvature of the earth.



THEORY OF POLYCONIC PROJECTIONS, 9
By substituting this value, we obtain
tan Yy =+/1—¢* tan ¢.

tany JI=¢ tanp _ VI—ésin ¢
1T +tan?y +/14+tan?p—¢® tan?e +/1—¢ sin’p

sin Y=

1 — 1 __ Cosg
JI+tan? +/1+4tan’p—e tan?p +/1 —é sinfy

cog Y=

sec’y dy = /1 —¢ sec’e do

- 1 —¢ secty do _ Ji—é dga_
1+tan?p—e® tan?e 1—¢ sinp

dy

If we denote the radius of curvature P K of the meridian
by pn, we have from the general theory of plane curves
the relation pnde =ds.

But
ds = +/dz3 + dy = +/a? sIn*Y + b* cos*y dy =a+/1— ¢ cos?y dy.
Also

S § poup
JI=¢ coszw=7-1——:-‘g2‘=;iﬁ—‘;’;
and ( ' a
S— R
VI—¢ cos?y dy = T sintg)™
or
a(l—¢) de
== F i)
Hence
a (1—¢)

Pm =123 sinip)™s

_ The normals at any two points on the same parallel circle
Intersect in a point ;(’ of the axis of rotation, If we pass
& plane through these two normals and then let the nor-
mals approach each other until they finally coincide, we
obtain a vertical plane tangent to the given parallel and

erpendicular to the meridian at the point of tangency.

‘he radius of curvature of a small aro in this direction 1s
given by PK’ because the normals of two contiguous
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oints of this arc intersect in K’. If we denote this radius
Y pu, We have

z @ Cos y a
= = == T 7, .
cos ¢ cos¢ (1—é® sin?p)’s

Pn

If the esement of length of the meridian is denoted by dm,
we obtain
a(l—e) do
dm= 2.1 — & sinlp)™
This is an elliptic integral that it is net necessary to
evaluate in this place, since we shall have occasion to
employ it only in the differential form.

DEVELOPMENT OF GENERAL FORMULAS FOR THE POLY-
CONIC PROJECTIONS.

Tissot defines a polyconic projection as one in which
the parallels of latitude are represented by arcs of a non-
concentric system of circles, with the centers of these
various circles lying upon a straight line. This line of
centers is generally called the central meridian; but it is
not necessarily the central meridian of any given map
and in cases does not appear upon the map at all.

In the following discussion the latitude will be denoted
by ¢, and the longitude out from the central meridian
will be denoted by A. : '

In figure 2 let Q M be the arc of a circle that represents
a given \ on the parallel of latitude ¢, with radius SQ
and center at S. fet R M’ be an arc of equal N on the
parallel of latitude ¢ +dy, with radius 8’R and center at §’.
0 is the point of intersection of the central meridian and
the Equator. Let OS be denoted by s. Then since s is a
decreasing function of ¢, 88’ is equal to —ds. If the
angle QS M is denoted by 6, we have

SP= —ds cos 6.
S’P= —~ds sin 6.
M'N=8"M'x £ M'S’N.
But
LMS'N=OS'"M ~ LOS'N

208’ M'— LOSN- £8'NS,



THEORY OF POLYCONIC PROJECTIONS. 11

since
LOS'N= LOSN+ £S’NS.
But
208" M — 208N=2d,
. 5o
S’ M’ =8'N=p+dp,
at the limit
S’P —dssinf
’ BT e TS o r——— @
LS'NS=gry=—"p1d,
§rd¢
¢

0
Ti6. 3.—Differential elements of a polyconic projection.
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Therefore
— ol ds sin 6
W N=G+p)[ (§2)do+ S50 |
or, at the limit
M N=p (2 Vo +ds sin .
MN=SM—-SN=SM-S8'N-SP,

since at the limit
S’N=PN.
But
SM—-8"N=-—dp.

By substituting this value and the value of SP, we obtain

MN=—dp+ds cos 0.
If we denote Z M’ MN by ¢, we have at the limit

o8 ds .
M'N p&a+%sm0
tan ¥="3ry =75 P
(—i-‘—pcos O—a—p

If we denote the change in scale or the magnification
along the meridian by %k, and that along the parallel by
k,, we shall obtain the following expressions for these
-quantities: '

M' M= MN sec ¢=(ds cos 6—dp) sec v,

The arc of the meridian on the earth that is represented
by M M is given by

a(l—e)d
dm=Pmd¢=(1_(ez Seir)lz‘P()p'I.'

Hence we have

_(1—e sin?p)*: / ds dp
]Cm—-—'—al—(-]':::‘z)—— @ cOos 0—&,-;)880 ¢I.
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The arc of a parallel on the map between the meridians
of longitude M and A+ d\ is equal to

p (%g dX, since ¢ is constant.

This arc upon the earth is equal to the expression

a d\ cos ¢

#2008 ¢ AN = 1T i)

Therefore
_P (1-¢é sin’w)‘/'gf_

ko a Co8 ¢ OA

The ratio of increase of area, denoted by K, is given by

E=kaky sin (5~ ¢) Tk, cOS ¥,

- p(1 — & sin?p)? ds cos § — dp a__&
@ (1—¢) cos ¢ \de deo/ O
CLASSIFICATION OF POLYCONIC PROJECTIONS.

K

_The general division of polyconic I}])rojections is sub-
divided into the following classes which are not, however,
mutually exclusive:

(1) Rectangular polyconic projections.

(2) Stereographic meridian and horizon projections.

(3) Conformal polyconic projections.

(4) Equal erea or equivalent polyconic projections.

(5) Conventional polyconic projections.

(6) Ordinary, or American, polyconic projection.

The general differential formulas developed above will

now be applied to these classes in the order named.

RECTANGULAR POLYCONIC PROJECTIONS,

The condition that must be fulfilled if the meridians and
parallels of the map are to intersect at right angles is
expressed analytically by

¥=0.
Since this condition requires, whatever the value of s and p,

that
tan ¢y =0,

08 ds
P30T dy

we must have
gin 0=0.
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Let us introduce as a new variable a function of ¢
denoted by u and defined by the equation

lds _1ldu
pde ude
But
1ds_ 1%
pde  sin 0 D¢
hence
1 o8 1du

By integrating this partial differential equation with respect
to ¢, we obtain the required relation. isintegration may
be carried through in the following manner.

1 bG du
sin @ O¢ do=—

rcos 2+sm 3 bo du
J " sin@ f

8
2 2
rcos 2+sm 5 26 Ju
oo 0005 —f
J 2 sin Ecos—

log 8in t%—log cos§0= —log u+log T(\) *

LogT'(A) is a function of \ that is added since the integration
is partial with respect to ¢. The function I'(A) is as yet
undetermined.

log tan 5 —log I‘()\)

or

tan %=——(—~

u

sThis function has no connection with the gamma function defined by the second
Eulerian integral,
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Since for A=0, § must also be zero, the function I'(A) must
vanish with A. This is the only condition that is required
to give a rectangular polyconic projection.

I% we choose an arbitrary function for T'(\) that van-
ishes with N and another arbitrary function of ¢ for « and
set

tan %=%)§lr

then the net will always be rectangular provided that

ir}x1 which s is also an arbitrary function of ¢, or provided
that

with p arbitrary.
_Since in this case of the rectangular polyconic projec-
tion ¢ =0 and.sec y =1, we have .

_(1—esin? )" (ds dp
km———-——————*a(l_ez) g 08 O—d(P)
p(1—ésin? )’ T'(A) .
ey == cos ¢ T S8 8
since
20 _T'(\) .
a——x = _—F(X) sin 4.

If we wish the parallel of latitude ¢ to lie on the developed
base of the cone tangent to the earth at latitude ¢, we
must have
__acote
PEI= s o)k

If, besides, the parallels are to be spaced along the central
meridian in proportion to their true distances, we must
also take
P a (1—-é)de acote
o (I—ésin® )" (I—¢ sin® p)h
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With these values we obtain

ds _ a(l—¢)  acosec’y a e cos? ¢
de (1—€esin2p) (1—e sin? )t (1 —é sin? o)™

_a(l—cosec? p) ___acot?yp
TO=ésn? )l (I—é sin? )

hence
Lds _ _ cot
pde ¢
Therefore
Ldu_ _ cot
u de @

by integration, we obtain
log u= —log sin ¢=1log cosec ¢,
or, passing to exponentials,

%=0C0SeC ¢.
But

¢ T'(M .
tan 5 =—-£7) =T'(\) sin ¢.

The length of ah arc of the developed parallel is given by

2a cot ¢ 0 —0; 2a cos ¢ g
pl=——— tan 5 = = T\ 5
(1 —¢ sin? )" tan 5 (1~ ¢ sin? p)'h tan 3

On the equator, since ¢=0 and 6=0, we obtain for an arc
from A=0 to \ the value

equatorial arc=2a T(\).

If we now add the condition that the equatorial arcs are
to be preserved in their true length, we have

2a T'(\) =a\
or

Ty =3-
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This value gives
tan ﬂ=_)) in
an =73 sin .
This gives the full determination of the projection. With -

these values we shall now determine the magnification
along the meridians and parallels.

I'"(\)=

O] =

dp ___ acosec® ¢ ae® cos? ¢
de (Q—&asin® o)l (1—¢sin? o)’
@ ®

—a cosec? p+ae+ae® cos? ¢
(1 — ¢ sin? )%

and
ds _ ___acot?’y .
de  (1—ésin? p)'hs

Substituting these values in the differential formulas on
pages 12 and 13, we obtain

cosec? ¢ €(1+cos? p) 1—esin? o
ke = o T i—e T i—e  ot*ecos

' b= sin 8
P Asin g

The formula for &y shows that the value of %, along the
central meridian is equal to unity; that is, the scale is
maintained constant along this meridian as was provided
by the choice of the value for s. This means that the
parallels are spaced along the central meridian in pro-
portion to their distances apart upon the earth. Since
this is true, with the known radii we can construct the
parallel arcs either by drafting or by plotting by means of
computed coordinates. The only things remaining to be
determined are the points of intersection of the meridians
with these parallels.
In order to determine these points, we have first

¢ _q= a\ cos ¢ .
PR 5= 51— sin? )'h
991043 O .- 52 2
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But the right-hand member of this equation is equal to
one-half the arc of the parallel of latitude ¢ from A=0 to
the value . If then in figure 3 we lay off the distance MN
on the tangent to the parallel drawn from the point where
it crosses the central meridian and take it equal in length
to one-half the arc of this parallel up to the given longitude
A, the a.n%le MCN will be equal to one-half of 6. To de-
termine th® point of intersection, from N as center with a
radius N M construct an arc intersecting the parallel at M,.
The point M, is then the intersection of the meridian \
with ‘the parailel .

This projection has been much used by the English War
Office for the construction of maps.

M

i 4
Fia. 3.—Construction of arc of parallel on rectangular polyoonic projection,

We can easily determine the radius of curvature of the
‘meridians in this projection. In figure 2

M’ M= (ds cos 6—dp),
-gince in this case cos y=1.

3
l—tanlg- —%sin’«p

oos. 6= TN,
1+tan1§ 1+74-sm"<p

‘The angle between two successive radii of curvature is the
angle between the tangents to the parallels of ¢ and ¢ +de
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20 U. 8. COAST AND GEODETIC SURVEY.

at the points® M and M’, respectively, since the projection
is rectangular. This angle is evidently equal to d6.
By differentiation we obtain

qu;
vo| &

A
sec =5 CoS ¢ do,

since M is & constant for a given meridian.
Hence

do =208 ¢ d¢ c‘;a e de
© 147sing

The radius of curvature of the meridian, denoted by p,

is given in the form

d d z o,
.M’M ((‘?’(‘sp cos 0"'35) (] +% Sln.2 (p)
Pe="dg \cos ¢ )

By substituting the values ofa(-z—; ) %’: and cos 6 and redue
ing, wefind
P ,
afl—e+ (11— e’)z sin2 ¢+§ cos? p (1 —e*sin? p)]

pB= - .
M cos ¢ (1 —¢ sin? )3

The magnification of area becomes

K=
‘cosec? ¢ € [l+cos?p] 1—ésin?p sin @
=& i=@ T—e  Ccofecost e o
But
N,
I—Z sin? ¢
cos 0=———>‘7————
1+:1—' Sin.2 [/
and
. A sin
gin g=—012309 _,

1+§ sin? ¢
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By substituting these values we obtain

2 2 2
K= [(cosec )(H———sm’ ) € (11-}-cos @) (1+ sin? )
— 2y
e sm cot2 (1—-—- sin? )] (1 +-— sin? )

or, on reduction,

2 2 —2ain?
1+)-‘*sin2<p+)i cos.2<,o~——————1 < Su; 4
4 2 1—¢
K= TN . )
(1’ +Zsm2¢>

If we e(iuate this to unity, we shall find the equation of a
curve which there is no exaggeration of area. On
reduction this equation becomes

2 2
M sint ¢+ 42 sin? ¢ — 8\? cos? (1 € sm ) 0,
which is satisfied by A=0, or by the equation
— 2 ain?
N2 sin o+ 4 sin? ¢ —8 cos? ¢ <l——1€:§—gl—-‘£>=0.

The areas of all sections north of this curve are diminished
and those lying south of it are increased in their represen-
tation on the map.

If we confine ourselves to the consideration of the sphere
K may be expressed in the form

NN,
1+Z+ZCOS )

) 2"
’(1 + % sin? ¢>

The differential element of area of the representation is
given in the form

K=

1 +—+ 1 +); cos?p
— €08 ¢ dp dX.
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1f the whole area of the sphere is represented on one con-
tinuous map, one-fourth of the area of the representation
will be given by integration of this expression from A=0

to A=r and from ¢=0 to ¢=-7—2r.
To obviate the use of the fractions, it is bettertoletA =2y,
> and dA=2 dy.

2
The total area S is given by

y will then range from 0 to

x 249,23 2
T 1+y*+y cos’p

-8a* [ Te 1HYHYTcos’
S 8aj; cos ¢ dy T Tegsmr e

x 1+y?+y2 cos?p , _ 7 cot? ¢
b (1+y?sin®p)3? Y= 2,
2(1+ Y sin? ¢

+cosec® ¢ tan ! (g— sin ¢)-

x 2
S__.4a2f‘;[:_lr_c_0.t'__“ﬁos_¢_+2 cosec %p cot
[v]

™ in?
<1+4sm <p)
tan ‘l(gsin <p) de.

S=4a”“:7—r cQsec ¢ — cosec? ¢ tan (721 sin p)]?
[]

2
L —
+-(4+2> tan 2}-

The quantity in brackets has to be evaluated for the lower
limit, since it takes the form oo — o at this point. Let us
write it in the form

T . _ N AL
5 8N ¢ tan (2 sin <p>
b

sm?

which takes the form —g— at the lower limit.

' T . af T .
lim [§ sin ¢—tan <§ sin (p)]

=0 sin? ¢
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r
x 008 "2' co8 ¢
2 T .
_lim 1+gsimte lim|- 6% |,
é - = é 3 == .
=0 2 8in ¢ cos ¢ ) Ol_1+7-‘%sin’¢
Therefore,

8 =a’[(4+7°) tan™? %+2w].

This value is greater than the surface of the sphere in the
&p&OXMate ratio of 8 : 5.

e length of the outer meridian for the representation
of the sphere is given by four times the integral of ¢ km de

from ¢=0 to ¢=’§’with A= in the value of 6.

For the sphere k= cosec? p— cot? ¢ cos 6,
and for the outer meridian

1+§ (14 cos? ¢)

kw=
1 +1}:- sin? ¢

The length of the meridian is, therefore, given by
L1 +"Z—2(1+ cos? ¢)

l=4af7 = de.
Yo 1 +Z sin? ¢

By means of a table of integrals we find that the value of
this integral is given in the form

l=2ar[(4+ 1r’)3‘5 -1}

The length of a great circle at the outer limit of the map
18 Increased in the ratio

(44 %)% —1 : 1 orabout 2.72 : 1.
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STEREOGRAPHIC MERIDIAN PROJECTION.

In the discussion of the stereographic meridian and
horizon projection, it is probably best to consider first the
sphere and later to indicate the manner in which the
ellipsoidal shape can be taken into account. To employ
the differential formulas given before, we need only to
set e equal to zero.

Any stereographic projection is a perspective projection
of the sphere, either upon a tangent plane or upon a dia-
metr?iflane, with, the center of the projection lying upon
the surface of the sphere in such a way that the diameter
through the point of projection is perpendicular to the

P

F16. 5.—Radlus from center on stereozraphic projection.

plane upon which the projection is made. 'We shall make
use of the diametral plane since there is only a difference
of scale between that and the tangent plane.

In figure 5 let the circle QMRP be a plane section
of the sphere determined by the diameter PQ and the
projecting line PM. P is the point of projection, OR is
the trace of the diametral plane upon which the map is to
be constructed, and the Eoint Q pro}ected into O forms
the center of the map. Let the angle QOM be denoted
b ﬁ; then the arc QM is the measure of p. All points
of the sphere at the arc distance q from @ will lie upon a

e

circle the plane of which is parallel to the plane OR. The
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lines that project the points of this circle will all lie upon
& right circular cone that will cut the plane OR in a circle
the radius of which will be equal to ON. OP is equal to a,

and the angle OPN is equal to .
Hence :

ON=p=a tan 123

If we denote the angle between p and the X axis in the
mapping plane by w, we have

a 8sin P cos w
T=p co8 w=a tan 122 cos w==———£————

1+cos p
Lo P _asin psin @
9Y=p8in w=ga tan 5 S 1+cos p
T
w 4

* Fig. 6.—Transformation triangle for meridian stereographic projestion.

. If the point of projection lies on the Equator as it does
In the stereographic meridian projection, the values of
:n f&u)l\ctions of p and w must be determined in terms of
2 .
In figure 6, lot WQV be the Equator and T the pole
and let T'Q project into the centrgl meridan of the map.
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P is the point that we were considering in the previous

figure.
PQ=p
TQ=5
TP=5—¢
LPTQ=2\
APQTég—m

From the trigonometry of the spherical triangle we
have the relations

cos p=Cco8 A CO8 ¢
sin p sin w=sin ¢
sin p cos w=sin \ ¢os o,

If these values are substituted in the equations for z
and y, we obtain
R sin \ cos ¢
i-4co8 \ cos ¢

- a sin ¢
4 1+cos A cos ¢

¢

From these equations, by solving for sin \ and cos },
there result

. x
sin A=— tan
y (4

=a'8in ‘P_ .
GOS8 A __—ﬂycomp

. * _ 2
AL X ot i

’-y—’ y? cos?yp '

or, by reduction,

Hence

2+ 9 —2ay cosec p= —a®
or, as usually written,

#*+ (y —a cosec ¢)?=a’cot?e.
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This equation shows that the parallels are circles, and that
the parallel of latitude ¢ has the radius @ cot ¢, and that
the center lies at the point 2=0, y= a cosec ¢. The paral-
are therefore circles, nonconcentric, but having their
centers on the line z=0. The projection is thus seen to
be a polfconic grojection in the sense of Tissot’s definition.
ﬁn]gy solving the original equations for sin ¢ and cos ¢ we
. ysin
S ¢= 2 sin A—z Cbs A
CO8 e s
08 =g sin A—z cos
By squaring and adding, the equation of the meridians is
obtained.
y? sin®\ z? -1
(@sin A—z cosA)? ' (@sin A—z cos\)? !

or, on reduction,
2%+ 9* + 2az cot A=a?
or, as usually written,

(x+a cot N\)*+y*=a? cosec?\.

-

The meridians are thus seen to be circles also; the circle for
the longitude A has the radius @ cosec )\, and the center lies
at the point x=a cot \, y=0.
In this projection we have, therefore,
‘p=a cot ¢
8=a cosec ¢

sin A sin ¢

. z
81 e
n 6 p l+coshcose

[ sin A
O¢ 1-+coshcose

ds
a5~ —a cot ¢ cosec ¢

_bg+ds. fem asin\cotp asinAcoty _
P T de ™ " TFcosAcosp 1+coshcose
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Therefore

tan ¢ =0, or =0, and the projection belongs in the class
of the rectangular polyconic projections.

The equations for the magnification along the parallels
and along the meridians, respectively, are for the sphere

gf ¢os 0-—%5
= acos

k____p_b_t?,'
P g cos ¢ ON

b

But

dp
—— e @ 2
d¢ 0secC’y

__ _Ccos A+cos ¢
cos 0*1+cos A\ cos ¢
and

0d sin ¢

ON 1+coshcosg

By substituting these values in the formulas for kg, and &,
we obtain '

v

—a cot ¢ cosec ¢ (cos A+ cos
¢ cosec ¢ ( + ‘P)+acosec’¢

1+4cos X\ cos ¢
a

km=

1
=1 +cos A co8 ¢

_acote sin ¢ = 1
P g cosp 1+COSACOSe 1-cCosAcose

The projection is therefore conformal, since the meridians
and parallels form an orthogonal net and the magnifica-
tion along the meridians and along the parallels is the same.
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30 Jo°*

0 o*

30°

60

. o *
F1a, 7.—S8tereographic meridian projection of a hemisphere.
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DERIVATION OF STEREOGRAPHIC MERIDIAN PRO]ECTION
BY FUNCTIONS OF A COMPLEX VARIABLE.c

; The element of length upon the sphere is given in the
orm

2
dS%=a? (d¢® + dA? cos?p) =a® cos’yp ( Cg:;¢p + dk’)

If we set

dS becomes .
dS§?=a? cos? p (do?+dN?).

Any conformal ?rOJectlon may then be expressed as a
functlon either of ¢+4 \ or of o—4 ), in which 7 denotes as

usual 4/~ 1.
cos¢ f81n(2+¢

cos”(4+§)+ Sm2(4 2)

EIZSm <4 2)cos <4 2)
azfcos (4 2)d sin (£+§>§«Lo
sin (4 2) cos(g-%%) 2

o=+ log, sin <£-+§>—-log., cos (—Z—+§)

o=log, tan <£— + —g):

a Bee General Theozz of the Lambert Contormal Conic Projection, Special Publication
No. 53, U. 8. Coast and Geodetio Buryey.
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or, on passing to exponentials,

L TLE
e—tan(4+2)
‘1 e° r.¢ TP
€ +e tan (4+2)+cot(4+2)

Y SN 4 3 (T, ¢
_sm (4+2)+00s (4+2)

C n(TLe T, o
sm(4+2>cos(4+2)

31

2

n(TL? TP inf( T
2 8sin (Z+§> cos (4+2) sm(2+¢)

g

et e
2

or

=806C ¢

cosh g=8ec ¢

o —a

et —e
2

sinh ¢ = +/cosh’s—1

=ginh o

ginh o= +/sec’e— 1 =tan o.
sinh tA=1 sin' A,

cosh tA=cos \.
If we take
ai [N _ gH =)

THW= " IR ™)

We obtain the stereographic meridian projection,

T cos ¢
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'This can also be written in the form

z+ty=ati tanh <a;w\

at sinh (0’;’&)\)

By =

cosh (a ; i)‘)

o sinh (";'”‘) cosh (—”2'"")
cosh (U—_2—2\> cosh (a;“)

_ai (sinh o—sinh )
" cosh o4 cosh 2\

Ea'l (sinh o—14 sin \)
cosh o+cos A

@ sin A+ a1 sinh o
i —3
cosh o+ cos A

_a sin A+ a1t tan ¢
8eC @+ cos A

@ 8in \ cos ¢-+at 8in ¢
1+cos A cos ¢

By equating the real parts and the imaginary parts this
becomes
@ 8in \ cos ¢

x=1+cos)\cos<p

_ @ sin ¢ .
y 1+coshcose

We thus by this method arrive at the same values that
were obtained before by expressing analytically the results
of the direct projection. The fact that the projection can
be derived by the use of functions of a complex variable
establishes the conformality of the projection.*

*See Coast and Geodetic Hurve{ Special Publication No. 53, The General Theory of the
Lambert Conformal Conic Projection.
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In order to take into consideration the ellipsoidal shape
of the earth, we proceed in the following way. If we
denote the element of length upon the ellipsoid by dZ,

we have
(1—¢)? d<p3 COquo % ]
(1—¢ sm"p)’ — é sin’e
2 @ cos’e (1—e)2de? ,]_
dz 1—é sin’p [cos’go 1-¢ sin2<p)’+d}\
In this case

(1—€) de
cos ¢ (1 — € sin%p)

do=

__(1—=¢ sin’p~ & cos’p) do
cos ¢ (1— € sin?p)

de €cos pdp
cos<p T1—ésinly

(e cos ¢ dtp € C08 ¢ d<p>
-~ 1
Slll(z ) 2\I—esing 1+esing

[°°S’ (Frg)+eim (5+5)]
2 sin 5+ 2)cos<4 2)

_ ec05¢d¢ ecos¢d<p>
l—esing 1-4esing

. T @
T e\ 2
sin ( i 2) cos <Z+§>

ecos pde € [ecos pdp
T—esing 2 Jl+esing

o=log, sin ( 1 2) log, cos 2>+ 5 log, (1—esin )

- -2- log, (1 4+ e sin @)
- LA !:_f,sm ¢
v =log, [tan (4 +2> (1 Fesin g ]
- 1—esin e
tan (4 2) (1 Fesin (p)

981943 0-~52- 3
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We can now map the ellipsoid conformally upon the

/

sphere by the relations
N =

A
and
’ ,- . [
T+ )etan (T+2) . (Loesie)s
tan (4+2 ) tan <4+2) '(1'+esin ¢) .
The latitudes ¢’ are computed for the parallels that we
may wish to map; that is, for 10°, 20°, etc., or for what-
ever interval we may choose. This sphere may then be
conformally mapped upon the plane, the values of ¢’ being
employed 1 the computation. Each step is conformal;
hence the plane map is.a conformal representation of the
ellipsoid.
he magnification upon the sphere is given by

’ %
g a cos ¢’ ( C(‘)Zs::<p'+d)‘z>

dZ~  acos e [ (1—-¢e)3de )"th],"
e

(1—¢ 81n%p)* | cos?p (1 — € sin?

&

_cos ¢’ (1—¢€ sin?p)*
cos ¢

The total magnification is equal to the product of the
values obtained for the ellipsoid upon the sphere and for
the sphere upon the plane. The total magnification,
which we shall denote by %k without subscript, since it is
the same at any point in all directions, is given in the form

__cos ¢’ (1—é sin?p)* .
T cos ¢ (1408 A cos @)

CONSTRUCTION OF STEREOGRAPHIC MERIDIAN PROJECTION.

It is a very easy matter to construct a atereogrqgl}lic
meridian projection graphically. Divide the meridian
circle into equal arcs at whatever interval it is desired
to construct the meridians and parallels. In figure 8 the
divisions are made at 30° inte: . QR’'=30°; the tangent
at R’ gives the radius 8’R’ and the center 8’ for the
parallel of 30°; a similar arc with center distance to the
south equal to 08’ and with radius equal to 8'R’ gives
the projection of the parallel of 30° S. The tangent at
R or SR gives the radius for 60° of latitude, and the
same arc transferred to the south gives the projection

k
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for 60°S. The center distance O T=SR with radius TP’ =
TP gives the projection of meridian 60° west and OT”
gives 60° east; also the center distance O U=S8'R’ per-
mits the construction of 30° W. and O U'=8'R’ gives the
Imeridian of 30° E.

3

<

¥16. 8.—Construction of stereographic meridian projection.

Probably’ the most satisfactory way to construct the
Projection is by means of a computed table of radii and
of coordinates of the center. The centers of the parallels
all lia on the Y axis and those of the meridians lie on the X
axis. The radii and the distances of the centers of the
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parallels become, respectively, the distances of the centers
and the radii of the meridians. In the table p, and p,
denote, respectively, the radii of the meridians and of the
pa.ra]leis; Bm 8nd ay, the distances of the centers; &, and
8p, the distances of the intersections of the meridians with
the Equator and of the parallels with the central meridian.
The table, of course, applies to the sphere and not to the
ellipsoid. The values are given in terms of the earth’s
radius, or they are the values for a sphere of unit radius.

TABLE FOR THE STEREOGRAPHIC MERIDIAN PROJECTION.

[In units of the earth’s radius.]

por £m OT ap pp OF B bm OF 8p @OrA
Degrees. Degrees.

0 @ @ 0. 00000 0

b 11. 47371 11. 43005 . 04366 5

10 5. 78877 5.67128 08749 10

15 3. 86370 8. 73206 13185 15

20 2.9238%0 2.74748 17633 20

23° 27 30’* 2. 51204 2, 30442 20762 23° 27 30"
28 2. 36620 2. 14451 22169 25
30 2. 00000 1.73208 26795 30
35 1. 74345 1, 42815 31530 35
40 1. 55572 1. 19175 36307 40
46 1. 41421 1. 00000 41421 45
50 1. 30544 . 83011 , 46631 50
56 1.22077 . 70021 . 52057 bd
60 1. 15470 .57735 57735 60
65 1,10338 . 48631 . 83707 065
66° 32’ 30" 1. 09009 - 43395 . 65616 68° 32" 30

70 1,068418 . 36397 70021 70

75 1.03528 28705 76733 75
1.01543 17633 83910 80

85 1. 00362 08749 01633 85
90 1. 1 90

STEREOGRAPHIC HORIZON PROJECTION.

In a stereographic projection the center of the map may
lie at any point upon the earth’s surface. We have just
treated tﬁe case in which the center lay upon the equator.
If the center is to be In latitude a, we start with the same
equation in terms of the arc distance from the center and
the azimuth reckoned from the great circle perpendicular
to the meridian through the center.

a sin p cos w
@pr=—7
1+cos p

_asin Qsinw.
Y="T¥cos p
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In ficure 9 let T be the pole, @ the center of the projection,
and let P be any given point.

T

F1q. 9.—Transformation triangle for stereographic horizon projection..

TQ=%—a
K
TP=5 -
QP=p
LQTP =\
£LTQP=3 ~o.

‘From the trigonometry of the spherical triangle we have

cos p=sin a sin ¢ +cos a cos N €08 ¢
]

si sin A . .

~”~n-£=———, or sin p €os w=sin N cos ¢,

coOS ¢ COSW

and

sin p sin w=cos @ sin ¢ —sin « cos A CoS ¢.
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. On the substitution of these values we obtain as defini-
tions of the coordinates of the projection

- asin \ cos ¢
1+4sin  sin ¢ +C0S @ ¢oS A €08 ¢

X

y;a(cos a sin ¢ —sin « cos A ¢os )
14sin asin ¢ +cos a cos \ €os ¢

gll;t()im these equations, by solving for sin ¢ and cos ¢, we

Z 8in « cos M+ sim: A
@ coS asin A—Z cOS A—¢ sin « sin A

sin ==

Z cO8 a
@ cOS @ sin A —2 coS A—¥ 8ln « sin A

CO8 =

By squaring and adding there results
(z sin a cos A +y sin N\)? + 2% cos? «
= (@ c0s a 8in A —z cos A—y sin a sin )%,

By performing the operations and collecting, we obtain
finally
2t +y*+2az sec a cot A+2ay tan a=a?,

which may also be written
(z+a sec a cot A\)? +v(‘y+a tan a)? =a?® sec?® a cosec? \,
This is the equation of the meridians, and i;hey are thus
seen to be circles. The meridian of iongitude M has the
radius
pm=a Bec a cosec A, with its center at the point,
= —a 8ec a cot \,
Y= —a tan a.

The centers, therefore, all lie on the line

Y= —a tan a.
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?y solving the original equations for sin A and cos X we
ge

2(sin e 4-sin @)
@ sin a cos ¢ +7% €08 & COS ¢

gln A=

@ cos asin p—y—ysin asin ¢
a sin & cos ¢+ COS @ COS @

cos A

By squaring and adding we obtain

2’ (sin a+4sin ¢)?+ (@ cos « sin ¢—y—y sin a sin ¢)?=
cos? p(a sin a+y cos a)?,

or, on developing and arranging,

2*(sin a+sin ¢)?+y?(sin o +sin ¢)?— 2ay cos a(sin a +sin ¢)
=a?(sin? a cos? ¢ — cos? a sin? ¢)

or, finally,

( __@cosa )’_ a?coste
@+\Y"sin a+sin ¢/ ~ 0 a+sin o)

The parallels are, therefore, circles with their centers all
lryxénig on the Y axis. The parallel of latitude ¢ has the
adius

a Ccos ¢
222 g
Pr=g5in a+sin ¢

With its center at the point
z=0,

a cos a
DI g @
y sin « +8in ¢

The parallel of latitude —a is evidently a straight line,
since the radius becomes infinite for this value, as does
also tho distance of the center from the center of the
Projection.

he projection is seen to be a polyconic projection in
accordance with the definition of Tissot.
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For the parallels we have

a cos ¢
sin a +sin ¢

__Gacosa
sin a +8in @
sin A (sin a+sin ¢)
p l-4sin asin¢+cos acos \ cos ¢

§—Yy_cos A+C0S a ¢o8 ¢+sin a cos M sin e

g =
cos 6= 148in a sin ¢+ €os a ¢os \ co8 ¢

& in this case is not reckoned from the Equator; but,
since we need only the derivative of s with resgect. to ¢,
it will answer the dpurpose to leave it as it is fact, &
could be reckoned from any fixed point in the line of
centers and in this case it 1s reckoned from the origin
‘which lies at latitude o.

. cos a sin M
O¢ 1-4sin asin ¢+ cos a Cos X €O8 ¢
o8 sin a+sin ¢
ON  1+sin asin ¢ +c08 a cos A CO8 ¢
@é‘____ a cos & COoS ¢
de  (sin a+sin ¢)?
(-1_&____0,(1 +s8in e sin ¢)
de  (sin a+sin ¢)?

These values may now be substituted in the general dif-
ferential formulas and by that means we obtain the follow-
ing results:

of +d iné @ cos a sin \ cos ¢
Poe  de 8 (sina+sin¢) (1 4+ sinasin ¢+ cosa cos Acos ¢)

@ Cco8 « 8in A ¢os ¢ _
(sin +sin @) (1+sin o sin ¢+ CoS a CoS A o8 @)

Therefore
tan ¢ =0

y=0.

or
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The_ parallels and meridians form, then, an orthogonal net
of circles. ‘

s o g
k*dqacs dp)  cosacose
m a cos ¢ T 7 (sin a+sin @)?

CoS A+ ¢0s a ¢0s ¢+sinacosAsing 1 +sin a sin ¢
1-+sin @ sin ¢ +¢os a cos X ¢os ¢ (sin a+sin ¢)*

1
" 1+4sin @ sin ¢4-cos @ cos N CO8 ¢
o, 98
PTacose OM

k
_ 1 sin @ +sin ¢
sin a+sin ¢ 1 4 sin o sin ¢ + €08 @ COS N COS ¢

1
T 14sin a sin ¢+ cos a cos A €OS ¢

50°

20*

90°

60°

J0°

g, 10.—Stereographic horizon projection of a hemisphere~horizon of Paris.
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The projection is thus shown to be conformal, since the
meridians and parallels are orthogonal and the magnifica-
tion along both is the same. We might have taken this
for granted since we found that the stereographic meridian
projection was conformal and the nature of the projec-
tion is not changed by moving the point of projection to
a different point upon the sphere.

In taking account of the spheroid we proceed as in the
case of the stereographic meridian projection. The magni-
fication at a point (the same in all directions) would then be

e €os qo'.(l — €2 8in?p)'s .
cos ¢ (1 +s81m o’ sin ¢’ +cos a’ cos \ cos ¢)

DERIVATION OF STEREOGRAPHIC HORIZON PROJECTION
BY FUNCTIONS OF A COMPLEX VARIABLE.

The projection, being a conformal projection, can be ex-
pressed in terms of a function of a complex variable either
of ¢+ or of o—4X. Let us take

. at sinh (a————— i;\ = B)
TTW= onch (a—’g\ +B)
at sinh (G—:'L—;\———B) cosh (E_i'_’bz)\__'*'_@)
- cosh (U———— 11',2)\ +B) cosh (U——+ 'i2>\ * B)

_ai[sinh ¢ —sinh (iIx+B8)]
cosh, (¢ +8) 4+ cosh @\

_aifsinh ¢—sinh 4\ cosh §—cosh i\ sinh Bl
~ cosh ¢ cosh §+sinh ¢ sinh 8+ cosh A

But
cosh o=sec ¢

sinh o=tan ¢
sinh 4A=1% sin A

cosh i\ ==cos .
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By substituting these values we obtain

a4 (tan ¢—1 sin \ cosh 8—cos X sinh §)
sec ¢ cosh B +tan ¢ sinh S+cos A

z+ay=

asin X cosh B4ai (tan p—cos A sinh B)

" sec ¢ cosh B+ tan ¢ sinh B+cos A

By equating the real parts and the imaginary parts, we get

re @ sin \ cosh g8
sec ¢ cosh §+ tan ¢ sinh B+cos A

- a (tan ¢ — cos \ sinh B) .
Y=gec ¢ cosh B +tan ¢ sinh g4-cos A

Let,

cosh B=sec ¢,
then

sinh B=tan a,
Substituting these values we obtain

o @ sec a 8in A
sec a sec ¢+ tan a tan ¢+4cos A

_ a(tan ¢—tan « cos ) .
¥ 7 sec a sec p+tan « tan ¢+ cos A

On multiplying both numerator and denominator by cos «
€08 ¢, we derive

o= @ sin \ cos ¢
1-sin « sin ¢+ CoOS o cOS N COS ¢

_ a(cos a sin p—sin a cos A €08 @) o
14 sin asin ¢+ cos «a 08 \ €08 ¢

We thus arrive at the same equations that were ob-
tained before.

PROOF THAT CIRCLES PROJECT INTO CIRCLES IN STEREO-
GRAPHIC PROJECTIONS.

It can be proved in a general way that, in any stereo-
graphic projection, any circle upon the sphere is projected
nto a circle upon the plane of the map. Straight lines
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must, of course, be considered as circles of infinite radii,
with centers at infinity. Any circle either great or small
which passes throuﬁh the pomt of projection will be pro-
jected into a straight line, since all of the projecting lines
will lie in the plane of the circle and will cut the mapping
plane in a straight line, which is formed by the intersection
of the plane of the circle with the mapping plane.

Let us now take any other circle upon the sphere. Make
a great-circle section of the sI])here containing the point of
projection and the f)ole of the given circle. This great
circle necessarily will also pass through the point that pro-
jectsinto the center of the map, i. e., the point antipodal to

c A

(]

Fig. 11.—Proof that circles project into eircles on stereographic projections.

the point of projection, After this is done turn the great
circle section into the plane of the page. The plane of this
section will evidently be perpendicular to the plane of the
given circle, since the plane of any great circle containing
the pole of the given circle would partake of this property.

In figure 11 let O be the goint of projection, KL the trace
of the mapping Elane, BC the trace of the plane of the
circle, and let A be the point that projects into the center
of the map. The lines that project the circle under con-
sideration will evidently form an oblique cone that has the
given circle as a circular section, Any plane parallel to
the plane of this circle will also cut the cone in a circle.
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Wae shall now prove analytically that any such oblique cone
that has one system of circular sections has also another
Sf'st(‘,m of circular sections. If we have a cone passing
through the circle 2=0, 22 44*=a?, it will be a perfectly
goneral one if we take the apex at the point z=f, y=0,
z=h in the plane y=0. A line through this point 1s given
by the equations

z—f=a(z—h)
y=B—1h).
This line intersects the plane z=0 in the point the coordi-
nates of which are
' T, =f— ah
Yy=— Bh.
Since this point is to lie on the circle, we have

(f — ah)? 4 g2h* = a?.

But /
w—

*=2"h

A

ﬁ_z—h

By substituting these values we obtain
(fz—hx)? +h*y? =a*(z—h)*

This is the equation of a cone bearing the same relation to

the plane y =0 that the projecting cone bears to the plane

?f the great circle. This equation may be written in the
orm

h? (224 g} + 22— a?) = 2[2fhx + (a® —f*+ h*)z — 2ha?].
Henee, if the conical surface is cut by either of the planes,
2=

ofhz + (a* —f* + h*)z — 2ha? =38,

g)le points of intersection will satisfy an equation of the
rm

or

2 +y? +22+242+2Bz+ D=0
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for all values of v and §, and the sections will therefore be
plane sections of a sphere. Therefore, there are two series
of circular sections made by two systems of parallel planes,
and both systems are parallel to the plane y=0.

The trace of the cone upon the plane y=0 has for its

equation:
(fz—hz)*—a*(z—h)*=0.

This is, therefore, the equation of the two generating lines
which lie in that plane. The equation of the two planes
in opposite systems giving the circular sections is

(z—7) [2fhz+ (@*—f* +1*) 2— 2ha? — 5] =0.

By adding these two equations we get an equation of the

form
2?2+22+A'z+B'y+ ' =0.

This shows that the four points in which the two generating
lines in the plane y =0 meet the planes forming the circular
sections lie upon a circle. Hence the first system of

lanes makes the same angle with the one of the generating
ines that the second system makes with the other. We
will now show that the mapping plane fulfills the conditions
for the second system of circular sections. The mapping
plane is evidentg perpendicular to the plane of the great
circle ALOK, and 1t thus fulfills the first condition. The
further condition is that it must. make the samé angle with
one of the elements of the cone lying in the plane of the
great circle that the plane of the circle on the sphere makes
with the other element in this plane. In figure 11

£0BO=1 sxc OLAC=1(are OLA4 +aro 40) =T+ L arc 40

Z KFO=% (arc O K+arc LAC) =%+% arc AC,

Therefore
LOBO= £ KFO

and
/BC00= £ FGO.
It is thus seen that the points B, 0, F, and @ lie upon a
circle and all the conditions are fulfilled for circular
gection,
Construct the tangents BD and CD, draw EM parallel
to CD, and draw EH parallel to BD.
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Then '
DC:EM=DO : EO=DB : EH,
but
DC=DB.
Therefore
EM-EH,

AEGH=—;- (arc OL +arc KB)=§+% arc KB
AEHG=W—AEH0=T—ADBO=w—%mmOLAGB
-=1r—-% (arc OLACBK—arc BK)

= —?’-w -i—1 arc BK =;—r+l arc BK.

4 2 2
Therefore
LEGH= LEHG
and
EH=EG.
In & similar way it can be proved that
. EM~EF.
But, since
EH=EM,
EG =EF,

therefore the projection of D is the center of the circle that
maps the given circle. D is, of course, the apex of the cone
t'a{i%?nt to the sphere along the given circle.

. The stereographic horizon projection can be constructed
either by computation of the radii and centers or directly
by graphic construction. The formulas for computation
are for the meridians

Pm =@ SBC a COSeC A
Zm= — @ 8ec a cot A
Ym=—a tan a
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and for the parallels
acose acos ¢

pp== . - = -
sin a+sin ¢ 2 sin (a-lz—cp) cos (a 2(p)

Lp =
yom— B CO5 a cos a
PTsnatsine ., . [fate a—
2 sin ?).
) cos (559)

The forms last given should be used for logarithmic com-
putation.

CONSTRUCTION OF STEREOGRAPHIC HORIZON PROJECTION.

The method of graphical construction for the parallels
is as follows: Let us su;I)pose that we wish to construct a
projection for =30°. In figure 12 the point of projection
1s supposed to be in the perpendicular to the plane of the
paper at E. Let the plane of the central meridian (that
through the ipoint of projection) cut the mapping plape or
the plane of the paper in the line YY’. This central
meridian section is then turned upon Y'Y’ as an axis until
it falls in the plane of the paper. The eye will then be at
0, and A will be the point that projects into the center of
the map. Construct the angle AKQ equal to 30°; then
QQ’ is the trace of the equitorial plane upon the plane of
the central meridian. The diameter PP’ perpendicular to
QQ’ is the axis of the earth turned with the plane of the
central meridian. Y'Y’ is the projection of the central
meridian, since the plane was turned upon this line as an
axis; hence, if any point is projected upon this line the
corresponding point upon the map will be determined.
P and P’ are the poles; draw OP and OP’. Then p is the
North Pole of the map and p’ is the South Pole of the
same.

To determine the circle that forms the projection of any
parallel, lay off the arc 0Q equal to. the latitude; in the
figure CQ=45°. Construct CB perpendicular to PP’ and
construct tangents at B and C meeting in the axis pro-
duced at D. Draw OB, OC, and OD; then B’ and ¢’ are

oints on the circle, and I is the center of the same.

ith D’ as center and with radius 2B’ or D’¢’ construct
the circle, and the circle so drawn in the figure is the
projection of the parallel of 45° of latitude. 0@ deter-
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Mines the point ¢ on the Equator, and OF drawn parallel
to PP’ locates the center at F; with the radius Fg draw
the arc OgA; this arc is the projection of the Equator.

:

Yp

P

v

P16, 12.—Construction of parallels on stereographie horizon projection.

. In a similar manner the projections of any desired parallels
c:m be drawn: Itis evident that any two of the points B,
»and D’ will be sufficient to determine the circle, since

891943 0-52. 4
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we know that the center lies upon Y'Y*. The circle
which represents the parallel of latitude —« has an infinite
radius with center at infinity on the line Y Y"; it is there-
fore a straight line perpendicular to Y'Y”. The lower
point at which the parallel crosses the central meridian is
given by .
a{cos a—cos ¢)
Yo P~ "gin a+tsin g

This takes the form 0/0 for ¢= —ca, and the limit must
be determined for this point.

. a({cos a—cos . a si
Jim ( ®)_ lim 28ine_

sin « +8in ¢ o= CO8 @ —a tan a,

o= —a
or, otherwise,

a(cos a—eos ) 1
sin o +sin ¢ =@ tan P (p—a),

which for ¢ = —a becomes —a tan «.

The straight line parallel, therefore, conicides with the
line of centers for the meridians; and hence must be the
perpendicular bisector of pp’. It is the line RR’ drawn
1 the figure. )

In figure 13 the details of the construction of the merid-
ians are given. p and p’ are determined in the same way
as in figure 12. To determine the coordinates of p and
of p’, we set =0 in the equation of the meridian and
solve for y. We thus find that

Yy = —a tan ata sec «a;
therefore
Ep=—a tan a+asec a

and
Ep’= —a tan a—a sec a,

The middle point of pp’ is given by
L (Ep+Ep")= —a tan a.

The perpendicular bisector of pp’ is, of course, the line of
centers of the meridians, since they must all pass through
the points p and p’ and they thus have Ig)g’ as 8 common
chord. This line of centers is the line R’ in the figure.
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The length of Fp’ is equal to the length of Ep’ minus the
length of EF; hence the length of Fp’=a sec «. The
center for the arc that is the projection of the meridian
of longitude \ lies on the line RR’ at the pomt.rm= —a
sec & cot \. With p’ as a center and with any convenient
radius construct a circle; divide this circumference into

e
///
@ -
v
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//
-
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0 {4
\
\
\
AN
\
\\
A \\c F Q f
\
\
PR G
\
\
N
\
\
\
\
\

Fra. 13.~Construction of meridians on stereographic horizon projection. |
equal arcs for whatever interval it is desired to construct
t,he meridians, the initial point of the subdivision being
Ine ﬁomt where this circle intersects the central meridian.

the figure we have

- ’ ya B IF.

Fp’ =a sec a.
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. If then the angle Bp’ F———%—)\, we shall have

BF=a sec a cot A,

The arc GH must be taken as the complement of the
longitude, for which we wish to construct the meridian.
G K is 30°; therefore C is the center of the meridian for
A=60°. The meridians .all (Pass through p and p’, so
that they may be constructed as soon as we have located
the centgrs. F'is, of course, the center for the meridiap
of N\=90°,

Fia. 14.—Elements of a small circle on stereographic projection.

SOL.UTION OF PROBLEMS IN STEREOGRAPHIC PROJECTIONS:

We shall now give the demonstration of the solution?
of a few problems connected with stereographic projections:
The plane of the projection is called the primitive plane,
and the circle formed by the intersection of the primitive
plane with the sphere is called the primitive circle. The

olar distance of a point on the sphere is the angulaf
gistance on the sphere from one of the poles of the primi-
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tive circle. The polar distance of a circle is the angular
ghstance of any point of its circuinference from either of
Its own poles.” The inclination of a circle is the angle
between its plane and the primitive plane. It is meas-
ured by the arc distance between the pole of the given
crcle and the pole of the primitive circle, since this
Mmeasures the angle between the perpendiculars to the
planes of the two circles,

In figure 14 let NESW be the primitive circle and let
QR be the trace of the plane of a small circle, with P as
1ts pole; then PR =PQ is its polar distance and PV is its
Inchination. The diameter WZI]) is called theline of measures

of the circle QR; NS is perpendicular to Wi at the center
D

T16. 15— Dotermination of the arc distance from the center on stereographic projection

of the primitive circle. & is the point of projection and
i and R’ are the projections of the extreme or principal
f ements of the oblique circular cone SQR which is formed
)y thg projecting Imes of the points of the circle QR.
Jenoting the polar distance of the circle by « and the
clination by £, we, have

OR’ =a tan %@-5)

0Q’ =a tan %(x+£).

Problem 1.—To determine the shortest distance between
@ center of the map and another point the projection of

which is given; that is, to determme the arc of a great
circle between them:



b4 U. 8. COAST AND GEODETIC SURVEY,

Infigure 15 let DBEA be the primitive circle and let AB
be the line of measures; ¢ is the given point. Construct
Cg’ equal to Cg and draw Eg’ from the point of sight E
and prolong it to meet the ﬁrimitive circle at G; then D@
is the arc distance, since all points of polar distance D@
are projected into the circle of which tge arc gg’ forms a
part. Therefore, the great circle distance of Cy and Oy’
are equal; D@ is evidently the polar distance of ¢’, and
hence also of ¢g. If the given point lies on the line of
. measures the construction is the same as that given for
the determination of the great circle distance of ¢’.

F16. 16.~Projection of a circle with given projection of pole and given polar distance ot
stereographic projection. )

Problem 2.—To construct the projection of a given circle,
its polar distance and the projection of its pole being

ven:

In figure 16 let P’ be the 1];roject;ion of the pole. NESW
is the primitive circle with NS passing through P’ and
with WE perpendicular to NS; NS is then the line of
measures, with W as the pomt of projection. Draw
WP'P and from P lay off the arcs Pp and Pq equal to the
given polar distance. Draw Wp and Wg, thus locating
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P" and ¢’ in the line of measures. A circle constructed
on p’q’ as diameter is the required projection, since
En(l' is the projection of the diameter of the circle on the

e of measures. 'This circle can be determined in another
way by locating p and p’ as before; then at p draw the

1

S

—Projection of circle whose Ppole projection lies on the primitivo circle on stereo-
graphic projection.

th'I; ent pQ meeting OP produced at @; then WQ locates
® center of the required circle. With (' as center an(;

Fg, 17,

W;:h Cp’ as the radius, we can construct the circle.
cons(;n the primitive circle, P and P’ will coincide, and the
Taction is evident from figure 17.
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Problem 3.—To project a great circle, the projection of
the pole being given:

T

In this case the polar distance is 5 and Pp=Pq=g in

figure 18. The circle passes through W and E; hence it is
sufficient to locate either p” or ¢’; WC is parallel to OP,

9

Fic. 18.—Projection of a great circle with given pole projaction on steresgraphic projection.

and in this manner € can be located; with C as center, with
CFE as radius, the circle can be constructed.

Problem 4.—To find the locus of centers of all great circles
passing through a given point: }
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\

~—L.ocus of centers of great circles through a given point on stereographic projection.

Fia, 19,

thIn ﬁgUI'B.lQ let P’ be the projection of the given point
etgough which the great circles are to pass; draw the diam-
oter NP'S and the perpendicular diameter WE. The pro-
Jtecmons of all great circles through P’ must also pass
dre ough a point at the distance of = from P’; accordingly
ofaw the diameter PQ and draw WgQ, cutting NS the lino
of I;l)eﬂ‘sums in @'; then Q' is the projection of the antipode
Q" their oo all the required circles ﬁasg through P’ and
to qlm,r centers must lie on the straight line perpendicular
c° at its middle point ¢; this line is called the line of
Oléters.
SINce g great circle may always be drawn through the
Eomts W, P’, and E, the Igz)int ¢ irnay be found by drawing
Perpendicular bisector to WP’ intersecting NS in c.
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The triangle WP’e¢is isosceles, and the angle P’ Wp equals
the angle WP’S, which is measured by % (g-k arc PN>

:% arc PN W; that is, the arc PEp=arc PNW. Hencelay

off the arc PEp=arc PNW and draw Wep. This is the
same as laying off a polar distance PN W from P; thus the
line of centers is the projection of a small circle passing
through the line of sight and having the polar dI;stance
PN W=n—§, where ¢ denotes the inclination of the circle.
From figure 19 WQ=PE; QSp=nr— (pE+ WQ)=7—
- PEp=7—PNW=WQ; hence lay off WQp=2PE, and
draw Wp, thus locating ¢. Wp is evidently perpendicular
to PQ, so that ¢ can be located in that way.
£ WEp= LPOE= £ WOQ; hence a line joining E and p
is parallel to PQ; this gives another method for locating c.
roblem 6.—To draw a great circle through P, making &
given angle with VS:
In figure 19 the tangent to the required circle at P makes
the given angle (m), with P’OS; the perpendicular to the

tangent makes with P’OS the angle —725-—m. Hence con-

struct SP’R=12r-m' with P'R intersecting the line of cen-

ters at B, the center of the required circle.

The projection of a great circle always meets the primi-
tive circle at the extremities of a diameter‘'as MM’ in

re 19.
_Plroblem 6.—To find the projection of a pole of a given
circle: '

In figure 18 let Wp'E be a great circle; draw the per-
pendicular diameters WE and JgS, and draw u%vyp; 133? of

pP equal to 721 and draw WP, thus locating P’, the required
ole.

In figure 16 let pq’ be a given small circle; through ité
center ¢ draw NS antqi draw WE at right anglz’s; dr%gg W}p'
tolocate p and Wy’ to locate ¢; bisect the arc ¢ NEp, locat-
ing P, and draw WP, thus locating P’, the projection of
the required pole.

Problem 7.—To construct the projection of a great circle
passing through the projections of two given puints:
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Bia; 20.—Projoction of & great circle through the projections of two given points on stereo-
graphic projection.

In figure 20 let ORO’S be the primitive circle and let
P and Q be the projections of the two %iven points, and
let A be the centor of the projection. The lines that pro-
Ject any two antipodal points are perpendicular to each
other; we can then easily determine the projections of
the points antipodal to P and @ through which the pro-
lected circle must necessarily pass. Draw PA and prolong
1t beyond A; at A erect the perpendicular AOQ, intersecting

e primitive circle at O; draw OP and erect upon it the
Perpendicular OP’ intersecting PA produced in P’; P’ is
then the rojection of the point antipodal to P. The tri-
angle OPIf)” is the projecting triangle turned on the pro-
6cted line PP’ as an axis into the plane of the paper.
1 a similar way Q' can be determined, but a circle Ipassed
through P, @, and P’ is the required projection. It may
® seen that the construction is correct from the considera-
ton that AP’ must be & third proportional to AP and A0.

the point of which P is the projection has the polar dis-
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tance p, then AP=a tan g and AP’=g¢ tan % (x—p)

=g cot g; but OA=a, and so we have
OP :0A=0A.: AP’
This establishes the validity of the construction.

o/

As a basis for the next problem we shall prove that if a
plane passes through the poles of two grea,tp::ircles it cuts
off equal arcs on the two circles.

In figure 21 let P be the pole of the t ci 4
and let P’ be the pole of £ED' with %ﬁ?cﬁﬁeoﬁg’e

F1G, 71.—Plane throngh the poles of twao great, circles,
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sphere at 0. The triangle OPP’ is isosceles; therefore, the
line PP’ is equally inclined to the planes of the great
circles, since it is equally inclined to their perpendiculars
OP and OP’. Produce PP’ in both directions to intersect
the planes of the circles, the one at @ and the other at Q.
The triangle OP@=the triangle OP’Q’, since OP=0F",
LOPQ= LOP'Q’, and LPOQ= P'OQ'. Therefore,
Q0=Q’0 and QD =Q’C’. Pass a plane through PP’ and
let QGHG' be its trace on the plane of DED’ and lot
Q' F’H Fbe the trace on the plane of CE(’. Then £O0QH =
£0Q’H, since the corresponding right triangles are equal.
The arc DG will therefore equal the arc ¢"F’, and the arc
G’'D’ will equal the arc CF, since @ and @’ are the same
1stance from their respective great circles. But the arc
GEQR' =x— (DG + D'¢’)and the arc FEF’ =x— (F' (" + CF).
Therefore, the arc GEG’ is equal to the arc FEF”, and the
Proposition is proved.
roblem 8.—To determine the shortest distance between
two points whose projections P and @ are given; that is,
to determine the arc of a great circle between them:

N

Fra. 22—~Great circle arc between two points on stereographic projection,
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In figure 22 construct the projection of the great circle
passing through P and €, the projections of the two given
points, by the method of problem 7. Draw NS the diam-
oter determined by the intersections of this great circle pro-
jection with the primitive circle and draw the perpendicu-
lar diameter WE. This diameter is then the line of meas-
ures. Locate the projection of the pole of SN by drawing

SRT and by laying off TU=;—r,‘ and by then drawing S U,

thus locating K, the projection of the pole. Draw KP and
KQ and Prolong them to intersect the primitive circle in
P" and Q’, respectively; then P’ W@’ is the great circle arc,
between the given points of which P and @ are the projec-
tions. KP’ and KQ’ are the projections of circles passing
through the point of projection and through the pole of the
great circle of which SPQN is the projection. But the
point of projection is the pole of the primitive circle; hence
the planes that determine the projections KP’ and KQ'
cut off equal arcs on the great circle, whose projection is
SPQN and the primitive circle. Therefore, the arc P'Q’
is equal to the arc of which PRQ is the projection.

T%lis problem can be solved, together with that of deter-
mining the projection of the great circle passing through
the projections of the two given points in the following
manner:
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Z
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// R
/
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£

Fia. 23.—Sphere showing intersection of given lines.

In figure 23 let Z be the zenith and C the center of the
Sphere and let M M” be the arc of a great circle joining the
Points M and M’. If E is the point of projection, m and
™" are evidently the projections of M and ', Produce
the chord MM’ until it meets mm’ produced in R; then

O'is evidently in the plane of the great circle M.M’, and
880 in the primitive plane. Therefore, the points O
and O’ Jie on the projection of the great circle and the
Projection is fully determined, since 1t is a circle pa.ssing

rough m, m’, O, and 0’. If MM’ is parallel to mm’,
then evidently 00’ is also parallel to each of these lines.
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Now, in figure 24 let NESW be the primitive circle and
let WE be the line of measures; also let m and m’ be the
projections of the given points. Take On’=0Om’ and
On=0m; draw Sn’ to intersect the primitive circle in p’
and Sn to intersect it in p. On mm’ construct the tri-
angle Dmm/, having mD=8n and m’D=_8n’; prolong
Dm/ to ¢’, making m’q’=n'p’, and prolong Dm to ¢, mak-
mq=np. Then ¢q’ 18 the chord distance between the
given points, and this chord being laid off anywhere on

Fi. 24.~—Projection of great circle through two points and length of arc between them
i on stereographic projection.

the primitive circle will give the great-circle-arc distance
The triangle Dgq’ is evidently the triangle EMM’ of
figure 23 turned on mm’ as an axis into_the plane of the
projection or into the primitive plane. Prolong mm’ and
¢q’ until they intersect at 22, and draw RO intersecting the
primitive circle in € and (". A circle made to pas
through C, m, m’, and (’, is the required projection of the
zreat circle through the points M and M’ of the sphere.
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This same problem can be solved by the method of
escriptive geometry in the following way:

»
7"'~\~~~

—
-~

. IS

4/—

Fiq, 25.—Projection of great circle through two_ points on stereographic projection,
second method.

In figure 25 RO is the trace of the great circle plane on
the horizontal plane; we need to determine, then, this
trace of the plane of M, M’ and the center of the sphere.
% and n/, p and p’ are determined as before; from p let fall
the erpendicular pg upon WE and from p’, the perpen-

lcular ‘p’q’; prolong Om to r, making Or=0g, and pro-
ong Om’ to r/, making.Or'=0¢’. r and r’ are then the
Orthographic horizontal projections of the §iven points M
&nd Jf’ ‘on the sphere. Draw S8’U parallel to WE; let
fall the erpendiculars 7’s’ and rs and prolong them,
Making §’ 7" =p’q’ and ST=pg. T and T” are the ortho-
graphic vertical projections of M and M’, and TT” is the

991043 0-52- 5
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vertical projection of the line MM’ and 7’ is the hori-
zontal projection of the same line. Prolong T'T” until it
intersects the line 8’8 at U and erect the perpendicular
UR intersecting 7’7 }irolonged in B. R is the trace of the
line MM’ on the horizontal plane, which is here the
primitive plane. RO is then the trace of the great circle
plane on the horizontal or primitive plane. is deter-
mines the points ¢ and ¢’, through which the projection
of the great circle must pass, A circle made to pass
through the points C, m, m’, and (” is the required pro-
jection. Note that m'm produced passes through the
point R, as it should.

Problem 9.—To lay off on a great circle an arc of given
length from a given point P: .

Determine the projection of the pole of the given great
circle projection. In figure 22 let K be the projection of
the pole of the great circle of which the arc SPRQN is the

rojection; draw KP intersecting the primitive circle in
Ij)?’. Lay off the given arc P’Q’ on the primitive circle and
draw Ké’ intersecting the projection of ‘the great circle
in @; then PQ is the projection of the required arc.

Problem 10.—The projection of a great circle and that
of a point being given, to construct the projection of the

eat circle passing through the given point and perpen-

icular to the given great circle: '

Determine the projection of the pole of the given great
circle and then construct the projection of the great circle
passing through this pole and the given point; this is the
-required projection. '

roblem 11.—To construct the projection of a great
circlé which passes through a given point and which is
inclined at a certain angle z to the primitive plane:
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¥16. 26.—Projection of great circle with given inclination to the primifive plane
on stereographic projection.

In figure 26 if the given point lies on the primitive circle,
83 N, draw NS and WE, the line of measures. Construct
the angle ONC equal to the given angle z; then (' is the
enter and CN the radius of the required projection. If

he projection of the given point is not on the primitive
Circle, but is at some other point, as P, construct the arc
with O as a center WitE 0C as o radius. Construct
nother arc with P as a center and with CN as a radius
Mtersecting the first arc in D; then with D as a center
and with DP as a radius construct the required projection.
Remark.—If the given point does not (}ie on the primi-
Ve cirele, the construction is not always possible; in
act, the angle z can not be less than the angle W0A.)
. Problem 12.—To determine the inclination of two great
Circles with respect to each other: ‘
is problem is solved by determining the projections
of the poles of the given circles, and then by measuring

e great-circle-arc distance between them. Apply the
Method of problem 6 and then that of problem 8. With
8reat circles the inclination of the planes is equal to the
8gle between the radii of the two circles drawn to the.
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point of intersection, since the inclination is equal to the
angle between the given circles. The method of the
problem can, however, be applied to any circles, either
great or small. Even with small circles we may draw
the projections of the parallel great circles and then deter-
mine their inclination with respect to each other by the

S

Fig. 27.—Determination of the inclination of the planes of two great circles on
stereographic projection,

radii drawn to the point of intersection. In figure 27
let SHN be the projection of a great circle, with C as the
center for the arc;.also let E'H' W’ be the projection of
another great circle with ¢’ as the center for the arc.
The an%le between the arcs is then equal to CK’’(’, since
the angle between the radii is equal to the angle between
the tangents, and, the projection being conformal, the
angle between the circles is preserved in their representa-
tions. Locate the projection of the pole of each of the
given great circles; K is the projected pole of the first
circle and K’ is that of the second circle. A great circle
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passing through the pole of a given great circle has its
plane necessarily perpendicular to that of the given great
circle; therefore the great circle which passes through the
poles of the two great circles has its Yane erpendicular
to the plane of each of the given circles. I?" must then
be the projection of the pole of this great circle of which
IKK'I" is the projected arc. @@’ is therefore the great
circle arc of which KK’ is the projection; or the angle
GOG@’ is the angle that measures the inclination of the
planes of the given great circles. The angle GOG’ should,
therefore, equal the angle CK'/C”’; the impossibility of
making a f)erfect construction mohy cause some deviation
from equality in the constructed figure.

Pioblem 13.—The projection of a point being given, to
construct the meridian and parallel passing through the
poimnt:

If the problem is to be determinate, we must have the
prllmitive circle given and the projection of one of the
poles.

In figure 28 let NES W be the primitive circle and let
P be the projection of the Pole ; locate the south pole by
drawing WP'and then WP’ perpendicular to WP; RE’ is
the perpendicular bisector of PP’, and is therefore the liné.
of centers for the meridians. Let @ be the pro(iectlon of
the given point; pass a circle through P, @, and P’, and
this 1s the projection of the meridian through the given
point, Construct a tangent to PQP’ at @, meeting NS
In T then 7'is the center of the projection of the parallel
‘and 7Q is the radius; this fully determines the projection
.of the parallel which is the arc QQ’. '
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P

ridian and parallel through a given point on stereographic
F16.28,—~Projection of the meridian a r%jeotion. given po
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Problem 14.—To construct the projections of the circles
parallel to a given circle:

RI

-

>

F1a. 20.—Projection of circles parallel to gl@en circle on
. stereographic projection.

DIR re 29 let pp’ with center at C'be the given circle.
Taw NeS and t.fne perpendicular diameter WE; draw
Wo'P* and WpP; bisect the arc PP’, thus locating @ the
Pole of the given circle. From @ lay off the polar distance

°f the required parallel circle. In the figure QR =QR'=3;

draw WR and WE’ , thus locating the extremities of the
lameter of the given circle rr’; the center is given by
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bisecting this line. For the parallel great circle take
QT= T, WT locates ¢t and WU parallel to 0Q locates U,
the center of the required great circle projection.

CONFORMAL POLYCONIC PROJECTIONS.

Since we are to have a conformal projection, it is best
to treat the case for a sphere and thenpto !cake into accolfr?t
the ellipsoidal shape in the same way that we did in treat-
in§ thehstereogr&p ie };ro ections,

n the treatment of the rectangular polyconi iec-
tions, we found that polyconic projec

6 _TQ*

t;a.n2 ”

’

and for the sphere that

. _1(ds dp
=2\ cos 0—3—‘;

___»r (\)
acos ¢ T

‘p Sin (/] H

also

lds_1du

pde ude

If the projection is to be conformal, it must b

and, in addition, the scale at any éiven poing ;gﬁg%nt;gﬂ;fé
same along the meridian that it 1s along the parallel, or

b =F,.
Hence
d_§ _dp\_ _p T'(N) .
d¢COSB @)—m—msﬂl&
or
r(ny =L Q) cos o (ds dp
0= (g cos _(7;).

*See p. 15,
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But
0 N
. 2tang 5L TN
sin §= T 10N
1+ tanzg
[/}
—_ 2_.
cos 0= Loy _w=T0)
2 2
1 +ta.nzg- ut+I*(\)

Substituting these values and the value of:

ds_pdu
dqo.—'udtp
we obtain
() _[w+T*(\)]cos e (p du u’—l"(})_@g)
o 204 u do w?+T3(\) de
_cos pdu _cos g dp
=Sw dg TS50 G, [w? +T2(V)]
cos g dp  cos pdu COSgo(_zlL_COS(pd__p)
=-T0) 20u an+ P d<p> +u’( 2u? de 20u dy

_(.dp | du\cos ¢ . ade” Pde

Sinece T'(A) is independent of ¢, I'(A) is also independent
of »; consequently the two expressions dependent upon ¢
Imust reduce to constants. e can set one of them equal

) unity, because u can be multiplied by any constant
without changing the value of either s or p; and if so,
T'(A\) would be multiplied by the same constant, so that
¢ would not be changed thereby.
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Accordingly let
dp du
u? Yo Pde_
dp + du”
d(p Pdo

1

or
dp du__ldp P du

( 1 dp _ du 1 du
u- wlde P\dp™ d¢)

(Dot
d(u—-—)

u ——
, u
by integration
] 1
log, _”=l°g"(u—ﬁ + log, %

in which the constant of integration is taken in the form
log, -g— It determines the scale of the projection, Passing
to exponentials, we obtain

-3

But
| 1ds_1du
pde ude
or
.ds=-% du,

substituting the value of p, we get

ds=—(1—~—)d u.
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Therefore, by integration,

¢ 1
8—2 u+a>,

in which the constant of integration may be taken as
zero, since the addition of any quantity would only serve
to change the point from which g is reckoned.

From these results we obtain

S+p=cu

s =C
P =y

or, by multiplication,
#—pi=0,

This equation shows that the circle with the origin as
center, constructed with the radius ¢, cuts all the parallels
at right angles. Any circle drawn through the two points
of intersection of this circle and the line of centers of the
parallels will also cut the parallels orthogonally, for the:
tangents drawn to it from any point in this line of centers.
are equal. Therefore, these circles, since they form the
orthogonal trajectories of the parallels of the map, are
none other than the projections of the meridians. The:
two common points in the line of centers of the parallels.
are the poles of the map.

_ If, then, we take two arbitrary points to represent the:
two poles, the meridians of the map will be the arcs of
circles which pass through these two points and the
Parallels will be other arcs of circles having their centers.
at various points of the prolongation of the line of poles.
and each passing through the point of contact of the
tangent drawn from the center to any one of the merid-
lans; for example, to the circumference described upon the
ne of poles as diameter.

e have yet to find the expressions for 4, p, and & in
terms of ¢, and that for I' (A) in terms of A, by which expres-
Slons we may be able to tell, in the first series of arcs,
the one that corresponds to a given meridian N and,
In the second series of arcs, the one that corresponds to
the parallel of latitude ¢.
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In the expression for T’ (\) on page 73, if we let g
represent the second constant, we have
\

ug_g_*_ du\ cos ¢ n
@

pETo 2out 2

or, by substitution in the equation on page 73,

I’ ) =5 [1+ T (V)]

I"Nd\ _n
e 2%
by integration,
tan™t I'(A\) = g’ N+¢’
or
n
T'(A) =tan (—2 )\-{-—c’).
Hence

Since for A=0, we have §=0; therefore, ¢/=0 and

I'(A) = tan -’2—‘ A
and )
- 1 n
tan 5=u tan 3 A

To determine u, we may write

dp duw\ cos ¢ n
V3ot 3p) 2o ~ T3
in the form
d(up)cose  n
de " 2002 T2
But
Up= E(uz - 1)
2
and
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By substituting these values, we obtain

cos cos ¢ du n

ldcp
du —n dg
w—1 2 cose
du du

(ou v\ T ___%
2\u—-1" u+1 2 a0 (§+ ¢)

[cos’(4+2)+sm’<4 2>]d
2 sin (4 2)cos<4 2)

1/ du _du\__n °°s(4 2)d +sm(4 2)
) D)

ANu=1"u¥1)” "1
sm 4 2

du (4 2)d¢ Sm(4 2)d¢
utl w— 1 | sm(4 2)2 (4+2)

By integration

—=n [log., sin <4 2) log, cos (4+2)] +log, k,

log, k being the constant of integration. Passing to
exponentials we obtain

u+1
—% tan (4+2)

A

or
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k tan® (£+§>+ 1
u=kt n I+f>—1
BT T2 ,

¢ 1 e tan™ (£+§)+1
~8=‘-§<u+;'1)=0 -
13 tan™ (Z-{-fzf -1

T e
k? tan* (4—:+§>+1

' nfT, P\
c _-1-)=02k tan <4+2>
P’=2 by

TQ) = tang-x

nf( X9\ _
o) k tan (4+2> 1 n
ant\ztg)+

0
tan ‘2-=

The value of & gives the distance of the center for the
circle that is to represent the parallel of latitude ¢ from the
intersection of the central meridian with the parallel that is
represented by & straight line; p.is the radius of this
parallel; the parallel is therefore fully determined by
these two quantities, since the centers of the parallels must
lie on the central meridian. In order to construct the
meridians, we must determine on the parallel of ¢ the
value of 9, the angle at the center of parallel ¢, that corre-
sponds to the meridian of longitude \; this method of

otting the meridians by coordinates will be unnecessary,

owever, if we determine the equation of the meridians.

We have

z = psin .
Yy =8 — pcosé.
But
tan 2T
2 u
or . 0.
- 8 _ . n 6
u P(X)cOtz—tan2Xcot§.
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p=-%(u—:—‘)=-%(tan g)\ cot -g-— cot gk tan g)

Hence

or
3 2
smﬂ)\cose-)— cosﬁ)\sin—q)
=2 2 2 2 2) .
p sin 7\ sin 8 !
also :
o 3
(sm xcosz)+(cos )\smz).
sin 7 sin 8
. N /] n, .. 0N . n i) n, . 0
sm§>'oos§-cos§>‘sm§)(sm—2—)‘cos-2-+cos§)\sm-2-)
p=2c : -
: sln N\ sin 6
sin 1 (r\—0) aml (nA+0)
-2e__ 2 2 _¢(cos 6—cos n\)
Bin nAsin 6 sin mA sin 0

2¢ . B 0N, . L0

8—p cos @ —ﬂ—m’-;{(sm '2-7\ c0s '2-) 2 sm§
n, . 0\ 20
+(cos§xgm—2-) 2 cos' 2]

029 0053 sin 2 ,n)
-4c sm’2 cos’i(sm 2)‘+cos 2)\
8iN N\ 8in 0

¢sin 6
n—.——-———y.

sin nA

¢(cos 6 —cos nx)
sin nA ’

p BN 6 =

or

ccosd
Y ﬂ)‘-:a:+¢: cot n\.

Therefore
¥ + (z+¢ cot nh)*=¢* cosec® nh.
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Since this equation contains only A and is independent of
¢ and 6, it is the equation of the meridians. The meridians
are therefore circles with centers upon the X axis (the
straight line parallel of the map) lying at the distance
= —c¢ cot n\ from the origin amful:.a.ving the radius
= ¢ cosec T\.

Since for =0, ¥y = ¢, all of the meridians pass through
the two points which are distant +¢ and —c¢ from the
origin; 2¢ is therefore the length of the central meridian
included between the poles.

As an aid to construction, we may assume the equation

T8 LT AW
k tan“<4+2>——tan (4+§>,

8==C cosecC

then

and
p=c cot ¢.

A special case of this projection is given by th
k=1and n=1"in which case ¢ = ¢, andg y the values

8=c¢ cosec ¢
p=¢ cot ¢
and the equation of the meridians becomes
y? + (& +c cot N\)? =c? cosec? A, ‘

This is evidently the stereographic meridia iacti
which has already been discussed under that Iﬁegﬁ?xlleg(ftmn’ '

DETERMINATION OF THE CONFORMAL P
ICH THE MERIDIANS AND PARALLETS B REPRE:
SENTED BY CIRCULAR ARCS. -

This projection is the one devised by Lagrange i
problem was to determine the general confo%rma r;rojI;I:
tion in which the meridians and parallels were both
representgd by circular arcs.

Since the projection is to be conformal, we i
in the form of a function of a complex vari&l()ﬁl.l*express lt

*See The General Theory of the Lambert Conf »
tion No. 53, U. 8. Coast and Geodetlo Survey? ormal Conle Projection, Special Publioa-
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Let i denote as usual 4/ — 1 and assume the relations,

z— iy =f,(c +iN)
93+7:?/ =\.f;(a*i)‘),

then £, and 7, are conjugate functions of a complex variable
that are only limited to being analytical functions. From
these we find at once

o= 2L Al +iN) +f;(o—iV]

y=2Ae+N =N
°r, denoting f,(c+i\) by 7, and f,(e—i\) by £,
z=5(fitS)
ty=—5(Hi~f)

0Lt
g‘r‘;=%(f,1 =1

W R

1
g%“ _-'Q'(fln'*'f'z)‘
From these equations it follows that
 dz_ dy ., dz_ Dy
3~ "ox BT Yo

®io43 0. 53. 6
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From these we obtain at once

O’z o'y o'z

02" Oc Oh  ON

30’ “dsON N

m-(50)+(0) -G + () -5 -5

= LD = =PIV =

Therefore

W= Vf',(a+’ik)f',(a—'i)\).

If the coordinates of a plane curve are expressed iﬂff_
terms of an independent variable ¢ in the form

z=p(t)
y=¥W®,
ghe expresgion for the radius of curvature is given in thé
orm
dzdy dy &z

1_ . dide”_dide?

R = = @ 3 (@)ﬂ]ﬁ ,
[(dt) 4, |
Since in the expressions for z and y in terms of f, and fy|
¢ is a function of the latitude and \ is merely the longy
tude, ¢ is constant along a given parallel and X is constan!,
plong a given meridian; in other words, ¢ remaining cor’|
stant, we obtain a parpllel by variation of A, and )‘%)emlx
constant, we get a meridian by variatign of o. Thereforé:
if we neglect the sign

0z 0% oy Oz
1 ‘bTr&g‘B"&S?

=T

dz Dy Dy dz
1 Sgﬁ'axéﬁ

QG
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Or by substituting the values on page 82

1 _ 1[0z = 2y o'y _1oW
R~ W30 50 DX Qg 3o On ] WiDA

L_1[s &% Loy %y ]_12W,
R, W3H0xO\0s ONONOg| W3¢

Or, again paying no attention to sign,
1 _9/1
R, o (W)
-2
R," 0\ W)
W=, (e +N) fi(e =)

b If the meridians and parallels are to be cireles, Ry must
9 Independent, of o, and R, must be independent of A.
1s fact is analytically expressed by

300w 3(4)-

These two conditions léad to the same condition; that is, to

5o )"0

{rom this it follows that, if the projection ia conformal,
e condition that one system of curves forming the net ia to
s}? Made up of circles, makes it necessary that the ather set
fould glsq be circular arcs; this includes, of caurse, straight
Nes ag gpecial cases of circles with infinite radii and with
“enters at infinity.
t, In order to simplify the analysis, we set

in which

1 .
FoTm "9
1 J
1 ==gz(d"—ih),

o=
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then
1 . .
=% (o 4+1\) g,(o0—1\)

2(LN= g +i0) g.lo— N +9, o+ gylo~ iV

3
a,,bb)‘( _%V>=iglu(a+i)\) g,(0—\) —ig, (o +1\) g," (¢ —1iN)

go that from the required condition we have

g/ (e +) _g,""(6—1)
PACE X NI CEY)

The two members of this equation are conjugate comple¥
functions, and the equality can only exist on condition tha!
the members are each equal to a real constant. Let us usé
g2 for this constant and, for the sake of abbreviation, let
us denote the variable ¢+i\ by 2z and g¢,(2) by Z. The
differential equation then becomes

Multiply both members by 2%% and we have

2dZ #*Z az

& 32 -l
By integration,

(%é ] =B2Zﬁ - 72v

-4 being the constant of integration.

—_é——z_——— =
VB Z -

.

dz

or

BdZ
VPZ—v Bdz.
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Integrating again, we obtain

. loge(BZ + VF*Z7 =) =Bz+?
r

67 4 NFT= =
Taking reciprocals we get

BZ — FLT=~*=n"e

—pz-=5

By addition, we obtain

N, ow, for abbreviation let
68_ ,yze-ﬁ_
EB—A, and _Z_E——Bl
and we have

Z=A% + B

or
9u(0 +iN) = A, P+ | By,
Bug
’ N — ___._1._—-—- .
. Fe+ N =E0m
) ence .
dfi@]_ 1
dz (A +Be ™)

R
= (Z,e”‘ +B1)z

1 A4 +B)),
d[fl(z)]—.@jilﬁ (Alelwz + B,)?

By integration

1 1
1@ =—545 4,7 +B,

X we sot —2428= M and —24,B,8=N and restore tho
ue of 2z, we obtain

+C.

. 1
Silo +iN) = O+ grmemn T N
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Since f,(o+1\) is equal to z—1iy, the constant C tends
only to translate the origin. Let us suppose that Cis a

complex quantity in the form of a+b. If we transpose
C to the left-hand member, we have

. 1
x‘—a—‘?:(y+b)=°m-

a and b may be either positivé or neglat,ive and either or
both may be zero. No generality is lost if we set them

both equal to zero, since they may be accounted for by s
mere translation of axes. :

Now, let M= -~ Ai and N= —Bi and we get

. e~Plo+ix)
W= AP | B betiny’

By multiplying both terms of the fraction by Aef—™ 4
BePe— | we get :

L 1A e 2 4. Be~2e
TV = 4z 1 2AB cos 2N+ Bre—e

A sin 26041 (A4 cos 26\ - Be—%0)
T A% +2AB cos 28N+ Bie—% °

By equating the real parts and the imaginary parts, we |

obtain

_ A sin 28\
¥= 2736+ 1 3AB cos 26N+ B+

_ A cos 28\ + Be~2%0
A?¢®e + 2 AB cos 20\ + Bre—5+

- TL®
q loge t&n( i + 2)
sna on the elli pSOid

_ L 1—esin ¢\¢ )
a—loge[tan (4+ 2) . (1_*_____’_6 0 ¢> z]

That the meridians and parallels are both circles, we
already know, since the function f; was determined on
this condition; but in order to obtain their equations, we
must proceed in the usual way. If we eliminate o, we

y =
On the sphere

[ J-c
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shall have the equation of the X meridian and, by the
elimination of A, we may obtain the equation of the
parallel of latitude ¢.

Bt A?+2A4Be~%7 cos 28\ 4+ Ble—45
Y = {d%e% 1248 cos 20\ + Bie—%7)
o280
=38 1 2AB cos 20N+ B2’

Therefore
?%,— — (A cos 26N+ B)
z . ‘
F_{_—y-,““ Aez" simn 23)\.
From these, by the elimination of ¢, we obtain

y+B @+ _

z ~cot 26\

or

x’+'y’+%y+%z cot 26\ =0.

cot 28\\* ‘ 1\ 1
(”*"‘279— +(y+§7§) = 4B sin? 26\

This is a circle,.the center being at the point

_ _cot 282
2B
1
Y= —58B
and itg radius being
1

P=3%B sin 28\

Thig equation is identically satisfied by the values z=0,
Y=0, and by z=0, y= -—%; since all meridians pass

t'II,‘!'Ough these points, they represent the two poles; the
axis is the central meridian.
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If we eliminate A\, we get

(F%+B)‘+@—§W=Azew.
Developing and arranging, we get
@+ +2B @+y)y+ B (2 +y2) = A%t (22 +4)%
Dividing by 2?44 since this can only vanish for 2=0,

y=0, we get (A% —B?) (x»+y*) —2By=1
or

2B 1
$2+,y1_.z_’z__y_‘?=_ e
or

B 2 Algloe
#+(v-zm=r) - ey
This is a circle with center at the point

B .
%=0, %= Zrm=—
and with radius

Ao
Po™= ke —

Since we know that the projection is confo it is
known that the magnification is the same at ?n;l’pginﬁ
‘in all directions. o can determine its value along &

galigl and in that way determine its value in

ections. :

oz - 248 cos 28\ (A%< + Be—27) 1. 4 A3Bg
O\ (A%e%¥* +2AB cos 2B\ + Bl¢e—%7)3

dy__2A48 sin 26\ (A%< + Blg~%e) — 4 A Bige~%7 gin 2
on (A%%° +-2AB cos 20\ + Bie-#e)y B

(3‘;)’ = g;)’ +(%¥)’ = (%% + 2M4£B;ﬁx +b’e‘”’ P
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But on the earth
dS,)’_ a? cos? ¢

) T i1-ésin® ¢
from which it follows that .
k_dS 248 J1—é& sin? ¢

dS " @ cos ¢ (A% + 2AB cos 28\ + Bre—e)’

In order to derive the equations in their usual form,
Wwe shall move the origin down to the po'mt—-é%- The value
of ¢ will remain the same, but the new value of y will
equal the old value of ¥ increased by 2—11—9 ory’ =y+2—lB-
The equations are. therefore,

A sin 28\
=A% 1 2AB cos 20\ + Bie—%°

_ A?¢3o — Bie—20 .
Y= 3B (4%% +2AB cos 26\ + Bie %)
The equation of the meridians now becomes

( cot 26)\ _ 1
T8 =3B sin® 26\

and that of the pa.ra]lels
Aze4ﬂa +B2 2_ Aze4ﬁ¢
= +[y T 2B(A%% —BY | T (A%% — Bt

To identify this projection with the one formerly
Obtained, let

2-11—3= ¢, 28=n, and %=Ic.
Then '
_ 2¢ck sin nA
=T3¢ + 2k cos nh + e
c(k?ers —e~09)
“F2et + 2k cos mAh + e

(z+ ¢ cot nA)? +y?=c* cosec? n\

" cllreme +1)7]2  4ck2e®
:c’+l:y— Pem—1 | =~ (hem™ —1)%
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But for the sphere

no — tam (T2
€ t‘“‘"(4““2)

or for the spheroid
e tant 1—esgin l1—esinp\™
o =tom (4 2) (1+esm¢p
Therefore, for the sphere

2
TL® T @
k? tan® (4+2)+27C cos n\ tan® (I+_2->+1

, [k’tan u 2) 1]

k* tan™ ( >+27c €08 A tan°<4+"’ +1

24+]y— [7" t’m"(4 2)+1] 4c’7c’t.a,nzn( +§)
ks tan"‘(z 5)‘ [Ic' tan™ (4 2) ]

Wo thus see that

2¢k sin ) tan® (4+‘°

z'::

k* tan™ ({-+—2‘f)+1

k* tan™ (%+§)_1
nf(FX, ¢

2¢k tan (4+2) .

k? tap?n (£+g)_1

If we denote that intersection which lies nearest
by v, (that is to say the ¥ value for A= 0), ;lt; hafrf,‘e origin

tm%=u=y*8ig.
' X

8=C

p=

&
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By performing the indicated operations, we obtain

P k tan® <4 2)
-=ktan ( >+1

The projection is thus found to be identical with the one
Previously obtained by & different procedure.

With these values the ma%mﬁcatlon (denoted by %’ for
distinction) for the ellipsoid becomes

' 2¢kn+/1— ¢ sin’p
@ cos ¢ (K¢ +2k cos nh+ e )

ne 4o 1 —¢sin ¢)“'
¢ =tan (4 2) (1+esm¢

If the parallel, the latitude of which is — a, is to be repre-
Sented by the circle of infinite radius or by the straight
e, among the circles of parallels, which forms the perpen-
dicular bisector of the line joining the goles of the progec—
tion, then the radius of this parallel and the distance of its
Center from the origin must become infinite. This will be

in which

the case if
c
mw o =
k*tan? (Z-—i)’—l
hence |
o T_2Y_ g
« ktan? <4 2) 1=0
or

af T_%\_ xoay,
k= cot (4 2) tan"(4+2>

If, for the sake of abbreviation, we set

k tan“(;} + g) = tan® (71 + g—) tan® (-E + g) =m,

the expression for the center of the parallel becomes

]
To=0, y°=‘%—_i—11) , and the radius becomes p.,=—"37m—_n—1-
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The equation for the parallel becomes

2 2 2
z2+[y——c(m 1)_\ 4cm

The equation of the meridians remains as before
(z+¢ cot mN)? + 9% = ¢ cosec? mA.
The coordinates expressed in terms of m become

2¢m gin n\

T=1+2m cos mAFm?

__elwr-1)
Y=132m cos mhsm?’

and tne magnification for the sphere becomes

N 2emmn
“acos ¢ (14+2m cos nX +m?)’

and for the spheroid

. 2emn+T=&sindy
" acos ¢ (142m cos n\+m?)

with the value for m in the last form

1—e¢ Sln <p>n'
= n »
m kt&m( > (1+€ e

Since both ¢ and a must be less than ~ X if ¢ is greater than

—a, then
tan (4 2)> tan (4—-—

T,e T
| tan<4+2)tan(4+2>>1

or

and

In a similar way it may be shown that when ¢< —a, then
m< 1.
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The parallel circles whose latitudes are greater than —«
lie on the positive side of y; those with latitudes less than
—a lie on the negative side, '

In the expressions for the projection to which we have
arrived, ¢, «, and n are constants that we can determine to
fit such conditions as we may require the projection to
fulfill, these being limited, of course, to the conditions
that are possible in a conformal map.

¢ determines the scale of the projection and it may be
any real constant, so that it only remains to determine «
and n. If a=0, then the straight line parallel represents
the equator and m becomes '

m= tan“(}f + g):
80 that k=1.

SPECIAL CASES Of THE PROJECTION,

If n converges to zero, and at the same time ¢ converges
to w in such a way that cn=2a, we obtain a projection
In which the parallels are represented by straight lines
perpendicular to the Y axis since their centers lie at
Infinity on the Y axis. In the same way the meridians

ave infinite radii with centers at infinity on the X axis;
%nse(éuently they are perpendicular to this axis.

To determine the values we have

~lim 2em sin n\
?oeg LIF2mcos matmd
cn=2a
m=]

oelim [2m cn()\-—’—z;—x}+ . ):l

n=0 14-2m cos nA+m?

en=2a
m=1
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The limiting value of this is seen to be

T=0q\,

—lim [ e(m*~—1)

Y n=0 L1+2m cos nA4m?
en=2a
m=1

.

=lim [¢(m*—1)]
n=0 4
en=2aq

m=1

The value of this expression at the limit is

. y=a log, tan (E-q-g)

We have thus arrived at the Mercator projection ass 8
special oase of L e's_projection, Although it is
not a polyconic projection in the accepted sense, yet it
appears as & pecial 0886 of one of the important projections
of the polyconic class, Lambert s conformal conic.pro-
%euon can also be obtained as a special case by letting

hecome equal to zero in the equations containing the
A and B oonstants.

Jo—

'[Binoa %: exmax log, 6 ]
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If » becomes equal to unity, we obtain the stereographic
projection and the equations take the form

- 2¢m sin A
z 142m cos A\ +m?

c(m?—~1)
y=1+2m cos A +m3

i TLe rL,e
Wlthm=tan(z+2)tan<4+2)

Substituting this value of m and reducing, we obtain

. ¢ cos « 8in \ cos ¢
" 1-+8in a sin ¢+C0S @ CO8 N CO8 ¢

- ¢ (sin a+sin ¢) )
Y= 1+%in a sin ¢ +co8 « co8 A cos ¢

If we now let 3 =y ~sin &, which merely moves the origin,
and does not change the nature of the projection, we
Obtain after dropping the primes .

- ¢ CcOB a 8in A cos ¢
T=1Fsin a sin ¢ +coS @ COS \ CO8 ¢

¢ cos a(cos a CoB ¢ —8in o 008 A €08 ¢)
1+ginasin g+cose coBA CoB ¢

Now by replaci b i 1 -
'Ow by replacing ¢ cos « by @, we arrive at the values pre
Viously ob%ainedg P

- asin ) cos ¢
T=1Feln a sin @+ cos & ¢o8 N co8 ¢

‘_a(cos o cos ¢ —gin o coa N cos ¢)
Y=1++in a sin ¢ +co8 & cos \ cos @
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GENERAL STUDY OF DOUBLE CIRCULAR PROJECTIONS.

In order to enter upon some points not yet discussed,

we shall study in general those projections in which @he%
meridians are represented by & system of circles passing
through two common points which form the poles of the !

projection and in which the parallels are represented by |

s system of curves orthogonal to the meridians. The
centers of the circles forming the meridians will all lie
upon the perpendicular bisector of the common chord
W’{lich forms the line joining the poles of the projection.
The tangents drawn to the various circumferences from
any Folx;t of the prolongation of the common chord are
equal, since they are in each case a mean proportionsal
between the same secant and the external segment of the
same. If from this point a8 center, with a radius equal

to one of these tangents, we describe & cirele, it will inter-
sect all the circular arcs representing the meridians at
right angles. We thus see that the orthogonal trajec:
tories of the meridians of the map—that is, the pamlle%sx
are also circumferences, so that they belong to the poly-
conic projections. The locus of centers of the parallels
is a straight line passing through the projections of the
two poles and perpendicular to the locus of centers o
the meridians.

Every point of either prolongation of the line ot poles of
the map can be considered as the center of the projection
of one of the parallels, and the radius of this projection is
then equal to the tangent drawn through the point in
question to one of the meridians of the map; for example,
to the circumference described wpon the line of poles 88

diameter. Reciprocally, if in & projection with orthogonal
curves the parallels are circumferences having their centers
upon the prolongations of vne of the diameters of a given
circumference and as redii the tangents drawn from the
various centers to this circumference, the meridians will
also be circumferences which pass through the two extrem-
ities of the given diameter. This will not be true if the

radii of the parallels are determined by any other condition

than the one mentioned. The rectangular polveonic pro-
jection of the English War Office alr%ady S yeonic p

) iscussed, fur-
nishes an example of an oph_ogona.f projection in which tbe
parallels, but not the meridians, are circumferences,

The properties which we have just pointed out, are not
the only ones which we can extend from the stereographic
projection to all conformal

ec projections with circular
meridians and from these to projections with circule®
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leridians and orthogonal Ipa,ra,llels. In figure 30 let P
and P’ be the projectlons of the poles, O the middle point
of the line PP/, APA’P’ the circumference described upon
PP’ as a diameter, AA’ the diameter perpendicular to
PP/, in addition, let 8 be the center of the projection of any
Parallel, U and U’, D and D’, F and F’ the points where
this projection intersects, respectively, the circumference

[]

D
F
U
A
U
p »
F1q, 30.—Goometrical relations between orthogonal circular meridians and parallels,
first figure.

4P4'p , the line PP’, and the perpendicular erected at S
Upon this line; finally, let V be the intersection of PP’
With U, and let U, be symmetrical to U with respect to
0, s0 that U'T, is parallel to PP’

The point D being the bisector of the arc UDU’, UD
will bisect the angle formed by the.chord UU’ and the
tangent, OU; the point A’ being the bisector of the arc

981943 O - 52 - 7



98 U. 8. COAST AND GEODETIC SURVEY.

U'A'U,, UA’ also bisects the angle U’UU,; therefore, the
three {mmts U, D, A’ lie on a straight line which makes it
possible to construet the point D without describing the
circumference § when U is given. Since the angles ATA’,
DUD’, each. being inscribed in a semicircle, sre right
angles, the three points 4, U, D’ also lie on a straight line,
which is the bisector of the angle formed by one of the
Si(};es of the triangle U'UU, with the prolongation of the
other. : )

The angle PUA’, which subtends, upon the circumfer-
ence 0, an arc-equal to a quarter of the circumference, is
equal to the half of a right angle; the same is true of the
angle DUF’, which subtends upon the circumference
an arc equaf to a quadrant; the two angles are, therefore,
equal, and, a3 two of their sides VA’ and UD coincide, the
two others, UP and UF”, also coincide; that is to say, that
the points U, P, F’ are in a straight line. Since UP’ is
perpendicular to UP and UF to U%V", the points P/, U, F
are also in a straight line. It follows from this that UD
is the bisector of the right angle PUP’ and UD’ of the
adjacent le PUF; therefore, DP : DP'=D'P : D'P' =
UP : UP’. 'The projection of each parallel is the locus of
the points the distances of which to the projections of the
two poles have a given fixed ratio. Tﬁe ines UP and
UP’ are in their turn bisectors of the ri

ht angles DUD’
and DUA; therefore, the ratio of the gist:;lc%s of any
point of the circumference O to the two points D and D’ i8

constant.

In figure 31 the letters already appeari
employed with the same signification.
ference PAP’ is the projection of a particulsr meridian.
Let us now consider the projection PMGP’ of any meridian.
Let T be the center, G and M its intersections with 4A4”
and the circumference §, respectively, and, finally, let G'
and M’ be the points of intersection of the are which com-
pletes the circumference T with the same two lines, respec-
tively. With regard to the two circumferences S and 7,
we should have to point out, the same properties that were

gointed out_as obtaining between the two circumferences

and 0. It will be sufficient to indicate the following

facts: Since M lies on the parallel circle which is the locus
of }yomts with distances from P and P’ in the ratio DP to
DP’, the ratio of MP to MP”’ is the same as that of DP to
DP’; therefore, the line MD is the bisector of the angle
P MP’, and it should pass through the mid-point @’ of the
arc PG'P’; then the three points M, D, G’ are in a straight

in figure 30 are
he semicircum-
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line; the same is true of the three points D', M, G,
as also of G, D, M’ and of G/, M’, D’." The three points
D’, @, @’ are thus the vertices of a triangle the altitudes of
which intersect in D and the feet of these perpendiculars
are at O, M, and M.

Let us construct the angle POI equal to that which the
meridian PMP’ makes with the straight line meridian
PP’; the three points P/, @, I will be in a straight line,

D [
S
, M
U D
/
[2]
’
¢ Al TN J A
L

P ’

Fia. 31.~~Geometrical relations betwoen orthogonal meridians and parallels,
second figure.

becauge the angle OP’G which subtends the arc PMG upon
the circumference T is equal to half the angle formed
Y the chord PP’ with the tangent at P’; that is, to half
the angle POI; hence upon the circumference O 1t ought
{'0 Subtend an arc equal to PI; that is to say, that the Ero-
Ongation of P’G ought to pass through 7. e have, then,
0 determine directfy the point @, a process analogous to
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that which may be made use of in the stereographic pro-
jection upon a meridian. ) ,

Let us construct 7L perpendicular to TP and inter-
gecting in L_the projection PMP’ of the meridian; the
three points P/, L, A are in a straight line, for the angle
PP’L, which has its vertex upon the circumference 7' and
intercepts the same arc as the axllfgle at the center PTL, i8
equal to half this angle or to half a right angle; therefore,
the prolongation of P’L ought to pass through the point A.

The radius OP or OA of the circumference described
upon the line of oles as diameter being taken as unity, we
define the modified latitude of & parallel as the arec A U of
this circumference comprised between the straight, line
parallel AA’ of the map and the projection UDU” of the
parallel in question. This arc which we denote by ¢’ is
also the half of the angle at which, from the center of the

rojection of the parallel, one would see the circumference

escribed upon the line of poles as diameter; this arc varies
with ¢ from 0 tog and from 0 to _-1_2"_ For the abbrevia-
tion of the formulas we shall often use in them in place of
the arc that has just been defined the modified co{)a,titude
p’, which is the complement of ¢’ and which represents the
arc PU comprised between the projection of the pole and
that of the parallel; p’ can then vary from 0 to r with the
colatitude p.

Every circumference described from a point 8 of the pro-
longation of PP’ as center, with the tangent ST for radius,
is, In any system of projection with orthogonal intersec-
tions and with circular meridians, the projection of a par-
allel; that which varies from one system to another is the
position of this parallel upon the gi]obe, or, inversely, it is
the expression ol ¢’ or of p’ as a function of ¢ or p, respec-
tively. Whatever this expression may be, if we call » the
radius 8D or SU or SM of the projection of the parallel
and s the distance OS from its center to the center of the
map, we shall have from the right angled-triangle OSU

r=cot ¢’
§=cos0c ¢’

8 —rt=1,
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Since the three points 4, D, U’ are in a stmight line,
the angle at A of the triangle OAD is . ual to %, and it
I‘esult§, in this tria.ngle/s.nd the triangle 0AD’, that 0D =
tan %, and OD'=cot & We thus have ODX 0D’ =1, as

1t ought to be, since the tangent OU is the mean propor-
tional between OD and OD’.

The constant ratio of the distances of any point of the
projection of a parallel to the projections P and P’ of
the two poles Wiﬁ be '

—g—f;—,= tan PP'U=tan %

Let us now consider the meridians. The longitude will
be reckoned as starting from that meridian the projec-
tion of which is the straight line PP’, and we shall define
the modified longitude of a meridian the angle at which
Its projection intersects the projection of the central
Ieridian, an angle which we shall denote by \’; this angle
18 also half the angle at which, from the center of the
Projection of the meridian, we should see the line of
poles of the map. Therefore, for the meridian projected
Into PGP’, N’ will be the angle which PP’ makes with the
tangent at P to the arc PGP’, or, what amounts to the
Same thing, to the angle OTP. The projection can vary
Without the arc PGP’ ceasing to be the projection of a
meridian; that which will vary will be the position of this
eridian upon the earth or, inversely, the expression of
A ag g function of . Whatever this expression may be,
If we call R the radius TG or TP or TM of the projection
of the meridian, and 8 the distance O T of its center from
g_le center of the map, the right-angled triangle O TP will

1ve

R =cosec N’
S=cot N\
R—82=1,

and the triangles OP@ and OPQ’ will give

N ;N
0G =tan §,OG. =cot R
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- We thus have OG'XO0G’ =1, which ought to be so, since
QP is a mean propertional between 0G and 0G".

The coordinztes ¢’ and A or p’ and N\’ determine the
position of any point of the map; however, we shall make
use also of a third variable depending upon the first two.
This will be the angle OSM formed by the radius SM of
the projection of the parallel with the straight line meridian
or, what amounts to the same thing, the angle OTM
formed by the radius TM of the projection of the meridian
with the straight line parallel. “'We denote this angle by
0; it is the angle at which one would see, either from the
center of the projection of a parallel or from the center
of the projection of the meridian, the distance of any
point M to the center of the map,

" Half of 018 etcﬁls.l to the inscribed angle 0G’M, which
subtends upon the circumference 7’ the same arc as the
angle at the center OTM, or to the a

) > ] ) i]e 0G'D, since
the three points @', D, M are in a straight line; but the
tangent of this angfe is given by the ratio of OD to 0OQ'.
We have, then,
¢ 9 \ ‘p/
tan §==tan 5 tan b

From this equation we deduce

2ttm£’~

. 2 sin \’ sin ¢’
gin 8= = L4
1.+tan’g 1+cos ) cos ¢’

[}
~tan?2
1~ tan 2 cos N +cos ¢
cos §= 8 1tcosN "
1+tan’s co8 ¢

The coordinates of M with respect to the axes OA and
OP sare
sin N cos ¢’

=7 8in =
14-cos N cos ¢

M ’
R sin = 09 .
y= 14-cos N cos ¢’
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We have for the square of the distance OM to the origin

1—~cos N\ cos ¢

3 o
4y 1+ cos A cos o

We should note that the general equation of the circles
traced upon the sphere ang that of circles traced upon
the map have exactly the same form when we take for
coordinates ¢ and N on the sphere and ¢’ and A’ upon the
plane. On the unit sphere we have '

T=C08 \ COS ¢
y=sin \ COS ¢
z=gin ¢.
If we substitute these values in the equation of a plane

i Az+By+ Cz+ D=0,
Wwe obtain

(A cos N\ +BsinA) cos ¢+ Osin ¢+ D =0.

This is the equation of a circle determined by the inter-
Section of the plane with the sphere.
The general equation of a circle in the plane is given by

(z—a)*+(@y—b)=2,

or on substitution of the values of z and y in terms of
¢" and A’ we obtain

sin A’ cos ¢’ 3 sin ¢’ 2

14cos A\ cos ¢’ 03 N ¢cos ¢
or on, development

1-cos A" cos ¢/ 2asinNcose’  2bsin ¢’
L+cos N cos ¢’ 1+COSA’ CO8 @' 1+C0S N’ CO8 ¢

7 c’-a""b’

1 —-cos N\ cos ¢’ —2a sin N’ cos ¢’ —2b sin ¢’ =ct—at—b*
+(c*~a*—b) cos N cos ¢’
(@242~ c—1) cos M cos ¢’ —2asin\ cos ¢’ —2bsin ¢’

+@+bP—+1=0"
or

(A’ cos M+ B’ 8in \’) cos ¢’ + (' sin ¢’ + D' =0,
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A’, B’, ¢V, and D’ being constants depending upon the
position of the center and the radius of the circle. In
the meridian Gfayeographlc projection we have ¢’ =¢ and
N’ =X\, s0 that it is only necessary to take A’, B’, ¢V, and
D’ proportional to 4, B, C, and D, respectively, in order
that the two circles may correspond to each other. There-
fore, in the stereographic projection on a meridian, and
as & consequence also upon the horizon of any place,
every circle is projected into a circle. This fact has
already been proved in another place by the use of ana-
lytic geometry * )

Let us now determine the expressions for the scale

along the meridian and for that qlonﬁ the parallels. When
the point M is displaced infinitesimally upon the projection

of the meridian, the arc described is equal to R _aa_ol) do’.

and when displaced upon the parallel the arc descf'ibed is
00 ,

equal to T(Bj\,) d\’; therefore, we have

~p( 98\ de’
km—R<3‘p’> de
~ T (95N
P cos p\ON AN
Now, if we take the logarithms of the two members

of the formula which gives tne value of tan g and then
differentiate, we obtain

de _ ax’ 4 do’
sin 6 sin N\’ sin ¢’

which gives for the partial derivative values the following
expresslons:

o9 _sind 08 _ sin 6
O’ sin ¢’ an ON sin N

On substituting these values and the values of r and B
we obtain

_ s'm /] d‘p'
= gin N sin ¢’ dop
_ sin, 9 a\’
cos ¢ tan ¢’ sin A’ dn’

p

*See p, 43.
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or, on substituting the value of sin 4,

I S ¥
T 14cos N cos ¢’ do

kw

1 cos ¢’ dN’

k"=1+cos N cos ¢’ oS ¢ dN

CONFORMAL DOUBLE CIRCULAR PROJECTIONS.

In_ the conformal polyconic projection the condition
km=%, gives in the case of the double circular ortho-
gonal net

The left-hand member of this equation is a function of
¢ alone and the right-hand member a function of X alone;
1t is therefore necessary that they should be equal to the
same constant n; hence )

d\ =mn d\

&' _ _de
cos ¢’ ' cos ¢

and

By integrating the first equation we get
N =n),

no constant of integration being introduced, since N\’
vanishes with . In the second equation let ¢ =%—p’

and let <p=-12£ —p and we obtain

' _ dp
sin p

sin p’
Let us write this in the form

’ ’ 7 Am! a
cot%— %P—+tang— 422=n cotg?p-i-n tan g%l,,
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on ihtegmtion this becomes
ldga sin 22:-10&, cos %:=n log. sin g—n loge cos g
—~n loge sin %’+n log, cos %@,
or
logel tan %'=n log, tan g—j?,'log(5 tan %,
or, on passing to exponentials,

’ tan % :
tan 22— = =
tan %“

The constant which enters into the expression for tan
! »

%, denoted by tan 229, is determined by the fact that the

straight line parallel is to have the colatitude p,. - When

p is equal to p,, p’ becomes equal to % and r=o. In the

further discussion we shall consider po>§ and reckon p

and p’ from the North Pole. That will throw the straight-
line parallel into the Southern Hemisphere,

The angles are everywhere preserved "except at the
poles; in order that they may be preserved also at these
two points, it is necessary that we should have n equal
to unity, and then we have the stereographic projection
upon the horizon of the place of the central meridian

. which has the'latitude ¢, = p,— %

CAYLEY’S PRINCIPLE.
This guts us in position to_explain what is sometimes
called Cayley’s principle* Since in the stereographic
projection » must equal unity, the meridians in the hori-
zon projection are simply the same arcs as those of the

* 8¢ Cayley’s Collected Mathematical Papers, Vol, VIL, p. 397. Also mentioned in the
ninth editlon of the Encyclopredia Bri ca, Vol. X, "%&, in which pk a
Bihing mathematical snalysis 18 given in explAnation of the w-o~cie. T 200 B0 o7
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stereographic meridian projection. The parallels are
determined by the equation

rohs

tan

’
tan %— =
tan &2

mrs'

Parallels constructed for p’ on the meridian projection are
the parallels for p on the horizon projection. The circle
constructed with its diameter consisting of the chord for

¢°=po—% in the meridian projection becomes the projec-

tion of the horizon circle in the horizon projection. In
figure 32, pMp’N is the meridian circle of the original
meridian projection and PQP’Q’ is the horizon circle for

po=% constructed on the chord of the meridian circle for

™

P= Tangents to the computed p’ points of the meridian

circle would determine the centers and radii of the arcs
for the horizon projection; or the radii and center dis-
tances can be computed from the expressions for r and s in

terms of <p’=—;--—p'.

If we let p, become-% and then let n convergs to zero

while leaving constant the product of n by the length OP in
figure 31, which we have chosen as unity in the former
analysis, we obtain again Mercator’s projection. If we
maintain this product equal to two, we shall have con-

stantly
’ n
tan % g 1 -(tan g)
06 =\ —21 and 0D =2 ———24_.
o) 1 +(tan g)

The limiting values of these expressions as n=0 are given
In the form '

0@ =\, and 0D =log, cot g.*

# For the derivation of these limits see p. 84.



108 U. 8. COAST AND GEODETIC SURVEY.

x
D

>
N

3

¥ia. 32.—Cayley’s principle.
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DISCUSSION OF THE MAGNIFICATION ON THE CONFORMAL
DOUBLE CIRCULAR PROJECTION.

The values which we have found for %k, and %, in any
system of rectangular projections with circular meridians
and parallels have now become equal to each other and
we have for the ratio of the lengths at eack point of a
conformal projection

. n sin 0
c08 ¢ tan ¢’ sin N’

It results from this equation that, upon any given parallel,
k increases or diminishes at the same time as . When
the value of sin 6 is substituted, we obtain

__ _msece n sin p’
sec ¢’ +cos X' sin p (14cos N’ sin p’)

A point of discontinuity is found when cos A’ sin p’ = —1-
Within the limits of the map this can happen only when

p’=% and M =%=. In the stereographic projection this

I)oint is the antipode of the center of the map. If n is
ess than unity it would fall outside of the map of the
whole surface; but if n is greater than unity it would fall
inside of the map of the earth’s surface, since we should
have nA= L.

For convenience we will write the above expression in
the form

’ ’
£= sin p [%(tan %'*' cot %)—*—cos )\’]-

In th}s expression we need only to replace A’ by n\ and
n
tan % by (cot %’ tan g) to obtain % directly as a function

of p and A. In order to see immediately what happens to
k at the poles, we shall make this substitution and express
the result in the form

%== (cot 1;—")“ (sin g)lﬂ(cos 123 l—n

n 1—-n 14n
+(ta.n %—’) (sin 123) (cos g ™ tsin P COS N~
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We shall need the derivatives of k with respect to p of the
first two orders; we have

sinpdk_ ncosp’ '
k Oop 1+sinp cosn 7P

or
5%(%)= —cot p’+71~L (cosec p’+cos N) cos p
. ., 01 . ,
n sin p sin p SR =n?—1 COS P COS P
—sin® p (1+cos N sin p’),
or

. o Lok _270k\ . .,
m Sin p S0 P 75‘255‘*“753(55) ]=Sm’P (1+cos A’ sin p’)
+1 cos p cos p/ —R2,

Let us first supFOSe n<1. Then at the two poles, that
is, for p=0 and for p==, we should have k= o0; within
the interval & would pass upon each meridian through a
minimum. Denoting by a subscrigt m the value w%xi h
applies for k a minimum, we should have, by equating to
zero the first derivative of % with respect to p,

€os P’ €08 py

1+cos N sin p'p n

¥ _tan p'y

T tan py

. . 1 9% '
Sin Py sin P’y [752 op =%°§§%i__

T}ﬁa corresponding point is situated in the Northern Hemi-
sphere.

The velues which the above expression for Sj%ﬂ Ok as-

o)
sumes for p=0 and far p=n are, respectively, n~ l'p and

1—n, so that the first is negative and the second is positive.

T
But for p’= 5 P(=1py) >—12-r ; hence the expression is pos-

itive for Z,/___.sz_, and, in fact, it is positive for p:’.". The
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point at which the minimum is found lies, therefore, in the
Northern Hemisphere. )

The values of pn, and p’n for a given value of n on any
given meridian would have to be determined by successive
approximations until the equation containing pm, p'm, M,
&ng n would be satisfied %y the value obtained. For

articular meridians the equation becomes much simpler.
us for the central meridian it becomes

tan E’:E=Sin $Pm,
n

When this value is substituted in the equation for the
second derivative, we obtain ‘

. ., 1 0% 1+4cos ¢ —n?
Smf’msmpm[fzs?f W st om |

It is upon this meridian that we obtain the smallest of all
the minima.

Let us now suppose n>1. The conditions are now
changed, since k=0 at the poles. The value of & upon
each meridian passes through a maximum instead of a
minimum; this maximum is found in the Southern Hemi-
sphere and lies between the colatitude p, and the South

Pole. This is shown by the fact that %ﬂ g—;‘) is equal to
n—1 for p=0, a positive result; for 15=p,,, p'=1§r, and the

value is —cos p,, still positive, since po>§; for p== the

value becomes 1—n, a negative result. Hence the maxi-
Ilgnim lies between the straight line parallel and the South
ole. ‘

When 7 is slightly greater than unity, it may happen
that, starting at zero, the value of k¥ would pass through a
maximum in the Northern Hemisphere; then it would fall
to s minimum in the same hemisphere, and finally pass
through a maximum in the Southern Hemisphere to return
to zero at the South Pole. This depends upon whether
¢
co\;g,_,,_ becomes greater than =; this may well happen if
T ig gut slightly greater than unity.

Lagrange proposed to profit by the fact that n and p,
Were arbitrary parameters to so determine them that k
would vary as slowly as possible at a given point upon the
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meridian and upon the parallel in the vicinity of the prin-
cipal place of the country the map of which he wished to
construct. One part of the condition is fulfilled by making
the meridian of the place become the central or straight
line meridian, for in that case the derivative of k with
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respect to X becomes zero for A=0. We can now equate
to zero the first derivative of k with respect to p upon this
meridian; it would merely be necessary to consider ¢,, a8

the latitude of the given place. The second derivative will
also become equal to zero if we take

Tea 2R —Tagrange’s Drojection with Paris as center of least alteration.
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n= 1/ 1 4+ cos’pm.

Having thus found n, we would calculate ¢’s by means of
the formula

, .
@ m_ SN Om
tan 5=

Then we should have for the determination of p,

1
Po_ ton Pm u)r-‘ .
tan ) tan %(cot 5

For example, if the principal place was found on the
quator, we should have

em=0, n=1/2, ¢'n=0, and po=-725‘~

The Equator would then be represented by a straight line
and the system of projection would be defined by the
equations

A =2y2

tan %, ==(tan g)Ji .

A apecial case considered by Lagrange is given by the
values of definition

£

s=cot 3

A
S =¢cot —2- .
Hence

cosec ¢’ =cot %’

cot N =cot %
or
A=

DNt N>

N=
P zz)".
tan ) (tan 3

991043 O - 52- 8
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Hence po=% and the Equator is represented by a straight

line. The whole surface of the earth may be represented

on a unit circle with the projection as defined, and the
projection is so given in figure 34.

1]
11
T

L—1""1
g

716, 34.—Lagrange’s projection, earth’s surface in g circle.
EQUIVALENT OR EQUAL-AREA POLYCONIC PROJECTIONS.

An equivalent or equel-ares projection is one in which
the proportion of areas is preserved constant; that is .to
say, that any portion of the map bears the same ratio to
the region it represents that any other portion does to the
region which it represents, or the ratio of srea of any part
is equal to the ratio of area of the whole representation.
This is expressed analytically by the equation

kokycos =1,
In the polyconic projection this becomes for the sphere

p ds dp\ 08
&_——_’comp ZIGCOS 0—-% 57\=1.
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Integrating partially with respect to N and 6 with ¢ re-
Inaining constant, we obtain

p ds . dp

acos p\dp sin @ do 0) =Ny

ho constant being added, since 8 and A\ vanish together.
In this expression s and p are any function of ¢ that we
may choose. 6 would then be determined by the above
equation. Inversely, if we give the relation which should
obtain between 6, ¢, and N subject to the condition that
A should be a linear function of 6 and sin 6, there would be
an infinity of equal-area polyconic projections which
would satisfy this relation. In fact, © and v being given
functions of ¢, the assigned relation would be

wsin 0—v 6=\,

in which
ds
um—f =
a’cos ¢ do
S
a*cos ¢ do
or .

°
pz=p°’+2a2f v co8 ¢ de.
[+]

)
s=s°+a2f 2 cos ¢ do
[+

Po and s, denoting the two constants of integration.

There is no equivalent polyconic projection that is at the
Same time rectangular. In a rectangular polyconic pro-
Jection we have

glo
&

%8—=
and i

6 T
tan§ =

06 T'(\) .

ﬁ=m sin 6.
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By substituting these values we obtain

1 ’
psing /pdu 08 8 dp\ T'(\)

a?cos ¢ \u do “de 1’()\)=1;
but 2 TO)
s 2uT(A
S 0= Oy
_uwr—-T2()\)
cose—*——-——uz_*_rz()‘).
Hence
20 du w-T'0\) 2 1 dp 1

@cose dp [+ dFcose W TE(N) dp T7(N)

This is an equation that must be identically satisfied by the

value_s of » (a function ~0f: ¢) and T () (a. function of \).

The right-hand member is independent of ¢; hence the left-

band member must also be independent of . The condi-

tion will b% identically satisfied 1f « equals a constant and
2p P

Toose It equal t0 a constant.

If u is a constant, s is also a coustant, and the projection
would pass into one of the limiting cases of the po{yconic
prgljectlons.

he integration of the equation

] 2p dp=daZc cos ¢ dp
gives

P2 =po? +a% sin ¢.

By assigning particular values to the constants p, and &
we may obtain Lambert’s central equal area projection,
Lambert’s isospherical stenoteric projection (sometimes
called Lambert's fifth), -or, finally, Albers’ projection.
None of ghﬁse are polyconic projections in the accepted
sense, and hence no investigation of their properties wi
be given at this time. properts

o one of the strictly polyconic equivalent projections
has ever become of practical importance, because they

would generally be complicated both for computation and
construction. :
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DISCUSSION OF THE MAGNRIFICATION ON THE CONFORMAL
DOUBLE CIRCULAR PROJECTION.

The values which we have found for %k, and %, in any
system of rectangular projections with circular meridians
and parallels have now become equal to each other and
we have for the ratio of the lengths at eack point of a
conformal projection

- n sin 0 .
cos ¢ tan ¢’ sin \’

It results from this equation that, upon any given parallel,
k increases or diminishes at the same time as A. When
the value of sin 6 is substituted, we obtain

___msecyo n sin p’
sec ¢’ +cos M sin p (1+cos N sin p’)

A point of discontinuity is found when cos A’ sin p’= —1-
Within the limits of the map this can happen only when
p'=% and \'=+x. In the stereographic projection this

{)oint is the antipode of the center of the map. If = is
ess than unity i1t would fall outside of the map of the
whole surface; but if n is greater than unity it would fall
inside of the map of the earth’s surface, since we should
have nA= 4.

For convenience we will write the above expression in
the form

’ ’
g—s sin p [%(tan %+ cot %)+cos )\’]-

In thés expression we need only to replace A’ by n\ and
tan 1;— by ()cot % tan g) to obtain k directly as a function

of p and \._ In order to see immediately what happens to
k at the poles, we shall make this substitution and express
the result in the form

%= (cot %’)n <sin g )l+n<cos g)l-n

+(ta.n 229)“ (sin g)lnn(cos g ' +n+sin P oS N\~
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Wo shall need the derivatives of k with respect to p of the
first two orders; we have

sinpdk__ meosp’
k op L4smp’cos) cos P

or
aap }IE =—cot p’ +?li (cosec p’ +cos \') cos p
. ., 0r/1 2 ’
7 8ln p sin P W E)=n —N COS P cOs p
—sin? p (1 +-cos \ sin p'),
or '

2 2
7 sin P sin p’ %,g-;c—,—-% gl;) :l=sin2 p (1+cos N sin ?)
+n €08 P cos p’ ~nt.

Let us first suppose n<1. Then at the two poles, that

is, for p=0 and for p=x, we should have k= o0; within
the interval k& would Q;ss upon esch meridian through a
minimum. Denoting

ting by a subseript m the value which
applies for ¥ & minimum, we should have, by equating to
zero the first derivative of k with respect to p,

€08 P'm _ €OS Pm
1+cos N sin P/ n

_tan '

" tan pu

-

m

Sin Py Sin 'y E]:’gffci s?{%%f"-n'

Th}:els corresponding point is situated in the Northern Hemi-
sphere.

The values which the above expression for su;c P g_lg as-
sumes for p=0 and for p=n are, respectively, n—1 and
1—n, so that the firat is negative and the second is positive.

But for p’= %, P{=Po) >—21f ; hence the expression is pos-

itive for p’ =§: and, in fact, it is positive for p =“-'2r—- ‘The



THEORY OF POLYCONIC PROJECTIONS. 111

point at which the minimum is found lies, therefore, in the
Northern Hemisphere.

The values of p, and p'm for a given value of n on any
given meridian would have to be determined by successive
approximations until the equation containing pm, »’'m, N,
and # would be satisfied by the wvalue obtainexf. For

articular meridians the equation becomes much simpler.
us for the central meridian it becomes

tan ©'m__SiD om_
n

When_this value is substituted in the equation for the
second derivative, we obtain

. .y, 1 0% 14cos ¢y —n?

It is upon this meridian that we obtain the smallest of all
the minima.

Let us now suppose n>1. The conditions are now
changed, since k=0 at the poles. The value of ¥ upon
each meridian passes through a maximum instead of &
minimum; this maximum is found in the Southern Hemi-
sphere and lies between the colatitude p, and the South

Pole. This is shown by the fact that EI%—ZZ g—; is equal to

n—1 for p=0, a positive result; for p=po, p’=7§r, and the

value is —cos p,, still positive, since po>~72—r; for p=m the

value becomes 1—n, a negative result. Hence the maxi-
mlim lies between the straight line parallel and the South
Pole. ‘

When 7 is slightly greater than unity, it may happen
that, starting at zero, the value of k would pass throu ﬁ a
Maximum in the Northern Hemisphere; then it would fall
to & minimum in the same hemisphere, and finally pass
through a maximum in the Southern Hemisphere to return
to zero at the South Pole. This depends upon whether
€08 p/p . .
?.S% becomes greater than =; this may well happen if
7 is gut slightly greater than unity.

Lagrange proposed to profit by the fact that n and p,
Were arbitrary parameters to so determine them that k
would vary as slowly as possible at a given point upon the



112 T. 8. COAST AND GEODETIC SURVEY.

meridian and upon the parallel in the vicinity of the prin-
cipal place of tﬁe country the map of which he wished to
construct. One part of the condition is fulfilled by making
the meridian of the place become the central or straight
line meridian, for in that case the derivative of k with
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respect to N becomes zero for A\=0. Wa can now equate
to zero the first derivative of & with respect to p upon this
meridian; it would merely be necessar

: ; to consider ¢, 88
the latitude of the given place. y o

; The second derivative will
also become equal to zero if we take

Tra 23 -Taprange’s projection with Paris as center of least alteration.
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n=+/1 4+ cos’op.

Having thus found 7, we would calculate ¢’ by means of
the formula

’ .
Y m__SIN Oom
tan 5~ n

Then we should have for the determination of p,

1
Po_ m u)r .
tan 5 tan %—(cot 5

For example, if the principal place was found on the
quator, we should have ,

‘Pm=0) n=4§; ‘P,m=0y and po=72'£“

The Equator would then be represented by a straight line
and the system of projection would be defined by the
equations

M=£\y2

2 zz)ﬁ.
tan 5 <tan 5
A special case considered by Lagrange is given by the
Values of definition
8=cot '2?
S =cot %
Hence
cosec ¢’ =cot g

cot A/ ==cot, %
or
A=

Bo= N>

=
tan. 122 ’ =(tan %3)%

991943 0 - 52- 8
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Hence po=% and the Equator is represented by a straight

line. The whole surface of the earth may be represented
ogea unit circle with the projection as defined, and the
projection is so given in figure 34.

]

1

916. 34.—~Lagrange’s Projectign, earth’s surface in a circle.
EQUIVALENT OR EQUAL-AREA POLYCONIC PROJECTIONS.

An equivalent or equal-ares projection is one in which
the proportion of areas is preserved constant; that is to
say, that any portion of the map bears the same ratio t0
the region it represents that any other portion does to the
region which it represents, or the ratio of ares of any part
is equal to the ratio of area of the whole representation.
This is expressed analytically by the equation

kmkp cos P=1,
In the polyconic projection this becomes for the sphere

p ds dp\0o
m(-d—écos 0—% 5-):_1.
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Integrating partially with respect to N and 6 with ¢ re-
maining constant, we obtain

) ds . dp
77003 o\ dp sin G—El; 0) =N
ho constant being added, since 6 and N vanish together.
In this expression s and p are any function of ¢ that we
may choose. 8 would then be determined by the above
equation. Inversely, if we give the relation which should
obtain between 6, ¢, and N\ subject to the condition that
A should be a linear function of § and sin 8, there would be
an infinity of equal-area polyconic projections which
would satisfy this relation. II)n fact, » and v being given
functions of ¢, the assigned relation would be

U sin §—v 0=\,

in which
wm bG8
a’cos ¢ dy
V= P dp y
a*cos ¢ dp
or

-
’=po’+2a’f v co8 ¢ do.
o

U
s=so+a”f " cos ¢ do

o

Po and s, denoting the two constants of integration.

There is no equivalent polyconic projection that is at the
8ame time rectangular. In a rectangular polyconic pro-
Jection we have

8o
&

ds _
o=
9_TQ)
2 wu

o8 T'(\) .
5X=—P(7\) sin 6.

and
tan
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By substituting these values we obtain

psingd (pdu 0s 0 de\T’'QA\)

a?cos ¢ \u do “de) T\ =1;
but 2 T O
. %
S 0=y
_w=T0)

cos 0= m—) .

Henceo .
20  du wW—T?(\) 20u 1 dp 1

dcosg dp TP~ acose wP+T2(N) dp TVON)

This is an equation that must be identically satisfied by the
values of u (a function of ¢) and T'(A\) (a function of ).
The right-hand member is independent of ¢; hence the left-
hand member must also be independent of . The condi-
tion will be identically satisfied if 4 equals a constant and
i 62_(2:7:_3; %‘—’;is equal to a constant.

If u is a constant, s 13 also a constant, and the projection
would pass into one of the limiting cases of the pofycomc
projections.

he integration of the equation

) 2p dp=a?c cos ¢ d¢
gives

pP=p,?+a’c sin ¢.

By assigning particular values to the constants p, and ¢
we may obtain Lambert’s central equal area projection,
Lambert’s isospherical stenoteric projection (sometimes
called Lambert’s fifth), - or, ﬁnalﬂ[))fz Albers' projection:
None of these are polyconic projections in the accepted
sense, and hence no investigation of their properties will
be given at this time.

o one of the strictly polyconic equivalent projections
has ever become of practical importance, because they

would generally be complicated both for computation and
construction. ;
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Let us in‘vestiﬁate the case in which the scale should be
held constant along the parallels. 'We should then have

k,=1 and ky cos ¢ =1,

1 /ds dp
E(a—-{;COS 0—-&";)=1

dscos8—dp=a de

or

or
ds cos §=dp +a de.

On any given parallel the right-hand member of this equa-
tion is a constant, since dp is a function of ¢; but 6 18 &
function of ¢ and A, for we have

__P 9 _,
®" acos ¢ ON
or, by integration,
PN
P

no constant being added, since 6 and \ vanish tcgether. .

_ It follows that the left-hand member of the above equa--
tion must vanish identically; that is to say, ds=0. The
circles of parallels are, thereforg, concentric and

. . dp= —a do,
or, by integration,
p=pota(ey—¢).

Thig is Bonne's projection; but, of course, it is not & poly-
conic projection, since § is constant; that is, the parallel
ircs are concentric. 1t appears, however, in the attempt

attain certain things by means of the equal-area poly-
onic projection and can be looked upon as a limiting case
- °f the same.

If we assume

p=a cot ¢
s=a(p+ cot ¢),
then
g—g= —a cosec? ¢
%‘:=a(1 —cosec? ¢) = —a cot? ¢.
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If these values are substituted in the equation of condition

F (ls sm 0— )-

a?® cos ¢

we obtain for the determination of § the equation

v

0—cos’ ¢ sin 6 =1 sin’ ¢.

In this case
1—cos?p cos @
= 8in? . secy
sin?
kp= @

1—cos’ ¢ cos 0’
so that we have as required
knk, cos ¢=1,
and both %, and %, are equ;ﬂ to unity for 6=0.
If, on the other hand, we assume
p=acote

§=a cosec ¢

a£= —a cosec? ¢

ds

= —@q cot ¢ cosec
d‘P (4 L4

these values bem% substituted in the equation of condition
give as the formula for 6

0 —cos ¢ sin 6=XAsin® ¢

and
1—cos pcos b
= sin? § sec ¥
k sin? ¢

®~1—cos ¢ cos 0

so that ky k,cosvl« 1 and k=1 for §=¢, and kg =sec ¥ 8t
the same point.
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CONVENTIONAL POLYCONIC PROJECTIONS.

There is a class of projections that are not strictly equal-
area, but which have the property that they preserve the
area of the zones between the -parallels and that of the
unes between the meridians. Any equal-ares projection
possesses this property, but it is not conversely true that
any projection possessing this property is also an equal-
area projection. Tissot calis “projections of this class
atractozonic. It can be rigidly proved that no rectangular
polyeonic projection can be an equal-area projection. We
can, however, have an atractozonic projection in the
polyconic class that ¢
also has circular
meridians forming &
rectangular net with
thecircularparallels. P

In those that we :
shall study first we
shall take the Y
Straight-line paral-
lel of the map to 5
represent the Equa-
tor, and the circum- .
ference described A’ 5 5 A
upon the line of
ggles of the map as

ameter to repre-
Sent the meridian the
ongitude of which is
90°] reckoned fror
the central meridian
or the line of poles. P

e shall determine ra.35.~-Geometrical relationsofatractozontoprojections.
¢’ as a function of ¢ . .
In such a manner that, in the hemisphere limited by this
Meridian, the area of the half zone comprised between any
two Punil_eln- will be preserved, and we shall determine \’
a8 g function of N, so that the area of the lune formed by
8ny two meridians may be preserved. The equal-area
Projections not only have the zones and lunes equal, but
also in them the meridians of the earth and those of the
,il‘mp, respectively, divide each zone into proportional parts.

8 latter property is not found in the atractozonmic
Projections.

In figure 35 we shall suppose the radius OA or OP equal

to v2,80 that the hemisphere and the circle which serves-as

s projection are equivalent, since the radius of the globe
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is taken as unity. The half zone with a base limited by the
parallel of latitude ¢ has the area (1 —sin ¢). It is pro-

jected upon the portion of the plane PUDU’ which the
chord Up " divides into two segments of circles; the one
UPU’ is the difference between the sector OUPU’, meas-

ured by % OP* times the arc UPU’ or by =—2¢’, and

the triangle OUU’, which is measured by % OUx 0U’ X
sin ZUOU’ orby sin 2¢’; the other segment is the difference
between the sector SUDU’ and the triangle SUU’; the
angle USU’ is equal to 2¢’, and the radius SU of the par-
allel is equal to /2 cot ¢’, 80 that the area of the segment

i8 equal to (2¢’—sin 2¢’) cot? ¢’. By equating the area

of the zone to the area of the projection of the same, we
obtain the relation

7 —7 8in ¢ = —2¢’ —sin 2¢’ + (29’ ~sin 2¢’) cot? ¢’
or

T, 8in 2¢’ — 20’ cos 2y’
5 sin p=—r—t—_=¢ COBZP
2 1—cos 2¢

According to the second condition, the area of the segment
OPGP’ ought to be equal to that of the lune formedeg;nthe
central meridian with the meridian of longitude N\. ~ The
angle PTG is the angle \', so that TP = /2 cosec A’. The

area of the segment OP@P’ is equal to the areaof thesector
TPGP', minus the area of the triangle PP,

TPGP’ =3 TP X arc PGP’
=% X 2 cosec® M X 2\’
=2\’ cosec? \’
ATPP'=3TP X TP’ sin £T1P’
. —~=% X 2 cosec® A’ sin 2N

TPP’ =cosec®\’ sin 2\,
Hence for the area of the segment we obtain

OPGP’ =2\ cosec®\’ — cosec?\’ sin 2)\/
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The area of the lune upon the unit sphere is equal to 2x;
ence by equating this area to the area of the projection
of the same we obtain -

. 2N\ —sin 2\
="

or
N 2N —sin 2\

T T—cos 2\ "
These two expressions may be written

=Sin 20" —~2¢" cos 2¢”
7 sin?yp’

sin ¢

Y
k=§ﬁl—2x'—00t N

By computing by means of the first equation the values of
¢, which corregpond to a sufficient number of values of ¢’,
We could construct a table whieh, reciprocally, would make

own the values of ¢’ corresponding to given values of ¢.

e second equation would make it possible to solve the
8ame %roblem with respect to A and \’.

With these relations we obtain .

@_‘EI;—I cos ¢ (1 —cos 2¢')?
de 4 sin 24’ (29" —sin 2¢7)
d_)\iz sin?\’ .

d\ 2(1—\ cot )

T = wcoswsinw’tanw'éinﬂ
m .‘/3 sin N (2¢" —sin 2¢’)
A 1 gin A\’ sin ¢
p=

V2 cos ¢ tan ¢’ (1—N cot X')
or

T €08 ¢ tan ¢’ 1
n= = 7 7
2+/2 2‘P'—3r2‘ sin o 14cos N cos ¢

oo 1 cosy’  sin®\ 1
P72 cos ¢ 1\ cot N 1+cos N cos ¢’
_1 cos o 1 1 .
V2 cos ¢ 1—Ncot A’ 1+cos N’ cos ¢’
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By setting aside the condition that the principal meridian
should be represented by the circumference described
upon the line of poles of the map as diameter, we could
obtain & series of atractozonic projections instead of &
single one, and in this group some would certainly be found
- the alterations of which would be less than those of the

rojection that we have just studied. We could still
urther increase the indetermination, and we could intro-
duce two parameters in the place of one by not fixing in
advance the parallel, the Y{rOJection of which should be &

" straight line. This remark applies also to the remaining
projections in this class.

In a rectangular circular projection, in place of deter-
mining ¢’ as a function of ¢, so that the projection of each
zone should be equivalent to the zone it represents, we
can bring about that the ratio of the surfaces should be

continually equal to unity along a given ‘meridian or that
the len should be preserved upon this meridian.
Similarly, we could determine A’ as a function of A in such

a way that, upon a.given l}){a.l:a.}lel, the same conditions
should be fulfilled. By combining each expression of ¢’ 80
obtained with one of the expressions for A’ we could form

several kinds of projections, each of which would possess
the two properties in question.

Let us continue to re%resent the principal meridian by
the circumference described upon the line of poles of the
map as dismeter, the Equator by the diameter perpen-
dicular to this line, and let us call R the radius of the cir-
cumference. ’

The ratio of surfaces at each point, in one of these rectan-
gular circular projections, is

- cos o’ 1 de’ d\'
K- co8 ¢ (14-cos A cos ") dg d\

'We now propose to bring about that it should remain equal
to unity along the central meridian. For A=0 we have
A'=0, and the derivative of A’ with respect to A assumes &
known value n, depending on the nature of the function of

A which has been adopted to repr N
- ‘The condition is then P present the value of

cos ¢’ dy’ ‘
"B T Foos =008 ¢ o
or, by integration,

L . -nR: 1 ,(PI ’ ‘Pi
8ln ¢ —2-(1-—§tan’§ ta.n—z—-
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No constant of integration is added, since ¢ and ¢’ vanish
at one and the same time. If each pole is to be a single

Ppoint this equation must be valid for% or — % This gives

nR2=3. If we wish that the ratio of surfaces should be
equal to unity along the Equator, it would be necessary to
ave

p a
e (1+cos )\’)’—d’\’

n’ being the value of the derivative of ¢’ with respect to
¢ for ¢=0. We deduce from this equation, by integra-
tion, the relation

n' R 1 2 N N
)\—-—2—<1 +-§ tan .—2~)t&n 3’

no constant being added, since A and A\’ vanish together.
ince the meridian of 90° of longitude is to be represented
y the circumference described upon the line of poles of
the ma£ as diameter, it is necessary that this equation
should be satisfied when we make in it at the same time

)\=1§r and 7_\’———%; we have then
n'Rz=%’_".

We can unite the two conditions; then the mode of pro-
jection will be defined by the two relations which we have
Just obtaimed, the first between ¢’ and ¢, the second be-
. tween N’ and ); in addition, n’ will be found joined to n
by the relation nn'R? =4, which we obtain either by making

¢=0 and %%=n’ in the first differential equation or by

making A=0 and %=n in the second. From this we
conclude that

=3 .
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The two equations are

14 4
sin <p=; 3 — tan? %)ta.n %

=T 2N 2‘_’
8(3 +tap 2>tan 5

'

km and %, have now become

Jr  cos o (1+cos ¢')?
=

4 cos ¢’ (14+cos N\ cos ¢")

_1 cos ¢’ (1+4cos \')?
PV cos ¢ (14cos ) cos ¢)

_ 1 (14eos)) (1 4cose))?
K _kmk"=[§ 1+cos N cos ¢ )

The latter formula can be written

K-""‘[l __% (1-—005 )\') (l—cos ¢’)]$.

1+4cos A cos ¢’

In this form we see that K is everywhere less than unity,
except on the Equator and upon the central meridian, and
that the alteration of surface increases with the longitude

and with the latitude. On the principal meridian we
obtain

’
K=cost&.
cost

Let us further examine how ¢’ ought to vary with ¢ in
order that the areas should be preserved slong the prin-
cipal meridian. If we denote by n'’ the value which the

derivative of A’ with respect to \ takes for )«;—%, we should
have

cns ¢ do=n'" R? cos ¢’ dy’
or, by integration,
. »
sin ¢ =n"" B3 gin ¢,

no constant being added, since ¢ and ¢’ vanish simul-
taneously.
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- If ¢ and ¢’ are to become g—simultaneously, we shall
have the condition
n'’ Ri=1, .
and in this case the pole will be represented ‘by a single
point. The equation then reduces to '
¢ =e.

If to this equation we add the following:
T N A\
)\=—§(3 + tan? -ﬁ') tan 5

We know that the surfaces will also be preserved along the
Equator; this equation was derived from the differential
equation
’
%=£—r (1+4cos \')?

. . ., 4 .. T, T '
which gives n =3 when in it we make x=§, A =5 and
dx/

a=n"
This value of n’’ gives
R= %1/311-.

The values for the magnification along the meridians and
Parallels now become

km=1/‘°; 1

2 1+4cos ¢ cos)

k___z_ (1+cos \')?
>~ /37 1+cos g cos\’

and from these we derivé

K= 14cos N\’ ’.
1+4co8 ¢ cos )



126 U. 8. COAST AND GEODETIC SURVEY.

The ratio of surfaces is greater than unity everywhere
axcept on the Equator and upon the principal meridian.
The alteration increases with the latitude; on the other
hand, it diminishes when the longitude increases. This s
shown at once by writing the above expression in the form

‘ZSinzg 2
K=sec? o\ 1 = —— 2 __J.
14cos ¢ cos N

Upon the central meridian, where the greatest alteration is
‘produced, we have :

K=sec‘g-

The conditions to insure that the areas should be pre-
served along the meridian of longitude \, and along the
parallel of Jatitude ¢, give, respectively, the differential
equations ‘

. ,ys COS @' 1 de’
A sin® Ny o0 ¢ (1+cos N cos o) dep

: ’ ’ 1 d)\'_
Bsin o' tan oo (7o o7s Cos NP dN

Tho integration of the first equation gives

. _ sin o’ _ ’ _ o Y
sin g = A[l T cos N, 608 - 2 cot )\, tan—? (tmré— tan—é— v

and from the second we get,

4 ’ X’ 4 x/
A= B[—-———- ¢ _1( o, ANY)_ sin .
sin 297, 0 tan 5" tan 2/ l+4cos ¢’y cos N

The quantities ¢y, ¢y, Ay, N5 and the constants A and B are
oined to each other by the four relations that are obtained
y expressing that the first equation is satisfied for ¢ =¢»

with ¢’ =9’,, as also for ¢ =7§r with ¢’ =7§r and the second for
A=35 with N’ =3, as also for A=), With N =),

The ratio of surfaces has now become

K=[(1 +cos N, cos ¢’) (1 4-cos o', cos \') 3
(1+cos ¢’y cos M) (1+cos N cos ¢)
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In the parentheses of the second member the factor which
Varies with ¢’ is

cos Ny—cos N

1+4cos N, cos ¢’
= ey o
cos N +8e0 ¢

1+cos \ cos ga'_1+

Wo see, then, that upon each of the meridians for which we
ave A< \,, the ratio Kisless than unity and increases from
the: Equator to the pole; for A>)\, we have K>1 and K
Increases from the 1}))010 to the Equator. We should see in
a similar manner that, upon each parallel whose latitude is
ess than ¢,, K is smaller than unity and increases with the
longitude, while, if ¢ is greater than ¢,, K will be greater
an unity and will increase as the longitude decreases.
hus K attains a minimum K, at the center of the map, and
another K, at the pole on the principal meridian; it attains
& maximum K, at the pole on the central meridian; and,
ally, a second maximum K, at the intersection of the
Equa.tor with the principal meridian; these values are

(1 4cos \y) (14+cos ¢’,)]?
2(1 +cos Ny cos ¢’y)

1
K= (1 +4cos Ny cos ¢'y)?

K =< 1+4cos ¢’y )’
37\ 14cos N, cos ¢y
K—-( 1+cos N )’_
¢+ \1+4cos N, cos ¢
. Let us still consider the rectangular circular projection
I which the hemisphere is represented by a complete

Circle, and let us now suppose that we wish to develop
e central meridian with its true length. In order to

do this we take the radius of the map equal to -g « In

%gure 30 we have seen that the three points A’, D, and
are in a straight line; hence the angle OA’D is equal

K =

to the half of ¢’. Moreover, we have here OA’ =—125 and
OD— . the right triangle OA’D will then give

!
¢ _2¢,
tan2 =
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If we also wish to devel? the Equator with the true
length, we should have in re 31 OG =2}, and, since the
a.n%e OP@ is equal to the half of N\, the triangle OPG
wﬂ% give in turn
‘ A2\
tan-z- =—
™

From these two equations we obtain

6 Ao
tgn '2* =-—1rT,
and also "
@‘_{l =siﬂ @
de @
a\ _sin N
axn !
so that we obtain
A sin 8 _r sin ¢’

BT osin N 2 o(14cos N cos ' Y)

T gin 8 _T sin N’ .
P 2Ncosptan ¢’ 2 X(1+cosN cos ¢)

At the intersection of the Equator and the principsl
meridian, we have

k’m=2
k,psl
K =2,

The Equator beinf developed with its true length, if
we make the second condition no longer a ply to the
central meridian, but to the principal meridian, and

wo wish that the arcs of this last have for projeotions
arcs that are proportional to them, the relation between
A and M will remain the same, but that which exists

between ¢ and ¢’ will be replaced by ¢’ =¢, which rela-
tions give .

t _— T —
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We have then
_x gin 6 _T 1
D9 singsmm N 2 14cos N cos ¢

A sin 6 _r sin A’
P72 xsine 2A(1+cos\ cosg)
K=1_r’ sin N\’ .

4 M(14cos \ cos ¢)?

This projection is sometimes called the stereographic pro-
jection with modified meridian.

NONRECTANGULAR CIRCULAR PROJECTIONS.

Let us always suppose that to each point of the globe
there corresponds one point of the map, and only one, so
that the circumferences which serve for the projections of
the meridians all pass through two points P and P’ in
figure 36, which are the m¥rojections of the two poles.
Let APA’P’ be the circumference described upon PP’ as
diameter, O its center, AA’ the diameter pergendicular
to PP’, UDU’ the projection of the parallel of latitude ¢
or of colatitude p, S the point in the prolongation of PP’
which serves as the center for this projected parallel, V
the middle point of the chord UU’ common to the two
circumferences APA'P’ and UDU’. Further, let PGP’
be the projection of the meridian of longitude A, reckoned
from the central meridian projected into the line PP’ and
let T be the center of the circumference PGP’. Let us
continue to define this last by the angle A’ at which it
intersects PP’, which is equal to the angle OTP, so that
in the triangle O TP we have, as formerly, on taj(ing opP
as unity and on denoting by R and S, respectively, the
radius 7P and the distance OT,

R/=-cosec M, 8S=cot N, R1—-81=1,

. As to the projection UDU’ of the parallel, we can define
it by the two lengths r and s, as we have done up to this
time, or by the two angles which the sides of the trmngle
OSU make with each other. Let us call the angle SOU,
f?’ ; its complement, ¢’; the angle OSU, ¢; and fmallg
ot v denote the angle which one of the raéii Olf and ﬁ
makes with the prolongation of the other. Since we have
OU=1, the triangle OSU is determined by two of the

991943 0-52-9
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F16. 86.—Geometrical relatlons of nonrectangular double-ciroular Drojections.

usatities 1, 8, p’, ¢, and v and it is easy to express the
an‘ee other quantities as well as the various lines of the
figure in functions of the first two. We have especially



THEORY OF POLYCONIC PROJECTIONS. 131

v=€+p’

sin p’
T=—
sin €
_siny
sin e

OD=s—r=—>——%

cos +
2

/
sin (7_;7) >

sin =
2

8

s+r=

The ratio of the two parts DP and DP’ into which the
line PP’ is divided by the projection of the parallel ‘is
expressed very simply by means of ql' and v. In fact,
this latter angle is equal to that of the two tangents at
U to the two circumferences, which angle is divided into
two parts by the chord UU’, the one of which is the double
of the angle DUU’, and the other of the angle PUU'.

The angle PUD is then equal to 72—7 but of the two comple-

r
mentary angles PP’U and P’PU the first is equal to 1—;—
It comes about, then, in the triangles DPU and DP'U

that
?

DU sin %= DP cos g

DU cos{ = DP’ sin?’,

from which, by dividing’ member by member and on
denoting the ratio by §,

DP p'
2

’ITP—,=E=t8,n tan

o1
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The alteration ¥ of the angle of the meridians with the
parallels is the excess of the angle S MT over % In order

to obtain it simply, let us note that, M, being the second
point of intersection of SM with the circumference PM F’,

we have
SMxSM,=SPxSP’,

if M is displaced by changing the meridian but, remaining
on the same parallel, SM 1s constant; then the same is true
of SM,; consequently, also of MM,. Then the grojectlon
MN of the radius TH of the variable meridian of the map
upon_the radius SM of the fixed parallel has a constant
length. At the point M this length is expressed by R sin ¢
:.11;1;{',, and, at the point U, by cos v; it thus results

or by

that .
gin ¥ =cos v sin \’.

In the trisngle OST the angle at 8, which we will call o,

may be immediately obtained, for we have

J
tan c=p—~
8

Let us now designate by 6 the angle OSM and by & the angle
OTM, which we shall need forgcalculating tge lt“gtios m
and k,. The triangle STM gives

sin (0+a)=~§g cos

cos (8+a)==TrS cos 3

but we have in the triangle OS T

8= __8

e ’
Sin o - Co8s o

so that we have

sin (0+a)=§ sin o cos ¢

cos (5 +v)'=§- 08 o cos ¥
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or

. _sinocosy
sin (0+a)———————-cos 7
3 4
cos (5+a)=sm P’ cos g cos !P_

sin vy

It is, however, sufficient to calculate one of the angles ¢
apd &; we have, in fact,

5—0=y,

for, I being the point of intersection of T'U with PP’ the
two triangles OIT and ISM have the angles at I equal, and,
by expressing that the sum of the other angles are the
same In the one triangle as in the other, we obtain the.
relation which we have just written.

The rectangular coordinates of the point M with respect
to the axes OA and OP are

z=rsin 6

y=R sin 8.
We now have
o8
op
. r _of
P~ pon

km=R

By teking, with respect to p and with respect to A, the
derivatives of the logarithms of the two members of each
of the relations which we have established between the

different variables, we obtain %‘) and gg, which figure in

the values of &y and kp; but it is more simple to obtain
" km by making use of the formula '

km=(%—$ 008 0) sec ¥,

which has been demonstrated with regard to polyconic
projections in general. Since the meridians are also
circles with their centers upon the same straight line,
we can form an expression foy k, by replacing in the
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expression for km, p by X, 7 by R, s by 8, and 6 by §, and by
dividing by sin p; this gives

dR _dS sec ¥
kp= d—)\“’—a—x C0s )S-———.ln p.
The projection of TMupon OT being equal to T0 plus the
projection of 'SM, we have
R cos =8+ sin 0.

Substituting for cos §, in the expression of k;, the value
which results from this last equation, an'd observing that

R‘%—-Sd E‘% is zero, since R?—8? is a constant, we have

o — rsing dS,
A P~ Rsinpcosy d\’
but :
1dS_ 1 av
Rd™ snNdn
s0 that

_rsin 6 secyd\
PTsinN sinp dh

The expression for k., can be written

k= d(ii?p ) -2 g—‘—z gin? ;—] sec .

Let us examine in particular what these ratios become
upon the straight-line’ parallel of the map which we shall
make, for example, correspond to the Equator. Let us
call A the value which is assumed for ¢=0-by the deriva-
tive of OD or s—r with respect to ¢ and —B the limit

toward which tends the ratio of gg to 27 when ¢ tends

toward zero. Since at the same time r9 tends toward 0G

’
or tan %, we find that on the Equator
. ’
= A 4B tan? -
’ ’
k= 1 N d\

— 2
2‘sec 3
since ¥ =0 at that point.
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The condition that the areas should be preserved along
this line will then be

1 N N odaN
| §(A+B tan? ‘2—> SGCLZ a—x-—l

or, by integration,
B N N
(A+—§ tan? —2-) tan 5 =),

no constant being added, since N and N vanish simulta-
neously.

There is an infinity of circular projections with oblique
angles that are atractozonic. If we suppose the meridian
of 90° of longitude represented by the circumference
described upon. the line of poles as diameter, these pro-
jections are furnished by the following equations:

. 2¢ —sin 2e .
’ ’ N
20’ +8in 2¢’ — (1 +cos 2¢’) T oo, T8¢
2N\ —sin 2)\'=)‘
1—cos 2\ ’

The first leaves yet undetermined one of the two quantities
o’ and e as a function of ¢; as to the second, it 1s incom-
patible with the condition of preservation of areas along
the Equator, which proves that no circular projection
with oblique angles can be equal-area In the complete
sense.

PROJECTION OF NICOLOSI OR GLOBULAR PROJECTION,

In this projection the Equator and the central meridian
are found developed in straiﬁ?t lines and with their true
lengths; the principal meridian is represented by the
circumference described upon fhe line of poles of the
map as diameter; and, finally, the arcs of this meridian
and the corresponding arcs of the circumference are pro-

portional. We therefore have
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¢ =e
p'=p
e=y—p

=1

Yo P oot 2
tan 5 —p cot 5
= 8in p

7'==2 sin e

_rsiny

8 28ln ¢

N oN*
tan - =—
2 x

R='-"2— cosec N

=X ’
S 5 COb N
sin ¢ =cos y sin A’

S
tan UHE

. sin ¢ co
sin (6+9) —————CZS )‘,s L4

S=0+4y

%8OOS¢—)'
k=] 142 gin? = |secy
* . . 2

3 8l e—¢

___rsing
P Ncos ¢ cosy

*See p. 128,



THEORY OF POLYCONIC PROJECTIONS. 187

The latter formula is very easily deduced, since by
logarithmic differentiation we obtain

1 dNv_1,
sin N dn N\’
when this value is substituted in the general formula, we
obtain the relation as given above. The formula for kn is
gomewhat more complicated in its derivation. We have
from the a priori conditions

§—r=¢
or

_ a%(s—r) =1-

From the triangle OSU we obtain

3
r’=s’+£——1rs sin ¢;

but
8§—r=¢
2
(8—«p)’=8’+% —~rs8in ¢
(= sin ¢-2<p)8=7—2—¢’
or '

,,rz
_Z_‘p’
8 = ——
T 8In ¢ —2¢

ds= —2¢p 8 (wrcosp—2)
dp w8ing—2¢ 780 p—2p

_2r—mwscos ¢
7 8ln ¢ —2¢

'When these values are substituted in the general formula on
page 134, we obtain the value of kn, as given above. A
circle constructed upon the line of poles of the map as a
diameter gives the projection of the principal meridian. A



138 U. 8. COAST AND GEODETIC SURVEY.

diameter perpendicular to this is the projection of the
Equator. Both of these diameters are divided into equal
parts and the projection of the principal meridian is divided
mnto the same number of equal parts. The parallels are
arcs through the divisions of the line of poles passin
through the corresponding divisions of the principa
meridian, The meridians are arcs passing through the
oles and through the divisions of the Equator or the
iameter perpendicular to the line of poles.

Fia. 37.—Nicolosi’s projection or globular projection,

PROJECTION OF P. FOURNIER.

Another conventional projection is that proposed b
P. Fournier in 1646, which is a polyconic projection Witﬁ
meridians that are ellipses. The Equator and the central
meridian are developed with their true length on two
straight lines perpendicular to each other; the central
meridian serves as the major axis of all the ellipses for each
of which the corresponding \ serves as the semiminor axis.
The principal meridian is a circumference of a circle. The
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projections of the parallels intercept upon thiscircumference
and upon the projection of the central meridian lengths
proportional to the corres onding arcs of the globe.

In figure 38 let APA’P’ be a circumference the radius of

which OP is equal to 325; it will représent the principal
meridian. Let PP’ be the central meridian of the map

Fig. 38.—Geomotrical relations of Fournier’s projection.

and let AA’ be the Equator. If we take OD equal to ¢,
and if we make the ang(ies AQU and A’OU" also equal to ¢,
the circumference passing through the three points U D,
U’ will be the projection of the parallel of latitude . By
taking 0G ‘33)1131 to A and constructing a half ellipse havin,

for vertices P, @, and P’ we shall obtain the projection o

the meridian of longitude \. Let M be the point where it
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intersects the parallel, and let S be the center for the latter;
draw the abscissa MN of the point M and the tangent M7’
to the ellipse; also draw SU and SM.

The parallels are the same as those in the globular pro-
jection, so that we have, as before,

8—-1‘=x¢p
,,rz
r’=s’+~4-—1rs SN ¢
or, by combining the two equations,
o{r+s) —ms sin ¢+—1;—J=
1[.3
¥
8= ———————s
T 8in ¢—2¢

By taking the derivatives of the two members of these
equations with respect to ¢ we obtain ’

ds 2r—wscos e
de wsin o—2¢

dr_ds_
de de

The angle OSM is still denoted by 6. The triangle SMN
gives for the rectangular coordinates of M with O as an

origin
r=rsin §

Yy=8—1r cos 0.
The elliptic meridian has the equation

2 (Y-

k2+( 7[') - 1.

By substituting the above values of 2 and y in this equa-
tioyn, and then solving for cos 6, we find 1

o050 T/AN 1+ 27\ (28 8in o — ) + 7% — 40%g,

r (7 —4N?)
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By using this equation we can compute th 1

as the values of z and y. If we denote hy ,f :}?g a%glg‘sog%}

formed by the tangent to the ellipse at M and the Y axis
. b

we know that we have
2

AN
tan 11=—;2~£/;

but the departure ¢ of the angle of the meridian from
orthogonal intersection with the parallel is the : . lgogxM%r’x
which is equal to the difference between the angles OTM

and OSM; we have then
y=n—0.

Everything i$ now known in the expression for kg, namely
ds dr
km=(zv—, cos B—a—‘;) sec Y.
By substituting the values this becomes
T8 €08 p—2r . 0
km =(1 +2m sm%) sec lﬁ,

an expression that has the same form as in the case of the
lobular projection; but, of course, the angles ¢ and ¢ have
erent values from what they had in that projection.

09
ky= '(5):) 8ec ¢.

By differentiating the equation for cos 8 with respect to
we obtain the value of 'ab‘f: which may be reduced to a con-

venient form by substituting for sin ¢ its value in terms of
z and y; this form is much more readily obtained by dif-
ferentiating the expressions for z and y with respect to
A, and then the differentiation of the equation of the ellipse
partially with respect to A will furnish the equation for

determining g-)? In this way wegget

N oosUNTE—YIN

OY_ . inp2f 0
TSI TIN
and
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By solving these linear equations for g—f we obtain

09 L]
O\ A [ws— (@ —4N%) 9]

Hence
TrT 80C ¢

o= ST — (i — 2N 3]
Upon the central meridian we have
60=0, =0, km= 1,

. . 2 3
k,,nsec <p-‘/ 1——(-;) ’

upon the principal meridian

and

1 T
cos f= ;(8—5

a relation that is evident from the figure.

sin (p)r

F1a. 39.—Projection of P. Fournier,
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siny=2[¢ +a-%]

ka‘Se(; 4 [(¢—% sin tp) g‘f""r]

r
kp=t.

ORDINARY, OR AMERICAN, POLYCONIC PROJECTION.

This is the proi'ection that is generally referred to in this
country as the polyconic projection ; but we have attempted
to show that the polyconic projection class is an exceed-
ingly broad one and that it contains examples of almost
every kind of projections. The name American polyconic
grojectmn has been given to it by European writers chiefly
ecause it has been extensively used by the United States
Coast and Geodetic Survey; in fact, the projection seems
to have been devised by Supt. F, R. Hassler to meet the
ls-equirements in the charting of the coast of the United
tates.
For convenience of reference we shall give again the dif-
ferential formulas developed on pages 10-13:

o0 ds .
_ 05";+E; sin @

adicoso——zg
(1—¢ gin?p)"s /ds d
ad—o) (%coso do) ¥

_p(1—¢sin’p)¥* 08
acose  OA

tan y

b

ko

_p (1—¢sin’)? (ds dp\ Of
K a? (1—-¢) cos ® (8; cos 0_% o\

The characteristics of this Frojection are that each par-
allel is the developed base of the cone tangent along the
parallel in question; that the parallels are spaced along the
central meridian in proportion to their true distances apart
along this meridian; and, finally, that the scale is main-
tained constant along the parallels. '
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With these conditions we have

___acoty
PEA=E sinp)

B Y do a cotb ¢
s=a (e )ﬁ 1=a sy T T—@ sin’e)

p(1—¢sin’p)’ 00

ks a cos ¢ o~ 1
Or‘
o6 .
-a‘x= sin. ¢.
By intergration
f=X\ gin ¢,

no constant of integration being added, since 6 and A vanish
simultaneously. Since the parallels are represented by
circles and since the scale along the parallels is to be main-
tained constant, the last relation can be obtained b
equating an arc of the projection to an arc of the parallel;
hence :
G\ cO8 ¢
= T—e sin® g%
a oot ¢ Py a\ o8 ¢
(1—¢esin? g)¥°  (1—¢ sin® ¢)*

G ==X 8in p.
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These values fully determine the projection, and all of the
elements can at once be computed.

dp __ acosec o ae* cos? ¢
de~  (I1—¢sin? )% " (1—¢ sin? p)h

—a cosec® p+a € (1+cos? )
(1 —¢® sin? p)’h

Qs_= a(l —é) —a cosec? ¢+ ae (1 -+ cos? p)
de (1—¢ sin? ¢)% (1 —esm? o)t

_a(1—cosec? ¢) +ae cos? ¢
(1—¢ sin? o)

— @ cot? p+ae cos? ¢
(1 —~é sin? )%

__—acot? p (1 —¢é sin? p)
- (1—e*sin? p)'h

_._—a cot? ¢
(1 —¢é 8in? p)*

00 .
—a—):=sm 4
g%=>\ cOs @.

991943 O~ 52 - 10
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By substituting these values in the differential formulas
we obtain

a cot a cot ¢ .
_ (1 —€ s1n? o) A cos ¢ (1 —¢& sIn? o) sIn 6
tan ¢= a cot? ¢ a cosec 2p—ae (14 cos? o)
-k C08 0+ : 3
(1 —¢ sin? )% (1 —é sin? @)’
_ A cos? ¢ sin ¢ —cos? ¢ sin
tan ¢ = 1 e (1 +cos? p) 8in? ¢

—cog? . - h
cos ‘Pcoso+1—ezsmz<p 1—€s8n?p
\ 8in ¢ —sin 4§
€ sin? ¢
1—esin? ¢

sec? ¢p—cos 60—

6 —sin

€ sIn? o

3 —— ¥
sec? p—cos T—dsmi g

7. _ (1—€¥sin? p)*h a cot? ¢ @ cosec? ¢
e = a(l1—¢) T —¢ sin? p)* cos 0+ (L—€sinZ p)%¥
ae® cos? ¢
T (I —¢ sin? cp)'/’] sec ¥
ec . .
=Sl _'el; [— (1 —¢¥8in? ¢) cot? ¢ cos 8+ cosec? p (1 — & sin? )
—é cos? o]
='ie_i;l; cosec? ¢ — & — ¢t cos? p —cot? o(1 — € 8in? o)
(1 -2 sin’g)]
sec 'p [ 2 2 2 2 2 2 3
=1 _¢| cosec’ p—e —ecos p—cot’p+ecos?yp
+2(cot? p— € cos? ) sin? 22]
-
=je_c_;/; 1—e 42 (cot? p—€* cos? p) sinzg]

2 (cot? ¢ — € cos? p) sin? %
E=1+ 1-¢
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‘When X is small—that is, when the map is not extended
far from the central meridian—an approximation in a
series in terms of \ is very convenient. If we neglect &
and higher powers, we obtain

0 o+6 ..
tan ¥= P o
3, €8V Py ...
800’ ¢~ _asiniy T2
A3 gind ¢
_ g~
t&n¢=tm’ K & sind ¢ +)\zsin:¢_ .
I esm’y . 2
or approximately
$ gins
)\_______sgn 2 (1 — e sin? ¢)
tan ¢ = tan? ¢ (1 — ¢ sin3 ¢) —€® 8in? ¢
s — 3 gin?
=%sm¢c°si (L_%:ﬂ)

N 1—-6’Slll’<p
= 2% sing poos o (LE8E ),

For smaller values of ¥ this can be still further approxi-
mated by the form

N
Y= 123m2<pcos<p,

for the sphere k., becomes
kn=s8ec ¥ (cosec? p—cot® ¢ cos 6).

To obtain an approximation we let sec y=1 and we get’

2
kn (cosec’ e—cot? o+ cot.¢ g0 )

2
. =1+% cos? .
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‘In these approximations A must of course be expressed in
arc.

An approximation for k,, was determined by A. Linden-
kohl, of the United States Coast and Geodetic Survey, that
is remarkably close to the one given above. This was given

in the form
A° cos «p)’
8.1

)

E= +0.01

in which M is the distance from the central meridian in

degrees of longitude. In this form E corresponds to the
A :

term 3 cos *p in the first approximation. »

The projection is generally plotted from computed coordi-
nates of the intersections of the meridians and parallels.
If we take as origin the interesection of the central meridian
and the Equator, we shall have :

z=p sin 0
y=8—p cos 0.

It is the more general practice to compute each parallel
with its own origin; that is to say, by using as origin the
intersection of the parallel in question with the central
meridian.

In this case

z=p sin 8

., 0 ]
- _- 2 = —.
y=p—pcosd 2psm2 :t:tan2

The 8 angles have to be computed for each parallel that it
is desired to map by computation. If these are to be at
frequent intervals, it is customary to compute certain
- coordinates and then to interpolate the intervening values.
The meridional-arc values are tabulated in meters from
minute to minute in the Polyconic Pro&ection Tables,
Special Publication. No. 5, United States Coast and Geo-
detic Survey. If it is desired to refer the coordinates of
the various parallels to a common origin, it is merely
necessary to add the meridional-arc values reckoned from
the chosen origin to the ¥ values as determined above; this
is true because the valye of 8 is given as equal to the
meridional arc from the Equator to the parallel of latitude
¢, with the addition of the value of p in terms of . It is
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customary, however, in the construction of the projection
to locate the various origins on the central meridian by
their meridional-arc values and then to use the coordinates
as originally computed. It is, in general, not necessary to
compute the p, values since the tabulated 4 factor vgues
given in Special Publication No. 8, United States Coast
a:ld Geodetic Survey, are connected with them by the
relation

"1
T pasin 17
or
1
Pn=Z‘Tm i 1ZA
Hence

log pa=colog A + colog sin 1’’.

The logarithms of the A4 factors in meters are tabulated for
each minute of latitude in Special Publication No. 8, as
referred to above. 'With these values as given the formula
for p becomes

p=pn cot .

A great advantage of this projection consists in the fact
that a universal table can be computed that can be used
anywhere upon the earth’s surface. Almost every other
frojection has special elements that must be determined

or each projection. These elements are generally certain
arbitrary constants that enter into the formulas for compu-
tation.. The Mercator projection is another projection that
canhave a universal table.

If the whole earth’s surface were mapped in one continu-
ous ﬁrojectlon it would be interesting to know what would
be the length of the meridian that forms the outer boundary
of the representation and also how many times the area has
been increased. Such a projection of the sphere is shown
in figure 40. By approximate measurement on a plate of
such & projection it was found that the ratio of increase of
length of the outer meridian was about 3.2 to 1.

he element of area of the representation being given in
the form

adS=a*® K cos ¢ dp d\
for the sphere, we have

K= (cosec? ¢ —cot? ¢ cos 8),
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so that
dS =a? [cosec? ¢ —cot? ¢ cos (Asin ¢)] cos ¢ de d\.

One-fourth of the area is given by integrating between the

fimitsA\=0 to A=7 and ¢=0 to ¢=%. The total area § is
therefore given by the formula

S =4a? f 2 cos ¢ do [cosec? p—cot? ¢ cos(X 8in ¢)] AN
o o .

~4a | 7| = cosec? _ oo ® sin (r sin ¢) | cos ¢ d
= JLT TS n ¢ ¢ de

cos? cos” ¢

——— g8in (7 sin ¢) de.
sin® ¢

”
=4a? [~ cosec ¢] 2 —4a’f
o o

In the latter integral let z==sin ¢

then
dz
co8 ¢ dgo-——-'; ’
and
—4q?2 § o8 ? sin(r sin ¢) cos ¢ d
o sm“ ¢ ¢ ae
11 —E_ﬂ
= —4a? s sin £ —
xs
-

PP b [
4af [:c3 x]smxdx

— 4 ;szlzw_’_;cosx]_‘_(zﬁ_*_@ fsmx .

Hence the value of S8 becomes

8 =4a*[— cosec <p]% + 272’ [s___m T coszr
[+] 22 x o

+@n +4)a? f =

The mtegrated terms assume the form o« —o at the lower
limit, and must be evaluated for that point. The last term
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of the expression is the transcendental function known as
the integral sine; it is represented by the series

Zgin © 2 g
L =z T EE TR Tt ee

The value of this series for z=u is approximately 1.852.
. To aid in the evaluation of the integrated part, we shall
restore the value of z=r sin ¢

cos (r sin o) |5
sin ¢ o

sin (7 sin ¢)
sin? ¢

[—47r cosec ¢+ 2 + 27

_[[2 sin(r sin ¢) + 2 sin ¢ cos(r sin ) — 47 sin ¢ |x
T osin? ¢ .

limit 2 sin (r sin ¢) + 27 sin ¢ cos (7 sin ¢) —4x sin |

=0 sin? ¢ i
. N —2x3si] in _

=] . (;, [21005¢oos(1rsin¢)+zrms¢cw2(-;2n¢¢los2; sin ¢ 008 ¢ sin(x sin o) 4rcosw]
¢=

limit 27 cos (7 sin ¢) — 2 sin ¢ sin (7 sin @) —2x
‘pnélo sin ¢
e —2x3¢08 ¢ §in (x Sin p)—? €0S ¢ 8in (x 8in ¢)—x? sin ¢ cos ¢ cos (x sin

=111p10t: [ £ T £ CcOos @ - 2)
¢=

=0.

Therefore’

8=[—4r—2r+ (27" +4) 1.852] a?
=[—6r+ (273 +4) 1.852]a*
~[—6r+23.74 X 1.852]a?
= (—18.85+43.97)a*
=25.12 a?.
Area of the sphere=4ma?=12.57 @

Area of map _ 25.12
Area of sphere 12.57

The area is therefore increased approximately in the ratio
of 2:1. '

=2 very nearly.
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TISSOT'S INDICATRIX.

To represent one surface upon another we imagine that
each surface is decomposed by two systems of lines into
infinitesimal parallelograms, and to each line of the first
surface we make correspond one of the lines of the second;
then the intersection of two lines of the different sys-
tems upon the one surface and the intersection of the
two corresponding lines upon the other determine two cor-
responding glomts; finally, the totality of the points of the
second which correspond to the points of a given figure of
the first forms the representation or the projection of this
figure. We obtain the different methods of representation
by varying the two series of lines which form the graticule
upon one of the surfaces.

If two surfaces are not applicable to. each other, it is
impossible to choose a method of projection such that there
is similarity between every figure traced lg)on the first and
the corresponding figure upon the second. On the other
hand, whatever the two surfaces may be, there exists an
infinity of systems of projection preserving the angles, and
as a consequence, such that each figure in%.nitely sma]l and
its representation are similar to each other. Thereis also an
infinity of others preserving the areas. However, these
two classes of projections are exceptions. A method of
projection being taken by chance, it will generally happen
that the angles will be changed, except, possibly, at par-~
ticular points, and that the corresponding areas will not
have a constant ratio to each other. The lengths will thus
be altered.

Let us consider two curves which correspond to each
other on the two surfaces. In figure 41 let O and Mbe two
points of the one, O’ and M’ the correspondin%Jgoints of
the other, and let OT be the tangent at O to the first curve.
If the point M a%proaches the point O indefinitely, the point
M’ will approach indefinitely the point 0, and the ratio of
the length of the arc O’ M’ to that of the arc OM will tend
toward a certain limit; this limit is what we call the ratio of
lengths &t the point O upon the curve OM or in the direction
OT. Inasystem of projection preservinﬁhe angles the ratio
thus defined has the same value for all directions at & given
point; but it varies with the position of this point, unless
the two surfaces are applicab{)e to each other. When the
representation does not preserve the angles except at par-
ticalar points, the ratio of lengths at all other points
changes with the direction.
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The deformation produced around each point is subjected
to a law which deﬁends neither upon tEe nature of the
surfaces nor upon the method of projection.

Every representation of one surface upon another can
be replaced by an infinity of orthogonal projections each
made upon a suitable scale.

We note, first, that there always exists at every point
of the first surface two tangents perpendicular to each
other, such that the directions which correspond to them
upon the. second surface also mtersect at right angles.
In figure 42 let CE and OD be two tangent:lgerpendicular
to each other at the point O on the first surface; let 'E’
and O’D’ be the corresponding tangents to the second.

Fia. 41.—A ourve and its projection.

Let us suppose that of two angles ("O’D’ and D’Q’E’ the
first is acute, and let us imagine that a right angle having
its vertex at O turns from left to right around this point
in the plane .ODE, starting from the position GOD and
arriving at the position DOE. The corresponding

- angle
in the plane tangent at O to the second surface . will first
- coincide with ("0’D’ and will be acute; in its final position
it will coincide with D’0’E’, and will be obtuse; within the
interval it will have passed through a right angle, There-
fore, there exists a system of two tangents satisfying-the
condition stated, eXceqt at certain singular points.: :
this property we conclude that in every system . of repre-
sentation there is upon the first of the two surfaces a

tem of two series of orthogonal curves whos:;fro&’f;
tions upon the second surface are also orthogonal. :
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two surfaces are thus divided into infinitesimal rectangles -
which correspond the one to the other,

0
4 0 I3
DI
cr ol Eo

F1q. 42.—Two tangents at right angles and their projections.

This fact being established, let # be a point in figure 43
infinitely near to O upon the first surface and let OPMQ
be that one of the infinitesimal rectangles which we have
just described that has OM as a diagonal. Let us move

Q M
QI - M‘
N
0 = >!

F16. 43.~Projection of {nfinitely near points.

the second surface and place it so that the projections of
the sides OP and OQ fall upon the sides themselves pro-
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longed if necessag' then let O'P’M'Q’ be the rectangle
corresponding to OPMQ; let ug call N the point of inter-
section of the lines OM’ and PM. We can consider this
point as the orthogonal projection of the point that M
would be if we should turn the plane of the rectangle
OPMQ through a suitable angle with OP as an axis. But
this a]rb%e, which depends only upon the ratio of the two
lines and MP, is the same whatever point M may be;
for denotinﬁi respectively, by ¢ and d the ratios of the
lengths in the directions OP and O@—that is, on setting

OF o una 9=,
we should have

NP _OP 1 . MP _0Q 1
MP~=0P "¢ ¥ wpP~oQ " d

and, consequentl
q ! Y NP 4

) MP™

Thus if M moves on an infinitesimal curve traced around

0, we shall obtain the locus described by N by turning this

curve through a certain angle around OP as an axis and

by then projecting orthogonally upon the plane tangent .
at Or.}‘ On the other hand, we have

: ' oM’ _OP’ _
ON~O0P~%

so that the locus of the points M’ is homothetic to that of
the points N; the center of similitude is O, and the ratio of
siijitude has the value ¢. The representation of the
infinitesimal figure described by -the point A is then in
reality an orthogonal projection of this figure made on a
suitable scale, or the figure formed by the points N and
that formed by the points M’ are formed by parallel sec-
tions of the same cone. Any glc)aographic map can, there-
fore, be considered as produced by ]luxtaposit,ion of orthog-
onal projections of all the surface elements of the country,
provided that we vary from one element to the other both
the scale of the reduction and the position of the elemen

with respect to the plane of the map. ’
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Of all the right angles which are formed by the tangents
at the point O those of the lines OP and 0@ and their pro-
longations are the only ‘ones one side of which remains

arallel to the tantgﬁant plane after the rotation which was
gescribed above; these are the only ones then which are
projected into right angles. We can now state an addition
to the proposition which has just been proved, and we can
express the whole in the following form: At every point of
the surface which we wish to represent there are two per-
pendicular tangents, and, if the angles are not preserved,
there are only two, such that those which correspond to
them upon the other surface also intersect at right angles,
So that, upon each of the two surfaces, there exists a sys-
tem of orthogonal trajectories, and, if the method of rep-
resentation does not preserve the angles, there exists
031r¥ one of them the projections of which upon the other
surface are also orthogonal.

We shall denote, by first and second principal tangents,
the two pergendicular tangents the angle between which is
not altered by the projection. Weshall continue to denote,
respectively, by ¢ and d the ratio of lengths in the direc-
tions of these tangents, and we shall suppose that ¢ is -
greater than d.

If the infinitesimal curve drawn around the point O is a
circumference of which O is the center, the representation
of this curve will be an ellipse the axes of which will fall
upon the (yrincipa.l tangents, and these will have the values
2¢ and 2d, the radius of the circle being taken as unity.
This ellipse constitutes at each point a sort of indicatrix
of the system of projection.

In place of projecting orthogonally the circumference,
the locus of the })oints M in e 43, which gives the
ellipse the locus of the points W, then increasing this in the
ratio of ¢ to unity, which gives the locus of the points M’,
we can perform the two operations in the inverse order.
We should then in figure 44 obtain the point M’ of the
elliptic indicatrix which corresponds to a given point M
of the circle by prolonging the radius OM until it meets at
R the circumference described upon the major axis as
diameter, and then by dropping a perpendicular from 2
upon OA, the semimajor axis, and, finally, by reducing this
perpendicular BS, starting from its foot § in the ratio of 4
to c. The point M’ thus determined will be the required
point.

In figure 44 let us draw OM’, and let us call, respectively
4 and 4’ the angles AOM and AOM’ which corresponci
upon the two surfaces. Inasmuch as the second is the
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R

R’
Fiq. 44.—Tissot’s indicatrix.

smaller of the two, we see that the representation dimin-
ishes all the acute angles one side of which coincides with
the first principal tangent. Between w and u’ we have,
moreover, the relation

d
tan u’ =3 tan u,

¢ _RS

an ’w—m
M8

tan u’ = 05’

and, consequently, ,

d
12N =2
tan o/ = RS tan u p tan u.

Let us prolong the line BS to B’ and then join O and R’.
The two triangles OR M’ and OR’'M’ give

¢ —

d .
pyw s (w+u’),

sin (u—u')=
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which is obtained by equating two expressions for the
ratio of the areas of the triangles. The same relation fol-
lows at once analytically from the tangent relation first

given. The angle u increasing from zero to %, its alteration

w—u' increases from zero up to a certain value w, then
docreases to zero. The maximum is produced at the

moment when the sum u-+u’ becomes equal to —;—r Let U

and U’ be the corresponding values of 4 and u’. 'We find
from the tangent formula that the following are their
values:

~a

tan U=3/17§- and tan U’=-1-/?.

The quantity » can be computed by any one of the formulas

N Sl 2
M ©="rd
2+/cd
cosw=cxra’
N c—d
anw=oJed'
w_+ec—+d

T, W =1/E T_w\_ V&
tan (74-+—2~) Vi and tan i 2) oy
From the last two equations since the sum of U and U’ is
equal to g and their difference.is equal to », we have

X0 T8
U 2ty and U i3
From the tangent relation we see that when we change u
to g,—u’ it is sufficient to change u’ to g —u. The same

substitutions being effected in w-+u’, give for result
x— (u+u'), so that the sine formula shows that the value
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of the alteration is not changed. Thus of two angles
which are found to be changed by equal quantitiés each
is the complement of the projection of the other.

If we wish to calculate directly the alteration which any
given angle u is subject to, we should make use of one of
the two formulas

n_ c—d) tan u
tan (w—) =TT tan

{(c—d) sin 2u
c+d+ (c—d) cos 2u’

tan (u~u')=

which follow immediately from the previous formulas by
easy analytical reductions.

8

M

»

o
Fia. 45.—Angular change in projection, first case.

Let us now consider an angle MON in figures 45 and 46,
which has for sides neither one nor the other of the prin-
cipal tangents OA and OB. We can suppose the two
directions OM and ON to the right of OB and the one of
them OM above OA. According as the other ON will be
above OA (fig. 45) or below OA (f}s. 46), we should calcu-
late the corresponding angle M’'ON’ b'y taking the differ-
ence or the sum of the angles AOM" and AON’, which
would be given by the formula stated above. The alter-
ation MON—M'ON’ would "also in the first case be the
difference, and in the second case would be the sum of
the alterations of the angles AOM and AON. When the
angle AON (fig. 45) is equal to the.angle BOM’, we know
that its alteration is the same as that of the angle AOM,
80 that the angle MON will then be reproduced in its true
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magnitude by the angle M’ON’. Thus to every given
direction we can join another, and only one other, such
that their angle is preserved in the projection. However,
the second direction will coincide with the first when it
makes with OA the angle which we have denoted by U.
The angle the most altered is that which this direction
forms with the é)oint symmetric to it with respect to OA;
it is represented upon the projection by its supplement.
The maximum alteration tﬁ)us produced is equal to Z2w.

8
M

”I

N
F16. 46.~Angular change in projection, second case.

This can never be found applicable to two directions that
argrﬁe endicular to each other.

o length OM in figure 44 having been taken as unitv,
the ratio of lengths in the direction OM is measured by
OM’. Let us denote by r this ratio; we can calculate it
by means of one of the formulas

rcos u’ =¢cosu

rsinu’=dsinu
or
13 =¢? cos Yu 4-d? sin M.

9919043 O - 52 - 11
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We have also among r, 4, and the alteration u—u’ of the
angle u the relation

2r sin (u—u') = (¢c—d) sin 2u,

which expresses that, in the triangle ORM’, the sines of
two of the angles are to each other as the sides opposite.
The maximum and the minimum of r correspond to the
principal tangents and are, respectively, ¢ and d.
Let us call r and r, the ratios of lengths in two directions
at right angles to ea.clh other and lét ¢ be the alteration that
the right angle formed by these two directions is subjected

to. om the well-known properties of conjugate diam-
eters in the ellipse we have

PP =c+d

rr, cos y=cd

or, in terms of the scales along the parallels and meridians, -
the semiaxes are given by the equations

ed=rlkunk, cos .

For all angles not changed by the projection the product
of the ratios of lengths along their sides is the same.
In fact, let OA (fig. 45) and OB be the two principal
tangents; let MON be any angle whatever; and qet.
M'ON’ be its projection. - Let us denote by ' and r’’/
the ratios of lengths alo% OM and ON and gy » and u’
'ti‘}i;a angles AOM and AOM'.
en

7 cos u’' =¢ cos u
'’ sin £ AON’ =d sin £ AON;

but we know that, when the alteration MON- M'ON’
is zero, the angle AON is the complement of 4’ and the
angle AON’ is the complement of u; so that the second
equation gives

7"’ cos u=d cos u’.

By multiplying these equations member by memher we
obtain
" r'’ =cd,
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which proves the statement. It results from this property
that the ratio of lengths in the two directions the angle
of which undergoes the maximum alteration is equal to
JJed; for the angle which is not altered and which has for
side one of these two lines reduces to zero, and it has the
same line for second side, so that r’ =r’" = 4/cd.

b In the ordinary, or American, polyconic projection we

ave

Jen= K sec ¢
kp=1.
Hence ’
c+di=1+ K*sec’
cd=K
or

c:% (VI4+2EK+ K% sec? ¢+ 1/1——2K+ K? sec® y)

d=—% (W1+2K+ K*sec® ¢ —+/1—-2K+ K2 sec? ).

By means of these formulas the semiaxes could be
computed for any point on a continuous map of the
sphere or of the ellipsoid i it is desired to take into
account the eccentricity of the generating ellipse. As a

obd approximation for projections extending no farther
rom the central meridian than is usually the case, we
may take

c=Ksecy=kn

d=1.

The effect of this a;;proximation becomes barely perceptible
in the third place of decimals for A =45°, so that tie approx-
imation is exceedingly good for projections of less extent in
longitude.

V%’ith this approximation for the semiaxes it only remains
to determine the angles through which the axes of coordi-
nates should be turned to make them coincide with the
directions of the axes of the ellipse. The angle through
which the axes must be turned to make the z axis be tan-
gent to the parallel at the I;Oint we shall denote by ¢; its
value is given by the formula

=X sin ¢.
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If 4 is the angle between the conjugate axes, and if
is the angle between the major axis and the conjugate
axis of z. we have from the theory of conjugate axes

tan 7 tan (n4+9) = —é—d:-

By developing this expression we get

¢ _ d*+ctan’ g,
WLY=—To—a) tan 4’
but
1=g+#
Therefore

_ d*+c* tan? 9
‘ cot‘l'—'(c’-—d’) tan ».

By solving this for tan » we get

a (c2—d?)?

tan n=c%—c,— cot y— i cot’w—g,

from which 4 can be determined. The angle between the
minor axis and the conjugate minor axis is equal to n+y.

If £ is counted positive for points east o? the central
meridian, the axes must be turned through the angle
g—n—y. Weshall then have

2’ =z cos (f—n—y)+ysin (E—n~y)
Y = —zsin (—q—y)+y cos (—n=y).

For points west of the central meridian ¢—n—¢ can be
considered negative in the transformation formulas.

If geodetic azimuths are given, they should first be
referred to the parallel as initial line; that is, they should
be reckoned from the east around counterclockwise
through north. If the 5+¢ angle is added to these
azimuths we shall.obtain the angle u. Since the elliptic
indicatrix has the minor axis in the direction of the
initial line, we have

tan u’=% tan u.
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The ratio of scale is given by the equations

rsin ' =c¢sin u
or
r cos u' =d cos u.

If it is desired to determine the azimuth of the line from
a point to a near point from their coordinates on the
map, we have approximately

~

z’ and y’ being the coordinates of one of the points with
respect to the other as origin in the transformed system;
that is, after the axes have been turned to make the axes
of the ellipse coincide with the axes of coordinates. Then

tan u=% tan »'’.

The azimuth reckoned from east to north is given by
a=yu+f—n—y. )

If the map does not extend more than 5 degrees beyond
the central meridian, the angle n can be considered zero
and the reductions become comparatively simple.

The theory of the elliptic indicatrix can be applied to
any projection that has a change of scale at any point
for different directions; that is, for any projection that is
not conformal. It has been a IE;lied only to the ordinary
polyconic g:'ojectiox.l in this publication, since for practical
purposes that one is probably the most important of the
nonconformal projections treated under the polyconic pro-
jections.

The appended tables of the elements of the ordinary
polyconic projection are taken from Tissot's work. They
are computed for the sphere but can safely be used for
ordinary computation work. If more exact results are
desired the computations should be made from the first
by employment of the spheroidal formulas.
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TABLES OF ELEMENTS OF THE ORDINARY OR AMERICAN
POLYCONIC PROJECTION.

Values of y.

A
v
0° 1o | 300 | 45° | eo° | 5° | 90°
o o ’ o ? © ’ i o ’ o ’ o ’ ° ’
0 et 000! 0 00| 000 O 0 0 00| 00| 0 00
S 0 00f 0 02| 0-18/ O 52| 1 45| 2 52| 4 09
B0 000y 0-04 0 .28y 1 23| 2 53| 4 50| 7 08
450 L 000/ 0 04 027 1 24| 2 59| 5 10| 7 5l
L SRR 0 00{ 002 0 17| 0 551 2 01| 3 38 5 48
75 e e e 0 00| OOl 005/ 017 0301 13| 2 00
90l 0 00| 000 000 00| 000| 00| 0 00
Values of Lp,.
A
»
0° 15 | 30° | 45° | e0° | 75° | 90°
o
1.034 | 1.137| 1.308| 1.548 | 1.857 2,234
1.032 1.128| 1.287 | 1.500 | 1.794 | 2.14l
1.026 | 1.102| 1.229| 1.404 | 1.628| 1.893
1.017] 1.068| 1.151| 1.264| 1.404 ( 1.571
1.009 | 1.034 | 1.074| 1.120| 1.185| 1.270
1.002 | 1.000| 1.0201 1.034| 1.050 | 1.069
1.000 | 1.000 | 1,000 | 1.000 | 1.000 | 1.000
Values of 2w.
Y
¢
0° 15° | 30° | 45° | 60° | 7° 90°
° ’ o ’ L ’ o ’ o ’ ° ’ L] ’
0 00y 1 55| 7 21|15 20(24 50|34 55| 44 51
0 00] 1 48| 6 53|14 26{23 20|33 09| 42 49
0 00| 1 27) 5 36/11 52|19 33 (28 o1 | 38 43
0 00| 0 58 3 45| 8 0913 42(20 04| 28 52
000{ 0 20f 1 54| 4 11 7 13{10 50| 14 5l
00| 00| 03} 10| 157 3 04 4 18
0 00| 0 00f 0 O00[ 0 00f 0 00( 000 O 0
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P
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F1G. 47.—~Construction of transverse polyconic projeotion. -



THEORY OF POLYCONIC PROJECTIONS, 169

along a system of small circles that would correspond to
the parallels of latitude in the ordinary projection. Some
great circle of the earth would correspond to the central
meridian. By this scheme a map of great extent in longi-
tude could be constructed without tﬁe usual trouble due
to the longitudinal scale error. The error in scale in this
case would appear along the great circles of the projection
that correspond to the meridians in the ordinary projection.

The most feasible plan for the construction of such a
projection would seem to be the followin%: Since such a
map would, no doubt, be planned for a large section of
the earth’s surface, the ellipsoidal features would be neg-
ligible, and the ordinary tables could be employed, just as
if they had been computed for the sphere. ith these
tables construct a projection in the usual way. After it
is constructed turn the projection so that the poles fall

‘F16. 48.—Transformation triangle for transverse polyconic projection.

upon the Equator and then by means of the formulas for
the transformation of coordinates the intersections of the
parallels and meridians can be computed in terms of the
parameters that correspond to latitude and longitude on
the ordinary projection. After the projection has been
constructed and turned into the new position, the ¢ and X °
values become what we shall denote by ¢ and 5. The
values in degrees will be just the same as before, but the

will have the new designation. Figure 47 represents sucﬁ
a scheme in outline. PP’ is the central meridian, and
@QQ’ represents the Equator in the projection as constructed.
The projection is now turned and Plg" becomes the chosen
great circle, and @Q’ becomes a meridian on the map; ¢
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*is measured to the right and left of @@’ and % is measured
up and down from PF’. '

In the figure 48 let P be the pole and let RBR’ be the
Equator and also let ABA’ be the great circle that we
wish to make correspond to the central meridian of the
ordinary projection. BR and BA are quadrants, and AR
measures the inclination of the given great circle to the
plane of the Equator, and PMA becomes the Equator on
the transverse projection. Let @ be the intersection that
we wish to compute. We have BQ=90°—y; QP=90°—¢;
BP=90°; /BPQ=90°—\; LABR=8; /PBQ=90°—
(B+7). By the trigonometry of the spherical triangle we
obtain from these results the relations

sin Y =sin A cos ¢
cos ¢ cos (B+7)=cos X coS ¢
cos ¢ sin (8+74) =sin ¢,
or by combining the last two equations
tan (B +7)=sec \ tan ¢.

Bisaconstant the value of which is known from our choice
of the great circle that is to form the center of the map;
it is the value of the parallel of latitude to which the great
circle i3 tangent.

By use of the equations

sin Yy=sin \ cos ¢
and
tan (8+7)=sec \ tan ¢

we can compute the ¥ and 5 values for any intersections of
the parallels and meridians that we may wish to determine.
The points are then plotted on the projection as originally
constructed; a smooth curve drawn through the points
corresponding to a constant value of ¢ will represent the
parallel of latitude ¢, and, similarly, the smooth curve
through the points corresponding to a constant value of A
will represent the meridian of longitude \. After these
curves are drawn, the original projection lines can be
erased, and then only the meridians and parallels will
appear on the projection. The folding plate represents
such a projection of the North Pacific Ocean, showing
the eastern coast of Asia in its relation to North America.
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The projection was constructed by Mr. Chas. H. Deetz,
cartographer of the United States Coast and Geodetic Sur-
vey, with the central great circle approximately the one
joining San Francisco and Manila. Another projection of
this kind was constructed by Mr. A. Lindenkohl, cartog-
rapher in the United States Coast and Geodetic Survey,
consisting of a map of the United States based on the
reat circle intersecting the 95° meridian at 39° of latitude,
n this projection 83=39° and A is reckoned from the 95°
meridian.

The meridian that corresponds to the Equator in the
projection as first constructed is an axis of symmetry for
the map, so that the coordinates of the intersections need
to be computed only for one-half of the map if the Equator
of the original projection corresponds to one of the meri-
dians that up{;ear on the map, so that for each value of
+X\ we may have another intersection for —\, with the
latitude the same in both cases. In the one constructed
by Mr. Lindenkohl for the United States the meridians
were _constructed for every 5° of longitude, so that the
meridian of 95° appeared upon the projection. If 94° had
been chosen in place of 95°, we should have had a meridian
to compute for a A of 4° E. and one for a A of 6° W., and,
so on for the others.

In the construction of the 8Rrojection of which the fold-
ing plate is a copy the central great circle is the one that
is tangent to the parallel of 45° of latitude at the point of
itg intersection with the 160° meridian west of Greenwich.
Mr. Deetz (in the construction of his projection) computed
the intersections of his original projection after it was
turned into the new position in terms of latitude and
longitude and then interpolated the even values of inter-
sections on this projection. From the original three equa-
tions we obtain

tan A=sec (8+7) tan ¢

sin g =sin (8 +1) cos .

In the case under consideration §=45° and 8+7 is the
latitude of the intersection of any fiven great circle with
the 160° meridian. B+7n is, therefore, constant for any

iven great circle. The amount of computation required
1s about the same for either method of procedure.
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PROJECTION FOR THE INTERNATIONAL MAP ON THE SCALE
OF 1 : 1000000,

The projection adopted for this map is a modified

olyconic projection devised by M. Lallemand. The scale
18 slightly reduced along the central meridian, thus bringing
the parallels closer together in such a way that the meridians
2° on each side of the center are made true to scale. Up
to 60° of latitude the separate sheets are to include 6° of
longitude and 4° of latitude. From latitude 60° to the
pole the sheets are to include 12° of longitude; that is, two
sheets are to be united into one. The top and bottom
parallel of each sheet are constructed in the usual way;
that is, they are circles constructed from centers lying on
the central meridian, but not concentric. These two par-
allels are then truly divided. The meridians are straight
lines joining the corresponding points of the top and
bottom parallels. Any sheet will then join exactly along
its margins with its four neighboring sheets. The cor-
rection to the length of the central meridian is very slight,
amounting to only 0.01 inch at the most, and the change
is almost too slight to be measured on the map.

In the resolutions of the International Map Committee,
London, 1909, it is not stated how the meridians are to pe
divided; but, no doubt, an equal division of the central
meridian was intended. Through these points circles
could be constructed with centers on the central meridian
and with radii equal to p, cot . Im practice, however, an
equal division of the straight-line meridians between the
top and bottom parallels could scarcely be distinguished
from the points o? parallels actually constructed by means
of radit or by coordinates of their intersections with the
meridians. The provisions also fail to state whether, in
the sheets covering 12° of longitude instead of 6°, the
meridians of true length shall be 4° instead of 2° on each
side of the central meridian; but such was, no doubt, the
intention. In any case, the sheets would not exactly join
together along the parallel of 60° of latitude.

he appended ta}l))les give the corrected lengths of the
central meridian from 0° to 60° of latitude and the coordi-
nates for the construction of the 4° parallels within the
same limits. Each parallel has its own origin; i. e., where
the parallel in question intersects the central meridian.
The central meridian is the Y axis and a perpendicular to
v et the origin is the X axis; the first table, of course, gives
the diswance between the origins. The y values are small
In every loatance. In terms of the parameters used



THEORY OF POLYCONIC PROJECTIONS, 173

throughout this publication these values are given by the
expressions

Z=py cot ¢ 8in (A sin ¢)
Y=pn cot ¢ [1—cos (A sin ¢)]=2p, cot ¢ sin’*()\——-———mzn “’).

In the tables as published in the International Map
Tables, the z coordinates were computed by use of the
erroneous formula

T=py, cot ¢ tan (A sin p).

The resulting error in the tables is not very great and is
practically almost negligible. The tables as given below
are all that are required for the construction of all maps up
to 60° of latitude. This fact in itself shows very clearly the
ﬂdvgntages of the use of this projection for the purpose in

and.

A discussion of the numerical properties of this map
system is given by M. Ch. Lallemand in the Comptes

endus, tome 153, page 559. He finds that the maximum
error of scale of a meridian is 1 part in 1270, which
corresponds to 0.35 mm. in the height, 0.44 m., of the sheet.
The maximum error of scale of a parallel is 1 part in
3200, and the greatest alteration of azimuth is 6 minutes
of arc. These errors are much smaller than those occa-
sioned by the expansion and contraction of the sheet due
to atmospheric conditions.

TABLES FOR THE PROJECTION OF THE SHEETS OF THE
. INTERNATIONAL MAP OF THE WORLD,

[Scale1:1 000 000. Assumed figure of the earth: ¢==6378.24 km.; b==6356.56 k'm.)
TasLE 1.—Corrected lengths on the central meridian, in millimeters

Natural | Correc- |Corrected
Latitude. Jength. tion. length.

-0.27 442,00

442,31 27 442.04
442.40 .26 442, 14
25 442.28

442,69 . 442,45
442,90 .3 442,67
13 22 442,91
443.30 .20 443.19
g %? %5(1)
.29 .15 ?4
444.60 .13 . a7
444,92 .11 444,81
445, 22 .09 445.13
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