geodesy.noaa.gov

Multi-GNSS Positioning with the New M-PAGES Software

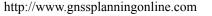
Bryan Stressler Geosciences Research Division bryan.stressler@noaa.gov 2022-08-11

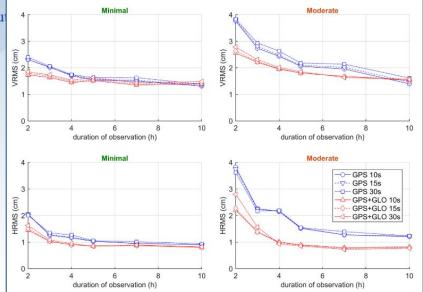
Outline

- Background on the evolution of GNSS, motivating the development of M-PAGES
- Discuss the products and services at NGS that will use M-PAGES
- Overview of the M-PAGES processing strategy, and how it compares to the legacy PAGES software
- Demonstrate M-PAGES performance for a range of use cases
- Preview the expected timeline for M-PAGES integration into NGS products and services

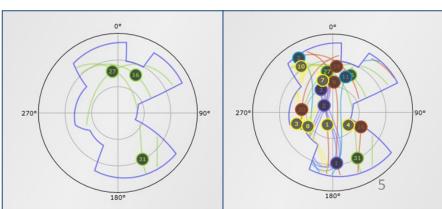
Key Points

- M-PAGES is capable of processing GNSS data for all dual-frequency systems
- Improved positioning with multi-GNSS data can be demonstrated with M-PAGES
- M-PAGES is still under active development, but OPUS-S integration is underway

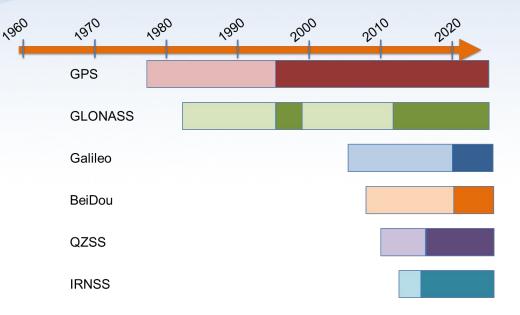

Why replace PAGES?


- PAGES = **P**rogram for the Adjustment of **G**PS **E**phemerides
- Double-difference baseline processing (GPS L1/L2 only)
- Currently used in production at NGS for:
 - Online Positioning User Service (OPUS)
 - NOAA CORS Network (NCN) monitoring
 - Precise orbit determination
- Unable to make use of new GNSS constellations or new frequencies

Why replace PAGES?


More satellites = better positioning!
Improved geometry
Better coverage when signals are obstructed (bottom right)

Various studies have already demonstrated the improvements in positioning with added systems (top right)



geodesy.noaa.gov

Background

- GNSS = Global Navigation Satellite System
- GNSS constellations:
 - GPS (US)
 - GLONASS (Russia)
 - Galileo (EU)
 - BeiDou (China)
 - QZSS (Japan; regional)
 - IRNSS (India; regional)
- Currently there are >100 GNSS satellites in orbit!

From Heck 2017. For additional background on multi-GNSS see:

 $https://www.ngs.noaa.gov/web/science_edu/webinar_series/positioning-multi-gnss-world.shtml and the series/positioning-multi-gnss-world.shtml and$

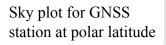
geodesy.noaa.gov

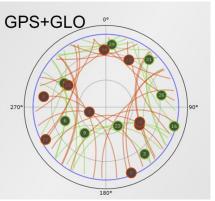
GPS

- Constellation consists of satellites in medium earth orbit (MEO)
 - ~20,000 km orbit altitude
 - 2 revolutions per day
- Code division multiple access (CDMA) system
- GPS satellites historically transmitted signals on two frequencies
 - L1: 1575.42 MHz
 - L2: 1227.60 MHz
- Ongoing GPS modernization since the 2000s
 - New civil signals L1C, L2C
 - New L5 frequency: 1176.45 MHz

https://www.faa.gov/about/office_org/headquarters_offices/ato/ service_units/techops/navservices/gnss/gps

geodesy.noaa.gov

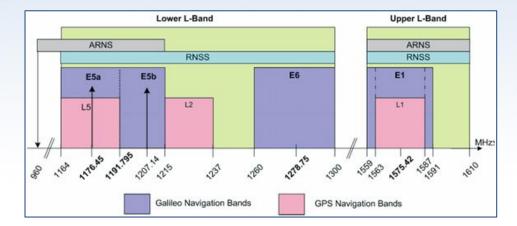

GLONASS


- Originally launched in 1980s
- MEO orbits with higher inclination angle = better coverage at polar latitudes
- Legacy satellites use frequency division multiple access (FDMA) based around G1 and G2 frequencies:
 - FDMA poses challenges for ambiguity resolution
- GLONASS modernization ongoing
 - Third frequency (G03): 1202.025 MHz
 - Future CDMA satellites planned

	Freq. Band / Frequency	Channel or Code	Observation Codes				
GNSS System			Pseudo Range	Carrier Phase	Doppler	Signal Strength	
GLONASS	G1/ 1602+k*9/16 k= -7+12	C/A	C1C	L1C	D1C	S1C	
		Р	C1P	L1P	D1P	S1P	
	G1a/ 1600.995	L1OCd	C4A	L4A	D4A	S4A	
		L10Cp	C4B	L4B	D4B	S4B	
		L1OCd+L1OCp	C4X	L4X	D4X	S4X	
	G2/ 1246+k*7/16	C/A	C2C	L2C	D2C	S2C	
		Р	C2P	L2P	D2P	S2P	
	G2a/ 1248.06	L2CSI	C6A	L6A	D6A	S6A	
		L2OCp	C6B	L6B	D6B	S6B	
		L2CSI+L2OCp	C6X	L6X	D6X	S6X	
	G3 / 1202.025	I	C3I	L3I	D3I	S3I	
		Q	C3Q	L3Q	D3Q	S3Q	
		I+Q	C3X	L3X	D3X	S3X	

11 - DINEY Version 4.00 CLONACE Observation

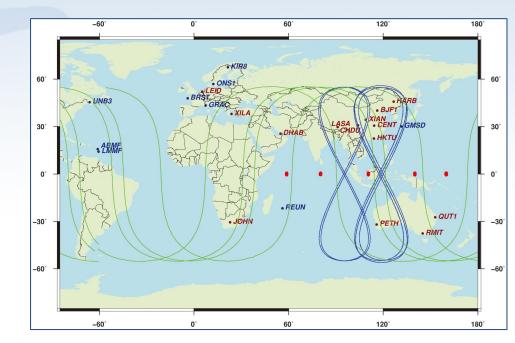
https://igs.org/news/rinex-4-now-available/



geodesy.noaa.gov

Galileo

- Galileo system launched by the EU
- MEO orbits
- Global system with three frequencies:
 - E1, E5, E6
 - E5 consists of E5a and E5b frequencies
 - $\circ~$ E1/E5a align with GPS L1/L5
- CDMA system

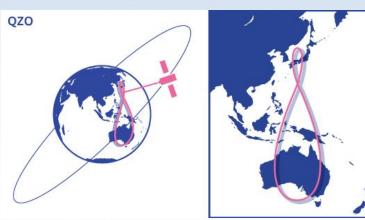


https://galileognss.eu/galileo-frequency-bands/

geodesy.noaa.gov

BeiDou

- Constellation consists of satellites in three types of orbit:
 - MEO
 - Inclined geosynchronous orbit
 - Geostationary orbit
- Multiple satellite generations already launched
 - BDS I-III
- Transmits signals on three frequencies
- CDMA system

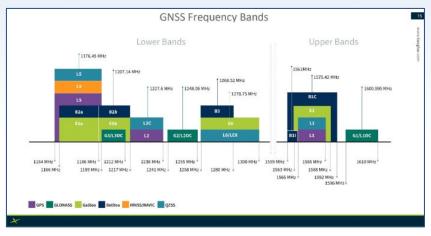


Lou et al., 2014

geodesy.noaa.gov

QZSS

- QZSS = Quasi Zenith Satellite System
- Regional system
- Frequencies: L1/L2/L5/L6
 - Designed for consistency with GPS



https://qzss.go.jp/en/technical/technology/orbit.html

Challenges of Multi-GNSS Positioning

- Different time systems
- Frequency-dependent errors
- Availability of antenna calibrations
- Availability of reference stations tracking all GNSS
- GLONASS ambiguity resolution (FDMA)

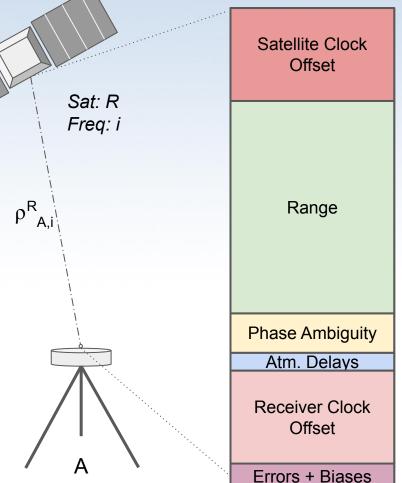
https://www.everythingrf.com/community/navigating-the-11-12-and-15-band-options-for-gnss

Why replace PAGES?

- Written in Fortran; Difficult to extend/maintain with current staff
- Does not support RINEX versions > 2
 RINEX version >= 3 required for all GNSS and all new signal types
- Unable to make use of new GNSS constellations or new frequencies

geodesy.noaa.gov

M-PAGES Software


- M-PAGES = Multi-GNSS PAGES
- Single difference baseline processing using pseudorange and carrier phase measurements
- Capable of processing data from all GNSS constellations with two or more frequencies
- Written primarily in C++ with supporting scripts in Python

Main Page Related Page	es	Namespaces	Classes	Files	
M-PAGES File Formats Main Programs Data Processing sinex2siteInfo convert_sif Todo List		M-PAGES Documentation			
		M-PAGES or Multi-GNSS PAGES is NGS's effor M-PAGES is capable of processing data from a obligations to the International GNSS Service (
 Namespaces Classes Files 		PAGES will be inte DRS monitoring an • Questions can	d GPS orbit pro	oduction, to	
		 The project pla Issues are trac The source control 	ked using the	NGS JIRA	
	This documentation was created with Doxygen				

GNSS Measurements

Pseudorange and **carrier phase** measurements are comprised of the following:

- Range = true satellite-receiver distance
- Satellite clock offset = satellite time offset relative to GPS system time
- Atmospheric delays = signal path delays through ionosphere and troposphere
- Receiver clocks offset = receiver time offset relative to GPS system time
- Carrier phase ambiguity (arbitrary integer valuephase only)
- Other errors = measurement errors, biases, etc. We must estimate, model, or try to cancel out the error sources!

geodesy.noaa.gov

Why not PPP?

- PPP = Precise Point Positioning
 PPP is an attractive alternative to baseline positioning; especially in regions where CORS coverage is sparse
- NGS operations rely heavily on GNSS vectors/network adjustments
- The M-PAGES software has been designed in a modular way to make future development easier

Sat: R Freq: i

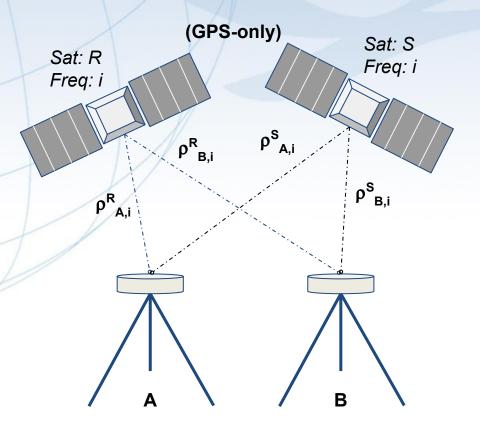
 $\rho^{R}_{A,i}$

geodesy.noaa.gov

Satellite Clock Offset

Range

Phase Ambiguity


Atm. Delays

Receiver Clock Offset

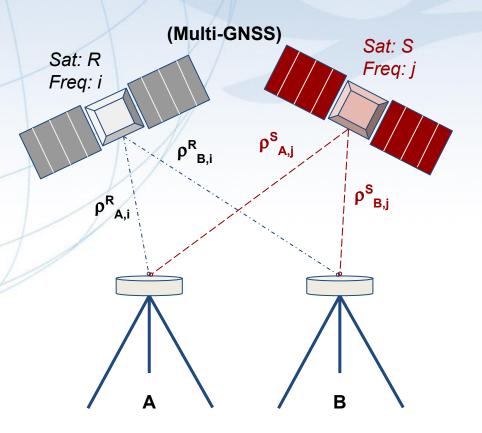
Errors + Biases

geodesy.noaa.gov

Double-Difference Processing (PAGES)

DD:
$$\rho_{AB,i}^{RS} = SD^{R} - SD^{S}$$

- Satellite **and** Receiver terms cancel
- For short baselines, atmospheric delays cancel
- Same frequencies for each satellite → phase ambiguities can be resolved


Double-Difference Range

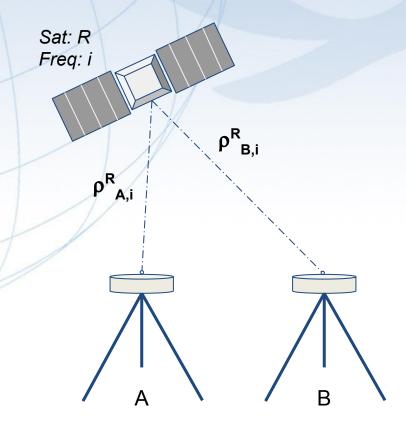
Double-Difference Ambiguity

Errors

geodesy.noaa.gov

Why not double-difference?

DD:
$$\rho_{AB,i}^{RS} = SD^{R} - SD^{S}$$


- Frequency i ≠ j
- Different frequencies prohibit ambiguity resolution!
- Could process each system separately then combine

Double-Difference Ambiguity (float)

Errors + Biases

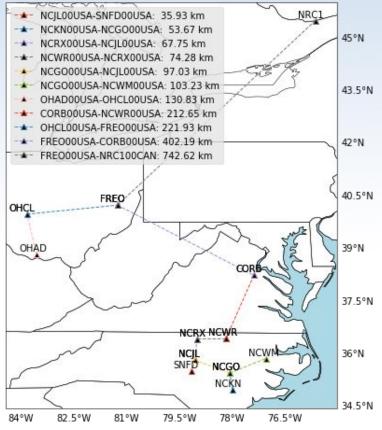
geodesy.noaa.gov

Single-Difference Processing (M-PAGES)

SD^R:
$$\rho_{AB,i}^{R} = \rho_{A,i}^{R} - \rho_{B,i}^{R}$$

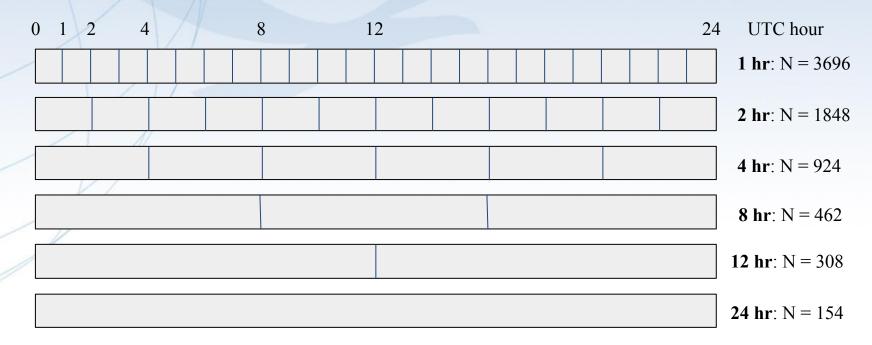
- Satellite-specific terms cancel
- Receiver clock terms do not cancel and must be estimated!
- Same frequencies for each satellite → phase ambiguities can be resolved
- Flexible for multi-GNSS

Single-DifferenceR ange
Single-Difference Ambiguity
Relative Receiver Clock Offset
Errors + Biases


geodesy.noaa.gov

M-PAGES Testing: CORS data

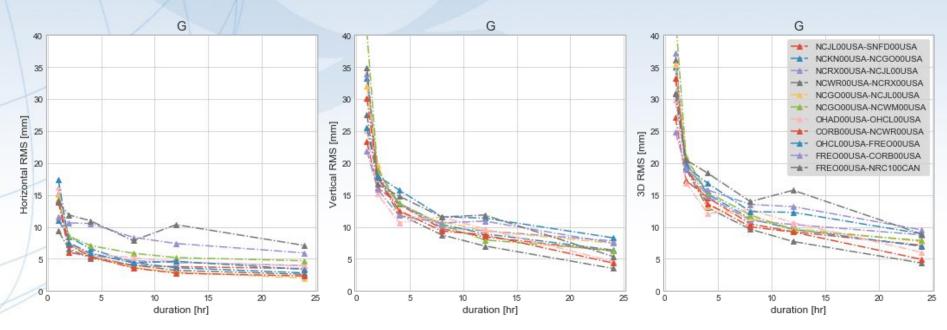
geodesy.noaa.gov


Multi-GNSS CORS Tests

- 11 baselines picked from high quality CORSs Single baseline solutions
 - "Reference" CORS tightly constrained
 - "Rover" CORS coordinates estimated and compared to MYCS2 coordinate functions
- All stations track GPS+GLO+GAL (GRE)
- All possible sub-sessions processed for:
 - 14 consecutive days for each baseline (May 2022; doy 121-134)
 - Durations: 1, 2, 4, 8, 12, and 24 hours
 - G/GR/GE/GRE
- GLONASS (R) ambiguities = float

geodesy.noaa.gov

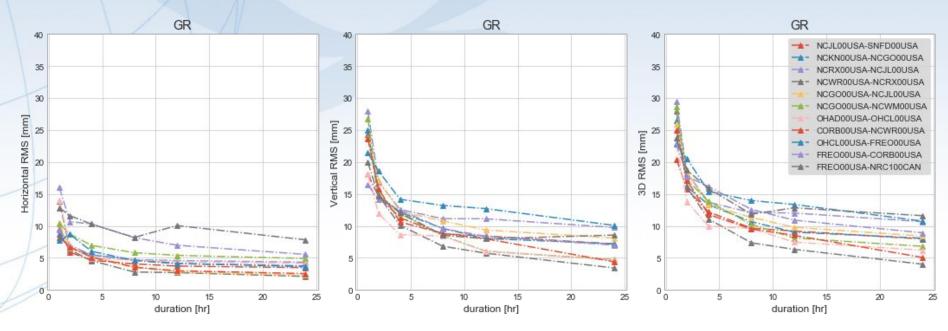
Multi-GNSS CORS Tests



- Each 24 hour RINEX file (represented by a block) is divided into sub-sessions for each duration
- Total sessions (N) = (# of baselines) * (# of days) * (sessions per day)

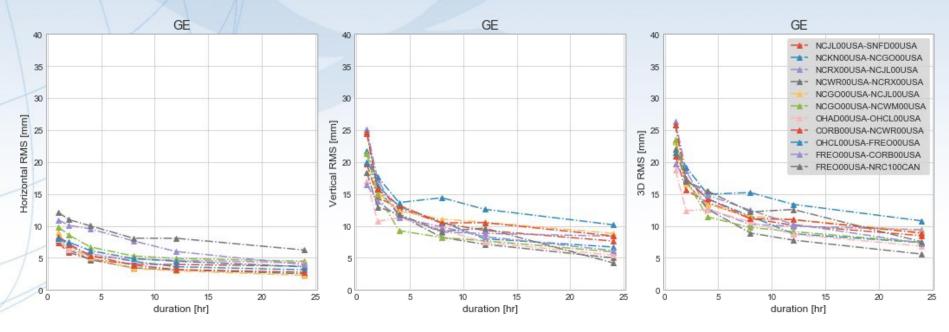
• Example: 24 hr
$$\rightarrow$$
 11 * 14 * 1 = 154

geodesy.noaa.gov


GPS

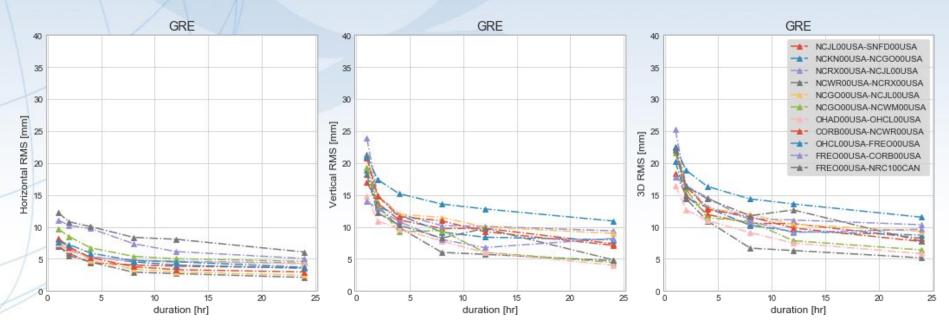
- RMS values computed per baseline and per session duration
- Large outliers removed using 4 * RMS for each component

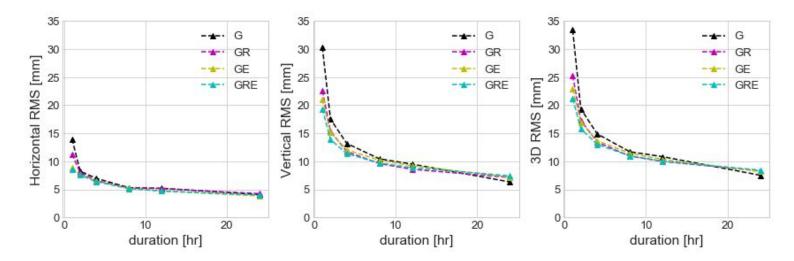
geodesy.noaa.gov


GPS + GLO

- RMS values computed per baseline and per session duration
- Large outliers removed using 4 * RMS for each component

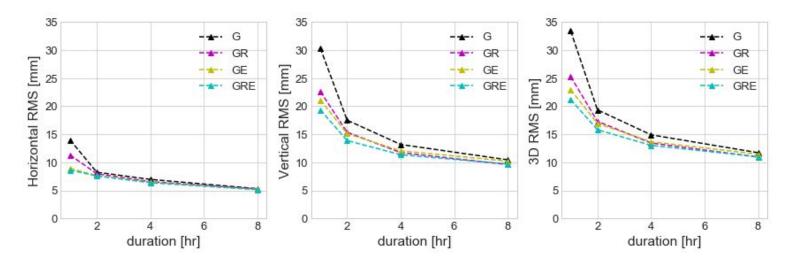
geodesy.noaa.gov


GPS + GAL


- RMS values computed per baseline and per session duration
- Large outliers removed using 4 * RMS for each component

geodesy.noaa.gov

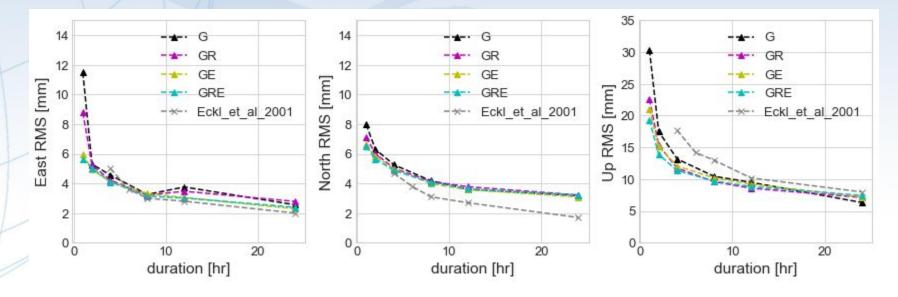
GPS + GLO + GAL



- RMS values computed per baseline and per session duration
- Large outliers removed using 4 * RMS for each component

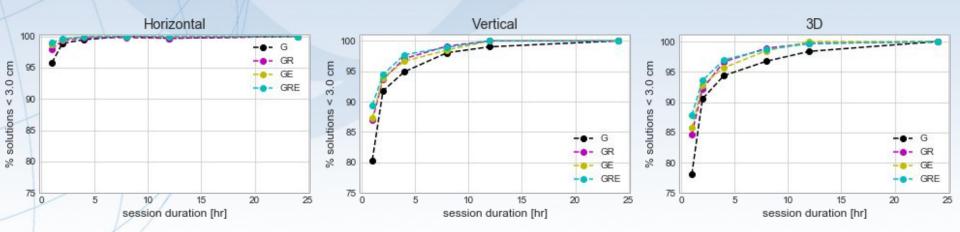
- RMS values for all baselines processed
- Significant improvements with added GNS for shorter sessions
- Large outliers removed

		Percent Improvement (wrt GPS-only)			
GNSS	Duration [hr]	HRMS	VRMS	3D	
	1	19.2	25.5	24.3	
GR	2	3.4	12.2	10.6	
	4	5.7	11.0	9.8	
`	8	1.2	8.1	6.7	
	1	36.1	30.5	31.4	
GE	2	7.4	13.7	12.5	
GE	4	7.2	8.6	8.3	
	8	2.3	2.3	2.3	
	1	38.4	36.2	36.6	
GRE	2	8.1	20.7	18.3	
GRE	4	8.5	13.8	12.6	
	8	2.9	7.0	6.2	

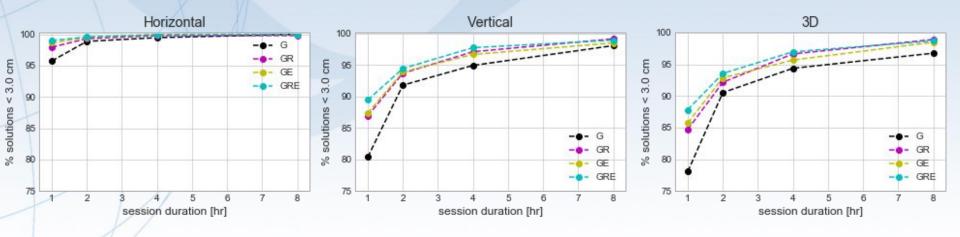


- RMS values for all baselines processed
- Significant improvements with added GNS for shorter sessions
- Large outliers removed

			Percent Ir	Percent Improvement (wrt GPS-only)			
G	NSS	Duration [hr]	HRMS	VRMS	3D		
	GR	1	19.2	25.5	24.3		
		2	3.4	12.2	10.6		
4		4	5.7	11.0	9.8		
"		8	1.2	8.1	6.7		
	GE	1	36.1	30.5	31.4		
		2	7.4	13.7	12.5		
`		4	7.2	8.6	8.3		
		8	2.3	2.3	2.3		
	GRE	1	38.4	36.2	36.6		
		2	8.1	20.7	18.3		
		4	8.5	13.8	12.6		
		8	2.9	7.0	6.2		


geodesy.noaa.gov

So how does this compare to PAGES?


- Eckl et al. (2001) performed a similar study using PAGES
- Imperfect comparison due to difference time window and baseline selection
- M-PAGES results are quite consistent!

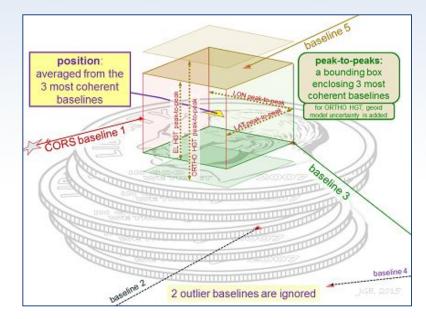
geodesy.noaa.gov

- Plots show percentage of solutions that agree with MYCS2 coordinates at 3 cm level (including outliers)
- Notable improvements for $G \rightarrow GRE$ solutions for shorter sessions

geodesy.noaa.gov

(Zoomed in on 1-8 hours)

- Plots show percentage of solutions that agree with MYCS2 coordinates at 3 cm level (including outliers)
- Notable improvements for $G \rightarrow GRE$ solutions for shorter sessions


geodesy.noaa.gov

M-PAGES Testing: OPUS data

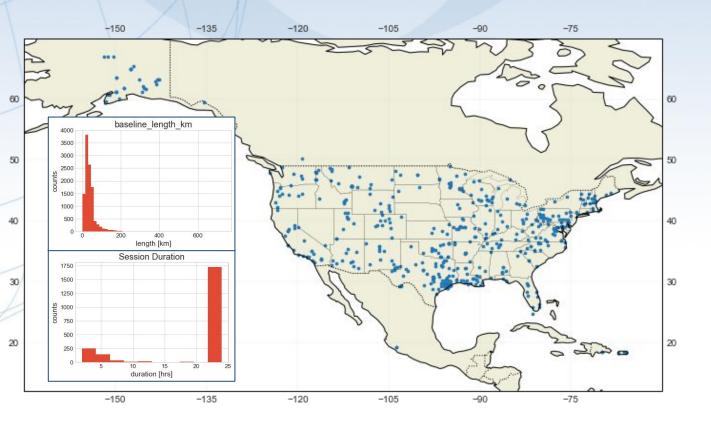
geodesy.noaa.gov

OPUS-Static

- User submits a rover RINEX file along with antenna height/type
 Five single baseline solutions are processed to nearby CORS
 OPUS-S solution = average of best three baseline solutions
- OPUS-S uncertainties = peak to peak errors of best three (right)

https://geodesy.noaa.gov/OPUS/about.jsp

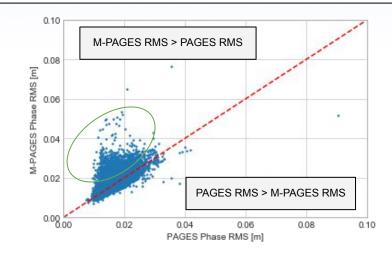
geodesy.noaa.gov


OPUS-S Testing

- For a selection of ~2500 OPUS submissions:
 - Process each of the 5 baselines with M-PAGES (GPS only)
 - Compare each single-baseline solution with the corresponding PAGES solution
 - Compare the OPUS-S solution for M-PAGES with PAGES
 - i.e., Average of the best three baselines

https://geodesy.noaa.gov/OPUS/

geodesy.noaa.gov


- The majority of data processed:
 - < 200 km baselines
 - 24 hour sessions
- Large quantity of submissions in Texas

geodesy.noaa.gov

Consistency of individual baseline solutions

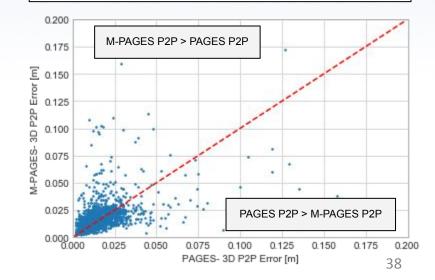
- Percentage* of solutions that PAGES and M-PAGES solutions agree within threshold
- Population of solutions with higher RMS for M-PAGES (Bottom right; Green oval)
- Room for improvement!
- * Total baseline solutions = 12430

Component < 3 cm	Ν	%
=====================================	========	=======
Horizontal	11792	95.55
Vertical	11711	94.90
3D	11029	89.37

geodesy.noaa.gov

Consistency of individual baseline solutions

- RMS of coordinate differences between M-PAGES and PAGES
- Values averaged for sessions grouped by duration with large outliers removed


NOAA's National Geodetic Survey Positioning America for the Fu (1

Consistency of OPUS-S solutions

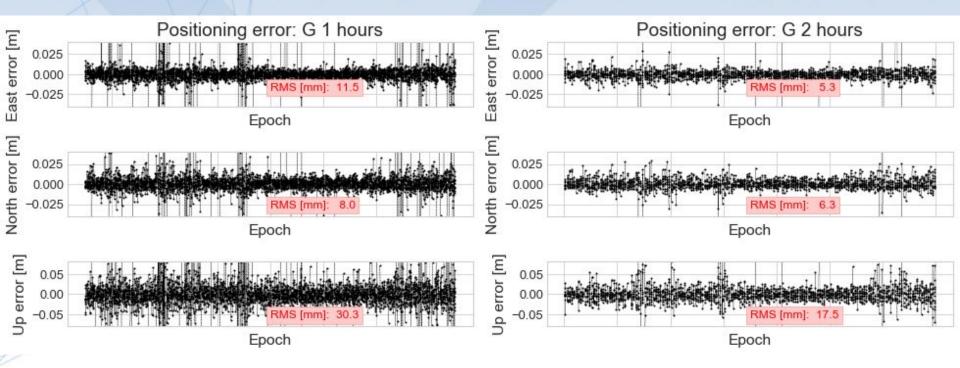
- Percentage* of solutions that M-PAGES/PAGES OPUS-S coordinates agree below threshold
 - OPUS-S coordinates = average of best three baseline solutions
- (2) Percentage* of solutions with peak to peak (P2P) error magnitude < threshold
 - Each software package yields solutions with large P2P error (see figure)

*Total solutions = 2471

(1)	Component < 3 cm	Ν	%
	=======================================		======
	Horizontal		95.95
	Vertical	2388	96.64
	3D	2281	92.31
(2)	P2P < 3 cm	Ν	%
	==================	=====	=====
	M-PAGES	2296	92.92
	PAGES	2302	93.16

Looking Ahead

- Planned integration of M-PAGES in Beta OPUS-S by end of calendar year (2022)
 - Once released, please test and provide feedback!
- Future OPUS User Forum will provide more detail about M-PAGES integration- stay tuned!
- Ongoing R&D:
 - Improved ambiguity resolution, cycle slip/outlier detection
 - Testing, testing, testing
 - Prep for integration into OPUS-Projects and GNSS orbit determination


Key Points

- M-PAGES is capable of processing GNSS data for all dual-frequency systems
- Improved positioning with multi-GNSS data can be demonstrated with M-PAGES
- M-PAGES is still under active development, but OPUS-S integration is underway

geodesy.noaa.gov

Extra Slides

geodesy.noaa.gov

- X-axes: mean epoch of each session
- Y-axes: positioning errors wrt MYCS2 coordinates for all baselines
- Outliers are included in these plots

geodesy.noaa.gov

- X-axes: mean epoch of each session
- Y-axes: positioning errors wrt MYCS2 coordinates for all baselines
- Outliers are included in these plots
- Notable improvements and fewer outliers with GLO+GAL added!