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ABSTRACT 

 
In the past decade it has been claimed that the standard application of variational 

equations in orbit determination (OD), as well as in other applications, has neither a 
sound mathematical nor physical basis.  This argument is numerically and 
mathematically tested.  The computational tests use standard processing of perfect, 
synthetic data derived from exact analytic models.  An iterated least squares OD 
procedure involving force models, variational equations, and numerical differential 
equation integration is initialized at an approximate, perturbed solution.  The converged 
least squares solution is compared to the defining parameters of the ideal solution to test 
claims against validity.  Four scenarios are examined: simple 2-D ballistic motion, 3-D 
central force (Keplerian) motion, a simple and a forced harmonic oscillator.  Each 
scenario is varied by including solution for unknown force model parameters.  It is found 
in all cases that the standard application of variational equations in OD, including the 
zero initial condition of the sensitivity matrix, does, in fact, recover scenario and variant 
parameter sets to the limits of machine precision.  A further test, where an element of the 
sensitivity matrix initial conditions is set non-zero, produced a decidedly detrimental 
effect on convergence to the correct defining parameters.  Mathematically, exact analytic 
solutions are derived for the state transition (STM) and sensitivity matrices for both 
oscillator scenarios, confirming the variational initial values used in standard OD 
practice.  The correct, general mathematical derivation of the variational equations and 
initial values, made by other authors, is displayed, and proves that standard OD practice 
has a sound mathematical basis.  
 



1.  Introduction 
 

Xu (2018) claims that the standard application of variational equations in orbit 
determination (OD), as well as in other applications, has neither a sound mathematical 
nor physical basis.  This broad assertion specifies mathematics and statistics, chemistry 
and physics, and satellite gravimetry.  Such statements invite, if not require, 
computational testing and mathematical review to determine if such claims are, in fact, 
valid. 
 

It must be emphasized that no new theory is developed in this study.  Quite the 
contrary.  The existing theory of differential correction (DC) is inspected, implemented, 
and tested in the most rigorous fashion possible, to the limits of computational precision.   

 
In the mathematical review portions of this study (Sections 11, 13, 14, 15), 

expressions for the exact analytic solutions for the state transition (STM) and sensitivity 
matrices for simple and forced harmonic oscillators are derived.  These expressions might 
be new; but given the vast body of literature addressing harmonic oscillators in 
mathematics, physics, and engineering, it is unlikely the expressions are new.  Further, a 
general derivation of initial conditions for columns of the sensitivity matrix has been 
located, and is related in Section 11. 
 

Four simple scenarios are examined.  And each, in turn, is varied by the option of 
estimating force model parameters.  The critical aspect of these scenarios is that they all 
possess exact analytic solutions.  Hence, the exact dynamics of the idealized satellite or 
oscillator are defined and known at all points in time.  Further, perfect synthetic data can 
be computed.  These perfect data then feed the existing DC procedures, under the 
situation of imperfect knowledge of the state vector, to see if and how well the original, 
idealized state vector can be recovered.  The key is that even these four simplified 
scenarios and their variants have sufficient complexity to require the implementation of 
variational equations in the DC.  Any shortcomings in the mathematics (not to mention 
software “bugs”) of the variational equations become immediately evident in the results. 
 

In this study this author reviews the broad aspects of DC as an instance of 
nonlinear least squares computation.  Differential equation (DE) integration is given a 
quick sketch, since no assertions have been raised regarding integration procedures.  
Variational equations and existing DC practice is inspected.  Then, the scenarios and 
variants are defined, with special detail on the parameters, the force models, the 
variational equations, and the initial conditions.  The results of the computations include 
comparison against the original, defining parameters.  As described above, Sections 14 
and 15 mathematically dissect the simple and forced harmonic oscillators.  And, Section 
11 displays derivations of the general case of initial conditions for variational equations.  
The study ends with discussion and conclusions. 
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2.  Nonlinear Least Squares  
 

Differential correction (DC) is a term used in orbit determination (OD) to refer to 
a batch, iterated, nonlinear weighted least squares solution.  This is in marked contrast to 
sequential estimation by Kalman filters (KF) or extended Kalman filters (EKF). The DC 
mathematical setup is broad enough to encompass differential equations (DE) of force 
models.  

 
The necessary ingredients for iterated least squares are n measured observations, 

Lb , as an n x 1 column vector; an associated observation dispersion matrix, D, as an n x n 
matrix (also known as a variance-covariance matrix); a derived weight matrix, W, as an 
n x n matrix, where W = D-1; an observation model vector, F(Xa), as an n x 1 column 
vector of functions; which are evaluated by iteratively refined estimates of u unknown 
parameters, Xa, as a u x 1 column vector; and, finally, starting estimates of the unknown 
parameters, X0, as a u x 1 column vector.  (Note: the subscript of Lb denotes the German 
word “beobachtung”, which means “observation”.)  We assume the observation set is 
sufficient to resolve the model parameters.  As a minimum, n ≥ u.   

 
Due to measurement error and observation model shortcomings, we expect misfits 

between the observations and observation models.  The misfit is denoted by an 
observation residual vector, V = F(Xa) - Lb , an n x 1 column vector.  One may choose 
any set of values for Xa and get an associated set of values for V.  To resolve this 
multiplicity, a condition is imposed to minimize the scalar: λ = VtWV.  The minimized 
scalar, λ, is the sum of squares of weighted residuals.  Hence the name “least squares.” 

 
The derivation of the least squares “recipe” is not given in this study.  It can be 

found in numerous texts, such as Ghilani and Wolf (2006) and Mikhail (1976).  Suffice to 
say that when the observation parametric models, F(Xa), are nonlinear, the derivation 
truncates a series expansion.  This leads to an improved, but not ideal, estimate of the 
parameters, Xa.  The truncation also generates a requirement to have starting estimates of 
the parameters, X0, and the requirement to iterate the solution to convergence. 
 
 Given the ingredients detailed above, the iterated least squares process is: 
 

L0 = F(X0)  computed observations, n x 1 
L = L0 - Lb  observation misclosures, n x 1 
A = ∂F/∂X  design matrix (Jacobian), n x u, evaluated with X0 
N = AtWA  normal equations, left hand, u x u 
U = AtWL   normal equations, right hand, u x 1 
X = - N-1U  corrections to unknowns, u x 1 
Xa = X0 + X  adjusted unknowns, u x 1 
 

If the solution Xa has not converged, overwrite X0 with Xa and repeat the process.  If the 
starting estimates, X0, are sufficiently near the stationary point, Xa, then one may expect 
convergence.  The signs above must be rigorously followed.  A sign error can lead to 
divergence, rather than convergence.  If the iterated series of Xa get sufficiently close to 
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the stationary point, then the solution may actually display quadratic convergence.  Of 
course, at some stage this will be limited by the number of bits that represent a floating-
point number. 

 
It should come as no surprise that if one wants the highest accuracy, then iteration 

should always be an option in the DC process.  However, it must be recognized that there 
are a variety of OD applications; some of which have less stringent requirements.  One 
example is in the surveillance and monitoring efforts that lead to the creation and regular 
updating of the two-line element set (TLE).  The formats there only support accuracies of 
6-35 m (Vallado, 2013, section 2.4.2).  One should expect a variety of DC 
implementation procedures in the real world. 
 

One of the rules of least squares is that to obtain the highest accuracy of adjusted 
results, one should use the best possible observation models, F(X0).  As seen above, 
quality observation models will lead to quality misclosures, L.  The least squares 
projection matrix, (AtWA)-1AtW, will project the misclosures into the corrections to the 
unknowns, X.  And these lead to quality adjusted unknowns, Xa. 
 

In the case of DC, the DEs of the satellite force models will need to be integrated 
to obtain state vectors at all observation times, t.  To get higher accuracy here, one must 
have the best possible force models, and the best possible integration software.  Figures 
4.5, 4.6, 4.8, and 4.9 in Montenbruck and Gill (2000) compare a variety of integrators for 
achievable accuracy and computational effort in terms of number of function calls.  These 
show upper bounds of 13 decimal digits. 
 

These considerations must be tempered by the fact that the misclosures, L, are 
also formed from the observations, Lb.  And the best modeling in the world will not help 
with observations or orbital configurations of indifferent quality.  The least squares 
process above shows that there are two targets, L0 and Lb, in the quest for greater 
accuracies. 
 

For the reasons of real-world accuracy requirements and available observation 
accuracy, one will see approximations in force models in DC practice.  Figure 3.1 (ibid., 
pg. 55) is particularly instructive.  It shows typical force model perturbations plotted on a 
logarithmic scale against satellite orbit radius about the geocenter.  The figure 
quantitatively illustrates some physical effects, such as atmospheric drag and certain 
geopotential coefficients, which become negligible at geosynchronous altitudes. 
 

A companion rule of least squares is that one need not do the best possible job in 
computing the design matrix (Jacobian), A, and yet one may still iterate to the correct 
stationary point.  Performance may degrade to super-linear or even linear convergence 
(or worse); increasing the number of iterations.  But the correct solution is ultimately 
obtained.  Of course, one can not populate A with random numbers.  This aspect of DC 
gets considerable attention because an exact A may be expensive to compute.  This is 
highlighted in the following quote (ibid., pg. 242): 
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“Since accuracy requirements for the partial derivatives are generally more relaxed than that for the 
trajectory itself, it is common to apply a simplified force model in the solution of the variational equations.” 
 
(Here, variational equations refer to auxiliary DEs that are not part of the state vector 
force model DEs, but which are needed to compute the partials in A.) 
 
 
3.  Differential Equation Integration 
 

One of the unique aspects of DC is that, in general, one does not have an exact 
analytic expression for the satellite trajectory.  Rather, the satellite position, r, and 
velocity, ṙ, is described by DEs for one or more force models.  These force models 
describe the acceleration of the satellite, a, caused by the forces.  Thus, one does not only 
need a matrix computation subsystem for the least squares problem, but also a DE 
integrator for the force models (and associated variational equations). 

 
Happily, considerable research and development has gone into the field of DE 

integration.  The DC practitioner can largely treat the various DE solvers as 
interchangeable subsystems that display different performance characteristics.  It is not 
necessary to become expert in the fine details to get good results.  The overview of 
numerical integration in Chapter 4 by Montenbruck and Gill (2000) is recommended.  
For a first exposure to numerical integration, many numerical analysis textbooks are 
available (e.g., Gerald and Wheatley, 1989). 

 
Since no issues regarding the internal mechanics of DE solvers have been raised, 

the selection of a solver simplifies.  A set of numerical tests on DC process will be 
conducted.  We want the most accurate DE solver.  Figures 4.6 and 4.9 in Montenbruck 
and Gill (2000) shows the “DE” code (Shampine and Gordon, 1975) provides 13 digits of 
relative accuracy (for eccentricity of 0.1). 

 
The “DE” code is part of a solver package called DEPAC (Shampine and Watts, 

1980).  And one specific member of the package is called DDEABM.  The leading “D” 
refers to double precision, and the trailing “ABM” refer to the Adams-Bashforth-Moulton 
predictor-corrector formulas of orders one through twelve.  Fortran 77 source can be 
found through the Netlib repository at https://netlib.org, under the SLATEC library at 
https://netlib.org/slatec/src/.  Searching that link for “ddeabm.f plus dependencies” will 
lead to https://netlib.org/cgi-bin/netlibfiles.pl?filename=/slatec/src/ddeabm.f (which 
offers download options).  A C++ version of “DE” can be found on the CD with 
Montenbruck and Gill (2000). 

 
The simplest, textbook DE solver, Runge-Kutta, typically uses a fixed order, a 

fixed step size, and is a single-step method.  By contrast, DDEABM is a variable order, 
variable step, multistep predictor-corrector method.  Further, considerable care taken in 
the package to automatically adjust order and step size.  In fact, the DDEABM interface 
is presented as interval based, with no user specification of “step”. 
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Instructions for invocation of DDEABM can be found in (Shampine and Watts, 
1980) as well as in an extended set of comment records at the beginning of the 
subroutine.  This study will not describe each subroutine parameter, but will provide 
some tips for usage. 

 
The automation of DDEABM still needs some user guidance.  This is provided by 

relative and absolute error tolerances, RTOL and ATOL, respectively.  These can be 
placed in either scalar variables or 1-D arrays.  Since modern Fortran compilers tend to 
check typing across subroutine interfaces, compiler warning can be suppressed by 
declaring RTOL and ATOL as 1-D arrays (also see INFO(2) in the documentation).  This 
allows flexibility, allowing the tolerances to be specifically set for each individual DE.  In 
addition, my experience found that only RTOL was needed for the state vector equations, 
but that both RTOL and ATOL were needed for the variational equations. 

 
Other user guidance to DDEABM is provided through an INFO array.  In 

particular, DDEABM needs to be instructed if it is the first call for each new problem (so 
that it may reset certain internal variables).  This is signaled through the INFO(1) array 
element.  It is set to 0 for the first invocation, and 1 for the remainder.  This detail must 
be remembered, because the DE integration will be iterated as part of the DC least 
squares process.  Thus, DDEABM will need to be signaled to reset when each new 
iteration occurs. 

 
RPAR and IPAR are arrays that can be used to transfer numbers between main 

routines and a user-created subroutine that supplies derivatives to DDEABM.  RPAR and 
IPAR don’t have to be used, but they must be specified.  In this study’s scenarios, RPAR 
and IPAR were not used.  Instead, certain force model parameters were transferred by a 
Fortran, named COMMON block.  It should be noted that if one wishes to count the 
number of calls to the derivative routine, then an element of IPAR could be used to hold 
the count (where the derivative routine would increment the count in each invocation). 
 
4.  Variational Equations -- Motivation 
 

When we consider the DC process, we must ask how one can solve for corrections to 
unknown parameters, X, when there is no general orbital analytic formulation to compute 
those parameters.  We saw that DE integration allows us to compute satellite position and 
velocity, (r, ṙ), at any desired time, t.  However, the integration requires us to provide (r, 
ṙ) at some starting epoch, t0.  This is described as the initial value problem (IVP) of 
ordinary differential equations (Shampine and Gordon, 1975).  In essence, the DEs alone 
provide a landscape of all possible solutions.  And any individual initial value set will 
“select” a specific trajectory from that landscape. 

 
Thus, the DE integration machinery, driven by user-defined, physical force 

models, substitutes for a general analytic formulation.  And, we use the least squares 
unknown parameters, X0 (which become Xa at convergence) to establish the best initial 
values for DE integration.  It must be emphasized that frequently there are other 
parameters in a least squares DC problem.  But, without loss of generality, we currently 
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focus in Sections 4 and 5 on the trajectory initial values (state vector initial values) as 
unknown parameters.  This study will refer to these values as state parameters.  This 
study defines state parameters as those unknown parameters that are initial values for the 
dynamical elements in the DE equations of motion.  We handle the cases of additional 
parameter types in Section 6. 

 
This study focuses on the Cowell formulation (3-D position and velocity) for the 

state vector and state parameters (Cappellari et al., 1976 and Long et al., 1989).  This 
state vector of 6 elements entails integration of a system of 6 DEs to establish estimated 
(r, ṙ), at any point in time, t, by means of physical force models.  This, in turn, suffices 
for an observation model F(tt, tr, r, ṙ, o, ȯ), where (o, ȯ) represents observational site 
position and velocity, and (tt, tr) for transmit and receipt times.  For simplicity of notation, 
we will now suppress the distinction between transmit and receipt times of an 
observation, and just use time, t. 

 
In this setup we have satisfied the least squares requirement for an observation 

model vector, F(Xa), seen in Section 2.  We now address the design matrix (Jacobian), 
A = ∂F/∂X.  In the general case, the denominator of the partials, ∂X, are with respect to 
the current, iterated values of all the unknown parameters, X0.  The denominator of the 
partials, ∂X, does not refer to the unknown parameter correction column vector of 
Section 2. 

 
  For the remainder of Sections 4 and 5, we will only consider the case where all 

the unknown parameters are state parameters.  Typical measurements, such as range, 
range rate, elevation, azimuth, and their rates, have straightforward representations in the 
F(t, r, ṙ, o, ȯ) canonical form.  However, partial derivatives of the canonical model only 
provide partials where the observations and unknowns are at the same epoch, t.  That is, 
∂F(t)/∂X(t).  What is required for DC is not ∂F(t)/∂X(t), but A=∂F(t)/∂X(t0).  Recall, the 
unknown parameters are state parameters; and, by definition, are DE initial values 
referenced to time, t0. 
 

  By the chain rule: ∂F(t)/∂X(t0) = ∂F(t)/∂X(t) × ∂X(t)/∂X(t0).  Both right hand 
terms are matrices.  Define H = ∂F(t)/∂X(t) and call it incomplete partials.  It is an n x u 
matrix, it is a Jacobian, it is evaluated with X0 in iteration, but it is not the least squares 
design matrix, A.  The last term above we denote Փ = ∂X(t)/∂X(t0), or sometimes, Փ(t,t0) 
(Montenbruck and Gill, 2000, Eq. 7.1).  This is called the transition matrix or the state 
transition matrix (STM).  For our 6 state parameters, the STM is 6x6, and it is not 
generally symmetric.  Just to be explicit, the STM contents for the Cowell formulation 
are 
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𝚽𝚽(𝑡𝑡, 𝑡𝑡0) =

⎝
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Now our chain rule: ∂F(t)/∂X(t0) = ∂F(t)/∂X(t) × ∂X(t)/∂X(t0), can be written in 

matrix form as A = H Փ, where the standard rules of matrix multiplication apply.  See 
also Vallado (2013, Eq. 10-16).  For ns state parameters, the design matrix, A, is an n x ns 
matrix; the incomplete partials, H, is an n x ns matrix; and the STM, Փ, is an ns x ns 
matrix.  Simply put, when we take partials of our observation model, F, (which refer to 
(r, ṙ) at time, t), they need to be transformed by an STM, Փ, into the design matrix 
partials, A, taken with respect to state parameters, (r0, ṙ0).  We shall see in the next 
section how to obtain Փ(t,t0). 

 
As an implementation detail, the STM transformation could be written as: 
 

At = Ht Փ(t,t0) 
 

where the matrix subscript, “t”, refers to only those observations at time, t.  The STM 
evolves through time, and is suitable to transform only those partials of observations at a 
contemporary epoch.  One should not store the entire H matrix, and then transform using 
the final STM at the end of the observation series.  Process the observations in temporal 
order, and transform the partials row by row using the current, correct version of the 
STM. 
 
5.  Variational Equations – The State Transition Matrix 
 

It happens that the STM is the solution to a set of DEs known as variational 
equations.  Therefore, we will need to integrate a DE for each element in Փ(t,t0).  For a 
simple 6 state parameter DC we integrate 6 x 6 = 36 additional DEs simultaneously with 
the state vector DE integration of 6 DEs. 

 
One definition of variational equations on the Internet is found at 

https://encyclopediaofmath.org/wiki/Variational_equations : 
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“The variational equation of order k is a linear differential (difference) equation whose solution is the k-th 
derivative with respect to a parameter of the solution of a differential (difference) equation.” 

 
If we restrict the definition to a first order system and add some emphasis: 

 
The variational equation is a linear DE whose solution is the first derivative with respect to a parameter of 
the solution of a differential equation. 

 
A key takeaway of this definition is that there must be one or more underlying, 

fundamental DEs.  And, the variational DEs are DEs of the solution to the fundamental 
DEs.  This is emphasized in Beutler (2005, eq. 5.2) where he discusses both primary and 
variational equations. Variational equations are auxiliary to primary DEs. 
 

The derivation of the STM solution in Section 7.2.1 of Montenbruck and Gill 
(2000, pg. 240) is so straightforward, this author must copy it.  Notation is changed 
slightly and terminology is altered to provide reading continuity. 

 
Our state vector of unknown state parameters is (ibid., 7.37) 

 

𝐗𝐗(𝑡𝑡) = �
𝐫𝐫(𝑡𝑡)
𝐯𝐯(𝑡𝑡)� 

 
which obeys a set of primary differential equations (DE) (ibid., 7.38) 

 
d
d𝑡𝑡
𝐗𝐗(𝑡𝑡) = 𝐟𝐟(𝑡𝑡,𝐗𝐗) = �

𝐯𝐯(𝑡𝑡)
𝐚𝐚(𝑡𝑡, 𝐫𝐫, 𝐯𝐯)� 

 
and, derivatives with respect to the parameters of the solution (to the primary DEs) are 
(ibid., 7.39) 

 
∂

∂𝐗𝐗(𝑡𝑡0)  
d
d𝑡𝑡
𝐗𝐗(𝑡𝑡) =

∂𝐟𝐟�𝑡𝑡,𝐗𝐗(𝑡𝑡)�
∂𝐗𝐗(𝑡𝑡0) = ∂𝐟𝐟�𝑡𝑡,𝐗𝐗(𝑡𝑡)�

∂𝐗𝐗(𝑡𝑡)
∂𝐗𝐗(𝑡𝑡)
∂𝐗𝐗(𝑡𝑡0)

 

 
The state transition matrix (STM) (ibid., 7.40) 
 

𝚽𝚽(𝑡𝑡, 𝑡𝑡0) =
∂𝐗𝐗(𝑡𝑡)
∂𝐗𝐗(𝑡𝑡0) 

 
can be obtained from the DE (ibid., 7.41) 
 

d
d𝑡𝑡
𝚽𝚽(𝑡𝑡, 𝑡𝑡0) =

∂𝐟𝐟�𝑡𝑡,𝐗𝐗(𝑡𝑡)�
∂𝐗𝐗(𝑡𝑡)

 𝚽𝚽(𝑡𝑡, 𝑡𝑡0)  

 
or (ibid., 7.42) 
 



d
d𝑡𝑡
𝚽𝚽(𝑡𝑡, 𝑡𝑡0) = �

𝟎𝟎3x3 𝐈𝐈3x3
∂𝐚𝐚(𝑡𝑡, 𝐫𝐫, 𝐯𝐯)
∂𝐫𝐫(𝑡𝑡)

∂𝐚𝐚(𝑡𝑡, 𝐫𝐫, 𝐯𝐯)
∂𝐯𝐯(𝑡𝑡)

�

6x6

𝚽𝚽(𝑡𝑡, 𝑡𝑡0)  

 
Now that we have defined the variational DE for a simple 6 state parameter 

problem, we need initial conditions to permit computation: Փ(t0, t0) = I6x6  (ibid.).  These 
initial conditions should come as no surprise.  Our STM is defined as the Jacobian matrix 
∂X(t)/∂X(t0).  So, if t = t0, Փ(t0, t0) = I.  Also, in general, Փ(t, t) = I. 
 
6.  Variational Equations – The Sensitivity Matrix 

 
State parameters were defined in Section 4 as those unknown parameters that are 

initial values for a DE set.  However, there are two other disjoint sets of unknown 
parameters in a DC problem:  force model parameters and observation model 
parameters.  Observation model parameters are unknowns to be solved for that provide a 
better model of the observations.  Examples of these would be offsets of an antenna to the 
center of mass of a satellite, or a tropospheric refraction term.  Force model parameters 
are unknowns to be solved for that provide a better model of the forces involved.  
Examples of these would be solar radiation pressure, or one or more terms in the Earth’s 
geopotential.  Note that neither force model nor observation model parameters are 
described by a DE.  To be sure, force model parameters will participate in the DE 
solution of state parameters and in the variational DEs above that solves the STM.  But 
force model parameters are not dependent variables of a DE.  They are a solution of the 
least squares DC problem.  If a force model parameter is found to be described by a DE, 
then that parameter would be elevated to a state parameter, and would become part of the 
DE state vector.  The force model would be altered to describe the DE governing the 
newly minted state parameter.  And, that altered force model might require other new 
force model parameters to portray the new, larger, state vector. 

 
This study will follow the mathematical setup of DC and will maintain a strict 

distinction between state parameters, force model parameters, and observation model 
parameters.  This study will not use the term, dynamic parameter; which occasionally 
appears in OD literature.  For a given DC problem, there are ns state parameters, np force 
model parameters, and nq observation model parameters.  These distinctions are woven 
into the display of partial derivative categories found in Montenbruck and Gill (2000, pg. 
233-234). 

 
While the least squares adjustment unknown parameters can be in any order, it is 

useful to consider parameters clustered into disjoint sub-vectors: 
• State Parameters, Xs    length, ns 
• Force Model Parameters, Xp   length, np 
• Observation Model Parameters, Xq  length, nq 

 
The least squares parameter vectors X0, Xa, and X can each be partitioned, (Xs | Xp | Xq).  
Note that the state parameters, Xs, always refer to initial conditions of the DE state 
vector.  The total number of unknowns, u, is found by u = ns + np + nq.  A given DC 
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problem may have np and/or nq equal to 0.  If there are no state parameters, there is no 
DE, no force model to inform the DE, and problem collapses to simple parametric least 
squares, u = nq.  

 
 In DC with force model parameters, np > 0, we know that we will solve for 
corrections to our state and force parameters (and, if needed, nq observation model 
parameters), all contained in an iteratively improved X0.  The state vector, X(t), now also 
changes depending on the iterated estimate of the force parameters.  We now need to 
compute partial derivatives of our observation model with respect to force parameters.  
We follow Montenbruck and Gill (2000, pg. 241), with modifications for continuity.   

 
Denote the force model parameters, p, as an np x 1 column vector.  Recall the 

STM, where the state vector derivative was denoted as f(t, X).  With the addition of force 
model parameters, our derivative is now f(t, X, p).  We now have (ibid., 7.43) 

 
d
d𝑡𝑡
∂𝐗𝐗(𝑡𝑡)
∂𝐩𝐩

=
∂𝐟𝐟(𝑡𝑡,𝐗𝐗(𝑡𝑡),𝐩𝐩)

∂𝐗𝐗(𝑡𝑡)
∂𝐗𝐗(𝑡𝑡)
∂𝐩𝐩

+ 
∂𝐟𝐟(𝑡𝑡,𝐗𝐗(𝑡𝑡),𝐩𝐩)

∂𝐩𝐩
 

 
Define the sensitivity matrix 
 

𝐒𝐒(𝑡𝑡)6x𝑛𝑛𝑝𝑝 =
∂𝐗𝐗(𝑡𝑡)
∂𝐩𝐩

 

 
and compute from the DE (ibid., 7.44) 
 

d
d𝑡𝑡
𝐒𝐒(𝑡𝑡) = �

𝟎𝟎3x3 𝐈𝐈3x3
∂𝐚𝐚(𝑡𝑡, 𝐫𝐫, 𝐯𝐯,𝐩𝐩)

∂𝐫𝐫(𝑡𝑡)
∂𝐚𝐚(𝑡𝑡, 𝐫𝐫, 𝐯𝐯,𝐩𝐩)

∂𝐯𝐯(𝑡𝑡)
�

6x6

𝐒𝐒(𝑡𝑡) + �
𝟎𝟎3x𝑛𝑛𝑝𝑝

∂𝐚𝐚(𝑡𝑡, 𝐫𝐫, 𝐯𝐯,𝐩𝐩)
∂𝐩𝐩

�

6x𝑛𝑛𝑝𝑝

  

 
To quote Montenbruck and Gill (2000, pg. 241), 
 
“Since the state vector at t0 does not depend on any force model parameter, the initial value of the 
sensitivity matrix is given by S(t0) = 0.”   
 
And, in the quote, “state vector at t0”, we call them state parameters; described earlier in 
this Section. 
 
 The initial value of the sensitivity matrix, S(t0) = 0, is not only provided in (ibid. 
pg. 241).  It is found in (Beutler, 2005, pg. 179, eq. 5.10),   
 
“… if parameter p is one of the dynamical parameters (see parameter definition (5.2)) 

Z(i)(t0) = 0,  i = 0, 1, …, n - 1,  p ∈ {pnd+1, pnd+2, …, pnd+m} “ 
 
and in (Jäggi and Arnold 2017, pg. 55), 
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“For Pi ∈ {a, e, i, Ω, ω, u0} the variational equations (2.22) are a linear, homogeneous differential equation 
system of second order in time with initial values zPi (t0) ≠ 0 and żPi (t0) ≠ 0. For Pi ∈ {Q1, ..., Qd } (2.22) 
are inhomogeneous, but have zero initial values because the initial satellite state does not depend on the 
force model parameters.” 
 
In addition, the general mathematical derivation of, S(t0) = 0, is found in Coddington and 
Levinson (1955, Chapter 1, Section 7), and is detailed in Section 11 of this study. 
 
 It is seen the sensitivity matrix performs the same function as the STM.  They both 
relate the evolving state vector, X(t), to unknown parameters (either state or force).  It is 
natural to combine the STM and sensitivity matrix; and, thus, make a combined form of 
the variational equations (Montenbruck and Gill, 2000, Eq. 7.45) 
 

d
d𝑡𝑡

(𝚽𝚽|𝐒𝐒) = �
𝟎𝟎3x3 𝐈𝐈3x3
∂𝐚𝐚
∂𝐫𝐫

∂𝐚𝐚
∂𝐯𝐯

�
6x6

(𝚽𝚽|𝐒𝐒) + �
𝟎𝟎3x6 𝟎𝟎3x𝑛𝑛𝑝𝑝

𝟎𝟎3x6
∂𝐚𝐚
∂𝐩𝐩

�

6x(6+𝑛𝑛𝑝𝑝)

 

 
Just to be explicit, the combined matrix, (Փ|S), is a 6 x (6+np) matrix when ns=6. 
 
 As with the STM, the chain rule is implemented as a matrix product.  The 
incomplete partials, H, are still the same as before; an n x 6 matrix, where n (no 
subscript) is the number of observations.  The new matrix product chain rule, 
A = H (Փ|S), generates a design matrix, A; an n x (6+np) matrix.  This makes perfect 
sense, since our number of unknown parameters, u, were increased from 6 to (6+np) when 
we added force parameters.  As if by magic, this transformation of our incomplete 
partials, H, allows our measurements, through the design matrix, A, to solve for force 
parameters; even though force model parameters do not explicitly appear in the 
observation models, F(Xa). 
 
 We now summarize some implementation details from Montenbruck and Gill 
(2000, pg. 242-243).  They note that variational equations must be integrated 
simultaneously with the state vector.  Thus, for ns = 6, we integrate a total of 
(ns + (ns x (ns + np))) first-order DEs.  We quoted (ibid.) earlier that it is common to apply 
simplified force models for variational equation solution.  They also relay warnings by 
several authors that one should use consistent models in the simultaneous integration of 
state vector and variational equations.  This leaves the DC practitioner with two choices.  
One, integrate the variational equations with the same rigorous model that is required for 
the state equations.  Or, do two integrations in parallel.  One integration would be 
rigorous for the state equations.  And the other integration would use a simplified force 
model for both the state and the variational equations simultaneously.  The state vector 
results from the simplified force model would then be discarded (ibid.).  This second 
approach can be faster.  Recall there are only ns state DEs, and ns x (ns + np) variational 
DEs.  However, for this study, since the best possible accuracy is desired, a suitably 
rigorous force model is used for both the state and variational equations. 
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 In closing this section, we explicitly consider the case where we have state, force, 
and observation model parameters participating as unknown parameters.  That is, ns, np, 
and nq are greater than 0.  Now the unknown parameters are partitioned as (Xs | Xp | Xq).  
Similarly, our design matrix partitions as A = (As | Ap | Aq).  The incomplete partials, H, 
is still an n x ns matrix, as seen near the end of Section 4 and above in Section 6.  The full 
expression for the design matrix, A, is now written as 
 

A= (As | Ap | Aq) = (Asp | Aq) = (H (Փ|S) | Aq) 
 
where Asp represents the design matrix columns corresponding to the state and force 
parameters.  The combined variational equations do not transform the incomplete partials 
for the observation model unknown parameters, Aq.  Those partial derivatives are merely 
appended to the transformed, design matrix partials for the state and force unknown 
parameters. 
 
 
7.  Uniform Gravity Model -- I 
 
 Recall that this study is performed to computationally test the existing theory of 
differential correction (DC), including the use of variational equations.  Simple models 
that possess exact analytic solutions are implemented in the most rigorous fashion 
possible, to the limits of computational precision, in the DC setup.  While more elaborate 
models could be used, exact analytic formulas allow creation of synthetic data which are 
perfectly in agreement with the observation models and the defining state parameters.  
Those perfect data then feed an iterated least squares DC solution (which includes DE 
integration) where the initial values of the unknown parameters are imperfectly known.  
Behavior is then analyzed. 
 

This author is highly enthusiastic about Section 1.2 of Tapley, et.al (2004) which 
describes their uniform gravity field model (UGFM).  It is simply a 2-D trajectory of an 
object in a uniform gravity field, with associated measurement types from a fixed 
tracking station.  It is idealized ballistic motion.  It is simple enough to provide an exact 
analytic solution, yet complex enough to perform OD by either DC or various Kalman 
filters.  Tapley et al. (2004) also provide Exercise 1, pg. 16, that requires parameters to be 
recovered from range observations by means of Newton-Raphson iteration of the UGFM 
analytic formulas. 

 
The UGFM equations of motion where gravity is constant are (ibid., 1.2.1) 
 

X(𝑡𝑡) = 0
Y(𝑡𝑡) = −𝑔𝑔

 
̈
̈

 
Integrate to obtain a system of first-order DEs where reference time t0 = 0 (ibid., 1.2.2) 
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X(𝑡𝑡) = X0 + X0𝑡𝑡
Y(𝑡𝑡) = Y0 + Y0𝑡𝑡 − ½𝑔𝑔𝑡𝑡2

X(𝑡𝑡) = X0
Y(𝑡𝑡) = Y0 − 𝑔𝑔𝑡𝑡

 

̇
̇

̇ ̇
̇ ̇

 
Note the UGFM is in an inertial frame of reference.  There are no rotations or fictious 
forces.  There is no atmosphere, so no velocity dependent forces.  There is no Sun, no 
Moon, no direct or indirect tidal effects.  The DC unknown parameters are  
(X0, Y0, Ẋ0, Ẏ0)t.  Also, the DE state vector is X(t) = (X, Y, Ẋ, Ẏ)t. 
 

There is a tracking station with known, constant coordinates (Xs, Ys).  
Observations from station to object are range, ρ, which is a nonlinear function (ibid., 
1.2.6) 

ρ = �(X − X 2 2
𝑠𝑠) + (Y − Y𝑠𝑠)  

 
And, our analytic expression for range at time, t, becomes (ibid., 1.2.7) 

ρ � Y 2
𝑡𝑡 = (X0 + X0𝑡𝑡 − X𝑠𝑠)2 + (Y 2

0 + 0𝑡𝑡 − ½𝑔𝑔𝑡𝑡 − Y𝑠𝑠)  

 
Note the UGFM speed of light is infinite.  There is no distinction between signal transmit 
time and receipt time.  There are no signal delays or refraction effects.  There is no terrain 
or actual surface of an Earth, no signal blockage can occur. 

 
Now, following Tapley, et.al (2004, pg. 16) we establish the Uniform Gravity 

Scenario: 
        Xs = 1.0  

Ys = 1.0 
X0 = 1.0 
Y0 = 8.0 
Ẋ0 = 2.0 
Ẏ0 = 1.0 
g   = 0.5 

 
 Note that per Exercise 1, the quantities do not have specific units.  However, X, Y, 
and ρ have length, Ẋ and Ẏ have velocity, g has acceleration, and t has time.  Lack of 
specific units will not inhibit the test in any way. 
 
 The exact analytic equation above and the defining scenario parameters are 
sufficient to generate ten epochs of data at times 0 through 9, inclusive.  The times and 
ranges are shown in Table 7.1.  Computations were performed in Fortran 77, in double 
precision (64-bit floating point), per the IEEE 754 standard.  Since my CPU includes an 
integrated x87 capability, register arithmetic is performed to 80-bit floating point 
(double-extended) precision (18 decimal digits).  However, variable storage is still 64-bit.  
Thus, the x87 capability provides guard digits for some of the arithmetic. 
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 Table 7.1 – Perfect Range Data for Uniform Gravity Model Scenario 
   0    7.0000000000000000 
     1    8.0039052967910607 

              2    8.9442719099991592 
                3    9.8011478919563295 
                4    10.630145812734650 
             5    11.535271995059327 
             6    12.649110640673518 
             7    14.108951059522463 

            8    16.031219541881399 
  9    18.494931738181680 

 
 Note that these ranges carry more significant digits than the data displayed in 
Exercise 1 (ibid., pg. 16).  Also, the t = 1 range corrects an error in Tapley, et.al (2004, 
pg. 16), which dropped the “2”.  And, our data are extended to 10 epochs, to support an 
overdetermined, least squares problem. 
 
 As described in our Section 2, least-squares requires observations, Lb; an 
observation dispersion matrix, D; a weight matrix, W = D-1; an observation model vector, 
F(Xa); and, finally, a starting estimate of the unknown parameters, X0.  We have Lb from 
Table 7.1., the number of observations, n = 10.  We will treat our observations as 
uncorrelated.  Since our data have no specific units, we arbitrarily choose σ = 0.000001.  
So, the observation dispersion matrix, D; is diagonal, where each diagonal element is the 
variance, σ2.  The weight matrix, W = D-1, is trivially computed. 
 

We adopt the perturbed initial conditions found in Exercise 1 (ibid.), as the 
starting estimate of the unknown parameters, X0, 

X0 = 1.5 
Y0 = 10.0 
Ẋ0 = 2.2 
Ẏ0 = 0.5 

 
We identify all of these unknown parameters as state parameters, as described earlier.  
Therefore, u = ns = 4.  Note, however, that the force model for X,  Ẍ(𝑡𝑡) = 0, is trivial.  
We could declare X0 and Ẋ0 as observation model parameters, since they have immediate 
analytic forms.  For the purposes of this test, we will treat them as state parameters. 
 

For the observation model, F(Xa) (or F(X0) if you like), one should use  
ρ = �(X − X𝑠𝑠)2 + (Y − Y𝑠𝑠)2 

 
where X and Y at time, t, are obtained by DE integration.  But, as a trial, I chose the 
analytic form for the observation model to obtain computed observations, L0 = F(X0).  
The computed range is  
 

ρ𝑡𝑡 = �(X0 + Ẋ0𝑡𝑡 − X𝑠𝑠)2 + (Y0 + Ẏ0𝑡𝑡 − ½𝑔𝑔𝑡𝑡2 − Y𝑠𝑠)2 



 
avoiding the state vector integration.  (The variational equations were, of course, 
integrated by DDEABM.)  Note that in the least squares iteration, this expression for 
range is not exact, since it uses the current iterates, X(t t0) = (X0, Y0, Ẋ0, Ẏ0) , and not the 
scenario defining parameters. 
 
 For the observation partial derivatives with respect to the unknown parameters 
(which are state parameters), consider a range at a single epoch, i, and compute the 
partials: 
 

𝐇𝐇i  = �
(X𝑖𝑖 − X𝑠𝑠)

�(X𝑖𝑖 − X𝑠𝑠)2 + (Y𝑖𝑖 − Y𝑠𝑠)2
(Y𝑖𝑖 − Y𝑠𝑠)

�(X𝑖𝑖 − X𝑠𝑠)2 + (Y𝑖𝑖 − Y𝑠𝑠)2
0 0� 

 
Note, the partials are derived from the earlier range model and not from the analytic 
form. 
 
 Since this scenario has no force model parameter, the variational DE consists 
solely of the state transition DE (ibid., Eq. 7.42).  Since there is no atmospheric drag, 
there is no spatial dependence of a on v; the lower right quadrant is 02x2.  Further, since 
gravity is uniform in this scenario, there is no spatial dependence of a on r; the lower left 
quadrant is 02x2.  These are the set of 16 variational DEs integrated in time by DDEABM. 
 

 
d
d𝑡𝑡
𝚽𝚽(𝑡𝑡, 𝑡𝑡0) = �

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

�𝚽𝚽(𝑡𝑡, 𝑡𝑡0)  

 
As per DC standard practice, the STM initial conditions are: Փ(t0, t0) = I4x4.  
 
 Then the row of partials, Hi, which are partial derivatives with respect to the 
evolving state vector contents, must be converted to a row of partial derivatives with 
respect to the state parameters (which are established at t0).  This is standard matrix 
multiplication 

 
Ai = Hi Փ(t,t0) 

 
Remember that this scenario treats the uniform gravity, g, as known.  There are no 

force parameters, and no sensitivity matrix.  This scenario is designated toyorb3, and was 
cycled for 5 loops, 4 iterations.  The results are now displayed. 
 
program toyorb3 -- 2022jul14 
 l.s. solve toy orbit by differential correction 
 ddeabm() solve state transition matrix 
 xsta,ysta =    1.0000000000000000        1.0000000000000000      
 grav=   0.50000000000000000      
 xsg =    1.0000000000000000        8.0000000000000000        2.0000000000000000        
1.0000000000000000      
 xsi =    1.5000000000000000        10.000000000000000        2.2000000000000002       
0.50000000000000000      
 elb =   (ranges, unitless, perfect) 
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   7.0000000000000000      
   8.0039052967910607      
   8.9442719099991592      
   9.8011478919563295      
   10.630145812734650      
   11.535271995059327      
   12.649110640673518      
   14.108951059522463      
   16.031219541881399      
   18.494931738181680      
 range sigmas =    9.9999999999999995E-007 
 
 r ave/std/rms ->   1.6530917671396215       0.61241145335437730        
1.7522144275072200      
 r max/iep     ->   2.8978824759417172                9 
 r min/iep     ->   1.0098713693832533                4 
 x()=  -0.70065173134553760       -1.9751114500013178      -0.16047969703490095       
0.52188400492563991      
 finished iteration:            0 
 r ave/std/rms ->   5.6115577639856438E-002   3.9370209349390797E-002   
6.7408976402613688E-002 
 r max/iep     ->  0.10413753301993012                8 
 r min/iep     ->   6.7813090443795687E-003           1 
 x()=   0.19659179133315585       -2.2165197214466095E-002  -3.8834659708808283E-002  -
2.1985584441933104E-002 
 finished iteration:            1 
 r ave/std/rms ->   1.1897182112654114E-003   6.8244927769086294E-004   
1.3544713866210953E-003 
 r max/iep     ->   2.7245296914477635E-003           0 
 r min/iep     ->   5.3467904840154290E-004           4 
 x()=    4.0592446112681160E-003  -2.7221576847883304E-003  -6.8553827157700250E-004   
1.0148933535111728E-004 
 finished iteration:            2 
 r ave/std/rms ->   4.3945505536768790E-007   3.8144661589409232E-007   
5.6927332133832454E-007 
 r max/iep     ->   1.1950994620590905E-006           0 
 r min/iep     ->   1.0912178893818236E-007           7 
 x()=    6.9540120508809584E-007  -1.1950993927309184E-006  -1.0498472470905077E-007   
9.0180931737262950E-008 
 finished iteration:            3 
 r ave/std/rms ->   2.5046631435543531E-014   1.5653680953819926E-014   
2.9118167884184328E-014 
 r max/iep     ->   4.4408920985006262E-014           1 
 r min/iep     ->   3.5527136788005009E-015           9 
 x()=   -8.4825778391485483E-014  -3.5633663706037350E-014   1.0243623586190599E-014   
9.5437657783815004E-015 
 finished iteration:            4 
 xa()=    1.0000000000000067        8.0000000000000000        1.9999999999999993       
0.99999999999999922      
 err.=    6.6613381477509392E-015   0.0000000000000000       -6.6613381477509392E-016  -
7.7715611723760958E-016 
 
 end of processing 

 
 We test to see how well the iterated, adjusted unknowns, Xa (denoted in the 
computer output as “xa()”), match the unperturbed defining parameters of our scenario.  
This comparison is provided in Table 7.2. 
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Table 7.2 – Adjusted Unknowns, Scenario Parameters, and Error (toyorb3) 
X0  1.0000000000000067 1.0000000000000000 6.6613381477509392E-015 
Y0    8.0000000000000000 8.0000000000000000 0.0000000000000000 
Ẋ 0    1.9999999999999993 2.0000000000000000 -6.6613381477509392E-016 
Ẏ 0    0.99999999999999922 1.0000000000000000 -7.7715611723760958E-016 

 
 The first scenario test shows the DC process does indeed recover the unknown 
scenario parameters to the limits of 64-bit machine precision.  This validates the use of 
least squares to solve an overdetermined problem, the DC setup as a special subproblem 
of least squares, and the theory and implementation of the state transition matrix as a 
solution of the variational equations of the underlying differential equations of motion. 
 
 It is instructive to track the progress of the iteration.  The iterated corrections to the 
unknown parameters, X (denoted in the computer output as “x()”), track the differences 
between successive values of the iterations of X0.  It is seen that not only do the 
corrections become successively smaller, but that X magnitudes seem to be the square of 
the prior magnitudes.  This is quadratic convergence.  And, this is the fastest convergence 
to be expected from the standard iterated least squares method. 
 
 The output results of “r” are some diagnostic reports on the statistics of the range 
misclosures, L, for each iteration.  They are seen to decrease.  And as X0 iterates to Xa, L 
will iterate to the range residuals, V.  This is expected.  But, unlike a real-world problem 
(which has noisy data), the perfect scenario data should ideally iterate to misclosures of 
zero magnitude.  This is seen to occur within the limits of machine precision. 
 
8.  Uniform Gravity Model - - II 

 
In this section, we explore a variant of the scenario of the prior section.  The 

magnitude of the uniform gravity, g, is still considered constant.  But now g is treated as 
an unknown parameter to be solved.  The number of unknowns become u = 5. The DC 
unknown state parameters are still (X0, Y0, Ẋ0, Ẏ0)t.  The number of state parameters 
remains ns = 4.  However, uniform gravity, g, is not described by a DE.  Certainly, it 
participates in the force model and the associated DEs.  But, uniform gravity, g, has no 
kinematics, no trajectory; it is a force parameter.  The number of force parameters is 
np = 1.   
 

 We retain the UFGM equations of motion, and the first-order DE system of 
the prior section. We retain the equations defining range observations, the defining 
quantities of the Uniform Gravity Scenario, and the perfect range data of Table 7.1.  We 
keep the range sigma, dispersion, and weight matrices. 
 

We now completely adopt the perturbed quantities found in Exercise 1 (Tapley, 
et.al, 2004, pg. 16), as the starting estimate of the unknown parameters, X0, 

 
X0 = 1.5 
Y0 = 10.0 
Ẋ0 = 2.2 
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Ẏ0 = 0.5 
 g  = 0.3 
 

Note that g is a force parameter, and all force model and state parameters are defined as 
unknown parameters in the least squares problem. 
 
 Since this variant has a force model parameter, the variational DE is now the 
combined form holding both the state transition matrix and the sensitivity matrix 
(Montenbruck and Gill, 2000, Eq. 7.45) reproduced above.  We integrate both matrices as 
the combined matrix, (Փ|S); which is a ns x (ns + np) matrix where ns = 4 where np = 1.  
Note that the 4x4 matrix in the homogenous part is unchanged from the variational DE in 
the prior scenario.  The fact that gravity is now an unknown has no bearing on the partials 
∂a/∂r and ∂a/∂v.  Note the 2x1 submatrix in the lower right-hand corner of the 
inhomogenous term becomes 
 

∂𝐚𝐚
∂𝐩𝐩

=

⎝

⎜
⎛
∂X
∂𝑔𝑔
∂Y
∂𝑔𝑔⎠

⎟
⎞

= � 0
−1� 

 
since g is now a force parameter.  The full DE system is now written as 
 

d
d𝑡𝑡

(𝚽𝚽|𝐒𝐒) = �
0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

� (𝚽𝚽|𝐒𝐒) + �
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
−1

� 

̈

̈

 
These are the 20 variational DEs integrated in time by DDEABM.  As per DC standard 
practice, the STM initial conditions are: Փ(t0, t0) = I4x4, and the 4x1 sensitivity matrix 
initial conditions are S(t0) = 0. 
 
 The observation partial derivatives are unchanged from the prior section.  Note 
that any given row of Hi is a 1x4 row.  Those partials are converted to a row of partial 
derivatives with respect to the full set of unknowns, both state parameters and force 
model parameters, by matrix multiplication with the combined matrix: 
 

Ai = Hi (Փ|S) 
 
Note that where Hi is a 1x4 row, Ai is now a 1x5 row.  We have gained the needed partial 
derivatives with respect to our force model parameters by the multiplication. 
 
 This variant scenario is designated toyorb4, and was cycled for 5 loops, 4 
iterations.  The results are now displayed. 
 
program toyorb4 -- 2022jul17 
 l.s. solve toy orbit+g by differential correction 
 unknown g, ddeabm() variational equations 
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   perfect g=   0.50000000000000000      
 imperfect g=   0.29999999999999999      
 
 xsta,ysta=    1.0000000000000000        1.0000000000000000      
   perfect xsg=    1.0000000000000000        8.0000000000000000        2.0000000000000000        
1.0000000000000000      
 imperfect xsi=    1.5000000000000000        10.000000000000000        2.2000000000000002       
0.50000000000000000      
 elb=   (ranges, unitless, perfect) 
   7.0000000000000000      
   8.0039052967910607      
   8.9442719099991592      
   9.8011478919563295      
   10.630145812734650      
   11.535271995059327      
   12.649110640673518      
   14.108951059522463      
   16.031219541881399      
   18.494931738181680      
 range sigmas =    9.9999999999999995E-007 
 
 r ave/std/rms ->   2.0945109394094805       0.35124721684114563        
2.1208520037736651      
 r max/iep     ->   2.6042921924618749                7 
 r min/iep     ->   1.6561997776192747                2 
 x()=   -1.2681644065778528       -1.9473834175392994       -8.4221430338402570E-003  
0.66284223246339025       0.28751686699550305      
 finished iteration:            0 
 r ave/std/rms ->  0.32908934588554234       0.49538044995383879       
0.57372590036723559      
 r max/iep     ->   1.4731041259975086                9 
 r min/iep     ->   1.0899767531142857E-003           3 
 x()=   0.77112820968162055       -1.1409953827655528E-002 -0.18667541604578020      -
0.18174614096616182       -8.8534223321750538E-002 
 finished iteration:            1 
 r ave/std/rms ->   2.3748552944493361E-002   2.2083941383146576E-002   
3.1668978311120692E-002 
 r max/iep     ->   6.6134189328998616E-002           9 
 r min/iep     ->  -2.5425219835817359E-004           4 
 x()=   -2.6590379423758748E-003  -4.1205612638026121E-002  -4.9188535253674726E-003   
1.8817629448968587E-002   9.9763412143549779E-004 
 finished iteration:            2 
 r ave/std/rms ->   8.2736522622717240E-005   7.4288585146776035E-005   
1.0868416016374334E-004 
 r max/iep     ->   1.7675112804127480E-004           8 
 r min/iep     ->  -9.5148967460545464E-007           1 
 x()=   -3.0478626098633457E-004  -1.0093474615796127E-006   1.6415389564219084E-005   
8.6283156534648024E-005   1.9722876376153842E-005 
 finished iteration:            3 
 r ave/std/rms ->   3.2166761698704248E-009   2.3960968331073695E-009   
3.9388015451500872E-009 
 r max/iep     ->   6.6475589477477115E-009           0 
 r min/iep     ->   5.3201887340037501E-011           8 
 x()=    2.1099600711723380E-008  -6.6475588681354719E-009  -2.7845772098874676E-009  -
4.1027335159886004E-009  -6.7156462810898473E-010 
 finished iteration:            4 
 xa()=    1.0000000000000062        8.0000000000000000        1.9999999999999993       
0.99999999999999822       0.49999999999999961      
 err.=    6.2172489379008766E-015   0.0000000000000000       -6.6613381477509392E-016  -
1.7763568394002505E-015 
 grav=   0.49999999999999961      
 err.=   -3.8857805861880479E-016 
 
 end of processing 

 
 As before, we test to see how well the iterated, adjusted unknowns, Xa (denoted in 
the computer output as “xa()”), match the unperturbed defining parameters of this 
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scenario variant that includes a force parameter and a sensitivity matrix.  This comparison 
is provided in Table 8.1. 
 

Table 8.1 – Adjusted Unknowns, Scenario Parameters, and Error (toyorb4) 
X0  1.0000000000000062 1.0000000000000000 6.2172489379008766E-015 
Y0    8.0000000000000000 8.0000000000000000 0.0000000000000000 

Ẋ 0    1.9999999999999993 2.0000000000000000 -6.6613381477509392E-016 
Ẏ 0    0. 99999999999999822 1.0000000000000000 -1.7763568394002505E-016 
g    0. 49999999999999961 0. 50000000000000000 -3.8857805861880479E-016 

 
This second scenario test again shows the DC process does recover the unknown 

scenario parameters, which now include a force parameter, g, to the limits of 64-bit 
machine precision.  This further validates the DC setup extended by force parameters, 
and the theory and implementation of the state transition matrix combined with a 
sensitivity matrix as a solution of the full variational equations (Montenbruck and Gill, 
2000, Eq. 7.45) of the underlying differential equations of motion. 

 
Convergence progress of both the parameters and the misclosures show rapid 

progress to machine precision limits. 
 
9.  Kepler Model - - I 
 

Given the results of the Uniform Gravity Scenario of Sections 7 and 8, a desire to 
test in a more common situation, with Newtonian gravitation and realistic quantities, is 
irresistible.  Let us construct a Kepler Scenario, which addresses the classic central force 
problem (Montenbruck and Gill, 2000, Ch. 2).  This is an Earth, modeled as a point mass, 
and a satellite whose mass is negligible when compared to the Earth.  Newton solved 
Kepler’s problem, and provided an exact analytic solution for the satellite orbit under a 
central force.  Again, we will create synthetic data which are perfectly in agreement with 
the observation models and the defining state parameters.  Those data will be processed 
in an iterated least squares DC solution where the initial values of the unknown 
parameters are imperfectly known. 
 
 The equations of motion have no perturbing accelerations 
 

𝑋𝑋 + 𝐺𝐺𝐺𝐺
𝑋𝑋
𝑟𝑟3

= 0

𝑌𝑌 + 𝐺𝐺𝐺𝐺
𝑌𝑌
𝑟𝑟3

= 0

𝑍𝑍 + 𝐺𝐺𝐺𝐺
𝑍𝑍
𝑟𝑟3

= 0

 

̈

̈

̈

 
where r is the geometric distance between the geocenter and the object, and where GM is 
the standard gravitational parameter of the Earth.  Note this is an inertial frame; no 
coordinate system rotations, no accelerations of the origin. 
 

Integrate to obtain a system of six first-order DEs 
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𝑋𝑋 − 𝑉𝑉𝑋𝑋 = 0
𝑌𝑌 − 𝑉𝑉𝑌𝑌 = 0
𝑍𝑍 − 𝑉𝑉𝑍𝑍 = 0

𝑉𝑉𝑋𝑋 + 𝐺𝐺𝐺𝐺
𝑋𝑋
𝑟𝑟3

= 0

𝑉𝑉𝑌𝑌 + 𝐺𝐺𝐺𝐺
𝑌𝑌
𝑟𝑟3

= 0

𝑉𝑉𝑍𝑍 + 𝐺𝐺𝐺𝐺
𝑍𝑍
𝑟𝑟3

= 0

 

 
where the DC unknown state parameters are (X0, Y0, Z0, Ẋ0, Ẏ0, Ż0)t. 
 

̇
̇
̇

̇

̇

̇

There are four tracking stations with known, constant coordinates (  s,  s,  s).  
Their mutual positions form a regular tetrahedron.  The idealized Earth is a circumsphere, 
of radius R=6371 km, where the Earth surface encloses the tetrahedron and touches each 
vertex.  The spherical coordinates (latitude, longitude) of the stations are chosen as 

X Y Z

 
(b s, ℓ s) 1 = (0°, ϴ) 
(b s, ℓ s) 2 = (0°, -ϴ) 
(b s, ℓ s) 3 = (ϴ, 180°) 
(b s, ℓ s) 4 = (-ϴ, 180°) 

 
Where ϴ is the equatorial angle between a station and the prime meridian.  By means of 
the expression for tetrahedron edge length, a, the circumsphere radius is R = (¼√6) a, 
(https://en.wikipedia.org/wiki/Tetrahedron).  By plane trigonometry sin ϴ = 2/√6, and 
ϴ ≈ 54.735610317245360 degrees.  The tracking station Cartesian coordinates in meters 
become 
 
(X s, Y s, Z s) 1 = (3678298.5650071050        5201899.7170905434        0.0000000000000000) 
(X s, Y s, Z s) 2 = (3678298.5650071050       -5201899.7170905434        0.0000000000000000) 
(X s, Y s, Z s) 3 = (-3678298.5650071050        0.0000000000000000        5201899.7170905434) 
(X s, Y s, Z s) 4 = (-3678298.5650071050        0.0000000000000000       -5201899.7170905434) 
 
The interstation chord distance is 10403799.434181085 meters.  The tracking stations 
and the idealized Earth surface are considered stationary in the inertial frame.  There are 
no Earth rotations, no precession, no nutation, no polar motion, no plate tectonics, no 
subsidence. 

 
 There are two types of observations in this scenario.  The first type is range, ρ, 

from station to satellite 
ρ = �(X − X𝑠𝑠)2 + (Y − Y𝑠𝑠)2 + (Z − Z 2

𝑠𝑠)  
 
The second type is range rate, ρ, (following Tapley et al., 2004, Eq. 1.2.6) 
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ρ =
1
�(X − X𝑠𝑠)�X − X𝑠𝑠� + (Y − Y𝑠𝑠)�Y − Y𝑠𝑠� + (Z − Z𝑠𝑠)�Z − Z𝑠𝑠�� ̇

ρ
̇ ̇ ̇ ̇ ̇ ̇

 
Since all the tracking station velocities are zero, the scenario range rate simplifies to 

 

ρ =
ρ
�X (X − X𝑠𝑠) + Y (Y − Y𝑠𝑠) + Z (Z − Z𝑠𝑠)� ̇

1 ̇ ̇ ̇

 
Note the scenario speed of light is infinite.  There is no distinction between signal 
transmit time and receipt time.  There are no signal delays or refraction effects.  There is 
no terrain or actual surface of an Earth, no signal blockage can occur.  Yes, this does 
mean that a given range may pass through the idealized Earth to a satellite on the other 
side. 
 
 This author selects the scenario defining parameters (Kepler elements) from a set 
of linked problem sets in Satellite Geodesy (Course 777) and Advanced Satellite Geodesy 
(Course 873), given at the Department of Geodetic Science and Surveying at The Ohio 
State University, through the years of 1978-1986, and taught by Prof. Ivan Mueller.  This 
experience included writing validated software that would compute a state vector for a 
Kepler orbit (among many other exercises). 

 
Following the problem sets, define the Kepler Scenario as 
 

semi-major axis             12267692.6 m. 
eccentricity                        0.003845 deg. 
inclination                     109.85396 deg. 
ascending node               43.95923 deg. 
argument of perigee   245.07169 deg. 
mean anomaly             55.20345 deg. 
GM                                   3.98603E14 m3/s-2 

 
Note that newer values of GM are known, but the above replicates an old 

assignment.  The mean anomaly is referred to 18 August 1976, 0hUT.  The start time, t0, 
is 17 August, 1976, 12hUT.  The scenario t0 inertial state vector (Cartesian) in meters and 
meters/second: 

 
X0 = -7856436.2041079123 
Y0 = -3154149.8830321119 
Z0 = -8815210.5483046416 
Ẋ0 =        2296.0662918987064 
Ẏ0 =        3944.6910449260236 
Ż0 =       -3449.9126329548199 

 
The exact analytic orbit solution (which includes an iterative solution to Kepler’s 
equation) allows computation of Cartesian elements at any point in time.  This, in turn, 
allows generation of perfect synthetic data at any point in time 
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 The scenario observation data set spans 24 hours, at 120 second intervals, for a 
total of 721 epochs.  The data at each epoch are 4 ranges, and 4 range rates; one from 
each of the 4 tracking stations to the satellite.  This gives a total of n=5768 perfect 
synthetic observations.  The satellite has a period of just over 225 minutes.  The satellite 
will perform 3¾ orbital revolutions in 24 hours. 
 
 Least-squares requires, L -b, D, W = D 1, F(Xa), and starting estimate, X0.  We 
arbitrarily choose our range and range rate σ = 0.001 (m and m/s) to compute D and W.   
 
 We generate perturbed initial conditions by multiplying the defining Keplerian 
elements by the factor 1.0000001.  The perturbed Kepler elements become 
 

semi-major axis             12267693.8 m. 
eccentricity                        0.003845 deg. 
inclination                     109.85397 deg. 
ascending node               43.95923 deg. 
argument of perigee   245.07171 deg. 
mean anomaly             55.20346 deg. 
 

(Note that the computer output above is not displaying the full precision of the perturbed 
elements.) 
 

Converting the perturbed Kepler elements into a Cartesian inertial frame by exact 
analytic formulas generates the perturbed initial values displayed in Table 9.1.  These are 
taken as the starting estimate of the unknown parameters, X0, for this scenario. 
  

 Table 9.1 – Perturbed Initial Values and Perturbation (m and m/s) 
      X0  
      

      

      

-7856420.4697193988  15.734388513490558 
Y0    -3154119.6024935995  30.280538512393832 
Z0    -8815237.0415215995       -26.493216957896948 
Ẋ0    2296.0784583470122  1.2166448305833910E-002 
Ẏ0    3944.6967362488972  5.6913228736448218E-003 
Ż0    -3449.8975864829749       1.5046471844925691E-002 

 
Note that it is not desirable to generate perturbed initial conditions by multiplication of 
the defined Cartesian state vector by a perturbing factor.  This would introduce a scale 
perturbation, to be sure.  But it would not perturb other aspects of the orbit, such as 
inclination or argument of perigee.  So, instead, the defining Kepler elements are 
perturbed, converted to Cartesian, and then adopted as our perturbed, X0. 
 

We identify these unknown parameters as state parameters.  Therefore, 
u = ns = 6.   

 
In contrast to the Uniform Gravity Scenario, the equations of motion as well as 

the variational equations will be integrated by DDEABM in this scenario.  The six first-
order DEs were displayed earlier in this section. 
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Since this scenario has no force model parameter, the variational DE consists 

solely of the state transition DE (Montenbruck and Gill, 2000, Eq. 7.42).  Since there is 
no atmospheric drag, there is no spatial dependence of a on v; the lower right quadrant is 
03x3.  Since this scenario has Newtonian point mass gravitation, there now is spatial 
dependence of a on r.  The lower left 3x3 quadrant is found in (ibid., Eq. 7.57).  These 
are the set of 36 variational DEs integrated in time along with the 6 motion DEs. 
 

 
d
d𝑡𝑡
𝚽𝚽(𝑡𝑡, 𝑡𝑡0)

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

GM
𝑟𝑟5

(3X2 − 𝑟𝑟2)
GM
𝑟𝑟5

3XY
GM
𝑟𝑟5

3XZ 0 0 0
GM
𝑟𝑟5

3YX
GM
𝑟𝑟5

(3Y2 − 𝑟𝑟2)
GM
𝑟𝑟5

3YZ 0 0 0
GM
𝑟𝑟5

3ZX
GM
𝑟𝑟5

3ZY
GM
𝑟𝑟5

(3Z2 − 𝑟𝑟2) 0 0 0⎠

⎟
⎟
⎟
⎟
⎟
⎞

𝚽𝚽(𝑡𝑡, 𝑡𝑡0)  

 
As per DC standard practice, the STM initial conditions are: Փ(t0, t0) = I6x6. 
 
 Turn now to the observation partial derivatives with respect to the unknown 
parameters (which are state parameters).  The range at a single epoch, i, from a given 
tracking station to the satellite generates a 1x6 row of partial derivatives with respect to 
the evolving state vector contents 
 

𝐇𝐇i  = �
(X𝑖𝑖 − X𝑠𝑠)

ρ
(Y𝑖𝑖 − Y𝑠𝑠)

ρ
(Z𝑖𝑖 − Z𝑠𝑠)

ρ
0 0 0� 

 
The range rate at a single epoch, i, has a 1x6 row of partial derivatives (oriented for page 
display) 
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 𝐇𝐇𝑖𝑖
𝑡𝑡 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛
�X𝑖𝑖((Y𝑖𝑖 − Y𝑠𝑠)2 + (Z𝑖𝑖 − Z𝑠𝑠)2) − (X𝑖𝑖 − X𝑠𝑠) �(Y𝑖𝑖 − Y𝑠𝑠)Y𝑖𝑖 + (Z𝑖𝑖 − Z𝑠𝑠)Z𝑖𝑖��

ρ3

�Y𝑖𝑖((X𝑖𝑖 − X𝑠𝑠)2 + (Z𝑖𝑖 − Z𝑠𝑠)2) − (Y𝑖𝑖 − Y𝑠𝑠) �(X𝑖𝑖 − X𝑠𝑠)X𝑖𝑖 + (Z𝑖𝑖 − Z𝑠𝑠)Z𝑖𝑖��

ρ3

�Z𝑖𝑖((X𝑖𝑖 − X𝑠𝑠)2 + (Y𝑖𝑖 − Y𝑠𝑠)2) − (Z𝑖𝑖 − Z𝑠𝑠) �(X𝑖𝑖 − X𝑠𝑠)X𝑖𝑖 + (Y𝑖𝑖 − Y𝑠𝑠)Y𝑖𝑖��

ρ3
(X𝑖𝑖 − X𝑠𝑠)

ρ
(Y𝑖𝑖 − Y𝑠𝑠)

ρ
(Z𝑖𝑖 − Z𝑠𝑠)

ρ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

̇ ̇ ̇

̇ ̇ ̇

̇ ̇ ̇

 
As before, the computed range, not the observed range is used in evaluating the partials.  
Also, as before, the row of partials, Hi, must be converted to a row of partial derivatives 
with respect to the state parameters (which are established at t0). 

 
Ai = Hi Փ(t,t0) 

 
 This scenario is designated kepdc, and was cycled for 5 loops, 4 iterations.  The 
results are now displayed. 
 
program kepdc -- 2022jul04 
 l.s. solve kepler orbit by differential correction 
 
  imperfect initial statevector  
  rtol (all) =    9.9999999999999998E-013 
  nep,nobs =          721        5768 
 tracking stations -- 
           1   3678298.5650071050        5201899.7170905434        0.0000000000000000      
           2   3678298.5650071050       -5201899.7170905434        0.0000000000000000      
           3  -3678298.5650071050        0.0000000000000000        5201899.7170905434      
           4  -3678298.5650071050        0.0000000000000000       -5201899.7170905434      
 
 perfect kepler elements -- 
 semi-major axis     =  12267692.6 m. 
 eccentricity        =    0.003845 deg. 
 inclination         =  109.85396 deg. 
 ascending node      =   43.95923 deg. 
 argument of perigee =  245.07169 deg. 
 mean anomaly        =   55.20345 deg. 
 kep. period s/m/h=    13522.404232887979        225.37340388146632        
3.7562233980244386      
 
 non-perfect kepler element factor=   1.0000001000000001      
 non-perfect kepler elements -- 
 semi-major axis     =  12267693.8 m. 
 eccentricity        =    0.003845 deg. 
 inclination         =  109.85397 deg. 
 ascending node      =   43.95923 deg. 
 argument of perigee =  245.07171 deg. 
 mean anomaly        =   55.20346 deg. 
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 perfect statevector -- 
           1  -7856436.2041079123      
           2  -3154149.8830321119      
           3  -8815210.5483046416      
           4   2296.0662918987064      
           5   3944.6910449260236      
           6  -3449.9126329548199      
 
 non-perfect statevector and diff. with perfect -- 
           1  -7856420.4697193988        15.734388513490558      
           2  -3154119.6024935995        30.280538512393832      
           3  -8815237.0415215995       -26.493216957896948      
           4   2296.0784583470122        1.2166448305833910E-002 
           5   3944.6967362488972        5.6913228736448218E-003 
           6  -3449.8975864829749        1.5046471844925691E-002 
 
 top of perfect sat pos. -- 
           0  -7856436.2041079123       -3154149.8830321119       -8815210.5483046416      
           1  -7568705.4140116964       -2676077.8998624440       -9215129.1542818397      
           2  -7257182.4227614542       -2189593.7004120979       -9586079.9795341603      
           3  -6922843.8984359335       -1696225.7544806539       -9926893.5148273204      
           4  -6566739.2481008712       -1197524.7150596599       -10236495.860428371      
           5  -6189987.2274864251       -695058.38216115907       -10513912.248329705      
           6  -5793772.3135582767       -190406.60605464038       -10758270.229454534      
           7  -5379340.8531783465        314843.85137669696       -10968802.513910934      
 
 top of perfect data -- 
   0.0000000000000000        16750570.382064076      
   0.0000000000000000        14661218.318668425      
   0.0000000000000000        14962783.023493638      
   0.0000000000000000        6360936.3130651973      
   0.0000000000000000       -1733.3644659799313      
   0.0000000000000000        818.82219574949602      
   0.0000000000000000        1759.1899813539981      
   0.0000000000000000       -1504.4673676341772      
 range and range rate sigmas =    1.0000000000000000E-003 
 
 r ave/std/rms  ->   1.1378606047417359        6.5690501024098751        
6.6657470178827678      
 r max/iep/ista ->   22.071017637848854               22           4 
 r min/iep/ista ->  -20.044524449855089               20           1 
 v ave/std/rms  ->   4.8443095562271953E-006   3.5201484780293425E-003   
3.5195414697167184E-003 
 v max/iep/ista ->   2.1348927599888157E-002           4           4 
 v min/iep/ista ->  -1.4177053372861792E-002         716           1 
 x()=   -15.734433993023401       -30.280563480175601        26.493160650825985       -
1.2166433821766409E-002  -5.6912969333682284E-003  -1.5046491384449134E-002 
 finished iteration:            0 
 r ave/std/rms  ->   2.8073553825197701E-004   3.1329261288325005E-003   
3.1449380333146487E-003 
 r max/iep/ista ->   9.1433562338352203E-003         662           4 
 r min/iep/ista ->  -8.9136958122253418E-003         699           4 
 v ave/std/rms  ->  -1.8539267225337745E-009   1.6375078350257764E-006   
1.6372249648120881E-006 
 v max/iep/ista ->   2.6390590619485010E-006         662           1 
 v min/iep/ista ->  -8.7512969813019481E-006         681           4 
 x()=    4.5421285137292600E-005   2.4731565036240077E-005   5.6397807789765331E-005  -
1.4594736206087564E-008  -2.6005482394895682E-008   1.9438502163048217E-008 
 finished iteration:            1 
 r ave/std/rms  ->  -2.6644092575025624E-008   8.7921884715936952E-007   
8.7947009580589568E-007 
 r max/iep/ista ->   4.5960769057273865E-006         693           4 
 r min/iep/ista ->  -4.8484653234481812E-006         399           1 
 v ave/std/rms  ->  -6.3562520172513534E-012   4.5928186772611337E-010   
4.5924622431661313E-010 
 v max/iep/ista ->   4.0487861951987725E-009         717           1 
 v min/iep/ista ->  -1.3609451343654655E-009         693           3 
 x()=    6.5696778682710613E-007   1.1025025362950520E-006  -9.1893720588178329E-007   
4.7564992986365169E-010   2.0104234258224037E-010   4.7791834623287621E-010 
 finished iteration:            2 
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 r ave/std/rms  ->   3.1389736527791468E-007   3.1621067269156416E-006   
3.1771030006590398E-006 
 r max/iep/ista ->   1.1287629604339600E-005         700           1 
 r min/iep/ista ->  -1.0674819350242615E-005         703           4 
 v ave/std/rms  ->  -1.2514606857355160E-011   1.7006857608651167E-009   
1.7004369390045967E-009 
 v max/iep/ista ->   3.3797959986259229E-009         668           1 
 v min/iep/ista ->  -1.1144948075525463E-008         715           1 
 x()=   -7.0163403881567769E-007  -1.6870383828025779E-006   2.0921600959568701E-006  -
6.5109245811717384E-010  -1.3940865105861005E-010  -9.3852270581333044E-010 
 finished iteration:            3 
 r ave/std/rms  ->  -2.1744186211062205E-007   1.8934797298250685E-006   
1.9055978834513035E-006 
 r max/iep/ista ->   7.3760747909545898E-006         696           4 
 r min/iep/ista ->  -8.3427876234054565E-006         693           1 
 v ave/std/rms  ->   3.5631208262820980E-012   9.9043952755028737E-010   
9.9027421012650949E-010 
 v max/iep/ista ->   7.4449246767471777E-009         716           1 
 v min/iep/ista ->  -2.0597781258402392E-009         720           4 
 x()=    1.2115031596703811E-007   6.5914783072148174E-007  -1.1656453645907811E-006   
2.0940997411814440E-010  -3.7001265869844031E-011   4.8211897819411499E-010 
 finished iteration:            4 
 xa()=   -7856436.2041078936       -3154149.8830322730       -8815210.5483045448        
2296.0662918986295        3944.6910449259826       -3449.9126329548994      
 err.   =    1.8626451492309570E-008  -1.6111880540847778E-007   9.6857547760009766E-008  
-7.6852302299812436E-011  -4.0927261579781771E-011  -7.9580786405131221E-011 
 relerr.=   -2.3708525097639458E-015   5.1081531120389518E-014  -1.0987547855976917E-014  
-3.3471290690069875E-014  -1.0375276824892454E-014   2.3067478765968335E-014 
 
 end of processing 

 
 As before, we test to see how well the iterated, adjusted unknowns, Xa (denoted in 
the computer output as “xa()”), match the unperturbed defining parameters of this 
scenario.  Since our unknown parameters have realistic values (m and m/s), it is useful to 
compute the relative error to see how many significant digits have been recovered.  This 
comparison is provided in Table 9.2. 
 

Table 9.2 – Adjusted Unknowns, Error, and Relative Error (kepdc) 
X0  -7856436.2041078936 1.8626451492309570E-008 -2.3708525097639458E-015 
Y0    -3154149.8830322730 -1.6111880540847778E-007 5.1081531120389518E-014 
Z0    -8815210.5483045448 9.6857547760009766E-008 -1.0987547855976917E-014 
Ẋ 0    2296.0662918986295 -7.6852302299812436E-011 -3.3471290690069875E-014 
Ẏ 0    3944.6910449259826 -4.0927261579781771E-011 -1.0375276824892454E-014 
Ż 0    -3449.9126329548994 -7.9580786405131221E-011 2.3067478765968335E-014 

 
 This third scenario test shows the DC process does indeed recover the unknown 
scenario parameters almost to the limits of 64-bit machine precision.  Only one to maybe 
one and a half digits have been lost.  Realistic units and models have been used, which 
are seen to entail more machine arithmetic.  In addition, the number of observations has 
been extended from n=10 to n=5768.  The results show initial positions are recovered 
with only 18 to 161 nanometers of error.  This is a completely successful solution that 
does not show any evidence of mathematical difficulty.  This scenario re-validates the 
findings of Section 8 regarding least squares, standard application of DC, and procedures 
for variational equations of the underlying differential equations of motion. 
 
 The output results of “r” and “v” show some statistics of the range and range rate 
misclosures, L, for each iteration.  Of interest are the maximum and minimum instances.  
The epoch numbers tend to values in the high 600’s to low 700’s.  This is showing 
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extrema are occurring near the end of the 3¾ revolution orbit.  This is evidence of minor 
error in the DDEABM integration of the equations of motion.   (Recall our perfect data, 
Lb, are from a Keplerian exact analytic model, while our iterated, computed data, L0, are 
from DDEABM state vector values.)  Even so, the misclosure extrema iterate to the 
micrometer level, and the post-fit residual extrema are likely an order of magnitude 
better. 
 
10.  Kepler Model - - II 
 

In this section, we explore a variant of the scenario of the prior section.  The 
standard gravitational parameter of the Earth, GM, is still considered constant.  But now 
GM is treated as an unknown parameter to be solved.  The number of unknowns become 
u = 7. The DC unknown state parameters are still (X0, Y0, Z0, Ẋ0, Ẏ0, Ż0)t.  The number 
of state parameters remains ns = 6.  However, the standard gravitational parameter, GM, 
is not described by a DE.  Certainly, it participates in the force model and the associated 
DEs.  But GM has no kinematics, no trajectory; it is a force parameter.  The number of 
force parameters is np = 1.   
 

We retain the central force equations of motion, and the first-order DE system of 
satellite motion of the prior section. We retain the equations defining range and range rate 
observations, the defining quantities of the Kepler Scenario, and the perfect range and 
range rate data.  We keep the range and range rate sigmas, dispersion and weight 
matrices. 
 
 We retain the method of obtaining perturbed initial values for our state vector.  We 
also perturb the defining value of GM = 398603000000000.00 by multiplying by the 
factor of 1.00000001.  This gives the starting estimate of the unknown parameters, X0, 
displayed in Table 10.1. 
 

 Table 10.1 – Perturbed Initial Values and Perturbation 
X0  -7856420.4697193988        15.734388513490558 
Y0    -3154119.6024935995        30.280538512393832 
Z0    -8815237.0415215995       -26.493216957896948 
Ẋ0    2296.0784583470122        1.2166448305833910E-002 
Ẏ0    3944.6967362488972        5.6913228736448218E-003 
Ż0    -3449.8975864829749       1.5046471844925691E-002 
GM    398603003986030.00    3986030.00 

 
Note that GM is a force parameter, and all force model and observation model parameters 
are defined as unknown parameters in the least squares problem. 
 

Since this variant has a force model parameter, the variational DE is now the 
combined form holding both the state transition matrix and the sensitivity matrix 
(Montenbruck and Gill, 2000, Eq. 7.45) reproduced above.  We integrate both matrices as 
the combined matrix, (Փ|S); which is a ns x (ns + np) matrix where ns = 6 where np = 1.  
Note that the leftmost 6x6 matrix in the homogenous part is unchanged from the 
variational DE in the prior scenario.  The fact that the standard gravitational parameter, 
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GM, is now an unknown has no bearing on the partials ∂a/∂r and ∂a/∂v.  We retain the 
quantities established in Section 9.  Note the 3x1 submatrix in the lower right-hand 
corner of the inhomogenous term becomes 
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since GM is now a force parameter.  The full variational DE system is now written as 
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These are the 42 variational DEs integrated along with the 6 state vector DEs.  As per DC 
standard practice, the STM initial conditions are: Փ(t0, t0) = I6x6, and the 6x1 sensitivity 
matrix initial conditions are S(t0) = 0. 
 
 The observation partial derivatives are unchanged from the prior section.  Note 
that any given row of Hi is a 1x7 row.  Those partials are converted to a row of partial 
derivatives with respect to the full set of unknowns, both state parameters and force 
model parameters, by matrix multiplication with the combined matrix: 
 

Ai = Hi (Փ|S) 
 
Note that where Hi is a 1x6 row, Ai is now a 1x7 row.  We have gained the needed partial 
derivatives with respect to our force model parameters by the conversion. 

 30 



 
 This variant scenario is designated kepdc2.  It incorporates Newtonian gravitation, 
solves for a point mass, and has familiar units for the observations and parameters.  This 
variant scenario is cycled for 5 loops, 4 iterations.  The results are now displayed. 
 
program kepdc2 -- 2022jul17 
 l.s. solve Kepler+GM orbit by differential correction 
 unknown GM, ddeabm() variational equations 
 
  imperfect initial statevector  
  rtol (all) =    9.9999999999999998E-013 
  nep,nobs =          721        5768 
 tracking stations -- 
           1   3678298.5650071050        5201899.7170905434        0.0000000000000000      
           2   3678298.5650071050       -5201899.7170905434        0.0000000000000000      
           3  -3678298.5650071050        0.0000000000000000        5201899.7170905434      
           4  -3678298.5650071050        0.0000000000000000       -5201899.7170905434      
 
   perfect GM=    398603000000000.00      
 imperfect GM=    398603003986030.00      
 
 perfect kepler elements -- 
 semi-major axis     =  12267692.6 m. 
 eccentricity        =    0.003845 deg. 
 inclination         =  109.85396 deg. 
 ascending node      =   43.95923 deg. 
 argument of perigee =  245.07169 deg. 
 mean anomaly        =   55.20345 deg. 
 kep. period s/m/h=    13522.404232887979        225.37340388146632        
3.7562233980244386      
 
 non-perfect kepler element factor=   1.0000001000000001      
 non-perfect kepler elements -- 
 semi-major axis     =  12267693.8 m. 
 eccentricity        =    0.003845 deg. 
 inclination         =  109.85397 deg. 
 ascending node      =   43.95923 deg. 
 argument of perigee =  245.07171 deg. 
 mean anomaly        =   55.20346 deg. 
 
 perfect statevector -- 
           1  -7856436.2041079123      
           2  -3154149.8830321119      
           3  -8815210.5483046416      
           4   2296.0662918987064      
           5   3944.6910449260236      
           6  -3449.9126329548199      
 
 non-perfect statevector and diff. with perfect -- 
           1  -7856420.9656723104        15.238435601815581      
           2  -3154120.4545480874        29.428484024479985      
           3  -8815236.2963436693       -25.748039027675986      
           4   2296.0780993349022        1.1807436195795162E-002 
           5   3944.6966072306241        5.5623046005166543E-003 
           6  -3449.8980194407363        1.4613514083521295E-002 
 
 top of perfect sat pos. -- 
           0  -7856436.2041079123       -3154149.8830321119       -8815210.5483046416      
           1  -7568705.4140116964       -2676077.8998624440       -9215129.1542818397      
           2  -7257182.4227614542       -2189593.7004120979       -9586079.9795341603      
           3  -6922843.8984359335       -1696225.7544806539       -9926893.5148273204      
           4  -6566739.2481008712       -1197524.7150596599       -10236495.860428371      
           5  -6189987.2274864251       -695058.38216115907       -10513912.248329705      
           6  -5793772.3135582767       -190406.60605464038       -10758270.229454534      
           7  -5379340.8531783465        314843.85137669696       -10968802.513910934      
 
 top of perfect data -- 
   0.0000000000000000        16750570.382064076      
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   0.0000000000000000        14661218.318668425      
   0.0000000000000000        14962783.023493638      
   0.0000000000000000        6360936.3130651973      
   0.0000000000000000       -1733.3644659799313      
   0.0000000000000000        818.82219574949602      
   0.0000000000000000        1759.1899813539981      
   0.0000000000000000       -1504.4673676341772      
 range and range rate sigmas =    1.0000000000000000E-003 
 
 r ave/std/rms  ->   1.1372279918445183        6.3681006140452707        
6.4677609468103192      
 r max/iep/ista ->   21.470123112201691               22           4 
 r min/iep/ista ->  -19.453779188916087               20           1 
 v ave/std/rms  ->   4.8251823124220039E-006   3.4118523403745484E-003   
3.4112641877374534E-003 
 v max/iep/ista ->   2.0736164939933133E-002           4           4 
 v min/iep/ista ->  -1.3601585696648044E-002         716           1 
 x()=   -15.238479356883758       -29.428510395357719        25.747989359535953       -
1.1807423612165979E-002  -5.5622802259434993E-003  -1.4613534299959124E-002 
 delta GM:   -3986015.5650691986      
 finished iteration:            0 
 r ave/std/rms  ->   2.6461857709460137E-004   2.9528123218199604E-003   
2.9641356805530619E-003 
 r max/iep/ista ->   8.6164940148591995E-003         662           4 
 r min/iep/ista ->  -8.3984583616256714E-003         699           4 
 v ave/std/rms  ->  -1.7286273849769573E-009   1.5433248792909753E-006   
1.5430582576231316E-006 
 v max/iep/ista ->   2.4868159016477875E-006         662           1 
 v min/iep/ista ->  -8.2461547918910583E-006         681           4 
 x()=    4.3618838642567326E-005   2.5675056770396720E-005   5.0506915530892059E-005  -
1.2862164660081644E-008  -2.4446691143077627E-008   1.9778900396086492E-008 
 delta GM:   -13.870271699503064      
 finished iteration:            1 
 r ave/std/rms  ->  -2.4604806146906088E-008   1.0953503769937341E-006   
1.0954368206641677E-006 
 r max/iep/ista ->   4.1350722312927246E-006         505           1 
 r min/iep/ista ->  -3.8333237171173096E-006         580           1 
 v ave/std/rms  ->  -2.0600985087960339E-012   5.3313496034592555E-010   
5.3304650346541461E-010 
 v max/iep/ista ->   3.1060807259564172E-009         568           4 
 v min/iep/ista ->  -1.3527596820495091E-009         504           4 
 x()=   -1.3107690211991505E-007  -1.3877875958492620E-007   4.8447909602093755E-008  -
7.9232322238528933E-011  -6.6708365390814019E-011   1.9379327939532491E-012 
 delta GM:   -6.2805873062634419      
 finished iteration:            2 
 r ave/std/rms  ->  -9.9619545672869055E-008   9.4216384683994084E-007   
9.4725338530353797E-007 
 r max/iep/ista ->   4.0698796510696411E-006         668           4 
 r min/iep/ista ->  -5.2712857723236084E-006         399           1 
 v ave/std/rms  ->  -6.1597124380645019E-012   4.9194891010240025E-010   
4.9190218154940237E-010 
 v max/iep/ista ->   1.6482051279353982E-009         399           4 
 v min/iep/ista ->  -3.3682852063066093E-009         715           1 
 x()=   -9.4389705912624179E-007  -1.4082136073961525E-006   1.0178985580172899E-006  -
5.8353550599933299E-010  -1.9225945152530135E-010  -7.2658698726726295E-010 
 delta GM:    21.900605641877519      
 finished iteration:            3 
 r ave/std/rms  ->   5.9651469246028359E-008   6.5821788935013959E-007   
6.6080168128453716E-007 
 r max/iep/ista ->   3.3508986234664917E-006         399           3 
 r min/iep/ista ->  -5.2917748689651489E-006         399           1 
 v ave/std/rms  ->  -1.2168548685253907E-011   3.6280498940366619E-010   
3.6294613005751154E-010 
 v max/iep/ista ->   1.6499956956295136E-009         399           4 
 v min/iep/ista ->  -1.6985950423986651E-009         713           1 
 x()=    6.4740667751572142E-007   8.3654785291528591E-007  -4.4048129482054058E-007   
3.4727733673194651E-010   1.8369417687146956E-010   2.8542620084413858E-010 
 delta GM:   -5.1697455368587271      
 finished iteration:            4 
 xa()=   -7856436.2041084776       -3154149.8830335182       -8815210.5483031757        
2296.0662918981129        3944.6910449258758       -3449.9126329556966      
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 err.   =   -5.6531280279159546E-007  -1.4062970876693726E-006   1.4659017324447632E-006  
-5.9344529290683568E-010  -1.4779288903810084E-010  -8.7675289250910282E-010 
 relerr.=    7.1955373671335748E-014   4.4585613868085649E-013  -1.6629231082026602E-013  
-2.5846174171917864E-013  -3.7466277423222751E-014   2.5413770891878258E-013 
 GM  =    398603000000011.00      
 err.   =    11.000000000000000      
 relerr.=    2.7596380358401719E-014 
 
 end of processing 

 
 Once again, we test to see how well the iterated, adjusted unknowns, Xa (denoted 
in the computer output as “xa()”), match the unperturbed defining parameters of this 
scenario variant that now includes a force parameter and a sensitivity matrix.  This 
comparison is provided in Table 10.2. 
 

 Table 10.2 – Adjusted Unknowns, Error, and Relative Error (kepdc2) 
X0  -7856436.2041084776 -5.6531280279159546E-007 7.1955373671335748E-014 
Y0    -3154149.8830335182 -1.4062970876693726E-006 4.4585613868085649E-013 
Z0    -8815210.5483031757 1.4659017324447632E-006 -1.6629231082026602E-013 
Ẋ 0    2296.0662918981129 -5.9344529290683568E-010 -2.5846174171917864E-013 
Ẏ 0    3944.6910449258758 -1.4779288903810084E-010 -3.7466277423222751E-014 
Ż 0    -3449.9126329556966 -8.7675289250910282E-010 2.5413770891878258E-013 
GM   398603000000011.00 11.000000000000000  2.7596380358401719E-014 

 
This fourth scenario test again shows the DC process does recover the unknown 

scenario parameters, which now includes a standard gravitational parameter, GM.  The 
initial positions are recovered to 0.5 to 1.4 micrometers of accuracy.  All quantities are 
near the limits of machine precision.  These results demonstrate that the standard 
application of variational equations in orbit determination (OD), including force 
parameters and the sensitivity matrix, is valid. 
 
11.  Ordinary Differential Equation Background 
 

This author now briefly relates ordinary differential equation (ODE) mathematical 
theory.  An expanded version of this material can be found in Milbert and Jekeli (2023, 
Section 4).  The context for the mathematics is orbit determination (OD).  Thus, it is 
reasonable to expect benign models that support conditions for existence and uniqueness 
of ODE solutions. 

An advanced text used for graduate studies in mathematics is the classic work by 
Coddington and Levinson (1955), which is now denoted CL55.  We closely follow their 
exposition and notation, and describe their work.  CL55 is important, since they derive 
the initialization of the state transition and sensitivity matrices.   

They begin with the first order ODE 
x′ = f (t, x) 
 

where t is the independent variable, and x is a variable of function f.  This is expanded to 
an n-dimensional system of first order ODE’s: 

x′ = f (t, x) 
or, with indices: 
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x′i = fi (t, x1, . . . , xn)  (i = 1, . . . , n) 
  
General solutions, φ and φ, are all sets of all points, (t, φ(t)) and (t, φ (t)).  The general 
solutions vary due to unresolved constants of integration, and form an infinite set of 
integral curves.  In those sets there is only one solution that passes through a point, (t, x) 
and (t, x).  That specific point is named (τ, ξ) and (τ, ξ), where φ(τ) = ξ and φ(τ) = ξ.  The 
initial value problem (IVP) is defined as the ODE, x′ = f (t, x) and x′ = f (t, x), and the 
initial value, x (τ) = ξ and x (τ) = ξ, respectively.  (Earlier in this report, t0 was used for τ, 
the initial time.)  The initial value, ξ and ξ, is a defining quantity of an IVP.  CL55 
establish conditions for existence in Chapter 1, Section 1 (single ODE) and Section 5 
(system).  Also, CL55 establish conditions for uniqueness (Lipschitz condition) in 
Chapter 1, Section 2 (single ODE) and Section 5 (system).  The CL55 uniqueness 
theorems prove an IVP has only one solution passing through a specific (t, x) and (t, x).  
The defining initial value, ξ and ξ, at τ, resolve any constants of integration, and collapse 
the infinite sets of general solutions (the set of integral curves) down to a specific orbit. 
 
 When first order ODE system variables are defined as derivatives of another 
system variable, it allows the ODE system to represent higher order ODE’s.  CL55 
(Chapter 1, Section 6) show that arbitrarily high order derivatives may be represented by 
such expressions.  In OD, for a body subject to forces, the accelerations (x′′) in a 3-D 
space are mapped into n = 2 x 3 = 6 variables. 
 

To address partial derivatives, CL55 (Chapter 1, Section 7) elaborate their 
notation to distinguish between n-dimensional general solutions, φ, and n-dimensional 
specific solutions, φ(t, τ, ξ). The initial value of a specific n-dimensional solution is 
denoted, φ(τ, τ, ξ).  In that section they also prove existence and continuity of ∂φ/∂ξi.  
Further, (CL55, Chapter 1, eq. 7.12) shows 

 
∂𝛗𝛗
∂𝛏𝛏𝑗𝑗

(τ, τ, 𝛏𝛏) =  𝑒𝑒𝑗𝑗 

 
where ej is the vector with all components zero, except the j-th component is 1.  The full 
system  

∂𝛗𝛗
∂𝛏𝛏

(τ, τ, 𝛏𝛏) =  𝐈𝐈𝑛𝑛 𝑥𝑥 𝑛𝑛 

 
equals an n x n identity matrix, In x n.  The matrix ∂φ/∂ξ is the state transition matrix 
(STM) of Section 5 in this report.  When the first parameter is τ, the equation above 
refers to initial time.  The indexed result above is the CL55 expression of the initial 
condition of an STM, Փ(t0, t0) = In x n, (Montenbruck and Gill, 2000, eq. 7.42). 
 

After the notation change, CL55 (Chapter 1, Section 7) extend the n-dimensional 
system of first order ODE’s to 

x′ = f (t, x, 𝛍𝛍) 
 



where 𝛍𝛍 is a k dimensional parameter vector.  The solutions satisfy φ(τ, τ, ξ, 𝛍𝛍) = ξ.  The 
IVP is defined as the ODE, x′ = f (t, x, 𝛍𝛍) and the initial values x(τ) = ξ.  The parameter 
vector, 𝛍𝛍, can, for example, represent force model parameters in OD.  Note that the 
dependent variables, x, and parameters, 𝛍𝛍, are distinct.  The IVP solution is φ(t, τ, ξ, 𝛍𝛍).  
Existence and uniqueness proofs for the parametric IVP are in CL55 (Chapter 1, Theorem 
7.4).  Their uniqueness result proves the presence of 𝛍𝛍 does not alter the fact that a 
unique ODE system solution is still established by n initial values, ξ, at an initial time, τ.  
And, those defining initial values, ξ, do not depend on 𝛍𝛍. 
 

CL55 take the IVP: x′ = f (t, x, 𝛍𝛍) with initial values, x(τ) = ξ.  By the Second 
Fundamental Theorem of Calculus, CL55 write the parametric ODE solution, 
 

𝛗𝛗(𝑡𝑡, τ, 𝛏𝛏,𝛍𝛍) =  𝛏𝛏 + � 𝒇𝒇(𝑠𝑠,𝛗𝛗(𝑠𝑠, τ, 𝛏𝛏,𝛍𝛍),𝛍𝛍)
𝒕𝒕

τ
d𝑠𝑠 

(11.1) 
Then they take the derivative with respect to 𝛍𝛍j (where j ranges from 1 to k), 
 

∂𝛗𝛗
 ∂𝛍𝛍𝑗𝑗

(𝑡𝑡, τ, 𝛏𝛏,𝛍𝛍) = � �𝒇𝒇𝒙𝒙(𝑠𝑠,𝛗𝛗(𝑠𝑠, τ, 𝛏𝛏,𝛍𝛍),𝛍𝛍)
∂𝛗𝛗

 ∂𝛍𝛍𝑗𝑗
(𝑠𝑠, τ, 𝛏𝛏,𝛍𝛍) + 

∂𝒇𝒇
 ∂𝛍𝛍𝑗𝑗

(𝑠𝑠,𝛗𝛗(𝑠𝑠, τ, 𝛏𝛏,𝛍𝛍),𝛍𝛍)�d𝑠𝑠
𝑡𝑡

 τ

 

            (11.2) 
 
where fx are partial derivatives, ∂f /∂x.  When writing (11.2), the initial value term, ξ, in 
(11.1) becomes zero because ξ are defined quantities.  They do not vary with the 
parameters, 𝛍𝛍.  CL55 then define y = ∂φ/∂𝛍𝛍j as the j-th column of all the partials, and 
take the derivative with respect to time.  This leads to the variational IVP: 
 

𝒚𝒚′ =  𝒇𝒇𝒙𝒙(𝑡𝑡,𝛗𝛗(𝑡𝑡, τ, 𝛏𝛏,𝛍𝛍),𝛍𝛍)𝒚𝒚 + ∂𝒇𝒇
 ∂𝛍𝛍𝒋𝒋

(𝑡𝑡,𝛗𝛗(𝑡𝑡, τ, 𝛏𝛏,𝛍𝛍),𝛍𝛍)  𝒚𝒚(τ) = 0 (11.3) 

  
In (11.3) the initial condition, 𝒚𝒚(τ) = 0, is required because, at the initial time, (11.2) will 
integrate from τ to τ, and collapse to zero. 
 

Each y = ∂φ/∂𝛍𝛍j, is a column of the sensitivity matrix, ∂φ/∂𝛍𝛍 = S(t).  For 
comparison with (11.3), equation (7.44) by Montenbruck and Gill (2000) is repeated 
 

d
d𝑡𝑡
𝐒𝐒(𝑡𝑡) = �

𝟎𝟎3x3 𝐈𝐈3x3
∂𝐚𝐚(𝑡𝑡, 𝐫𝐫, 𝐯𝐯,𝐩𝐩)

∂𝐫𝐫(𝑡𝑡)
∂𝐚𝐚(𝑡𝑡, 𝐫𝐫, 𝐯𝐯,𝐩𝐩)

∂𝐯𝐯(𝑡𝑡)
�

6x6

𝐒𝐒(𝑡𝑡) + �
𝟎𝟎3x𝑛𝑛𝑝𝑝

∂𝐚𝐚(𝑡𝑡, 𝐫𝐫, 𝐯𝐯,𝐩𝐩)
∂𝐩𝐩

�

6x𝑛𝑛𝑝𝑝

  

 
CL55 (Chapter 1, Section 7), derived the correct initial conditions, y(τ) = 0, for each 

∂φ/∂𝛍𝛍j variational equation; and, by extension, zero for all the initial values of the 
sensitivity matrix, S(t0) = 0.  CL55 prove the valid mathematical basis for IVP’s with 
parameters, 𝛍𝛍 and their associated variational equations.  To emphasize, the initial values 
of the sensitivity matrix are all zeros because a parametric IVP unique solution has, by 
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definition, specified initial values, ξ, at the initial time, τ; and, because the integral in 
(11.2) collapses to zero at the initial time, t = τ. 
 
12.  Orbit Determination Literature 
 

As a cautionary admonition, if one is researching variational equations in DC, 
there are references that need to be read with care.  By all means, read these references if 
you are so inclined.  Critical examination, discussion, and testing are the engines that 
drive Scientific Progress. 
 

Riley et al. (1967) suffers from inexact terminology.  This reference is a reason 
why such rigor in expression was made in this study.  They combine the state parameters 
and force model parameters, denote them βk, and call them “initial values” or “one of the 
differential equation parameters” (ibid., pg. 12).  To follow (ibid.), it is useful to refer to 
the equations of Cappellari et al. (1976, Eq.  4-2 to 4-8) or Long et al. (1989, Eq.  4-2 to 
4-8).  The clearest map of the variational equations is the block matrix notation of 
Montenbruck and Gill (2000, Eq. 7.45).  By Riley et al. (1967, pg. 13 top): 

 
“The initial values are determined by differentiating the initial values of Y with respect to βk and in general 
will be zero if βk is a differential equation parameter (i.e., a parameter occurring in the function F).”  
 
The first “initial values” above is referring to initial values of the sensitivity matrix, S(t0).  
The “initial values of Y” are, in fact, referring to the state vector, X(t).  Once the partials 
∂X(t)/∂p are formed, which is the sensitivity matrix, S(t), then it can be evaluated at t0.  
The phrase “in general will be zero” is incorrect.  There is nothing general about it.  By 
standard DC practice, the initial values of the sensitivity matrix are S(t0) = 0. 
 

Continuing (ibid.), 
 
“On the other hand, if βk denotes an initial value, then not all of the initial conditions on Yβk will be zero, 
…”  
 
The phrase “…not all the initial conditions on Yβk will be zero,…” is correct as far as it 
goes.  These “initial conditions” are referring to the initial conditions of the STM.  By 
standard DC practice, the initial values of the sensitivity matrix are Փ(t0, t0) = I.  Clearly, 
the Montenbruck and Gill (2000) terminology is more rigorous. 
 

Continuing Riley et al. (1967), 
 
“… but normally ∂F/∂βk will be the null vector.”  
 
On its face, ∂F/∂βk is frustrating, because (ibid.) earlier lumped the state and force model 
parameters together.  But in the context of (ibid., second equation, pg. 12), those partials 
match Cappellari et al. (1976) and Long et al. (1989) equations 4-8c.  The C(t) in 
equation 4-8c is not the null vector if there exist any force model parameters at all. 
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 To be fair, Riley et al. (1967), is a short 5¼ page note.  Their description of 
variational equations is a too brief sketch supported by only 2 equations.  The thrust of 
their paper was not to thoroughly describe variational equations, but to demonstrate 
efficient, two-part integrations of the state vector and the variational equations. 
 
 A series of references that must be read with care are Xu (2009), Xu (2015), Xu 
(2018), and Xu (2021).  These assert that the standard application of variational equations 
in orbit determination (OD), as well as in other applications, does not have a sound 
mathematical basis.  Xu (2021) goes so far as to state that solutions have been 
“incorrectly solved for 100 years.”  These assertions are based on a flawed proof that the 
sensitivity matrix, S(t0) ≠ 0. 
 
 The completely general, mathematical proofs by Coddington and Levinson (1955, 
Chapter 1, Section 7) regarding the primary initial value problem (IVP) for a system of 
ODE’s with parameters, and the associated IVP for the variational equation for columns 
of the sensitivity matrix, S(t), prove that, in fact, S(t0) = 0.  (As related in Section 11 of 
this study, all initial values of the sensitivity matrix are zero because a parametric IVP 
unique solution has, by definition, specified initial values at the initial time, and because 
the integral expressing the columns of S(t) collapses to zero when t = τ.) 
 

  The Xu (2018) claim (above) is based on a flawed proof by contradiction.  
The stated counter example equation (ibid., eq. 11) is 

 
𝑦𝑦 + 𝑝𝑝12𝑦𝑦 − 𝑝𝑝2 cos(𝑝𝑝1𝑡𝑡) = 0   (12.1) 

 
The proposed general solution is (ibid., eq.12) 

 
𝑦𝑦?(𝑡𝑡) = 𝑐𝑐1 sin(𝑝𝑝1𝑡𝑡) + 𝑐𝑐2

𝑝𝑝1
cos(𝑝𝑝1𝑡𝑡) + 𝑝𝑝1𝑝𝑝2𝑡𝑡 sin (𝑝𝑝1𝑡𝑡)+𝑝𝑝2cos (𝑝𝑝1𝑡𝑡)

2𝑝𝑝12
    (12.2) 

̈

 
The fundamental structural flaw is that (ibid.) never forms an initial value problem (IVP).  
Recall that the differential correction (DC) method in orbit determination (OD) requires 
an IVP.  A valid proof (or test) of the DC method must first encompass the specific 
solution developed by an IVP.  Further, any supposed proof relying on contradiction is 
suspect, since an ODE general solution describes an infinite number of integral curves. 
 

The proofs by Coddington and Levinson (1955, Chapter 1) are completely 
adequate on these points.  But, to further emphasize the flawed proof, we will proceed by 
deriving the analytic solutions for the initial value problems for (12.1).  In contrast to 
(Xu, 2018), derivations from the IVPs will show the initial value of the sensitivity matrix, 
S(t0) = 0.  Scenarios will be constructed, and numerical solutions will be demonstrated 
that achieve the limits of computer precision, as done earlier in this study. 
 
 Please note the second part of (Xu, 2018) proposes a perturbation theory.  Our 
report does not test nor judge that perturbation theory in any way, shape, or form.  For 
analysis of that method, refer to Jekeli and Habana (2019) and Habana (2020). 
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13.  Classic Harmonic Oscillator 
 
 The differential equation of interest (12.1) is 
 

𝑦𝑦 + 𝑝𝑝12𝑦𝑦 − 𝑝𝑝2 cos(𝑝𝑝1𝑡𝑡) = 0   (13.1) 
 
 
Write (13.1) in an inhomogenous form 
 

𝑦𝑦 + 𝑝𝑝12𝑦𝑦 = 𝑝𝑝2 cos(𝑝𝑝1𝑡𝑡)    (13.2) 

̈

̈
 

This equation is an old friend; the classic harmonic, undamped, forced oscillator.  There 
are countless references in mathematics, analytical mechanics, classical dynamics, and 
engineering that address this problem, such as Marion (1965, Chapter 6 and Appendix C), 
Fowles and Cassiday (2005, Chapter 3), and Feynman et al. (1963, Chapter 21.)  (Yes, 
this is the Nobel laureate in Physics and admired educator, Prof. Richard Feynman).  Of 
particular interest is that in (13.2) the forcing function on the right has the same 
frequency, p1, as the frequency of the simple oscillator on the left.  This will cause 
resonance.  And, since there is no damping term, the steady-state oscillation, t → ∞, will 
have an infinite amplitude.  For example, see Feynman et al. (1963, pg. 21-11).  Despite 
this issue, we can proceed with analysis of the transient response for small values of t. 
 

The right-hand side of (13.2) is a form, F(t) ≠ 0.  This is a linear inhomogenous DE 
(Marion 1965, Appendix C.2).  The general solution is a superposition of the solution to 
the reduced (or associated) homogenous DE (where F(t) = 0), which is called the 
complementary solution, yc(t); and any possible solution to (13.2), which is called the 
particular solution, yp(t).  Two methods of finding a particular solution to an 
inhomogenous DE are Undetermined Coefficients and Variation of Parameters.  Don’t be 
confused by nomenclature here.  Both the complementary and particular solutions are 
still referring to a general ODE solution with a multiplicity of integral curves (Section 
11). 
 
 Consider the homogenous (F(t) = 0) DE form of (13.2).  This is the simple 
(unforced) harmonic oscillator 

𝑦𝑦 + 𝑝𝑝12𝑦𝑦 = 0     (13.3) 
 
The general solution of (13.3) is 
 

𝑦𝑦(𝑡𝑡) = 𝑐𝑐1sin(𝑝𝑝1𝑡𝑡) + 𝑐𝑐2cos(𝑝𝑝1𝑡𝑡)    (13.4) 

̈

 
where c1 and c2 are constants of integration (Feynman et al., 1963, eq. 21.6c or Blanchard 
et al., 2012, pg. 415, last equation).  This is the complementary solution, yc(t) of the 
simple (unforced) harmonic oscillator. 
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In a proposed general solution (Xu, 2018, eq.12) 
 

𝑦𝑦?(𝑡𝑡) = 𝑐𝑐1 sin(𝑝𝑝1𝑡𝑡) + 𝑐𝑐2
𝑝𝑝1

cos(𝑝𝑝1𝑡𝑡) + 𝑝𝑝1𝑝𝑝2𝑡𝑡 sin (𝑝𝑝1𝑡𝑡)+𝑝𝑝2cos (𝑝𝑝1𝑡𝑡)
2𝑝𝑝12

    (13.5) 
 
we see a solution of the homogenous part of (13.5) as 
 

𝑦𝑦?(𝑡𝑡) = 𝑐𝑐1 sin(𝑝𝑝1𝑡𝑡) + 𝑐𝑐2
𝑝𝑝1

cos(𝑝𝑝1𝑡𝑡) + ⋯   (13.6) 
 
This does not conform a general solution to the homogenous part, as seen in (13.4).  The 
term 

… + 𝑐𝑐2
cos(𝑝𝑝1𝑡𝑡)

𝑝𝑝1
+ ⋯ 

 
has an issue.  In a physical context, variable, t, has units of time; so, the parameter, p1, 
must have units of inverse time (or frequency).  When p1 appears in the denominator, this 
prevents c2 from being arbitrary.  The dimensional units of c2 (above) now depend upon 
the dimensional units of p1.  The solution posed in (ibid., eq.12) is denoted as y?(t) due to 
its lack of correspondence with the general solution of the classic harmonic oscillator 
(13.4) (Feynman et al., 1963, eq. 21.6c or Blanchard et al., 2012, pg. 415, last equation).  
Rather than further examining a nonstandard general solution at this point, it is more 
constructive to provide detailed solutions in the following two sections.  Equation (12.2) 
will be addressed in Section 15. 
 
14.  Simple Harmonic Oscillator - - Theory 
 
 The simple harmonic oscillator has a DE 
 

𝑦𝑦 + 𝑝𝑝12𝑦𝑦 = 0     (14.1) 
 
where a model parameter, p1, has units of inverse time (or frequency), and the variable, y, 
has units of length.  We may immediately write a system of first-order DEs of motion by 
inspection 

Y(𝑡𝑡) = V𝑦𝑦
V𝑦𝑦(𝑡𝑡) = −𝑝𝑝12𝑦𝑦

     (14.2) 

 
where V𝑦𝑦 is acceleration of y.  This specifies two state parameters, (y, ẏ). 
 
 The oscillator DE (14.1) is solved by the Maxima computer algebra system 
(Maxima.sourceforge.io, 2022).  In fact, all subsequent derivations are obtained through 
Maxima.  The general solution of the simple harmonic oscillator (14.1) is 
 

𝑦𝑦(𝑡𝑡) = 𝑐𝑐1 sin(𝑝𝑝1𝑡𝑡) + 𝑐𝑐2 cos(𝑝𝑝1𝑡𝑡)    (14.3) 
 

̈

̇
̇

̇
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𝑦𝑦(𝑡𝑡) = 𝑐𝑐1 𝑝𝑝1 cos(𝑝𝑝1𝑡𝑡) − 𝑐𝑐2 𝑝𝑝1 sin(𝑝𝑝1𝑡𝑡)    (14.4) 
 
 Following the requirements of the differential correction (DC) method for OD, we 
now find the specific solution to the initial value problem (IVP) for the ODE (14.1).  We 
define initial values at t0=0 for our two state parameters, and denote them as (y0, ẏ0).  The 
procedure is quite simple.  Following Feynman et al. (1963, section 21-4), y0 and ẏ0 are 
set to the left-hand sides of 14.3 and 14.4 respectively; time t is set to zero; and c1 and c2 
are solved 

𝑐𝑐1 = y0
𝑝𝑝1

𝑐𝑐2 = 𝑦𝑦0
      (14.5) 

 
 This immediately provides us with exact analytic solutions to the initial value 
problem of the simple harmonic oscillator DE.  The position equation is 
 

𝑦𝑦(𝑡𝑡) = y0
𝑝𝑝1

sin(𝑝𝑝1𝑡𝑡) + 𝑦𝑦0 cos(𝑝𝑝1𝑡𝑡)    (14.6) 
 
and the velocity equation (after a p1 cancellation) is 
 

𝑦𝑦(𝑡𝑡) = y0 cos(𝑝𝑝1𝑡𝑡) − 𝑦𝑦0𝑝𝑝1 sin(𝑝𝑝1𝑡𝑡)    (14.7) 
 
Equation 14.6 will later be used to compute error-free ranges from a tracking station to 
the oscillator at time, t, as was done in the scenarios in Sections 7, 8, 9, and 10. 
 

 The equations 14.6 and 14.7 can be used to provide exact analytic solutions 
for the state transition matrix (STM), Փ, and the sensitivity matrix, S.  For the STM 
 

𝚽𝚽(𝑡𝑡, 𝑡𝑡0) = �

∂y(𝑡𝑡)
∂y(𝑡𝑡0)

∂y(𝑡𝑡)
∂𝑦𝑦(𝑡𝑡0)

∂𝑦𝑦(𝑡𝑡)
∂y(𝑡𝑡0)

∂𝑦𝑦(𝑡𝑡)
∂𝑦𝑦(𝑡𝑡0)

� = �
cos(𝑝𝑝1𝑡𝑡)

1
𝑝𝑝1

sin(𝑝𝑝1𝑡𝑡)

−𝑝𝑝1 sin(𝑝𝑝1𝑡𝑡) cos(𝑝𝑝1𝑡𝑡)
�  (14.8) 

 
For the sensitivity matrix, S, the parameter, p1, is treated as unknown, and is a force 
parameter 
 

𝐒𝐒(𝑡𝑡) = �

∂y(𝑡𝑡)
∂𝑝𝑝1
∂𝑦𝑦(𝑡𝑡)
∂𝑝𝑝1

� = �
−𝑦𝑦0𝑡𝑡 sin(𝑝𝑝1𝑡𝑡) + y0

𝑝𝑝1
𝑡𝑡 cos(𝑝𝑝1𝑡𝑡) −

y0
𝑝𝑝12

sin(𝑝𝑝1𝑡𝑡)

−𝑦𝑦0 sin(𝑝𝑝1𝑡𝑡) − 𝑦𝑦0𝑝𝑝1𝑡𝑡 cos(𝑝𝑝1𝑡𝑡) − y0𝑡𝑡 sin(𝑝𝑝1𝑡𝑡)
� (14.9) 

 
The initial conditions for Փ and S are found by setting t = 0. 

 
𝚽𝚽(𝑡𝑡0, 𝑡𝑡0) = �1 0

0 1�    (14.10) 

where c1 and c2 are constants of integration.  Note that (14.3) obeys the accepted general 
solution form (Feynman et al., 1963, eq. 21.6c, Blanchard et al., 2012, pg. 415, last 
equation); and, so, also qualifies as a complementary solution.  The velocity of y is ∂y/∂t 
 

̇

̇

̇

̇ ̇

̇
̇ ̇

̇

̇

̇ ̇

̇
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and 
𝐒𝐒(𝑡𝑡0) = �0

0�      (14.11) 
 

Note that these derived initial conditions (14.10) and (14.11) conform to Coddington and 
Levinson (1955, Chapter 1), and Montenbruck and Gill (2000, pg. 240-241). 
 
15.  Forced Harmonic Oscillator - - Theory 
 
 The forced harmonic oscillator has a DE 
 

𝑦𝑦 + 𝑝𝑝12𝑦𝑦 = 𝑝𝑝2 cos(𝑝𝑝1𝑡𝑡)     (15.1) 
 
where a model parameter, p1, has units of inverse time, and the variable, y, has units of 
length.  Model parameter, p2, has units of acceleration.  We may immediately write a 
system of first-order DEs of motion by inspection 
 

Y(𝑡𝑡) = V𝑦𝑦
V𝑦𝑦(𝑡𝑡) = −𝑝𝑝12𝑦𝑦 + 𝑝𝑝2 cos(𝑝𝑝1𝑡𝑡)

    (15.2) 

 
where V𝑦𝑦 is acceleration of y.  This specifies two state parameters, (y, ẏ). 
 
 The oscillator DE (15.1) is solved by Maxima (Maxima.sourceforge.io, 2022).  
The general solution of the forced harmonic oscillator is 
 

𝑦𝑦(𝑡𝑡) = 𝑐𝑐1 sin(𝑝𝑝1𝑡𝑡) + 𝑐𝑐2 cos(𝑝𝑝1𝑡𝑡) + 𝑝𝑝1𝑝𝑝2𝑡𝑡 sin (𝑝𝑝1𝑡𝑡)+𝑝𝑝2cos (𝑝𝑝1𝑡𝑡)
2𝑝𝑝12

  (15.3) 
 

where c1 and c2 are constants of integration.  As described in Section 13, the general 
solution (15.3) is a superposition of the complementary solution (14.3) and a particular 
solution.  The general solution for the velocity of y is ∂y/∂t 
 

𝑦𝑦(𝑡𝑡) = 𝑐𝑐1 𝑝𝑝1 cos(𝑝𝑝1𝑡𝑡) − 𝑐𝑐2 𝑝𝑝1 sin(𝑝𝑝1𝑡𝑡) + 1
2

 𝑝𝑝2𝑡𝑡 cos (𝑝𝑝1𝑡𝑡)  (15.4) 
 
 We now provide initial values at t0=0 for our two state parameters, and denote 
them as (y0, ẏ0).  Once again, following Feynman et al. (1963, section 21-4) and Section 
14, y0 and ẏ0 are set to the left-hand sides of 15.3 and 15.4 respectively; time t is set to 
zero; and c1 and c2 are solved 

𝑐𝑐1 = y0
𝑝𝑝1

𝑐𝑐2 = 𝑦𝑦0 −
𝑝𝑝2
2𝑝𝑝12

     (15.5) 

 
 This provides us with exact analytic solutions to the initial value problem of the 
forced harmonic oscillator DE.  The position equation is 
 

̈

̇
̇

̇

̇

̇
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𝑦𝑦(𝑡𝑡) = y0
𝑝𝑝1

sin(𝑝𝑝1𝑡𝑡) + �𝑦𝑦0 −
𝑝𝑝2
2𝑝𝑝12

� cos(𝑝𝑝1𝑡𝑡) + 𝑝𝑝1𝑝𝑝2𝑡𝑡 sin (𝑝𝑝1𝑡𝑡)+𝑝𝑝2cos (𝑝𝑝1𝑡𝑡)
2𝑝𝑝12

  (15.6) 
 
and the velocity equation is 
 

𝑦𝑦(𝑡𝑡) = y0 cos(𝑝𝑝1𝑡𝑡) − �𝑦𝑦0 −
𝑝𝑝2
2𝑝𝑝12

� 𝑝𝑝1 sin(𝑝𝑝1𝑡𝑡) + 1
2
𝑝𝑝2𝑡𝑡 cos (𝑝𝑝1𝑡𝑡)   (15.7) 

 
Equation 15.6 will later be used to compute error-free ranges from a tracking station to 
the oscillator, as was done in the scenarios in Sections 7, 8, 9, and 10. 
 

 The equations 15.6 and 15.7 can be used to provide exact analytic solutions 
for the state transition matrix (STM), Փ, and the sensitivity matrix, S.  For the STM 
 

𝚽𝚽(𝑡𝑡, 𝑡𝑡0) = �

∂y(𝑡𝑡)
∂y(𝑡𝑡0)

∂y(𝑡𝑡)
∂𝑦𝑦(𝑡𝑡0)

∂𝑦𝑦(𝑡𝑡)
∂y(𝑡𝑡0)

∂𝑦𝑦(𝑡𝑡)
∂𝑦𝑦(𝑡𝑡0)

� = �
cos(𝑝𝑝1𝑡𝑡)

1
𝑝𝑝1

sin(𝑝𝑝1𝑡𝑡)

−𝑝𝑝1 sin(𝑝𝑝1𝑡𝑡) cos(𝑝𝑝1𝑡𝑡)
�  (15.8) 

 
Note that this result is identical to 14.8 for the simple harmonic oscillator.  This is 
because there is no explicit functional dependence between (𝑦𝑦(𝑡𝑡0) 𝑦𝑦(𝑡𝑡0)) and the 
particular solution of the inhomogenous part of 14.6 and 14.7. 
 

For the sensitivity matrix, S, the parameters, p1 and p2, are unknown force 
parameters 

𝐒𝐒(𝑡𝑡) = �

∂y(𝑡𝑡)
∂𝑝𝑝1

∂y(𝑡𝑡)
∂𝑝𝑝2

∂𝑦𝑦(𝑡𝑡)
∂𝑝𝑝1

∂𝑦𝑦(𝑡𝑡)
∂𝑝𝑝2

�       (15.9a) 

where 
 
∂𝑦𝑦(𝑡𝑡)
∂𝑝𝑝1

= −y0 sin(𝑝𝑝1𝑡𝑡)
𝑝𝑝12

+ y0𝑡𝑡 cos(𝑝𝑝1𝑡𝑡)
𝑝𝑝1

− �𝑦𝑦0 −
𝑝𝑝2
2𝑝𝑝12

� 𝑡𝑡 sin(𝑝𝑝1𝑡𝑡) −
𝑝𝑝2 cos(𝑝𝑝1𝑡𝑡)

𝑝𝑝13
+ 𝑝𝑝2 cos(𝑝𝑝1𝑡𝑡)

𝑝𝑝13
 −

              𝑝𝑝1𝑝𝑝2𝑡𝑡 sin(𝑝𝑝1𝑡𝑡)
𝑝𝑝13

          (15.9b) 
 
∂𝑦𝑦(𝑡𝑡)
∂𝑝𝑝2

= 𝑝𝑝1𝑡𝑡 sin(𝑝𝑝1𝑡𝑡)
2𝑝𝑝1

+ cos (𝑝𝑝1𝑡𝑡)
2𝑝𝑝12

− cos (𝑝𝑝1𝑡𝑡)
2𝑝𝑝12

       (15.9c) 
 
∂𝑦𝑦(𝑡𝑡)
∂𝑝𝑝1

= −y0 sin(𝑝𝑝1𝑡𝑡) − �𝑦𝑦0 −
𝑝𝑝2
2𝑝𝑝12

� sin(𝑝𝑝1𝑡𝑡) − �𝑦𝑦0 −
𝑝𝑝2
2𝑝𝑝12

� 𝑝𝑝1𝑡𝑡 cos(𝑝𝑝1𝑡𝑡) −
𝑝𝑝2 𝑡𝑡2 sin(𝑝𝑝1𝑡𝑡)

2
−

                  𝑝𝑝2 sin(𝑝𝑝1𝑡𝑡)
𝑝𝑝12

           (15.9d) 
 
∂𝑦𝑦(𝑡𝑡)
∂𝑝𝑝2

= 1
2
�sin(𝑝𝑝1𝑡𝑡)

𝑝𝑝1
� + 𝑡𝑡 cos(𝑝𝑝1𝑡𝑡)         (15.9e) 

 
The initial conditions for Փ and S are found by setting t = 0. 

 

̇

̇ ̇

̇
̇ ̇

̇

̇

̇ ̇

̇ ̇

̇ ̇

̇
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𝚽𝚽(𝑡𝑡0, 𝑡𝑡0) = �1 0
0 1�    (15.10) 

and 
𝐒𝐒(𝑡𝑡0) = �0 0

0 0�     (15.11) 
 

Note that the initial conditions (15.10) and (15.11) conform to Coddington and Levinson 
(1955, Chapter 1), and Montenbruck and Gill (2000, pg. 240-241).  The derivations 
above contradict the arguments of Xu (2018) using the ODE proposed by Xu (2018).  
Thanks to a valuable contribution by Prof. Chris Jekeli (Milbert and Jekeli, 2023), he 
points out that ∂c1/∂p1 and ∂c2/∂p1 of Xu are not zero, as was assumed in Xu (2018).  
Further, Dr. Jekeli shows that when those partials are established, (12.2) does, in fact, 
lead to (15.11). 
 
16.  Simple Harmonic Oscillator - - I - - Known Force Parameter 
 

In this section we create a new computational scenario based on the simple 
harmonic oscillator (SHO) theory of Section 14.  The structure of the scenario is inspired 
by the Uniform Gravity Model scenarios of Sections 7 and 8.  The oscillator is aligned 
along the Y-axis, where a fixed X=0.  A tracking station with known, constant 
coordinates (Xs, Ys) is defined.  Observations from station to oscillator are range, ρ 

 
ρ = �(X − X𝑠𝑠)2 + (Y − Y𝑠𝑠)2 

 
As in the uniform gravity field model (UGFM, Section 7 and 8), the range is idealized 
(infinite speed of light, etc.). 
 

We define the Simple Harmonic Oscillator Scenario: 
 
        Xs = -1.0  

Ys = -1.0 
Y0 = 0.4 
Ẏ0 = 0.2 
p1  = 0.6 

 
As in the UGFM scenario, the quantities do not have specific units.  However, Y, has 
length, Ẏ has velocity, p1 has frequency (inverse time), and t has time.  Lack of specific 
units will not inhibit the test in any way.  
 

The exact analytic theory of Section 14 and the defining scenario parameters are 
sufficient to generate ten epochs of range data at times 0 through 9, inclusive. 
 

 Table 16.1 – Perfect Range Data for Simple Harmonic Oscillator Scenario 
   0    1.7204650534085253 
     1    1.7867005209798366 

              2    1.8180709213909316 



                3    1.8108986696461278 
                4    1.7660231389977032 
             5    1.6887149431200152 
             6    1.5881127625767222 
             7    1.4761291700172752 

            8    1.3657475192551192 
  9    1.2687384331829761 

 
 Our least squares and differential correction (DC) setups give scenario 
characteristics.  The number of observations, n = 10.  We will treat our observations as 
uncorrelated.  We arbitrarily choose σ = 0.001.  There are two unknown parameters, 
(Y0, Ẏ0).  We identify these unknowns as state parameters, as described earlier.  
Therefore, u = ns = 2.  For this first SHO scenario, p1, is assumed known.  This scenario 
has no unknown force parameter, np = 0. 
 

As before, we begin with perturbed initial conditions as the starting estimate of 
the unknown parameters, X0: 

Y0 = 0.3 
Ẏ0 = 0.15 

 
Since this scenario has no force model parameter, the variational DE consists 

solely of the state transition DE (Montenbruck and Gill, 2000, Eq. 7.42).  Since there is 
no frictional drag, there is no spatial dependence of a on v; the lower right element is 
01x1.  However, there is spatial dependence of a on r; the lower left element is nonzero. 
 
 Although the SHO theory in Section 14 includes exact analytic forms for the state 
transition matrix (STM), Փ(t, t0), the variational equations will be numerically integrated.  
These are the system of 4 variational DEs integrated in time by DDEABM. 
 

 
d
d𝑡𝑡
𝚽𝚽(𝑡𝑡, 𝑡𝑡0) = � 0 1

−𝑝𝑝12 0�𝚽𝚽(𝑡𝑡, 𝑡𝑡0)  

 
As per DC standard practice, and as demonstrated in Section 14, the STM initial 
conditions are: Փ(t0, t0) = I2x2.  
 
 This scenario is designated sho2, and was cycled for 5 loops, 4 iterations.  The 
results are now displayed. 
 
 program sho2 -- 2022aug30 
 l.s. solve simple harmonic oscillator by differential correction 
 imperfect initial statevector  
 rtol,atol =    1.0000000000000000E-013   1.0000000000000000E-013 
 tfact =   0.50000000000000000      
 ns,np,nq,nsy=           2           0           0           6 
 nep,nobs =           10          10 
 xsta,ysta =   -1.0000000000000000       -1.0000000000000000      
 p1  =   0.59999999999999998      
 xag =   0.40000000000000002       0.20000000000000001      
 x0  =   0.30000000000000004       0.15000000000000002      
 perfect c1, c2 =   0.33333333333333337       0.40000000000000002      
 elb =   (ranges, unitless, perfect) 
   1.7204650534085253      
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   1.7867005209798366      
   1.8180709213909316      
   1.8108986696461278      
   1.7660231389977032      
   1.6887149431200152      
   1.5881127625767222      
   1.4761291700172752      
   1.3657475192551192      
   1.2687384331829761      
 range sigmas =    1.0000000000000000E-003 
 
 r ave/std/rms ->  -5.6883479060797645E-002   5.1052572326614649E-002   
7.4709161533964508E-002 
 r max/iep     ->   3.4437052077616048E-002           9 
 r min/iep     -> -0.10673870460340784                2 
 x()=   0.10117981591776654        5.0773148429313311E-002 
 finished iteration:            0 
 r ave/std/rms ->   8.3597059056306211E-004   6.2177664130477067E-004   
1.0231287312901403E-003 
 r max/iep     ->   1.4532054162386121E-003           3 
 r min/iep     ->  -3.1745532189231263E-004           9 
 x()=   -1.1796453038345218E-003  -7.7300994031497829E-004 
 finished iteration:            1 
 r ave/std/rms ->   1.4335439402213268E-007   9.3440522870475387E-008   
1.6854821407635834E-007 
 r max/iep     ->   2.3915535485308226E-007           3 
 r min/iep     ->  -3.4219407973878901E-008           9 
 x()=   -1.7061392874558182E-007  -1.3848899151743730E-007 
 finished iteration:            2 
 r ave/std/rms ->   3.4638958368304883E-015   5.1387857322789174E-015   
5.9803830387741573E-015 
 r max/iep     ->   1.2878587085651816E-014           4 
 r min/iep     ->  -3.7747582837255322E-015           9 
 x()=   -3.7857999180465399E-015  -4.3787839367434787E-015 
 finished iteration:            3 
 r ave/std/rms ->  -8.6597395920762208E-016   3.6432310591584215E-015   
3.5631068175681542E-015 
 r max/iep     ->   5.9952043329758453E-015           4 
 r min/iep     ->  -7.3274719625260332E-015           2 
 x()=    8.7637142705308423E-017   1.6521952689216726E-017 
 finished iteration:            4 
 xa()=   0.39999999999999963       0.20000000000000245      
 err.   =   -3.8857805861880479E-016   2.4424906541753444E-015 
 relerr.=   -9.7144514654701197E-016   1.2212453270876722E-014 
 
 end of processing 

 
As before, we test to see how well the iterated, adjusted unknowns, Xa (denoted in 

the computer output as “xa()”), match the unperturbed defining parameters.  This 
comparison is shown below in Table 16.2. 
 

 Table 16.2 – Adjusted Unknowns, Scenario Parameters, and Error (sho2) 
0  0.39999999999999963 0.4000000000000000 -3.8857805861880479E-016 
0    0.20000000000000245 0.2000000000000000 2.4424906541753444E-015 

Y
Ẏ

 
The DC process again recovers the unknown scenario parameters to the limits of 64-bit 
machine precision. 
 
17.  Simple Harmonic Oscillator - - II - - Unknown Force Parameter 
 

In this section we explore a variant of the scenario of the prior section.  The 
frequency parameter, p1, is still considered constant.  But now p1 is treated as an 
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unknown parameter to be solved.  The number of unknowns become u = 3. The DC 
unknown state parameters are still (Y0, Ẏ t0) .  The number of state parameters remains ns 
= 2.  However, frequency, p1, is not described by a DE.  Certainly, it participates in the 
force model and the associated DEs.  But, frequency, p1, has no trajectory; it is a force 
parameter.  The number of force parameters is np = 1.   
 

 We retain the SHO equations of motion, and the first-order DE system of 
Sections 14 and 16. We retain the equations defining range observations, the defining 
quantities of the Simple Harmonic Oscillator Scenario, and the perfect range data of 
Table 16.1.  We keep the range sigma, dispersion, and weight matrices. 
 

We choose perturbed starting estimates of the unknown parameters, X0: 
 

Y0 = 0.3 
Ẏ0 = 0.15 
p1  = 0.45 

 
 Since this variant has a force model parameter, the variational DE is now the 
combined form holding both the state transition matrix and the sensitivity matrix 
(Montenbruck and Gill, 2000, Eq. 7.45) reproduced above.  We integrate both matrices as 
the combined matrix, (Փ|S); which is a ns x (ns + np) matrix where ns = 2 where np = 1.  
Note that the 2x2 matrix in the homogenous part is unchanged from the variational DE in 
the prior scenario.  The fact that p1 is now an unknown has no bearing on the partials 
∂a/∂r and ∂a/∂v.  Note the 1x1 element in the lower right-hand corner of the 
inhomogenous term becomes 
 

∂𝐚𝐚
∂𝐩𝐩

= �
∂𝑦𝑦
∂𝑝𝑝1

� = (−2 𝑝𝑝1𝑦𝑦) 

 
since p1 is now a force parameter.  The full variational DE system is now written as  
 

d
d𝑡𝑡

(𝚽𝚽|𝐒𝐒) = � 0 1
−𝑝𝑝12 0� (𝚽𝚽|𝐒𝐒) + �0 0 0

0 0 −2 𝑝𝑝1𝑦𝑦
� 

̈

 
These are the 6 variational DEs integrated in time by DDEABM.  As per DC standard 
practice, and as demonstrated in Section 14, the STM initial conditions are: 
Փ(t0, t0) = I2x2, and the 2x1 sensitivity matrix initial conditions are S(t0) = 0. 
 
 This scenario is designated sho3, and was cycled for 6 loops, 5 iterations.  The 
results are now displayed. 
 
 program sho3 -- 2022aug28 
 l.s. solve simple harmonic oscillator by differential correction 
 unknown force parameter--frequency 
 imperfect initial statevector  
 rtol,atol =    1.0000000000000000E-013   1.0000000000000000E-013 
 ns,np,nq,nsy=           2           1           0           8 
 nep,nobs =           10          10 
 xsta,ysta =   -1.0000000000000000       -1.0000000000000000      
   perfect p1=   0.59999999999999998      
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 imperfect p1=   0.45000000000000001      
 xag =   0.40000000000000002       0.20000000000000001       0.59999999999999998      
 x0  =   0.30000000000000004       0.15000000000000002       0.45000000000000001      
 perfect c1, c2 =   0.33333333333333337       0.40000000000000002      
 elb =   (ranges, unitless, perfect) 
   1.7204650534085253      
   1.8180709213909316      
   1.7660231389977032      
   1.5881127625767222      
   1.3657475192551192      
   1.1932547896898711      
   1.1152705435822938      
   1.1240770355998095      
   1.2223466303252157      
   1.4115919195461191      
 range sigmas =    1.0000000000000000E-003 
 
 r ave/std/rms ->   4.3717959699135632E-002  0.17383963061871688       
0.17061493327532026      
 r max/iep     ->  0.27195471803218707                5 
 r min/iep     -> -0.26903760940637289                9 
 x()=   0.12714065556563914       -9.3728933376620693E-002   3.1991367908506430E-002 
 finished iteration:            0 
 r ave/std/rms ->  -2.5635241491227111E-002   7.5104276036009304E-002   
7.5721546849739571E-002 
 r max/iep     ->   6.2873174254484132E-002           5 
 r min/iep     -> -0.17047153343073229                9 
 x()=   -3.1347272652276839E-002  0.15311051921044044       0.16777530402710034      
 finished iteration:            1 
 r ave/std/rms ->   1.2785993102832016E-002   7.8585854937214400E-002   
7.5641553105533749E-002 
 r max/iep     ->  0.16820069669824922                9 
 r min/iep     ->  -6.7821319673996072E-002           4 
 x()=   -4.6426699547637562E-003  -1.1681614258807094E-002  -4.8154588140340182E-002 
 finished iteration:            2 
 r ave/std/rms ->  -5.2291686300722786E-004   5.4694016292098644E-003   
5.2150130209866674E-003 
 r max/iep     ->   5.3974240508578575E-003           8 
 r min/iep     ->  -8.2481664178473135E-003           1 
 x()=    8.8396573156952450E-003   2.2988158325274108E-003  -1.6378023985129976E-003 
 finished iteration:            3 
 r ave/std/rms ->  -3.6111189779308716E-006   4.4776872463990342E-005   
4.2632284212361688E-005 
 r max/iep     ->   4.6634701482917151E-005           4 
 r min/iep     ->  -9.6061979359296501E-005           9 
 x()=    9.6258298569092138E-006   1.2130829789578420E-006   2.5720203845340609E-005 
 finished iteration:            4 
 r ave/std/rms ->   7.4846417952301178E-011   2.3192921891252745E-009   
2.2015464153553630E-009 
 r max/iep     ->   3.5876679405077994E-009           9 
 r min/iep     ->  -3.1701830049968294E-009           0 
 x()=    3.8958491178216498E-009  -4.9051690753770889E-010  -1.6005983048007833E-009 
 finished iteration:            5 
 xa()=   0.39999999999999991       0.20000000000000215       0.60000000000000064      
 err.   =   -1.1102230246251565E-016   2.1371793224034263E-015 
 relerr.=   -2.7755575615628914E-016   1.0685896612017132E-014 
 p1  =   0.60000000000000064      
 err.=    6.6613381477509392E-016 
 
 end of processing 

 
As before, we test to see how well the iterated, adjusted unknowns, Xa (denoted in 

the computer output as “xa()”), match the unperturbed defining parameters of this 
scenario variant that includes a force parameter and a sensitivity matrix.  This comparison 
is shown below in Table 17.1. 
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 Table 17.1 – Adjusted Unknowns, Scenario Parameters, and Error (sho3) 
Y0  0.39999999999999991 0.4000000000000000 -1.1102230246251565E-016 
Ẏ 0    0.20000000000000215 0.2000000000000000 2.1371793224034263E-015 
p1    0.60000000000000064 0.6000000000000000 6.6613381477509392E-016 

 
This scenario test again shows the DC process does recover the unknown scenario 

parameters, which now include a force parameter, p1, to the limits of 64-bit machine 
precision. 
 
18.  Forced Harmonic Oscillator - - I - - Known Force Parameters 

 
We now create a new computational scenario based on the forced harmonic 

oscillator (FHO) theory of Section 15.  Recall, the inhomogenous DE is 15.1 
 

𝑦𝑦 + 𝑝𝑝12𝑦𝑦 = 𝑝𝑝2 cos(𝑝𝑝1𝑡𝑡) 
 
where model parameter, p2, has units of length per time squared. 
 

We define the Forced Harmonic Oscillator Scenario: 
 
        Xs = -1.0  

Ys = -1.0 
Y0 = 0.4 
Ẏ0 = 0.2 
p1  = 0.6 
p2  = 0.1 

̈

 
Note, p1 is selected to provide a nearly full oscillation with ten epochs of range data at 
times 0 through 9.  This is to keep t as small as possible for this scenario.  Recall in 
Section 13 that because of resonance with the forcing function on the right, 13.2 will 
develop a steady-state oscillation with infinite amplitude.  Therefore, we analyze the 
transient response for small values of t. 
 

The exact analytic theory of Section 15 and the defining scenario parameters are 
sufficient to generate ten epochs of range data at times 0 through 9, inclusive. 
 

 Table 18.1 – Perfect Range Data for Forced Harmonic Oscillator Scenario 
   0    1.7204650534085253 
     1    1.8575476424068613 

              2    1.8961014326396548 
                3    1.7838471962699893 
                4    1.5280172212056140 
             5    1.2263266673938802 
             6    1.0364711194491059 
             7    1.0000122571820356 

            8    1.0007537939094795 
  9    1.0833521633238039 



 
The number of observations, n = 10.  Observations are uncorrelated.  We choose σ = 
0.001.  There are two unknown parameters, (Y0, Ẏ0).  We identify these unknowns as 
state parameters.  Therefore, u = ns = 2.  For this FHO scenario, p1 and p2 are assumed 
known. This scenario has no unknown force parameters, np = 0. 
 

As before, we begin with perturbed initial conditions as the starting estimate of 
the unknown parameters, X0: 

Y0 = 0.3 
Ẏ0 = 0.15 

  
Since there is no spatial dependence of the right-hand forcing function in 13.2, the 

variational DE (which does not include a sensitivity matrix) is identical to that of Section 
16.  A system of 4 variational DEs are integrated in time by DDEABM. 
 

 
d
d𝑡𝑡
𝚽𝚽(𝑡𝑡, 𝑡𝑡0) = � 0 1

−𝑝𝑝12 0�𝚽𝚽(𝑡𝑡, 𝑡𝑡0)  

 
As per DC standard practice, and as demonstrated in Section 14, the STM initial 
conditions are: Փ(t0, t0) = I2x2.  
 
 This scenario is designated fho2, and was cycled for 5 loops, 4 iterations.  The 
results are now displayed. 
 
 program fho2 -- 2022aug31 
 l.s. solve forced harmonic oscillator by differential correction 
 imperfect initial statevector  
 rtol,atol =    1.0000000000000000E-013   1.0000000000000000E-013 
 ns,np,nq,nsy=           2           0           0           6 
 nep,nobs =           10          10 
 xsta,ysta =   -1.0000000000000000       -1.0000000000000000      
   perfect p1=   0.59999999999999998      
   perfect p2=   0.10000000000000001      
 xag =   0.40000000000000002       0.20000000000000001      
 x0  =   0.30000000000000004       0.15000000000000002      
 perfect c1, c2 =   0.33333333333333337       0.26111111111111113      
 elb =   (ranges, unitless, perfect) 
   1.7204650534085253      
   1.8575476424068613      
   1.8961014326396548      
   1.7838471962699893      
   1.5280172212056140      
   1.2263266673938802      
   1.0364711194491059      
   1.0000122571820356      
   1.0007537939094795      
   1.0833521633238039      
 range sigmas =    1.0000000000000000E-003 
 
 r ave/std/rms ->  -2.1212624407696092E-002   5.7451176829574797E-002   
5.8485462992565504E-002 
 r max/iep     ->   5.2477509740658679E-002           5 
 r min/iep     -> -0.10781501675050120                1 
 x()=    9.9174046262394497E-002   4.9928614169339046E-002 
 finished iteration:            0 
 r ave/std/rms ->  -6.8145108374317867E-005   3.9080643436813515E-004   
3.7696214402049643E-004 
 r max/iep     ->   4.6376310607110227E-004           5 
 r min/iep     ->  -6.7203919597735862E-004           0 
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 x()=    8.2591322302375762E-004   7.1389542425807521E-005 
 finished iteration:            1 
 r ave/std/rms ->  -6.8976577782819957E-010   1.9370279968576339E-008   
1.8389201947969077E-008 
 r max/iep     ->   2.5748489118626594E-008           4 
 r min/iep     ->  -3.2968070717842579E-008           0 
 x()=    4.0514603990313684E-008  -3.7117761389760169E-009 
 finished iteration:            2 
 r ave/std/rms ->  -1.3544720900426909E-015   1.3649052143972925E-014   
1.3019276348119634E-014 
 r max/iep     ->   1.8207657603852567E-014           0 
 r min/iep     ->  -2.9976021664879227E-014           1 
 x()=    6.7028704949717713E-016  -2.6609160224593044E-016 
 finished iteration:            3 
 r ave/std/rms ->  -1.4432899320127035E-015   1.3523571728434144E-014   
1.2910514276842041E-014 
 r max/iep     ->   1.8873791418627661E-014           0 
 r min/iep     ->  -2.9087843245179101E-014           1 
 x()=   -4.8111597004979838E-016  -4.5222411816792907E-017 
 finished iteration:            4 
 xa()=   0.40000000000002250       0.19999999999998841      
 err.   =    2.2482016248659420E-014  -1.1601830607332886E-014 
 relerr.=    5.6205040621648550E-014  -5.8009153036664429E-014 
 
 end of processing 

 
 

As before, we test to see how well the iterated, adjusted unknowns, Xa (denoted in 
the computer output as “xa()”), match the unperturbed defining parameters.  This 
comparison is shown below in Table 18.2. 

 
 Table 18.2 – Adjusted Unknowns, Scenario Parameters, and Error (fho2) 
Y0  0.40000000000002250 0.4000000000000000 2.2482016248659420E-014 
Ẏ0    0.19999999999998841 0.2000000000000000 -1.1601830607332886E-014 

 
As seen in the other scenarios and variants, the DC process recovers the unknown 
scenario parameters to the limits of 64-bit machine precision.  It seems that the numerical 
integration of 15.1 has added some slight roundoff error, and an additional iteration might 
be indicated. 
 
19.  Forced Harmonic Oscillator - - II - - Two Unknown Force Parameters 
 

This section explores a variant of the scenario in Section 18.  The force 
parameters, p1 and p2, are still considered constant.  But now p1 and p2 are treated as 
unknown parameters to be solved.  The number of unknowns becomes u = 4. The DC 
unknown state parameters are still (Y t0, Ẏ0) .  The number of state parameters remains 
ns = 2.  The number of force parameters is np = 2.   
 

 We retain the FHO equations of motion, and the first-order DE system of 
Sections 15 and 18. We retain the equations defining range observations, the defining 
quantities of the Forced Harmonic Oscillator Scenario, and the perfect range data of 
Table 18.1.  We keep the range sigma, dispersion, and weight matrices. 
 

We choose perturbed starting estimates of the unknown parameters, X0: 
Y0 = 0.3 
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Ẏ0 = 0.15 
p1  = 0.45 
p2  = 0.075 

 
 Since this variant has a force model parameter, the variational DE is now the 
combined form holding both the state transition matrix and the sensitivity matrix 
(Montenbruck and Gill, 2000, Eq. 7.45) reproduced above.  We integrate both matrices as 
the combined matrix, (Փ|S); which is a ns x (ns + np) matrix where ns = 2 where np = 2.   
 

The full inhomogenous variational DE system is now written as 
 

d
d𝑡𝑡

(𝚽𝚽|𝐒𝐒) = � 0 1
−𝑝𝑝12 0� (𝚽𝚽|𝐒𝐒) + �0 0 0 0

0 0 −2 𝑝𝑝1𝑦𝑦 − 𝑝𝑝2𝑡𝑡 sin(𝑝𝑝1𝑡𝑡) cos(𝑝𝑝1𝑡𝑡)
� 

 
These are the 8 variational DEs integrated in time by DDEABM.  As per DC standard 
practice, and as demonstrated in Section 14, the STM initial conditions are: 
Փ(t0, t0) = I2x2, and the 2x2 sensitivity matrix initial conditions are S(t0) = 0. 
 
 This scenario is designated fho3, and was cycled for 9 loops, 8 iterations.  The 
results are now displayed. 
 
 program fho3 -- 2022sep02 
 l.s. solve forced harmonic oscillator by differential correction 
 two unknown force parameters, S(t0)=0 
 imperfect initial statevector  
 rtol,atol =    1.0000000000000000E-013   1.0000000000000000E-013 
 ns,np,nq,nsy=           2           2           0          10 
 nep,nobs =           10          10 
 xsta,ysta =   -1.0000000000000000       -1.0000000000000000      
   perfect p1=   0.59999999999999998      
 imperfect p1=   0.45000000000000001      
   perfect p2=   0.10000000000000001      
 imperfect p2=    7.4999999999999997E-002 
 xag =   0.40000000000000002       0.20000000000000001       0.59999999999999998       
0.10000000000000001      
 x0  =   0.30000000000000004       0.15000000000000002       0.45000000000000001        
7.4999999999999997E-002 
 perfect c1, c2 =   0.33333333333333337       0.26111111111111113      
 elb =   (ranges, unitless, perfect) 
   1.7204650534085253      
   1.8575476424068613      
   1.8961014326396548      
   1.7838471962699893      
   1.5280172212056140      
   1.2263266673938802      
   1.0364711194491059      
   1.0000122571820356      
   1.0007537939094795      
   1.0833521633238039      
 range sigmas =    1.0000000000000000E-003 
 
 r ave/std/rms ->  0.13750284822375430       0.22371384120141377       
0.25288362489537958      
 r max/iep     ->  0.49015573940180901                5 
 r min/iep     ->  -9.5028363353665268E-002           1 
 x()=   0.10056389115876141        9.8796616086885614E-002   5.3098685362056232E-002  -
9.7699915220765821E-002 
 finished iteration:            0 
 r ave/std/rms ->   6.1961071915903651E-002   6.6900162220754192E-002   
8.8697480052224081E-002 
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 r max/iep     ->  0.15432677805188422                6 
 r min/iep     ->  -2.1911981836467254E-002           3 
 x()=   -2.1127238612745902E-002   2.7033710552844661E-002  0.12896206638213684        
6.9600219922317394E-002 
 finished iteration:            1 
 r ave/std/rms ->   1.5020282554647778E-002   9.8019311405277809E-002   
9.4194563301444309E-002 
 r max/iep     ->  0.25054729238859919                9 
 r min/iep     ->  -9.5054849298730648E-002           4 
 x()=    1.0874388679331701E-002  -4.1562518398081671E-002  -4.2501566788292144E-002   
1.5096688447220119E-002 
 finished iteration:            2 
 r ave/std/rms ->   9.9734578237975716E-003   1.4405790171881296E-002   
1.6918746182613933E-002 
 r max/iep     ->   3.3214057082444626E-002           9 
 r min/iep     ->  -7.9939504894479541E-003           3 
 x()=    8.2044486451957228E-003  -2.6967482377041330E-002   9.5461996901234775E-003   
3.0649699511532541E-002 
 finished iteration:            3 
 r ave/std/rms ->   1.2169462903136364E-003   3.5426325738739228E-003   
3.5743781657280524E-003 
 r max/iep     ->   9.1688222430355015E-003           9 
 r min/iep     ->  -2.9404215759105679E-003           4 
 x()=    1.4000052112679955E-003  -7.0209449949782711E-003   8.7942896162676414E-004   
7.1044038279066760E-003 
 finished iteration:            4 
 r ave/std/rms ->   3.9787920223943728E-005   1.2493402206230673E-004   
1.2502294780377464E-004 
 r max/iep     ->   3.3566469710821778E-004           9 
 r min/iep     ->  -9.5220524107375581E-005           4 
 x()=    8.4398070038359011E-005  -2.7908922594699538E-004   1.5183344221059636E-005   
2.4866284700754079E-004 
 finished iteration:            5 
 r ave/std/rms ->   3.9029880238850011E-008   1.2940202380418434E-007   
1.2881664077135296E-007 
 r max/iep     ->   3.5380426854914049E-007           9 
 r min/iep     ->  -9.3136452328224095E-008           4 
 x()=    1.0684804269102540E-007  -2.9164339510184345E-007   3.0481202430049386E-009   
2.4066454429371080E-007 
 finished iteration:            6 
 r ave/std/rms ->   3.9990233346998137E-014   1.2112014540747375E-013   
1.2166470081466599E-013 
 r max/iep     ->   3.3106850594322168E-013           9 
 r min/iep     ->  -8.7929663550312398E-014           0 
 x()=    1.0791087461707088E-013  -2.8610029864956942E-013   7.0512133410446710E-015   
2.3669046790464206E-013 
 finished iteration:            7 
 r ave/std/rms ->  -4.4408920985006264E-017   8.4260003245840822E-016   
8.0059320849734419E-016 
 r max/iep     ->   1.5543122344752192E-015           2 
 r min/iep     ->  -1.1102230246251565E-015           4 
 x()=    1.8109478659338511E-016  -4.2409858914604050E-016  -6.1306794338266376E-016  -
4.8278036294486476E-016 
 finished iteration:            8 
 xa()=   0.40000000000000008       0.20000000000000040       0.59999999999999887        
9.9999999999998937E-002 
 err.   =    5.5511151231257827E-017   3.8857805861880479E-016 
 relerr.=    1.3877787807814457E-016   1.9428902930940239E-015 
 p1  =   0.59999999999999887      
 err.=   -1.1102230246251565E-015 
 p2  =    9.9999999999998937E-002 
 err.=   -1.0685896612017132E-015 
 
 end of processing 

 
As before, we test to see how well the iterated, adjusted unknowns, Xa (denoted in 

the computer output as “xa()”), match the unperturbed defining parameters.  This 
comparison is shown below in Table 19.1. 
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 Table 19.1 – Adjusted Unknowns, Scenario Parameters, and Error (fho3) 
Y0  0.40000000000000008 0.4000000000000000 5.5511151231257827E-017 
Ẏ 0    0.20000000000000040 0.2000000000000000 3.8857805861880479E-016 
P1    0.59999999999999887 0.6000000000000000 -1.1102230246251565E-015 
P2    0.099999999999998937 0.10000000000000000 -1.0685896612017132E-015 

 
This computation numerically integrated a proposed counter-example DE (12.2).  

The initial value of the sensitivity matrix was set to S(t0) = 0.  Further, the initial value of 
the exact analytic solution of the sensitivity matrix derived in Section 15 confirmed 
S(t0) = 0.  The DC process recovers the unknown scenario parameters, which now 
includes two force parameters, p1 and p2, to the limits of 64-bit machine precision. 
 
20.  Uniform Gravity Model - - III - - Perturbed Initial Condition 

 
The claims that the standard application of variational equations in orbit 

determination (OD), as well as in other applications, has neither a sound mathematical 
nor physical basis rests upon an argument regarding the initial value of the sensitivity 
matrix.  The results from sections 8, 10, 17, and 19 illustrate that, following standard DC 
practice (Montenbruck and Gill, 2000, pg. 241), and as proved by Coddington and 
Levinson (1955, Chapter 1), the initial conditions, S(t0) = 0, provide convergence to a 
solution with an accuracy that is only limited by machine precision. 
 

An irresistible question naturally arises, “What happens if S(t0) ≠ 0?”. 
 
 Of course, by the general proof by Coddington and Levinson (1955, Chapter 1) we 
can expect a degraded result.  And, by the derivations of the specific solutions to the IVP 
scenarios in Sections 14 and 15, we have analytic expressions that S(t0) = 0.  And, our 
computational results match the theory.  We expect trouble if S(t0) ≠ 0. 
 
 We revisit the Uniform Gravity Scenario, which is simply a 2-D trajectory of an 
object in a uniform gravity field, with associated measurement types from a fixed 
tracking station.  This section’s variant is a modification of the variant of Section 8 
(toyorb4).  The magnitude of uniform gravity, g, is constant, and is treated as an 
unknown parameter to be solved.  As before, g, is a force parameter, and np = 1.  It is 
solved by a DC procedure with the state parameters, (X0, Y0, Ẋ0, Ẏ0)t, ns = 4, and the 
number of unknowns, u = 5. 
 

The complaint about OD practice does not offer any insight regarding alternative 
contents of S(t0).  For this experiment, S(t0) = (0, 0, 0, 1)t, is adopted.  This is the only 
change made from the toyorb4 program of Section 8. 
 
 This scenario is designated toyorb4x, and was cycled for 5 loops, 4 iterations.  The 
results are now displayed. 
 
 program toyorb4x -- 2022aug03 
 l.s. solve toy orbit+g by differential correction 
 unknown g, ddeabm() variational equations 
 TEST INVALID INITIAL CONDITION FOR SENSITIVITY MATRIX 
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   perfect g=   0.50000000000000000      
 imperfect g=   0.29999999999999999      
 
 xsta,ysta=    1.0000000000000000        1.0000000000000000      
   perfect xsg=    1.0000000000000000        8.0000000000000000        2.0000000000000000        
1.0000000000000000      
 imperfect xsi=    1.5000000000000000        10.000000000000000        2.2000000000000002       
0.50000000000000000      
 elb=   (ranges, unitless, perfect) 
   7.0000000000000000      
   8.0039052967910607      
   8.9442719099991592      
   9.8011478919563295      
   10.630145812734650      
   11.535271995059327      
   12.649110640673518      
   14.108951059522463      
   16.031219541881399      
   18.494931738181680      
 range sigmas =    9.9999999999999995E-007 
 
 in lsq2loop--SET INVALID INIT.COND. FOR SENS. MATRIX 
 S()=    0.0000000000000000        0.0000000000000000        0.0000000000000000        
1.0000000000000000      
 r ave/std/rms ->   2.0945109394094805       0.35124721684114563        
2.1208520037736651      
 r max/iep     ->   2.6042921924618749                7 
 r min/iep     ->   1.6561997776192747                2 
 x()=   -1.2681644065633009       -1.9473834175396689       -8.4221430348065951E-003  
0.37532536546609663       0.28751686699538936      
 finished iteration:            0 
 in lsq2loop--SET INVALID INIT.COND. FOR SENS. MATRIX 
 S()=    0.0000000000000000        0.0000000000000000        0.0000000000000000        
1.0000000000000000      
 r ave/std/rms ->  0.15878707876686252        1.0268135202206254       
0.98697757885394710      
 r max/iep     ->   2.4311244406513062                9 
 r min/iep     -> -0.71868111502073084                4 
 x()=    1.3781694255209231        5.3730107878998012E-002 -0.24334156219401848        
3.8755062195164669E-002 -0.11421477603713015      
 finished iteration:            1 
 in lsq2loop--SET INVALID INIT.COND. FOR SENS. MATRIX 
 S()=    0.0000000000000000        0.0000000000000000        0.0000000000000000        
1.0000000000000000      
 r ave/std/rms ->  0.22158602291513452        8.4060086741375523E-002  
0.23549915905586019      
 r max/iep     ->  0.31082894324313060                5 
 r min/iep     ->   5.0197907003507680E-002           9 
 x()=  -0.65377667069905954       -7.6916837310524677E-002   5.7629162099857467E-002   
5.9942471480511017E-002   2.7292065858307346E-002 
 finished iteration:            2 
 in lsq2loop--SET INVALID INIT.COND. FOR SENS. MATRIX 
 S()=    0.0000000000000000        0.0000000000000000        0.0000000000000000        
1.0000000000000000      
 r ave/std/rms ->  -1.9614677427194936E-002   4.4336477411890327E-002   
4.6409982513878040E-002 
 r max/iep     ->   6.2574072320632723E-002           9 
 r min/iep     ->  -6.7357936863762902E-002           4 
 x()=    4.7039957597242221E-002  -2.9277227730294786E-002  -6.1483104669726174E-003   
2.5829341456137023E-002  -7.2192314130847812E-004 
 finished iteration:            3 
 in lsq2loop--SET INVALID INIT.COND. FOR SENS. MATRIX 
 S()=    0.0000000000000000        0.0000000000000000        0.0000000000000000        
1.0000000000000000      
 r ave/std/rms ->   1.2227589617052280E-003   8.0714932218643146E-004   
1.4427336912631733E-003 
 r max/iep     ->   2.1111853419562010E-003           5 
 r min/iep     ->  -2.1482581827214631E-004           9 
 x()=   -3.2681376489300251E-003  -1.5186593982123402E-004   2.8286288016345085E-004   
1.9740554971101054E-005   1.2774682627726512E-004 
 finished iteration:            4 
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 xa()=    1.0000001682068749        8.0000007593586879        2.0000000092842236       
0.99987198115288045       0.49999998050153538      
 err.=    1.6820687487317798E-007   7.5935868792953443E-007   9.2842236121271071E-009  -
1.2801884711954870E-004 
 grav=   0.49999998050153538      
 err.=   -1.9498464620681943E-008 
 
 end of processing 

 
As before, we test to see how well the iterated, adjusted unknowns, Xa (denoted in 

the computer output as “xa()”), match the unperturbed defining parameters.  This 
scenario variant includes a force parameter, a sensitivity matrix, and a variant set of 
sensitivity matrix initial conditions that contains one entry that is incorrect.  This 
comparison is shown below in Table 20.1. 
 

 Table 20.1 – Adjusted Unknowns, Scenario Parameters, and Error ( ) toyorb4x

X0  1.0000001682068749 1.0000000000000000 1.6820687487317798E-007 
Y0    8.0000007593586879 8.0000000000000000 7.5935868792953443E-007 
Ẋ 0    2.0000000092842236 2.0000000000000000 9.2842236121271071E-009 
Ẏ 0    0.99987198115288045 1.0000000000000000 1.2801884711954870E-004 
g    0.49999998050153538 0.50000000000000000 -1.9498464620681943E-008 

 
These results should also be compared to Table 8.1, the variant scenario, toyorb4, with a 
correct initial condition for the sensitivity matrix. 
 
 This variant scenario test shows the experimental DC process does not completely 
recover the unknown scenario parameters when compared to Section 8.  To be sure, 6 to 
8 digits are obtained (with one important exception).  But these results fall far short of the 
exquisite accuracy of toyorb4.  Note that the worst result belongs to Ẏ 0, which has only 
half the correct digits as the other unknowns.  Recall it was the ∂Y(𝑡𝑡0) entry of the S(t0) ∂𝑔𝑔
matrix that was set to non-zero in this experiment. 
 

Convergence is retarded when compared to Section 8.  Perhaps the scenario 
parameters could be recovered in time with more iterations.  The experimental 
perturbation applied to S(t0) creates perturbed values of the design matrix, A; and 
degraded partials mean degraded convergence. 
 
 This numerical experiment was a failure in recovery of the scenario parameters.  
But this deliberate failure reinforces a key point.  The initial values of the sensitivity 
matrix, S(t0) = 0, are mandatory for parametric IVPs; which are common in differential 
correction (DC).   
 
21.  Discussion 
 

This author must again relate his enthusiasm about Section 1.2 of Tapley, et.al 
(2004), which describes their uniform gravity field model (UGFM), and which is found 
in Section 7 of this study.  Their 2-D ballistic model with a companion set of perfect 
range data communicates the fundamental essence of the orbit determination (OD) 
problem.  It has an exact analytic solution to its (idealized) theory with no question 
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regarding its valid mathematical basis.  Any numerical error in implementation becomes 
immediately evident.  Yet, it is easily extended to overdetermined, least squares 
problems, and can include force parameter estimation.  This study’s eight exercises (and 
one exploratory experiment in Section 20), can be considered an educational “boot camp” 
that ensures a reader can take simple physical systems, and establish an initial value 
problem (IVP) for the physical model, and an associated variational IVP for the 
observation model partial derivatives. 
 
 A pleasant result in the scenario tests was the excellent performance of the 
DDEABM integrator.  In Section 10, initial positions were recovered to 0.5 to 1.4 
micrometers of accuracy over a 24-hour span of 3¾ orbital revolutions.  Additional tests 
could look at longer time spans, lower orbits, faster data rates, and variation of the 
accuracy limits communicated to the software package.  In addition, one can look at 
alternative DE integration software, perhaps with higher order algorithms. 
 
 Some mention must be made of an entire an entire body of expertise in orbit 
determination (OD) that is not batch least squares differential correction (DC).  I speak of 
Kalman filters (KF), and the iterative form, extended Kalman filters (EKF).  These are 
described in numerous references, such as Gelb (1974) and Brown and Hwang (2012).  
Also, some texts on OD address KF’s, such as Tapley et al. (2004), Vallado (2013), and 
Montenbruck and Gill (2000).  Having a separate methodology for orbit determination 
(OD) provides a powerful cross check on underlying theory. 
 
 This author must now advertise for iteration in orbit determination (OD).  The 
measurements and dynamical motion are nonlinear.  Yes, one may have very good initial 
conditions, and low accuracy requirements.  But software systems will be updated due to 
changing requirements and new measurement technologies.  And, there is always the 
possibility of bugs, both new and legacy.  When a new software system is proposed, 
consider including iteration of the nonlinear problem.  It doesn’t add much to the design 
and coding effort.  Such software does not need to be iterated on a routine basis.  But it 
certainly can help detect bugs in force models and/or variational equations.  And, maybe, 
one’s state vector initial conditions were not as good as originally thought. 
 
 This study is somewhat long.  However, this author felt there was a gap in the 
literature.  Variational equations are more abstract than force models, and should have a 
reference that provides detailed, descriptive examples of their application in differential 
correction (DC).  This author wrote the study he wishes was available when he first 
encountered variational equations. 
 
22.  Conclusions 
 
 This author has located the general mathematical proofs for the initial value 
problem (IVP) of a system of parametric ordinary differential equations (ODE) in 
Coddington and Levinson (1955, Chapter 1, Section 7).  Further, their work includes a 
derivation of the associated IVP for the variational ODE and the companion initial 
conditions for the columns of the sensitivity matrix, S(t).  The general character of their 
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mathematical work supports all applications involving differential equation (DE) models 
with parameters.  I conclude that, in contrast to Xu (2018), the standard application of 
variational equations in orbit determination (OD) has a sound basis, and that S(t0) = 0. 
 

 I have derived the exact analytic solutions to the IVPs of both the simple 
and the forced harmonic oscillator models.  This, in turn, allowed derivation of the 
associated exact analytic solutions for the state transition (STM) and sensitivity matrices 
for both oscillator variational ODEs.  Evaluation of those solutions at t = 0 confirm the 
initial values of the STM and sensitivity matrix used in standard OD practice.  This result 
also invalidates a proposed counterexample using the forced harmonic oscillator model 
(Xu, 2018) as an argument against standard OD practice. 
 
 This author finds that the standard application of variational equations in OD 
computation, including the initial condition of the sensitivity matrix, S(t0) = 0, does 
recover scenario parameters to the limits of machine precision.  I also find that 
experimental modification of the initial conditions of the sensitivity matrix to S(t0) ≠ 0, 
had a decidedly detrimental effect on convergence to correct values.  This reinforces the 
validity of standard OD practice. 
 
 It is found that nonlinear least squares, when iterating the unknown parameters, is 
successful in achieving highly accurate results.  It was found that a sophisticated 
differential equation integrator (DDEABM) could process the classic, central force 
problem (Kepler) of 3¾ orbital revolutions, almost to the limits of 64-bit machine 
precision.  Observation misclosure statistics based on error-free synthetic data provide 
evidence that extremely tiny amounts of force model integration error were passed to the 
misclosures through the computed observations. 
 
 I conclude the methodology of processing perfect, synthetic data derived from 
exact analytic models is an extremely powerful tool in debugging OD software. 
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