

NGS Research Plan

- Basic research
- Applied research
- Proof of concept
- Validation in lab conditions
- Validation in operational settings
- Demonstration in a test environment
- Scaling up to operations
- Operational mode
- Maintenance

(Y)

geodesy.noaa.gov

Shachak Pe'eri, Ph.D. NOAA National Geodetic Survey November 9th, 2023 Webinar presentation

Outline

- Overview Situational awareness
- NSRS modernization Short term research plans
- NGS long-term research plans:
 - Develop the next generation of NSRS
 - Enhance marine and riverine geodesy
 - Advance space geodesy
 - Develop a national deformation model
 - Enable cyberinfrastructure

• Increase academic and industry engagements

The NGS Research Plan is accessible via: https://geodesy.noaa.gov/web/about_ngs/info/documents/ngs-research-plan-2024-final.pdf

geodesy.noaa.gov

NGS Research Plan 2024

- Overview of the Program Office and the research to operation process in NOAA
- Linking the NOAA's five Essential **Enabling Capabilities to NGS Research**
- NGS' short-term research efforts
- NGS' long term-research efforts
- Linking NGS research to NOAA's

Weather, Water, Climate Strategy.

The road so far...

The primary focus of a <u>strategic plan</u> is competitiveness. It is designed to respond to change and future opportunities in a way to find advantage.

The primary focus of an <u>operational plan</u> is efficiency. Operational plans are designed to roll out strategy via internal department programs developed by, for instance, HR, IT, marketing, and manufacturing.

This <u>research plan</u> provides is situational awareness. Technological context in current research trends and opportunities to support the vision (strategy) and the workflows (operations).

The Mission defined in the 2019-2023 NGS Strategic Plan -"To define, maintain, and provide access to the National Spatial Reference System (NSRS) to meet our nation's economic, social, and environmental needs."

NOAA's National Geodetic Survey Positioning America for the Future geodesy.noaa.gov What do we expect in a research plan?

- Aligning with NOAA's strategy/implementation plans.
- Communication tool to our stakeholders
- Background material for academic/industrial partners. (and for anyone interested working at NGS)

Strategy is positioning an organization, whether it is a business, government agency, or a nonprofit entity, with respect to the competitors^{*}.

(Strategic Planning should be a Strategic Exercise, Graham Kenny, Harvard Business Review, 2022)

* Before you protest - All organizations have competitors - for customers, for staff for resources.

ざ

One day Alice came to a fork in the road and saw a Cheshire cat in a tree. "Which road do I take?" she asked. "Where do you want to go?" was his response. "I don't know," Alice answered. "Then," said the cat, "it doesn't matter."

NOAA's National Geodetic Survey Positioning America for the Future Aligning with the administration

CLIMATE

NOAA FY22-26 STRATEGIC PLAN

geodesy.noaa.gov

GOALS:

Drive U.S. Innovation and Global Competitiveness; Foster Inclusive Capitalism and Equitable Economic Growth; Address the Climate Crisis Through Mitigation, Adaptation, and Resilience Efforts; Expand Opportunity and Discovery Through Data; Provide 21st Century Service with 21st Century Capabilities

NOAA Strategic Plan

GOALS:

Building a Climate Ready Nation: Develop, Deliver and Use Climate Products and Services; Making Equity Central to NOAA's Mission; Foster an Information-Based Blue Economy

CHALLENGES:

Extreme Events and Cascading Hazards; Coastal Resilience; The Changing Ocean; Water Availability, Quality, and Risk; Effects of Space Weather; Monitoring and Modeling for Climate Change Mitigation

- Weather, Water, and Climate Strategy
 - Service Delivery
 - Decision Support
 - **Modeling and prediction**
 - R&D and Engineering
 - Observations and Data

Research plan as a recruiting tool

The inverted geospatial pyramid shows our vulnerability

November 1, 2022 - By David B. Zilkoski

Est. reading time: 14 minutes

NATIONAL GEOSPATIAL ADVISORY COMMITTEE – RESOLUTION ON GEODESY

"The decline of geodetic academic programs in the United States and the resulting shortage of practicing geodesists threatens our international technological competitiveness in Earth and space science, affecting our economic health and security. The National Geospatial Advisory Committee (NGAC) supports the findings, which include challenges, threats, and opportunities, outlined in the "Geodesy Crisis" white paper¹ authored by Dr. Michael Bevis et al. and discussed

The NGAC strongly recommends that these serious national challenges be addressed immediately through an ambitious program of educational support, research funding, and government agency action including:

- Address the challenges and opportunities for augmenting geodesy capabilities in support of the National Spatial Reference System and within relevant Federal Geographic Data Committee (FGDC) agencies.
- Promote understanding within FGDC agencies and across the geospatial community about how geodesy expertise advances socio-economic, environmental, ecological, intelligence, and military programs to advance national security and economic growth.
- Augment budgets to sponsor academic training and research work in geodesy and allied geospatial fields (the NGAC commends the National Geospatial-Intelligence Agency for providing its leadership and financial commitment to this effort).

(Adopted by the NGAC on December 7, 2022)

Last year I was privileged to be part of a Blue-Ribbon Review Panel for an American Society of Civil Engineers (ASCE) surveying publication. The book is Surveying and Geomatics Engineering: Principles, Technologies, and Applications. I recently received my copy of the published book in the mail and decided to highlight some sections While preparing this column, the chapters reminded me of how geodesy has expanded into so many different disciplines.

I first mentioned this in my July 2020 article for the "First Fix" column of GPS World, where I stated that the shortage of American trained geodesists poses a significant economic risk for the United States. In that column, I mentioned how geodetic science and technology now underpin many sciences, large areas of engineering (such as driverless vehicles and drones), navigation, precision agriculture, smart cities and location-based services. That is why I believe understanding geodesy is more critical today than ever. In January 2022, Mike Bevis, collaborating with others, prepared a white paper titled "The Geodesy Crisis," documenting the concern about the lack of trained geodesists in the United States.

You are here!

NOAA Administration

OMAO NWS OAR

National Ocean Service (NOS)

CO-OPS UCS

National Geodetic Survey (NGS)

Budget and Administration

Research

Reference Systems

geodesy.noaa.gov

Data Analysis NCCOS

Coastal Mapping

IT

NOAA's National Geodetic Survey Positioning America for the Future geodesy.noaa.gov

Coming soon (NSRS Modernization)

NSRS Modernization - Geometric

End users will have tools and service to calculate three-dimensional positioning from 4 plate-fixed reference frames that cover the U.S. and its most populated territories (i.e., the ability to determine latitude, longitude and height coordinates relative to an ellipsoid model of Earth)

The new reference system will be linked to a global dynamic reference system (i.e., ITRF).

HYDROGRAPHIC SERVICES REVIEW /PAN

State Plane Coordinate System of 2022 (SPCS2022) SPCS2022

SPCS2022 is the third generation of the State Plane Coordinate System (SPCS). SPCS2022 will be referenced to the **four 2022 Terrestrial Reference Frames**.

SPCS2022 will have up to three zone layers in each state, and the number of zones will vary greatly between states. Every U.S. state and territory will have a statewide zone.

HYDROGRAPHIC SERVICES REVIEW PANEL

North American – Pacific Geopotential Datum of 2022 (NAPGD2022)

A new geopotential datum using a vertical reference system calculated from gravity observations. The geopotential surface does not take into account oceanographic processes, such as tides and currents.

"North American region" - 1/4 of the Earth

This geopotential is of particular importance at the coast where it is necessary to ensure that geophysical and oceanographic observations, and resulting coastal models, can be consistently aligned with terrestrial applications.

HYDROGRAPHIC SERVICES REVIEW / PAN

Long-term Research

Short-Term plans

NSRS

Modernization

(2025)

Modernizing the NSRS

- Geometric
- Geopotential
- Campaigns
- **IT** Infrastructure

Tools and Services

- OPUS/CORS/Orbits

Updating and expanding the CMP

International engagement

geodesy.noaa.gov

• Transformations and adjustments

Advance space geodesy

Observing and monitoring Earth

geodesy.noaa.gov

Learning about Earth systems through geodetic observations:

- Land elevation (e.g., PPP)
- Water surface (e.g., GNSS-R)
- Water vapor (GPS-MET)
- Total Electron Content (GPS-ION)
- Orbit calculations
- Clocks

Space missions supporting geodesy

Observational Products for End-Users from Remote Sensing Analysis (OPERA) project (April, 2021)

GRACE FOLLOW-ON

80

60

40

-20

-40

-60

-80

geodesy.noaa.gov

Surface Water and Ocean Topography (SWOT) (Launched: 12/16/2022)

Develop the next generation of NSRS

Ideas???

Leveraging legacy datasets

By correct attribution, it possible to leverage the 200 years of observations^{*} to supplement modern-day observations:

- Dynamic observation of the geometric and geopotential surfaces.
- Climate-scale observations and monitoring.
- Change detection.
- * Requires metadata

geodesy.noaa.gov

Theodolite (1990)

Sextant Target (1916)

Utilizing all geodetic observations

GNSS

- Network solutions
- GNSS ION/MET
- GNSS-R

Coastal mapping

- Imagery (Aerial/Satellite)
- Shoreline mapping
- Topo-bathy LIDAR

geodesy.noaa.gov

Gravity observations

- Absolute gravity (Terrestrial)
- Relative gravity (Terrestrial)
- GRAV-D (Aerial)
- Satellite (GRACE/GOCE)

Field operations

- Leveling
- Lever-arm calculations

NOAA's National Geodetic Survey Positioning America for the Future geodesy.noaa.gov Why should we care about developing and maintaining reference systems?

(Depositphotos.com)

Schematic illustration of S-1XX and S-4XX layers (IHO.int)

Total Water Level

Important note! All elevation data should be processed to the same horizontal and vertical reference system

https://stock.adobe.com/

Celestial nav Motion (Constitution) Geodetic Survey Positioning America for the Future

Alternate positioning, navigation, and timing (PNT)

"You have to know the past to understand the present." (Carl Sagan, 1980)

Latitude

Phoenicians used the constellation Ursa Minor to determine their latitude (~600 BC). Arabs were known to measure the Altitude of the sun at noon in order to determine their latitude.

geodesy.noaa.gov

Longitude

"It was impossible to determine longitude out of sight of land until the development of accurate and reliable chronometers" (Harrison's clock, 1736). With the advent of chronometers seafarers began to chart the geography of the oceans (Magellan - early 1500's, Cook -1770's, etc).

Enhance marine and riverine geodesy

Safe Efficient Navigation - Geodetic control

Safe, Efficient Navigation Water Level Information S-104 for Surface Navigation Weather Overlay S-412 undu (ICOMM) Aids to Navigation Surface S-111 S-201 Information Currents Provide real-tim 1011112-00 750 Bathymetric Surface S-102

geodesy.noaa.gov

Schematic illustration of S-1XX and S-4XX layers (IHO.int)

geodesy.noaa.gov

Height relationships

Regional coverage at high resolution circulation models

Images courtesy of OCS/CSDL/CMMB

NOAA's National Geodetic Survey Positioning America for the Future geodesy.noaa.gov Referencing the circulation models to Tidal Datum

Will additional observations improve the TSS products and the VDatum results overall?

Using a **co-located GNSS water level observation**, it is possible to reference the water level information directly to the ellipsoid with knowing the deformation model (e.g., tidal loading) of the benchmark.

As such, three key component are needed to evaluate the **total propagated uncertainty (TPU)** of the observation:

- Accuracy of the sensor
- Geodetic control
- Length of observation

Develop a national deformation model

Vertical Land Deformation

Land deformation monitoring (also known as, Intra-Frame Deformation traditionally be done using GNSS and leveling campaigns.

This vertical land deformation models, VLMs, can also be used:

- Syncing inter-agency geohazard monitoring (plate tectonics)
- Linking into ground water activities (subsidence) • Calculating Sea Level Rise (decoupling the land signal)

geodesy.noaa.gov

Model, IFDM) is needed for updating the passive benchmark network. This has

Groundwater management (Johnston et al., 2021)

NOAA's National Geodetic Survey Positioning America for the Future **Interferometric Synthetic Aperture Radar and more** Monitoring land deformation models can be done using various technologies:

- Leveling
- GNSS observations

• Interferometric Sythetic Aperture Radar (InSAR)

geodesy.noaa.gov

Wicks, C.W. et al., 2002

Deformation modeling

Deformation

Uncertainty

Quality/Source

Figure based on National Bathymetry Source (NOAA/OCS)

120 E 135°E 150'E 165 E. 120°W 105 W 60"W 20 W 1051E 1801 165'W 150°W 135"W 80°W 75 W 45 W 1510

Enable Cyber-Infrastructure

NOAA's National Geodetic Survey Positioning America for the Future HPC as a resource

UT Austin's Texas Advanced Computing Center (TACC) designs and operates powerful computing resources. The center's mission is" to enable discoveries that advance science and society through the application of advanced computing technologies".

- Conventional HPC support
- Cloud sandbox for collaborative development
- Data-sharing and collaboration infrastructure 3.

geodesy.noaa.gov

Illustration of a network

SCISM mesh for calculating water levels, currents, temperature and salinity using circulation models.

High Performance Computing (HPC) Parallelization Clustering

Artificial Intelligence Machine Learning Deep Learning Digital Twins

Code management Language Profiling Architecture

geodesy.noaa.gov

Cyber-Infrastructure Emerging opportunities

Sandbox collaboration environment

Increase **Academic and Industry Engagements**

NOAA's National Geodetic Survey Positioning America for the Future **Academic and Industry Engagements**

now available or being developed?

Capacity -Do we have the knowledge and the skillset?

Education - What is needed to train the next generation of geodesists?

- Technology Are we aware of new systems and software that are

Technology Positioning America for the Future Pop quiz - Name that brand (15 seconds!)

GNSS Technology Trimble

Javad

Ashtech

U-Blox

Topcon

Sick

Hoyuko

Velodyne

geod

NOAA's National Geodetic Survey Positioning America for the Future **Capacity - recruitment**

Government job series:

- Physical Scientist (ZP-1301)
- Land Surveyor (ZP-1373)
- Geodesist (ZP-1372)
- Cartographer (ZP-1370)

Academic background • Minimum of B.Sc. in Earth Sciences, Engineering, or Physics.

geodesy.noaa.gov

What are the core classes required/recommend

- Jung C
 - Ing Geospatial Data Structures and databases surveying
 - Lasic coding Python, Fortran, or C++ programming

Education material - availability and delivery

Topic/Element	Content			
F1.1 Physical geodesy				
F1.1aThe gravity field of the Earth (B) F1.1b Gravity observations and their reduction. (B) F1.1c Height systems and	 (i) Newton's law of gravita (ii) Centrifi (iii) Gravity (iv) Gravity (iv) Gravity (v) Level of (vi) The Gee (vii) Normal models (viii) Gravity (ix) Gravity (i) Dynami (i) Dynami (A) 			
height determination (B) F1.1d Geopotential and geoidal Modelling (I)	 (iii) Normal (iv) Level el F1.2c Geodetic (v) Theoret leveling (vi) Geopote (vii) High res local ge (viii) Deflect F1.2d Three-Dimensional Geodetic Modeling 			

Publication S-5A First Edition Version 1.0.2 - June 2018

CAT-A in Hydrography

https://iho.int/uploads/user/pubs/standards/s-5/S-5A Ed1.0.2.pdf

INTERNATIONAL HYDROGRAPHIC ORGANIZATION

INTERNATIONAL CARTOGRAPHIC ASSOCIATION

STANDARDS OF COMPETENCE FOR CATEGORY "A" HYDROGRAPHIC SURVEYORS

M	rhumb gles and	Apply plane and spherical trigonome surveying problems.
1220	bservation y related	Differentiate between accuracy, preci- reliability and repeatability of measurements. Relate these notions to statistical information
C	lity on ce rtainty in h multiple	Apply the variance propagation law to simple observation equation, and der an estimate uncertainty as a function observations covariances.
	e	
	ole vation res	Solve geodetic problems by least squ estimation.
	are	Determine quality measures for least square solution to geodetic problems.
	cit	include reliability and confidence lev
	ated	
	estimate reliability	

geodesy.noaa.gov **NOAA's National Geodetic Survey** Positioning America for the Future **Education material - availability and delivery**

a & Imagery Tools Surveys Science & Education

Search

Online Lessons

NGS, in partnership with The COMET Program, has developed a series of self-paced lessons on geodetic and remote sensing topics. Create a free user account to gain access to the courses below and many others that may be of interest. You will have the option of printing out a certificate upon successful completion of the quiz at the end of each lesson.

These lessons are rated by skill level:

- 0 = Suitable for non-scientists
- 1 = Requires basic scientific literacy
- 2 = Requires some prior knowledge of the topic

Understanding Heights and Vertical Datums Skill Level: 0 Français | Español

GNSS Positioning: Survey Planning and Data Acquisition Skill Level: 1

Foundations of **Global Navigation** Satellite Systems

Foundations of Global Navigation Satellite Systems Skill Level: 2

Gravity for Geodesy I: Foundations

> Gravity for Geodesy I: Foundations Skill Level: 2 Español

Gravity for Geodesy II Applications Skill Level: 2 Español

For additional lessons designed to supplement existing curricula at the middle and high school levels visit the National Ocean Service Lesson Plan Library.

geodesy.noaa.gov/web/science_edu/online_lessons/index.shtml

VIRTUAL GPS ASSIGNMENT

SEPTEMBER 2003

Computational Problem Set: Being a Virtual GPS receiver

September 2003 version

Dave Wells 10 August 2003

University of New Brunswick, Canada

Courtesy of Prof. Dave Wells,

VIRTUAL GPS ASSIGNMENT

SEPTEMBER 2003

TABLE OF CONTENTS

Table of contents	
Objective	
Step 1: Select your location and time	
Step 2: Conversion to Cartesian coordinates	
Step 3: Satellite Cartesian coordinate values	
Step 5: Compute satellite elevation and azimuth	1
Step 6: Model GPS measurement uncertainty (=construct pseudoranges)	1
Step 7: Select initial estimate for receiver position	1
Step 8: Form the linearized observation equations	2
Step 9: Least squares fix (with blunder)	2
Step 10: Least squares fix (without blunder)	2
Step 11: Transform solution to Lat, Long, Height	2
Step 12: Transform covariance matrix	2
Step 13: Eigenvalues and eigenvectors	2
Step 14: Constructing NMEA sentences	2
Step 15: Geodetic inverse	2
Step 16: UTM coordinates	3
Step 17: Datum transformation	3
Step 18: Orthometric heights	3
Step 19: Chart Datum	3
Appendix: Solved Example	3

to ya' booty?

From the "normal" equations

 $\mathbf{A}^{\mathrm{T}} \mathbf{C}_{\mathrm{obs}}^{-1} \mathbf{A} \delta + \mathbf{A}^{\mathrm{T}} \mathbf{C}_{\mathrm{obs}}^{-1} \mathbf{w} = \mathbf{0}$

Solve for the estimated coordinate correction vector $\delta = -\{A^T C_{obs}^{-1} A\}^{-1} A^T C_{obs}^{-1} w$

And its covariance matrix $\mathbf{C}_{\delta} = {\mathbf{A}^{\mathsf{T}} \mathbf{C}_{\mathrm{obs}}^{-1} \mathbf{A}}^{-1}$

Compute the residual vector $\mathbf{r} = \mathbf{A} \ \delta + \mathbf{w}$

Compute the variance factor $\mathbf{r}^T \mathbf{C}_{obs}^{-1} \mathbf{r} / (n - u)$, where n is the number of satellites used in the computation, and u is the number of unknown parameters in δ (= 4).

But it was too heavy and I forget to mark the spot.

It takes a village to raise a child

Central Washington University				
Colorado School of mines				
Community College of Baltimore County				
CSU Fresno State				
Dunwoody College of Technology				
East Tennessee State University				
Eastern Kentucky University				
Ferris State University				
FIU				
Florida Atlantic				
George Mason University				
Georgia Institute of Technology				
Hampton University				
Idaho State University				
Indiana University				
Jacksonville University				
Kennesaw State University				
Lamond-Doherty - Columbia University				
Louisiana State University (LSU)				
Michigan State University				
Michigan Technological University				
Milwaukee Area Technical College				
MIT				
Mt San Antonio Community College				
Mt. San Jacinto College (Houston)				
Nevada Geodetic Lab				
New Mexico State University				
Nicholls State University (NSU)				
NJ Institute of Technology				
North Carolina A&T State University				
North Dakota State College of Science				

Northeast Wisconsin Technical College **Northern Illinois University** Northwestern Michigan College Northwestern University **Ohio State University Old Dominon University Oregon State University Oregon Tech (OIT)** Parkland College Penn State Wilkes Barre **Princeton University Purdue University Rowan University** Saint Cloud State University Santa Rosa Junior College **Southeast Technical Institute** Southern Illinois University-Edwardsville **St Cloud Technical and Community College** Stanford University **Stephen F. Autsin State University** TAMU, Corpus Christi **Texas A&M College Station** Troy University, Alabama Tyler Junior College UC Berkeley UC San Diego /SIO University of Texas at Tyler University Arkansas at Monticello (UAM) **University Arkansas Morrilton (UACCM)**

University of Alaska Anchorage
University of Alaska Fairbanks
University of Colorado
University of Connecticut
University of Florida (UF)
University of Florida, IFAS
University of Guam
University of Hawaii
University of KY
University of Maine
University of Maryland, College Park
University of Miami
University of New Hampshire
University of North Florida
University of Oregon
University of Puerto Rico
University of South Florida
University of Utah
University of Washington
University of Wisconsin –Madison
UT Austin
UT Houston
Utah Valley University
Vincennes University
VT Blacksburg
West Virginia University

- The goal of this presentation was to communicate the NGS commitment to research and vision for investment on the long-term (i.e., next decade) research planning horizons.
- Providing long-term research themes allows governmental partner agencies, academic collaborators, and commercial industry insight into NOAA's plans to prepare and address the nation's geodetic control needs for the next 10–15 years.
- The long-term research activities are based on the outcomes of the current short-term research projects that are mainly focused on establishing, preserving, and improving the NSRS: including high-resolution geoid models, precise satellite orbits, and continuously updated national shoreline service

The research plan is accessible via: https://geodesy.noaa.gov/web/about_ngs/info/documents/ngs-research-plan-2024-final.pdf

Thank you for attending this Webinar!

